JPWO2017013850A1 - Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them - Google Patents

Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them Download PDF

Info

Publication number
JPWO2017013850A1
JPWO2017013850A1 JP2016564107A JP2016564107A JPWO2017013850A1 JP WO2017013850 A1 JPWO2017013850 A1 JP WO2017013850A1 JP 2016564107 A JP2016564107 A JP 2016564107A JP 2016564107 A JP2016564107 A JP 2016564107A JP WO2017013850 A1 JPWO2017013850 A1 JP WO2017013850A1
Authority
JP
Japan
Prior art keywords
hot
rolling
ferritic stainless
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016564107A
Other languages
Japanese (ja)
Other versions
JP6112273B1 (en
Inventor
正崇 吉野
正崇 吉野
光幸 藤澤
光幸 藤澤
力 上
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6112273B1 publication Critical patent/JP6112273B1/en
Publication of JPWO2017013850A1 publication Critical patent/JPWO2017013850A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

十分な耐食性を有すると共に、成形後のたわみやねじれを抑制可能なフェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法を提供すること。質量%で、C:0.005〜0.060%、Si:0.02〜0.50%、Mn:0.01〜1.00%、P:0.04%以下、S:0.01%以下、Cr:15.5〜18.0%、Al:0.001〜0.10%、N:0.005〜0.100%、Ni:0.1〜1.0%を含有し、残部がFeおよび不可避的不純物からなり、下式(1)で算出される縦弾性率の面内異方性の絶対値が35GPa以下であるフェライト系ステンレス熱延鋼板。|ΔE|=|(EL−2×ED+EC)/2|・・・(1)ここで、ELは圧延方向に平行な方向の縦弾性率(GPa)、EDは圧延方向に対して45°の方向の縦弾性率(GPa)、ECは圧延方向と直角方向の縦弾性率(GPa)である。To provide a ferritic stainless steel hot-rolled steel sheet and hot-rolled annealed sheet that have sufficient corrosion resistance and can suppress deflection and twisting after forming, and methods for producing the same. By mass%, C: 0.005 to 0.060%, Si: 0.02 to 0.50%, Mn: 0.01 to 1.00%, P: 0.04% or less, S: 0.01 %: Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.005 to 0.100%, Ni: 0.1 to 1.0%, A ferritic stainless hot-rolled steel sheet, the balance of which is Fe and inevitable impurities, and the absolute value of in-plane anisotropy of longitudinal modulus calculated by the following formula (1) is 35 GPa or less. | ΔE | = | (EL−2 × ED + EC) / 2 | (1) where E L is the longitudinal elastic modulus (GPa) in the direction parallel to the rolling direction, and E D is 45 ° with respect to the rolling direction. The longitudinal elastic modulus (GPa) and EC in the direction are the longitudinal elastic modulus (GPa) in the direction perpendicular to the rolling direction.

Description

本発明は、十分な耐食性を有し、剛性に優れたフェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法に関するものである。   The present invention relates to a ferritic stainless hot-rolled steel sheet and hot-rolled annealed sheet having sufficient corrosion resistance and excellent rigidity, and a method for producing them.

近年、自動車における排気ガスに関する法規制の強化が進んでおり、燃費の向上が急務となっている。そこで、自動車のエンジンから生じた排気ガスを再度エンジンの吸気として用いる排気ガス再循環(Exhaust Gas Recirculation、EGR)システムの適用が進んでいる。エンジンから生じた排気ガスは、ガス温度を下げるためのEGRクーラーを通過した後に再度エンジンに供給される。排気ガスを循環させるにあたっては、ガスの漏洩を防ぐために各部品間にフランジを設置する必要がある。中でも、自動車走行時に終始振動が加わるEGRクーラーのような部材との接合部に用いるフランジには、振動によるフランジのたわみに起因した部品間の間隙の発生によるガス漏洩を防止するために十分な剛性を発現させる必要がある。このことから、EGRクーラーのような自動車走行時に終始振動が加わる部材間のフランジには厚肉(例えば、板厚:6mm以上)のフランジが用いられている。   In recent years, regulations on exhaust gas in automobiles have been strengthened, and improvement in fuel efficiency has become an urgent issue. Therefore, an exhaust gas recirculation (EGR) system in which exhaust gas generated from an automobile engine is used again as engine intake air has been applied. Exhaust gas generated from the engine is supplied to the engine again after passing through an EGR cooler for lowering the gas temperature. When circulating the exhaust gas, it is necessary to install a flange between the components in order to prevent gas leakage. Above all, the flange used at the joint with a member such as an EGR cooler, which is subject to vibration all the time when the vehicle is running, has sufficient rigidity to prevent gas leakage due to the generation of gaps between parts due to the deflection of the flange due to vibration. Must be expressed. For this reason, a thick-walled flange (for example, a plate thickness: 6 mm or more) is used as a flange between members to which vibration is applied all the time when the vehicle is traveling, such as an EGR cooler.

従来、このような厚肉のフランジには普通鋼が用いられてきた。しかし、EGRシステムのような排気ガスが通過する部品では、排気ガスによる腐食が懸念される。そのため、普通鋼に比べて耐食性に優れるステンレス鋼の適用が検討されており、厚肉のフランジに適用できる十分な剛性を有した、板厚の大きい(例えば、板厚:6mm以上の)フェライト系ステンレス熱延鋼板が求められている。   Conventionally, ordinary steel has been used for such a thick flange. However, there is a concern about corrosion caused by exhaust gas in parts through which exhaust gas passes, such as the EGR system. Therefore, the application of stainless steel, which is superior in corrosion resistance compared to ordinary steel, has been studied, and has a sufficient rigidity that can be applied to thick flanges and has a large thickness (for example, a thickness of 6 mm or more). There is a need for stainless hot rolled steel sheets.

例えば、特許文献1には、質量%で、C:0.015%以下、Si:0.01〜0.4%、Mn:0.01〜0.8%、P:0.04%以下、S:0.01%以下、Cr:14.0〜18.0%未満、Ni:0.05〜1%、Nb:0.3〜0.6%、Ti:0.05%以下、N:0.020%以下、Al:0.10%以下、B:0.0002〜0.0020%を含有し、残部がFe及び不可避的不純物であり、Nb、CおよびNの含有量がNb/(C+N)≧16を満たし、0℃におけるシャルピー衝撃値が10J/cm以上であり、板厚が5.0〜9.0mmであるフェライト系ステンレス熱延鋼板が開示されている。For example, Patent Document 1 includes mass%, C: 0.015% or less, Si: 0.01 to 0.4%, Mn: 0.01 to 0.8%, P: 0.04% or less, S: 0.01% or less, Cr: 14.0 to less than 18.0%, Ni: 0.05 to 1%, Nb: 0.3 to 0.6%, Ti: 0.05% or less, N: 0.020% or less, Al: 0.10% or less, B: 0.0002 to 0.0020%, the balance is Fe and inevitable impurities, and the content of Nb, C and N is Nb / ( A ferritic stainless hot rolled steel sheet satisfying C + N) ≧ 16, a Charpy impact value at 0 ° C. of 10 J / cm 2 or more, and a plate thickness of 5.0 to 9.0 mm is disclosed.

