JPWO2017057431A1 - Curable resin composition, dry film, and printed wiring board using the same - Google Patents

Curable resin composition, dry film, and printed wiring board using the same Download PDF

Info

Publication number
JPWO2017057431A1
JPWO2017057431A1 JP2017543472A JP2017543472A JPWO2017057431A1 JP WO2017057431 A1 JPWO2017057431 A1 JP WO2017057431A1 JP 2017543472 A JP2017543472 A JP 2017543472A JP 2017543472 A JP2017543472 A JP 2017543472A JP WO2017057431 A1 JPWO2017057431 A1 JP WO2017057431A1
Authority
JP
Japan
Prior art keywords
resin composition
resin
curable resin
hydrotalcite
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017543472A
Other languages
Japanese (ja)
Other versions
JP6802799B2 (en
Inventor
宮部 英和
英和 宮部
横山 裕
裕 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Mfg Co Ltd filed Critical Taiyo Ink Mfg Co Ltd
Publication of JPWO2017057431A1 publication Critical patent/JPWO2017057431A1/en
Application granted granted Critical
Publication of JP6802799B2 publication Critical patent/JP6802799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

イオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立させた硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの硬化物、および、該硬化物を有するプリント配線板を提供する。
カルボキシル基含有樹脂、熱硬化成分、難燃剤およびイオン捕捉剤を含有する硬化性樹脂組成物であって、イオン捕捉剤がハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物であることを特徴とする硬化性樹脂組成物である。
A curable resin composition capable of obtaining a cured product in which insulation reliability such as ion migration resistance and flame retardancy are highly compatible, a dry film having a resin layer obtained from the composition, the composition, or the A cured product of a dry film and a printed wiring board having the cured product are provided.
A curable resin composition containing a carboxyl group-containing resin, a thermosetting component, a flame retardant, and an ion scavenger, the ion scavenger being a hydrotalcite-based ion scavenger and a non-hydrotalcite-based ion scavenger It is a curable resin composition characterized by being a mixture of these.

Description

本発明は、硬化性樹脂組成物、ドライフィルムおよびそれを用いたプリント配線板に関する。   The present invention relates to a curable resin composition, a dry film, and a printed wiring board using the same.

硬化性樹脂組成物は、フレキシブルプリント配線板(以下、FPCと略称する)などのプリント配線板用のソルダーレジストとして広く使用されている。このソルダーレジストは、プリント配線板の表層回路の保護を目的に使用されており、絶縁信頼性が要求される。特に最近では、プリント配線板の高密度化が著しく、その回路は最小でL(ライン)/S(スペース)で10μm/10μmのものもあり、従来よりも高い絶縁信頼性が要求されている。なかでも、FPC用途では、カバーレイなどの絶縁膜上に電磁波シールドを張り合わせるため、回路間(X−Y軸方向)のイオンマイグレーション耐性に加えて、ソルダーレジストを介した回路と電磁波シールド間の層間(Z軸方向)のイオンマイグレーション耐性も必要であり、さらに高い絶縁信頼性、特にはイオンマイグレーション耐性が要求されている。   Curable resin compositions are widely used as solder resists for printed wiring boards such as flexible printed wiring boards (hereinafter abbreviated as FPC). This solder resist is used for the purpose of protecting the surface layer circuit of the printed wiring board, and insulation reliability is required. In particular, recently, the density of printed wiring boards has been remarkably increased, and the circuit has a minimum L (line) / S (space) of 10 μm / 10 μm, and higher insulation reliability is required than before. In particular, in FPC applications, in order to attach an electromagnetic wave shield on an insulating film such as a coverlay, in addition to the resistance to ion migration between circuits (XY direction), between the circuit and the electromagnetic wave shield via a solder resist. Interlayer (Z-axis direction) ion migration resistance is also required, and higher insulation reliability, particularly ion migration resistance is required.

これに対し従来、例えばプリント配線板の絶縁信頼性、特にイオンマイグレーション耐性を向上させる手段として、感光性樹脂組成物にハイドロタルサイトなどの層状複水酸化物を配合する技術が提案されている(特許文献1)。   On the other hand, conventionally, for example, as a means for improving the insulation reliability of a printed wiring board, in particular, ion migration resistance, a technique of blending a layered double hydroxide such as hydrotalcite with a photosensitive resin composition has been proposed ( Patent Document 1).

また一方で、ソルダーレジストは、プリント配線板が電子機器に搭載されるために難燃性が要求される。なかでも、FPC用ソルダーレジストは、ガラスエポキシ基板に形成されるリジッドタイプのプリント配線板用ソルダーレジストとは異なり、通常、ポリイミド基板に形成されるため、さらに高い難燃性が要求される。   On the other hand, the solder resist is required to have flame retardancy because the printed wiring board is mounted on an electronic device. Among them, unlike the rigid type printed wiring board solder resist formed on the glass epoxy substrate, the FPC solder resist is usually formed on a polyimide substrate, and therefore, higher flame resistance is required.

特開2010−237270号公報JP 2010-237270 A

このように、特にFPC用途でのソルダーレジストに用いられる硬化性樹脂組成物は、イオンマイグレーション耐性などの絶縁信頼性に加えて難燃性にも優れるものが求められているが、現状ではその両立が難しいというのが実情であった。
そこで本発明の目的は、イオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立させた硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および該硬化物を有するプリント配線板を提供することにある。
Thus, the curable resin composition used for the solder resist particularly for FPC applications is required to have excellent flame retardance in addition to insulation reliability such as ion migration resistance. It was a fact that it was difficult.
Accordingly, an object of the present invention is to provide a curable resin composition capable of obtaining a cured product having both high insulation reliability such as ion migration resistance and flame retardancy, and a dry layer having a resin layer obtained from the composition. It is providing the cured product of the resin layer of a film, this composition, or this dry film, and the printed wiring board which has this cured product.

本発明者らは、上記課題を解決すべく鋭意検討した結果、絶縁信頼性、特にイオンマイグレーション耐性を向上させるためにハイドロタルサイト系のイオン捕捉剤を配合することを検討したが、ハイドロタルサイト系のイオン捕捉剤の配合は、イオンマイグレーション耐性などの絶縁信頼性を向上させるものの、却って難燃性を低下させることに気付いた。そこで、さらに検討を重ねた結果、ハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物を用いることにより、意外にも難燃性を低下させることなくイオンマイグレーション耐性などの絶縁信頼性を向上させることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have studied to add a hydrotalcite-based ion scavenger to improve insulation reliability, particularly ion migration resistance. It was noticed that the compounding of the system ion scavenger improves the insulation reliability such as ion migration resistance, but lowers the flame retardance. Therefore, as a result of further investigation, by using a mixture of hydrotalcite-based ion scavengers and non-hydrotalcite-based ion scavengers, resistance to ion migration, etc., without surprisingly reducing flame retardancy, etc. As a result, it was found that the insulation reliability can be improved, and the present invention has been completed.

すなわち、本発明の硬化性樹脂組成物は、カルボキシル基含有樹脂、熱硬化成分、難燃剤およびイオン捕捉剤を含有する硬化性樹脂組成物であって、前記イオン捕捉剤がハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物であることを特徴とするものである。   That is, the curable resin composition of the present invention is a curable resin composition containing a carboxyl group-containing resin, a thermosetting component, a flame retardant, and an ion scavenger, and the ion scavenger is a hydrotalcite ion. It is a mixture of a scavenger and an ion scavenger other than hydrotalcite.

本発明の硬化性樹脂組成物において、前記ハイドロタルサイト系のイオン捕捉剤と前記ハイドロタルサイト系以外のイオン捕捉剤との配合比率は、好ましくは質量基準で100:10〜100:500の範囲である。また、本発明の硬化性樹脂組成物は、好ましくは光重合開始剤およびエチレン性不飽和基を有する化合物のいずれか少なくとも1種を含む。さらに、本発明の硬化性樹脂組成物は、光重合開始剤を含む感光性樹脂組成物であることが好ましい。さらにまた、前記熱硬化成分は、好ましくは環状(チオ)エーテル化合物である。また、本発明の硬化性樹脂組成物は、カバーレイおよびソルダーレジストのうちの少なくともいずれか一方を形成するために好適に用いることができる。   In the curable resin composition of the present invention, the blending ratio of the hydrotalcite-based ion scavenger and the non-hydrotalcite-based ion scavenger is preferably in the range of 100: 10 to 100: 500 on a mass basis. It is. The curable resin composition of the present invention preferably contains at least one of a photopolymerization initiator and a compound having an ethylenically unsaturated group. Furthermore, the curable resin composition of the present invention is preferably a photosensitive resin composition containing a photopolymerization initiator. Furthermore, the thermosetting component is preferably a cyclic (thio) ether compound. Moreover, the curable resin composition of this invention can be used suitably in order to form at least any one of a coverlay and a soldering resist.

また、本発明のドライフィルムは、フィルム上に前記硬化性樹脂組成物を塗布、乾燥させてなる樹脂層を有することを特徴とするものである。   In addition, the dry film of the present invention is characterized by having a resin layer formed by applying and drying the curable resin composition on the film.

さらに、本発明の硬化物は、前記硬化性樹脂組成物、または前記ドライフィルムの樹脂層を硬化してなることを特徴とするものである。   Furthermore, the cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.

さらにまた、本発明のプリント配線板は、前記硬化物を備えることを特徴とするものである。   Furthermore, the printed wiring board of the present invention comprises the cured product.

本発明によれば、イオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立させた硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および該硬化物を有するプリント配線板を提供することができる。
本発明の硬化性樹脂組成物は、FPCのカバーレイおよびソルダーレジストのうちの少なくともいずれか一方を形成するために好適に用いることができる。また、本発明の硬化性樹脂組成物は、多層構造のカバーレイの接着層用樹脂組成物としても好適である。ここで、接着層とは、2層以上の積層構造を有するカバーレイの、FPCに接する樹脂層のことを指す。
ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which can obtain the hardened | cured material which made highly compatible insulation reliability, such as ion migration tolerance, and a flame retardance, The dry film which has a resin layer obtained from this composition Further, a cured product of the resin layer of the composition or the dry film, and a printed wiring board having the cured product can be provided.
The curable resin composition of the present invention can be suitably used for forming at least one of an FPC coverlay and a solder resist. The curable resin composition of the present invention is also suitable as a resin composition for an adhesive layer of a cover lay having a multilayer structure. Here, the adhesive layer refers to a resin layer in contact with the FPC of a cover lay having a laminated structure of two or more layers.

本発明に好適なプリント配線板の製造方法の一例を模式的に示す工程図である。It is process drawing which shows typically an example of the manufacturing method of the printed wiring board suitable for this invention. 本発明に好適なプリント配線板の製造方法の他の例を模式的に示す工程図である。It is process drawing which shows typically the other example of the manufacturing method of the printed wiring board suitable for this invention.

