WO2013172433A1 - Alkali-developable thermosetting resin composition, and printed wiring board - Google Patents

Alkali-developable thermosetting resin composition, and printed wiring board Download PDF

Info

Publication number
WO2013172433A1
WO2013172433A1 PCT/JP2013/063726 JP2013063726W WO2013172433A1 WO 2013172433 A1 WO2013172433 A1 WO 2013172433A1 JP 2013063726 W JP2013063726 W JP 2013063726W WO 2013172433 A1 WO2013172433 A1 WO 2013172433A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
alkali
thermosetting resin
resin
group
Prior art date
Application number
PCT/JP2013/063726
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 新
峰岸 昌司
有馬 聖夫
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020147034931A priority Critical patent/KR102114104B1/en
Priority to JP2014515678A priority patent/JP6082733B2/en
Priority to CN201380025696.7A priority patent/CN104334604A/en
Publication of WO2013172433A1 publication Critical patent/WO2013172433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to an alkali development type thermosetting resin composition and a printed wiring board.
  • an alkali development type photo-curable resin composition using an alkaline aqueous solution as a developing solution has become mainstream in consideration of environmental problems.
  • an epoxy acrylate-modified resin hereinafter, abbreviated as epoxy acrylate
  • a photocurable resin composition is applied to a substrate and dried to form a resin layer, and the resin layer is patterned.
  • thermosetting resin and the base material, such as base material, copper, or underfill
  • TCT coefficient of linear expansion
  • the CTE of the thermosetting resin is matched with the CTE of the material of the peripheral member.
  • thermosetting resin composition when the thermosetting resin composition is highly filled with an inorganic filler, light is prevented from penetrating deeply. In this case, there is a problem that it is difficult to form a pattern layer because resolution cannot be obtained.
  • an object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development even when highly filled with an inorganic filler.
  • a further object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer having excellent thermal cycle characteristics.
  • the alkali-developable thermosetting resin composition of the present invention contains an alkali-developable resin, a heat-reactive compound, an inorganic filler, and a photobase generator.
  • An addition reaction between the resin and the heat-reactive compound makes it possible to form a negative pattern by alkali development.
  • the inorganic filler preferably has an average particle size of 1 ⁇ m or less.
  • the alkali development type thermosetting resin composition of the present invention preferably has a refractive index difference of 0.3 or less between the inorganic filler and the resin.
  • the refractive index of the inorganic filler is preferably 1.45 or more and 1.65 or less.
  • the alkali development type thermosetting resin composition of the present invention generates an exothermic peak in DSC measurement by light irradiation, or starts heat generation in DSC measurement of the alkali development type thermosetting resin composition irradiated with light.
  • the temperature is lower than the heat generation start temperature in the DSC measurement of the unirradiated alkali development type thermosetting resin composition, or the heat generation peak temperature in the DSC measurement of the light irradiated alkali development type thermosetting resin composition is It is preferable that the temperature is lower than the exothermic peak temperature in DSC measurement of the unirradiated alkali development type thermosetting resin composition.
  • an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development can be provided. Furthermore, according to the present invention, it is possible to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer having excellent curability and thermal cycle characteristics.
  • FIG. 1 is a schematic view showing an example of a pattern forming method using the alkali development type thermosetting resin composition of the present invention.
  • FIG. 2 is a diagram showing a DSC chart for the resin layer made of the alkali development type thermosetting resin composition of Example 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a double-sided printed wiring board for explaining the evaluation of a dent on the through hole.
  • thermosetting resin composition includes an alkali developing resin, a thermoreactive compound, an inorganic filler, and It contains a photobase generator, and is characterized in that a negative pattern can be formed by alkali development by an addition reaction between an alkali-developable resin and a heat-reactive compound by selective light irradiation.
  • pattern formation means forming a patterned cured product, that is, a pattern layer.
  • a base is generated on the surface by light irradiation. Then, it is considered that the photobase generator is destabilized by the generated base, and further the base chemically grows deeply.
  • the base acts as a catalyst for the addition reaction between the alkali-developable resin and the heat-reactive compound
  • the addition reaction proceeds to the deep part, so that the resin layer is cured to the deep part in the light irradiation part. Therefore, even when the inorganic filler is highly filled, the pattern layer can be easily formed by removing the non-irradiated portion by performing alkali development after irradiating the thermosetting resin composition in a pattern. it can.
  • the thermosetting resin composition of the present invention cures by an addition reaction between the alkali-developable resin and the thermoreactive compound, it is possible to obtain a pattern layer with less strain and shrinkage than the photocurable resin composition. it can.
  • the thermosetting resin composition may be a composition that does not cure even when heated in an unirradiated state and that can be cured by heat only after irradiation with light.
  • thermosetting resin composition of the present invention generates a heat generation peak in DSC measurement by light irradiation, or the heat generation start temperature in DSC measurement of the light-cured thermosetting resin composition is an unirradiated thermosetting resin.
  • the exothermic peak temperature in the DSC measurement of the uncured thermosetting resin composition is lower than the exothermic peak temperature in the DSC measurement of the thermosetting resin composition that is lower than the exothermic start temperature in the DSC measurement of the composition or is irradiated with light. Is also preferably low.
  • thermosetting resin composition of the present invention is also referred to as a temperature difference ( ⁇ T start) of the heat generation starting temperature in DSC measurement between the light-irradiated thermosetting resin composition and the non-irradiated thermosetting resin composition.
  • ⁇ T start the exothermic peak temperature difference
  • ⁇ T peak is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 30 ° C. or higher.
  • ⁇ T start is a thermosetting resin composition having the same composition, one is irradiated with light, and the other is not irradiated with light, and the DSC (Differential Scanning Calorimetry) is left as it is.
  • Each measurement refers to the temperature difference between the heat generation start temperature indicating the start of the curing reaction of the resin composition irradiated with light and the heat generation start temperature of the unirradiated resin composition.
  • ⁇ T peak refers to the temperature difference between the exothermic peak temperatures of the resin composition irradiated and unirradiated when DSC measurement is similarly performed.
  • the irradiation amount in the DSC measurement of the thermosetting resin composition irradiated with light increases the irradiation amount, and the exothermic peak temperature shift due to light irradiation of the thermosetting resin composition does not occur (saturation). is there.
  • ⁇ T start or ⁇ T peak is 10 ° C.
  • ⁇ T start or ⁇ T peak is 10 ° C. or more, it is possible to widen the range of heating temperatures that can be taken in the heating step (B1) described later.
  • thermosetting resin composition Asinafter, each component of the thermosetting resin composition will be described in detail.
  • the alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
  • Examples of the compound having two or more phenolic hydroxyl groups include phenol novolac resin, alkylphenol volac resin, bisphenol A novolac resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, Examples thereof include known and commonly used phenol resins such as bisphenol S-type phenol resin, poly-p-hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes.
  • a phenol resin a compound having a biphenyl skeleton or a phenylene skeleton, or both, and as a phenolic hydroxyl group-containing compound, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4- Xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol You may use the phenol resin which synthesize
  • the carboxyl group-containing resin a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable.
  • a compound having an ethylenically unsaturated bond in the molecule may be used, but in the present invention, as the carboxyl group-containing resin, for example, ethylenically unsaturated as shown in (1) below. It is preferable to use only a carboxyl group-containing resin having no double bond.
  • the lower alkyl refers to an alkyl group having 1 to 5 carbon atoms.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers
  • carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A systems
  • a terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • the carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
  • An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with the polyfunctional (solid) epoxy resin as described above, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain.
  • a carboxyl group-containing resin to which a dibasic acid anhydride such as an acid is added.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is reacted with a saturated monocarboxylic acid on the polyfunctional (solid) epoxy resin as described above, and the hydroxyl group present in the side chain.
  • a carboxyl group-containing resin to which is added is added.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide. .
  • a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is allowed to react with a saturated monocarboxylic acid.
  • Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and a saturated monocarboxylic acid React with acid and react with polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc. to the alcoholic hydroxyl group of the resulting reaction product Carboxyl group-containing resin obtained by making it.
  • polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reacting with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and then reacting with the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as an acid.
  • Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
  • the hydroxyl group equivalent or carboxyl group equivalent of the carboxyl group-containing resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. If it exceeds 1, the adhesion of the pattern layer may not be obtained, or alkali development may be difficult.
  • the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq.
  • the line becomes thinner than necessary, or in some cases, the light irradiation part and the unirradiated part are dissolved and peeled off with the developer, This is not preferable because it may be difficult to draw a normal resist pattern. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
  • the weight average molecular weight of the alkali-developable resin used in the present invention varies depending on the resin skeleton, but is preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, tack-free performance may be inferior, the moisture resistance of the resin layer after light irradiation may be poor, film thickness may be reduced during development, and resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
  • (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • Examples of the compound having a thiol group include trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, ethylene glycol bisthioglycolate, 1,4-butanediol bisthioglycolate, trimethylolpropane tris.
  • Thioglycolate pentaerythritol tetrakisthioglycolate, di (2-mercaptoethyl) ether, 1,4-butanedithiol, 1,3,5-trimercaptomethylbenzene, 1,3,5-trimercaptomethyl-2 , 4,6-trimethylbenzene, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound with hydrogen sulfide, and reaction of polythiol compound with epoxy compound. Thiol compounds having a resultant terminal thiol group.
  • the alkali developable resin is preferably a carboxyl group-containing resin or a compound having a phenolic hydroxyl group.
  • the alkali-developable resin is preferably non-photosensitive without a photocurable structure such as epoxy acrylate. Such a non-photosensitive alkali-developable resin does not have an ester bond derived from epoxy acrylate, and therefore has high resistance to desmear liquid. Therefore, a pattern layer having excellent curing characteristics can be formed. Moreover, since it does not have a photocurable structure, curing shrinkage can be suppressed.
  • the alkali-developable resin is a carboxyl group-containing resin
  • development can be performed with a weak alkaline aqueous solution as compared with the case of a phenolic resin.
  • the weak alkaline aqueous solution include those in which sodium carbonate or the like is dissolved.
  • thermoreactive compound is a resin having a functional group that can be cured by heat.
  • An epoxy resin, a polyfunctional oxetane compound, etc. are mentioned.
  • the epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
  • Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or mixtures thereof, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy Resin, diglycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin, epoxy resin having dicyclopentadiene skeleton, glycidyl methacrylate Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and
  • liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate.
  • a naphthalene group-containing epoxy resin is preferable because it can suppress the thermal expansion of the cured product.
  • the above epoxy resins may be used alone or in combination of two or more.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl)
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene
  • thermosetting resin composition contains a white pigment, it is preferable that a thermoreactive compound is an alicyclic skeleton. Thereby, photoreactivity can be improved.
  • the blending amount of the heat-reactive compound is preferably such that the equivalent ratio with the alkali-developable resin (heat-reactive group: alkali-developable group) is 1: 0.1 to 1:10, and 1: 0 More preferably, it is 2 to 1: 5. When the ratio is within such a range, the development is good.
  • One or more photobase generators can function as a catalyst for the addition reaction of the above-mentioned thermoreactive compound when the molecular structure is changed by irradiation with light such as ultraviolet rays or visible light, or when the molecule is cleaved. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines. Examples of photobase generators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
  • the ⁇ -aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action.
  • ⁇ -aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl.
  • -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl]-
  • a commercially available compound such as 1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
  • any compound that generates a basic substance by light irradiation can be used.
  • the oxime ester compound include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, NCI-831 manufactured by Adeka, and the like as commercially available products.
  • numerator can also be used suitably, Specifically, the oxime ester compound which has a carbazole structure represented with the following general formula is mentioned.
  • X is a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, a phenyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms).
  • Y and Z are each a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, or a carbon atom having 1 carbon atom), substituted with an alkyl group having a C 1-8 alkyl group or a dialkylamino group.
  • X and Y are each a methyl group or an ethyl group
  • Z is methyl or phenyl
  • n is 0, and Ar is a bond, phenylene, naphthylene, thiophene or thienylene. It is preferable.
  • the compound which can be represented by the following general formula can also be mentioned as a preferable carbazole oxime ester compound.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with a nitro group, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • R 2 represents Represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group
  • R 3 represents , Optionally substituted with an oxygen atom or a sulfur atom, optionally substituted with a phenyl group, optionally substituted with an alkyl group having 1 to 20 carbon atoms, or optionally substituted with an alkoxy group having 1 to 4 carbon atoms
  • R 4 represents a nitro group or an acyl group represented by X—C ( ⁇ O) —, where X is an aryl optionally substituted with an alkyl group having 1 to 4 carbon atoms Group, thienyl group, morpholino A group, a thiophenyl group, or a structure represented by the following formula:
  • the compound having an acyloxyimino group examples include O, O'-diacetphenone oxime succinate, O, O'-dinaphthophenone oxime succinate, benzophenone oxime acrylate-styrene copolymer, and the like.
  • the compound having an N-formylated aromatic amino group and an N-acylated aromatic amino group include, for example, di-N- (p-formylamino) diphenylmethane, di-N (p-aceethylamino) Diphenyl melan, di-N- (p-benzamido) diphenyl methane, 4-formylaminotoluylene, 4-acetylaminotoluylene, 2,4-diformylaminotoluylene, 1-formylaminonaphthalene, 1-acetylaminonaphthalene, 1,5-diformylaminonaphthalene, 1-formylaminoanthracene, 1,4-diformylaminoanthracene, 1-acetylaminoanthracene, 1,4-diformylaminoanthracene, 1,4-diformylaminoanthracene, 1,4-diformylaminoanthr
  • the compound having a nitrobenzyl carbamate group or an alkoxybenzyl carbamate group include, for example, bis ⁇ (2-nitrobenzyl) oxy ⁇ carbonyl ⁇ diaminodiphenylmethane, 2,4-di ⁇ (2-nitrobenzyl) Oxy ⁇ toluylene, bis ⁇ (2-nitrobenzyloxy) carbonyl ⁇ hexane-1,6-diamine, m-xylidine ⁇ (2-nitro-4-chlorobenzyl) oxy ⁇ amide ⁇ and the like.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferable.
  • ⁇ -aminoacetophenone compound those having two or more nitrogen atoms are particularly preferable.
  • WPBG-018 Product name: 9-anthrylmethyl N, N'-diethylcarbamate
  • WPBG-027 Product name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine
  • WPBG-082 Product name: guanidinium2- (3-benzoylphenyl) propionate
  • WPBG-140 Product name: 1- (anthraquinon-2-yl) ethyl imidazolecarboxylate), etc.
  • the above photobase generators may be used alone or in combination of two or more.
  • the blending amount of the photobase generator in the thermosetting resin composition is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the thermoreactive compound. When the amount is less than 1 part by mass, development may be difficult, which is not preferable.
  • the thermosetting resin composition of the present invention may contain a maleimide compound.
  • maleimide compounds include polyfunctional aliphatic / alicyclic maleimides and polyfunctional aromatic maleimides. Bifunctional or higher maleimide compounds (polyfunctional maleimide compounds) are preferred.
  • polyfunctional aliphatic / alicyclic maleimide include N, N′-methylene bismaleimide, N, N′-ethylene bismaleimide, tris (hydroxyethyl) isocyanurate, and aliphatic / alicyclic maleimide carboxylic acid.
  • aromatic polymaleimide ester compounds obtained by dehydrating esterification of maleimide carboxylic acid and various aromatic polyols, or transesterification reaction of maleimide carboxylic acid ester and various aromatic polyols; Aromatic polymaleimide ester compounds obtained by ether ring-opening reaction of carboxylic acid and various aromatic polyepoxides; Aromatic polymaleimide urethane compounds obtained by urethanization reaction of maleimide alcohol and various aromatic polyisocyanates, etc. And aromatic polyfunctional maleimides.
  • polyfunctional aromatic maleimide examples include, for example, N, N ′-(4,4′-diphenylmethane) bismaleimide, N, N′-2,4-tolylene bismaleimide, N, N′-2, 6-tolylene bismaleimide, 1-methyl-2,4-bismaleimide benzene, N, N′-m-phenylene bismaleimide, N, N′-p-phenylene bismaleimide, N, N′-m-toluylene Bismaleimide, N, N′-4,4′-biphenylenebismaleimide, N, N′-4,4 ′-[3,3′-dimethyl-biphenylene] bismaleimide, N, N′-4,4′- [3,3′-dimethyldiphenylmethane] bismaleimide, N, N′-4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, N, N′-4,4′-diphenylme
  • the blending amount of the maleimide compound is preferably such that the equivalent ratio to the alkali-developable resin (maleimide group: alkali-developable group) is 1: 0.1 to 1:10, and 1: 0.2 to 1: 5. It is more preferable that With such a blending ratio, development is facilitated.
  • thermosetting resin composition of the present invention a conventionally known polymer resin can be blended for the purpose of improving the flexibility and dryness of the touch of the resulting cured product.
  • the polymer resin include cellulose-based, polyester-based, phenoxy-resin-based, polyvinyl acetal-based, polyvinyl butyral-based, polyamide-based, polyamide-imide-based binder polymers, block copolymers, elastomers, and rubber particles.
  • a binder polymer may be used individually by 1 type, and may use 2 or more types together.
  • the melt viscosity of the thermosetting resin composition is increased, and the fluidity of the resin in the through-hole portion can be suppressed during post-exposure heating. As a result, a flat substrate that is not recessed on the through hole can be manufactured.
  • the amount of the polymer resin added is preferably 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermoreactive compound.
  • the amount of the polymer resin exceeds 50 parts by mass, there is a concern about deterioration of desmear resistance of the thermosetting resin composition, which is not preferable.
  • the block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain.
  • the block copolymer used in the present invention is preferably an ABA or ABA ′ type block copolymer.
  • the central B is a soft block and has a low glass transition point Tg, preferably less than 0 ° C. Is a hard block and has a high Tg, and is preferably composed of polymer units of 0 ° C. or higher.
  • the glass transition point Tg is measured by differential scanning calorimetry (DSC).
  • a or A ′ is composed of polymer units having a Tg of 50 ° C. or more
  • B is a polymer unit having a Tg of ⁇ 20 ° C.
  • a or A ′ preferably includes polymethyl (meth) acrylate (PMMA), polystyrene (PS) or the like, and B preferably includes poly n-butyl acrylate (PBA), polybutadiene (PB) or the like.
  • PMMA polymethyl (meth) acrylate
  • PS polystyrene
  • PBA poly n-butyl acrylate
  • PB polybutadiene
  • a hydrophilic unit excellent in compatibility with the matrix described above represented by a styrene unit, a hydroxyl group-containing unit, a carboxyl group-containing unit, an epoxy-containing unit, an N-substituted acrylamide unit, etc. as part of the A or A ′ component It becomes possible to introduce and further improve the compatibility.
  • the block copolymer used in the present invention is preferably a ternary or more block copolymer, and a block copolymer having a precisely controlled molecular structure synthesized by a living polymerization method is effective for obtaining the effects of the present invention. More preferred. This is considered to be because the block copolymer synthesized by the living polymerization method has a narrow molecular weight distribution, and the characteristics of each unit have been clarified.
  • the molecular weight distribution (Mw / Mn) of the block copolymer used is preferably 3 or less, more preferably 2.5 or less, and still more preferably 2.0 or less.
  • the block copolymers containing the (meth) acrylate polymer block as described above are, for example, the methods described in JP-A-2007-516326 and JP-A-2005-515281, particularly the following formulas (1) to (4).
  • the Y unit is polymerized using the alkoxyamine compound represented by any of the above as an initiator, it can be suitably obtained by polymerizing the X unit.
  • n 2 and Z represents a divalent organic group, preferably 1,2-ethanedioxy, 1,3-propanedioxy, 1,4-butanedioxy, 1,6-hexanedioxy Selected from among oxy, 1,3,5-tris (2-ethoxy) cyanuric acid, polyaminoamines such as polyethyleneamine, 1,3,5-tris (2-ethylamino) cyanuric acid, polythioxy, phosphonate or polyphosphonate Ar represents a divalent aryl group.
  • the weight average molecular weight of the block copolymer is preferably in the range of 20,000 to 400,000, more preferably 50,000 to 300,000.
  • the weight average molecular weight is less than 20,000, the desired toughness and flexibility effects cannot be obtained, and when the thermosetting resin composition is formed into a dry film or applied to a substrate and temporarily dried. Inferior to tackiness.
  • the weight average molecular weight exceeds 400,000, the viscosity of the thermosetting resin composition becomes high, and the printability and processability may be remarkably deteriorated.
  • the weight average molecular weight is 50,000 or more, an excellent effect can be obtained in terms of relaxation against external impact.
  • a block copolymer is preferable because it is excellent in crack resistance during a thermal cycle and can suppress warping after curing.
  • the block copolymer is particularly preferable because it can suppress a dent on the through hole and create a substrate having a flat surface. Moreover, it is excellent in the crack tolerance at the time of a thermal cycle by combining with an inorganic filler.
  • An elastomer having a functional group can be added to the thermosetting resin composition of the present invention. By adding an elastomer having a functional group, it is expected that the coating property is improved and the strength of the coating film is also improved. Further, polyester elastomers, polyurethane elastomers, polyester urethane elastomers, polyamide elastomers, polyester amide elastomers, acrylic elastomers, olefin elastomers, and the like can be used. In addition, resins in which a part or all of epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can be used.
  • epoxy-containing polybutadiene elastomers acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, and the like can also be used.
  • these elastomers may be used individually by 1 type, and may use 2 or more types together.
  • the rubber particles may be any particles as long as they are formed from organic substances such as polymers having a crosslinked structure. For example, as a copolymer of acrylonitrile butadiene, a crosslinked acrylonitrile and butadiene are copolymerized.
  • NBR particles Copolymerized acrylonitrile, butadiene and carboxylic acid such as acrylic acid; cross-linked polybutadiene, cross-linked silicon rubber, or cross-linked rubber particles having a so-called core-shell structure using NBR as a core layer and cross-linked acrylic resin as a shell layer (Also referred to as “core-shell rubber particles”).
  • core-shell rubber particles a core-shell structured crosslinked rubber particle is preferable.
  • Cross-linked NBR particles are particles obtained by partially cross-linking acrylonitrile and butadiene at the stage of copolymerization and copolymerization. It is also possible to obtain carboxylic acid-modified crosslinked NBR particles by copolymerizing together carboxylic acids such as acrylic acid and methacrylic acid.
  • Cross-linked butadiene rubber-cross-linked acrylic resin core-shell rubber particles can be obtained by a two-stage polymerization method in which butadiene particles are polymerized by emulsion polymerization, followed by addition of monomers such as acrylic acid ester and acrylic acid. .
  • Cross-linked silicone rubber-cross-linked acrylic resin core-shell rubber particles can be obtained by a two-stage polymerization method in which silicon particles are polymerized by emulsion polymerization, followed by addition of monomers such as acrylic acid ester and acrylic acid. .
  • the size of the rubber particles is 1 ⁇ m or less in terms of primary average particle diameter, and is preferably 50 nm to 1 ⁇ m. If the primary average particle diameter exceeds 1 ⁇ m, the adhesive strength is lowered and the insulation reliability in fine wiring is impaired.
  • the “primary average particle diameter” here refers to the aggregated particle diameter, that is, the secondary particle diameter, not the aggregated single particle diameter.
  • the primary average particle diameter can be determined by measuring with a laser diffraction particle size distribution meter, for example.
  • the rubber particles as described above may be used alone or in combination of two or more.
  • the content of the rubber particles is preferably 50% by mass or less in the resin composition, and more preferably 1 to 30% by mass.
  • a commercially available product of carboxylic acid-modified acrylonitrile butadiene rubber particles is XER-91 manufactured by Nippon Synthetic Rubber Co., Ltd.
  • the core-shell particles of butadiene rubber-acrylic resin include Paraloid EXL2655 manufactured by Rohm and Haas Co., Ltd. and AC-3832 manufactured by Ganz Kasei Kogyo Co., Ltd.
  • Examples of the core-shell rubber particles of the crosslinked silicone rubber-acrylic resin include GENIOPERLP52 manufactured by Asahi Kasei Wacker Silicone Co., Ltd. By using rubber particles, it is possible to improve the crack resistance during the cooling and heating cycle.
  • the thermosetting resin composition contains an inorganic filler.
  • the inorganic filler is used for suppressing the curing shrinkage of the cured product of the thermosetting resin composition and improving the properties such as adhesion and hardness.
  • Examples of the inorganic filler include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Examples include rich earth.
  • the average particle size (D50) of the inorganic filler is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and even more preferably 0.5 ⁇ m. When the average particle diameter exceeds 1 ⁇ m, the pattern layer may become cloudy, which is not preferable.
  • the lower limit of the average particle diameter (D50) of the inorganic filler is not particularly limited, it is, for example, 0.01 ⁇ m or more.
  • the average particle diameter (D50) means an average primary particle diameter.
  • the average particle diameter (D50) can be measured by a laser diffraction / scattering method.
  • the refractive index is close to that of the resin component, the permeability is improved, and the generation efficiency of the base from the photobase generator by light irradiation is increased.
  • the difference in refractive index between the inorganic filler and the alkali developable resin is preferably 0.3 or less. By setting the difference in refractive index to 0.3 or less, it is possible to suppress light scattering and obtain good deep-curing characteristics.
  • the refractive index of the inorganic filler is preferably 1.4 or more and 1.8 or less.
  • the refractive index of an inorganic filler can be measured based on JISK7105.
  • the blending ratio of the inorganic filler is preferably 20% by mass or more and 80% by mass or less, more preferably 30% by mass or more and 80% by mass or less, based on the total solid content of the thermosetting resin composition.
  • the blending ratio of the inorganic filler exceeds 80% by mass, the viscosity of the composition increases, and the applicability may decrease or the cured product of the thermosetting resin composition may become brittle.
  • the resolution decreases, but in the present invention, since it is a curing reaction by the generated base, the inclusion of the inorganic filler Even when the amount is increased, good resolution can be maintained.
  • the specific gravity of an inorganic filler is 3 or less, More preferably, it is 2.8 or less, More preferably, it is 2.5 or less.
  • the specific gravity of the inorganic filler is 3 or less, thermal expansion can be suppressed.
  • the inorganic filler of 3 or less include silica and aluminum hydroxide, and silica is particularly preferable.
  • the shape of the inorganic filler include an indeterminate shape, a needle shape, a disc shape, a scale piece, a spherical shape, and a hollow shape.
  • the spherical shape is preferable because it can be blended in the composition at a high ratio.
  • the inorganic filler is more preferably treated with a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • the crack tolerance at the time of a thermal cycle can be improved by containing an inorganic filler. By containing a large amount of the inorganic filler, warping after curing can be suppressed.
  • cured material is 40 ppm or less, More preferably, it is 30 ppm or less, More preferably, it is 20 ppm or less.
  • thermosetting resin composition of the present invention an organic solvent can be used for preparing the resin composition or adjusting the viscosity for application to a substrate or a carrier film.
  • organic solvents examples include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • thermosetting resin composition of the present invention may contain a photopolymerizable monomer as long as the effects of the present invention are not impaired.
  • Photopolymerizable monomers include alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate (Meth) acrylates; mono- or di (meth) acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, Polyhydric alcohols such as trishydroxyethyl isocyanurate or polyvalent (meth)
  • the blending amount of the photopolymerizable monomer is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably based on the solid content excluding the solvent of the thermosetting resin composition. 15 mass% or less.
  • the blending amount of the photopolymerizable monomer exceeds 50% by mass, the curing shrinkage increases, so that the warpage may increase.
  • the photopolymerizable monomer is derived from (meth) acrylate, it contains an ester bond. In this case, since the ester bond is hydrolyzed by the desmear treatment, the electrical characteristics may be deteriorated.
  • thermosetting resin composition of the present invention may further contain components such as a mercapto compound, an adhesion promoter, a colorant, an antioxidant, and an ultraviolet absorber.
  • a mercapto compound such as a mercapto compound, an adhesion promoter, a colorant, an antioxidant, and an ultraviolet absorber.
  • the thermosetting resin composition includes a known and commonly used thickener such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, an antifoaming agent such as silicone, fluorine, and polymer, and / or Known and commonly used additives such as a leveling agent, a silane coupling agent, and a rust preventive agent can be blended. Moreover, you may mix
  • a known and commonly used thickener such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite
  • an antifoaming agent such as silicone, fluorine, and polymer
  • / or Known and commonly used additives such as a leveling agent,
  • a Tg can be increased, and a cured product having excellent HAST resistance can be obtained without depending on the softening point of the raw material. It can be set as a resin composition.
  • a photopolymerizable monomer (a low molecular compound compounded to promote photocuring in a photocurable resin composition containing an ethylenically unsaturated group in the molecule and containing a carboxyl group-containing resin as a main component) When it is set as the composition which does not mix
  • the alkali development type thermosetting resin composition of the present invention is not limited to Tg before the curing reaction, and can be expected to have a high Tg. Further, the alkali development type thermosetting resin composition of the present invention can be expected to be cured without being inhibited by oxygen.
  • thermosetting resin composition of the present invention is useful for forming a pattern layer of a printed wiring board, and is particularly useful as a material for a solder resist or an interlayer insulating layer.
  • the pattern formation method which can use the thermosetting resin composition of this invention suitably is the process (A) of forming the resin layer which consists of a thermosetting resin composition in a base material, and light irradiation to a negative pattern shape Then, the step (B) of activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion, and the step of forming the negative pattern layer by removing the unirradiated portion by alkali development. (C) is included.
  • the light irradiation part can be cured by generating a base in the light irradiation part of the thermosetting resin composition by pattern light irradiation.
  • a process (A) is a process of forming the resin layer which consists of a thermosetting resin composition in a base material.
  • the resin layer is formed by a method in which a liquid thermosetting resin composition is applied and dried on a substrate, or a method in which a thermosetting resin composition is formed into a dry film and laminated on the substrate. be able to.
  • thermosetting resin composition As a method for applying the thermosetting resin composition to the substrate, a known method such as a blade coater, a lip coater, a comma coater, or a film coater can be appropriately employed. Also, the drying method is a method using a hot-air circulation type drying furnace, IR furnace, hot plate, convection oven, etc., equipped with a heat source of the heating method by steam, and the hot air in the dryer is counter-contacted and supported by the nozzle Known methods such as a method of spraying on the body can be applied.
  • Step (B) is a step of irradiating light in a negative pattern and activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion.
  • the photobase generator is destabilized by the base generated in the light irradiation part, and further the base is generated. In this way, the base can be sufficiently cured to the deep part of the light irradiation part by chemically growing.
  • a light irradiator used for light irradiation for example, a direct drawing apparatus capable of irradiating laser light, lamp light, and LED light can be used.
  • a negative mask can be used as the patterned light irradiation mask.
  • the active energy ray it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength within this range, the thermal reactivity of the thermosetting resin composition can be improved efficiently. If a laser beam in this range is used, either a gas laser or a solid laser may be used.
  • the irradiation amount varies depending on the film thickness and the like, but can generally be in the range of 100 to 1500 mJ / cm 2 , preferably 300 to 1500 mJ / cm 2 .
  • the direct drawing apparatus for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus that oscillates laser light having a maximum wavelength of 350 to 410 nm may be used. .
  • Step (B1) the light irradiation part is cured by heating.
  • Step (B1) can be cured to a deep portion by the base generated in step (B).
  • the heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
  • the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition is lower than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. Heating at a high temperature is preferred. By heating in this way, only the light irradiation part can be selectively cured.
  • the heating temperature is, for example, 80 to 140 ° C.
  • the heating temperature is 80 ° C. or higher.
  • the heating temperature is set to 140 ° C. or lower, only the light irradiation part can be selectively cured.
  • the heating time is, for example, 10 to 100 minutes.
  • the heating method is the same as the drying method. In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
  • Step (C) is a step of forming a negative pattern layer by removing unirradiated portions by development.
  • a developing method a known method such as a dipping method, a shower method, a spray method, or a brush method can be used.
  • Developers include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines such as ethanolamine, and alkalis such as tetramethylammonium hydroxide aqueous solution (TMAH).
  • TMAH tetramethylammonium hydroxide aqueous solution
  • An aqueous solution or a mixed solution thereof can be used.
  • the pattern forming method preferably further includes an ultraviolet irradiation step (D) after the step (C).
  • an ultraviolet irradiation step (D) after the step (C) By further irradiating with ultraviolet rays after the step (C), the photobase generator remaining without being activated at the time of light irradiation can be activated.
  • the wavelength and irradiation amount (irradiation amount) of ultraviolet rays in the ultraviolet irradiation step (D) after the step (C) may be the same as or different from those in the step (B).
  • a suitable irradiation amount (irradiation amount) is 150 to 2000 mJ / cm 2 .
  • the pattern formation method preferably further includes a thermosetting (post-cure) step (E) after the step (C).
  • a thermosetting (post-cure) step (E) after the step (C).
  • the pattern layer is sufficiently heat-cured by the base generated from the photobase generator in the step (B) or the steps (B) and (D). Since the unirradiated portion has already been removed at the time of the step (E), the step (E) can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition. Thereby, a pattern layer can fully be thermosetted.
  • the heating temperature is, for example, 160 ° C. or higher.
  • the pattern forming method may further include a laser processing step (F). Fine openings can be formed by laser processing.
  • a known laser such as a YAG laser, a CO 2 laser, or an excimer laser can be used.
  • the step (F) is preferably performed after the step (C) or after the steps (D) and (E) when the step (F) includes the steps (D) and (E).
  • Step (G) The pattern formation method of the present invention may further include a desmear process (G) after the process (F).
  • Step (G) includes a smear swelling step for swelling smear to facilitate removal, a removal step for removing smear, and a neutralization step for neutralizing sludge generated from the desmear liquid used in the removal step.
  • the swelling step is performed using an alkali chemical such as sodium hydroxide, and facilitates smear removal with a desmear chemical.
  • removing step smear is removed using an acidic chemical solution containing an oxidizing agent such as dichromic acid or permanganic acid.
  • the neutralization step the oxidizing agent used in the removal step is reduced and removed using an alkaline chemical such as sodium hydroxide.
  • thermosetting resin composition (Examples 1 to 19, Comparative Examples 1 to 4) ⁇ Preparation of alkali development type thermosetting resin composition> According to the formulations shown in Tables 1 to 3 below, the materials described in Examples / Comparative Examples were respectively mixed, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a thermosetting resin composition. The values in the table are parts by mass unless otherwise specified.
  • thermosetting resin composition As a carrier film, a thermosetting resin composition was applied on a PET film having a thickness of 38 ⁇ m using an applicator, and then dried at 90 ° C. for 30 minutes to prepare a dry film. The coating amount was adjusted so that the thickness of the thermosetting resin composition was about 20 ⁇ m after drying. Thereafter, the obtained dry film was slit to a predetermined size.
  • ⁇ Laminate> Prepare a double-sided printed wiring board with a copper thickness of 15 ⁇ m and a circuit formed on it, and print it on a base material that has been pre-treated with MEC CZ-8100 using a vacuum laminator MVLP-500 A dry film was laminated on the substrate. Lamination conditions were temperature 80 ° C., it was carried out at a pressure of 5kg / cm 2 / 60sec.
  • ⁇ Evaluation of dent on through hole> As shown in FIG. 3, a double-sided printed wiring board having a diameter of 300 ⁇ m and a pitch of 1 mm with copper-plated through-holes formed at a thickness of 0.3 mm was prepared, and MEC CZ-8100 was used. The pretreatment was performed. Thereafter, dry film of 50 ⁇ m thickness produced by the method shown in the paragraph of dry film production is simultaneously dried on both sides of the printed wiring board on which through holes are formed, using a vacuum laminator MVLP-500 of Meiki Co., Ltd. The film was laminated. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec.
  • the entire surface of the base material provided with the thermosetting resin layer was irradiated with ORC HMW680GW (metal halide lamp, scattered light) on the entire surface with a solid exposure.
  • the light irradiation amount was set as shown in Tables 1 to 3 with reference to the exothermic peak temperature by DSC.
  • the substrate was subjected to heat treatment for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3.
  • UV irradiation was carried out with an energy amount of 1 J / cm 2 using an ORC UV irradiation device, followed by longitudinal curing at 170 ° C./60 min in a hot air circulating drying furnace to complete curing.
  • the surface roughness measuring device SE-700 manufactured by Kosaka Laboratory was used to confirm the amount of dent on the through hole. (Evaluation methods) ⁇ : The maximum recess on the through hole is 5 ⁇ m or less. ⁇ : The maximum recess on the through hole exceeds 5 ⁇ m.
  • the substrate provided with the resin layer obtained above was irradiated with a negative pattern with an aperture design size of 100 ⁇ m by ORC HMW680GW (metal halide lamp, scattered light).
  • the light irradiation amount was set as described in Tables 1 to 3 below with reference to the exothermic peak temperature by DSC.
  • heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3.
  • the substrate was immersed in a 3 wt% TMAH / 5 wt% ethanolamine mixed aqueous solution at 35 ° C. and developed for 3 minutes, and development and patterning were evaluated according to the following criteria. The obtained results are shown in Tables 1 to 3.
  • the obtained results are shown in Tables 1 to 3. (Evaluation methods) ⁇ : The top length of the line was 100 ⁇ m and the bottom length was 100 ⁇ m, and a pattern as designed was obtained. ⁇ : The top length of the line was 100 ⁇ m and the bottom length was 60 ⁇ m or more and less than 100 ⁇ m, and a slight undercut was observed. X: The top length of the line was 100 ⁇ m, the bottom length was less than 60 ⁇ m, and a large undercut was observed at the bottom.
  • the base material produced by the same method as the base material for which the formation of the opening pattern was evaluated was further irradiated with ultraviolet rays at an energy amount of 1 J / cm 2 using an ORC ultraviolet irradiation device, and then subjected to Table 1 in a hot air circulation drying furnace. It was cured for 60 minutes at the post-cure temperature described in (3) (post-cure). Then, laser processing was performed on the light irradiation surface.
  • the light source was processed with a CO 2 laser (Hitachi Via Mechanics, light source 10.6 ⁇ m). Evaluation was made according to the following criteria. In order to give superiority or inferiority in workability, laser processing was performed under the same conditions.
  • the target of the processing diameter is a top diameter of 65 ⁇ m / bottom of 50 ⁇ m.
  • the substrate subjected to laser processing is further desmeared with a permanganate desmear aqueous solution (wet method). Processed.
  • desmear resistance confirmation of the surface roughness of the substrate surface and the state around the laser opening were evaluated according to the following criteria. For confirmation of the surface roughness, each surface roughness Ra was measured with a laser microscope VK-8500 (Keyence Corporation, measurement magnification 2000 times, Z-axis direction measurement pitch 10 nm).
  • the substrate was heat-treated for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Further, UV irradiation was performed with an energy amount of 1 J / cm 2 using an ORC UV irradiation device, followed by curing at 170 ° C./60 min in a hot air circulating drying oven to obtain a copper foil having a thermosetting resin composition on one side. It was. Thereafter, as an evaluation of the warped state of the obtained cured product, the amount of warpage at four end portions was measured with a caliper. (Evaluation methods) A: Almost no warpage is seen. The warp amount of the maximum warp portion of the four end portions is less than 5 mm. O: Slight warping was observed.
  • the warp amount of the maximum warp portion among the four end portions is 5 mm or more and less than 20 mm.
  • The warp amount of the maximum warp portion among the four end portions is 20 mm or more.
  • X The cured product contracted into a cylindrical shape. The amount of warp at the end could not be measured with calipers
  • each dry film with a thickness of 40 ⁇ m was produced. Thereafter, a dry film was laminated on the glossy surface side of the 18 ⁇ m copper foil by using a vacuum laminator MVLP-500 of Meiki Co., Ltd. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec. Thereafter, the entire surface was exposed with ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as described in Tables 1 to 3 below with reference to the exothermic peak temperature by DSC. Next, heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3.
  • Measuring apparatus Appe refractometer Measuring conditions: Wavelength 589.3 nm, temperature 25 ° C.
  • the components in Tables 1 to 3 are as follows. (Thermo-reactive compound) * 828: Bis-A type liquid epoxy (equivalent 190 g / eq), Mitsubishi Chemical Corporation * HP-4032: naphthol type epoxy (equivalent 150 g / eq), DIC * HP-7200 H60: dicyclopentadiene type epoxy (equivalent 265 g) / Eq), dissolving DIC with cyclohexanone. 60% solids (Maleimide compound) * UVT-302: Acrylic polymer with maleimide groups in the side chain (equivalent 320 g / eq), Toagosei Co., Ltd.
  • Example 15 and 16 and the like the polymer resin is added to increase the melt viscosity of the thermosetting resin composition and suppress the fluidity of the resin in the through-hole portion during heating after exposure. be able to. As a result, a flat substrate that is not recessed on the through hole can be manufactured.
  • Examples 18 and 19 good curability was obtained during the cooling / heating cycle even when the content of the inorganic filler was considerably high.
  • the photoradical composition of Comparative Example 4 pattern formation by alkali development became difficult. The line shape was also poor. Furthermore, the warpage after curing was large, and the curability during the cooling and heating cycle was also inferior.
  • the base material provided with the resin layer obtained in Example 1 was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light). About each base material, the light irradiation of the pattern was performed by making irradiation amount into 1000 mJ / cm ⁇ 2 >. After light irradiation, the resin layer is scraped off from the base material, and immediately heated to 30-300 ° C. at a temperature increase rate of 5 ° C./min in Seiko Instruments Inc. DSC-6200. DSC measurement was performed.
  • ORC HMW680GW metal halide lamp, scattered light
  • DSC measurement was similarly performed with respect to the cured layer which consists of a thermosetting resin composition immediately after ultraviolet irradiation and before postcure. 2, the unirradiated portions, the light irradiation portion of the irradiation amount 1000 mJ / cm 2, a DSC chart of the light irradiation unit that is UV irradiated with further 1000 mJ / cm 2 was irradiated with light irradiation amount 1000 mJ / cm 2. In the light irradiation part of Example 1, the peak shifted to the low temperature side by light irradiation.
  • the film was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light) at an irradiation amount of 300 mJ / cm 2 . Thereafter, development was performed with a 1 wt% sodium carbonate aqueous solution for 60 seconds, followed by heat treatment at 150 ° C./60 min using a hot-air circulating drying oven to obtain a patterned cured coating film. Thereafter, desmear resistance was evaluated in the same manner as in Example 2 above. As a result, the desmear resistance was “x”.

