JP6621254B2 - Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same - Google Patents

Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same Download PDF

Info

Publication number
JP6621254B2
JP6621254B2 JP2015128872A JP2015128872A JP6621254B2 JP 6621254 B2 JP6621254 B2 JP 6621254B2 JP 2015128872 A JP2015128872 A JP 2015128872A JP 2015128872 A JP2015128872 A JP 2015128872A JP 6621254 B2 JP6621254 B2 JP 6621254B2
Authority
JP
Japan
Prior art keywords
stainless steel
surface smoothness
steel sheet
austenitic stainless
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015128872A
Other languages
Japanese (ja)
Other versions
JP2017014538A (en
Inventor
濱田 純一
純一 濱田
敦久 矢川
敦久 矢川
幸弘 久禮
幸弘 久禮
拓二 横尾
拓二 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2015128872A priority Critical patent/JP6621254B2/en
Publication of JP2017014538A publication Critical patent/JP2017014538A/en
Application granted granted Critical
Publication of JP6621254B2 publication Critical patent/JP6621254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐熱性に加え表面平滑性が要求される耐熱部品の素材となるオーステナイト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to an austenitic stainless steel sheet as a material for a heat-resistant component that requires surface smoothness in addition to heat resistance, and a method for producing the same.

自動車の排気マニホールド、フロントパイプ、センターパイプ、マフラーおよび排気ガス浄化のための環境対応部品は、高温の排気ガスを安定的に通気させるために、耐酸化性、高温強度、熱疲労特性等の耐熱性に優れた材料が使用される。また、凝縮水腐食環境でもあることから耐食性に優れることも要求される。排気ガス規制の強化、エンジン性能の向上、車体軽量化等の観点からも、これらの部品にはステンレス鋼が多く使用されている。また、近年では、排気ガス規制の強化が更に強まる他、燃費性能の向上、ダウンサイジング等の動きから、特にエンジン直下のエキゾーストマニホールドを通気する排気ガス温度は上昇傾向にある。加えて、ターボチャージャーのような過給機を搭載するケースも多くなっており、エキゾーストマニホールドやターボチャージャーに使用されるステンレス鋼には耐熱性の一層の向上が求められる。排気ガス温度の上昇に関しては、従来900℃程度であった排気ガス温度が1000℃程度まで上昇することも見込まれている。一方、ターボチャージャーの内部構造は複雑で、過給効率を高めるとともに、耐熱信頼性の確保が重要であり、主として耐熱オーステナイト系ステンレス鋼の使用が開示されている。代表的な耐熱オーステナイト系ステンレス鋼であるSUS310S(25%Cr−20%Ni)やSUSXM15J1(19%Cr−13%Ni−3%Si)やNi基合金等の使用が特許文献1および2に開示されている。また、ターボチャージャーにおいてノズルベーン式ターボチャージャーの排気部品に使用される鋼が特許文献3に開示されている。ここでは、良好な耐酸化性および高温強度を有することを目的として鋼成分が調整されているが、これらだけではターボチャージャーを構成する数多い部品に要求される特性として十分でない場合があった。   Environment-friendly parts for automobile exhaust manifold, front pipe, center pipe, muffler and exhaust gas purification have high heat resistance such as oxidation resistance, high temperature strength, thermal fatigue characteristics, etc. in order to allow high temperature exhaust gas to flow stably. Excellent material is used. Moreover, since it is also a condensed water corrosive environment, it is also required to have excellent corrosion resistance. Stainless steel is often used for these parts from the viewpoints of stricter exhaust gas regulations, improved engine performance, and lighter body weight. In recent years, exhaust gas regulations have been further strengthened, and the exhaust gas temperature flowing through the exhaust manifold directly below the engine has been on the rise due to improvements in fuel efficiency and downsizing. In addition, turbochargers such as turbochargers are often installed, and stainless steel used for exhaust manifolds and turbochargers is required to have further improved heat resistance. Regarding the rise in the exhaust gas temperature, it is expected that the exhaust gas temperature, which was conventionally about 900 ° C., will rise to about 1000 ° C. On the other hand, the internal structure of the turbocharger is complicated, and it is important to increase the supercharging efficiency and to ensure the heat-resistant reliability. The use of heat-resistant austenitic stainless steel is mainly disclosed. Patent Documents 1 and 2 disclose the use of typical heat-resistant austenitic stainless steels such as SUS310S (25% Cr-20% Ni), SUSXM15J1 (19% Cr-13% Ni-3% Si), and Ni-based alloys. Has been. Patent Document 3 discloses steel used for exhaust parts of a nozzle vane turbocharger in a turbocharger. Here, the steel components are adjusted for the purpose of having good oxidation resistance and high-temperature strength, but these alone may not be sufficient as characteristics required for many parts constituting the turbocharger.

具体的には、ターボチャージャーにおけるバックプレートやオイルディフレクターと呼ばれる部品には耐酸化性や高温強度の他に表面平滑性が重要となる。ターボチャージャーは、排気ガスを集めてタービンを回すタービン部分、空気を集めてエンジンのシリンダーに押し込むコンプレッサー部分、回転軸を保持するセンターコアの3つの部分に分けられる。バックプレートやオイルディフレクターのような部品は、タービン部分およびコンプレッサー部分とセンターコアの間に位置し、各部のシール性を保ちつつタービンおよびコンプレッサーホイールを安定的に回転させる部品である。これらのターボ内部の部品は表面の平滑性が悪いと気密性が悪くなり、過給効率の劣化に繋がる。また、高温強度が不足すると過度な熱変形(クリープ)が生じてしまい、各ホイールの回転に支障をきたす。更に、耐酸化性が不足しスケール剥離が生じてしまうと各ホイールの損傷に至ってしまう。従来、これらの部品は、鋳鋼を素材として製造され、切削や研削により表面の平滑性および板厚精度を確保した上で使用されているが、素材および部品加工のコストが高くなる欠点があった。この他、ノズルマウントやノズルプレートと呼ばれる排気ガスを可変的に導入および排出する部品も同様である。   Specifically, surface smoothness is important in addition to oxidation resistance and high temperature strength for parts called back plates and oil deflectors in turbochargers. The turbocharger is divided into three parts: a turbine part that collects exhaust gas and rotates the turbine, a compressor part that collects air and pushes it into the cylinder of the engine, and a center core that holds the rotating shaft. Parts such as a back plate and an oil deflector are located between the turbine part and the compressor part and the center core, and stably rotate the turbine and the compressor wheel while maintaining the sealing performance of each part. When the surface smoothness of these turbo parts is poor, the airtightness is deteriorated, leading to deterioration of supercharging efficiency. In addition, when the high temperature strength is insufficient, excessive thermal deformation (creep) occurs, which hinders the rotation of each wheel. Furthermore, if oxidation resistance is insufficient and scale peeling occurs, each wheel is damaged. Conventionally, these parts are manufactured using cast steel as a raw material, and are used after ensuring smoothness of the surface and thickness accuracy by cutting and grinding. However, there is a drawback that the cost of processing the raw material and parts becomes high. . The same applies to components that variably introduce and discharge exhaust gas called nozzle mounts and nozzle plates.

国際公開2014−24905号International Publication No. 2014-24905 特開2002−332862号公報JP 2002-332862 A 特許第4937277号公報Japanese Patent No. 4937277

本発明の目的は、既知技術の問題点を解決し、特に自動車排気部品の中でターボ部品用として適合する耐熱性に加え表面平滑性が要求される耐熱部品の素材となるオーステナイト系ステンレス鋼板を提供することにある。   An object of the present invention is to solve the problems of the known technology, and in particular, to provide an austenitic stainless steel sheet that is a material for heat resistant parts that require surface smoothness in addition to heat resistance suitable for turbo parts in automobile exhaust parts. It is to provide.