本発明の硬化性樹脂組成物(以下、単に「樹脂組成物」とも称する。)は、カルボキシル基含有樹脂、熱硬化成分、難燃剤およびイオン捕捉剤を含む。特に本発明においては、上記イオン捕捉剤がハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物であることが必須であり、これらのイオン捕捉剤を用いることによって、イオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立させることができるようになる。
以下、各成分について詳述する。
The curable resin composition of the present invention (hereinafter also simply referred to as “resin composition”) includes a carboxyl group-containing resin, a thermosetting component, a flame retardant, and an ion scavenger. Particularly in the present invention, it is essential that the ion scavenger is a mixture of a hydrotalcite-based ion scavenger and an ion scavenger other than the hydrotalcite-based, and by using these ion scavengers, Insulation reliability such as ion migration resistance and flame retardancy can be achieved at a high level.
Hereinafter, each component will be described in detail.

[カルボキシル基含有樹脂]
本発明の樹脂組成物に含まれるカルボキシル基含有樹脂としては、分子中にカルボキシル基を含有している公知慣用の樹脂化合物が使用できる。カルボキシル基の存在により、樹脂組成物をアルカリ現像性とすることができる。また、本発明の樹脂組成物を光硬化性にすることや耐現像性の観点から、カルボキシル基の他に、分子内にエチレン性不飽和結合を有することが好ましいが、エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いることもできる。カルボキシル基含有樹脂がエチレン性不飽和結合を有さない場合は、組成物を光硬化性とするために、分子中に1個以上のエチレン性不飽和基を有する化合物(光重合性化合物)を併用する必要がある。エチレン性不飽和二重結合としては、アクリル酸もしくはメタアクリル酸またはそれらの誘導体由来のものが好ましい。
[Carboxyl group-containing resin]
As the carboxyl group-containing resin contained in the resin composition of the present invention, a known and commonly used resin compound containing a carboxyl group in the molecule can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable. Further, from the viewpoint of making the resin composition of the present invention photocurable and developing resistance, it is preferable to have an ethylenically unsaturated bond in the molecule in addition to the carboxyl group. Only a carboxyl group-containing resin having no bond can also be used. When the carboxyl group-containing resin does not have an ethylenically unsaturated bond, a compound (photopolymerizable compound) having one or more ethylenically unsaturated groups in the molecule is used to make the composition photocurable. Must be used together. As the ethylenically unsaturated double bond, those derived from acrylic acid, methacrylic acid or derivatives thereof are preferable.

本発明の樹脂組成物に用いることができるカルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられる。   Specific examples of the carboxyl group-containing resin that can be used in the resin composition of the present invention include the compounds listed below (any of oligomers and polymers).

(1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α−メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。   (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene.

(2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。   (2) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers -Based polyol, polyester-based polyol, polyolefin-based polyol, acrylic polyol, bisphenol A-based alkylene oxide adduct diol, carboxyl group-containing urethane resin by polyaddition reaction of diol compounds such as compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups .

(3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。   (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A systems A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.

(4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応による感光性カルボキシル基含有ウレタン樹脂。   (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Photosensitive carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its modified partial anhydride, carboxyl group-containing dialcohol compound and diol compound.

(5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。   (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.

(6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレート等のモル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。   (6) During the synthesis of the resin of (2) or (4) above, one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as a molar reaction product such as isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.

(7)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させた感光性カルボキシル基含有樹脂。   (7) A photosensitive carboxyl group-containing resin obtained by reacting a bifunctional or higher polyfunctional (solid) epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride to a hydroxyl group present in the side chain.

(8)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させた感光性カルボキシル基含有樹脂。   (8) Photosensitivity in which (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin, and a dibasic acid anhydride is added to the resulting hydroxyl group. Functional carboxyl group-containing resin.

(9)多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。   (9) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.

(10)1分子中に複数のフェノール性水酸基を有する化合物と、エチレンオキシド、プロピレンオキシドなどのアルキレンオキシドおよび/またはエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物を反応させて得られる反応生成物に不飽和基含有モノカルボン酸で部分エステル化し、得られた反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。   (10) Unsaturation in the reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and / or a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. A carboxyl group-containing photosensitive resin obtained by partial esterification with a group-containing monocarboxylic acid and reacting the resulting reaction product with a polybasic acid anhydride.

(11)1分子中に複数のフェノール性水酸基を有する化合物と、エチレンオキシド、プロピレンオキシドなどのアルキレンオキシドおよび/またはエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物を反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。   (11) A polybasic reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and / or a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. A carboxyl group-containing resin obtained by reacting an acid anhydride.

(12)上記(1)〜(11)の樹脂にさらにグリシジル(メタ)アクリレート、α−メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなる感光性カルボキシル基含有樹脂。   (12) The resin of the above (1) to (11) further has one epoxy group and one or more (meth) acryloyl groups in the molecule such as glycidyl (meth) acrylate and α-methylglycidyl (meth) acrylate. Photosensitive carboxyl group-containing resin obtained by adding a compound.

なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。   In addition, in this specification, (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.

上記のようなカルボキシル基含有樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基を有するため、アルカリ水溶液による現像が可能になる。
また、上記カルボキシル基含有樹脂の酸価は、20〜200mgKOH/gの範囲が好ましく、より好ましくは40〜150mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が上記の範囲内であると、アルカリ溶解性が良好で、アルカリ現像によるパターニングが容易となる。
Since the carboxyl group-containing resin as described above has a large number of carboxyl groups in the side chain of the backbone polymer, development with an alkaline aqueous solution becomes possible.
Moreover, the acid value of the said carboxyl group-containing resin has the preferable range of 20-200 mgKOH / g, More preferably, it is the range of 40-150 mgKOH / g. When the acid value of the carboxyl group-containing resin is within the above range, the alkali solubility is good and patterning by alkali development becomes easy.

また、カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、1,000〜100,000が好ましく、さらに3,000〜50,000が好ましい。分子量が上記の範囲内であると、アルカリ溶解性が良好で、アルカリ現像によるパターニングが容易となる。   Moreover, although the weight average molecular weight of carboxyl group-containing resin changes with resin frame | skeletons, 1,000-100,000 are preferable and 3,000-50,000 are more preferable. When the molecular weight is within the above range, the alkali solubility is good and patterning by alkali development becomes easy.

[熱硬化成分]
熱硬化成分は、熱によって、カルボキシル基と付加反応が可能な官能基を有するものである。熱硬化成分としては、例えば、環状(チオ)エーテル基を有する化合物が好ましく、エポキシ樹脂、多官能オキセタン化合物等が挙げられる。
[Thermosetting component]
The thermosetting component has a functional group capable of addition reaction with a carboxyl group by heat. As the thermosetting component, for example, a compound having a cyclic (thio) ether group is preferable, and examples thereof include an epoxy resin and a polyfunctional oxetane compound.

上記エポキシ樹脂は、エポキシ基を有する樹脂であり、公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加されたエポキシ樹脂であってもよい。   The epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. Note that a hydrogenated epoxy resin may be used.

具体的には、ビスフェノールA型エポキシ樹脂、ブロム化エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、複素環式エポキシ樹脂、ジグリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。   Specifically, bisphenol A type epoxy resin, brominated epoxy resin, novolak type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic epoxy Resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or a mixture thereof; bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy resin, Diglycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin, epoxy resin having dicyclopentadiene skeleton, glycidyl methacrylate copolymer System epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and a CTBN modified epoxy resin.

なお、熱硬化成分として、マレイミド化合物、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エピスルフィド樹脂などの公知慣用の化合物を配合してもよい。   In addition, you may mix | blend well-known and usual compounds, such as a maleimide compound, a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, as a thermosetting component.

このような熱硬化成分は、1種類を単独で用いてもよく、2種類以上を併用してもよい。熱硬化成分の配合量としては、上記カルボキシル基含有樹脂との当量比(カルボキシル基:エポキシ基などの熱反応性基)が1:0.1〜1:10であることが好ましい。このような配合比の範囲とすることにより、現像が良好となり、容易に微細パターンを形成できる。上記当量比は、1:0.2〜1:5であることがさらに好ましい。   Such a thermosetting component may be used individually by 1 type, and may use 2 or more types together. As a compounding quantity of a thermosetting component, it is preferable that equivalent ratio (carboxyl group: thermoreactive groups, such as an epoxy group) with the said carboxyl group-containing resin is 1: 0.1 to 1:10. By setting the blending ratio in such a range, development becomes favorable and a fine pattern can be easily formed. The equivalent ratio is more preferably 1: 0.2 to 1: 5.

[難燃剤]
本発明の樹脂組成物を構成する難燃剤は、公知慣用の難燃剤を用いることができる。難燃剤としては、リン酸エステルおよび縮合リン酸エステル、リン元素含有(メタ)アクリレート、フェノール性水酸基を有するリン含有化合物、環状フォスファゼン化合物、ホスファゼンオリゴマー、ホスフィン酸金属塩等のリン含有化合物、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル等のハロゲン化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物等の層状複水酸化物が挙げられる。上記難燃剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。
[Flame retardants]
As the flame retardant constituting the resin composition of the present invention, a known and commonly used flame retardant can be used. Examples of flame retardants include phosphoric acid esters and condensed phosphoric acid esters, phosphorus element-containing (meth) acrylates, phosphorus-containing compounds having phenolic hydroxyl groups, cyclic phosphazene compounds, phosphazene oligomers, phosphorus-containing compounds such as phosphinic acid metal salts, trioxide Examples thereof include antimony compounds such as antimony and antimony pentoxide, halides such as pentabromodiphenyl ether and octabromodiphenyl ether, and layered double hydroxides such as metal hydroxides such as aluminum hydroxide and magnesium hydroxide. The said flame retardant may be used individually by 1 type, and may use 2 or more types together.