これに対し、近年、TiやNb等のC、N安定化元素の含有量を極力少なくした比較的安価なステンレス鋼(例えばSUS430、13Crステンレス鋼など)が強く求められている。   On the other hand, in recent years, there has been a strong demand for relatively inexpensive stainless steel (for example, SUS430, 13Cr stainless steel, etc.) in which the content of C and N stabilizing elements such as Ti and Nb is minimized.

国際公開第2014/157576号International Publication No. 2014/157576

しかしながら、従来のTiおよびNbを含有しないフェライト系ステンレス熱延鋼板を上記のフランジ等に成形した場合、振動時等にたわみやねじれが発生しやすいという問題がある。   However, when a conventional ferritic stainless hot-rolled steel sheet not containing Ti and Nb is formed on the above-described flange or the like, there is a problem that bending or twisting is likely to occur during vibration.

本発明は、かかる課題を解決し、十分な耐食性を有すると共に、成形後のたわみやねじれを抑制可能なフェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法を提供することを目的とする。   An object of the present invention is to provide a ferritic stainless steel hot-rolled steel sheet and hot-rolled annealed steel sheet that can solve such problems and have sufficient corrosion resistance and can be prevented from being bent and twisted after forming, and a method for producing the same. And

本発明者らは、課題を解決するために詳細な検討を行った結果、フランジ等への適用後、振動時にたわみやねじれ等の変形を抑制するためには、鋼板において、以下の式(1)で表される縦弾性率の面内異方性の絶対値|ΔE|を小さくすればよいことを知見した。さらに、この縦弾性率の面内異方性の絶対値を35GPa以下にすることで、フランジ等において十分に実用化できることも知見した。
|ΔE|=|(E−2×E+E)/2| ・・・(1)
ここで、Eは圧延方向に平行な方向の縦弾性率(GPa)、Eは圧延方向に対して45°の方向の縦弾性率(GPa)、Eは圧延方向と垂直方向の縦弾性率(GPa)である。
また、E、E、Eは、それぞれ、鋼板の圧延方向、圧延45°方向、圧延方向と垂直方向について、23℃の温度条件下、JIS Z 2280−1993に記載の横共振法により測定した縦弾性率を用いて得ることができる。
As a result of detailed studies to solve the problems, the present inventors have found that the following formula (1) is applied to a steel sheet in order to suppress deformation such as deflection and torsion during vibration after application to a flange or the like. It was found that the absolute value | ΔE | of the in-plane anisotropy of the longitudinal elastic modulus represented by Furthermore, it has also been found that by making the absolute value of the in-plane anisotropy of the longitudinal elastic modulus 35 GPa or less, it can be sufficiently put into practical use in a flange or the like.
| ΔE | = | (E L −2 × E D + E C ) / 2 | (1)
Here, E L is the longitudinal elastic modulus (GPa) in the direction parallel to the rolling direction, E D is the longitudinal elastic modulus (GPa) in the direction of 45 ° with respect to the rolling direction, and E C is the longitudinal elasticity in the direction perpendicular to the rolling direction. Elastic modulus (GPa).
In addition, E L , E D , and E C are respectively determined by the transverse resonance method described in JIS Z 2280-1993 under the temperature condition of 23 ° C. in the rolling direction of the steel sheet, the rolling 45 ° direction, and the direction perpendicular to the rolling direction. It can be obtained using the measured longitudinal elastic modulus.

そして、適切な成分のフェライト系ステンレス鋼に対して、特に多パスからなる仕上げ熱間圧延工程の最終3パスにおける圧延温度域および累積圧下率(=100−(最終板厚/最終3パスの圧延開始前の板厚)×100[%])を適切に制御することにより、縦弾性率の面内異方性を大幅に低減できることを知見した。   And, for ferritic stainless steel of an appropriate component, the rolling temperature range and the cumulative reduction ratio (= 100− (final plate thickness / final 3 pass rolling) in the final 3 pass of the finish hot rolling process consisting of multiple passes. It has been found that the in-plane anisotropy of the longitudinal elastic modulus can be significantly reduced by appropriately controlling the plate thickness before start) × 100 [%]).

本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.005〜0.060%、Si:0.02〜0.50%、Mn:0.01〜1.00%、P:0.04%以下、S:0.01%以下、Cr:15.5〜18.0%、Al:0.001〜0.10%、N:0.005〜0.100%、Ni:0.1〜1.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
下式(1)で算出される縦弾性率の面内異方性の絶対値|ΔE|が35GPa以下であるフェライト系ステンレス熱延鋼板。
|ΔE|=|(E−2×E+E)/2| ・・・(1)
ここで、Eは圧延方向に平行な方向の縦弾性率(GPa)、Eは圧延方向に対して45°の方向の縦弾性率(GPa)、Eは圧延方向と直角方向の縦弾性率(GPa)である。
[2]成分組成として、質量%で、さらに、Cu:0.1〜1.0%、Mo:0.1〜0.5%、Co:0.01〜0.5%のうちから選ばれる1種または2種以上を含有する上記[1]に記載のフェライト系ステンレス熱延鋼板。
[3]成分組成として、質量%で、さらに、V:0.01〜0.25%、Ti:0.001〜0.015%、Nb:0.001〜0.025%、Mg:0.0002〜0.0050%、B:0.0002〜0.0050%、Ca:0.0002〜0.0020%、REM:0.01〜0.10%のうちから選ばれる1種または2種以上を含有する上記[1]または[2]に記載のフェライト系ステンレス熱延鋼板。
[4]上記[1]〜[3]のいずれかに記載のフェライト系ステンレス熱延鋼板に熱延板焼鈍を施して得られるフェライト系ステンレス熱延焼鈍板。
[5]上記[1]〜[3]のいずれかに記載のフェライト系ステンレス熱延鋼板の製造方法であって、3パス以上の仕上げ圧延を行う熱間圧延工程において、仕上げ圧延の最終3パスを温度範囲900〜1100℃、累積圧下率25%以上で行うフェライト系ステンレス熱延鋼板の製造方法。
[6]上記[5]に記載のフェライト系ステンレス熱延鋼板の製造方法を用い、
前記熱間圧延工程後に、さらに800〜900℃で熱延板焼鈍を行うフェライト系ステンレス熱延焼鈍板の製造方法。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.005 to 0.060%, Si: 0.02 to 0.50%, Mn: 0.01 to 1.00%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.005 to 0.100%, Ni: 0.1 to 1.0% Containing, the remainder having a component composition consisting of Fe and inevitable impurities,
A ferritic stainless hot-rolled steel sheet having an in-plane anisotropy absolute value | ΔE | of the longitudinal elastic modulus calculated by the following formula (1) of 35 GPa or less.
| ΔE | = | (E L −2 × E D + E C ) / 2 | (1)
Here, E L is the longitudinal elastic modulus (GPa) in the direction parallel to the rolling direction, E D is the longitudinal elastic modulus (GPa) in the direction of 45 ° with respect to the rolling direction, and E C is the longitudinal elasticity in the direction perpendicular to the rolling direction. Elastic modulus (GPa).
[2] The component composition is, in mass%, further selected from Cu: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5%. The ferritic stainless hot-rolled steel sheet according to the above [1], containing one or more kinds.
[3] As component composition, in mass%, V: 0.01 to 0.25%, Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%, Mg: 0.00. One or more selected from 0002 to 0.0050%, B: 0.0002 to 0.0050%, Ca: 0.0002 to 0.0020%, REM: 0.01 to 0.10% The ferritic stainless hot-rolled steel sheet according to the above [1] or [2] containing
[4] A ferritic stainless hot-rolled annealed sheet obtained by subjecting the ferritic stainless hot-rolled steel sheet according to any one of [1] to [3] to hot-rolled sheet annealing.
[5] The method for producing a ferritic stainless hot-rolled steel sheet according to any one of [1] to [3] above, wherein in the hot rolling step of performing finish rolling of 3 passes or more, the final 3 passes of finish rolling The manufacturing method of the ferritic stainless steel hot-rolled steel sheet which performs by the temperature range 900-1100 degreeC and the cumulative reduction rate 25% or more.
[6] Using the method for producing a ferritic stainless hot-rolled steel sheet according to [5] above,
The manufacturing method of the ferritic stainless steel hot-rolled annealing board which performs a hot-rolling sheet annealing further at 800-900 degreeC after the said hot rolling process.