上記課題を解決するために、本発明者らはオーステナイト系ステンレス鋼板およびその製造方法に関して、鋼成分、表面性状、金属組織、高温特性の見地から詳細な研究を行った。その結果、例えばターボチャージャーのような極めて過酷な熱環境に曝される部品の中で耐熱性と表面平滑性が要求される素材に対して、鋼成分に加えて、介在物分布、結晶粒径、表面粗さを制御することにより、優れた耐熱性と表面平滑度を有し、ステンレス鋼板を素材とした部品において熱および形状信頼性を確保出来ることを知見した。特許文献1〜3では、鋳造品の切削処理や研削処理、あるいは冷延焼鈍後に研磨処理することが示されているが、本発明では冷延焼鈍後の酸洗処理によって表面平滑性を確保するとともに、切削や研削工程の省略あるいは負荷低減に寄与する。   In order to solve the above-mentioned problems, the present inventors have conducted detailed studies on the austenitic stainless steel sheet and the manufacturing method thereof from the viewpoint of steel components, surface properties, metal structure, and high temperature characteristics. As a result, in addition to steel components, inclusion distribution, crystal grain size, etc., for materials that require heat resistance and surface smoothness in parts exposed to extremely harsh thermal environments such as turbochargers. It has been found that by controlling the surface roughness, heat and shape reliability can be ensured in parts made of stainless steel plate with excellent heat resistance and surface smoothness. Patent Documents 1 to 3 show that polishing treatment is performed after cutting or grinding of a cast product, or cold rolling annealing, but in the present invention, surface smoothness is ensured by pickling treatment after cold rolling annealing. At the same time, it contributes to omission of cutting and grinding processes or reduction of load.

上記課題を解決する本発明の要旨は、
(1)質量%で、C:0.005〜0.20%、Si:0.65〜4.0%、Mn:0.1〜4.0%、P:0.01〜0.05%、S:0.0001〜0.010%、Ni:5〜25%、Cr:15〜30%、N:0.01〜0.30%、Al:0.005〜1.0%、Cu:0.1〜3.0%を含有し、残部がFe及び不可避的不純物からなり、介在物清浄度が0.025%以下、結晶粒度番号が6以上、表面粗度が中心線平均粗さ(Ra)で0.06μm以下であることを特徴とする耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。
(2)前記鋼板が、更に、質量%で、Mo:0.01〜3.0%、V:0.05〜0.5%、Ti:0.005〜0.3%、Nb:0.005〜0.3%、B:0.0002〜0.0050%、Ca:0.0005〜0.010%、の1種又は2種以上を含有することを特徴とする請求項1記載の耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。
(3)前記鋼板が、更に、質量%で、W:0.10〜3.00%、Zr:0.05〜0.30%、Sn:0.01〜0.50%、Co:0.03〜0.30%、Mg:0.0002〜0.010%、Sb:0.005〜0.50%、REM:0.001〜0.2%、Ga:0.0002〜0.3%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。(4)請求項1〜3のいずれか1項に記載されたステンレス鋼板を製造する際、冷延後の焼鈍工程において、1000〜1200℃に加熱後、500℃までの冷却速度を10℃/sec以上とし、400〜500℃に保持された溶融アルカリ塩に5〜20sec浸漬された後に、100℃以下まで10℃/sec以上の冷却速度で冷却されることを特徴とする耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) By mass%, C: 0.005 to 0.20%, Si: 0.65 to 4.0%, Mn: 0.1 to 4.0%, P: 0.01 to 0.05% , S: 0.0001 to 0.010%, Ni: 5 to 25%, Cr: 15 to 30%, N: 0.01 to 0.30%, Al: 0.005 to 1.0%, Cu: Containing 0.1 to 3.0%, the balance is Fe and inevitable impurities, the inclusion cleanliness is 0.025% or less, the crystal grain size number is 6 or more, the surface roughness is centerline average roughness ( An austenitic stainless steel plate for exhaust parts having excellent heat resistance and surface smoothness, characterized by Ra) of 0.06 μm or less.
(2) The said steel plate is further mass%, Mo: 0.01-3.0%, V: 0.05-0.5%, Ti: 0.005-0.3%, Nb: 0. The heat resistance according to claim 1, comprising one or more of 005 to 0.3%, B: 0.0002 to 0.0050%, Ca: 0.0005 to 0.010%. Austenitic stainless steel plate for exhaust parts with excellent properties and surface smoothness.
(3) The steel sheet is further mass%, W: 0.10 to 3.00%, Zr: 0.05 to 0.30%, Sn: 0.01 to 0.50%, Co: 0.00. 03-0.30%, Mg: 0.0002-0.010%, Sb: 0.005-0.50%, REM: 0.001-0.2%, Ga: 0.0002-0.3% The austenitic stainless steel sheet for exhaust parts excellent in heat resistance and surface smoothness according to claim 1 or 2, characterized by containing at least one of the following. (4) When manufacturing the stainless steel sheet according to any one of claims 1 to 3, in the annealing step after cold rolling, after heating to 1000 to 1200 ° C, the cooling rate to 500 ° C is 10 ° C / Heat resistance and surface smoothness characterized by being cooled at a cooling rate of 10 ° C./sec or more to 100 ° C. or less after being immersed in a molten alkali salt held at 400 to 500 ° C. for 5 to 20 sec. A method for producing an austenitic stainless steel sheet for exhaust parts with excellent properties.

本発明によれば、耐熱部品の素材となるオーステナイト系ステンレス鋼板に研削処理や研磨処理をすることなく、冷延焼鈍後の酸洗処理によって表面平滑性を確保できる。耐熱性と表面平滑性が要求される自動車排気部品用(特にターボ部品用)として、オーステナイト系ステンレス鋼を提供できる。併せて、切削や研削工程の省略あるいは負荷低減に寄与する。   According to the present invention, surface smoothness can be ensured by pickling treatment after cold rolling annealing without subjecting the austenitic stainless steel plate, which is the material of the heat resistant component, to grinding or polishing treatment. Austenitic stainless steel can be provided for automobile exhaust parts (particularly for turbo parts) that require heat resistance and surface smoothness. In addition, it contributes to omission of cutting and grinding processes or reduction of load.

以下に本発明の限定理由について説明する。耐熱用途として使用されるオーステナイト系ステンレス鋼板の特性として重要なのは高温強度であり、本発明は、1000℃での0.2%耐力が20MPa以上の高温強度を具備することを目標とする。一方、特に上記のようなターボ部品の場合、表面性状も極めて重要である。先述したように、製品の表面平滑性に劣ると気密性が悪くなる他、他部品との摩耗特性も劣り、高温での部品性能の信頼性低下に繋がる。ここで表面平滑性とは、素材表面および部品加工後の表面性状のことであり、高温使用環境を考慮して、詳細な検討を行った結果、素材介在物清浄度、結晶粒径、表面粗度が強く関与していることが判明した。   The reason for limitation of the present invention will be described below. An important property of the austenitic stainless steel sheet used for heat-resistant applications is high-temperature strength, and the present invention aims to have a high-temperature strength with a 0.2% proof stress at 1000 ° C. of 20 MPa or more. On the other hand, especially in the case of turbo parts as described above, the surface texture is also extremely important. As described above, if the surface smoothness of the product is inferior, the airtightness is deteriorated, and the wear characteristics with other parts are also inferior, leading to a decrease in reliability of the component performance at a high temperature. Here, the surface smoothness refers to the material surface and the surface properties after parts processing. As a result of detailed examination in consideration of the high temperature use environment, the material inclusion cleanliness, crystal grain size, surface roughness It was found that the degree was strongly involved.

先ず、介在物清浄度について説明する。オーステナイト系ステンレス鋼板の主な介在物はSi系あるいはAl系酸化物の他、MnS等が挙げられる。本発明では冷間圧延後の焼鈍・酸洗工程における冷却速度に起因する、Cr炭窒化物やσ相などの炭窒化物、金属間化合物を介在物に含む。介在物組成によらず、介在物清浄度が悪くなる、即ち介在物の存在比率が高くなると、高温使用中でクリープボイドが発生し熱変形が生じやすくなることを知見した。熱変形が大きくなるとターボ部品の寸法精度が悪くなり、他部品との接触等によって破損に至る場合がある。また、介在物の清浄度は高温変形のみならず、表面平滑性にも影響し、介在物が多くなると特に部品加工後の表面微細凹凸が生じやすくなることも明らかとなった。介在物清浄度は、例えば鋼板断面(圧延方向と直角方向の断面)を研磨したサンプルを用いて、JIS G 0555によって測定される。上記、高温変形と表面平滑性を十分保つための清浄度として0.025%以下とする。更に、耐酸化性を考慮すると0.020%以下が望ましい。高温強度と、介在物清浄度が本発明範囲であれば、クリープ熱変形の問題は生じない。   First, the inclusion cleanliness will be described. Main inclusions in the austenitic stainless steel sheet include Si-based or Al-based oxides, MnS, and the like. In the present invention, inclusions include carbon nitrides such as Cr carbonitride and σ phase, and intermetallic compounds resulting from the cooling rate in the annealing / pickling process after cold rolling. It has been found that, regardless of the inclusion composition, when the inclusion cleanliness deteriorates, that is, the inclusion ratio increases, creep voids are generated during high-temperature use and thermal deformation is likely to occur. When the thermal deformation increases, the dimensional accuracy of the turbo parts deteriorates and may be damaged by contact with other parts. In addition, it became clear that the cleanliness of inclusions affects not only high-temperature deformation but also surface smoothness, and when the inclusions increase, surface fine irregularities after parts processing tend to occur. The inclusion cleanliness is measured according to JIS G 0555 using, for example, a sample obtained by polishing a cross section of a steel plate (cross section perpendicular to the rolling direction). The cleanliness for maintaining sufficient high temperature deformation and surface smoothness is 0.025% or less. Furthermore, considering oxidation resistance, 0.020% or less is desirable. If the high temperature strength and the inclusion cleanliness are within the range of the present invention, the problem of creep thermal deformation does not occur.