[イオン捕捉剤]
本発明の樹脂組成物に含まれるイオン捕捉剤は、ハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物である。
本発明の樹脂組成物に含まれるハイドロタルサイト系のイオン捕捉剤としては、ハイドロタルサイトおよびハイドロタルサイト様化合物を好適に用いることができる。ハイドロタルサイトおよびハイドロタルサイト様化合物は、例えば、正に荷電した基本層[Mg1−XAl(OH)X+と負に荷電した中間層[(COX/2・mHO]X−からなる層状の無機化合物である。多くの2価、3価の金属がこれと同様の層状構造をとり、一般構造式は下記式(I)で示される。

Figure 2017057431
式中、M2+は2価の金属陽イオン、M3+は3価の金属陽イオン、An−はn価の陰イオンを表し、各元素および原子団の下付き添字は各元素および原子団の比率を表し、Xは0<X≦0.33である。mは0≧であるが、脱水により大きく変わる。[Ion scavenger]
The ion scavenger contained in the resin composition of the present invention is a mixture of a hydrotalcite-based ion scavenger and an ion scavenger other than the hydrotalcite-based agent.
As the hydrotalcite-based ion scavenger contained in the resin composition of the present invention, hydrotalcite and hydrotalcite-like compounds can be suitably used. The hydrotalcite and the hydrotalcite-like compound include, for example, a positively charged basic layer [Mg 1-X Al X (OH) 2 ] X + and a negatively charged intermediate layer [(CO 3 ) X / 2 · mH 2. O] A layered inorganic compound composed of X- . Many divalent and trivalent metals have the same layered structure, and the general structural formula is represented by the following formula (I).
Figure 2017057431
Wherein, M 2+ is a divalent metal cation, M 3+ is a trivalent metal cation, A n-represents an n-valent anion, subscripts of the elements and atomic groups are the elements and atomic groups X represents 0 <X ≦ 0.33. m is 0 ≧, but changes greatly with dehydration.

ハイドロタルサイトおよびハイドロタルサイト様化合物の具体例としては、Indigirite MgAl[(CO(OH)]・15HO、Fe2+ Al[(OH)12CO]・3HO、Quintinite MgAl(OH)12CO・HO、Manasseite MgAl[(OH)16CO]・4HO、SjOegrenite MgFe3+ [(OH)16CO]・4HO、Zaccagnaite ZnAl(CO)(OH)12・3HO、Desautelsite MgMn3+ [(OH)16CO]・4HO、Hydrotalcite MgAl[(OH)16CO]・4HO、Pyroaurite MgFe3+ [(OH)16CO]・4HO、Reevesite NiFe3+ [(OH)16CO]・4HO、Stichtite MgCr[(OH)16CO]・4HO、Takovite NiAl[(OH)16CO]・4HOなどが挙げられる。Specific examples of hydrotalcite and hydrotalcite-like compounds include Indigirite Mg 2 Al 2 [(CO 3 ) 4 (OH) 2 ] .15H 2 O, Fe 2+ 4 Al 2 [(OH) 12 CO 3 ]. 3H 2 O, Quintinite Mg 4 Al 2 (OH) 12 CO 3 · H 2 O, Manasseite Mg 6 Al 2 [(OH) 16 CO 3 ] · 4H 2 O, SjOegrenite Mg 6 Fe 3+ 2 [(OH) 16 CO 3] · 4H 2 O, Zaccagnaite Zn 4 Al 2 (CO 3) (OH) 12 · 3H 2 O, Desautelsite Mg 6 Mn 3+ 2 [(OH) 16 CO 3] · 4H 2 O, hydrotalcite Mg 6 Al 2 [ (OH) 16 CO 3 ] · 4H 2 O, Pyroaurite Mg 6 Fe 3 + 2 [(OH) 16 CO 3 ] · 4H 2 O, Reevesite Ni 6 Fe 3+ 2 [(OH) 16 C O 3 ] · 4H 2 O, Stichtite Mg 6 Cr 2 [(OH) 16 CO 3 ] · 4H 2 O, Takovite Ni 6 Al 2 [(OH) 16 CO 3 ] · 4H 2 O, and the like.

また、市販品としては、協和化学工業(株)製;アルカマイザー、DHT−4A、キョーワード500、キョーワード1000、堺化学(株)製STABIACEシリーズのHT−1、HT−7、HT−Pなどの合成ハイドロタルサイト様化合物が挙げられる。
これらのハイドロタルサイト系のイオン捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Moreover, as a commercial item, Kyowa Chemical Industry Co., Ltd. product; Alkamizer, DHT-4A, Kyoward 500, Kyoward 1000, Sakai Chemical Co., Ltd. STABIACE series HT-1, HT-7, HT-P And synthetic hydrotalcite-like compounds.
These hydrotalcite-based ion scavengers may be used alone or in combination of two or more.

本発明の樹脂組成物に含まれるハイドロタルサイト系以外のイオン捕捉剤としては、公知慣用のイオン捕捉剤を用いることができる。このハイドロタルサイト系以外のイオン捕捉剤としては、陽イオン交換型、陰イオン交換型、両イオン交換型のいずれも用いることができる。
具体的には、Zr系化合物からなる無機粒子、Sb系化合物からなる無機粒子、Bi系からなる無機粒子等が挙げられる。また、Sb系化合物とBi系化合物の2元系からなる無機粒子、Mg系化合物とAl系化合物の2元系からなる無機粒子、Zr系化合物とBi系化合物の2元系からなる無機粒子、Zr系化合物とMg系化合物とAl系化合物の3元系からなる無機粒子等が挙げられる。なかでも難燃剤の効果を低下させない観点から、Zr系化合物からなる無機粒子、Zr系化合物とBi系化合物の2元系からなる無機粒子、Zr系化合物とMg系化合物とAl系化合物の3元系からなる無機粒子が好ましい。
このハイドロタルサイト系以外のイオン補足剤の市販品としては、東亜合成(株)製の、IXE−100、IXE−300、IXE−500、IXE−550、IXE−800、IXE−600、IXE−6107、IXE−6136、IXEPLAS−A1、IXEPLAS−B1などが挙げられる。
これらのハイドロタルサイト系以外のイオン捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the ion scavenger other than the hydrotalcite-based agent contained in the resin composition of the present invention, a publicly known ion scavenger can be used. As an ion scavenger other than this hydrotalcite, any of a cation exchange type, an anion exchange type, and a both ion exchange type can be used.
Specific examples include inorganic particles composed of Zr-based compounds, inorganic particles composed of Sb-based compounds, and inorganic particles composed of Bi-based materials. In addition, inorganic particles composed of binary systems of Sb compounds and Bi compounds, inorganic particles composed of binary systems of Mg compounds and Al compounds, inorganic particles composed of binary systems of Zr compounds and Bi compounds, Examples thereof include inorganic particles composed of a ternary system of a Zr-based compound, a Mg-based compound, and an Al-based compound. Among these, from the viewpoint of not reducing the effect of the flame retardant, inorganic particles comprising a Zr compound, inorganic particles comprising a binary system of Zr compound and Bi compound, ternary of Zr compound, Mg compound and Al compound. Inorganic particles comprising the system are preferred.
Commercially available ion supplements other than this hydrotalcite are IXE-100, IXE-300, IXE-500, IXE-550, IXE-800, IXE-600, IXE- manufactured by Toa Gosei Co., Ltd. 6107, IXE-6136, IXEPLAS-A1, IXEPLAS-B1, and the like.
These ion scavengers other than hydrotalcite may be used alone or in combination of two or more.

本発明においては、上記イオン捕捉剤がハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物であることが必須である。これらのイオン捕捉剤を用いることによって、イオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立することができる。これは、以下のような理由によるものと考えられる。絶縁信頼性、特にイオンマイグレーション耐性を向上させるためにハイドロタルサイト系のイオン捕捉剤を配合すると、難燃性が低下してしまうが、難燃性が低下しない程度の量のハイドロタルサイト系のイオン捕捉剤を配合した場合、イオンマイグレーション耐性が不十分となる。そこで、難燃性を有するハイドロタルサイト系以外のイオン捕捉剤を併用すると、難燃性を維持しながら上記イオンマイグレーション耐性の不十分さを補うことができると考えられる。よって、本発明によれば、絶縁信頼性、特にイオンマイグレーション耐性と難燃性とを高度に両立させることができるようになった。
上記ハイドロタルサイト系のイオン捕捉剤と上記ハイドロタルサイト系以外のイオン捕捉剤との配合比率は、質量基準で100:10〜100:500の範囲、好ましくは100:50〜100:400の範囲、より好ましくは100:100〜100:400の範囲である。また、イオン捕捉剤の合計配合量は、固形分換算で樹脂組成物全体に対して、1〜50質量%、好ましくは2〜40質量%、より好ましくは2〜20質量%である。
In the present invention, it is essential that the ion scavenger is a mixture of a hydrotalcite ion scavenger and a non-hydrotalcite ion scavenger. By using these ion scavengers, both insulation reliability such as ion migration resistance and flame retardancy can be achieved at a high level. This is considered to be due to the following reasons. When a hydrotalcite-based ion scavenger is added to improve insulation reliability, especially ion migration resistance, the flame retardancy will decrease, but the amount of hydrotalcite-based will not decrease flame retardancy. When an ion scavenger is blended, ion migration resistance becomes insufficient. Therefore, it is considered that when the ion scavenger other than the hydrotalcite system having flame retardancy is used in combination, the insufficient ion migration resistance can be compensated while maintaining the flame retardancy. Therefore, according to the present invention, insulation reliability, in particular, ion migration resistance and flame retardancy can be made highly compatible.
The blending ratio of the hydrotalcite-based ion scavenger and the ion scavenger other than the hydrotalcite-based material is in the range of 100: 10 to 100: 500, preferably in the range of 100: 50 to 100: 400 on a mass basis. More preferably, it is in the range of 100: 100 to 100: 400. Moreover, the total compounding quantity of an ion trapping agent is 1-50 mass% with respect to the whole resin composition in conversion of solid content, Preferably it is 2-40 mass%, More preferably, it is 2-20 mass%.

本発明の樹脂組成物は、さらに、光重合開始剤およびエチレン性不飽和基を有する化合物のいずれか少なくとも1種を含有させることができる。   The resin composition of the present invention can further contain at least one of a photopolymerization initiator and a compound having an ethylenically unsaturated group.

(光重合開始剤)
光重合開始剤としては、公知慣用のものを用いることができ、例えば、ベンゾイン化合物、アシルホスフィンオキサイド系化合物、アセトフェノン系化合物、α−アミノアセトフェノン化合物、オキシムエステル化合物、チオキサントン系化合物等が挙げられる。
特に、後述する光照射後のPEB工程に用いる場合には、光塩基発生剤としての機能も有する光重合開始剤が好適である。なお、このPEB工程では、光重合開始剤と光塩基発生剤とを併用してもよい。
(Photopolymerization initiator)
As the photopolymerization initiator, known ones can be used, and examples thereof include benzoin compounds, acylphosphine oxide compounds, acetophenone compounds, α-aminoacetophenone compounds, oxime ester compounds, and thioxanthone compounds.
In particular, when used in a PEB step after light irradiation described later, a photopolymerization initiator that also has a function as a photobase generator is suitable. In this PEB step, a photopolymerization initiator and a photobase generator may be used in combination.