Abstract

 Provided are a printed wiring board and an alkali-developable thermosetting resin composition with which a pattern layer can be formed by developing, even when an inorganic filler is filled in to a high level. Furthermore, the aim of the present invention is to provide a printed wiring board and an alkali-developable thermosetting resin composition with which a pattern layer exhibiting superior cooling/heating cycle characteristics can be formed. The alkali-developable thermosetting resin composition is characterized by containing an alkali-developable resin, a heat-reactive compound, an inorganic filler and a photobase-generating agent, and by using selective optical irradiation to cause an addition reaction between the alkali-developable resin and the heat-reactive compound in order to enable negative pattern formation by alkali development.

Description

アルカリ現像型の熱硬化性樹脂組成物、プリント配線板Alkali development type thermosetting resin composition, printed wiring board
 本発明は、アルカリ現像型の熱硬化性樹脂組成物、プリント配線板に関する。 The present invention relates to an alkali development type thermosetting resin composition and a printed wiring board.
 近年、プリント配線板やフレキシブルプリント配線板用のソルダーレジストの材料として、環境問題への配慮から、現像液としてアルカリ水溶液を用いるアルカリ現像型の光硬化性樹脂組成物が主流になっている。このようなアルカリ現像型の光硬化性樹脂組成物として、特許文献1、2に示されるように、エポキシ樹脂の変性により誘導されたエポキシアクリレート変性樹脂(以下、エポキシアクリレートと略記する場合がある。)を含む樹脂組成物が一般的に用いられている。 Recently, as a material for a solder resist for a printed wiring board or a flexible printed wiring board, an alkali development type photo-curable resin composition using an alkaline aqueous solution as a developing solution has become mainstream in consideration of environmental problems. As such an alkali-developable photocurable resin composition, as shown in Patent Documents 1 and 2, an epoxy acrylate-modified resin (hereinafter, abbreviated as epoxy acrylate) derived by modification of an epoxy resin may be used. ) Is generally used.
 このような光硬化性樹脂組成物を用いるソルダーレジストの形成方法としては、基材に光硬化性樹脂組成物を塗布及び乾燥して樹脂層を形成し、その樹脂層に対して、パターン状に光照射した後、アルカリ現像液で現像することにより、所定のパターンを形成する方法がある。 As a method for forming a solder resist using such a photocurable resin composition, a photocurable resin composition is applied to a substrate and dried to form a resin layer, and the resin layer is patterned. There is a method of forming a predetermined pattern by developing with an alkaline developer after light irradiation.
 また、プリント配線板やフレキシブルプリント配線板は、様々な機器に実装され使用される。その為、温度など環境の急激な変化に対しても耐性を有することが求められる。従って、ソルダーレジストについても高い温度変化耐性が要求されるが、熱硬化性樹脂と、基材や銅、アンダーフィルなどの基材形成材料との線膨張係数(CTE)の差が大きい場合、TCT(サーマルサイクル試験)においてレジストにクラックが生じるという問題がある。 Also, printed wiring boards and flexible printed wiring boards are mounted and used in various devices. For this reason, it is required to have resistance against abrupt changes in the environment such as temperature. Therefore, solder resists are also required to have high temperature change resistance, but when the difference in coefficient of linear expansion (CTE) between the thermosetting resin and the base material, such as base material, copper, or underfill is large, TCT There is a problem that cracks occur in the resist in the (thermal cycle test).
 これに対して、熱硬化性樹脂のCTEを周辺部材の材料のCTEと合わせることが近年広く行われている。例えば、熱硬化性樹脂に無機フィラーを高充填することにより、CTEを低下させることにより、硬化収縮を抑えることが一般的である。 On the other hand, in recent years, the CTE of the thermosetting resin is matched with the CTE of the material of the peripheral member. For example, it is common to suppress cure shrinkage by reducing CTE by highly filling an inorganic filler in a thermosetting resin.
特開昭61-243869号公報(特許請求の範囲)JP 61-243869 (Claims) 特開平3-250012号公報(特許請求の範囲)Japanese Patent Laid-Open No. 3-250012 (Claims)
 しかしながら、熱硬化性樹脂組成物に無機充填剤を高充填した場合、光が深部にまで透過することを阻害してしまう。その場合、解像性が得られずパターン層を形成することが困難になるという問題があった。 However, when the thermosetting resin composition is highly filled with an inorganic filler, light is prevented from penetrating deeply. In this case, there is a problem that it is difficult to form a pattern layer because resolution cannot be obtained.
 そこで本発明の目的は、無機充填剤を高充填した場合でも、現像によるパターン層の形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供することにある。さらに本発明の目的は、冷熱サイクル特性に優れるパターン層の形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供することにある。 Therefore, an object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development even when highly filled with an inorganic filler. A further object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer having excellent thermal cycle characteristics.
 本発明者等は、上記課題を解決すべく鋭意検討した結果、以下の構成とすることで上記課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-described problems, the present inventors have found that the above-described problems can be solved with the following configuration, and have completed the present invention.
 即ち、本発明のアルカリ現像型の熱硬化性樹脂組成物は、アルカリ現像性樹脂、熱反応性化合物、無機充填剤、および、光塩基発生剤を含み、選択的な光照射で前記アルカリ現像性樹脂と前記熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするものである。 That is, the alkali-developable thermosetting resin composition of the present invention contains an alkali-developable resin, a heat-reactive compound, an inorganic filler, and a photobase generator. An addition reaction between the resin and the heat-reactive compound makes it possible to form a negative pattern by alkali development.
 本発明のアルカリ現像型の熱硬化性樹脂組成物は、前記無機充填剤の平均粒径が1μm以下であることが好ましい。 In the alkali development type thermosetting resin composition of the present invention, the inorganic filler preferably has an average particle size of 1 μm or less.
 また、本発明のアルカリ現像型の熱硬化性樹脂組成物は、前記無機充填剤と、樹脂との屈折率差が0.3以下であることが好ましい。 In addition, the alkali development type thermosetting resin composition of the present invention preferably has a refractive index difference of 0.3 or less between the inorganic filler and the resin.
 また、本発明のアルカリ現像型の熱硬化性樹脂組成物は、前記無機充填剤の屈折率が1.45以上1.65以下であることが好ましい。 In the alkali development type thermosetting resin composition of the present invention, the refractive index of the inorganic filler is preferably 1.45 or more and 1.65 or less.
 また、本発明のアルカリ現像型の熱硬化性樹脂組成物は、光照射によりDSC測定において発熱ピークを生じるか、又は、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることが好ましい。 In addition, the alkali development type thermosetting resin composition of the present invention generates an exothermic peak in DSC measurement by light irradiation, or starts heat generation in DSC measurement of the alkali development type thermosetting resin composition irradiated with light. The temperature is lower than the heat generation start temperature in the DSC measurement of the unirradiated alkali development type thermosetting resin composition, or the heat generation peak temperature in the DSC measurement of the light irradiated alkali development type thermosetting resin composition is It is preferable that the temperature is lower than the exothermic peak temperature in DSC measurement of the unirradiated alkali development type thermosetting resin composition.
 本発明により、現像によるパターン層の形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供できる。さらに本発明により、硬化性及び冷熱サイクル特性に優れるパターン層の形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供できる。 According to the present invention, an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development can be provided. Furthermore, according to the present invention, it is possible to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer having excellent curability and thermal cycle characteristics.
図1は、本発明のアルカリ現像型の熱硬化性樹脂組成物を用いたパターン形成方法の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a pattern forming method using the alkali development type thermosetting resin composition of the present invention. 図2は、本発明の実施例1のアルカリ現像型の熱硬化性樹脂組成物からなる樹脂層についてのDSCチャートを示す図である。FIG. 2 is a diagram showing a DSC chart for the resin layer made of the alkali development type thermosetting resin composition of Example 1 of the present invention. 図3は、スルーホール上の凹み評価を説明するための両面プリント配線基材の断面図である。FIG. 3 is a cross-sectional view of a double-sided printed wiring board for explaining the evaluation of a dent on the through hole.
 本発明のアルカリ現像型の熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」と略記する場合がある。)は、アルカリ現像性樹脂、熱反応性化合物、無機充填剤、および、光塩基発生剤を含み、選択的な光照射でアルカリ現像性樹脂と熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするものである。ここで、パターン形成とは、パターン状の硬化物、すなわち、パターン層を形成することを言う。
 熱硬化性樹脂組成物からなる樹脂層では、光照射によって表面で塩基が発生する。そして、発生した塩基によって光塩基発生剤が不安定化して、さらに塩基が深部まで化学的に増殖すると考えられる。ここで、塩基が、アルカリ現像性樹脂と熱反応性化合物が付加反応する際の触媒として作用しながら、深部まで付加反応が進行するため、光照射部では、深部まで樹脂層が硬化する。
 従って、無機充填剤を高充填した場合でも、熱硬化性樹脂組成物をパターン状に光照射した後、アルカリ現像することより、未照射部を除去して、パターン層を容易に形成することができる。
 また、本発明の熱硬化性樹脂組成物は、アルカリ現像性樹脂と熱反応性化合物が付加反応により硬化するため、光硬化性樹脂組成物よりもひずみや硬化収縮の少ないパターン層を得ることができる。
 熱硬化性樹脂組成物は、未照射の状態では加熱しても硬化せず、光照射して初めて熱による硬化が可能となる組成物であってもよい。
The alkali developing type thermosetting resin composition of the present invention (hereinafter sometimes abbreviated as “thermosetting resin composition”) includes an alkali developing resin, a thermoreactive compound, an inorganic filler, and It contains a photobase generator, and is characterized in that a negative pattern can be formed by alkali development by an addition reaction between an alkali-developable resin and a heat-reactive compound by selective light irradiation. Here, pattern formation means forming a patterned cured product, that is, a pattern layer.
In the resin layer made of the thermosetting resin composition, a base is generated on the surface by light irradiation. Then, it is considered that the photobase generator is destabilized by the generated base, and further the base chemically grows deeply. Here, while the base acts as a catalyst for the addition reaction between the alkali-developable resin and the heat-reactive compound, the addition reaction proceeds to the deep part, so that the resin layer is cured to the deep part in the light irradiation part.
Therefore, even when the inorganic filler is highly filled, the pattern layer can be easily formed by removing the non-irradiated portion by performing alkali development after irradiating the thermosetting resin composition in a pattern. it can.
In addition, since the thermosetting resin composition of the present invention cures by an addition reaction between the alkali-developable resin and the thermoreactive compound, it is possible to obtain a pattern layer with less strain and shrinkage than the photocurable resin composition. it can.
The thermosetting resin composition may be a composition that does not cure even when heated in an unirradiated state and that can be cured by heat only after irradiation with light.
 本発明の熱硬化性樹脂組成物は、光照射によりDSC測定において発熱ピークを生じるか、又は、光照射した熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射した熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることが好ましい。
 また、本発明の熱硬化性樹脂組成物は、光照射した熱硬化性樹脂組成物と未照射の熱硬化性樹脂組成物との、DSC測定における発熱開始温度の温度差(ΔT start)とも称する)もしくは発熱ピーク温度の温度差(ΔT peakとも称する)が、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることがさらにより好ましい。
 ここで、ΔT startとは、同様の組成の熱硬化性樹脂組成物を用意し、一方は光照射した後に、もう一方は光照射せずにそのまま、DSC(示差走査熱量測定、Differential scanning calorimetry)測定をそれぞれ行い、光照射した樹脂組成物の硬化反応の開始を示す発熱開始温度と、未照射の樹脂組成物の発熱開始温度の温度差を指す。ΔT peakは、同様にDSC測定を行った時の、光照射、未照射の樹脂組成物の発熱ピーク温度の温度差をいう。
 なお、光照射した熱硬化性樹脂組成物のDSC測定における照射量は、照射量を上げていき、熱硬化性樹脂組成物の光照射による発熱ピーク温度のシフトが起こらなくなる(サチュレーション)照射量である。
 ΔT startもしくはΔT peakが10℃以上のものであることにより、未照射部がアルカリ現像により残存してしまういわゆるカブリや、光照射部がアルカリ現像により除去されてしまういわゆる食われの発生を抑制することができる。また、ΔT startもしくはΔT peakが10℃以上のものであることにより、後述する加熱工程(B1)においてとりうる加熱温度の範囲を広くとることが可能となる。
The thermosetting resin composition of the present invention generates a heat generation peak in DSC measurement by light irradiation, or the heat generation start temperature in DSC measurement of the light-cured thermosetting resin composition is an unirradiated thermosetting resin. The exothermic peak temperature in the DSC measurement of the uncured thermosetting resin composition is lower than the exothermic peak temperature in the DSC measurement of the thermosetting resin composition that is lower than the exothermic start temperature in the DSC measurement of the composition or is irradiated with light. Is also preferably low.
In addition, the thermosetting resin composition of the present invention is also referred to as a temperature difference (ΔT start) of the heat generation starting temperature in DSC measurement between the light-irradiated thermosetting resin composition and the non-irradiated thermosetting resin composition. ) Or the exothermic peak temperature difference (also referred to as ΔT peak) is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 30 ° C. or higher.
Here, ΔT start is a thermosetting resin composition having the same composition, one is irradiated with light, and the other is not irradiated with light, and the DSC (Differential Scanning Calorimetry) is left as it is. Each measurement is performed, and refers to the temperature difference between the heat generation start temperature indicating the start of the curing reaction of the resin composition irradiated with light and the heat generation start temperature of the unirradiated resin composition. ΔT peak refers to the temperature difference between the exothermic peak temperatures of the resin composition irradiated and unirradiated when DSC measurement is similarly performed.
In addition, the irradiation amount in the DSC measurement of the thermosetting resin composition irradiated with light increases the irradiation amount, and the exothermic peak temperature shift due to light irradiation of the thermosetting resin composition does not occur (saturation). is there.
When ΔT start or ΔT peak is 10 ° C. or higher, the occurrence of so-called fogging in which the unirradiated part remains due to alkali development and so-called biting in which the light-irradiated part is removed by alkali development is suppressed. be able to. Further, when ΔT start or ΔT peak is 10 ° C. or more, it is possible to widen the range of heating temperatures that can be taken in the heating step (B1) described later.
 以下、熱硬化性樹脂組成物の各成分について詳述する。 Hereinafter, each component of the thermosetting resin composition will be described in detail.
[アルカリ現像性樹脂]
 アルカリ現像性樹脂は、フェノール性水酸基、チオール基およびカルボキシル基のうち1種以上の官能基を含有し、アルカリ溶液で現像可能な樹脂であり、好ましくはフェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。
[Alkali developable resin]
The alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
 フェノール性水酸基を2個以上有する化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ビスフェノールF、ビスフェノールS型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物など公知慣用のフェノール樹脂が挙げられる。
 また、フェノール樹脂として、ビフェニル骨格、或いはフェニレン骨格、又はその両方の骨格を有する化合物と、フェノール性水酸基含有化合物としてフェノール、オルソクレゾール、パラクレゾール、メタクレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、カテコール、レゾルシノール、ハイドロキノン、メチルハイドロキノン、2,6-ジメチルハイドロキノン、トリメチルハイドロキノン、ピロガロール、フロログルシノール等とを用いて合成した、様々な骨格を有するフェノール樹脂を用いてもよい。
 これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the compound having two or more phenolic hydroxyl groups include phenol novolac resin, alkylphenol volac resin, bisphenol A novolac resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, Examples thereof include known and commonly used phenol resins such as bisphenol S-type phenol resin, poly-p-hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes.
In addition, as a phenol resin, a compound having a biphenyl skeleton or a phenylene skeleton, or both, and as a phenolic hydroxyl group-containing compound, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4- Xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol You may use the phenol resin which synthesize | combined using these and which have various frame | skeletons.
These may be used alone or in combination of two or more.
 カルボキシル基含有樹脂としては、公知のカルボキシル基を含む樹脂を用いることができる。カルボキシル基の存在により、樹脂組成物をアルカリ現像性とすることができる。また、カルボキシル基の他に、分子内にエチレン性不飽和結合を有する化合物を用いてもよいが、本発明においては、カルボキシル基含有樹脂として、例えば下記(1)のような、エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いることが好ましい。 As the carboxyl group-containing resin, a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable. In addition to the carboxyl group, a compound having an ethylenically unsaturated bond in the molecule may be used, but in the present invention, as the carboxyl group-containing resin, for example, ethylenically unsaturated as shown in (1) below. It is preferable to use only a carboxyl group-containing resin having no double bond.
 本発明に用いることができるカルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマー及びポリマーのいずれでもよい)が挙げられる。 Specific examples of the carboxyl group-containing resin that can be used in the present invention include the compounds listed below (any of oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。なお、低級アルキルとは、炭素原子数1~5のアルキル基を指す。 (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene. The lower alkyl refers to an alkyl group having 1 to 5 carbon atoms.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物及びポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers A carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A systems A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物及びジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
 (5)上記(2)又は(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.
 (6)上記(2)又は(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of (2) or (4) above, one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
 (7)前述するような多官能(固形)エポキシ樹脂に(メタ)アクリル酸等の不飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。
 (8)前述するような多官能(固形)エポキシ樹脂に飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。
(7) An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with the polyfunctional (solid) epoxy resin as described above, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain. A carboxyl group-containing resin to which a dibasic acid anhydride such as an acid is added.
(8) A dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is reacted with a saturated monocarboxylic acid on the polyfunctional (solid) epoxy resin as described above, and the hydroxyl group present in the side chain. A carboxyl group-containing resin to which is added.
 (9)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (9) A carboxyl obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin and adding a dibasic acid anhydride to the resulting hydroxyl group Group-containing resin.
 (10)後述するような多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (10) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide. .
 (12)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is allowed to react with a saturated monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a basic acid anhydride.
 (13)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (13) Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
 (14)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (14) A reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate, with a saturated monocarboxylic acid. A carboxyl group-containing resin obtained by reacting with a polybasic acid anhydride.
 (15)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (15) A carboxyl group obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. Containing resin.
 (16)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (16) Obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a reaction product obtained by reacting a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (17)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、飽和モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (17) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and a saturated monocarboxylic acid React with acid and react with polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc. to the alcoholic hydroxyl group of the resulting reaction product Carboxyl group-containing resin obtained by making it.
 (18)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (18) reacting an epoxy compound having a plurality of epoxy groups in one molecule with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol; Carboxyl groups obtained by reacting polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid with the alcoholic hydroxyl group of the obtained reaction product Containing resin.
 (19)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (19) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reacting with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and then reacting with the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as an acid.
 (20)上記(1)~(19)のいずれかの樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (20) One epoxy group and one or more (meth) acryloyl groups in the molecule of glycidyl (meth) acrylate, α-methylglycidyl (meth) acrylate, etc., in addition to the resin of any one of (1) to (19) above A carboxyl group-containing resin formed by adding a group-containing compound.
 上記のようなアルカリ現像性樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基やヒロドキシ基等を有するため、アルカリ水溶液による現像が可能になる。
 また、上記カルボキシル基含有樹脂のヒドロキシル基当量又はカルボキシル基当量は、80~900g/eq.であることが好ましく、さらに好ましくは、100~700g/eq.である。ヒドロキシル基当量又はカルボキシル基当量が900g/eq.を超えた場合、パターン層の密着性が得られなかったり、アルカリ現像が困難となることがある。一方、ヒドロキシル基当量又はカルボキシル基当量が80g/eq.未満の場合には、現像液による光照射部の溶解が進むために、必要以上にラインが痩せたり、場合によっては、光照射部と未照射部の区別なく現像液で溶解剥離してしまい、正常なレジストパターンの描画が困難となることがあるので好ましくない。また、カルボキシル基当量やフェノール基当量が大きい場合、アルカリ現像性樹脂の含有量が少ない場合でも、現像が可能となるため、好ましい。
Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
The hydroxyl group equivalent or carboxyl group equivalent of the carboxyl group-containing resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. If it exceeds 1, the adhesion of the pattern layer may not be obtained, or alkali development may be difficult. On the other hand, the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq. In the case of less than, because the dissolution of the light irradiation part by the developer proceeds, the line becomes thinner than necessary, or in some cases, the light irradiation part and the unirradiated part are dissolved and peeled off with the developer, This is not preferable because it may be difficult to draw a normal resist pattern. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