本発明によれば、十分な耐食性を有し、成形後のたわみやねじれを抑制可能なフェライト系ステンレス熱延鋼板および熱延焼鈍板が得られる。   According to the present invention, a ferritic stainless hot-rolled steel sheet and a hot-rolled annealed sheet that have sufficient corrosion resistance and can suppress deflection and twisting after forming can be obtained.

なお、本発明における十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験(塩水噴霧(35℃、5質量%NaCl、噴霧2hr)→乾燥(60℃、相対湿度40%、4hr)→湿潤(50℃、相対湿度≧95%、2hr))を1サイクルとする試験)を8サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100[%])が25%以下であることを意味する。   In addition, sufficient corrosion resistance in the present invention refers to a salt spray cycle test (salt spray (35 ° C., 5% by mass) defined in JIS H8502 on a steel plate whose end face is sealed after polishing the surface with # 600 emery paper. (NaCl, spraying 2 hr) → drying (60 ° C., relative humidity 40%, 4 hr) → wetting (50 ° C., relative humidity ≧ 95%, 2 hr)))) It means that the rusting area ratio (= rusting area / total area of steel plate × 100 [%]) is 25% or less.

本発明のフェライト系ステンレス熱延鋼板および熱延焼鈍板は、質量%で、C:0.005〜0.060%、Si:0.02〜0.50%、Mn:0.01〜1.00%、P:0.04%以下、S:0.01%以下、Cr:15.5〜18.0%、Al:0.001〜0.10%、N:0.005〜0.100%、Ni:0.1〜1.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下式(1)で算出される縦弾性率の面内異方性の絶対値|ΔE|が35GPa以下である。
|ΔE|=|(E−2×E+E)/2| ・・・(1)
なお、ここで、Eは圧延方向に平行な方向の縦弾性率(GPa)、Eは圧延方向に対して45°の方向の縦弾性率(GPa)、Eは圧延方向と垂直方向の縦弾性率(GPa)である。
The ferritic stainless steel hot-rolled steel sheet and hot-rolled annealed sheet of the present invention are in mass%, C: 0.005 to 0.060%, Si: 0.02 to 0.50%, Mn: 0.01 to 1. 00%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.005 to 0.100 %, Ni: 0.1 to 1.0%, with the balance being a component composition consisting of Fe and inevitable impurities, the in-plane anisotropy of the longitudinal elastic modulus calculated by the following formula (1) The absolute value | ΔE | is 35 GPa or less.
| ΔE | = | (E L −2 × E D + E C ) / 2 | (1)
Note that, E L is the longitudinal elastic modulus in the direction parallel to the rolling direction (GPa), modulus of longitudinal elasticity in the direction of E D is 45 ° to the rolling direction (GPa), E C is the rolling direction and the vertical direction The longitudinal elastic modulus (GPa).

また、E、E、Eは、それぞれ、鋼板の圧延方向、圧延45°方向、圧延方向と垂直方向について、23℃の温度条件下、JIS Z 2280−1993に記載の横共振法により測定した縦弾性率を用いて得ることができる。In addition, E L , E D , and E C are respectively determined by the transverse resonance method described in JIS Z 2280-1993 under the temperature condition of 23 ° C. in the rolling direction of the steel sheet, the rolling 45 ° direction, and the direction perpendicular to the rolling direction. It can be obtained using the measured longitudinal elastic modulus.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のフェライト系ステンレス熱延鋼板および熱延焼鈍板は、主に自動車のEGRクーラー部品に用いる厚肉のフランジに使用されることを目的としている。本発明者らは、各種フェライト系ステンレス熱延鋼板をEGRクーラー用の厚肉フランジに適用し、その性能を詳細に評価した。その結果、縦弾性率の面内異方性の絶対値が35GPaを超えるフェライト系ステンレス熱延鋼板を適用した場合、自動車走行時の振動により大きなたわみやねじれが生じやすいことを突き止めた。   The ferritic stainless steel hot-rolled steel sheet and hot-rolled annealed sheet of the present invention are intended to be used mainly for thick-walled flanges used in automobile EGR cooler parts. The present inventors applied various ferritic stainless steel hot-rolled steel sheets to a thick flange for an EGR cooler, and evaluated the performance in detail. As a result, it has been found that when a ferritic stainless hot rolled steel sheet having an in-plane anisotropy of longitudinal elastic modulus exceeding 35 GPa is applied, large deflection and twist are likely to occur due to vibration during vehicle travel.

そこで、本発明者らは、フェライト系ステンレス熱延鋼板において縦弾性率の面内異方性を低減する方法を、特に多段のスタンドを用いた多パスからなる熱間圧延の各パスにおける圧延温度と圧下率に着目して鋭意検討した。その結果、3パス以上からなる多パスの仕上げ熱間圧延における最終3パスの圧延を、温度範囲900〜1100℃、累積圧下率25%以上(好ましくは30%以上)で行うことにより縦弾性率の面内異方性が大幅に低減し、所望の剛性も得られることを見出した。   Accordingly, the present inventors have developed a method for reducing the in-plane anisotropy of the longitudinal elastic modulus in a ferritic stainless steel hot-rolled steel sheet, in particular, the rolling temperature in each pass of hot rolling consisting of multiple passes using a multi-stage stand. And intensively studied focusing on the reduction ratio. As a result, the longitudinal elastic modulus is obtained by rolling the final three passes in the multipass finish hot rolling consisting of three passes or more in a temperature range of 900 to 1100 ° C. and a cumulative reduction ratio of 25% or more (preferably 30% or more). It was found that the in-plane anisotropy was significantly reduced and the desired rigidity was obtained.

上記手法により、所望の縦弾性率の面内異方性が発現する理由について以下に説明する。   The reason why the in-plane anisotropy of the desired longitudinal elastic modulus is expressed by the above method will be described below.

フェライト系ステンレス熱延鋼板の縦弾性率は、鋼板の集合組織に強く依存する。熱延鋼板の集合組織は圧延による加工ひずみの導入と再結晶を繰り返すことにより形成されるため、その集合組織は圧延加工を行う温度とそのひずみ量によって制御できる。   The longitudinal elastic modulus of a ferritic stainless steel hot-rolled steel sheet strongly depends on the texture of the steel sheet. Since the texture of the hot-rolled steel sheet is formed by repeatedly introducing and recrystallizing processing strain due to rolling, the texture can be controlled by the temperature at which the rolling process is performed and the amount of strain.