光塩基発生剤としての機能も有する光重合開始剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、後述する熱硬化成分の付加反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
このような光塩基発生剤としての機能も有する光重合開始剤としては、例えば、α−アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基、N−ホルミル化芳香族アミノ基、N−アシル化芳香族アミノ基、ニトロベンジルカーバメート基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。中でも、オキシムエステル化合物、α−アミノアセトフェノン化合物が好ましく、オキシムエステル化合物がより好ましい。α−アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。
A photopolymerization initiator that also functions as a photobase generator is a catalyst for the addition reaction of a thermosetting component, which will be described later, when the molecular structure is changed by light irradiation such as ultraviolet light or visible light, or the molecule is cleaved. Is a compound that produces one or more basic substances that can function as Examples of basic substances include secondary amines and tertiary amines.
Examples of the photopolymerization initiator having a function as a photobase generator include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, and N-acylated aromatics. And compounds having a substituent such as a group amino group, a nitrobenzyl carbamate group, and an alkoxybenzyl carbamate group. Among these, an oxime ester compound and an α-aminoacetophenone compound are preferable, and an oxime ester compound is more preferable. As the α-aminoacetophenone compound, those having two or more nitrogen atoms are particularly preferable.

α−アミノアセトフェノン化合物は、分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成するものであればよい。α−アミノアセトフェノン化合物の具体例としては、(4−モルホリノベンゾイル)−1−ベンジル−1−ジメチルアミノプロパン(商品名:イルガキュア369、BASFジャパン社製)や4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン(商品名:イルガキュア907、BASFジャパン社製)、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン(商品名:イルガキュア379、BASFジャパン社製)などの市販の化合物またはその溶液を用いることができる。   The α-aminoacetophenone compound is not particularly limited as long as it has a benzoin ether bond in the molecule and is cleaved within the molecule when irradiated with light to produce a basic substance (amine) that exhibits a curing catalytic action. Specific examples of the α-aminoacetophenone compound include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (trade name: Irgacure 369, manufactured by BASF Japan) and 4- (methylthiobenzoyl) -1-methyl. -1-morpholinoethane (trade name: Irgacure 907, manufactured by BASF Japan), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl]- Commercially available compounds such as 1-butanone (trade name: Irgacure 379, manufactured by BASF Japan Ltd.) or a solution thereof can be used.

オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物であればいずれをも使用することができる。オキシムエステル化合物としては、市販品として、BASFジャパン社製のCGI−325、イルガキュアーOXE01、イルガキュアーOXE02、アデカ社製N−1919、NCI−831などが挙げられる。また、特許第4,344,400号公報に記載された、分子内に2個のオキシムエステル基を有する化合物も好適に用いることができる。   Any oxime ester compound can be used as long as it is a compound that generates a basic substance by light irradiation. Examples of the oxime ester compound include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, and NCI-831 manufactured by Adeka. Further, compounds having two oxime ester groups in the molecule described in Japanese Patent No. 4,344,400 can also be suitably used.

このような光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。樹脂組成物中の光重合開始剤の配合量は、固形分換算でカルボキシル基含有樹脂100質量部に対して0.1〜30質量部、好ましくは0.5〜20質量部である。0.1〜30質量部の範囲であると、塗膜表面と深部の硬化バランスが良くなり、感度、解像性等をよくすることができる。また光硬化性が良くなり、絶縁信頼性、耐薬品性等の塗膜特性を向上させることができる。ただし、2層構造のカバーレイの接着層用樹脂組成物として用いる場合は、光重合開始剤を含まない構成が好ましい。   Such a photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type. The compounding quantity of the photoinitiator in a resin composition is 0.1-30 mass parts with respect to 100 mass parts of carboxyl group-containing resin in conversion of solid content, Preferably it is 0.5-20 mass parts. When it is in the range of 0.1 to 30 parts by mass, the curing balance between the coating film surface and the deep part is improved, and the sensitivity, resolution, and the like can be improved. In addition, photocurability is improved, and coating properties such as insulation reliability and chemical resistance can be improved. However, when using as a resin composition for the adhesive layer of a cover layer having a two-layer structure, a configuration not containing a photopolymerization initiator is preferred.

(エチレン性不飽和基を有する化合物)
エチレン性不飽和基を有する化合物(以下、光重合性化合物とも称する)は、分子中に1個以上のエチレン性不飽和基を有する化合物である。光重合性化合物は、活性エネルギー線照射によるエチレン性不飽和基の重合反応を助けるものである。エチレン性不飽和基としては、(メタ)アクリレート由来のものが好ましい。
(Compound having an ethylenically unsaturated group)
A compound having an ethylenically unsaturated group (hereinafter also referred to as a photopolymerizable compound) is a compound having one or more ethylenically unsaturated groups in the molecule. The photopolymerizable compound assists the polymerization reaction of ethylenically unsaturated groups by irradiation with active energy rays. As the ethylenically unsaturated group, those derived from (meth) acrylate are preferable.

上記光重合性化合物としては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。具体的には、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノプロピルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス−ヒドロキシエチルイソシアヌレートなどの多価アルコールまたはこれらのエチレンオキサイド付加物、プロピレンオキサイド付加物、もしくはε−カプロラクトン付加物などの多官能アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多官能アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多官能アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオールなどのポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類の少なくとも何れか一種などが挙げられる。   Examples of the photopolymerizable compound include conventionally known polyester (meth) acrylate, polyether (meth) acrylate, urethane (meth) acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate. Specifically, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; N, N-dimethylacrylamide Acrylamides such as N-methylol acrylamide and N, N-dimethylaminopropyl acrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate and N, N-dimethylaminopropyl acrylate; hexanediol, trimethylolpropane, Polyhydric alcohols such as pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate or the like Multifunctional acrylates such as tylene oxide adduct, propylene oxide adduct, or ε-caprolactone adduct; phenoxyacrylate, bisphenol A diacrylate, and polyfunctional such as ethylene oxide adduct or propylene oxide adduct of these phenols Acrylates; glyceryl diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyfunctional acrylates of glycidyl ether such as triglycidyl isocyanurate; not limited to the above, polyether polyol, polycarbonate diol, hydroxyl-terminated polybutadiene, Polyols such as polyester polyols can be directly acrylated or urethane acrylate via diisocyanate. Examples include acrylated acrylates and melamine acrylates, and at least one of each methacrylate corresponding to the acrylate.

さらに、クレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に、アクリル酸を反応させたエポキシアクリレート樹脂などを光重合性化合物として用いてもよい。このようなエポキシアクリレート系樹脂は、指触乾燥性を低下させることなく、光硬化性を向上させることができる。   Furthermore, you may use the epoxy acrylate resin etc. which made acrylic acid react with polyfunctional epoxy resins, such as a cresol novolak-type epoxy resin, as a photopolymerizable compound. Such an epoxy acrylate resin can improve photocurability without deteriorating the touch drying property.

上記の光重合性化合物の配合量は、固形分換算でカルボキシル基含有樹脂の100質量部に対して、1〜50質量部、より好ましくは、3〜30質量部の割合である。上記配合量が、1〜50質量部の範囲であると、光硬化性、タック性を良好にすることができる。   The blending amount of the photopolymerizable compound is 1 to 50 parts by mass, more preferably 3 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin in terms of solid content. When the blending amount is in the range of 1 to 50 parts by mass, photocurability and tackiness can be improved.

(高分子樹脂)
本発明の樹脂組成物には、得られる硬化物の可撓性、指触乾燥性の向上を目的に慣用公知の高分子樹脂を配合することができる。高分子樹脂としてはセルロース系、ポリエステル系、フェノキシ樹脂系ポリマー、ポリビニルアセタール系、ポリビニルブチラール系、ポリアミド系、ポリアミドイミド系バインダーポリマー、ブロック共重合体、エラストマー等が挙げられる。上記高分子樹脂は1種類を単独で用いてもよく、2種類以上を併用してもよい。
(Polymer resin)
The resin composition of the present invention can be blended with conventionally known polymer resins for the purpose of improving the flexibility and dryness of the touch of the resulting cured product. Examples of the polymer resin include cellulose, polyester, phenoxy resin, polyvinyl acetal, polyvinyl butyral, polyamide, polyamideimide binder polymer, block copolymer, elastomer and the like. The above polymer resins may be used alone or in combination of two or more.

(無機充填剤)
本発明の樹脂組成物には、無機充填剤を配合することができる。無機充填剤は、樹脂組成物の硬化物の硬化収縮を抑制し、密着性、硬度などの特性を向上させるために使用される。無機充填剤としては、例えば、硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグ等が挙げられる。上記無機充填剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。
(Inorganic filler)
An inorganic filler can be blended in the resin composition of the present invention. The inorganic filler is used for suppressing the curing shrinkage of the cured product of the resin composition and improving properties such as adhesion and hardness. Examples of inorganic fillers include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg. Can be mentioned. The said inorganic filler may be used individually by 1 type, and may use 2 or more types together.

(着色剤)
本発明の樹脂組成物には、着色剤を配合することができる。着色剤としては、赤、青、緑、黄、白、黒などの慣用公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。
(Coloring agent)
A coloring agent can be mix | blended with the resin composition of this invention. As the colorant, conventionally known colorants such as red, blue, green, yellow, white, and black can be used, and any of pigments, dyes, and pigments may be used.

(有機溶剤)
本発明の樹脂組成物には、樹脂組成物の調製のためや、基材やキャリアフィルムに塗布するための粘度調整のために、有機溶剤を使用することができる。
このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などを挙げることができる。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。
(Organic solvent)
In the resin composition of the present invention, an organic solvent can be used for preparing the resin composition or adjusting the viscosity for application to a substrate or a carrier film.
Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.

(その他の任意成分)
本発明の樹脂組成物には、必要に応じてさらに、メルカプト化合物、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。また、上記の樹脂組成物には、微粉シリカ、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤および/またはレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
(Other optional ingredients)
If necessary, the resin composition of the present invention may further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber. As these, those known in the field of electronic materials can be used. Further, the above resin composition includes known and commonly used thickeners such as finely divided silica, organic bentonite and montmorillonite, silicone-based, fluorine-based and polymer-based antifoaming agents and / or leveling agents, and silane coupling agents. In addition, known and commonly used additives such as a rust inhibitor can be blended.

〔ドライフィルム〕
本発明のドライフィルムは、本発明の樹脂組成物からなる樹脂層を有する。本発明の樹脂組成物以外の樹脂組成物からなる層も有する多層構造のドライフィルムであってもよい。
ドライフィルム化に際しては、例えば、本発明の樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、コンマコーター等の公知の手法でキャリアフィルム上に均一な厚さに塗布する。その後、通常、50〜130℃の温度で1〜30分間乾燥し、キャリアフィルム上に樹脂層を形成する。
[Dry film]
The dry film of the present invention has a resin layer made of the resin composition of the present invention. The multilayer film may be a dry film having a layer made of a resin composition other than the resin composition of the present invention.
In forming a dry film, for example, the resin composition of the present invention is diluted with an organic solvent to have an appropriate viscosity, and is applied to a carrier film with a uniform thickness by a known technique such as a comma coater. Thereafter, drying is usually performed at a temperature of 50 to 130 ° C. for 1 to 30 minutes to form a resin layer on the carrier film.