次に結晶粒径について説明する。各種耐熱部品は素材を加工して使用されるが、加工後に生じる肌荒れ(オレンジピール)が顕著に生じると、シール面に凹凸が生じるため、気密性が低下する。従来の鋳鋼を素材とした場合は表面を研削処理するため、このような課題は無かったが、鋼板を素材として各種プレス加工する場合には、微小な凹凸が問題となることを本発明の検討過程で知見した。結晶粒径については、例えば鋼板断面(圧延方向と平行方向の断面)を研磨したサンプルを用いて、JIS G 0551によって結晶粒度番号が測定される。結晶粒径と加工後の凹凸高さの相関を調べた結果、結晶粒度番号で6.0以上として細粒にすることによりバックプレート等のターボ部品の精度を満足する加工後凹凸高さが得られることを知見したため、結晶粒度番号を6.0以上とする。尚、過度に細粒化すると精密打ち抜き性が劣化するため、上限は10.5が望ましい。更に、強度、延性および製造性を考慮すると6.5〜10.0が望ましい。   Next, the crystal grain size will be described. Various heat-resistant parts are used by processing a raw material. However, when rough skin (orange peel) generated after processing occurs remarkably, the sealing surface is uneven, and thus the airtightness is lowered. In the case of using conventional cast steel as a material, the surface is ground, so there was no such problem, but in the case of various press processing using a steel plate as a material, it is considered that minute unevenness becomes a problem. I found out in the process. As for the crystal grain size, the grain size number is measured according to JIS G 0551 using, for example, a sample obtained by polishing a cross section of a steel plate (cross section parallel to the rolling direction). As a result of investigating the correlation between the crystal grain size and the unevenness height after processing, it is possible to obtain an unevenness height after processing that satisfies the accuracy of turbo parts such as a back plate by making the grain size number 6.0 or more. Therefore, the grain size number is set to 6.0 or more. In addition, since the precision punching property deteriorates when the particle size is excessively reduced, the upper limit is desirably 10.5. Furthermore, considering the strength, ductility and manufacturability, 6.5 to 10.0 is desirable.

上記の他、素材の表面粗さも表面平滑性には重要であり、素材の表面粗さが粗いと部品間のシール性が不良となり排気ガスのリーク等に繋がる。これも、従来の鋳鋼は部品を切削処理されるため課題とならなかったが、鋼板を素材とする場合に素材の微小な表面粗さが信頼性確保に極めて重要であることを知見した。表面粗さ測定については、JIS B 0601に従い、鋼板表面に対して圧延方向と平行方向あるいは直角方向に表面粗さが測定される。素材の表面粗さと他部品との接触性を種々検討した結果、圧延方向と直角方向の中心平均粗さ(Ra)が0.06μm以下であれば、各部のシール性を保ちつつタービンおよびコンプレッサーホイールを安定的に回転させるための信頼性を満足することが明らかとなった。更に、生産性や加工によって増加する粗さを考慮すると0.005〜0.05μmが望ましい。   In addition to the above, the surface roughness of the material is also important for the surface smoothness. If the surface roughness of the material is rough, the sealing performance between the parts becomes poor, leading to exhaust gas leakage and the like. This is also not a problem because conventional cast steel is processed by cutting parts. However, when steel plate is used as a raw material, it has been found that a minute surface roughness of the raw material is extremely important for ensuring reliability. Regarding the surface roughness measurement, the surface roughness is measured in parallel or perpendicular to the rolling direction with respect to the steel sheet surface in accordance with JIS B 0601. As a result of various investigations on the surface roughness of the material and the contact with other parts, if the center average roughness (Ra) in the direction perpendicular to the rolling direction is 0.06 μm or less, the turbine and the compressor wheel while maintaining the sealability of each part It became clear that the reliability for rotating the motor stably was satisfied. Furthermore, if the roughness which increases by productivity and a process is considered, 0.005-0.05 micrometer is desirable.

次に鋼の成分範囲について説明する。
以下の含有量の数値はすべて質量%での数値である。
Cは、オーステナイト組織形成と高温強度の確保のために0.005%を下限とする。一方、Cr炭化物形成により耐食性、特に溶接部の粒界腐食性が著しく劣化するため、上限を0.20%とする。更に、製造コストとスケール剥離性を考慮すると0.01〜0.15%が望ましい。
Next, the component range of steel will be described.
The following numerical values of content are all numerical values in mass%.
C has a lower limit of 0.005% in order to form an austenite structure and ensure high temperature strength. On the other hand, since the corrosion resistance, particularly the intergranular corrosion resistance of the welded portion is significantly deteriorated by the formation of Cr carbide, the upper limit is made 0.20%. Furthermore, if considering the manufacturing cost and scale peelability, 0.01 to 0.15% is desirable.

Siは、脱酸元素として添加される場合がある他、耐酸化性と高温強度の向上をもたらすため、0.1%以上添加する。一方、4.0%を超える添加により粗大なSi系酸化物が生成し、介在物の清浄度が著しく低下するため、上限を4.0%とする。更に、製造コスト、鋼板製造時の酸洗性、溶接時の凝固割れ性を考慮すると、0.4〜3.3%が望ましい。   In addition to being added as a deoxidizing element, Si is added in an amount of 0.1% or more in order to improve oxidation resistance and high-temperature strength. On the other hand, when the addition exceeds 4.0%, coarse Si-based oxides are generated, and the cleanliness of the inclusions is remarkably lowered, so the upper limit is made 4.0%. Furthermore, if considering the manufacturing cost, pickling property at the time of manufacturing the steel sheet, and solidification cracking property at the time of welding, 0.4 to 3.3% is desirable.

Mnは、脱酸元素として利用する他、オーステナイト組織形成およびスケール密着性を確保するために0.1%以上添加する。一方、4.0%超の添加により介在物清浄度が著しく劣化する他、酸化増量が著しく増加し、異常酸化限界温度が低下してしまうため、上限を4.0%とする。更に、製造コスト、鋼板製造時の酸洗性を考慮すると、0.2〜2.0%が望ましい。   In addition to being used as a deoxidizing element, Mn is added in an amount of 0.1% or more to ensure austenite structure formation and scale adhesion. On the other hand, addition of more than 4.0% significantly deteriorates the cleanliness of inclusions and increases the amount of oxidation significantly and lowers the abnormal oxidation limit temperature. Therefore, the upper limit is made 4.0%. Furthermore, if considering the manufacturing cost and pickling property at the time of manufacturing the steel sheet, 0.2 to 2.0% is desirable.

Pは、製造時の熱間加工性や凝固割れを助長する元素である他、介在物清浄度や1000℃における耐酸化性が劣化するため、その含有量は少ないほど良いが、精錬コストを考慮して上限を0.05%、下限を0.01%とする。更に、製造コストを考慮すると、0.02〜0.04%が望ましい。   P is an element that promotes hot workability and solidification cracking at the time of manufacture, and the inclusion cleanliness and oxidation resistance at 1000 ° C deteriorate, so the lower the content, the better. The upper limit is 0.05% and the lower limit is 0.01%. Furthermore, considering the manufacturing cost, 0.02 to 0.04% is desirable.