一方、フェライト系ステンレス鋼の熱間圧延前のスラブの板厚中央部には、展伸フェライト粒が鋳造方向に沿って連なって分布している。このようなステンレス鋼スラブを従来の技術で熱間圧延した場合、板厚中央部は展伸粒が多く粒界面積が少ないために鋼板表層部に比べて再結晶サイトが少なくなる。   On the other hand, expanded ferrite grains are distributed along the casting direction in the center portion of the slab before hot rolling of the ferritic stainless steel. When such a stainless steel slab is hot-rolled by a conventional technique, the center portion of the plate thickness has a large number of stretched grains and a small grain interfacial area, so that there are fewer recrystallization sites than the steel plate surface layer portion.

さらに、鋼板を圧延した場合、鋼板は主に表層部から変形して伸張する。そのため、圧下率が小さい場合には板厚中央部の変形量が小さくなり、板厚中央部に圧延ひずみがほとんど導入されない。   Furthermore, when a steel plate is rolled, the steel plate is deformed and stretched mainly from the surface layer portion. For this reason, when the rolling reduction is small, the amount of deformation in the central portion of the plate thickness is small, and almost no rolling strain is introduced into the central portion of the plate thickness.

そして、従来技術による熱間圧延では、鋼板表層部ではひずみの導入と再結晶が繰り返される一方で、板厚中央部では再結晶の進行が大きく遅滞する。それにより、鋳造時に生成した類似の結晶方位を有する展伸フェライト粒が破壊されずに残存しやすくなり、熱間圧延後に縦弾性率の面内異方性は大きくなる。   In the hot rolling according to the prior art, the introduction of strain and recrystallization are repeated in the steel sheet surface layer portion, while the progress of recrystallization is greatly delayed in the center portion of the plate thickness. Thereby, the expanded ferrite grains having a similar crystal orientation generated during casting are likely to remain without being destroyed, and the in-plane anisotropy of the longitudinal elastic modulus is increased after hot rolling.

このような縦弾性率の面内異方性を抑制する最適な方法として、本発明者らは、仕上げ熱間圧延の最終3パスを再結晶が活発に生じる温度域である900〜1100℃の範囲で、かつ累積圧下率を25%以上と従来よりも大きな圧下を加えることを考案した。   As an optimal method for suppressing the in-plane anisotropy of the longitudinal elastic modulus, the present inventors have a temperature range of 900 to 1100 ° C., which is a temperature range in which recrystallization actively occurs in the final three passes of finish hot rolling. It was devised to apply a greater reduction than the conventional range, with a cumulative reduction rate of 25% or more.

具体的には、本発明者らは7パスの仕上げ熱間圧延により製造される熱延鋼板の縦弾性率の面内異方性に及ぼす各圧延パスの実施温度および圧下率の影響を系統的に調査した。その結果、熱間圧延後の鋼板の縦弾性率の面内異方性は前半4パスの温度および圧下率にはほとんど影響されなかったのに対し、最終3パスの圧延温度および圧下率には強く影響される傾向があることを知見した。そこで、本発明者らは最終3パスの圧延温度、圧下率および最終3パスの累積圧下率の影響をさらに詳細に調査した。その結果、熱延鋼板の縦弾性率の面内異方性は最終3パス圧延を900〜1100℃の範囲で実施した場合に大きく低減される傾向があり、かつその際の熱延鋼板の縦弾性率の面内異方性の変化量は、各パスの圧下率ではなく、最終3パスの累積圧下率で整理できることを知見した。すなわち、熱延鋼板における縦弾性率の面内異方性は、仕上げ圧延を900〜1100℃の温度範囲、かつ累積圧下率で25%以上で行って完了させることが重要であることを見出した。   Specifically, the present inventors systematically affect the effect of the rolling temperature and rolling reduction of each rolling pass on the in-plane anisotropy of the longitudinal elastic modulus of hot-rolled steel sheet produced by 7-pass finishing hot rolling. Investigated. As a result, the in-plane anisotropy of the longitudinal elastic modulus of the steel sheet after hot rolling was hardly affected by the temperature and rolling reduction of the first 4 passes, whereas the rolling temperature and rolling reduction of the final 3 passes were not affected. It was found that there is a tendency to be strongly influenced. Therefore, the present inventors investigated in further detail the influence of the rolling temperature and rolling reduction in the final three passes and the cumulative rolling reduction in the final three passes. As a result, the in-plane anisotropy of the longitudinal elastic modulus of the hot-rolled steel sheet tends to be greatly reduced when the final three-pass rolling is performed in the range of 900 to 1100 ° C., and the longitudinal strength of the hot-rolled steel sheet at that time It has been found that the amount of change in the in-plane anisotropy of the elastic modulus can be arranged not by the rolling reduction rate of each pass but by the cumulative rolling reduction rate of the final three passes. That is, the in-plane anisotropy of the longitudinal elastic modulus in the hot-rolled steel sheet has been found to be important to complete the finish rolling at a temperature range of 900 to 1100 ° C. and a cumulative reduction ratio of 25% or more. .

本発明者らは、最終3パスより前の圧延パスの圧延温度および圧下率が熱延鋼板の縦弾性率の面内異方性に与える影響が小さい理由を調査した。その結果、最終3パスよりも前の圧延パスでは圧延開始前の板厚が大きく、圧下率を大きくしたとしても板厚中央部にまで十分に圧延ひずみが導入されないことに加え、圧延温度が高いために圧延後に生成した再結晶粒の過度な成長が生じて粗大粒となるために、再結晶粒の生成による金属組織の異方性解消効果が最終3パスでの累積効果に比較して大幅に少ないためであることが判明した。   The present inventors investigated the reason why the rolling temperature and the rolling reduction of the rolling pass before the final three passes have little influence on the in-plane anisotropy of the longitudinal elastic modulus of the hot-rolled steel sheet. As a result, in the rolling pass before the final three passes, the plate thickness before rolling starts is large, and even if the rolling reduction is increased, the rolling strain is not sufficiently introduced to the central portion of the plate thickness, and the rolling temperature is high. For this reason, excessive growth of recrystallized grains generated after rolling occurs, resulting in coarse grains. Therefore, the effect of eliminating the anisotropy of the metal structure due to the formation of recrystallized grains is significantly larger than the cumulative effect in the final three passes. It was found that this was due to a small amount.

一方、最終3パスの累積圧下率を25%以上と従来以上に大きくした場合、最終3パスの圧延によって鋼板の板厚中央部にまで圧延ひずみが効果的に導入されるため、板厚中央部における再結晶サイトが大きく増加する。このような圧延を再結晶が活発に生じる900〜1100℃の範囲で行うことにより板厚中央部の再結晶が促進され、鋳造時に形成された展伸フェライト粒組織が効果的に破壊され、熱間圧延後の縦弾性率の面内異方性が大幅に低減される。また、圧延温度を1100℃以下で行うことにより再結晶粒の粗大化が抑制され、金属組織の異方性の解消効果が十分に発現する。この技術により、縦弾性率の面内異方性の絶対値を35GPa以下とし、厚肉のフランジ等への成形後、振動時の大きなたわみやねじれ等の変形を抑制することができる。   On the other hand, when the cumulative reduction ratio in the final three passes is increased to 25% or more, the rolling strain is effectively introduced to the plate thickness central portion by rolling in the final three passes. The recrystallized sites in the area greatly increase. By performing such rolling in the range of 900 to 1100 ° C. where recrystallization occurs actively, recrystallization at the center of the plate thickness is promoted, and the expanded ferrite grain structure formed during casting is effectively destroyed, The in-plane anisotropy of the longitudinal elastic modulus after hot rolling is greatly reduced. Moreover, by performing rolling temperature at 1100 degrees C or less, the coarsening of a recrystallized grain is suppressed and the cancellation effect of the metal structure anisotropy fully expresses. With this technology, the absolute value of the in-plane anisotropy of the longitudinal elastic modulus can be 35 GPa or less, and deformation such as large deflection or torsion during vibration can be suppressed after molding into a thick flange or the like.