 また、本発明で用いるアルカリ現像性樹脂の重量平均分子量は、樹脂骨格により異なるが、2,000~150,000、さらには5,000~100,000の範囲が好ましい。重量平均分子量が2,000未満であると、タックフリー性能が劣ることがあり、光照射後の樹脂層の耐湿性が悪く、現像時に膜減りが生じ、解像度が大きく劣ることがある。一方、重量平均分子量が150,000を超えると、現像性が著しく悪くなることがあり、貯蔵安定性が劣ることがある。 The weight average molecular weight of the alkali-developable resin used in the present invention varies depending on the resin skeleton, but is preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, tack-free performance may be inferior, the moisture resistance of the resin layer after light irradiation may be poor, film thickness may be reduced during development, and resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
 本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 In this specification, (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
 チオール基を有する化合物としては、例えば、トリメチロールプロパントリスチオプロピオネート、ペンタエリストールテトラキスチオプロピオネート、エチレングリコールビスチオグリコレート、1,4-ブタンジオールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ペンタエリストールテトラキスチオグリコレート、ジ(2-メルカプトエチル)エーテル、1,4-ブタンジチオール、1,3,5-トリメルカプトメチルベンゼン、1,3,5-トリメルカプトメチル-2,4,6-トリメチルベンゼン、末端チオール基含有ポリエーテル、末端チオール基含有ポリチオエーテル、エポキシ化合物と硫化水素との反応によって得られるチオール化合物、ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等が挙げられる。 Examples of the compound having a thiol group include trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, ethylene glycol bisthioglycolate, 1,4-butanediol bisthioglycolate, trimethylolpropane tris. Thioglycolate, pentaerythritol tetrakisthioglycolate, di (2-mercaptoethyl) ether, 1,4-butanedithiol, 1,3,5-trimercaptomethylbenzene, 1,3,5-trimercaptomethyl-2 , 4,6-trimethylbenzene, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound with hydrogen sulfide, and reaction of polythiol compound with epoxy compound. Thiol compounds having a resultant terminal thiol group.
 アルカリ現像性樹脂は、カルボキシル基含有樹脂やフェノール性水酸基を有する化合物であることが好ましい。また、アルカリ現像性樹脂は、エポキシアクリレートなどの光硬化性構造を有さない非感光性であることが好ましい。このような非感光性アルカリ現像性樹脂は、エポキシアクリレートに由来するエステル結合を有さないので、デスミア液に対する耐性が高い。よって、硬化特性に優れたパターン層を形成できる。また、光硬化性構造を有さないため、硬化収縮を抑制できる。
 アルカリ現像性樹脂がカルボキシル基含有樹脂の場合、フェノール性樹脂の場合と比べて弱アルカリ性水溶液で現像できる。弱アルカリ性水溶液としては、炭酸ナトリウム等が溶解したもの挙げられる。弱アルカリ性水溶液で現像することにより、光照射部が現像されてしまうことを抑制できる。また、工程(B)における光照射時間や工程(B1)における加熱時間を短縮できる。
The alkali developable resin is preferably a carboxyl group-containing resin or a compound having a phenolic hydroxyl group. The alkali-developable resin is preferably non-photosensitive without a photocurable structure such as epoxy acrylate. Such a non-photosensitive alkali-developable resin does not have an ester bond derived from epoxy acrylate, and therefore has high resistance to desmear liquid. Therefore, a pattern layer having excellent curing characteristics can be formed. Moreover, since it does not have a photocurable structure, curing shrinkage can be suppressed.
When the alkali-developable resin is a carboxyl group-containing resin, development can be performed with a weak alkaline aqueous solution as compared with the case of a phenolic resin. Examples of the weak alkaline aqueous solution include those in which sodium carbonate or the like is dissolved. By developing with weak alkaline aqueous solution, it can suppress that a light irradiation part will be developed. Moreover, the light irradiation time in a process (B) and the heating time in a process (B1) can be shortened.
[熱反応性化合物]
 熱反応性化合物は、熱による硬化反応が可能な官能基を有する樹脂である。エポキシ樹脂、多官能オキセタン化合物等が挙げられる。
[Heat-reactive compound]
The thermoreactive compound is a resin having a functional group that can be cured by heat. An epoxy resin, a polyfunctional oxetane compound, etc. are mentioned.
 上記エポキシ樹脂は、エポキシ基を有する樹脂であり、公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加された2官能エポキシ化合物であってもよい。 The epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
 多官能エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ブロム化エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂又はそれらの混合物、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、複素環式エポキシ樹脂、ジグリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。 Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or mixtures thereof, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy Resin, diglycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin, epoxy resin having dicyclopentadiene skeleton, glycidyl methacrylate Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and a CTBN modified epoxy resin.
 その他の液状2官能性エポキシ樹脂としては、ビニルシクロヘキセンジエポキシド、(3’,4’-エポキシシクロヘキシルメチル)-3,4-エポキシシクロヘキサンカルボキシレート、(3’,4’-エポキシ-6’-メチルシクロヘキシルメチル)-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート等の脂環族エポキシ樹脂を挙げることができる。ナフタレン基含有エポキシ樹脂は、硬化物の熱膨張を抑えることができるため、好ましい。 Other liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate. A naphthalene group-containing epoxy resin is preferable because it can suppress the thermal expansion of the cured product.
 上記のエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 The above epoxy resins may be used alone or in combination of two or more.
 上記多官能オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマー又は共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、又はシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
 ここで、熱反応性化合物がベンゼン骨格を有する場合、耐熱性が向上するので、好ましい。また、熱硬化性樹脂組成物が白色顔料を含有する場合、熱反応性化合物は脂環式骨格であることが好ましい。これにより、光反応性を向上できる。
Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene), cardo-type bisphenol Le ethers, calixarenes, calix resorcin arenes, or the like ethers of a resin having a hydroxyl group such as silsesquioxane and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
Here, it is preferable that the heat-reactive compound has a benzene skeleton because heat resistance is improved. Moreover, when a thermosetting resin composition contains a white pigment, it is preferable that a thermoreactive compound is an alicyclic skeleton. Thereby, photoreactivity can be improved.
 上記熱反応性化合物の配合量としては、アルカリ現像性樹脂との当量比(熱反応性基:アルカリ現像性基)が、1:0.1~1:10であることが好ましく、1:0.2~1:5であることがより好ましい。このような配合比の範囲内である場合、現像が良好になる。 The blending amount of the heat-reactive compound is preferably such that the equivalent ratio with the alkali-developable resin (heat-reactive group: alkali-developable group) is 1: 0.1 to 1:10, and 1: 0 More preferably, it is 2 to 1: 5. When the ratio is within such a range, the development is good.
[光塩基発生剤]
 光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、上記の熱反応性化合物の付加反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。
[Photobase generator]
One or more photobase generators can function as a catalyst for the addition reaction of the above-mentioned thermoreactive compound when the molecular structure is changed by irradiation with light such as ultraviolet rays or visible light, or when the molecule is cleaved. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines.
Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
 α―アミノアセトフェノン化合物は分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成する。α-アミノアセトフェノン化合物の具体例としては、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン(イルガキュア369、商品名、BASFジャパン社製)や4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(イルガキュア907、商品名、BASFジャパン社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(イルガキュア379、商品名、BASFジャパン社製)などの市販の化合物またはその溶液を用いることができる。 The α-aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action. Specific examples of α-aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl. -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl]- A commercially available compound such as 1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物をいずれも使用することができる。オキシムエステル化合物としては、市販品として、BASFジャパン社製のCGI-325、イルガキュアー OXE01、イルガキュアー OXE02、アデカ社製N-1919、NCI-831などが挙げられる。また、分子内に2個のオキシムエステル基を有する化合物も好適に用いることができ、具体的には、下記一般式で表されるカルバゾール構造を有するオキシムエステル化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000001
(式中、Xは、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)を表し、Y、Zはそれぞれ、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、ハロゲン基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、アンスリル基、ピリジル基、ベンゾフリル基、ベンゾチエニル基を表し、Arは、結合か、炭素数1~10のアルキレン、ビニレン、フェニレン、ビフェニレン、ピリジレン、ナフチレン、チオフェン、アントリレン、チエニレン、フリレン、2,5-ピロール-ジイル、4,4’-スチルベン-ジイル、4,2’-スチレン-ジイルで表し、nは0か1の整数である。)
As the oxime ester compound, any compound that generates a basic substance by light irradiation can be used. Examples of the oxime ester compound include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, NCI-831 manufactured by Adeka, and the like as commercially available products. Moreover, the compound which has two oxime ester groups in a molecule | numerator can also be used suitably, Specifically, the oxime ester compound which has a carbazole structure represented with the following general formula is mentioned.
Figure JPOXMLDOC01-appb-I000001
(In the formula, X is a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, a phenyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms). Group, an amino group, an alkylamino group having an alkyl group having 1 to 8 carbon atoms or a dialkylamino group), a naphthyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms), And Y and Z are each a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, or a carbon atom having 1 carbon atom), substituted with an alkyl group having a C 1-8 alkyl group or a dialkylamino group. Alkyl groups having 8 to 8 alkoxy groups, halogen groups, phenyl groups, phenyl groups (alkyl groups having 1 to 17 carbon atoms, alkoxy groups having 1 to 8 carbon atoms, amino groups, alkyl groups having 1 to 8 carbon atoms) Or substituted with a dialkylamino group), a naphthyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an amino group, an alkylamino group having an alkyl group having 1 to 8 carbon atoms, or Represents an anthryl group, a pyridyl group, a benzofuryl group, a benzothienyl group, and Ar is a bond or alkylene having 1 to 10 carbon atoms, vinylene, phenylene, biphenylene, pyridylene, naphthylene, thiophene , Anthrylene, thienylene, furylene, 2,5-pyrrole-diyl, 4,4′-stilbene-diyl, 4,2′-styrene-diyl, and n is an integer of 0 or 1.)
 特に、前記一般式中、X、Yが、それぞれメチル基又はエチル基であり、Zはメチル又はフェニルであり、nは0であり、Arは、結合か、フェニレン、ナフチレン、チオフェン又はチエニレンであることが好ましい。 In particular, in the above general formula, X and Y are each a methyl group or an ethyl group, Z is methyl or phenyl, n is 0, and Ar is a bond, phenylene, naphthylene, thiophene or thienylene. It is preferable.
 また、好ましいカルバゾールオキシムエステル化合物として、下記一般式で表すことができる化合物を挙げることもできる。
Figure JPOXMLDOC01-appb-I000002
(式中、Rは、炭素原子数1~4のアルキル基、または、ニトロ基、ハロゲン原子もしくは炭素原子数1~4のアルキル基で置換されていてもよいフェニル基を表す。Rは、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、または、炭素原子数1~4のアルキル基もしくはアルコキシ基で置換されていてもよいフェニル基を表す。Rは、酸素原子または硫黄原子で連結されていてもよく、フェニル基で置換されていてもよい炭素原子数1~20のアルキル基、炭素原子数1~4のアルコキシ基で置換されていてもよいベンジル基を表す。Rは、ニトロ基、または、X-C(=O)-で表されるアシル基を表す。Xは、炭素原子数1~4のアルキル基で置換されていてもよいアリール基、チエニル基、モルホリノ基、チオフェニル基、または、下記式で示される構造を表す。)
Figure JPOXMLDOC01-appb-I000003
Moreover, the compound which can be represented by the following general formula can also be mentioned as a preferable carbazole oxime ester compound.
Figure JPOXMLDOC01-appb-I000002
(Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with a nitro group, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. R 2 represents Represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group, and R 3 represents , Optionally substituted with an oxygen atom or a sulfur atom, optionally substituted with a phenyl group, optionally substituted with an alkyl group having 1 to 20 carbon atoms, or optionally substituted with an alkoxy group having 1 to 4 carbon atoms R 4 represents a nitro group or an acyl group represented by X—C (═O) —, where X is an aryl optionally substituted with an alkyl group having 1 to 4 carbon atoms Group, thienyl group, morpholino A group, a thiophenyl group, or a structure represented by the following formula:
Figure JPOXMLDOC01-appb-I000003
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。 In addition, JP-A-2004-359639, JP-A-2005-097141, JP-A-2005-220097, JP-A-2006-160634, JP-A-2008-094770, JP-A-2008-509967, Specific examples include carbazole oxime ester compounds described in JP-T-2009-040762 and JP-A-2011-80036.
 アシルオキシイミノ基を有する化合物の具体例としては,O,O’-コハク酸ジアセトフェノンオキシム,O,O’-コハク酸ジナフトフェノンオキシム、ベンゾフェノンオキシムアクリレートースチレン共重合体などが挙げられる。 Specific examples of the compound having an acyloxyimino group include O, O'-diacetphenone oxime succinate, O, O'-dinaphthophenone oxime succinate, benzophenone oxime acrylate-styrene copolymer, and the like.
 N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基を有する化合物の具体例としては、例えば、ジ-N-(p-ホルミルアミノ)ジフェニルメタン、ジ-N(p-アセエチルアミノ)ジフェニルメラン、ジ-N-(p-ベンゾアミド)ジフェニルメタン、4-ホルミルアミノトルイレン、4-アセチルアミノトルイレン、2,4-ジホルミルアミノトルイレン、1-ホルミルアミノナフタレン、1-アセチルアミノナフタレン、1,5-ジホルミルアミノナフタレン、1-ホルミルアミノアントラセン、1,4-ジホルミルアミノアントラセン、1-アセチルアミノアントラセン、1,4-ジホルミルアミノアントラキノン、1,5-ジホルミルアミノアントラキノン、3,3’-ジメチル-4,4’-ジホルミルアミノビフェニル、4,4’-ジホルミルアミノベンゾフェノンなどが挙げられる。 Specific examples of the compound having an N-formylated aromatic amino group and an N-acylated aromatic amino group include, for example, di-N- (p-formylamino) diphenylmethane, di-N (p-aceethylamino) Diphenyl melan, di-N- (p-benzamido) diphenyl methane, 4-formylaminotoluylene, 4-acetylaminotoluylene, 2,4-diformylaminotoluylene, 1-formylaminonaphthalene, 1-acetylaminonaphthalene, 1,5-diformylaminonaphthalene, 1-formylaminoanthracene, 1,4-diformylaminoanthracene, 1-acetylaminoanthracene, 1,4-diformylaminoanthraquinone, 1,5-diformylaminoanthraquinone, 3, 3'-dimethyl-4,4'-diformylaminobiphe Le, such as 4,4'-formylamino benzophenones.
 ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基を有する化合物の具体例としては、例えば、ビス{{(2-ニトロベンジル)オキシ}カルボニル}ジアミノジフェニルメタン、2,4-ジ{{(2-ニトロベンジル)オキシ}トルイレン、ビス{{(2-ニトロベンジルオキシ)カルボニル}ヘキサン-1,6-ジアミン、m-キシリジン{{(2-ニトロ-4-クロロベンジル)オキシ}アミド}などが挙げられる。 Specific examples of the compound having a nitrobenzyl carbamate group or an alkoxybenzyl carbamate group include, for example, bis {{(2-nitrobenzyl) oxy} carbonyl} diaminodiphenylmethane, 2,4-di {{(2-nitrobenzyl) Oxy} toluylene, bis {{(2-nitrobenzyloxy) carbonyl} hexane-1,6-diamine, m-xylidine {{(2-nitro-4-chlorobenzyl) oxy} amide} and the like.
 光塩基発生剤としては、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。 As the photobase generator, oxime ester compounds and α-aminoacetophenone compounds are preferable. As the α-aminoacetophenone compound, those having two or more nitrogen atoms are particularly preferable.
 その他の光塩基発生剤として、
WPBG-018(商品名:9-anthrylmethyl N,N’-diethylcarbamate),WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine),WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate), WPBG-140 (商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等を使用することもできる。
 また、特開平11-71450号公報、国際公開2002/051905号、国際公開2008/072651号、特開2003-20339号公報、特開2003-212856号公報、特開2003-344992号公報、特開2007-86763号公報、特開2007-231235号公報、特開2008-3581号公報、特開2008-3582号公報、特開2009-280785、特開2009-080452、特開2010-95686号公報、特開2010-126662号公報、特開2010-185010号公報、特開2010-185036号公報、特開2010-186054号公報、特開2010-186056号公報、特開2010-275388号公報、特開2010-222586、特開2010-084144、特開2011-107199号公報、特開2011-236416、特開2011-080032等の文献記載の光塩基発生剤を使用することもできる。
As other photobase generators,
WPBG-018 (Product name: 9-anthrylmethyl N, N'-diethylcarbamate), WPBG-027 (Product name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine), WPBG-082 (Product name: guanidinium2- (3-benzoylphenyl) propionate), WPBG-140 (Product name: 1- (anthraquinon-2-yl) ethyl imidazolecarboxylate), etc. can also be used.
Also, JP-A-11-71450, WO2002 / 051905, WO2008 / 072651, JP2003-20339, JP2003-212856, JP2003-344992, JP 2007-86763, JP 2007-23235, JP 2008-3581, JP 2008-3582, JP 2009-280785, JP 2009-080452, JP 2010-95686, JP 2010-126662 A, JP 2010-185010 A, JP 2010-185036 A, JP 2010-186054 A, JP 2010-186056 A, JP 2010-275388 A, JP 2010-222586, JP2010-0 4144, JP 2011-107199, JP 2011-236416, it is also possible to use a photobase generator described in the literature such as JP-2011-080032.
 上記光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱硬化性樹脂組成物中の光塩基発生剤の配合量は、好ましくは熱反応性化合物100質量部に対して1~50質量部であり、さらに好ましくは、1~40質量部である。1質量部未満の場合、現像が困難になることがあるため好ましくない。 The above photobase generators may be used alone or in combination of two or more. The blending amount of the photobase generator in the thermosetting resin composition is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the thermoreactive compound. When the amount is less than 1 part by mass, development may be difficult, which is not preferable.
[マレイミド化合物]
 本発明の熱硬化性樹脂組成物は、マレイミド化合物を含んでもよい。
 マレイミド化合物としては、多官能脂肪族/脂環族マレイミド、多官能芳香族マレイミドが挙げられる。2官能以上のマレイミド化合物(多官能マレイミド化合物)が好ましい。多官能脂肪族/脂環族マレイミドとしては、例えば、N,N’-メチレンビスマレイミド、N,N’-エチレンビスマレイミド、トリス(ヒドロキシエチル)イソシアヌレートと脂肪族/脂環族マレイミドカルボン酸とを脱水エステル化して得られるイソシアヌレート骨格のマレイミドエステル化合物;トリス(カーバメートヘキシル)イソシアヌレートと脂肪族/脂環族マレイミドアルコールとをウレタン化して得られるイソシアヌレート骨格のマレイミドウレタン化合物等のイソシアヌル骨格ポリマレイミド類;イソホロンビスウレタンビス(N-エチルマレイミド)、トリエチレングリコールビス(マレイミドエチルカーボネート)、脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリオールとを脱水エステル化、又は脂肪族/脂環族マレイミドカルボン酸エステルと各種脂肪族/脂環族ポリオールとをエステル交換反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類;脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリエポキシドとをエーテル開環反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類;脂肪族/脂環族マレイミドアルコールと各種脂肪族/脂環族ポリイソシアネートとをウレタン化反応して得られる脂肪族/脂環族ポリマレイミドウレタン化合物類等がある。
[Maleimide compound]
The thermosetting resin composition of the present invention may contain a maleimide compound.
Examples of maleimide compounds include polyfunctional aliphatic / alicyclic maleimides and polyfunctional aromatic maleimides. Bifunctional or higher maleimide compounds (polyfunctional maleimide compounds) are preferred. Examples of the polyfunctional aliphatic / alicyclic maleimide include N, N′-methylene bismaleimide, N, N′-ethylene bismaleimide, tris (hydroxyethyl) isocyanurate, and aliphatic / alicyclic maleimide carboxylic acid. Isocyanurate skeleton maleic compound obtained by urethanization of isocyanurate skeleton maleimide ester compound obtained by urethanization of tris (carbamate hexyl) isocyanurate and aliphatic / alicyclic maleimide alcohol Maleimides; isophorone bisurethane bis (N-ethylmaleimide), triethylene glycol bis (maleimide ethyl carbonate), aliphatic / alicyclic maleimide carboxylic acid and various aliphatic / alicyclic polyols, or dehydrated ester / Alicyclic maleimide carboxylic acid esters and aliphatic / alicyclic polymaleimide ester compounds obtained by transesterification of various aliphatic / alicyclic polyols; aliphatic / alicyclic maleimide carboxylic acids and various fats Aliphatic / alicyclic polymaleimide ester compounds obtained by ether ring-opening reaction of aliphatic / alicyclic polyepoxides; urethanization of aliphatic / alicyclic maleimide alcohols and various aliphatic / alicyclic polyisocyanates Examples include aliphatic / alicyclic polymaleimide urethane compounds obtained by reaction.
 多官能芳香族マレイミドとしては、マレイミドカルボン酸と各種芳香族ポリオールとを脱水エステル化、又はマレイミドカルボン酸エステルと各種芳香族ポリオールとをエステル交換反応して得られる芳香族ポリマレイミドエステル化合物類;マレイミドカルボン酸と各種芳香族ポリエポキシドとをエーテル開環反応して得られる芳香族ポリマレイミドエステル化合物類;マレイミドアルコールと各種芳香族ポリイソシアネートとをウレタン化反応して得られる芳香族ポリマレイミドウレタン化合物類等の芳香族多官能マレイミド類等がある。 As polyfunctional aromatic maleimide, aromatic polymaleimide ester compounds obtained by dehydrating esterification of maleimide carboxylic acid and various aromatic polyols, or transesterification reaction of maleimide carboxylic acid ester and various aromatic polyols; Aromatic polymaleimide ester compounds obtained by ether ring-opening reaction of carboxylic acid and various aromatic polyepoxides; Aromatic polymaleimide urethane compounds obtained by urethanization reaction of maleimide alcohol and various aromatic polyisocyanates, etc. And aromatic polyfunctional maleimides.