Sは、製造時の熱間加工性を低下させる他、耐食性を劣化させる元素である。また、粗大な硫化物が形成されると清浄度が著しく悪くなるため、上限を0.010%とする。一方、過度な低減は精錬コストの増加に繋がることから、下限を0.0001%とする。更に、製造コストや耐酸化性を考慮すると、0.0005〜0.0050%が望ましい。   S is an element that degrades hot workability during production and deteriorates corrosion resistance. Further, if coarse sulfides are formed, the cleanliness is remarkably deteriorated, so the upper limit is made 0.010%. On the other hand, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.0001%. Furthermore, if considering the manufacturing cost and oxidation resistance, 0.0005 to 0.0050% is desirable.

Niはオーステナイト組織形成元素であるとともに、耐食性や耐酸化性を確保する元素である。また、5%未満では結晶粒の粗大化が顕著に生じて高温強度が低下してしまうため5%以上添加する。一方、過度な添加はコストの上昇を招くことから上限を25%とする。更に、製造性、高温強度および耐食性を考慮すると、10〜20%が望ましい。   Ni is an element forming an austenite structure and an element that ensures corrosion resistance and oxidation resistance. Further, if it is less than 5%, the crystal grains are remarkably coarsened and the high-temperature strength is lowered, so 5% or more is added. On the other hand, excessive addition causes an increase in cost, so the upper limit is made 25%. Furthermore, if considering the manufacturability, high temperature strength and corrosion resistance, 10 to 20% is desirable.

Crは、耐食性、耐酸化性および高温強度を向上させる元素であり、排気部品環境を考慮すると異常酸化抑制の観点から15%以上が必要である。また、15%未満では焼鈍時に保護性の高いCrリッチなスケールではなく、Feリッチなスケールが生成し、その後のデスケールにおいてFeが優先的に溶解するため、母地の表面粗さが増加し、ターボ部品としての気密性が劣化する。一方過度な添加は、硬質となり成形性を劣化させる他、コストアップに繋がることから上限を30%とした。更に、製造コスト、鋼板製造性ならびに加工性を考慮すると、17〜25.5%が望ましい。   Cr is an element that improves corrosion resistance, oxidation resistance, and high-temperature strength. When considering the exhaust part environment, 15% or more is necessary from the viewpoint of suppressing abnormal oxidation. Further, if it is less than 15%, not a Cr-rich scale with high protection during annealing, but a Fe-rich scale is generated, and Fe is preferentially dissolved in subsequent descaling, so that the surface roughness of the matrix increases, Airtightness as a turbo component is deteriorated. On the other hand, excessive addition becomes hard and deteriorates moldability, and also leads to an increase in cost, so the upper limit was made 30%. Furthermore, if considering the manufacturing cost, steel plate manufacturability and workability, 17 to 25.5% is desirable.

Nは、Cと同様にオーステナイト組織形成と高温強度の確保の有効な元素である。高温強度に関しては固溶強化元素として知られているが、本発明においてはN単独の効果以外にCrとのクラスター形成による高温強度も考慮し、0.01%以上添加する。一方、0.30%超の添加により常温材質が著しく硬質化し、鋼板製造段階の冷間加工性が劣化する他、製品加工時の成形性が悪くなるため、上限を0.30%とする。更に、溶接時のピンホール抑制、溶接部の粒界腐食抑制の観点から、0.02〜0.25が望ましい。   N, like C, is an effective element for forming an austenite structure and ensuring high temperature strength. The high temperature strength is known as a solid solution strengthening element, but in the present invention, in addition to the effect of N alone, the high temperature strength due to cluster formation with Cr is also taken into consideration, and 0.01% or more is added. On the other hand, the addition of more than 0.30% remarkably hardens the normal temperature material and deteriorates the cold workability in the steel plate manufacturing stage and deteriorates the formability during product processing, so the upper limit is made 0.30%. Furthermore, 0.02 to 0.25 is desirable from the viewpoint of suppressing pinholes during welding and suppressing intergranular corrosion of welds.

Alは、脱酸元素として添加されて介在物清浄度を向上させる他、酸化スケールの剥離を抑制する効果があり,その作用は0.005%から発現するため、下限を0.005%とした。また、フェライト生成元素であるため、1.0%以上の添加はオーステナイト組織の安定性が低下する他、清浄度の低下や製造性の劣化を招くため上限を1.0%とする。更に、精錬コストと表面疵を考慮すると0.015〜0.5%が望ましい。   Al is added as a deoxidizing element to improve the cleanliness of inclusions, and also has an effect of suppressing exfoliation of oxide scale. Since its action is manifested from 0.005%, the lower limit is set to 0.005%. . In addition, since it is a ferrite-forming element, addition of 1.0% or more lowers the stability of the austenite structure and lowers cleanliness and manufacturability, so the upper limit is made 1.0%. Furthermore, if considering refining costs and surface defects, 0.015 to 0.5% is desirable.

Cuは、オーステナイト相の安定化のために有効な元素あり、0.1%以上添加する。一方、3.0%を超える添加により1000℃での酸化試験において異常酸化を引き起こすとともに清浄度の低下や製造性の劣化に繋がるため、上限を3.0%とする。更に、耐食性や製造性を考慮すると、0.3〜1.0%が望ましい。   Cu is an element effective for stabilizing the austenite phase, and is added in an amount of 0.1% or more. On the other hand, addition exceeding 3.0% causes abnormal oxidation in an oxidation test at 1000 ° C. and leads to a decrease in cleanliness and deterioration in manufacturability, so the upper limit is made 3.0%. Furthermore, if considering corrosion resistance and manufacturability, 0.3 to 1.0% is desirable.

続いて、選択添加元素について説明する。
Moは、耐食性を向上させる元素であるとともに、高温強度の向上に寄与する。本発明においては、固溶強化の他にMo炭化物による析出強化を活用するために下限を0.01%、上限を3.0%とする。更に、Moは高価な元素であること、上記析出物による強化安定性ならびに介在物清浄度を考慮すると、0.4〜1.6%が望ましい。
Next, the selective additive element will be described.
Mo is an element that improves the corrosion resistance and contributes to the improvement of the high-temperature strength. In the present invention, in order to utilize precipitation strengthening by Mo carbide in addition to solid solution strengthening, the lower limit is made 0.01% and the upper limit is made 3.0%. Furthermore, considering that Mo is an expensive element, strengthening stability due to the precipitates, and inclusion cleanliness, 0.4 to 1.6% is desirable.

Vは、耐食性を向上させる元素であるとともに、V炭化物を形成し高温強度を向上させるため0.05%以上添加する。一方、過度な添加は合金コストの増加や異常酸化限界温度の低下を招くことから、上限を0.5%とする。更に、製造性や介在物清浄度を考慮すると0.1〜0.3%が望ましい。   V is an element that improves corrosion resistance, and is added in an amount of 0.05% or more in order to form V carbide and improve high temperature strength. On the other hand, excessive addition causes an increase in alloy cost and a decrease in abnormal oxidation limit temperature, so the upper limit is made 0.5%. Furthermore, if considering manufacturability and inclusion cleanliness, 0.1 to 0.3% is desirable.

Tiは、C,Nと結合して耐食性、耐粒界腐食性を向上させるために添加する元素である。C,N固定作用は0.005%から発現するため、下限を0.005%とした。また、0.3%超の添加は鋳造段階でのノズル詰まりが生じ易くなり、製造性を著しく劣化させる他、粗大なTi炭窒化物による清浄度の低下を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、0.01〜0.20%が望ましい。   Ti is an element added to combine with C and N to improve corrosion resistance and intergranular corrosion resistance. Since the C and N fixing action starts from 0.005%, the lower limit was made 0.005%. Further, addition of more than 0.3% tends to cause nozzle clogging at the casting stage, which significantly deteriorates manufacturability and lowers cleanliness due to coarse Ti carbonitride, so the upper limit is 0.3. %. Furthermore, if considering the high temperature strength, the intergranular corrosion property of the weld and the alloy cost, 0.01 to 0.20% is desirable.