キャリアフィルムとしては、プラスチックフィルムが用いられる。キャリアフィルムの厚さについては特に制限はないが、一般に、10〜150μmの範囲で適宜選択される。キャリアフィルム上に樹脂層を形成した後、さらに、樹脂層の表面に剥離可能なカバーフィルムを積層してもよい。   A plastic film is used as the carrier film. Although there is no restriction | limiting in particular about the thickness of a carrier film, Generally, it selects suitably in the range of 10-150 micrometers. After forming the resin layer on the carrier film, a peelable cover film may be further laminated on the surface of the resin layer.

以上説明したような本発明の樹脂組成物またはドライフィルムは、プリント配線板の樹脂絶縁層、例えば、カバーレイや、ソルダーレジストに用いることができる。また、本発明の樹脂組成物は、2層以上の積層構造を有するカバーレイの、プリント配線板に接する樹脂層である接着層用樹脂組成物としても用いることができる。   The resin composition or dry film of the present invention as described above can be used for a resin insulating layer of a printed wiring board, for example, a coverlay or a solder resist. The resin composition of the present invention can also be used as a resin composition for an adhesive layer, which is a resin layer in contact with a printed wiring board, of a coverlay having a laminated structure of two or more layers.

この2層以上の積層構造を有するカバーレイ(積層構造体)は、プリント配線板に接する樹脂層である接着層と、その上層の光照射によりパターンニングが可能である樹脂層である保護層とで構成されることが好ましい。この積層構造体の接着層として本発明の樹脂組成物を用いることにより、接着層と保護層とからなるカバーレイなどの積層構造体は、現像によりパターンを一括して形成することができ、しかもイオンマイグレーション耐性などの絶縁信頼性と難燃性とを高度に両立させることができる。   The cover lay (laminated structure) having a laminated structure of two or more layers includes an adhesive layer that is a resin layer in contact with the printed wiring board, and a protective layer that is a resin layer that can be patterned by light irradiation on the upper layer. It is preferable that it is comprised. By using the resin composition of the present invention as an adhesive layer of this laminated structure, a laminated structure such as a coverlay composed of an adhesive layer and a protective layer can be formed in a batch by development, and Insulation reliability such as ion migration resistance and flame retardancy can be achieved at a high level.

ここで、上記保護層を構成する樹脂組成物は、カルボキシル基含有樹脂(アルカリ溶解性樹脂)と、光重合開始剤と、熱硬化成分とを含むものであり、特開2015−155199号公報に記載の組成物等などを用いることができる。カルボキシル基含有樹脂(アルカリ溶解性樹脂)としては、イミド環またはイミド前駆体骨格を有するカルボキシル基含有樹脂(アルカリ溶解性樹脂)が好ましい。   Here, the resin composition constituting the protective layer contains a carboxyl group-containing resin (alkali-soluble resin), a photopolymerization initiator, and a thermosetting component, and disclosed in JP-A-2015-155199. The described compositions and the like can be used. As the carboxyl group-containing resin (alkali-soluble resin), a carboxyl group-containing resin (alkali-soluble resin) having an imide ring or an imide precursor skeleton is preferable.

〔プリント配線板の製造方法〕
次に、本発明の樹脂組成物からプリント配線板を製造する方法の一例を図1および図2の工程図に基づき説明する。なお、図1および図2では、樹脂層が積層構造である場合を示すが、1層のみからなる場合でもよい。
[Method of manufacturing printed wiring board]
Next, an example of a method for producing a printed wiring board from the resin composition of the present invention will be described with reference to the process diagrams of FIGS. 1 and 2 show the case where the resin layer has a laminated structure, it may be composed of only one layer.

図1の工程図に示すプリント配線板の製造方法は、導体回路を形成したプリント配線基板上に積層構造体の層を形成する工程(積層工程)、この積層構造体の層に活性エネルギー線をパターン状に照射する工程(露光工程)、および、この積層構造体の層をアルカリ現像して、パターン化された積層構造体の層を一括形成する工程(現像工程)を含む製造方法である。また、必要に応じて、アルカリ現像後、さらなる光硬化や熱硬化(ポストキュア工程)を行い、積層構造体の層を完全に硬化させて、信頼性の高いプリント配線板を得ることができる。   The manufacturing method of the printed wiring board shown in the process diagram of FIG. 1 includes a step of forming a layer of a laminated structure on a printed wiring board on which a conductor circuit is formed (lamination step), and an active energy ray is applied to the layer of the laminated structure. It is a manufacturing method including a pattern irradiation step (exposure step) and a step (development step) in which a layer of the laminated structure is collectively formed by alkali development of the layer of the laminated structure. Further, if necessary, after the alkali development, further photocuring or heat curing (post-cure process) can be performed to completely cure the layer of the laminated structure, thereby obtaining a highly reliable printed wiring board.

図2の工程図に示すプリント配線板の製造方法は、導体回路を形成したプリント配線基板上に積層構造体の層を形成する工程(積層工程)、この積層構造体の層に活性エネルギー線をパターン状に照射する工程(露光工程)、この積層構造体の層を加熱する工程(加熱(Post Exposure Bake;PEB)工程)、および、積層構造体の層をアルカリ現像して、パターン化された積層構造体の層を形成する工程(現像工程)を含む製造方法である。また、必要に応じて、アルカリ現像後、さらなる光硬化や熱硬化(ポストキュア工程)を行い、積層構造体の層を完全に硬化させて、信頼性の高いプリント配線板を得ることができる。特に、樹脂層4(保護層)においてイミド環含有アルカリ溶解性樹脂を用いた場合には、この図2の工程図に示す手順を用いることが好ましい。   The manufacturing method of the printed wiring board shown in the process diagram of FIG. 2 includes a step of forming a layer of the laminated structure on the printed wiring board on which the conductor circuit is formed (lamination step), and an active energy ray is applied to the layer of the laminated structure. A pattern irradiation process (exposure process), a process of heating the layer of the multilayer structure (post exposure bake (PEB) process), and a layer of the multilayer structure were alkali-developed and patterned. It is a manufacturing method including the process (development process) which forms the layer of a laminated structure. Further, if necessary, after the alkali development, further photocuring or heat curing (post-cure process) can be performed to completely cure the layer of the laminated structure, thereby obtaining a highly reliable printed wiring board. In particular, when an imide ring-containing alkali-soluble resin is used in the resin layer 4 (protective layer), it is preferable to use the procedure shown in the process diagram of FIG.

以下、図1または図2に示す各工程について、詳細に説明する。
[積層工程]
この工程では、導体回路2が形成されたプリント配線基板1に、樹脂組成物からなる樹脂層3(接着層)と、樹脂層3上の、樹脂組成物からなる樹脂層4(保護層)と、からなる積層構造体を形成する。ここで、積層構造体を構成する各樹脂層は、例えば、樹脂層3,4を構成する樹脂組成物を、順次、プリント配線基板1に塗布および乾燥することにより樹脂層3,4を形成するか、あるいは、樹脂層3,4を構成する樹脂組成物を2層構造のドライフィルムの形態にしたものを、プリント配線基板1にラミネートする方法により形成してもよい。
この樹脂層は、アルカリ現像型感光性樹脂組成物からなることが好ましい。アルカリ現像型感光性樹脂組成物としては、公知の樹脂組成物を使用することができ、例えば、カバーレイ用またはソルダーレジスト用の公知の樹脂組成物を使用できる。このように樹脂層を1層ではなく積層構造とすることにより、さらに耐衝撃性と屈曲性に優れた硬化物を得ることができる。
Hereafter, each process shown in FIG. 1 or FIG. 2 is demonstrated in detail.
[Lamination process]
In this step, a resin layer 3 (adhesive layer) made of a resin composition and a resin layer 4 (protective layer) made of a resin composition on the resin layer 3 are formed on the printed wiring board 1 on which the conductor circuit 2 is formed. Are formed. Here, each resin layer constituting the laminated structure forms, for example, the resin layers 3 and 4 by sequentially applying and drying the resin composition constituting the resin layers 3 and 4 on the printed wiring board 1. Alternatively, it may be formed by laminating the resin composition constituting the resin layers 3 and 4 in the form of a dry film having a two-layer structure on the printed wiring board 1.
This resin layer is preferably made of an alkali development type photosensitive resin composition. As the alkali developing photosensitive resin composition, a known resin composition can be used. For example, a known resin composition for a coverlay or a solder resist can be used. Thus, by setting the resin layer to a laminated structure instead of a single layer, a cured product having further excellent impact resistance and flexibility can be obtained.

樹脂組成物の配線基板への塗布方法は、ブレードコーター、リップコーター、コンマコーター、フィルムコーター等の公知の方法でよい。また、乾燥方法は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等、蒸気による加熱方式の熱源を備えたものを用い、乾燥機内の熱風を向流接触させる方法、およびノズルより支持体に吹き付ける方法等、公知の方法でよい。
ラミネートする方法の場合、まずは、樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、キャリアフィルム上に塗布、乾燥して樹脂層を有するドライフィルムを作製する。次に、ラミネーター等により樹脂層が、配線基板と接触するように貼り合わせた後、キャリアフィルムを剥離する公知の方法が挙げられる。
The application method of the resin composition to the wiring board may be a known method such as a blade coater, a lip coater, a comma coater, or a film coater. Also, the drying method is a method using a hot-air circulation type drying furnace, IR furnace, hot plate, convection oven, etc., equipped with a heat source of the heating method by steam, and the hot air in the dryer is counter-contacted and supported by the nozzle A known method such as a method of spraying on the body may be used.
In the case of the laminating method, first, the resin composition is diluted with an organic solvent, adjusted to an appropriate viscosity, applied onto a carrier film and dried to prepare a dry film having a resin layer. Next, after laminating the resin layer with a laminator or the like so as to come into contact with the wiring substrate, a known method of peeling the carrier film can be used.

[露光工程]
この工程では、活性エネルギー線の照射により、樹脂層4に含まれる光重合開始剤をネガ型のパターン状に活性化させて、露光部を硬化する。露光機としては、直接描画装置、メタルハライドランプを搭載した露光機などを用いることができる。パターン状の露光用のマスクは、ネガ型のマスクである。
[Exposure process]
In this step, the photopolymerization initiator contained in the resin layer 4 is activated into a negative pattern by irradiation with active energy rays, and the exposed portion is cured. As the exposure machine, a direct drawing apparatus, an exposure machine equipped with a metal halide lamp, or the like can be used. The patterned exposure mask is a negative mask.