 多官能芳香族マレイミドの具体例としては、例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、N,N’-2,4-トリレンビスマレイミド、N,N’-2,6-トリレンビスマレイミド、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4’-ビフェニレンビスマレイミド、N,N’-4,4’-〔3,3’-ジメチル-ビフェニレン〕ビスマレイミド、N,N’-4,4’-〔3,3’-ジメチルジフェニルメタン〕ビスマレイミド、N,N’-4,4’-〔3,3’-ジエチルジフェニルメタン〕ビスマレイミド、N,N’-4,4’-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルプロパンビスマレイミド、N,N’-4,4’-ジフェニルエーテルビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、N,N’-4,4’-ジフェニルスルホンビスマレイミド、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-t-ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-s-ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1-ビス〔4-(4-マレイミドフェノキシ)フェニル〕デカン、1,1-ビス〔2-メチル-4-(4-マレイミドフェノキシ)-5-t-ブチルフェニル〕-2-メチルプロパン、4,4’-シクロヘキシリデン-ビス〔1-(4-マレイミドフェノキシ)-2-(1,1-ジメチルエチル)ベンゼン〕、4,4’-メチレン-ビス〔1-(4-マレイミドフェノキシ)-2,6-ビス(1,1-ジメチルエチル)ベンゼン〕、4,4’-メチレン-ビス〔1-(4-マレイミドフェノキシ)-2,6-ジ-s-ブチルベンゼン〕、4,4’-シクロヘキシリデン-ビス〔1-(4-マレイミドフェノキシ)-2-シクロヘキシルベンゼン、4,4’-メチレンビス〔1-(マレイミドフェノキシ)-2-ノニルベンゼン〕、4,4’-(1-メチルエチリデン)-ビス〔1-(マレイミドフェノキシ)-2,6-ビス(1,1-ジメチルエチル)ベンゼン〕、4,4’-(2-エチルヘキシリデン)-ビス〔1-(マレイミドフェノキシ)-ベンゼン〕、4,4’-(1-メチルヘプチリデン)-ビス〔1-(マレイミドフェノキシ)-ベンゼン〕、4,4’-シクロヘキシリデン-ビス〔1-(マレイミドフェノキシ)-3-メチルベンゼン〕、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3-エチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-エチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、ビス〔3-メチル-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3,5-ジメチル-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3-エチル-(4-マレイミドフェノキシ)フェニル〕メタン、3,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、4,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、3,9-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、4,9-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、1,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕メンタン、1,8-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕メンタン、1,8-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕メンタンなどを挙げることができる。 Specific examples of the polyfunctional aromatic maleimide include, for example, N, N ′-(4,4′-diphenylmethane) bismaleimide, N, N′-2,4-tolylene bismaleimide, N, N′-2, 6-tolylene bismaleimide, 1-methyl-2,4-bismaleimide benzene, N, N′-m-phenylene bismaleimide, N, N′-p-phenylene bismaleimide, N, N′-m-toluylene Bismaleimide, N, N′-4,4′-biphenylenebismaleimide, N, N′-4,4 ′-[3,3′-dimethyl-biphenylene] bismaleimide, N, N′-4,4′- [3,3′-dimethyldiphenylmethane] bismaleimide, N, N′-4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, N, N′-4,4′-diphenylmethane bismale N, N′-4,4′-diphenylpropane bismaleimide, N, N′-4,4′-diphenyl ether bismaleimide, N, N′-3,3′-diphenylsulfone bismaleimide, N, N ′ -4,4'-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-tert-butyl-4- (4-maleimidophenoxy) phenyl ] Propane, 2,2-bis [3-s-butyl-4- (4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 1,1-bis [2-Methyl-4- (4-maleimidophenoxy) -5-t-butylphenyl] -2-methylpropane, 4,4′-cyclohexylidene-bis [1- ( -Maleimidophenoxy) -2- (1,1-dimethylethyl) benzene], 4,4'-methylene-bis [1- (4-maleimidophenoxy) -2,6-bis (1,1-dimethylethyl) benzene 4,4′-methylene-bis [1- (4-maleimidophenoxy) -2,6-di-s-butylbenzene], 4,4′-cyclohexylidene-bis [1- (4-maleimidophenoxy) ) -2-cyclohexylbenzene, 4,4′-methylenebis [1- (maleimidophenoxy) -2-nonylbenzene], 4,4 ′-(1-methylethylidene) -bis [1- (maleimidophenoxy) -2, 6-bis (1,1-dimethylethyl) benzene], 4,4 ′-(2-ethylhexylidene) -bis [1- (maleimidophenoxy) -benzene], 4,4 ′-( 1-methylheptylidene) -bis [1- (maleimidophenoxy) -benzene], 4,4′-cyclohexylidene-bis [1- (maleimidophenoxy) -3-methylbenzene], 2,2-bis [ 4- (4-maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3-methyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4 -Maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3,5-dimethyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3,5-dimethyl-4- (4 -Maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3-ethyl-4- (4-maleimidophenoxy) phenyl] pro 2,2-bis [3-ethyl-4- (4-maleimidophenoxy) phenyl] hexafluoropropane, bis [3-methyl- (4-maleimidophenoxy) phenyl] methane, bis [3,5-dimethyl- (4-Maleimidophenoxy) phenyl] methane, bis [3-ethyl- (4-maleimidophenoxy) phenyl] methane, 3,8-bis [4- (4-maleimidophenoxy) phenyl] -tricyclo [5.2.1 .02,6] decane, 4,8-bis [4- (4-maleimidophenoxy) phenyl] -tricyclo [5.2.1.02,6] decane, 3,9-bis [4- (4-maleimide) Phenoxy) phenyl] -tricyclo [5.2.1.02,6] decane, 4,9-bis [4- (4-maleimidophenoxy) phenyl] -tricyclo [ 2.1.2,6] decane, 1,8-bis [4- (4-maleimidophenoxy) phenyl] menthane, 1,8-bis [3-methyl-4- (4-maleimidophenoxy) phenyl] menthane 1,8-bis [3,5-dimethyl-4- (4-maleimidophenoxy) phenyl] menthane and the like.
 マレイミド化合物の配合量としては、アルカリ現像性樹脂との当量比(マレイミド基:アルカリ現像性基)が1:0.1~1:10であることが好ましく、1:0.2~1:5であることがより好ましい。このような配合比とすることにより、現像が容易になる。 The blending amount of the maleimide compound is preferably such that the equivalent ratio to the alkali-developable resin (maleimide group: alkali-developable group) is 1: 0.1 to 1:10, and 1: 0.2 to 1: 5. It is more preferable that With such a blending ratio, development is facilitated.
[高分子樹脂]
 本発明の熱硬化性樹脂組成物には、得られる硬化物の可撓性、指触乾燥性の向上を目的に慣用公知の高分子樹脂を配合することができる。
 高分子樹脂としてはセルロース系、ポリエステル系、フェノキシ樹脂系、ポリビニルアセタール系、ポリビニルブチラール系、ポリアミド系、ポリアミドイミド系バインダーポリマー、ブロック共重合体、エラストマー、ゴム粒子等が挙げられる。バインダーポリマーは1種類を単独で用いてもよく、2種類以上を併用してもよい。
 高分子樹脂を配合することにより、熱硬化性樹脂組成物の溶融粘度が上昇し、露光後加熱時において、スルーホール部分の樹脂の流動性を抑止することができる。その結果、スルーホール上に凹みのみられない平坦な基板を作製できる。
[Polymer resin]
In the thermosetting resin composition of the present invention, a conventionally known polymer resin can be blended for the purpose of improving the flexibility and dryness of the touch of the resulting cured product.
Examples of the polymer resin include cellulose-based, polyester-based, phenoxy-resin-based, polyvinyl acetal-based, polyvinyl butyral-based, polyamide-based, polyamide-imide-based binder polymers, block copolymers, elastomers, and rubber particles. A binder polymer may be used individually by 1 type, and may use 2 or more types together.
By blending the polymer resin, the melt viscosity of the thermosetting resin composition is increased, and the fluidity of the resin in the through-hole portion can be suppressed during post-exposure heating. As a result, a flat substrate that is not recessed on the through hole can be manufactured.
 上記高分子樹脂の添加量は、上記熱反応性化合物100質量部に対して、好ましくは50質量部以下、より好ましくは1~30質量部、特に好ましくは、5~30質量部である。高分子樹脂の配合量が、50質量部を超えた場合、熱硬化性樹脂組成物のデスミア耐性の悪化が懸念されるため好ましくない。 The amount of the polymer resin added is preferably 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermoreactive compound. When the amount of the polymer resin exceeds 50 parts by mass, there is a concern about deterioration of desmear resistance of the thermosetting resin composition, which is not preferable.
(ブロック共重合体)
 ブロック共重合体とは、性質の異なる二種類以上のポリマーが、共有結合で繋がり長い連鎖になった分子構造の共重合体のことである。
(Block copolymer)
The block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain.
 本発明で用いるブロック共重合体としてはA-B-A、あるいはA-B-A’型ブロック共重合体が好ましい。A-B-AあるいはA-B-A’型ブロック共重合体のうち、中央のBがソフトブロックでありガラス転移点Tgが低く、好ましくは0℃未満であり、その両外側A又はA’がハードブロックでありTgが高く、好ましくは0℃以上のポリマー単位により構成されているものが好ましい。ガラス転移点Tgは示差走査熱量測定(DSC)により測定される。
 また、A-B-AあるいはA-B-A’型ブロック共重合体のうち、A又はA’がTgが50℃以上のポリマー単位からなり、BがTgが-20℃以下であるポリマー単位からなるブロック共重合体がさらに好ましい。
 また、A-B-AあるいはA-B-A’型ブロック共重合体のうち、A又はA’が上記熱反応性化合物との相溶性が高いものが好ましく、Bが上記熱反応性化合物との相溶性が低いものが好ましい。このように、両端のブロックがマトリックスに相溶であり、中央のブロックがマトリックスに不相溶であるブロック共重合体とすることで、マトリックス中において特異的な構造を示しやすくなると考えられる。
The block copolymer used in the present invention is preferably an ABA or ABA ′ type block copolymer. Of the ABA and ABA ′ type block copolymers, the central B is a soft block and has a low glass transition point Tg, preferably less than 0 ° C. Is a hard block and has a high Tg, and is preferably composed of polymer units of 0 ° C. or higher. The glass transition point Tg is measured by differential scanning calorimetry (DSC).
Also, among the ABA and ABA ′ type block copolymers, A or A ′ is composed of polymer units having a Tg of 50 ° C. or more, and B is a polymer unit having a Tg of −20 ° C. or less. More preferred is a block copolymer of
In addition, among the ABA and ABA ′ type block copolymers, those in which A or A ′ is highly compatible with the heat-reactive compound are preferable, and B is the same as the heat-reactive compound. Those having low compatibility are preferred. Thus, it is considered that a specific structure in the matrix can be easily shown by using a block copolymer in which the blocks at both ends are compatible with the matrix and the central block is incompatible with the matrix.
 A又はA’として、ポリメチル(メタ)アクリレート(PMMA)、ポリスチレン(PS)などを含むことが好ましく、Bとしてポリn-ブチルアクリレート(PBA)、ポリブタジエン(PB)などを含むことが好ましい。また、A又はA’成分の一部にスチレンユニット、水酸基含有ユニット、カルボキシル基含有ユニット、エポキシ含有ユニット、N置換アクリルアミドユニット等に代表される前述に記載したマトリックスと相溶性に優れる親水性ユニットを導入し、更に相溶性を向上させることが可能となる。 A or A ′ preferably includes polymethyl (meth) acrylate (PMMA), polystyrene (PS) or the like, and B preferably includes poly n-butyl acrylate (PBA), polybutadiene (PB) or the like. Further, a hydrophilic unit excellent in compatibility with the matrix described above represented by a styrene unit, a hydroxyl group-containing unit, a carboxyl group-containing unit, an epoxy-containing unit, an N-substituted acrylamide unit, etc. as part of the A or A ′ component It becomes possible to introduce and further improve the compatibility.
 また本発明に用いるブロック共重合体としては3元以上のブロック共重合体が好ましく、リビング重合法により合成された分子構造が精密にコントロールされたブロック共重合体が本発明の効果を得る上でより好ましい。これは、リビング重合法により合成されたブロック共重合体は分子量分布が狭く、それぞれのユニットの特徴が明確になったためであると考えられる。用いるブロック共重合体の分子量分布(Mw/Mn)は3以下が好ましく、2.5以下がより好ましく、更に好ましくは2.0以下である。 The block copolymer used in the present invention is preferably a ternary or more block copolymer, and a block copolymer having a precisely controlled molecular structure synthesized by a living polymerization method is effective for obtaining the effects of the present invention. More preferred. This is considered to be because the block copolymer synthesized by the living polymerization method has a narrow molecular weight distribution, and the characteristics of each unit have been clarified. The molecular weight distribution (Mw / Mn) of the block copolymer used is preferably 3 or less, more preferably 2.5 or less, and still more preferably 2.0 or less.
 上記のような(メタ)アクリレートポリマーブロックを含むブロック共重合体は、例えば、特開2007-516326号、特開2005-515281号明細書記載の方法、特に、下記式(1)~(4)のいずれかで表されるアルコキシアミン化合物を開始剤としてY単位を重合した後に、X単位を重合することにより好適に得ることができる。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
(式中、nは2を表し、Zは、2価の有機基を表し、好ましくは、1,2-エタンジオキシ、1,3-プロパンジオキシ、1,4-ブタンジオキシ、1,6-ヘキサンジオキシ、1,3,5-トリス(2-エトキシ)シアヌル酸、ポリアミノアミン、例えばポリエチレンアミン、1,3,5-トリス(2-エチルアミノ)シアヌル酸、ポリチオキシ、ホスホネートまたはポリホスホネートの中から選択されるものである。Arは2価のアリール基を表す。)
The block copolymers containing the (meth) acrylate polymer block as described above are, for example, the methods described in JP-A-2007-516326 and JP-A-2005-515281, particularly the following formulas (1) to (4). After the Y unit is polymerized using the alkoxyamine compound represented by any of the above as an initiator, it can be suitably obtained by polymerizing the X unit.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
(Wherein n represents 2 and Z represents a divalent organic group, preferably 1,2-ethanedioxy, 1,3-propanedioxy, 1,4-butanedioxy, 1,6-hexanedioxy Selected from among oxy, 1,3,5-tris (2-ethoxy) cyanuric acid, polyaminoamines such as polyethyleneamine, 1,3,5-tris (2-ethylamino) cyanuric acid, polythioxy, phosphonate or polyphosphonate Ar represents a divalent aryl group.)
 ブロック共重合体の重量平均分子量は好ましくは20,000~400,000、より好ましくは50,000~300,000の範囲である。重量平均分子量が20,000未満であると、目的とする強靭性、柔軟性の効果が得られず、熱硬化性樹脂組成物をドライフィルム化した時や基材に塗布し仮乾燥した時のタック性にも劣る。一方、重量平均分子量が400,000を超えると、熱硬化性樹脂組成物の粘度が高くなり、印刷性、加工性が著しく悪くなることがある。重量平均分子量が50,000以上であると、外部からの衝撃に対する緩和性において優れた効果が得られる。
 高分子樹脂として、ブロック共重合体は、冷熱サイクル時のクラック耐性に優れ、硬化後の反りを抑制できるため、好ましい。ブロック共重合体は、スルーホール上の凹みを抑制して、表面が平坦な基材を作成できるため、特に好ましい。また、無機充填剤と組み合わせることにより、さらに、冷熱サイクル時のクラック耐性に優れる。
The weight average molecular weight of the block copolymer is preferably in the range of 20,000 to 400,000, more preferably 50,000 to 300,000. When the weight average molecular weight is less than 20,000, the desired toughness and flexibility effects cannot be obtained, and when the thermosetting resin composition is formed into a dry film or applied to a substrate and temporarily dried. Inferior to tackiness. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity of the thermosetting resin composition becomes high, and the printability and processability may be remarkably deteriorated. When the weight average molecular weight is 50,000 or more, an excellent effect can be obtained in terms of relaxation against external impact.
As a polymer resin, a block copolymer is preferable because it is excellent in crack resistance during a thermal cycle and can suppress warping after curing. The block copolymer is particularly preferable because it can suppress a dent on the through hole and create a substrate having a flat surface. Moreover, it is excellent in the crack tolerance at the time of a thermal cycle by combining with an inorganic filler.
(エラストマー)
 本発明の熱硬化性樹脂組成物には、官能基を有するエラストマーを添加することができる。官能基を有するエラストマーを加えることで、コーティング性が向上し、塗膜の強度も向上することが期待できる。また、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリエステルウレタン系エラストマー、ポリアミド系エラストマー、ポリエステルアミド系エラストマー、アクリル系エラストマー、オレフィン系エラストマー等を用いることができる。また、種々の骨格を有するエポキシ樹脂の一部又は全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴムで変性した樹脂なども使用できる。さらには、エポキシ含有ポリブタジエン系エラストマー、アクリル含有ポリブタジエン系エラストマー、水酸基含有ポリブタジエン系エラストマー、水酸基含有イソプレン系エラストマーなども使用することができる。また、これらのエラストマーは、1種を単独で用いてもよく、2種類以上を併用してもよい。
(ゴム粒子)
 ゴム粒子は、架橋構造を有する高分子等の有機物から形成された粒子状のものであればどのようなものでもよいが、例えばアクリロニトリルブタジエンの共重合物として、アクリロニトリルとブタジエンとを共重合した架橋NBR粒子;アクリロニトリルとブタジエンとアクリル酸等のカルボン酸とを共重合したもの;架橋ポリブタジエン、架橋シリコンゴム、又はNBRをコア層とし、架橋アクリル樹脂をシェル層とした、いわゆるコアシェル構造の架橋ゴム粒子(「コア-シェルゴム粒子」ともいう);が挙げられる。
 なかでも、分散性の制御、粒子サイズの安定性の点から、コアシェル構造の架橋ゴム粒子が好ましく、架橋アクリル樹脂をシェル層とし、架橋ポリブタジエン又は架橋シリコンゴムをコア層としたコアシェル構造の架橋ゴム粒子がより好ましい。
 架橋NBR粒子とは、アクリロニトリル、ブタジエンを共重合させ、かつ共重合する段階で、部分的に架橋させ、粒子状にしたものである。またアクリル酸、メタクリル酸等のカルボン酸を併せて共重合することにより、カルボン酸変性架橋NBR粒子を得ることも可能である。
 架橋ブタジエンゴム-架橋アクリル樹脂のコア-シェルゴム粒子は、乳化重合でブタジエン粒子を重合させ、引き続きアクリル酸エステル、アクリル酸等のモノマーを添加して重合を続ける二段階の重合方法で得ることができる。
 架橋シリコンゴム-架橋アクリル樹脂のコア-シェルゴム粒子は、乳化重合でシリコン粒子を重合させ、引き続きアクリル酸エステル、アクリル酸等のモノマーを添加して重合を続ける二段階の重合方法で得ることができる。
 ゴム粒子の大きさは、一次平均粒子径で1μm以下であり、50nm~1μmにすることが好ましい。一次平均粒子径で1μmを超えると、接着力の低下や、微細配線での絶縁信頼性を損なってしてしまう。ここでいう「一次平均粒子径」とは、凝集した粒子径、つまり二次粒子径ではなく、凝集していない単体での粒子径をいう。
 また、当該一次平均粒子径は、例えば、レーザ回折式粒度分布計により測定して求めることができる。
 上記のようなゴム粒子は、単独でも、2種以上を組み合せて用いてもよい。
 ゴム粒子の含有量は、樹脂組成物中50質量%以下であることが好ましく、1~30質量%であることがより好ましい。
 例えば、カルボン酸変性アクリロニトリルブタジエンゴム粒子の市販品としては日本合成ゴム株式会社製のXER-91が挙げられる。ブタジエンゴム-アクリル樹脂のコアシェル粒子はロームアンドハース株式会社製のパラロイドEXL2655やガンツ化成工業株式会社のAC-3832が挙げられる。架橋シリコンゴム-アクリル樹脂のコア-シェルゴム粒子は、旭化成ワッカーシリコーン(株)製GENIOPERLP52が挙げられる。
 ゴム粒子を用いることにより、冷熱サイクル時のクラック耐性を向上させることができる。
(Elastomer)
An elastomer having a functional group can be added to the thermosetting resin composition of the present invention. By adding an elastomer having a functional group, it is expected that the coating property is improved and the strength of the coating film is also improved. Further, polyester elastomers, polyurethane elastomers, polyester urethane elastomers, polyamide elastomers, polyester amide elastomers, acrylic elastomers, olefin elastomers, and the like can be used. In addition, resins in which a part or all of epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can be used. Furthermore, epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, and the like can also be used. Moreover, these elastomers may be used individually by 1 type, and may use 2 or more types together.
(Rubber particles)
The rubber particles may be any particles as long as they are formed from organic substances such as polymers having a crosslinked structure. For example, as a copolymer of acrylonitrile butadiene, a crosslinked acrylonitrile and butadiene are copolymerized. NBR particles: Copolymerized acrylonitrile, butadiene and carboxylic acid such as acrylic acid; cross-linked polybutadiene, cross-linked silicon rubber, or cross-linked rubber particles having a so-called core-shell structure using NBR as a core layer and cross-linked acrylic resin as a shell layer (Also referred to as “core-shell rubber particles”).
Among these, from the viewpoint of dispersibility control and particle size stability, a core-shell structured crosslinked rubber particle is preferable. A crosslinked rubber having a core-shell structure having a crosslinked acrylic resin as a shell layer and a crosslinked polybutadiene or crosslinked silicone rubber as a core layer. Particles are more preferred.
Cross-linked NBR particles are particles obtained by partially cross-linking acrylonitrile and butadiene at the stage of copolymerization and copolymerization. It is also possible to obtain carboxylic acid-modified crosslinked NBR particles by copolymerizing together carboxylic acids such as acrylic acid and methacrylic acid.
Cross-linked butadiene rubber-cross-linked acrylic resin core-shell rubber particles can be obtained by a two-stage polymerization method in which butadiene particles are polymerized by emulsion polymerization, followed by addition of monomers such as acrylic acid ester and acrylic acid. .
Cross-linked silicone rubber-cross-linked acrylic resin core-shell rubber particles can be obtained by a two-stage polymerization method in which silicon particles are polymerized by emulsion polymerization, followed by addition of monomers such as acrylic acid ester and acrylic acid. .
The size of the rubber particles is 1 μm or less in terms of primary average particle diameter, and is preferably 50 nm to 1 μm. If the primary average particle diameter exceeds 1 μm, the adhesive strength is lowered and the insulation reliability in fine wiring is impaired. The “primary average particle diameter” here refers to the aggregated particle diameter, that is, the secondary particle diameter, not the aggregated single particle diameter.
The primary average particle diameter can be determined by measuring with a laser diffraction particle size distribution meter, for example.
The rubber particles as described above may be used alone or in combination of two or more.
The content of the rubber particles is preferably 50% by mass or less in the resin composition, and more preferably 1 to 30% by mass.
For example, a commercially available product of carboxylic acid-modified acrylonitrile butadiene rubber particles is XER-91 manufactured by Nippon Synthetic Rubber Co., Ltd. Examples of the core-shell particles of butadiene rubber-acrylic resin include Paraloid EXL2655 manufactured by Rohm and Haas Co., Ltd. and AC-3832 manufactured by Ganz Kasei Kogyo Co., Ltd. Examples of the core-shell rubber particles of the crosslinked silicone rubber-acrylic resin include GENIOPERLP52 manufactured by Asahi Kasei Wacker Silicone Co., Ltd.
By using rubber particles, it is possible to improve the crack resistance during the cooling and heating cycle.
[無機充填剤]
 上記熱硬化性樹脂組成物は、無機充填剤を含有する。無機充填剤は、熱硬化性樹脂組成物の硬化物の硬化収縮を抑制し、密着性、硬度などの特性を向上させるために使用される。無機充填剤としては、例えば、硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグシリシャスアース等が挙げられる。
[Inorganic filler]
The thermosetting resin composition contains an inorganic filler. The inorganic filler is used for suppressing the curing shrinkage of the cured product of the thermosetting resin composition and improving the properties such as adhesion and hardness. Examples of the inorganic filler include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Examples include rich earth.
 無機充填剤の平均粒径(D50)は1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μmであることがさらに好ましい。平均粒径が1μmを超える場合、パターン層が白濁する恐れがあるため、好ましくない。無機充填剤の平均粒径(D50)の下限値は、特に限定されないが、例えば、0.01μm以上である。ここで、平均粒径(D50)とは、平均一次粒径を意味する。
 平均粒径(D50)は、レーザー回折/散乱法により測定することができる。平均粒径が上記範囲にあることにより、屈折率が樹脂成分と近くなり、透過性が向上し、光照射による光塩基発生剤からの塩基の発生効率が上昇する。
 無機充填剤と、アルカリ現像性樹脂との屈折率差は、0.3以下であることが好ましい。屈折率差を0.3以下とすることにより、光の散乱を抑えて、良好な深部硬化特性を得ることができる。ここで、無機充填剤の屈折率は、1.4以上1.8以下であることが好ましい。なお、無機充填剤の屈折率は、JIS K 7105に準拠して測定することができる。
 無機充填剤の配合割合は、上記熱硬化性樹脂組成物の全固形分を基準として、20質量%以上80質量%以下が好ましく、より好ましくは30質量%以上80質量%以下である。無機充填剤の配合割合が80質量%を超えると、組成物の粘度が高くなり、塗布性が低下したり、熱硬化性樹脂組成物の硬化物が脆くなることがある。
 ラジカル反応により、硬化が進行する組成物では、無機充填剤の含有量が増加した場合、解像性が低下するが、本発明では、発生した塩基による硬化反応であるため、無機充填剤の含有量が増加した場合でも、良好な解像性を維持できる。
 また、無機充填剤の比重は、3以下であることが好ましく、より好ましくは2.8以下であり、さらにより好ましくは2.5以下である。無機充填剤の比重が3以下であることにより、熱膨張を抑えることができる。3以下の無機充填剤としては、例えば、シリカと水酸化アルミニウムが挙げられ、シリカが特に好ましい。
 無機充填剤の形状としては、不定形、針状、円盤状、りん片、球状、中空状などが挙げられる。ここで、組成物中に高い割合で配合可能な点から、球状が好ましい。そして、無機充填剤は耐湿性を向上させるため、シランカップリング剤等の表面処理剤で処理されていることが更に好ましい。
 また、無機充填剤を含有することにより、冷熱サイクル時のクラック耐性を向上させることができる。無機充填剤を多量に含有することにより、硬化後の反りを抑制することもできる。
 本発明では、硬化物の熱膨張係数(CTE)が、40ppm以下であることが好ましく、より好ましくは、30ppm以下であり、さらにより好ましくは、20ppm以下である。
The average particle size (D50) of the inorganic filler is preferably 1 μm or less, more preferably 0.7 μm or less, and even more preferably 0.5 μm. When the average particle diameter exceeds 1 μm, the pattern layer may become cloudy, which is not preferable. Although the lower limit of the average particle diameter (D50) of the inorganic filler is not particularly limited, it is, for example, 0.01 μm or more. Here, the average particle diameter (D50) means an average primary particle diameter.
The average particle diameter (D50) can be measured by a laser diffraction / scattering method. When the average particle diameter is in the above range, the refractive index is close to that of the resin component, the permeability is improved, and the generation efficiency of the base from the photobase generator by light irradiation is increased.
The difference in refractive index between the inorganic filler and the alkali developable resin is preferably 0.3 or less. By setting the difference in refractive index to 0.3 or less, it is possible to suppress light scattering and obtain good deep-curing characteristics. Here, the refractive index of the inorganic filler is preferably 1.4 or more and 1.8 or less. In addition, the refractive index of an inorganic filler can be measured based on JISK7105.
The blending ratio of the inorganic filler is preferably 20% by mass or more and 80% by mass or less, more preferably 30% by mass or more and 80% by mass or less, based on the total solid content of the thermosetting resin composition. When the blending ratio of the inorganic filler exceeds 80% by mass, the viscosity of the composition increases, and the applicability may decrease or the cured product of the thermosetting resin composition may become brittle.
In a composition in which curing proceeds due to radical reaction, when the content of the inorganic filler increases, the resolution decreases, but in the present invention, since it is a curing reaction by the generated base, the inclusion of the inorganic filler Even when the amount is increased, good resolution can be maintained.
Moreover, it is preferable that the specific gravity of an inorganic filler is 3 or less, More preferably, it is 2.8 or less, More preferably, it is 2.5 or less. When the specific gravity of the inorganic filler is 3 or less, thermal expansion can be suppressed. Examples of the inorganic filler of 3 or less include silica and aluminum hydroxide, and silica is particularly preferable.