Nbは、Tiと同様にC,Nと結合して耐食性、耐粒界腐食性を向上させる他、高温強度を向上させる元素である。C,N固定作用は0.005%から発現するため、下限を0.005%とした。また、0.3%超の添加は鋼板製造段階での熱間加工性が著しく劣化する他、粗大なNb炭窒化物による清浄度の低下を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、0.01〜0.20%が望ましい。   Nb, like Ti, is an element that combines with C and N to improve corrosion resistance and intergranular corrosion resistance, as well as improve high-temperature strength. Since the C and N fixing action starts from 0.005%, the lower limit was made 0.005%. Further, addition of more than 0.3% significantly deteriorates the hot workability in the steel plate manufacturing stage and causes a decrease in cleanliness due to coarse Nb carbonitride, so the upper limit is made 0.3%. Furthermore, if considering the high temperature strength, the intergranular corrosion property of the weld and the alloy cost, 0.01 to 0.20% is desirable.

Bは、鋼板製造段階での熱間加工性を向上させる元素であり、0.0002%以上とする。但し、過度な添加はホウ炭化物の形成により清浄度の低下、粒界腐食性の劣化をもたらすため、上限を0.0050%とした。更に、精錬コストや延性低下を考慮すると、0.0003〜0.0020%が望ましい。   B is an element that improves the hot workability in the steel plate manufacturing stage, and is set to 0.0002% or more. However, excessive addition causes a decrease in cleanliness and degradation of intergranular corrosion due to the formation of borocarbides, so the upper limit was made 0.0050%. Furthermore, if considering the refining cost and ductility reduction, 0.0003 to 0.0020% is desirable.

Caは、脱硫のために必要に応じて添加される。この作用は0.0005%未満では発現しないため、下限を0.0005%とする。また、0.010%超添加すると水溶性の介在物CaSが生成して清浄度の低下および耐食性の著しい低下を招くため、上限を0.010%とする。更に、製造性、表面品質の観点から、0.0010〜0.0030%が望ましい。   Ca is added as necessary for desulfurization. Since this effect does not appear at less than 0.0005%, the lower limit is made 0.0005%. Further, if added over 0.010%, a water-soluble inclusion CaS is generated, leading to a decrease in cleanliness and a significant decrease in corrosion resistance, so the upper limit is made 0.010%. Furthermore, 0.0010 to 0.0030% is desirable from the viewpoint of manufacturability and surface quality.

Wは、耐食性と高温強度の向上に寄与するため、必要に応じて0.10%以上添加する。3.0%超の添加により鋼板製造時の靭性劣化やコスト増ならびに酸洗性が著しく劣化して製品表面の粗さが著しく増加するため、上限を3.0%とする。更に、精錬コストや製造性を考慮すると、0.1〜2.0%が望ましい。   W contributes to improvement of corrosion resistance and high temperature strength, so 0.10% or more is added as necessary. Addition of more than 3.0% causes toughness deterioration during manufacturing of steel sheets, cost increase, and pickling performance to remarkably deteriorate and the surface roughness of the product increases remarkably, so the upper limit is made 3.0%. Furthermore, if considering refining costs and manufacturability, 0.1 to 2.0% is desirable.

Zrは、CやNと結合して溶接部の粒界腐食性や耐酸化性を向上させるため、必要に応じて0.05%以上添加する。但し、上限を0.3%とする。更に、精錬コストや製造性を考慮すると、0.05〜0.1%が望ましい。   Zr is combined with C and N to improve the intergranular corrosion resistance and oxidation resistance of the welded portion, so 0.05% or more is added as necessary. However, the upper limit is 0.3%. Furthermore, considering refining costs and manufacturability, 0.05 to 0.1% is desirable.

Snは、耐食性と高温強度の向上に寄与するため、必要に応じて0.01%以上添加する。0.03%以上で効果が顕著になり、さらに0.05%以上でより顕著となる。0.50%超の添加により鋼板製造時のスラブ割れが生じる場合があるため上限を0.50%とする。更に、精錬コストや製造性を考慮すると、0.05〜0.30%が望ましい。   Sn contributes to the improvement of corrosion resistance and high-temperature strength, so 0.01% or more is added as necessary. The effect becomes remarkable at 0.03% or more, and becomes more remarkable at 0.05% or more. Since addition of more than 0.50% may cause slab cracking during steel sheet production, the upper limit is made 0.50%. Furthermore, considering refining costs and manufacturability, 0.05 to 0.30% is desirable.

Coは、高温強度の向上に寄与するため、必要に応じて0.03%以上添加する。0.3%超の添加により鋼板製造時の靭性劣化、清浄度の低下およびコスト増につながるため,上限を0.3%とする。更に、精錬コストや製造性を考慮すると、0.03〜0.1%が望ましい。   Co contributes to improving the high-temperature strength, so 0.03% or more is added as necessary. Addition of more than 0.3% leads to toughness deterioration at the time of steel plate production, reduction in cleanliness, and cost increase, so the upper limit is made 0.3%. Furthermore, considering refining costs and manufacturability, 0.03 to 0.1% is desirable.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を酸化物の微細化分散化により介在物清浄度の向上や組織微細化に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%とした。但し、過度な添加は、Mg−Al酸化物の過度な生成による清浄度低下、溶接性や耐食性の劣化につながるため、上限を0.010%とした。精錬コストを考慮すると、0.0003〜0.0050%が望ましい。   Mg may be added as a deoxidizing element, and is an element that contributes to improvement in the cleanliness of inclusions and refinement of the structure by refining and dispersing the oxide of the slab. Since this is expressed from 0.0002% or more, the lower limit was made 0.0002%. However, excessive addition leads to a decrease in cleanliness due to excessive formation of Mg—Al oxide and deterioration of weldability and corrosion resistance, so the upper limit was made 0.010%. Considering the refining cost, 0.0003 to 0.0050% is desirable.

Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。添加効果を得るため、0.005%以上とする。但し、0.50%を超えると、1000℃での酸化試験において異常酸化を引き起こすとともに、Sn偏析が生じて溶接時に割れが生じるので、上限を0.50%とする。高温特性と製造コスト及び靭性を考慮すると、0.03〜0.30%が望ましい。更に望ましくは0.05〜0.20%である。   Sb is an element that segregates at the grain boundary to increase the high temperature strength. In order to obtain the addition effect, the content is made 0.005% or more. However, if it exceeds 0.50%, abnormal oxidation is caused in the oxidation test at 1000 ° C. and Sn segregation occurs and cracks occur during welding, so the upper limit is made 0.50%. Considering the high temperature characteristics, production cost and toughness, 0.03 to 0.30% is desirable. More desirably, it is 0.05 to 0.20%.

REM(希土類元素)は、耐酸化性の向上に有効であり、必要に応じて0.001%以上で添加する。また、0.2%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、0.001〜0.2%で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.10%とすることが望ましい。
REM(希土類元素)は、一般的な定義に従う。スカンジウム (Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu) までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。
REM (rare earth element) is effective in improving the oxidation resistance, and is added at 0.001% or more as necessary. Moreover, since the effect will be saturated even if it adds exceeding 0.2% and the corrosion resistance fall by the granulated material of REM arises, it adds at 0.001-0.2%. Considering the workability and manufacturing cost of the product, it is desirable that the lower limit is 0.002% and the upper limit is 0.10%.
REM (rare earth element) follows the general definition. It is a generic term for two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu). It may be added alone or as a mixture.

Gaは、耐食性向上や水素脆化抑制のため、0.3%以下で添加しても良いが、0.3%超の添加により粗大硫化物が生成しr値が劣化する。硫化物や水素化物形成の観点から下限は0.0002%とする。更に、製造性やコストの観点から0.0020%以上が更に好ましい。   Ga may be added in an amount of 0.3% or less for improving corrosion resistance and suppressing hydrogen embrittlement. However, addition of more than 0.3% produces coarse sulfides and deteriorates the r value. The lower limit is made 0.0002% from the viewpoint of sulfide and hydride formation. Furthermore, 0.0020% or more is more preferable from the viewpoint of manufacturability and cost.

その他の成分について本発明では特に規定するものではないが、Ta、Hfは高温強度向上のために0.001〜1.0%添加しても良い。また、Biを必要に応じて0.001〜0.02%含有してもかまわない。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが望ましい。   The other components are not particularly defined in the present invention, but Ta and Hf may be added in an amount of 0.001 to 1.0% for improving the high temperature strength. Moreover, Bi may be contained in an amount of 0.001 to 0.02% as necessary. Note that it is desirable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.