さらに、本発明者らは、熱延鋼板の成形性向上のため、本発明の熱延鋼板に800〜900℃以下の範囲で熱延板焼鈍を行い、熱延焼鈍板を得た場合、成形性の向上効果に加え、熱間圧延によって発現した縦弾性率の面内異方性の低減効果が維持されることを見出した。これは、本発明における縦弾性率の面内異方性の低減効果が板厚中央部における展伸フェライト粒組織の破壊に起因するものであり、熱間圧延後に所定の温度範囲で熱延板焼鈍を行った場合には鋼板の異方性を助長するような展伸フェライト粒が生成しないためであることが判明した。   Furthermore, the present inventors performed hot-rolled sheet annealing in the range of 800 to 900 ° C. or less to obtain a hot-rolled annealed sheet in order to improve the formability of the hot-rolled steel sheet. It was found that in addition to the effect of improving the property, the effect of reducing the in-plane anisotropy of the longitudinal elastic modulus expressed by hot rolling is maintained. This is because the effect of reducing the in-plane anisotropy of the longitudinal elastic modulus in the present invention is due to the fracture of the stretched ferrite grain structure in the center portion of the sheet thickness, and the hot rolled sheet in a predetermined temperature range after hot rolling It has been found that when annealed, no expanded ferrite grains that promote the anisotropy of the steel sheet are generated.

また、本発明のフェライト系ステンレス熱延鋼板およびフェライト系ステンレス熱延焼鈍板の板厚は、特に限定されないが、厚肉のフランジに適用できる板厚であることが望ましいため、5.0〜15.0mmとすることが好ましい。   Further, the thickness of the ferritic stainless hot rolled steel sheet and ferritic stainless hot rolled annealed sheet of the present invention is not particularly limited, but is preferably a thickness that can be applied to a thick flange. 0.0 mm is preferable.

次に、本発明のフェライト系ステンレス鋼板およびフェライト系ステンレス熱延焼鈍板の成分組成について説明する。
以下、特に断らない限り、成分組成を表す%は質量%を意味する。
Next, the component composition of the ferritic stainless steel plate and ferritic stainless steel hot-rolled annealed plate of the present invention will be described.
Hereinafter, unless otherwise specified,% representing the component composition means mass%.

C:0.005〜0.060%
Cを多量に含有する場合、加工性の低下やCr系炭窒化物の析出による鋭敏化および靭性の低下を招くため、C含有量は0.060%を上限とする。一方、C含有量を極度に低下させることは精錬コストの著しい上昇を招くため、C含有量の下限は常法の精錬において製造コストの著しい上昇を招かないレベルである0.005%とする。製鋼工程における安定製造性の観点から、C含有量は0.010〜0.050%とすることが好ましい。より好ましくは、C含有量は0.020〜0.045%の範囲である。さらに好ましくは、C含有量は0.025〜0.040%の範囲である。さらにより好ましくは、C含有量は0.030〜0.040%の範囲である。
C: 0.005-0.060%
When C is contained in a large amount, the workability is deteriorated, sensitization due to the precipitation of Cr-based carbonitrides, and the toughness are reduced, so the C content is made 0.060% as an upper limit. On the other hand, since extremely reducing the C content causes a significant increase in refining costs, the lower limit of the C content is set to 0.005%, which is a level that does not cause a significant increase in production costs in the refining process. From the viewpoint of stable productivity in the steel making process, the C content is preferably 0.010 to 0.050%. More preferably, the C content is in the range of 0.020 to 0.045%. More preferably, the C content is in the range of 0.025 to 0.040%. Even more preferably, the C content is in the range of 0.030-0.040%.

Si:0.02〜0.50%
Siは、鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上のSiの含有が必要である。しかし、Si含有量が0.50%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大し、熱間圧延工程における製造性が低下するため好ましくない。そのため、Si含有量は0.02〜0.50%の範囲とする。好ましくは、Si含有量は0.10〜0.35%の範囲である。さらに好ましくは、Si含有量は0.10〜0.30%の範囲である。
Si: 0.02 to 0.50%
Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, it is necessary to contain 0.02% or more of Si. However, if the Si content exceeds 0.50%, the steel sheet is hardened, the rolling load during hot rolling increases, and the manufacturability in the hot rolling process decreases, which is not preferable. Therefore, Si content is taken as 0.02 to 0.50% of range. Preferably, the Si content is in the range of 0.10 to 0.35%. More preferably, the Si content is in the range of 0.10 to 0.30%.

Mn:0.01〜1.00%
Mnは、Siと同様に過剰に含有すると鋼板が硬質化して熱間圧延時の圧延負荷が増大し、熱間圧延工程における製造性が低下するため好ましくない。また、MnSの生成量が増加して耐食性が低下する場合がある。そのため、Mn含有量の上限を1.00%とする。Mn含有量の下限については、精錬工程の負荷の観点から0.01%とする。好ましくは、Mn含有量は0.10〜0.90%の範囲である。さらに好ましくは、Mn含有量は0.45〜0.85%の範囲である。
Mn: 0.01 to 1.00%
If Mn is contained in an excessive amount in the same manner as Si, the steel sheet is hardened, the rolling load during hot rolling increases, and the manufacturability in the hot rolling process decreases, which is not preferable. Moreover, the production amount of MnS may increase and the corrosion resistance may decrease. Therefore, the upper limit of the Mn content is 1.00%. About the minimum of Mn content, it is 0.01% from a viewpoint of the load of a refining process. Preferably, the Mn content is in the range of 0.10-0.90%. More preferably, the Mn content is in the range of 0.45 to 0.85%.

P:0.04%以下
Pは、粒界偏析による粒界破壊を助長する元素であるため少ない方が望ましく、P含有量の上限を0.04%とする。好ましくは、P含有量は0.03%以下である。さらに好ましくは、P含有量は0.01%以下である。
P: 0.04% or less Since P is an element that promotes grain boundary fracture due to grain boundary segregation, it is desirable that P be less. The upper limit of the P content is 0.04%. Preferably, the P content is 0.03% or less. More preferably, the P content is 0.01% or less.

S:0.01%以下
Sは、MnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素であり、特にS含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのため、S含有量は極力低い方が望ましく、本発明ではS含有量の上限を0.01%とする。好ましくは、S含有量は0.007%以下である。さらに好ましくは、S含有量は0.005%以下である。
S: 0.01% or less S is an element that exists as sulfide inclusions such as MnS and lowers ductility, corrosion resistance, etc., especially when the S content exceeds 0.01%. The adverse effect of the remarkably occurs. For this reason, the S content is desirably as low as possible. In the present invention, the upper limit of the S content is set to 0.01%. Preferably, the S content is 0.007% or less. More preferably, the S content is 0.005% or less.