Examples of the shape of the inorganic filler include an indeterminate shape, a needle shape, a disc shape, a scale piece, a spherical shape, and a hollow shape. Here, the spherical shape is preferable because it can be blended in the composition at a high ratio. In order to improve moisture resistance, the inorganic filler is more preferably treated with a surface treatment agent such as a silane coupling agent.
Moreover, the crack tolerance at the time of a thermal cycle can be improved by containing an inorganic filler. By containing a large amount of the inorganic filler, warping after curing can be suppressed.
In this invention, it is preferable that the thermal expansion coefficient (CTE) of hardened | cured material is 40 ppm or less, More preferably, it is 30 ppm or less, More preferably, it is 20 ppm or less.
 [有機溶剤]
 本発明の熱硬化性樹脂組成物には、樹脂組成物の調製のためや、基材やキャリアフィルムに塗布するための粘度調整のために、有機溶剤を使用することができる。
[Organic solvent]
In the thermosetting resin composition of the present invention, an organic solvent can be used for preparing the resin composition or adjusting the viscosity for application to a substrate or a carrier film.
 このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などが挙げることができる。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
[光重合性モノマー]
 本発明の熱硬化性樹脂組成物は、本発明の効果を阻害しない範囲で光重合性モノマーを含んでいてもよい。
 光重合性モノマーとしては、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキシド誘導体のモノ又はジ(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキシド或いはプロピレンオキシド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリジジルエーテルの(メタ)アクリレート類;及びメラミン(メタ)アクリレート等を挙げることができる。
 光重合性モノマーの配合量は、熱硬化性樹脂組成物の溶剤を除く固形分を基準として、50質量%以下であることが好ましく、より好ましくは、30質量%以下であり、さらにより好ましくは、15質量%以下である。光重合性モノマーの配合量が50質量%を超える場合、硬化収縮が大きくなるため、反りが大きくなる可能性がある。また、光重合性モノマーが(メタ)アクリレート由来の場合、エステル結合を含む。この場合、デスミア処理によって、エステル結合の加水分解が起こるため、電気特性が低下する可能性がある。
[Photopolymerizable monomer]
The thermosetting resin composition of the present invention may contain a photopolymerizable monomer as long as the effects of the present invention are not impaired.
Photopolymerizable monomers include alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate (Meth) acrylates; mono- or di (meth) acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, Polyhydric alcohols such as trishydroxyethyl isocyanurate or polyvalent (meth) acrylates of these ethylene oxide or propylene oxide adducts (Meth) acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth) acrylate and polyethoxydi (meth) acrylate of bisphenol A; glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl (Meth) acrylates of glycidyl ether such as isocyanurate; and melamine (meth) acrylate.
The blending amount of the photopolymerizable monomer is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably based on the solid content excluding the solvent of the thermosetting resin composition. 15 mass% or less. When the blending amount of the photopolymerizable monomer exceeds 50% by mass, the curing shrinkage increases, so that the warpage may increase. When the photopolymerizable monomer is derived from (meth) acrylate, it contains an ester bond. In this case, since the ester bond is hydrolyzed by the desmear treatment, the electrical characteristics may be deteriorated.
(その他の任意成分)
 本発明の熱硬化性樹脂組成物には、必要に応じてさらに、メルカプト化合物、密着促進剤、着色剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。
 特に、本発明では、着色剤の含有量を増加させた場合においても、アンダーカットを抑制して、良好なビアホールとラインを形成できる。
 これらは、電子材料の分野において公知の物を使用することができる。また、上記の熱硬化性樹脂組成物には、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
 また、熱硬化性成分として、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂等を配合してもよい。
 さらに、アルカリ現像性樹脂としてフェノール樹脂を含有し、熱反応性化合物としてエポキシ樹脂を含有することで、Tgを高くでき、原料の軟化点に依存すること無くHAST耐性に優れた硬化物が得られる樹脂組成物とすることができる。また、光重合性モノマー(分子内にエチレン性不飽和基を含有し、カルボキシル基含有樹脂を主成分とする光硬化性樹脂組成物において、光硬化を促進するために配合される低分子化合物)を配合しない組成とした場合、タック性に優れる樹脂組成物とすることができる。
 従来の光硬化性樹脂組成物では、光硬化反応を室温下で起こす為、硬化時に樹脂組成物のTgが上昇する結果、硬化反応が停止してしまう場合があり、樹脂組成物のTgを低く設計する必要があった。それに対して本発明のアルカリ現像型の熱硬化性樹脂組成物は、硬化反応前のTgに制限はなく、高Tgとすることが期待できる。また、本発明のアルカリ現像型熱硬化性樹脂組成物は、酸素阻害を受けずに硬化することが期待できる。
(Other optional ingredients)
If necessary, the thermosetting resin composition of the present invention may further contain components such as a mercapto compound, an adhesion promoter, a colorant, an antioxidant, and an ultraviolet absorber.
In particular, in the present invention, even when the content of the colorant is increased, undercuts can be suppressed and good via holes and lines can be formed.
As these, those known in the field of electronic materials can be used. The thermosetting resin composition includes a known and commonly used thickener such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, an antifoaming agent such as silicone, fluorine, and polymer, and / or Known and commonly used additives such as a leveling agent, a silane coupling agent, and a rust preventive agent can be blended.
Moreover, you may mix | blend well-known and usual thermosetting resins, such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc. as a thermosetting component.
Furthermore, by containing a phenol resin as the alkali-developable resin and an epoxy resin as the heat-reactive compound, a Tg can be increased, and a cured product having excellent HAST resistance can be obtained without depending on the softening point of the raw material. It can be set as a resin composition. In addition, a photopolymerizable monomer (a low molecular compound compounded to promote photocuring in a photocurable resin composition containing an ethylenically unsaturated group in the molecule and containing a carboxyl group-containing resin as a main component) When it is set as the composition which does not mix | blend, it can be set as the resin composition excellent in tackiness.
In the conventional photocurable resin composition, since the photocuring reaction occurs at room temperature, the Tg of the resin composition rises at the time of curing. As a result, the curing reaction may stop, and the Tg of the resin composition may be lowered. There was a need to design. On the other hand, the alkali development type thermosetting resin composition of the present invention is not limited to Tg before the curing reaction, and can be expected to have a high Tg. Further, the alkali development type thermosetting resin composition of the present invention can be expected to be cured without being inhibited by oxygen.
 本発明の熱硬化性樹脂組成物は、プリント配線板のパターン層の形成に有用であり、中でもソルダーレジストや層間絶縁層の材料として有用である。 The thermosetting resin composition of the present invention is useful for forming a pattern layer of a printed wiring board, and is particularly useful as a material for a solder resist or an interlayer insulating layer.
[パターン形成方法]
 本発明の熱硬化性樹脂組成物を好適に用いることができるパターン形成方法は、基材に熱硬化性樹脂組成物からなる樹脂層を形成する工程(A)、ネガ型のパターン状に光照射して熱硬化性樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化する工程(B)、アルカリ現像により未照射部を除去することによりネガ型のパターン層を形成する工程(C)を含む。
 パターン状の光照射により熱硬化性樹脂組成物の光照射部内に塩基を発生させることにより、光照射部を硬化できる。その後、アルカリ水溶液にて現像することで、未照射部を除去し、ネガ型のパターン層を形成できる。
 ここで、本発明では、工程(B)の後、樹脂層を加熱する工程(B1)を有することが好ましい。これにより、樹脂層を十分に硬化して、さらに硬化特性に優れたパターン層を得ることができる。
[Pattern formation method]
The pattern formation method which can use the thermosetting resin composition of this invention suitably is the process (A) of forming the resin layer which consists of a thermosetting resin composition in a base material, and light irradiation to a negative pattern shape Then, the step (B) of activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion, and the step of forming the negative pattern layer by removing the unirradiated portion by alkali development. (C) is included.
The light irradiation part can be cured by generating a base in the light irradiation part of the thermosetting resin composition by pattern light irradiation. Then, by developing with alkaline aqueous solution, an unirradiated part can be removed and a negative pattern layer can be formed.
Here, in this invention, it is preferable to have the process (B1) of heating a resin layer after a process (B). Thereby, a resin layer can fully be hardened and the pattern layer excellent in the hardening characteristic can be obtained.
[工程(A)]
 図1を参照しつつパターン形成方法を説明する。工程(A)は、基材に熱硬化性樹脂組成物からなる樹脂層を形成する工程である。樹脂層を形成する方法は、液状の熱硬化性樹脂組成物を基材上に、塗布、乾燥する方法や、熱硬化性樹脂組成物をドライフィルムにしたものを基材上にラミネートする方法によることができる。
[Step (A)]
The pattern forming method will be described with reference to FIG. A process (A) is a process of forming the resin layer which consists of a thermosetting resin composition in a base material. The resin layer is formed by a method in which a liquid thermosetting resin composition is applied and dried on a substrate, or a method in which a thermosetting resin composition is formed into a dry film and laminated on the substrate. be able to.
 熱硬化性樹脂組成物の基材への塗布方法は、ブレードコーター、リップコーター、コンマコーター、フィルムコーター等の公知の方法を適宜採用することができる。また、乾燥方法は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等、蒸気による加熱方式の熱源を備えたものを用い、乾燥機内の熱風を向流接触させる方法、およびノズルより支持体に吹き付ける方法等、公知の方法が適用できる。
 基材としては、予め回路形成されたプリント配線基材やフレキシブルプリント配線基材の他、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不繊布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・PPO・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリイミドフィルム、PETフィルム、ガラス基材、セラミック基材、ウエハ基材等を用いることができる。
As a method for applying the thermosetting resin composition to the substrate, a known method such as a blade coater, a lip coater, a comma coater, or a film coater can be appropriately employed. Also, the drying method is a method using a hot-air circulation type drying furnace, IR furnace, hot plate, convection oven, etc., equipped with a heat source of the heating method by steam, and the hot air in the dryer is counter-contacted and supported by the nozzle Known methods such as a method of spraying on the body can be applied.
In addition to printed wiring substrates and flexible printed wiring substrates that have been pre-circuited, paper-phenolic resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, glass cloth / non-woven cloth-epoxy Resin, glass cloth / paper-epoxy resin, synthetic fiber-epoxy resin, all grades (FR-4, etc.) copper-clad laminates using polyimide, polyethylene, PPO, cyanate ester, etc., polyimide film, A PET film, a glass substrate, a ceramic substrate, a wafer substrate and the like can be used.
[工程(B)]
 工程(B)は、ネガ型のパターン状に光照射して熱硬化性樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化する工程である。工程(B)は、光照射部で発生した塩基により、光塩基発生剤が不安定化し、さらに塩基が発生すると考えられる。このように塩基が化学的に増殖することにより、光照射部の深部まで十分硬化できる。
 光照射に用いられる光照射機としては、例えば、レーザー光、ランプ光、LED光を照射可能な直接描画装置を用いることができる。パターン状の光照射用のマスクは、ネガ型のマスクを用いることができる。
[Step (B)]
Step (B) is a step of irradiating light in a negative pattern and activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion. In the step (B), it is considered that the photobase generator is destabilized by the base generated in the light irradiation part, and further the base is generated. In this way, the base can be sufficiently cured to the deep part of the light irradiation part by chemically growing.
As a light irradiator used for light irradiation, for example, a direct drawing apparatus capable of irradiating laser light, lamp light, and LED light can be used. As the patterned light irradiation mask, a negative mask can be used.
 活性エネルギー線としては、最大波長が350~410nmの範囲にあるレーザー光又は散乱光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく熱硬化性樹脂組成物の熱反応性を向上させることができる。この範囲のレーザー光を用いていればガスレーザー、固体レーザーのいずれでもよい。また、その照射量は膜厚等によって異なるが、一般には100~1500mJ/cm、好ましくは300~1500mJ/cmの範囲内とすることができる。 As the active energy ray, it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength within this range, the thermal reactivity of the thermosetting resin composition can be improved efficiently. If a laser beam in this range is used, either a gas laser or a solid laser may be used. The irradiation amount varies depending on the film thickness and the like, but can generally be in the range of 100 to 1500 mJ / cm 2 , preferably 300 to 1500 mJ / cm 2 .
 直接描画装置としては、例えば、日本オルボテック社製、ペンタックス社製等のものを使用することができ、最大波長が350~410nmのレーザー光を発振する装置であればいずれの装置を用いてもよい。 As the direct drawing apparatus, for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus that oscillates laser light having a maximum wavelength of 350 to 410 nm may be used. .
[工程(B1)]
 工程(B1)は、加熱により光照射部を硬化する。工程(B1)は、工程(B)で発生した塩基により深部まで硬化できる。
 加熱温度は、熱硬化性樹脂組成物のうち光照射部は熱硬化するが、未照射部は熱硬化しない温度であることが好ましい。
 例えば、工程(B1)は、未照射の熱硬化性樹脂組成物の発熱開始温度又は発熱ピーク温度よりも低く、かつ、光照射した熱硬化性樹脂組成物の発熱開始温度又は発熱ピーク温度よりも高い温度で加熱することが好ましい。このように加熱することにより、光照射部のみを選択的に硬化することができる。
 ここで、加熱温度は、例えば、80~140℃である。加熱温度を80℃以上とすることにより、光照射部を十分に硬化できる。一方、加熱温度を140℃以下とすることにより、光照射部のみを選択的に硬化できる。加熱時間は、例えば、10~100分である。加熱方法は、上記乾燥方法と同様である。
 なお、未照射部では、光塩基発生剤から塩基が発生しないため、熱硬化が抑制される。
[Step (B1)]
In the step (B1), the light irradiation part is cured by heating. Step (B1) can be cured to a deep portion by the base generated in step (B).
The heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
For example, in the step (B1), the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition is lower than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. Heating at a high temperature is preferred. By heating in this way, only the light irradiation part can be selectively cured.
Here, the heating temperature is, for example, 80 to 140 ° C. By setting the heating temperature to 80 ° C. or higher, the light irradiation part can be sufficiently cured. On the other hand, by setting the heating temperature to 140 ° C. or lower, only the light irradiation part can be selectively cured. The heating time is, for example, 10 to 100 minutes. The heating method is the same as the drying method.
In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
[工程(C)]
 工程(C)は、現像により未照射部を除去することによりネガ型のパターン層を形成する工程である。現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等公知の方法によることができる。また、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、エタノールアミンなどのアミン類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液またはこれらの混合液を用いることができる。
[Step (C)]
Step (C) is a step of forming a negative pattern layer by removing unirradiated portions by development. As a developing method, a known method such as a dipping method, a shower method, a spray method, or a brush method can be used. Developers include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines such as ethanolamine, and alkalis such as tetramethylammonium hydroxide aqueous solution (TMAH). An aqueous solution or a mixed solution thereof can be used.
[工程(D)]
 パターン形成方法は、工程(C)の後に、さらに、紫外線照射工程(D)を含むことが好ましい。工程(C)の後にさらに紫外線照射を行うことで、光照射時に活性化せずに残った光塩基発生剤を活性化させることができる。工程(C)の後の紫外線照射工程(D)における紫外線の波長および照射量(照射量)は、工程(B)と同じであってもよく、異なっていてもよい。好適な照射量(照射量)は、150~2000mJ/cmである。
[Step (D)]
The pattern forming method preferably further includes an ultraviolet irradiation step (D) after the step (C). By further irradiating with ultraviolet rays after the step (C), the photobase generator remaining without being activated at the time of light irradiation can be activated. The wavelength and irradiation amount (irradiation amount) of ultraviolet rays in the ultraviolet irradiation step (D) after the step (C) may be the same as or different from those in the step (B). A suitable irradiation amount (irradiation amount) is 150 to 2000 mJ / cm 2 .
[工程(E)]
 上記パターン形成方法は、工程(C)の後に、さらに、熱硬化(ポストキュア)工程(E)を含むことが好ましい。
 工程(C)の後に工程(D)と工程(E)をともに行う場合、工程(E)は、工程(D)の後に行うことが好ましい。
 工程(E)は、工程(B)、または工程(B)および工程(D)により光塩基発生剤から発生した塩基により、パターン層を十分に熱硬化させる。工程(E)の時点では、未照射部を既に除去しているため、工程(E)は、未照射の熱硬化性樹脂組成物の硬化反応開始温度以上の温度で行うことができる。これにより、パターン層を十分に熱硬化させることができる。加熱温度は、例えば、160℃以上である。
[Step (E)]
The pattern formation method preferably further includes a thermosetting (post-cure) step (E) after the step (C).
When performing a process (D) and a process (E) together after a process (C), it is preferable to perform a process (E) after a process (D).
In the step (E), the pattern layer is sufficiently heat-cured by the base generated from the photobase generator in the step (B) or the steps (B) and (D). Since the unirradiated portion has already been removed at the time of the step (E), the step (E) can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition. Thereby, a pattern layer can fully be thermosetted. The heating temperature is, for example, 160 ° C. or higher.
[工程(F)]
 上記パターン形成方法は、さらに、レーザー加工工程(F)を含んでもよい。レーザー加工により微細な開口部を形成することができる。レーザーは、YAGレーザー、COレーザー、エキシマレーザーなど公知のレーザーを用いることができる。
 工程(F)は、工程(C)の後、又は、工程(D)、(E)を含む場合は、工程(D)、(E)の後に行うことが好ましい。
[Step (F)]
The pattern forming method may further include a laser processing step (F). Fine openings can be formed by laser processing. As the laser, a known laser such as a YAG laser, a CO 2 laser, or an excimer laser can be used.
The step (F) is preferably performed after the step (C) or after the steps (D) and (E) when the step (F) includes the steps (D) and (E).
[工程(G)]
 本発明のパターン形成方法は、さらに、工程(F)後、デスミア工程(G)を含んでもよい。
 工程(G)は、スミアを膨潤させて除去されやすくするためのスミア膨潤工程、スミアを除去する除去工程、および除去工程で使用されたデスミア液から生じるスラッジを中和する中和工程を含む。
 膨潤工程は、水酸化ナトリウム等のアルカリ薬液を用いて行うもので、デスミア薬液によるスミア除去を容易にするものである。
 除去工程は、重クロム酸や過マンガン酸等の酸化剤を含む酸性薬液を用いてスミアを除去する。
 中和工程は、水酸化ナトリウム等のアルカリ薬液を用いて、除去工程で使用した酸化剤を還元、除去する。
[Step (G)]
The pattern formation method of the present invention may further include a desmear process (G) after the process (F).
Step (G) includes a smear swelling step for swelling smear to facilitate removal, a removal step for removing smear, and a neutralization step for neutralizing sludge generated from the desmear liquid used in the removal step.
The swelling step is performed using an alkali chemical such as sodium hydroxide, and facilitates smear removal with a desmear chemical.
In the removing step, smear is removed using an acidic chemical solution containing an oxidizing agent such as dichromic acid or permanganic acid.
In the neutralization step, the oxidizing agent used in the removal step is reduced and removed using an alkaline chemical such as sodium hydroxide.
 以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明は、これら実施例、比較例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
(実施例1~19,比較例1~4)
<アルカリ現像型の熱硬化性樹脂組成物の調製>
 下記表1~3に記載の配合に従って、実施例/比較例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、熱硬化性樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部である。
(Examples 1 to 19, Comparative Examples 1 to 4)
<Preparation of alkali development type thermosetting resin composition>
According to the formulations shown in Tables 1 to 3 below, the materials described in Examples / Comparative Examples were respectively mixed, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a thermosetting resin composition. The values in the table are parts by mass unless otherwise specified.
<ドライフィルムの作製>
 キャリアフィルムとして、38μmの厚みのPETフィルム上に、熱硬化性樹脂組成物を、アプリケーターを用いて塗布し、その後90℃/30min乾燥しドライフィルムを作製した。熱硬化性樹脂組成物の厚みは乾燥後、約20μmになるように塗布量を調整した。その後、得られたドライフィルムを所定のサイズにスリット加工を行った。
<Production of dry film>
As a carrier film, a thermosetting resin composition was applied on a PET film having a thickness of 38 μm using an applicator, and then dried at 90 ° C. for 30 minutes to prepare a dry film. The coating amount was adjusted so that the thickness of the thermosetting resin composition was about 20 μm after drying. Thereafter, the obtained dry film was slit to a predetermined size.
<ラミネート>
 銅厚15μmで回路が形成されている両面プリント配線基材を用意し、メック社CZ-8100を使用して前処理を行った基材に、名機社真空ラミネーターMVLP-500を用いてプリント配線基材上にドライフィルムをラミネートした。ラミネート条件は温度80℃、圧力5kg/cm/60secで行った。
<Laminate>
Prepare a double-sided printed wiring board with a copper thickness of 15μm and a circuit formed on it, and print it on a base material that has been pre-treated with MEC CZ-8100 using a vacuum laminator MVLP-500 A dry film was laminated on the substrate. Lamination conditions were temperature 80 ° C., it was carried out at a pressure of 5kg / cm 2 / 60sec.
<Bステージ状態の評価(基材への形成時のハンドリング)>
 実施例1~19について、ドライフィルムのBステージ状態(半硬化状態)の評価を行った。得られた熱硬化性樹脂組成物が形成されているドライフィルムの所定のサイズにスリット加工を行い、ドライフィルムの状態を以下の方法で確認した。
(評価方法)
○:スリット加工後、樹脂層の割れと樹脂の粉落ちが確認された
△:スリット加工後、樹脂層の割れや、樹脂の粉落ちが確認された
<Evaluation of the B stage state (handling during formation on the substrate)>
Examples 1 to 19 were evaluated for the B-stage state (semi-cured state) of the dry film. Slit processing was performed to the predetermined size of the dry film in which the obtained thermosetting resin composition was formed, and the state of the dry film was confirmed with the following method.
(Evaluation methods)
○: After slit processing, cracking of resin layer and resin powder fall were confirmed. Δ: After slit processing, cracking of resin layer and resin powder fall were confirmed.
<スルーホール上の凹み評価>
 図3に示すように、直径が300μm、ピッチが1mmの間隔にて銅めっきスルーホールが形成されている厚さ0.3mmの両面プリント配線基材を用意し、メック社CZ-8100を使用して前処理を行った。その後、ドライフィルムの作製の段落に示す方法にて作製した厚さ50μmのドライフィルムを、名機社真空ラミネーターMVLP-500を用いて、スルーホールが形成されたプリント配線基材上に両面同時にドライフィルムをラミネートした。ラミネート条件は温度80℃、圧力5kg/cm/60secでおこなった。その後、熱硬化性樹脂層を備える基材に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にて表裏とも全面ベタ露光にて光照射した。光照射量については、DSCによる発熱ピーク温度を参考に表1~3に記載のように設定した。次いで表1~3に記載の温度条件にて60~80分間、基板を縦かけして加熱処理を行った。更にORC社紫外線照射装置にて1J/cmのエネルギー量で紫外線照射を行い、ついで熱風循環式乾燥炉にて170℃/60min縦かけ硬化させ、完全硬化させた。その後、表面粗さ測定器SE-700(小坂研究所製)を用い、スルーホール上の凹み量の確認を行った。
(評価方法) 
○:スルーホール上の最大凹み部分が5μm以下
△:スルーホール上の最大凹み部分が5μmを超える
<Evaluation of dent on through hole>