次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼−熱間圧延−焼鈍・酸洗−冷間圧延−焼鈍・酸洗の各工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、電気炉溶製あるいは転炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。上記のように本発明が対象となる部品には表面平滑性が要求されるため、冷間圧延工程において所定の表面粗さを確保した製造条件が設定される。通常、表面平滑性が要求される鋼板に対しては、冷間圧延後に光輝焼鈍によって低酸素雰囲気で熱処理され、酸化スケールが生じない熱処理が施される。一般的にはBA製品と呼ばれる表面仕上げがこれに当たるが、BA製品ではコスト増加につながる。本発明では光輝焼鈍では無く、通常の連続焼鈍・酸洗処理プロセスを活用することによって表面平滑性を確保する技術を見出した。具体的には熱処理後の冷却速度を調整し表面の酸化スケールの成長に伴う母材表面の微小凹凸の抑制、その後の溶融アルカリ塩浸漬における温度と時間の調整ならびに溶融アルカリ塩処理後の冷却速度調整による母相浸食の低減が、表面平滑性を確保するうえで極めて効果的である。   Next, a manufacturing method will be described. The manufacturing method of the steel plate of this invention consists of each process of steelmaking-hot rolling-annealing and pickling-cold rolling-annealing and pickling. In steelmaking, a method in which steel containing the essential components and components added as necessary is subjected to electric furnace melting or converter melting, followed by secondary refining is preferable. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling. As described above, since surface smoothness is required for the parts to which the present invention is applied, manufacturing conditions that ensure a predetermined surface roughness are set in the cold rolling process. Usually, steel sheets that require surface smoothness are heat-treated in a low-oxygen atmosphere by bright annealing after cold rolling, and are subjected to heat treatment that does not produce oxide scale. Generally, this is a surface finish called a BA product, but the BA product leads to an increase in cost. The present invention has found a technique for ensuring surface smoothness by utilizing a normal continuous annealing / pickling process, not bright annealing. Specifically, the cooling rate after heat treatment is adjusted to suppress minute irregularities on the surface of the base material accompanying the growth of the oxide scale on the surface, the temperature and time are adjusted in the subsequent immersion of molten alkali salt, and the cooling rate after molten alkali salt treatment Reduction of matrix erosion by adjustment is extremely effective in ensuring surface smoothness.

本発明では、冷間圧延後の焼鈍・酸洗工程において、結晶粒度番号の調整を行うが、1200℃超に加熱すると結晶粒の粗大化が著しく促進し、結晶粒度番号が6.0未満になる。また、1200℃超の加熱により酸化スケールの厚膜化および内部酸化層が発達するため、後続の酸洗性が劣るとともに、酸洗後の表面に微小な凹凸が多数発生し、表面粗さの規定を満足しなくなる。よって、上限を1200℃とする。一方、1000℃未満の加熱では、再結晶組織が得られず延性が乏しくなるため、下限を1000℃とする。更に、酸洗性や製造コストを考慮すると、1050〜1150℃が望ましい。   In the present invention, the grain size number is adjusted in the annealing / pickling process after cold rolling, but when heated to over 1200 ° C., the coarsening of the crystal grains is remarkably promoted, and the grain size number becomes less than 6.0. Become. In addition, since the oxide scale is thickened and the internal oxide layer is developed by heating above 1200 ° C., the subsequent pickling property is inferior, and a lot of minute irregularities are generated on the surface after pickling, and the surface roughness is reduced. You will not meet the regulations. Therefore, the upper limit is set to 1200 ° C. On the other hand, if the heating is less than 1000 ° C., the recrystallized structure cannot be obtained and the ductility becomes poor, so the lower limit is set to 1000 ° C. Furthermore, when pickling property and manufacturing cost are considered, 1050-1150 degreeC is desirable.

上記温度まで加熱された鋼帯は冷却され、酸洗処理によってデスケールされるが、本発明では500℃までの冷却速度を10℃/sec以上とする。冷却速度が10℃/sec未満の場合、Cr炭窒化物やσ相などの炭窒化物、金属間化合物が析出し、鋼の介在物清浄度の劣化に繋がり、高温特性や表面品質が劣化する。更に、生産性や酸洗性を考慮すると15〜50℃/secが望ましい。500℃まで冷却される。ここで、酸洗予備処理は硝酸ナトリウムを主組成とする溶融アルカリ塩でスケール改質が成される。本発明では、溶融アルカリ塩の温度を400〜500℃とし、浸漬時間を5〜20secに規定する。温度が400℃未満の場合、スケール改質が不十分となり酸洗後に酸化スケール残りが生じてしまう。一方、500℃超の場合、溶融塩によって母地の浸食が大きく、酸洗後の表面粗さRaを0.06μm以下にすることが不可能となる。よって、溶融アルカリ塩の温度は400〜500℃とするが、生産性を考慮すると400〜440℃未満が望ましい。浸漬時間に関しては、5sec未満の場合には酸化スケールとの反応が不十分でCr酸化物の溶解が不良となり、スケール残りが生じ易くなる他、後段の酸洗時にデスケールを強くする必要があり、母地溶解が進むため表面粗さが粗くなる。一方、20sec超では母地の浸食が大きく、酸洗後の表面粗さRaを0.06μm以下にすることが不可能となる。よって、溶融アルカリ塩への浸漬時間は5〜20secとするが、生産性や通板性を考慮すると5〜15secが望ましい。   The steel strip heated to the above temperature is cooled and descaled by pickling treatment. In the present invention, the cooling rate up to 500 ° C. is set to 10 ° C./sec or more. When the cooling rate is less than 10 ° C./sec, carbonitride such as Cr carbonitride and σ phase, and intermetallic compounds are precipitated, which leads to deterioration of steel inclusion cleanliness, and deteriorates high temperature characteristics and surface quality. . Furthermore, in view of productivity and pickling properties, 15 to 50 ° C./sec is desirable. Cool to 500 ° C. Here, in the pickling pretreatment, scale modification is performed with a molten alkali salt mainly composed of sodium nitrate. In this invention, the temperature of molten alkali salt shall be 400-500 degreeC, and immersion time is prescribed | regulated to 5-20 sec. When the temperature is lower than 400 ° C., the scale modification is insufficient and the oxide scale remains after pickling. On the other hand, when the temperature exceeds 500 ° C., erosion of the matrix is large due to the molten salt, and it becomes impossible to make the surface roughness Ra after pickling 0.06 μm or less. Therefore, although the temperature of molten alkali salt shall be 400-500 degreeC, when productivity is considered, 400-440 degreeC is desirable. As for the immersion time, if it is less than 5 seconds, the reaction with the oxide scale is insufficient and the dissolution of the Cr oxide becomes poor, the scale residue is likely to occur, and it is necessary to strengthen the descale during the subsequent pickling, The surface roughness becomes rough because of the dissolution of the matrix. On the other hand, if it exceeds 20 seconds, the erosion of the base is large, and it becomes impossible to reduce the surface roughness Ra after pickling to 0.06 μm or less. Therefore, the immersion time in the molten alkali salt is 5 to 20 seconds, but 5 to 15 seconds is desirable in consideration of productivity and sheet passing property.

上記の酸洗予備処理である溶融アルカリ塩処理後、表面の酸化スケールを除去するための硝弗酸漬浸、硝酸漬浸あるいは硝酸電解処理までに冷却されるが、本発明では100℃以下になるまでの冷却速度を10℃/sec以上とする。冷却速度が10℃/sec未満の場合、鋼板に残存したソルト溶液によって母地の浸食が局部的に生じ、表面粗さの増加や表面ムラが発生する場合がある。よって、下限を10℃/sec以上とするが、過度に速過ぎると形状不良が生じるため、望ましくは上限を100℃/secとする。   After the molten alkali salt treatment, which is the above pickling pretreatment, cooling is performed until the nitric hydrofluoric acid immersion, nitric acid immersion or nitric acid electrolysis treatment for removing the oxide scale on the surface. The cooling rate until it becomes 10 degrees C / sec or more. When the cooling rate is less than 10 ° C./sec, erosion of the base is locally caused by the salt solution remaining on the steel sheet, and surface roughness may increase or surface unevenness may occur. Therefore, the lower limit is set to 10 ° C./sec or more. However, if the speed is excessively high, a shape defect is caused. Therefore, the upper limit is preferably set to 100 ° C./sec.