Cr:15.5〜18.0%
Crは、鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためには、Cr含有量を15.5%以上とする必要がある。しかし、Cr含有量が18.0%を超えると、鋼板の靭性が著しく低下するため好ましくない。そのため、Cr含有量は15.5〜18.0%の範囲とする。好ましくは、Cr含有量は16.0〜17.0%の範囲である。さらに好ましくは、Cr含有量は16.0〜16.5%の範囲である。
Cr: 15.5 to 18.0%
Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the surface of the steel sheet. In order to acquire this effect, it is necessary to make Cr content 15.5% or more. However, if the Cr content exceeds 18.0%, the toughness of the steel sheet is remarkably lowered, which is not preferable. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably, the Cr content is in the range of 16.0 to 17.0%. More preferably, the Cr content is in the range of 16.0 to 16.5%.

Al:0.001〜0.10%
Alは、Siと同様に脱酸剤として作用する元素である。この効果を得るためには、0.001%以上のAlの含有が必要である。しかし、Al含有量が0.10%を超えると、Al等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al含有量は0.001〜0.10%の範囲とする。好ましくは、Al含有量は0.001〜0.07%の範囲である。さらに好ましくは、Al含有量は0.001〜0.05%の範囲である。
Al: 0.001 to 0.10%
Al is an element that acts as a deoxidizing agent similarly to Si. In order to obtain this effect, it is necessary to contain 0.001% or more of Al. However, when the Al content exceeds 0.10%, Al inclusions such as Al 2 O 3 increase, and the surface properties tend to be lowered. Therefore, the Al content is in the range of 0.001 to 0.10%. Preferably, the Al content is in the range of 0.001 to 0.07%. More preferably, the Al content is in the range of 0.001 to 0.05%.

N:0.005〜0.100%
Nを多量に含有する場合、Cと同様に加工性の低下やCr系炭窒化物の析出による鋭敏化および靭性の低下を招くため、N含有量は0.100%を上限とする。一方、N含有量を極度に低下させることはCと同様に精錬コストの著しい上昇を招くため、N含有量の下限は常法の精錬において製造コストの著しい上昇を招かないレベルである0.005%とする。製鋼工程における安定製造性の観点から、N含有量は0.010〜0.075%とすることが好ましい。より好ましくは、N含有量は0.025〜0.055%の範囲である。さらに好ましくは、N含有量は0.030〜0.050%の範囲である。
N: 0.005-0.100%
When N is contained in a large amount, as with C, workability, sensitization due to precipitation of Cr-based carbonitrides, and toughness are reduced. Therefore, the N content is limited to 0.100%. On the other hand, since extremely reducing the N content causes a significant increase in refining costs as in C, the lower limit of the N content is a level that does not cause a significant increase in production costs in the refining of the ordinary method. %. From the viewpoint of stable productivity in the steel making process, the N content is preferably 0.010 to 0.075%. More preferably, the N content is in the range of 0.025 to 0.055%. More preferably, the N content is in the range of 0.030 to 0.050%.

Ni:0.1〜1.0%
Niは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、含有量が1.0%を超えると成形性が低下するため好ましくない。そのため、Ni含有量は0.1〜1.0%とする。好ましくは、Ni含有量は0.2〜0.4%の範囲である。
Ni: 0.1 to 1.0%
Ni is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes remarkable when the content is 0.1% or more. However, if the content exceeds 1.0%, the moldability is lowered, which is not preferable. Therefore, the Ni content is 0.1 to 1.0%. Preferably, the Ni content is in the range of 0.2-0.4%.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。   Although the effects of the present invention can be obtained by the above component composition, the following elements can be contained for the purpose of further improving manufacturability or material characteristics.

Cu:0.1〜1.0%、Mo:0.1〜0.5%、Co:0.01〜0.5%のうちから選ばれる1種または2種以上
Cu:0.1〜1.0%
Cuは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上のCuの含有で顕著となる。しかし、Cu含有量が1.0%を超えると成形性が低下する場合がある。そのため、Cuを含有する場合は、0.1〜1.0%とする。好ましくは、Cu含有量は0.2〜0.4%の範囲である。
One or more selected from Cu: 0.1 to 1.0%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.5% Cu: 0.1 to 1 .0%
Cu is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes remarkable when the Cu content is 0.1% or more. However, if the Cu content exceeds 1.0%, the formability may deteriorate. Therefore, when it contains Cu, it is set as 0.1 to 1.0%. Preferably, the Cu content is in the range of 0.2-0.4%.

Mo:0.1〜0.5%
MoはNiおよびCuと同様に耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上のMoの含有で顕著となる。しかし、Mo含有量が0.5%を超えると鋼板が硬質化して熱間圧延時の圧延負荷が増大し、熱間圧延工程における製造性が低下する場合がある。そのため、Moを含有する場合は、0.1〜0.5%とする。好ましくは、Mo含有量は0.2〜0.3%の範囲である。
Mo: 0.1 to 0.5%
Mo is an element that improves the corrosion resistance like Ni and Cu, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes remarkable when the Mo content is 0.1% or more. However, if the Mo content exceeds 0.5%, the steel sheet becomes hard, the rolling load during hot rolling increases, and the manufacturability in the hot rolling process may decrease. Therefore, when it contains Mo, it is 0.1 to 0.5%. Preferably, the Mo content is in the range of 0.2-0.3%.

Co:0.01〜0.5%
Coは靭性を向上させる元素である。この効果は0.01%以上の含有によって得られる。一方、含有量が0.5%を超えると成形性を低下させる場合がある。そのため、Coを含有する場合の含有量は、0.01〜0.5%の範囲とする。
Co: 0.01 to 0.5%
Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.5%, moldability may be reduced. Therefore, content in the case of containing Co shall be 0.01 to 0.5% of range.

V:0.01〜0.25%、Ti:0.001〜0.015%、Nb:0.001〜0.025%、Mg:0.0002〜0.0050%、B:0.0002〜0.0050%、Ca:0.0002〜0.0020%、REM:0.01〜0.10%のうちから選ばれる1種または2種以上
V:0.01〜0.25%
VはCrよりも炭窒化物を形成しやすい元素である。Vは熱間圧延時に鋼中のCおよびNをV系の炭窒化物として析出させることにより、Cr炭窒化物の析出による鋭敏化を抑制する効果がある。この効果を得るためにはVを0.01%以上含有する必要がある。しかし、V含有量が0.25%を超えると加工性が低下する場合がある。製造コストの上昇を招く。そのため、Vを含有する場合は0.01〜0.25%の範囲とする。好ましくは、V含有量は0.03〜0.08%の範囲である。
V: 0.01 to 0.25%, Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%, Mg: 0.0002 to 0.0050%, B: 0.0002 to One or more selected from 0.0050%, Ca: 0.0002 to 0.0020%, REM: 0.01 to 0.10% V: 0.01 to 0.25%
V is an element that forms carbonitride more easily than Cr. V has the effect of suppressing sensitization due to precipitation of Cr carbonitride by precipitating C and N in the steel as V-based carbonitride during hot rolling. In order to acquire this effect, it is necessary to contain V 0.01% or more. However, if the V content exceeds 0.25%, workability may be reduced. Increases manufacturing costs. Therefore, when it contains V, it is set as 0.01 to 0.25% of range. Preferably, the V content is in the range of 0.03 to 0.08%.