As shown in FIG. 3, a double-sided printed wiring board having a diameter of 300 μm and a pitch of 1 mm with copper-plated through-holes formed at a thickness of 0.3 mm was prepared, and MEC CZ-8100 was used. The pretreatment was performed. Thereafter, dry film of 50 μm thickness produced by the method shown in the paragraph of dry film production is simultaneously dried on both sides of the printed wiring board on which through holes are formed, using a vacuum laminator MVLP-500 of Meiki Co., Ltd. The film was laminated. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec. After that, the entire surface of the base material provided with the thermosetting resin layer was irradiated with ORC HMW680GW (metal halide lamp, scattered light) on the entire surface with a solid exposure. The light irradiation amount was set as shown in Tables 1 to 3 with reference to the exothermic peak temperature by DSC. Subsequently, the substrate was subjected to heat treatment for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Further, UV irradiation was carried out with an energy amount of 1 J / cm 2 using an ORC UV irradiation device, followed by longitudinal curing at 170 ° C./60 min in a hot air circulating drying furnace to complete curing. Thereafter, the surface roughness measuring device SE-700 (manufactured by Kosaka Laboratory) was used to confirm the amount of dent on the through hole.
(Evaluation methods)
○: The maximum recess on the through hole is 5 μm or less. Δ: The maximum recess on the through hole exceeds 5 μm.
<開口パターンの形成の評価>
 上記で得られた樹脂層を備える基板に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にて開口設計サイズ100μmのネガ型のパターン状に光照射した。光照射量については、DSCによる発熱ピーク温度を参考に下記表1~3に記載のように設定した。次いで表1~3に記載の温度条件にて60~80分間加熱処理を行った。その後、35℃の、3wt% TMAH/5wt%エタノールアミン混合水溶液中に基板を浸漬して3分間現像を行い、現像性およびパターニングの評価を下記基準に従って行った。得られた結果を表1~3に示す。
(評価方法)
◎:TMAH/5wt%エタノールアミン混合水溶液に代えて、炭酸ナトリウム水溶液でも、現像が可能。光照射部表面に現像液によるダメージが無く、また未照射部に現像残渣がみられない状態
○:光照射部表面に現像液によるダメージが無く、また未照射部に現像残渣がみられない状態
×:未照射部に現像残渣が確認された。または、未照射部の現像ができなかった状態。
××:光照射部および未照射部ともに完全に溶解した状態。
×××:開口部の深部にアンダーカットが見られた
<Evaluation of formation of opening pattern>
The substrate provided with the resin layer obtained above was irradiated with a negative pattern with an aperture design size of 100 μm by ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as described in Tables 1 to 3 below with reference to the exothermic peak temperature by DSC. Next, heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Thereafter, the substrate was immersed in a 3 wt% TMAH / 5 wt% ethanolamine mixed aqueous solution at 35 ° C. and developed for 3 minutes, and development and patterning were evaluated according to the following criteria. The obtained results are shown in Tables 1 to 3.
(Evaluation methods)
A: Development is possible with a sodium carbonate aqueous solution in place of the TMAH / 5 wt% ethanolamine mixed aqueous solution. No damage from the developer on the surface of the light irradiated area, and no development residue on the unirradiated area ○: No damage on the surface of the light irradiated area due to the developer, and no development residue on the unirradiated area X: The development residue was confirmed in the non-irradiated part. Alternatively, the unexposed area could not be developed.
XX: A state where both the light irradiated part and the unirradiated part are completely dissolved.
XXX: Undercut was observed in the deep part of the opening
<ラインパターン形成>
 前記で得られた樹脂層を備える基板に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にてライン/スペース=100/100μmの設計値のネガ型のパターン状に光照射した。光照射量については、DSCによる発熱ピーク温度を参考に下記表1~3に記載のように設定した。次いで表1~3に記載の温度条件にて60~80分間加熱処理を行った。その後、35℃の、3wt% TMAH/5wt%エタノールアミン混合水溶液中に基板を浸漬して3分間現像を行い、得られた設計値100μmのライン状のパターンについて評価を下記基準に従って行った。得られた結果を表1~3に示す。
(評価方法)
○:ラインのトップ長さ100μm、ボトム長さ100μmとなり設計値どおりのパターンが得られた。
△:ラインのトップ長さ100μm、ボトム長さが60μm以上100μm未満となりわずかにアンダーカットが見られた。
×:ラインのトップ長さ100μm、ボトム長さが60μm未満となり、ボトムに大きくアンダーカットが見られた。
<Line pattern formation>
The substrate provided with the resin layer obtained above was irradiated with a negative pattern having a design value of line / space = 100/100 μm using ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as described in Tables 1 to 3 below with reference to the exothermic peak temperature by DSC. Next, heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Thereafter, the substrate was immersed in a 3 wt% TMAH / 5 wt% ethanolamine mixed aqueous solution at 35 ° C. and developed for 3 minutes, and the obtained linear pattern having a design value of 100 μm was evaluated according to the following criteria. The obtained results are shown in Tables 1 to 3.
(Evaluation methods)
○: The top length of the line was 100 μm and the bottom length was 100 μm, and a pattern as designed was obtained.
Δ: The top length of the line was 100 μm and the bottom length was 60 μm or more and less than 100 μm, and a slight undercut was observed.
X: The top length of the line was 100 μm, the bottom length was less than 60 μm, and a large undercut was observed at the bottom.
(デスミア耐性)
 開口パターンの形成を評価した基材と同じ方法で作製した基材について、更にORC社紫外線照射装置にて1J/cmのエネルギー量で紫外線照射を行い、ついで熱風循環式乾燥炉にて表1~3に記載のポストキュア温度で60分間硬化させた(ポストキュア)。その後、光照射面にレーザー加工をおこなった。光源はCOレーザー(日立ビアメカニクス社、光源10.6μm)にて加工した。下記基準に従って評価した。加工性の優劣をつけるために、全て同条件でレーザー加工を行った。
 加工径狙いはトップ径65μm/ボトム50μmである。
条件:アパチャー(マスク径):3.1mm/パルス幅20μsec/出力2W/周波数5kHz/ショット数:バースト3ショット
 このレーザー加工を行った基材について、更に過マンガン酸デスミア水溶液(湿式法)によりデスミア処理を行った。デスミア耐性の評価として、基材表面の表面粗度の確認および、レーザー開口部周辺の状態を下記基準に従って評価をおこなった。表面粗度の確認は、レーザー顕微鏡VK-8500(キーエンス社、測定倍率2000倍、Z軸方向測定ピッチ10nm)により、それぞれの表面粗度Raを測定した。レーザー開口部の観察は、光学顕微鏡によって行った。
 薬液について(ローム&ハース社)
膨潤     MLB-211 温度80℃/時間10min
過マンガン酸 MLB-213 温度80℃/時間15min
還元     MLB-216 温度50℃/時間5min
 評価方法について
◎:過マンガン酸デスミア後の表面粗度Raが0.1μm未満、かつレーザー加工後の加工径との差が2μm以下
○:過マンガン酸デスミア後の表面粗度Raが0.1~0.3μm以下、かつレーザー加工後の加工径との差が2~5μm
×:過マンガン酸デスミア後の表面粗度Raが0.3μmを超えるかつレーザー加工後の加工径との差が5μm以上
(Desmear resistance)
The base material produced by the same method as the base material for which the formation of the opening pattern was evaluated was further irradiated with ultraviolet rays at an energy amount of 1 J / cm 2 using an ORC ultraviolet irradiation device, and then subjected to Table 1 in a hot air circulation drying furnace. It was cured for 60 minutes at the post-cure temperature described in (3) (post-cure). Then, laser processing was performed on the light irradiation surface. The light source was processed with a CO 2 laser (Hitachi Via Mechanics, light source 10.6 μm). Evaluation was made according to the following criteria. In order to give superiority or inferiority in workability, laser processing was performed under the same conditions.
The target of the processing diameter is a top diameter of 65 μm / bottom of 50 μm.
Condition: Aperture (mask diameter): 3.1 mm / pulse width 20 μsec / output 2 W / frequency 5 kHz / number of shots: burst 3 shots The substrate subjected to laser processing is further desmeared with a permanganate desmear aqueous solution (wet method). Processed. As evaluation of desmear resistance, confirmation of the surface roughness of the substrate surface and the state around the laser opening were evaluated according to the following criteria. For confirmation of the surface roughness, each surface roughness Ra was measured with a laser microscope VK-8500 (Keyence Corporation, measurement magnification 2000 times, Z-axis direction measurement pitch 10 nm). The laser opening was observed with an optical microscope.
About chemicals (Rohm & Haas)
Swelling MLB-211 Temperature 80 ℃ / hour 10min
Permanganic acid MLB-213 Temperature 80 ℃ / hour 15min
Reduction MLB-216 Temperature 50 ℃ / hour 5min
Evaluation method A: Surface roughness Ra after permanganate desmear is less than 0.1 μm, and the difference from the processed diameter after laser processing is 2 μm or less ○: Surface roughness Ra after permanganate desmear is 0.1 ~ 0.3μm or less, and the difference from the processed diameter after laser processing is 2 ~ 5μm
×: Surface roughness Ra after permanganate desmear exceeds 0.3 μm and the difference from the processed diameter after laser processing is 5 μm or more
<硬化後反り評価>
 ドライフィルムの作製の段落に示す方法にて作製した厚さ20μmのドライフィルムを、名機社真空ラミネーターMVLP-500を用いて、50mm×50mmのサイズの正方形に切り出した18μm銅箔の光沢面の片面にラミネートした。ラミネート条件は温度80℃、圧力5kg/cm/60secでおこなった。その後、熱硬化性樹脂層を備える銅箔に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にて全面ベタ露光にて光照射した。光照射量については、DSCによる発熱ピーク温度を参考に表1~3に記載のように設定した。次いで表1~3に記載の温度条件にて60~80分間、基板を加熱処理した。更にORC社紫外線照射装置にて1J/cmのエネルギー量で紫外線照射を行い、ついで熱風循環式乾燥炉にて170℃/60min硬化させ、熱硬化性樹脂組成物を片面に備える銅箔を得た。その後、得られた硬化物の反りの状態の評価として、ノギスにて端部4箇所の反り量を計測した。
(評価方法)
◎:ソリがほぼ見られない。4箇所の端部のうち最大反り部分の反り量が5mm未満
○:わずかにソリが見らた。4箇所の端部のうち最大反り部分の反り量が5mm以上20mm未満
△:4箇所の端部のうち最大反り部分の反り量が20mm以上
×:硬化物が筒状に収縮した。ノギスにて端部の反り量を計測することができなかった
<Evaluation of warpage after curing>
The glossy surface of an 18 μm copper foil obtained by cutting a 20 μm thick dry film produced by the method shown in the dry film production paragraph into a square of 50 mm × 50 mm size using a vacuum laminator MVLP-500 Laminated on one side. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec. Thereafter, the copper foil provided with the thermosetting resin layer was irradiated with light on the entire surface by ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as shown in Tables 1 to 3 with reference to the exothermic peak temperature by DSC. Next, the substrate was heat-treated for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Further, UV irradiation was performed with an energy amount of 1 J / cm 2 using an ORC UV irradiation device, followed by curing at 170 ° C./60 min in a hot air circulating drying oven to obtain a copper foil having a thermosetting resin composition on one side. It was. Thereafter, as an evaluation of the warped state of the obtained cured product, the amount of warpage at four end portions was measured with a caliper.
(Evaluation methods)
A: Almost no warpage is seen. The warp amount of the maximum warp portion of the four end portions is less than 5 mm. O: Slight warping was observed. The warp amount of the maximum warp portion among the four end portions is 5 mm or more and less than 20 mm. Δ: The warp amount of the maximum warp portion among the four end portions is 20 mm or more. X: The cured product contracted into a cylindrical shape. The amount of warp at the end could not be measured with calipers
<CTE測定>
 ドライフィルムの作製の項目に記載方法に順じ、それぞれの厚み40μmのドライフィルムを作製。その後、18μmの銅箔の光沢面側に、名機社真空ラミネーターMVLP-500を用いてドライフィルムをラミネートした。ラミネート条件は温度80℃、圧力5kg/cm/60secでおこなった。その後、ORC社HMW680GW(メタルハライドランプ、散乱光)にて全面ベタ露光をおこなった。光照射量については、DSCによる発熱ピーク温度を参考に下記表1~3に記載のように設定した。次いで表1~3に記載の温度条件にて60~80分間加熱処理を行った。その後、ORC社紫外線照射装置にて1J/cmのエネルギー量で紫外線照射を行い、ついで熱風循環式乾燥炉にて170℃/60minにて完全硬化させた。その後、銅箔より剥離し、実施例・比較例に記載の樹脂組成物を得た。その後、得られた樹脂組成物を3mm幅、長さ10mmの短冊状に切り出しを行い、JIS-C-6481に記載のTMA法(引っ張り法)にて、CTE測定(熱膨張係数)の評価をおこなった。昇温速度は5℃/min、Tg以下の熱膨張係数の評価をおこなった。熱膨張係数は、温度範囲25℃から100℃の平均熱膨張係数、単位はppmとした。
それぞれ得られたCTEの数値を表1~3中に示す。
<CTE measurement>
In accordance with the method described in the section of dry film production, each dry film with a thickness of 40 μm was produced. Thereafter, a dry film was laminated on the glossy surface side of the 18 μm copper foil by using a vacuum laminator MVLP-500 of Meiki Co., Ltd. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec. Thereafter, the entire surface was exposed with ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as described in Tables 1 to 3 below with reference to the exothermic peak temperature by DSC. Next, heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Tables 1 to 3. Thereafter, UV irradiation was performed with an energy amount of 1 J / cm 2 using an ORC UV irradiation device, and then complete curing was performed at 170 ° C./60 min in a hot air circulating drying furnace. Then, it peeled from copper foil and obtained the resin composition as described in an Example and a comparative example. Thereafter, the obtained resin composition was cut into a strip shape having a width of 3 mm and a length of 10 mm, and CTE measurement (thermal expansion coefficient) was evaluated by the TMA method (tensile method) described in JIS-C-6481. I did it. The rate of temperature increase was 5 ° C./min, and the thermal expansion coefficient of Tg or less was evaluated. The thermal expansion coefficient was an average thermal expansion coefficient in the temperature range of 25 ° C. to 100 ° C., and the unit was ppm.
The obtained CTE values are shown in Tables 1 to 3.
<冷熱サイクル特性の評価>
 上記のように過マンガン酸デスミア処理を行ったプリント配線板に対して、更に市販品の無電解ニッケルめっき浴および無電解金メッキ浴を用いて、ニッケル0.5μm、金メッキ0.03μmの条件にてメッキを行い、パターン層に金メッキ処理を施した。得られたプリント配線板について、冷熱サイクル特性評価をおこなった。処理条件は、-65℃で30min、150℃で30minを1サイクルとして、熱履歴を加え2000サイクル経過後で、パターン層の表面及び周辺部の状態を光学顕微鏡にて観察し、下記基準に従ってクラックの評価をおこなった。観察パターン数は100穴であった。得られた結果を下記表1~3に示す。
(評価方法)
◎〇:パターン層の表面及び周辺部にクラック発生なし
◎:パターン層の周辺部のクラック発生率10%未満
○:パターン層の周辺部のクラック発生率10%以上30%未満
△:パターン層の周辺部のクラック発生率30%以上
<Evaluation of thermal cycle characteristics>
The printed wiring board subjected to the permanganate desmear treatment as described above was further subjected to nickel 0.5 μm and gold plating 0.03 μm using commercially available electroless nickel plating bath and electroless gold plating bath. Plating was performed, and the pattern layer was gold-plated. About the obtained printed wiring board, the thermal cycle characteristic evaluation was performed. The processing conditions are as follows: -65 ° C for 30 min, 150 ° C for 30 min, heat history is added, and after 2000 cycles, the surface of the pattern layer and the periphery are observed with an optical microscope, and cracks are observed according to the following criteria: Was evaluated. The number of observation patterns was 100 holes. The obtained results are shown in Tables 1 to 3 below.
(Evaluation methods)
◎ ○: No cracks are generated on the surface and the periphery of the pattern layer. ◎: Crack generation rate of the periphery of the pattern layer is less than 10%. ○: Crack occurrence rate of the periphery of the pattern layer is 10% or more and less than 30%. Over 30% crack generation rate in the peripheral area
<熱反応性化合物、マレイミド化合物、及びアルカリ現像性樹脂の屈折率の測定方法>
 測定装置:アッペ屈折率計
 測定条件:波長589.3nm、温度25℃
<Method of measuring refractive index of heat-reactive compound, maleimide compound, and alkali-developable resin>
Measuring apparatus: Appe refractometer Measuring conditions: Wavelength 589.3 nm, temperature 25 ° C.
(熱硬化性化合物+アルカリ現像性樹脂+光塩基発生剤+フィラー)
Figure JPOXMLDOC01-appb-T000006
(Thermosetting compound + alkali developable resin + photobase generator + filler)
Figure JPOXMLDOC01-appb-T000006
(+高分子樹脂)
Figure JPOXMLDOC01-appb-T000007
(+ Polymer resin)
Figure JPOXMLDOC01-appb-T000007
(比較例)
Figure JPOXMLDOC01-appb-T000008
(Comparative example)
Figure JPOXMLDOC01-appb-T000008
 表1~3における各成分は、次のとおりである。
(熱反応性化合物)
※828:Bis-A型液状エポキシ(当量190g/eq)、三菱化学社
※HP-4032:ナフトール型エポキシ(当量150g/eq)、DIC社
※HP-7200 H60:ジシクロペンタジエン型エポキシ(当量265g/eq)、DIC社をシクロヘキサノンで溶解。固形分60%
(マレイミド化合物)
※UVT-302:マレイミド基を側鎖に有するアクリルポリマー(当量320g/eq)、東亞合成社
(アルカリ現像性樹脂)
※HF-1M H60:フェノールノボラック(水酸基当量105g/eq)、明和化成社をシクロヘキサノンで溶解。固形分60%
MEH-7851M H60: ビフェニル/フェノールノボラック(水酸基当量210g/eq)、明和化成社をシクロヘキサノンで溶解。固形分60%。
※ジョンクリル586 H60: スチレンアクリル酸共重合樹脂、Mw=3100、固形分酸価=108mgKOH/g、ジョンソンポリマー社をシクロヘキサノンで溶解。固形分60%
※ジョンクリル68 H60:スチレンアクリル酸共重合樹脂、Mw=10000、酸価195mgKOH/g、ジョンソンポリマー社
(光塩基発生剤)
※Irg369:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、BASFジャパン社
※WPBG-140:1-(アントラキノン-2-イル)エチルイミダゾールカルボキシレート、和光純薬社
(高分子樹脂)
※YX8100 BH30:フェノキシ樹脂。三菱化学社。固形分30%
(無機充填剤)
※SO-C2:球状シリカ D50=0.5μm、屈折率=1.4~1.5、アドマテックス社、比重:2.2g/cm
※AO-502:球状アルミナ D50=0.7μm、屈折率=1.76、アドマテックス社、比重:3.9g/cm
※ハイジライトH-42M:水酸化アルミニウムD50=1.0μm、屈折率=1.65、昭和電工社、比重:2.4g/cm
※B-30:硫酸バリウム、D50=0.3μm、屈折率=1.64、堺化学社、比重:4.3g/cm
(その他)
※R-2000:クレゾールノボラック、アクリル酸、THPA変性樹脂(固形分61%、固形分酸価87mgKOH/g、DIC社)
※DPHA:ジペンタエリスリトールヘキサアクリレート_日本化薬社
※IRG-184:1-ヒドロキシシクロヘキシル-フェニルケトン_チバジャパン社
The components in Tables 1 to 3 are as follows.
(Thermo-reactive compound)
* 828: Bis-A type liquid epoxy (equivalent 190 g / eq), Mitsubishi Chemical Corporation * HP-4032: naphthol type epoxy (equivalent 150 g / eq), DIC * HP-7200 H60: dicyclopentadiene type epoxy (equivalent 265 g) / Eq), dissolving DIC with cyclohexanone. 60% solids
(Maleimide compound)
* UVT-302: Acrylic polymer with maleimide groups in the side chain (equivalent 320 g / eq), Toagosei Co., Ltd. (alkali developable resin)
* HF-1M H60: phenol novolak (hydroxyl equivalent: 105 g / eq), Meiwa Kasei Co., Ltd. dissolved in cyclohexanone. 60% solids
MEH-7851M H60: Biphenyl / phenol novolak (hydroxyl equivalent: 210 g / eq), Meiwa Kasei Co., Ltd. dissolved in cyclohexanone. 60% solids.
* Johncrill 586 H60: Styrene acrylic acid copolymer resin, Mw = 3100, solid content acid value = 108 mgKOH / g, Johnson polymer was dissolved in cyclohexanone. 60% solids
* John Cryl 68 H60: Styrene acrylic acid copolymer resin, Mw = 10000, acid value 195 mg KOH / g, Johnson Polymer Co., Ltd. (photobase generator)
* Irg369: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, BASF Japan * WPBG-140: 1- (anthraquinone-2-yl) ethylimidazole carboxylate, Wako Jun Yakusha (polymer resin)
* YX8100 BH30: Phenoxy resin. Mitsubishi Chemical Corporation. Solid content 30%
(Inorganic filler)
* SO-C2: spherical silica D50 = 0.5 μm, refractive index = 1.4 to 1.5, Admatechs, specific gravity: 2.2 g / cm 3
* AO-502: Spherical alumina D50 = 0.7 μm, Refractive index = 1.76, Admatex, specific gravity: 3.9 g / cm 3
* Hijilite H-42M: Aluminum hydroxide D50 = 1.0 μm, Refractive index = 1.65, Showa Denko KK, Specific gravity: 2.4 g / cm 3
* B-30: Barium sulfate, D50 = 0.3 μm, Refractive index = 1.64, Sakai Chemical Co., Ltd., specific gravity: 4.3 g / cm 3
(Other)
* R-2000: Cresol novolak, acrylic acid, THPA-modified resin (solid content 61%, solid content acid value 87 mgKOH / g, DIC)
* DPHA: Dipentaerythritol hexaacrylate_Nippon Kayaku Co., Ltd. * IRG-184: 1-hydroxycyclohexyl-phenylketone_Ciba Japan
 表1~3に示すように、実施例1~19では、アルカリ現像によるパターン形成が可能であり、得られたパターンは、硬化特性及び冷熱サイクル特性に優れることが確認できた。
 また、実施例15,16等において、高分子樹脂を配合することで、熱硬化性樹脂組成物の溶融粘度が上昇し、露光後の加熱時において、スルーホール部分の樹脂の流動性を抑止することができる。その結果、スルーホール上に凹みのみられない平坦な基板を作製できる。
 そして、実施例18、19では、無機充填剤の含有量がかなり多い場合でも、冷熱サイクル時に良好な硬化性が得られた。
 一方、比較例4の光ラジカル性組成物では、アルカリ現像によるパターン形成が困難になった。また、ライン形状も不良であった。さらに、硬化後の反りも大きく、冷熱サイクル時の硬化性にも劣っていた。
As shown in Tables 1 to 3, in Examples 1 to 19, it was possible to form a pattern by alkali development, and it was confirmed that the obtained pattern was excellent in curing characteristics and cooling cycle characteristics.
In Examples 15 and 16 and the like, the polymer resin is added to increase the melt viscosity of the thermosetting resin composition and suppress the fluidity of the resin in the through-hole portion during heating after exposure. be able to. As a result, a flat substrate that is not recessed on the through hole can be manufactured.
In Examples 18 and 19, good curability was obtained during the cooling / heating cycle even when the content of the inorganic filler was considerably high.
On the other hand, with the photoradical composition of Comparative Example 4, pattern formation by alkali development became difficult. The line shape was also poor. Furthermore, the warpage after curing was large, and the curability during the cooling and heating cycle was also inferior.
<光照射直後のDSC測定>
 実施例1で得られた樹脂層を備える基材に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にてネガパターンにて光照射した。それぞれの基材について、照射量を1000mJ/cmとしてパターンの光照射を行った。光照射後、基材上より樹脂層を削りだし、直ちにセイコーインスツルメンツ社DSC-6200において、昇温速度5℃/minにて30~300℃まで昇温し、光照射部と未照射部それぞれについてDSC測定をおこなった。また、紫外線照射直後、ポストキュア前の熱硬化性樹脂組成物からなる硬化層に対して、同様にDSC測定をおこなった。
 図2は、未照射部、照射量1000mJ/cmの光照射部、照射量1000mJ/cmで光照射した後更に1000mJ/cmでUV照射した光照射部のDSCチャート図である。実施例1の光照射部では、光照射によりピークが低温側にシフトした。
<DSC measurement immediately after light irradiation>
The base material provided with the resin layer obtained in Example 1 was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light). About each base material, the light irradiation of the pattern was performed by making irradiation amount into 1000 mJ / cm < 2 >. After light irradiation, the resin layer is scraped off from the base material, and immediately heated to 30-300 ° C. at a temperature increase rate of 5 ° C./min in Seiko Instruments Inc. DSC-6200. DSC measurement was performed. Moreover, DSC measurement was similarly performed with respect to the cured layer which consists of a thermosetting resin composition immediately after ultraviolet irradiation and before postcure.
2, the unirradiated portions, the light irradiation portion of the irradiation amount 1000 mJ / cm 2, a DSC chart of the light irradiation unit that is UV irradiated with further 1000 mJ / cm 2 was irradiated with light irradiation amount 1000 mJ / cm 2. In the light irradiation part of Example 1, the peak shifted to the low temperature side by light irradiation.
(比較例5)
 銅厚15μmで回路が形成されている板厚0.4mmの両面プリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、商品名PSR-4000G23K(太陽インキ製造(株)社、エポキシアクリレート構造を有するアルカリ現像性樹脂を含む光硬化性樹脂組成物)をスクリーン印刷にて、乾燥後で20μmになるように塗布をおこなった。次いで、熱風循環式乾燥炉にて80℃/30minにて乾燥後、ORC社HMW680GW(メタルハライドランプ、散乱光)にて、照射量300mJ/cmにてネガ型のパターン状に光照射した。その後、1wt%炭酸ナトリウム水溶液で60秒間現像し、次いで熱風循環式乾燥炉を用いて150℃/60min間熱処理を行い、パターン状の硬化塗膜を得た。
 その後、上記実施例2と同様にデスミア耐性の評価をおこなった。その結果、デスミア耐性は、「×」であった。
(Comparative Example 5)
A double-sided printed wiring substrate having a copper thickness of 15 μm and a circuit formed thereon having a thickness of 0.4 mm was prepared, and pre-treated using MEC CZ-8100. Thereafter, the product name PSR-4000G23K (Taiyo Ink Manufacturing Co., Ltd., photocurable resin composition containing an alkali-developable resin having an epoxy acrylate structure) was applied by screen printing so that it would be 20 μm after drying. I did it. Next, after drying at 80 ° C./30 min in a hot air circulating drying furnace, the film was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light) at an irradiation amount of 300 mJ / cm 2 . Thereafter, development was performed with a 1 wt% sodium carbonate aqueous solution for 60 seconds, followed by heat treatment at 150 ° C./60 min using a hot-air circulating drying oven to obtain a patterned cured coating film.
Thereafter, desmear resistance was evaluated in the same manner as in Example 2 above. As a result, the desmear resistance was “x”.