以上説明したように、本発明の排気部品用オーステナイト系ステンレス鋼板は、光輝焼鈍を行っておらず、鋼板表面の研削、切削を行っていない。また、本発明の鋼板は、焼鈍酸洗後に鋼帯として得られる。   As described above, the austenitic stainless steel plate for exhaust parts of the present invention is not brightly annealed and does not grind or cut the surface of the steel plate. Moreover, the steel plate of this invention is obtained as a steel strip after annealing pickling.

表1、2に示す成分組成の鋼を溶製しスラブに鋳造し、熱延、熱延板焼鈍・酸洗後、冷延、最終焼鈍・酸洗を施して1.2mmtの製品板を得た。一部の鋼に関しては、熱延板焼鈍後に中間焼鈍・酸洗を施して2回の冷延を行った。各鋼に対して、介在物清浄度、結晶粒度、表面粗さを先述した方法で測定するとともに、JISG0567に準拠した1000℃での連続酸化試験、JISZ2281に準拠した高温引張試験を行った。連続酸化試験は、大気中で200時間の連続試験を行い、異常酸化の有無により合否判定を行った。高温引張試験は、1000℃での0.2%耐力を測定し、20MPa以上の前記耐力を有する鋼を合格とした。また、供試材をバックプレートと呼ばれるタービンとセンターコアの仕切り部品に加工し、ターボに搭載させて高温(1000℃)の排気ガスを流した際に、気密性を調べた。この際、排気ガスの漏れが生じない場合を合格とした。表3〜5に示す製造条件で製造した結果、本発明例の鋼は耐酸化性や高温強度に加え表面平滑性にも優れ、ターボ部品としての気密性に優れていることが確認される。介在物清浄度、結晶粒度および表面粗さのうち1つ以上が本発明範囲外の比較例では、バックプレートの表面平滑性が不良となり、高温の排気ガスがターボ外に漏れる不具合が生じる。また、高温強度や高温酸化特性が不良の場合もクリープ変形や酸化による減肉によってガス漏れが生じてしまう。   Steels having the composition shown in Tables 1 and 2 are melted and cast into slabs, and after hot rolling and hot-rolled sheet annealing / pickling, cold rolling and final annealing / pickling are performed to obtain a 1.2 mmt product plate. It was. Some steels were subjected to intermediate annealing and pickling after hot-rolled sheet annealing and then cold-rolled twice. Each steel was measured for inclusion cleanliness, crystal grain size, and surface roughness by the methods described above, and a continuous oxidation test at 1000 ° C. in accordance with JISG0567 and a high-temperature tensile test in accordance with JISZ2281 were performed. In the continuous oxidation test, a continuous test was conducted for 200 hours in the atmosphere, and a pass / fail judgment was made based on whether or not abnormal oxidation occurred. In the high-temperature tensile test, 0.2% yield strength at 1000 ° C. was measured, and steel having the yield strength of 20 MPa or more was accepted. In addition, the specimen was processed into a partition part between a turbine and a center core called a back plate, mounted on a turbo, and when high temperature (1000 ° C.) exhaust gas was flowed, the airtightness was examined. At this time, the case where no exhaust gas leakage occurred was regarded as acceptable. As a result of manufacturing under the manufacturing conditions shown in Tables 3 to 5, it is confirmed that the steel of the present invention example is excellent in surface smoothness in addition to oxidation resistance and high temperature strength, and excellent in airtightness as a turbo component. In a comparative example in which one or more of inclusion cleanliness, crystal grain size, and surface roughness are out of the scope of the present invention, the surface smoothness of the back plate becomes poor, causing a problem that high-temperature exhaust gas leaks outside the turbo. Further, even when the high temperature strength and high temperature oxidation characteristics are poor, gas leakage occurs due to creep deformation or thinning due to oxidation.

Figure 0006621254
Figure 0006621254

Figure 0006621254
Figure 0006621254

Figure 0006621254
Figure 0006621254

Figure 0006621254
Figure 0006621254

Figure 0006621254
Figure 0006621254

なお、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても構わず、バッチ式焼鈍でも連続式焼鈍でも良い。また、酸洗時には中性塩電解処理を併用しても構わず、硝酸、硝酸電解酸洗の他、硫酸や塩酸を用いた酸洗処理を行っても良い。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。   Note that other conditions in the manufacturing process may be appropriately selected. For example, what is necessary is just to design slab thickness, hot rolling board thickness, etc. suitably. In cold rolling, roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected. Intermediate annealing may be put in the middle of cold rolling, and batch annealing or continuous annealing may be used. Moreover, neutral salt electrolysis may be used in combination during pickling, and in addition to nitric acid and nitric acid electrolytic pickling, a pickling treatment using sulfuric acid or hydrochloric acid may be performed. Furthermore, the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected.

本発明によれば、これまで鋳鋼部品であった耐熱性に加えて表面平滑性が要求される排気部品に対してオーステナイト系ステンレス鋼板を提供することが可能であり、本発明を適用した材料を、特に自動車、二輪用部品の排気部品として使用することによって、排ガス規制、軽量化、燃費向上につなげることが可能となる。また、鋳鋼で必要とする表面加工処理の省略も可能となり、低コスト化にも大きく寄与する。更に、自動車、二輪に限らず、各種ボイラー、燃料電池システム等の高温環境に使用される部品に適用することも可能であり、本発明は産業上極めて有益である。   According to the present invention, it is possible to provide an austenitic stainless steel sheet for an exhaust part that requires surface smoothness in addition to heat resistance, which has been a cast steel part, and a material to which the present invention is applied. In particular, by using it as an exhaust part for automobiles and motorcycle parts, it becomes possible to lead to exhaust gas regulation, weight reduction, and fuel efficiency improvement. Further, it is possible to omit the surface processing required for cast steel, which greatly contributes to cost reduction. Furthermore, the present invention can be applied not only to automobiles and motorcycles but also to parts used in high-temperature environments such as various boilers and fuel cell systems, and the present invention is extremely useful industrially.

Claims (4)

質量%で、C:0.005〜0.20%、Si:0.65〜4.0%、Mn:0.1〜4.0%、P:0.01〜0.05%、S:0.0001〜0.010%、Ni:5〜25%、Cr:15〜30%、N:0.01〜0.30%、Al:0.005〜1.0%、Cu:0.1〜3.0%を含有し、残部がFe及び不可避的不純物からなり、介在物清浄度が0.025%以下、結晶粒度番号が6以上、表面粗度が中心線平均粗さ(Ra)で0.06μm以下であることを特徴とする耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。 In mass%, C: 0.005 to 0.20%, Si: 0.65 to 4.0%, Mn: 0.1 to 4.0%, P: 0.01 to 0.05%, S: 0.0001-0.010%, Ni: 5-25%, Cr: 15-30%, N: 0.01-0.30%, Al: 0.005-1.0%, Cu: 0.1 Contain ~ 3.0%, the balance is Fe and inevitable impurities, inclusion cleanliness is 0.025% or less, grain size number is 6 or more, surface roughness is centerline average roughness (Ra) An austenitic stainless steel plate for exhaust parts having excellent heat resistance and surface smoothness, characterized by being 0.06 μm or less. 前記鋼板が、更に、質量%で、Mo:0.01〜3.0%、V:0.05〜0.5%、Ti:0.005〜0.3%、Nb:0.005〜0.3%、B:0.0002〜0.0050%、Ca:0.0005〜0.010%の1種又は2種以上を含有することを特徴とする請求項1記載の耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。   The steel sheet is further in mass%, Mo: 0.01-3.0%, V: 0.05-0.5%, Ti: 0.005-0.3%, Nb: 0.005-0. The heat resistance and surface smoothness according to claim 1, characterized by containing one or more of .3%, B: 0.0002 to 0.0050%, and Ca: 0.0005 to 0.010%. Excellent austenitic stainless steel sheet for exhaust parts. 前記鋼板が、更に、質量%で、W:0.10〜3.00%、Zr:0.05〜0.30%、Sn:0.01〜0.50%、Co:0.03〜0.30%、Mg:0.0002〜0.010%、Sb:0.005〜0.50%、REM:0.001〜0.2%、Ga:0.0002〜0.3%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板。   The steel sheet is further in mass%, W: 0.10 to 3.00%, Zr: 0.05 to 0.30%, Sn: 0.01 to 0.50%, Co: 0.03 to 0 .30%, Mg: 0.0002 to 0.010%, Sb: 0.005 to 0.50%, REM: 0.001 to 0.2%, Ga: 0.0002 to 0.3% Or the austenitic stainless steel plate for exhaust parts excellent in heat resistance and surface smoothness of Claim 1 or 2 characterized by containing 2 or more types. 請求項1〜3のいずれか1項に記載のステンレス鋼板を製造する際、冷延後の焼鈍工程において、1000〜1200℃に加熱後、500℃までの冷却速度を10℃/sec以上とし、400〜500℃に保持された溶融アルカリ塩に5〜20sec浸漬された後に、100℃以下まで10℃/sec以上の冷却速度で冷却されることを特徴とする耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板の製造方法。   When manufacturing the stainless steel sheet according to any one of claims 1 to 3, in the annealing step after cold rolling, after heating to 1000 to 1200 ° C, the cooling rate to 500 ° C is 10 ° C / sec or more, Excellent heat resistance and surface smoothness characterized by being cooled at a cooling rate of 10 ° C./sec or more to 100 ° C. or less after being immersed in a molten alkali salt maintained at 400 to 500 ° C. for 5 to 20 sec. Manufacturing method of austenitic stainless steel sheet for exhaust parts.
JP2015128872A 2015-06-26 2015-06-26 Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same Active JP6621254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015128872A JP6621254B2 (en) 2015-06-26 2015-06-26 Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015128872A JP6621254B2 (en) 2015-06-26 2015-06-26 Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017014538A JP2017014538A (en) 2017-01-19
JP6621254B2 true JP6621254B2 (en) 2019-12-18