Ti:0.001〜0.015%、Nb:0.001〜0.025%
TiおよびNbはVと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、Cr炭窒化物の析出による鋭敏化を抑制する効果がある。この効果を得るためには、0.001%以上のTi、あるいは0.001%以上のNbを含有する必要がある。しかし、Ti含有量が0.015%を超える、あるいはNb含有量が0.030%を超えると、TiNおよびNbCの過剰な析出により良好な表面性状を得ることができない場合がある。そのため、Tiを含有する場合は0.001〜0.015%の範囲、Nbを含有する場合は0.001〜0.025%の範囲とする。Ti含有量は、好ましくは0.003〜0.010%の範囲である。Nb含有量は、好ましくは、0.005〜0.020%の範囲である。さらに好ましくは、Nb含有量は0.010〜0.015%の範囲である。
Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%
Ti and Nb, like V, are elements having high affinity with C and N, and precipitate as carbide or nitride during hot rolling, and have the effect of suppressing sensitization due to precipitation of Cr carbonitride. In order to obtain this effect, it is necessary to contain 0.001% or more of Ti or 0.001% or more of Nb. However, if the Ti content exceeds 0.015% or the Nb content exceeds 0.030%, good surface properties may not be obtained due to excessive precipitation of TiN and NbC. Therefore, when Ti is contained, the range is 0.001 to 0.015%, and when Nb is contained, the range is 0.001 to 0.025%. The Ti content is preferably in the range of 0.003 to 0.010%. The Nb content is preferably in the range of 0.005 to 0.020%. More preferably, the Nb content is in the range of 0.010 to 0.015%.

Mg:0.0002〜0.0050%
Mgは、熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上のMgの含有が必要である。しかし、Mg含有量が0.0050%を超えると表面品質が低下する場合がある。そのため、Mgを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは、Mg含有量は0.0005〜0.0035%の範囲である。さらに好ましくは、Mg含有量は0.0005〜0.0020%の範囲である。
Mg: 0.0002 to 0.0050%
Mg is an element that has an effect of improving hot workability. In order to acquire this effect, 0.0002% or more of Mg needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality may deteriorate. Therefore, when it contains Mg, it is set as 0.0002 to 0.0050% of range. Preferably, the Mg content is in the range of 0.0005 to 0.0035%. More preferably, the Mg content is in the range of 0.0005 to 0.0020%.

B:0.0002〜0.0050%
Bは、低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上のBの含有が必要である。しかし、B含有量が0.0050%を超えると熱間加工性が低下する場合がある。そのため、Bを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは、B含有量は0.0005〜0.0035%の範囲である。さらに好ましくは、B含有量は0.0005〜0.0020%の範囲である。
B: 0.0002 to 0.0050%
B is an element effective for preventing embrittlement at low temperature secondary work. In order to obtain this effect, 0.0002% or more of B must be contained. However, when the B content exceeds 0.0050%, the hot workability may decrease. Therefore, when it contains B, it is set as 0.0002 to 0.0050% of range. Preferably, the B content is in the range of 0.0005 to 0.0035%. More preferably, the B content is in the range of 0.0005 to 0.0020%.

Ca:0.0002〜0.0020%
Caは、連続鋳造の際に発生しやすい介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果を得るためには0.0002%以上のCaの含有が必要である。しかし、Ca含有量が0.0020%を超えるとCaSが生成して耐食性が低下する場合がある。そのため、Caを含有する場合は0.0002〜0.0020%の範囲とする。好ましくは、Ca含有量は0.0005〜0.0015%の範囲である。さらに好ましくは、Ca含有量は0.0005〜0.0010%の範囲である。
Ca: 0.0002 to 0.0020%
Ca is an effective component for preventing clogging of the nozzle due to crystallization of inclusions that are likely to occur during continuous casting. In order to acquire the effect, 0.0002% or more of Ca needs to be contained. However, if the Ca content exceeds 0.0020%, CaS may be generated and the corrosion resistance may be reduced. Therefore, when it contains Ca, it is set as 0.0002 to 0.0020% of range. Preferably, the Ca content is in the range of 0.0005 to 0.0015%. More preferably, the Ca content is in the range of 0.0005 to 0.0010%.

REM:0.01〜0.10%
REM(Rare Earth Metals)は耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜の形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上のREMの含有が必要である。しかし、0.10%を超えてREMを含有すると冷延焼鈍時の酸洗性などの製造性を低下させる場合がある。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01〜0.10%の範囲とする。好ましくは、REM含有量は0.01〜0.05%の範囲である。
REM: 0.01-0.10%
REM (Rare Earth Metals) is an element that improves oxidation resistance, and is particularly effective in suppressing the formation of an oxide film on the welded portion and improving the corrosion resistance of the welded portion. In order to obtain this effect, it is necessary to contain 0.01% or more of REM. However, if the content of REM exceeds 0.10%, productivity such as pickling at the time of cold rolling annealing may be lowered. Moreover, since REM is an expensive element, excessive inclusion is not preferable because it causes an increase in manufacturing cost. Therefore, when it contains REM, it is set as 0.01 to 0.10% of range. Preferably, the REM content is in the range of 0.01 to 0.05%.

次に本発明のフェライト系ステンレス鋼板およびフェライト系ステンレス熱延焼鈍板の製造方法について説明する。   Next, the manufacturing method of the ferritic stainless steel sheet and ferritic stainless steel hot-rolled annealing plate of the present invention will be described.

本発明のフェライト系ステンレス鋼板は上記成分組成を有する鋼スラブに対して、粗圧延および3パス以上の仕上げ圧延からなる熱間圧延において、仕上げ圧延の最終3パスの圧延を温度範囲900〜1100℃、累積圧下率25%以上で行うことにより得られる。   In the ferritic stainless steel sheet of the present invention, the final three pass rolling in the finish rolling is performed in a temperature range of 900 to 1100 ° C. It is obtained by carrying out at a cumulative rolling reduction of 25% or more.

なお、仕上げ圧延の最大パス数は、所定材質を得るという観点で特に制約はないが、最大パス数が15パスよりも多くなると、圧延ロールとの接触回数の増加による鋼板温度の低下が生じやすくなり、鋼板温度を所定温度範囲内に維持するために外部からの加熱が必要になる等の製造性の低下または製造コストの増加を招く場合がある。そのため、最大パス数は15パス以下とすることが好ましい。より好ましくは、最大パス数は10パス以下である。   The maximum number of passes of finish rolling is not particularly limited from the viewpoint of obtaining a predetermined material. However, when the maximum number of passes exceeds 15 passes, the steel sheet temperature is likely to decrease due to an increase in the number of contacts with the rolling roll. Thus, there may be a case where a decrease in manufacturability or an increase in manufacturing cost is caused such that heating from the outside is necessary to maintain the steel plate temperature within a predetermined temperature range. Therefore, it is preferable that the maximum number of paths is 15 paths or less. More preferably, the maximum number of paths is 10 paths or less.

まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。   First, molten steel having the above-described component composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace or the like, and a steel material (slab) is obtained by a continuous casting method or an ingot-bundling method.