Claims (4)

  1.  アルカリ現像性樹脂、
     熱反応性化合物、
     無機充填剤、および、
     光塩基発生剤、を含み、
     選択的な光照射で前記アルカリ現像性樹脂と前記熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするアルカリ現像型の熱硬化性樹脂組成物。
    Alkali developable resin,
    Thermoreactive compounds,
    Inorganic filler, and
    A photobase generator,
    An alkali-developable thermosetting resin composition characterized in that a negative-type pattern can be formed by alkali development by an addition reaction between the alkali-developable resin and the heat-reactive compound by selective light irradiation. object.
  2.  前記無機充填剤の平均粒径が1μm以下であることを特徴とする請求項1記載のアルカリ現像型の熱硬化性樹脂組成物。 2. The alkali developing type thermosetting resin composition according to claim 1, wherein the inorganic filler has an average particle size of 1 μm or less.
  3.  光照射によりDSC測定において発熱ピークを生じるか、又は、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることを特徴とする請求項1又は2に記載のアルカリ現像型の熱硬化性樹脂組成物。 An exothermic peak is generated in DSC measurement by light irradiation, or the heat generation starting temperature in DSC measurement of the alkali-development-type thermosetting resin composition irradiated with light is that of the non-irradiated alkali-development-type thermosetting resin composition. DSC measurement of an alkali development type thermosetting resin composition that is lower than the heat generation start temperature in DSC measurement or has an exothermic peak temperature in DSC measurement of an alkali development type thermosetting resin composition that has been irradiated with light. The alkali-developable thermosetting resin composition according to claim 1, wherein the thermosetting resin composition is lower than an exothermic peak temperature.
  4.  請求項1~3のいずれか一項に記載のアルカリ現像型の熱硬化性樹脂組成物からなるパターン層を有することを特徴とするプリント配線板。 A printed wiring board comprising a pattern layer comprising the alkali development type thermosetting resin composition according to any one of claims 1 to 3.
PCT/JP2013/063726 2012-05-17 2013-05-16 Alkali-developable thermosetting resin composition, and printed wiring board WO2013172433A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147034931A KR102114104B1 (en) 2012-05-17 2013-05-16 Alkali-developable thermosetting resin composition, and printed wiring board
JP2014515678A JP6082733B2 (en) 2012-05-17 2013-05-16 Alkali development type thermosetting resin composition, printed wiring board
CN201380025696.7A CN104334604A (en) 2012-05-17 2013-05-16 Alkali-developable thermosetting resin composition, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-113862 2012-05-17
JP2012113862 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172433A1 true WO2013172433A1 (en) 2013-11-21