Family

ID=57830037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015128872A Active JP6621254B2 (en) 2015-06-26 2015-06-26 Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same

Country Status (1)

Country Link
JP (1) JP6621254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218852A (en) * 2019-06-24 2019-09-10 浦项(张家港)不锈钢股份有限公司 301 stainless steel production methods of one kind and 301 stainless steels and application

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778621B2 (en) * 2017-01-20 2020-11-04 日鉄ステンレス株式会社 Austenitic stainless steel sheet for exhaust parts and its manufacturing method, and exhaust parts and their manufacturing method
CN110520549B (en) * 2017-03-31 2022-01-04 日铁不锈钢株式会社 Thick austenitic stainless steel sheet and method for producing same
JP6866241B2 (en) * 2017-06-12 2021-04-28 日鉄ステンレス株式会社 Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6429957B1 (en) * 2017-08-08 2018-11-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
CA3075882C (en) * 2017-09-13 2023-01-10 Kobelco Steel Tube Co., Ltd. Austenitic stainless steel and production method thereof
JP7050520B2 (en) * 2018-02-19 2022-04-08 日鉄ステンレス株式会社 Manufacturing method of austenitic stainless steel sheet for exhaust parts and austenitic stainless steel sheet for exhaust parts and exhaust parts
JP7172056B2 (en) * 2018-02-28 2022-11-16 トヨタ自動車株式会社 Stainless steel base material, fuel cell separator and fuel cell
CN108396223B (en) * 2018-03-29 2020-09-29 东北大学 Super austenitic stainless steel and alloy composition optimization design method thereof
CN108728735B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Ultra-high antibacterial property austenitic stainless steel applied to field of food processing industry
CN108728774B (en) * 2018-04-04 2020-02-11 中国科学院金属研究所 Medical austenitic antibacterial stainless steel applied to oral cavity field
CN108728734B (en) * 2018-04-04 2020-02-11 中国科学院金属研究所 Antibacterial stainless steel for electrical equipment
CN108728759B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Austenitic antibacterial stainless steel applied to field of food processing industry
CN108728768B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Strong antibacterial stainless steel for food processing container or pipeline
CN108728765B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Strong-antibacterial austenitic stainless steel applied to chemical production
CN108728760B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Strong-antibacterial austenitic stainless steel applied to kitchen supplies
CN108728762B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Austenitic antibacterial stainless steel with rapid sterilization performance
CN108728761B (en) * 2018-04-04 2020-02-18 中国科学院金属研究所 High-antibacterial-performance austenitic stainless steel applied to bathroom equipment
CN108728772B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Antibacterial stainless steel used in air environment
CN108728770B (en) * 2018-04-04 2020-02-18 中国科学院金属研究所 Ultra-high antibacterial performance austenitic stainless steel applied to medical implant stent
CN108728767B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Antibacterial stainless steel for handrails or handles
CN108728769B (en) * 2018-04-04 2020-02-11 中国科学院金属研究所 Strongly antibacterial austenitic stainless steel
CN108728771B (en) * 2018-04-04 2020-02-11 中国科学院金属研究所 High-antibacterial-performance austenitic stainless steel applied to chemical production
CN108728736B (en) * 2018-04-04 2020-02-18 中国科学院金属研究所 Antibacterial stainless steel for food processing container
CN108728766B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 High-antibacterial-performance austenitic stainless steel applied to building and decoration products
CN108728773B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Austenitic stainless steel with ultrahigh antibacterial performance applied to chemical production
CN108728764B (en) * 2018-04-04 2019-12-27 中国科学院金属研究所 Antibacterial stainless steel for orthopedic implant
CN112789362B (en) * 2018-10-04 2022-08-16 日本制铁株式会社 Austenitic stainless steel sheet and method for producing same
JP7270419B2 (en) * 2019-03-11 2023-05-10 日鉄ステンレス株式会社 AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP7021706B2 (en) * 2019-07-31 2022-02-17 Jfeスチール株式会社 Austenitic stainless steel sheet for base material of fuel cell separator
CN110578088B (en) * 2019-09-02 2020-10-27 特冶(北京)科技发展有限公司 High-temperature-resistant air valve and production method thereof
CN110669986B (en) * 2019-10-17 2021-09-07 浦项(张家港)不锈钢股份有限公司 310S stainless steel preparation method and 310S stainless steel
CN113621889A (en) * 2021-08-10 2021-11-09 山东盛阳金属科技股份有限公司 N06600 iron-nickel base alloy hot continuous rolling plate coil and acid pickling process thereof
CN116287948A (en) * 2022-11-18 2023-06-23 烟台华新不锈钢有限公司 Preparation method of stainless steel for high-pressure boiler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059141A (en) * 1999-08-18 2001-03-06 Sumitomo Metal Ind Ltd Austenitic stainless steel and automotive exhaust system paprts
JP4322726B2 (en) * 2004-04-01 2009-09-02 新日鐵住金ステンレス株式会社 Manufacturing method of stainless steel sheet with excellent surface gloss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218852A (en) * 2019-06-24 2019-09-10 浦项(张家港)不锈钢股份有限公司 301 stainless steel production methods of one kind and 301 stainless steels and application
CN110218852B (en) * 2019-06-24 2020-12-22 浦项(张家港)不锈钢股份有限公司 301 stainless steel production method, 301 stainless steel and application

Also Published As

Publication number Publication date
JP2017014538A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6621254B2 (en) Austenitic stainless steel sheet for exhaust parts with excellent heat resistance and surface smoothness and method for producing the same
JP6541869B2 (en) Austenitic stainless steel plate and turbocharger part for exhaust parts excellent in heat resistance and processability, and manufacturing method of austenitic stainless steel sheet for exhaust parts
JP6552385B2 (en) Austenitic stainless steel plate with excellent heat resistance and workability, its manufacturing method, and exhaust parts made of stainless steel
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
KR102306578B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and exhaust parts
CN104364404B (en) Ferritic stainless steel
KR20190121799A (en) Low specific gravity ferritic stainless steel sheet and its manufacturing method
JP6879877B2 (en) Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
JP6746035B1 (en) Austenitic stainless steel sheet
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP2017179398A (en) Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
JP7166082B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6866241B2 (en) Austenitic stainless steel sheet, its manufacturing method, and exhaust parts
JP6778621B2 (en) Austenitic stainless steel sheet for exhaust parts and its manufacturing method, and exhaust parts and their manufacturing method
JP7270445B2 (en) AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN HIGH-TEMPERATURE, HIGH-CYCLE FATIGUE CHARACTERISTICS, METHOD FOR MANUFACTURING SAME, AND EXHAUST COMPONENTS
JP2022098633A (en) Austenitic stainless steel sheet, method for producing austenitic stainless steel sheet and automobile exhaust component
JP2020147770A (en) Austenitic stainless steel sheet having excellent high-temperature and high cycle fatigue characteristic and method for producing the same, and exhaust parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250