露光に用いる活性エネルギー線としては、最大波長が350〜450nmの範囲にあるレーザー光または散乱光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく光重合開始剤を活性化させることができる。また、その露光量は膜厚等によって異なるが、通常は、100〜1500mJ/cmとすることができる。As the active energy ray used for exposure, it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm. By setting the maximum wavelength within this range, the photopolymerization initiator can be activated efficiently. Moreover, although the exposure amount changes with film thickness etc., it can usually be set to 100-1500 mJ / cm < 2 >.

[PEB工程]
この工程では、露光後、樹脂層を加熱することにより、露光部を硬化する。この工程により、光塩基発生剤としての機能を有する光重合開始剤を用いるか、光重合開始剤と光塩基発生剤とを併用した組成物からなる樹脂層4の露光工程で発生した塩基によって、樹脂層を深部まで硬化できる。加熱温度は、例えば、80〜140℃である。加熱時間は、例えば、10〜100分である。本発明における樹脂組成物の硬化は、例えば、熱反応によるエポキシ樹脂の開環反応であるため、光ラジカル反応で硬化が進行する場合と比べてひずみや硬化収縮を抑えることができる。
[PEB process]
In this step, after exposure, the exposed portion is cured by heating the resin layer. By this step, a photopolymerization initiator having a function as a photobase generator is used, or by a base generated in the exposure step of the resin layer 4 composed of a composition in which a photopolymerization initiator and a photobase generator are used in combination, The resin layer can be cured to a deep part. The heating temperature is, for example, 80 to 140 ° C. The heating time is, for example, 10 to 100 minutes. Since the curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin by a thermal reaction, distortion and curing shrinkage can be suppressed as compared with a case where curing proceeds by a photoradical reaction.

[現像工程]
この工程では、アルカリ現像により、未露光部を除去して、ネガ型のパターン状の絶縁膜、特には、カバーレイおよびソルダーレジストを形成する。現像方法としては、ディッピング等の公知の方法によることができる。また、現像液としては、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、アミン類、2−メチルイミダゾール等のイミダゾール類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液、または、これらの混合液を用いることができる。
[Development process]
In this step, the unexposed portion is removed by alkali development to form a negative patterned insulating film, particularly a cover lay and a solder resist. The developing method can be a known method such as dipping. As the developer, sodium carbonate, potassium carbonate, potassium hydroxide, amines, imidazoles such as 2-methylimidazole, alkaline aqueous solutions such as tetramethylammonium hydroxide aqueous solution (TMAH), or a mixed solution thereof. Can be used.

[ポストキュア工程]
この工程は、現像工程の後に、樹脂層を完全に熱硬化させて信頼性の高い塗膜を得るものである。加熱温度は、例えば140℃〜180℃である。加熱時間は、例えば、20〜120分である。さらに、ポストキュアの前または後に、光照射してもよい。
[Post cure process]
In this step, after the development step, the resin layer is completely thermoset to obtain a highly reliable coating film. The heating temperature is, for example, 140 ° C to 180 ° C. The heating time is, for example, 20 to 120 minutes. Further, light irradiation may be performed before or after the post cure.

以下、本発明を、実施例、比較例を用いてより詳細に説明するが、本発明は下記実施例、比較例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to the following Example and comparative example. In the following description, “parts” and “%” are all based on mass unless otherwise specified.

(実施例1〜14、比較例1〜6)
<樹脂組成物の調製>
下記表1〜3に記載の配合に従って、実施例、比較例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、硬化性樹脂組成物を調製した。表中の値は、特に断りが無い限り質量部である。
(Examples 1-14, Comparative Examples 1-6)
<Preparation of resin composition>
In accordance with the formulation described in Tables 1 to 3 below, the materials described in Examples and Comparative Examples were respectively blended, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a curable resin composition. The values in the table are parts by mass unless otherwise specified.

調製した硬化性樹脂組成物について、絶縁信頼性と難燃性を評価した。評価内容は以下のとおりである。
<絶縁信頼性>
L/S=50/50μmのパターンを形成した銅厚18μmのポリイミド基板(新日鐵化学(株)製エスパネックス)をメックブライトCB−801Yを用いて表面処理を行った。そのポリイミド基板に、実施例1〜14および比較例1〜6の硬化性樹脂組成物を、スクリーン印刷で全面塗布し、80℃・30分で乾燥し、室温まで放冷した。得られた基板にメタルハライドランプ搭載の露光装置(HMW−680−GW20)を用いて300mJ/cmの露光量で全面露光し、1質量%NaCO水溶液を用いて30℃・スプレー圧0.2MPaの条件で60秒間の現像処理を行った。この基板を150℃・60分で加熱硬化した後、電磁波シールド材をプレス圧着して絶縁信頼性の評価基板を作製した。
作製した評価基板について、Z軸方向にDC50Vのバイアス電圧を印加し、85℃、85%RHの恒温恒湿槽にて抵抗値を連続測定しショート発生の有無を確認することにより、イオンマイグレーション耐性を評価した。判定基準は以下のとおりである。
○:1000時間経過後においてショートの発生無し。
×:1000時間以内にショートの発生有り。
The prepared curable resin composition was evaluated for insulation reliability and flame retardancy. The contents of the evaluation are as follows.
<Insulation reliability>
A polyimide substrate (Espanex, manufactured by Nippon Steel Chemical Co., Ltd.) having a copper thickness of 18 μm on which a pattern of L / S = 50/50 μm was formed was subjected to surface treatment using Mecbright CB-801Y. The curable resin compositions of Examples 1-14 and Comparative Examples 1-6 were applied to the polyimide substrate by screen printing, dried at 80 ° C. for 30 minutes, and allowed to cool to room temperature. The entire surface of the obtained substrate was exposed at an exposure amount of 300 mJ / cm 2 using an exposure apparatus (HMW-680-GW20) equipped with a metal halide lamp, and 30 ° C. and spray pressure 0 using a 1 mass% Na 2 CO 3 aqueous solution. Development was performed for 60 seconds under the condition of 2 MPa. This substrate was heat-cured at 150 ° C. for 60 minutes, and then an electromagnetic shielding material was press-bonded to produce an insulating reliability evaluation substrate.
With respect to the manufactured evaluation substrate, a bias voltage of DC 50 V is applied in the Z-axis direction, and the resistance value is continuously measured in a constant temperature and humidity chamber at 85 ° C. and 85% RH to confirm whether or not a short circuit occurs, thereby preventing ion migration. Evaluated. The judgment criteria are as follows.
○: No short circuit after 1000 hours.
×: Short circuit occurred within 1000 hours.

<難燃性>
実施例1〜14および比較例1〜6の硬化性樹脂組成物を、50μm厚、25μm厚のポリイミドフィルム基材(東レ・デュポン(株)製200H、100H)に、スクリーン印刷で全面塗布し、80℃・15分で乾燥し、室温まで放冷した。裏面も同様に全面塗布し80℃・20分で乾燥させた。得られた両面塗布基材に対し、両面をメタルハライドランプ搭載の露光装置(HMW−680−GW20)を用いて300mJ/cmの露光量で全面露光し、1質量%NaCO水溶液を用いて30℃・スプレー圧2kg/cmの条件で60秒間の現像処理を行った。この両面塗布基材を150℃・60分で加熱硬化して難燃性の評価基板を作製した。
作製した評価基板について、UL94規格に準拠した薄材垂直燃焼試験を行い、難燃性を評価した。評価基準は、UL94規格に基づいて、難燃性を確認できたものを〇、難燃性の無いものを×と表記した。
<Flame retardance>
The entire surface of the curable resin compositions of Examples 1 to 14 and Comparative Examples 1 to 6 was applied by screen printing to a polyimide film substrate (200H, 100H manufactured by Toray DuPont Co., Ltd.) having a thickness of 50 μm and 25 μm. It dried at 80 degreeC and 15 minutes, and stood to cool to room temperature. Similarly, the entire back surface was applied and dried at 80 ° C. for 20 minutes. The entire surface of the obtained double-side coated substrate is exposed at an exposure amount of 300 mJ / cm 2 using an exposure apparatus (HMW-680-GW20) equipped with a metal halide lamp, and a 1% by mass Na 2 CO 3 aqueous solution is used. The development processing was performed for 60 seconds under the conditions of 30 ° C. and spray pressure 2 kg / cm 2 . This double-sided coated substrate was heat-cured at 150 ° C. for 60 minutes to produce a flame retardant evaluation substrate.
About the produced evaluation board | substrate, the thin material perpendicular | vertical combustion test based on UL94 specification was done, and the flame retardance was evaluated. Based on the UL94 standard, the evaluation criteria were indicated as “◯” when the flame retardance was confirmed, and “X” when there was no flame retardance.

Figure 2017057431
*1:カルボキシル基含有変性エポキシアクリレート樹脂、不揮発分65.0質量%、固形分酸価100mgKOH/g(日本化薬(株)製)
*2:ビフェニルノボラック型エポキシ樹脂(日本化薬(株)製)
*3:フェノキシホスファゼン(大塚化学(株)製)
*4:ホスフィン酸金属塩(クラリアント社製)
*5:オキシムエステル系光重合開始剤(BASFジャパン社製)
*6:ハイドロタルサイト化合物(協和化学工業(株)製)
*7:無機イオン補足剤(両イオン交換型)(東亜合成(株)製)
*8:無機イオン補足剤(両イオン交換型)(東亜合成(株)製)
*9:無機イオン補足剤(陽イオン交換型)(東亜合成(株)製)
*10:無機イオン補足剤(両イオン交換型)(東亜合成(株)製)
*11:ビスフェノールA−EO変性ジアクリレート(新中村化学工業(株)製)
Figure 2017057431
* 1: Carboxyl group-containing modified epoxy acrylate resin, nonvolatile content 65.0% by mass, solid content acid value 100 mgKOH / g (manufactured by Nippon Kayaku Co., Ltd.)
* 2: Biphenyl novolac epoxy resin (Nippon Kayaku Co., Ltd.)
* 3: Phenoxyphosphazene (Otsuka Chemical Co., Ltd.)
* 4: Phosphinic acid metal salt (manufactured by Clariant)
* 5: Oxime ester photopolymerization initiator (BASF Japan)
* 6: Hydrotalcite compound (Kyowa Chemical Industry Co., Ltd.)
* 7: Inorganic ion scavenger (both ion exchange type) (manufactured by Toa Gosei Co., Ltd.)
* 8: Inorganic ion scavenger (both ion exchange type) (manufactured by Toa Gosei Co., Ltd.)
* 9: Inorganic ion scavenger (cation exchange type) (manufactured by Toa Gosei Co., Ltd.)
* 10: Inorganic ion scavenger (both ion exchange type) (manufactured by Toa Gosei Co., Ltd.)
* 11: Bisphenol A-EO modified diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)

Figure 2017057431
Figure 2017057431

Figure 2017057431
Figure 2017057431

表1〜3に示す結果から明らかなように、実施例1〜14では、ハイドロタルサイト系のイオン捕捉剤とともにハイドロタルサイト系以外のイオン捕捉剤を併用しており、絶縁信頼性および難燃性が共に良好であった。一方、比較例1〜2では、イオン捕捉剤を含まないために絶縁信頼性が低下した。また、比較例3では、ハイドロタルサイト系のイオン捕捉剤のみを使用しており、絶縁信頼性は得られているが難燃性が低下した。さらにまた、比較例4〜6では、ハイドロタルサイト系以外のイオン捕捉剤のみを使用しており、絶縁信頼性が低下した。結果として、これら比較例では、絶縁信頼性と難燃性とを高度に両立することはできなかった。   As is clear from the results shown in Tables 1 to 3, in Examples 1 to 14, an ion scavenger other than the hydrotalcite system is used in combination with the hydrotalcite ion scavenger, and insulation reliability and flame retardancy are achieved. Both properties were good. On the other hand, in Comparative Examples 1 and 2, since the ion trapping agent was not included, the insulation reliability was lowered. In Comparative Example 3, only the hydrotalcite-based ion scavenger was used, and although the insulation reliability was obtained, the flame retardancy was lowered. Furthermore, in Comparative Examples 4-6, only ion trapping agents other than hydrotalcite were used, and the insulation reliability was lowered. As a result, in these comparative examples, insulation reliability and flame retardance could not be made highly compatible.