Family

ID=49583834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063726 WO2013172433A1 (en) 2012-05-17 2013-05-16 Alkali-developable thermosetting resin composition, and printed wiring board

Country Status (5)

Country Link
JP (1) JP6082733B2 (en)
KR (1) KR102114104B1 (en)
CN (1) CN104334604A (en)
TW (1) TWI620019B (en)
WO (1) WO2013172433A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JPWO2013172432A1 (en) * 2012-05-17 2016-01-12 太陽インキ製造株式会社 Alkali development type thermosetting resin composition, printed wiring board
WO2019189219A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2019194292A (en) * 2018-05-02 2019-11-07 学校法人東京理科大学 Photocrosslinkable resin composition and its crosslinked object, and method for producing crosslinked object
JP2020052288A (en) * 2018-09-27 2020-04-02 味の素株式会社 Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP7322988B2 (en) 2018-09-27 2023-08-08 味の素株式会社 Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP7383206B1 (en) 2022-03-30 2023-11-17 古河電気工業株式会社 Composition for thermally conductive film adhesive, thermally conductive film adhesive, semiconductor package using thermally conductive film adhesive, and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786351B1 (en) 2016-05-27 2017-10-17 조혁상 Device for identifying the warpage level of blade
WO2018030694A1 (en) * 2016-08-09 2018-02-15 주식회사 엘지화학 Insulating layer manufacturing method and multilayered printed circuit board manufacturing method
KR101947150B1 (en) * 2016-08-09 2019-02-12 주식회사 엘지화학 Method for manufacturing insulating film and multilayered printed circuit board
JP6650076B1 (en) * 2018-03-30 2020-02-19 太陽インキ製造株式会社 Alkali-developing photosensitive resin composition, dry film, cured product, and printed wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129697A1 (en) * 2005-05-31 2006-12-07 Taiyo Ink Manufacturing Co., Ltd. Photocuring/thermosetting resin composition, curing/setting product thereof and printed wiring board obtained using the same
JP2008134621A (en) * 2006-10-24 2008-06-12 Taiyo Ink Mfg Ltd Photocurable/thermosetting resin composition and printed wiring board using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243869A (en) 1985-04-19 1986-10-30 Taiyo Ink Seizo Kk Resist ink composition
JP2862313B2 (en) 1990-02-28 1999-03-03 山栄化学株式会社 Solder resist ink composition and cured product thereof
EP0555749B1 (en) * 1992-02-14 1999-05-19 Shipley Company Inc. Radiation sensitive compositions and processes
JP4191956B2 (en) * 2002-05-24 2008-12-03 サンノプコ株式会社 Photosensitive resin composition
CN101189550A (en) * 2005-05-31 2008-05-28 太阳油墨制造株式会社 Photocuring/thermosetting resin composition, curing/setting product thereof and printed wiring board obtained using the same
KR100904348B1 (en) * 2006-10-24 2009-06-23 다이요 잉키 세이조 가부시키가이샤 Photocurable thermosetting resin composition and printed wiring board using same
WO2008123110A1 (en) * 2007-04-04 2008-10-16 Hitachi Chemical Company, Ltd. Photosensitive adhesive composition, film-like adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, semiconductor device and semiconductor device manufacturing method
JP5464314B2 (en) * 2007-10-01 2014-04-09 山栄化学株式会社 Inorganic filler and organic filler-containing curable resin composition, resist film-coated printed wiring board, and method for producing the same
JP5449688B2 (en) * 2008-03-26 2014-03-19 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
JP2010014767A (en) * 2008-07-01 2010-01-21 Denki Kagaku Kogyo Kk Alkali developable photocurable/heat curable solder resist composition and metal base circuit board using the same
JP5403545B2 (en) * 2009-09-14 2014-01-29 太陽ホールディングス株式会社 Solder resist composition, dry film and cured product thereof, and printed wiring board using them
JP5619443B2 (en) * 2010-03-18 2014-11-05 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
JP5608413B2 (en) * 2010-04-30 2014-10-15 太陽ホールディングス株式会社 Curable resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129697A1 (en) * 2005-05-31 2006-12-07 Taiyo Ink Manufacturing Co., Ltd. Photocuring/thermosetting resin composition, curing/setting product thereof and printed wiring board obtained using the same
JP2008134621A (en) * 2006-10-24 2008-06-12 Taiyo Ink Mfg Ltd Photocurable/thermosetting resin composition and printed wiring board using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013172432A1 (en) * 2012-05-17 2016-01-12 太陽インキ製造株式会社 Alkali development type thermosetting resin composition, printed wiring board
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
WO2019189219A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2019194292A (en) * 2018-05-02 2019-11-07 学校法人東京理科大学 Photocrosslinkable resin composition and its crosslinked object, and method for producing crosslinked object
JP2020052288A (en) * 2018-09-27 2020-04-02 味の素株式会社 Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
CN110955115A (en) * 2018-09-27 2020-04-03 味之素株式会社 Resin composition, photosensitive film with support, printed wiring board, and semiconductor device
JP7281263B2 (en) 2018-09-27 2023-05-25 味の素株式会社 Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP7322988B2 (en) 2018-09-27 2023-08-08 味の素株式会社 Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
JP7383206B1 (en) 2022-03-30 2023-11-17 古河電気工業株式会社 Composition for thermally conductive film adhesive, thermally conductive film adhesive, semiconductor package using thermally conductive film adhesive, and manufacturing method thereof

Also Published As

Publication number Publication date
KR20150009589A (en) 2015-01-26
JPWO2013172433A1 (en) 2016-01-12
TW201407285A (en) 2014-02-16
CN104334604A (en) 2015-02-04
JP6082733B2 (en) 2017-02-15
TWI620019B (en) 2018-04-01
KR102114104B1 (en) 2020-05-25

Similar Documents

Publication Publication Date Title
JP6082733B2 (en) Alkali development type thermosetting resin composition, printed wiring board
JP6317253B2 (en) Liquid development type maleimide composition, printed wiring board
JP2018036651A (en) Alkali development type thermosetting resin composition and printed wiring board
JP6105858B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, and printed wiring board
WO2013094606A1 (en) Dry film, printed wiring board using same, method for producing printed wiring board, and flip chip mounting substrate
US9188871B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, printed circuit board and manufacturing method thereof
JP5930704B2 (en) Printed wiring board manufacturing method, printed wiring board and flip chip mounting board
JP6078535B2 (en) Alkali development type thermosetting resin composition, printed wiring board
JP6010340B2 (en) Printed wiring board and printed wiring board manufacturing method
TWI758257B (en) Curable resin composition, dry film, and printed wiring board using the same
JP6363861B2 (en) Curable resin composition, dry film and cured product thereof, and printed wiring board having cured coating formed using the same
KR102168004B1 (en) Curable resin composition, cured product thereof, printed wiring board having same, and method for producing cured product
WO2022211122A1 (en) Laminated structure, dry film, cured product, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034931

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13790111

Country of ref document: EP

Kind code of ref document: A1