(実施例15、16、比較例7、8)
<積層構造体の形成>
(合成例1:イミド環を有するアルカリ溶解性樹脂の合成例)
撹拌機、窒素導入管、分留環および冷却環を取り付けたセパラブル3つ口フラスコに、3,5−ジアミノ安息香酸を12.2g、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを8.2g、NMPを30g、γ−ブチロラクトンを30g、4,4’−オキシジフタル酸無水物を27.9g、トリメリット酸無水物を3.8g加え、窒素雰囲気下、室温、100rpmで4時間撹拌した。次いで、トルエンを20g加え、シリコン浴温度180℃、150rpmでトルエンおよび水を留去しながら4時間撹拌して、イミド環含有アルカリ溶解性樹脂溶液を得た。その後、固形分が30質量%となるようにγ−ブチロラクトンを添加した。得られた樹脂溶液は、固形分酸価86mgKOH/g、Mw10000であった。
(Examples 15 and 16, Comparative Examples 7 and 8)
<Formation of laminated structure>
(Synthesis example 1: Synthesis example of alkali-soluble resin having imide ring)
12.2 g of 3,5-diaminobenzoic acid, 2,2′-bis [4- (4-aminophenoxy) was added to a separable three-necked flask equipped with a stirrer, a nitrogen inlet tube, a fractionation ring and a cooling ring. Phenyl] propane (8.2 g), NMP (30 g), γ-butyrolactone (30 g), 4,4′-oxydiphthalic anhydride (27.9 g) and trimellitic anhydride (3.8 g) were added. For 4 hours. Next, 20 g of toluene was added, and the mixture was stirred for 4 hours while distilling off toluene and water at a silicon bath temperature of 180 ° C. and 150 rpm to obtain an imide ring-containing alkali-soluble resin solution. Thereafter, γ-butyrolactone was added so that the solid content was 30% by mass. The obtained resin solution had a solid content acid value of 86 mg KOH / g and Mw of 10,000.

<各層を構成する樹脂組成物の調整>
下記表4に記載の配合に従って、実施例および比較例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、接着層および保護層を形成するための樹脂組成物を調製した。表中の値は、特に断りがない限り質量部である。
なお、実施例15、16、比較例7、8の各積層構造体の接着層用樹脂組成物は、光重合開始剤を含まないこと以外は実施例2、3、比較例3、6の各樹脂組成物と同じ組成として用いた。
<Adjustment of resin composition constituting each layer>
In accordance with the formulation shown in Table 4 below, the materials described in Examples and Comparative Examples were respectively blended, premixed with a stirrer and then kneaded with a three-roll mill to form an adhesive layer and a protective layer A product was prepared. The values in the table are parts by mass unless otherwise specified.
In addition, the resin composition for adhesive layers of each laminated structure of Examples 15 and 16 and Comparative Examples 7 and 8 is different from Examples 2 and 3 and Comparative Examples 3 and 6 except that it does not contain a photopolymerization initiator. It was used as the same composition as the resin composition.

<接着層の形成>
銅厚18μmの回路が形成されたフレキシブルプリント配線基材を用意し、メック社製のCZ−8100を使用して、前処理を行った。その後、前処理を行ったフレキシブルプリント配線基材に、各接着層用の樹脂組成物を、乾燥後の膜厚が25μmになるように塗布した。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂組成物からなる接着層を形成した。
<Formation of adhesive layer>
A flexible printed wiring substrate on which a circuit having a copper thickness of 18 μm was formed was prepared, and pre-treatment was performed using CZ-8100 manufactured by MEC. Then, the resin composition for each adhesive layer was apply | coated to the flexible printed wiring base material which performed the pretreatment so that the film thickness after drying might be set to 25 micrometers. Then, it dried at 90 degreeC / 30 minutes with the hot-air circulation type drying furnace, and formed the contact bonding layer which consists of a resin composition.

<保護層の形成>
上記接着層上に、各保護層用の樹脂組成物を、乾燥後の膜厚が10μmになるように塗布した。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂組成物からなる保護層を形成した。
<Formation of protective layer>
On the said adhesive layer, the resin composition for each protective layer was apply | coated so that the film thickness after drying might be 10 micrometers. Then, it dried at 90 degreeC / 30 minutes with the hot-air circulation type drying furnace, and formed the protective layer which consists of a resin composition.

このようにしてフレキシブルプリント配線基材上に実施例15、16、比較例7、8に記載された接着層と保護層からなる未硬化積層構造体を形成した。   Thus, the unhardened laminated structure which consists of an adhesive layer and a protective layer which were described in Examples 15 and 16 and Comparative Examples 7 and 8 was formed on the flexible printed wiring board.

<フレキシブルプリント配線基板の作製>
上述のようにして未硬化積層構造体を形成した各フレキシブルプリント配線基材上の未硬化積層構造体に対し、まずメタルハライドランプ搭載の露光装置(HMW−680−GW20)を用いて500mJ/cmで全面露光した。その後、90℃で30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液)を60秒で行い、150℃×60分で熱硬化することにより、硬化した積層構造体を形成したフレキシブルプリント配線基板を得た。
<Production of flexible printed wiring board>
First, using an exposure apparatus (HMW-680-GW20) equipped with a metal halide lamp, 500 mJ / cm 2 for the uncured laminated structure on each flexible printed wiring substrate on which the uncured laminated structure is formed as described above. The whole surface was exposed. Then, after performing a PEB step at 90 ° C. for 30 minutes, development (30 ° C., 0.2 MPa, 1 mass% Na 2 CO 3 aqueous solution) is performed in 60 seconds, and thermosetting at 150 ° C. × 60 minutes, A flexible printed wiring board on which a cured laminated structure was formed was obtained.

<絶縁信頼性>
上記で得られた各フレキシブルプリント配線基板に対し、電磁波シールド材をプレス圧着して絶縁信頼性の評価基板を作製した。
作製した評価基板について、Z軸方向にDC50Vのバイアス電圧を印加し、85℃、85%RHの恒温恒湿槽にて抵抗値を連続測定しショート発生の有無を確認することにより、イオンマイグレーション耐性を評価した。判定基準は以下のとおりである。
○:1000時間経過後においてショートの発生無し。
×:1000時間以内にショートの発生有り。
<Insulation reliability>
An electromagnetic wave shielding material was press-bonded to each flexible printed wiring board obtained above to produce an evaluation board for insulation reliability.
With respect to the manufactured evaluation substrate, a bias voltage of DC 50 V is applied in the Z-axis direction, and the resistance value is continuously measured in a constant temperature and humidity chamber at 85 ° C. and 85% RH to confirm whether or not a short circuit occurs, thereby preventing ion migration. Evaluated. The judgment criteria are as follows.
○: No short circuit after 1000 hours.
×: Short circuit occurred within 1000 hours.

<難燃性>
上記で得られた各フレキシブルプリント配線基板について、UL94規格に準拠した薄材垂直燃焼試験を行い、難燃性を評価した。評価基準は、UL94規格に基づいて、難燃性を確認できたものを〇、難燃性の無いものを×と表記した。
<Flame retardance>
About each flexible printed wiring board obtained above, the thin material perpendicular | vertical combustion test based on UL94 specification was done, and the flame retardance was evaluated. Based on the UL94 standard, the evaluation criteria were indicated as “◯” when the flame retardance was confirmed, and “X” when there was no flame retardance.

<屈曲性(MIT試験)>
上記で得られた各フレキシブルプリント配線基板に対し、MIT試験(R=0.38mm/宇部興産(株)製ユーピレックス12.5μmの基材使用)を実施し、屈曲性を評価した。120サイクル以上折り曲げられた場合を○とし、この場合、フレキシブル配線板としての屈曲性を満足できる。120サイクル未満の場合は×とした。
<Flexibility (MIT test)>
Each flexible printed wiring board obtained above was subjected to an MIT test (R = 0.38 mm / Ube Kosan Co., Ltd. Upilex 12.5 μm base material used) to evaluate the flexibility. The case where it is bent for 120 cycles or more is marked with ◯. In this case, the flexibility as a flexible wiring board can be satisfied. When it was less than 120 cycles, it was set as x.

得られた結果を、下記の表4中に示す。   The obtained results are shown in Table 4 below.

Figure 2017057431
*12:合成例1のポリイミド樹脂
*13:ビスフェノールA型エポキシ樹脂(分子量900)(三菱化学(株)製)
*14:ビスフェノールA型エポキシ樹脂,エポキシ当量190,質量平均分子量380(三菱化学(株)製)
Figure 2017057431
* 12: Polyimide resin of Synthesis Example 1 * 13: Bisphenol A type epoxy resin (molecular weight 900) (manufactured by Mitsubishi Chemical Corporation)
* 14: Bisphenol A type epoxy resin, epoxy equivalent 190, mass average molecular weight 380 (manufactured by Mitsubishi Chemical Corporation)

表4に示す結果から明らかなように、実施例15、16では、接着層用樹脂組成物中にハイドロタルサイト系のイオン捕捉剤とともにハイドロタルサイト系以外のイオン捕捉剤を併用しており、これを用いて形成した積層構造体を有するフレキシブルプリント配線基板は絶縁信頼性および難燃性が共に良好であり、屈曲性も良好であった。一方、比較例7では、接着層用樹脂組成物中にハイドロタルサイト系のイオン捕捉剤のみを使用しており、これを用いて形成した積層構造体を有するフレキシブルプリント配線基板は、絶縁信頼性は得られているが難燃性が低下した。また、比較例8では、接着層用樹脂組成物中にハイドロタルサイト系以外のイオン捕捉剤のみを使用しており、これを用いて形成した積層構造体を有するフレキシブルプリント配線基板は、絶縁信頼性が低下した。結果として、これら比較例では、フレキシブルプリント配線基板の絶縁信頼性と難燃性とを高度に両立することはできなかった。   As is clear from the results shown in Table 4, in Examples 15 and 16, an ion scavenger other than the hydrotalcite system is used in combination with the hydrotalcite ion scavenger in the adhesive layer resin composition, A flexible printed wiring board having a laminated structure formed using this has good insulation reliability and flame retardancy, and also has good flexibility. On the other hand, in Comparative Example 7, only the hydrotalcite-based ion scavenger is used in the resin composition for the adhesive layer, and the flexible printed wiring board having the laminated structure formed using the hydrotalcite-based resin has an insulating reliability. Was obtained, but flame retardancy decreased. Moreover, in Comparative Example 8, only the ion scavenger other than the hydrotalcite-based resin is used in the resin composition for the adhesive layer, and the flexible printed wiring board having the laminated structure formed using the ion trapping agent has an insulation reliability. Decreased. As a result, in these comparative examples, the insulation reliability and flame retardancy of the flexible printed wiring board could not be made highly compatible.

1 プリント配線基板
2 導体回路
3 樹脂層(接着層)
4 樹脂層(保護層)
5 マスク

DESCRIPTION OF SYMBOLS 1 Printed wiring board 2 Conductor circuit 3 Resin layer (adhesion layer)
4 Resin layer (protective layer)
5 Mask

Claims (9)

カルボキシル基含有樹脂、熱硬化成分、難燃剤およびイオン捕捉剤を含有する硬化性樹脂組成物であって、前記イオン捕捉剤がハイドロタルサイト系のイオン捕捉剤とハイドロタルサイト系以外のイオン捕捉剤との混合物であることを特徴とする硬化性樹脂組成物。   A curable resin composition containing a carboxyl group-containing resin, a thermosetting component, a flame retardant, and an ion scavenger, wherein the ion scavenger is a hydrotalcite-based ion scavenger and an ion scavenger other than a hydrotalcite-based agent And a curable resin composition. 前記ハイドロタルサイト系のイオン捕捉剤と前記ハイドロタルサイト系以外のイオン捕捉剤との配合比率が、質量基準で100:10〜100:500の範囲である請求項1記載の硬化性樹脂組成物。   2. The curable resin composition according to claim 1, wherein a mixing ratio of the hydrotalcite-based ion scavenger and the ion-trapping agent other than the hydrotalcite-based material is in a range of 100: 10 to 100: 500 on a mass basis. . さらに、光重合開始剤およびエチレン性不飽和基を有する化合物のいずれか少なくとも1種を含む請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, further comprising at least one of a photopolymerization initiator and a compound having an ethylenically unsaturated group. 光重合開始剤を含む感光性樹脂組成物である請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, which is a photosensitive resin composition containing a photopolymerization initiator. 前記熱硬化成分が環状(チオ)エーテル化合物である請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein the thermosetting component is a cyclic (thio) ether compound. カバーレイおよびソルダーレジストのうちの少なくともいずれか一方を形成するために用いられる請求項1記載の硬化性樹脂組成物。   The curable resin composition of Claim 1 used in order to form at least any one of a coverlay and a soldering resist. フィルム上に請求項1記載の硬化性樹脂組成物を塗布、乾燥させてなる樹脂層を有することを特徴とするドライフィルム。   A dry film comprising a resin layer formed by applying and drying the curable resin composition according to claim 1 on a film. 請求項1記載の硬化性樹脂組成物、または、請求項7記載のドライフィルムの樹脂層を硬化してなることを特徴とする硬化物。   A curable resin composition according to claim 1 or a cured product obtained by curing the resin layer of the dry film according to claim 7. 請求項8記載の硬化物を備えることを特徴とするプリント配線板。
A printed wiring board comprising the cured product according to claim 8.
JP2017543472A 2015-09-30 2016-09-28 Curable resin composition, dry film and printed wiring board using it Active JP6802799B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015194907 2015-09-30
JP2015194907 2015-09-30
PCT/JP2016/078573 WO2017057431A1 (en) 2015-09-30 2016-09-28 Curable resin composition, dry film and printed wiring board using same

Publications (2)

Publication Number Publication Date
JPWO2017057431A1 true JPWO2017057431A1 (en) 2018-07-19
JP6802799B2 JP6802799B2 (en) 2020-12-23

Family

ID=58423886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543472A Active JP6802799B2 (en) 2015-09-30 2016-09-28 Curable resin composition, dry film and printed wiring board using it

Country Status (5)

Country Link
JP (1) JP6802799B2 (en)
KR (1) KR102574957B1 (en)
CN (1) CN108137791A (en)
TW (1) TWI758257B (en)
WO (1) WO2017057431A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156163A1 (en) * 2018-02-07 2019-08-15 三菱ケミカル株式会社 Photosetting composition, shaped object, and hydrogel
CN110607052B (en) * 2019-09-23 2022-06-03 广东生益科技股份有限公司 Prepreg, laminated board and printed circuit board
CN112638028A (en) * 2020-12-02 2021-04-09 昆山国显光电有限公司 Antioxidant mixture, circuit board and display panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069270A (en) * 2000-01-11 2002-03-08 Nippon Kayaku Co Ltd Flame-retardant halogen-free epoxy resin composition and use thereof
JP2003026776A (en) * 2001-07-19 2003-01-29 Toppan Printing Co Ltd Thermosetting resin composition for printed circuit board, substrate for printed circuit board, and production method for printed circuit board
JP2003213083A (en) * 2002-01-24 2003-07-30 Nippon Kayaku Co Ltd Epoxy resin composition and flexible printed wiring board material using the same
JP2003280193A (en) * 2002-03-26 2003-10-02 Taiyo Ink Mfg Ltd Alkali-developable photosensitive resin composition and printed wiring board using the same
JP2008250305A (en) * 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd Solder resist, dry film thereof, cured product and printed wiring board
JP2009256622A (en) * 2008-03-18 2009-11-05 Nippon Kayaku Co Ltd Active energy ray-curable resin composition using reactive compound having flame retardancy, and cured product thereof
JP2014052599A (en) * 2012-09-10 2014-03-20 Tamura Seisakusho Co Ltd Photosensitive resin composition and printed wiring board having cured film of photosensitive resin composition
JP2014178708A (en) * 2014-06-03 2014-09-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the dry film or the cured product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186510A (en) * 2008-02-01 2009-08-20 Fujifilm Corp Photosensitive composition, photosensitive film, photosensitive laminate, method for forming permanent pattern, and printed wiring board
JP5183540B2 (en) * 2009-03-23 2013-04-17 太陽ホールディングス株式会社 Curable resin composition, dry film and printed wiring board using the same
JP5261242B2 (en) * 2009-03-23 2013-08-14 太陽ホールディングス株式会社 Curable resin composition, dry film and printed wiring board using the same
JP5349113B2 (en) 2009-03-30 2013-11-20 太陽ホールディングス株式会社 Photosensitive resin composition, dry film and printed wiring board using the same
KR101907714B1 (en) * 2011-06-17 2018-10-12 다이요 잉키 세이조 가부시키가이샤 Flame-retardant curable resin composition, dry film using same, and printed wiring board
KR101562964B1 (en) * 2013-09-02 2015-10-26 주식회사 케이씨씨 Photosensitive resin composition with good reliability and method for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069270A (en) * 2000-01-11 2002-03-08 Nippon Kayaku Co Ltd Flame-retardant halogen-free epoxy resin composition and use thereof
JP2003026776A (en) * 2001-07-19 2003-01-29 Toppan Printing Co Ltd Thermosetting resin composition for printed circuit board, substrate for printed circuit board, and production method for printed circuit board
JP2003213083A (en) * 2002-01-24 2003-07-30 Nippon Kayaku Co Ltd Epoxy resin composition and flexible printed wiring board material using the same
JP2003280193A (en) * 2002-03-26 2003-10-02 Taiyo Ink Mfg Ltd Alkali-developable photosensitive resin composition and printed wiring board using the same
JP2008250305A (en) * 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd Solder resist, dry film thereof, cured product and printed wiring board
JP2009256622A (en) * 2008-03-18 2009-11-05 Nippon Kayaku Co Ltd Active energy ray-curable resin composition using reactive compound having flame retardancy, and cured product thereof
JP2014052599A (en) * 2012-09-10 2014-03-20 Tamura Seisakusho Co Ltd Photosensitive resin composition and printed wiring board having cured film of photosensitive resin composition
JP2014178708A (en) * 2014-06-03 2014-09-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the dry film or the cured product

Also Published As

Publication number Publication date
WO2017057431A1 (en) 2017-04-06
JP6802799B2 (en) 2020-12-23
KR20180063171A (en) 2018-06-11
KR102574957B1 (en) 2023-09-05
TWI758257B (en) 2022-03-21
TW201730220A (en) 2017-09-01
CN108137791A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
KR102369508B1 (en) Curable resin composition, dry film, cured product and printed wiring board
US9188871B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, printed circuit board and manufacturing method thereof
KR20180103101A (en) Dry film and printed wiring board
WO2013172435A1 (en) Alkaline-developable thermosetting resin composition and printed circuit board
KR102315804B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP5941180B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP5722418B1 (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JP6441226B2 (en) Photosensitive thermosetting resin composition and flexible printed wiring board
WO2013172433A1 (en) Alkali-developable thermosetting resin composition, and printed wiring board
KR20120060938A (en) Photo-sensitive resin composition, dry film solder resist, and circuit board
KR20150009590A (en) Liquid-developable maleimide composition and printed circuit board
KR20180129867A (en) Curable resin composition, dry film, cured product and printed wiring board
JP2015064545A (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JP6802799B2 (en) Curable resin composition, dry film and printed wiring board using it
JP2019178307A (en) Curable resin composition, dry film, cured product and electronic component
JP2019174787A (en) Photosensitive resin composition, two-liquid type photosensitive resin composition, dry film and printed wiring board
JP6078535B2 (en) Alkali development type thermosetting resin composition, printed wiring board
TW201942672A (en) Curable resin composition, dry film, cured product, and printed wiring board having various excellent characteristics such as adhesion to various substrates, soldering heat resistance, moisture resistance, chemical resistance, and electrical insulation
KR101296851B1 (en) Photo-curable and thermo-curable resin composition, and dry film solder resist
JP2021044387A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
JP4293483B2 (en) Modified copolymer and resin composition
JP6774185B2 (en) Laminated structure and printed wiring board
JP2016193591A (en) Laminate film
JP6742796B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2016080921A (en) Dry film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250