このスラブを、1100〜1250℃で1〜24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延に供する。本発明では粗圧延については特に限定すべき点はないが、鋳造組織を効果的に破壊するために粗圧延における累積圧下率を65%以上とすることが好ましい。その後、仕上げ圧延により所定板厚まで圧延するが、仕上げ圧延の最終3パスの圧延を900〜1100℃の温度範囲で、累積圧下率25%以上で行う。   The slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly subjected to hot rolling as cast without heating. In the present invention, the rough rolling is not particularly limited, but it is preferable to set the cumulative rolling reduction in the rough rolling to 65% or more in order to effectively destroy the cast structure. Then, although it rolls to predetermined plate | board thickness by finish rolling, the rolling of the last 3 passes of finish rolling is performed at the temperature range of 900-1100 degreeC with the cumulative reduction rate of 25% or more.

最終3パスの圧延温度範囲:900〜1100℃
最終3パスの仕上げ圧延では、累積圧下率を大きくすることにより、板厚中央へ圧延ひずみを効果的に導入するとともに十分な再結晶を生じさせる必要がある。そのため、最終3パスの仕上げ圧延は再結晶が十分に生じる900〜1100℃の温度範囲で行う必要がある。最終3パスの圧延温度が900℃未満の場合、再結晶が十分に生じず所定の縦弾性率の面内異方性が得られない。一方、最終3パスの圧延温度が1100℃を超えると、結晶粒が著しく粗大化し所定の縦弾性率の面内異方性が得られないことに加え、熱延鋼板の靭性が低下するため好ましくない。好ましくは、最終3パスの圧延温度は900〜1075℃の範囲である。より好ましくは、最終3パスの圧延温度は930〜1050℃の範囲である。また、最終3パスにおける特定パスで過度の圧延負荷がかかることを防ぐため、最終3パスのうち、第1パス目の圧延温度範囲を950〜1100℃、この第1パスの次に行われる第2パス目の圧延温度範囲を925〜1075℃、この第2パスの次に行われる第3パス目の圧延温度範囲を900〜1050℃とすることが好ましい。
Final 3-pass rolling temperature range: 900-1100 ° C
In the final three-pass finish rolling, it is necessary to effectively introduce rolling strain to the center of the plate thickness and to generate sufficient recrystallization by increasing the cumulative rolling reduction. Therefore, the final three-pass finish rolling needs to be performed in a temperature range of 900 to 1100 ° C. at which recrystallization occurs sufficiently. When the rolling temperature of the final three passes is less than 900 ° C., recrystallization does not occur sufficiently and in-plane anisotropy with a predetermined longitudinal elastic modulus cannot be obtained. On the other hand, if the rolling temperature of the final three passes exceeds 1100 ° C., the crystal grains become extremely coarse, and in-plane anisotropy with a predetermined longitudinal elastic modulus cannot be obtained. Absent. Preferably, the rolling temperature for the final three passes is in the range of 900-1075 ° C. More preferably, the rolling temperature for the final three passes is in the range of 930-1050 ° C. In order to prevent an excessive rolling load from being applied in the specific pass in the final three passes, the rolling temperature range of the first pass in the final three passes is 950 to 1100 ° C., which is performed next to the first pass. The rolling temperature range of the second pass is preferably 925 to 1075 ° C., and the rolling temperature range of the third pass performed after the second pass is preferably 900 to 1050 ° C.

最終3パスの累積圧下率25%以上
鋼板の板厚中央へ圧延ひずみを効果的に付与するためには、仕上げ圧延の最終3パスについて、累積圧下率で25%以上の圧下が必要である。累積圧下率が25%未満では、板厚中央への圧延ひずみの導入が不十分となって板厚中央部の再結晶が遅滞し、所定の縦弾性率の面内異方性が得られない。そのため、累積圧下率を25%以上とすることが好ましい。より好ましくは、累積圧下率は30%以上である。さらに好ましくは、累積圧下率は35%以上である。なお、累積圧下率の上限は特に限定されないが、累積圧下率を過度に大きくすると圧延負荷が上昇して製造性が低下するとともに、圧延後に表面肌荒れが発生する場合があるため、60%以下とすることが好ましい。
Cumulative rolling reduction of 25% or more in the final three passes In order to effectively impart rolling strain to the center of the plate thickness of the steel sheet, rolling of 25% or more is required as the cumulative rolling reduction for the final three passes of finish rolling. If the cumulative rolling reduction is less than 25%, the introduction of rolling strain into the center of the sheet thickness is insufficient, and recrystallization at the center of the sheet thickness is delayed, and in-plane anisotropy with a predetermined longitudinal elastic modulus cannot be obtained. . Therefore, it is preferable that the cumulative rolling reduction is 25% or more. More preferably, the cumulative rolling reduction is 30% or more. More preferably, the cumulative rolling reduction is 35% or more. The upper limit of the cumulative rolling reduction is not particularly limited, but if the cumulative rolling reduction is excessively increased, the rolling load increases and the productivity decreases, and surface roughness may occur after rolling. It is preferable to do.

また、上記の累積圧下率は、100−(最終板厚/最終3パスの圧延開始前の板厚)×100[%]である。   The cumulative rolling reduction is 100− (final plate thickness / plate thickness before starting the final three-pass rolling) × 100 [%].

また、本発明のフェライト系ステンレス熱延鋼板の製造方法では、仕上げ圧延の最終の3パスの圧延温度および累積圧下率を制御することを特徴とし、仕上げ圧延の圧延温度および累積圧下率の制御を最終の4パス以上とすると、各パスでの圧延下率が小さいため導入したひずみが縦弾性率の異方性の低減にほとんど寄与せず、十分な縦弾性率の異方性の低減効果が得られない。また、仕上げ圧延の圧延温度および累積圧下率の制御を最終の2パス以下とすると、2パスで累積圧下率25%以上の大圧下を行うために圧延負荷が著しく上昇し製造性が低下する場合があるため好ましくない。よって、本発明のフェライト系ステンレス熱延鋼板の製造方法では、仕上げ圧延の最終の3パスの圧延温度および累積圧下率を制御する。   In the method for producing a ferritic stainless hot rolled steel sheet according to the present invention, the rolling temperature and cumulative rolling reduction of the final three passes of finish rolling are controlled, and the rolling temperature and cumulative rolling reduction of finish rolling are controlled. If the final four passes or more, since the rolling reduction rate in each pass is small, the introduced strain hardly contributes to the reduction of the anisotropy of the longitudinal elastic modulus, and there is a sufficient effect of reducing the anisotropy of the longitudinal elastic modulus. I can't get it. In addition, when the rolling temperature and the cumulative reduction ratio of the finish rolling are controlled to the final two passes or less, the rolling load is significantly increased and the productivity is lowered because the large reduction with the cumulative reduction ratio of 25% or more is performed in two passes. This is not preferable. Therefore, in the method for producing a ferritic stainless steel hot-rolled steel sheet according to the present invention, the rolling temperature and cumulative rolling reduction of the final three passes of finish rolling are controlled.

また、本発明のフェライト系ステンレス熱延鋼板の製造方法では、最終の3パスの圧延温度および累積圧下率を制御するように、3パス以上の仕上げ圧延であれば、何パスの仕上げ圧延を行ってもよい。   Further, in the method for producing a ferritic stainless hot rolled steel sheet according to the present invention, how many passes of finish rolling are performed as long as the finish rolling is 3 passes or more so as to control the rolling temperature and the cumulative rolling reduction of the final 3 passes. May be.

仕上げ圧延終了後は、鋼板の冷却を行い、次いで鋼板の巻取り処理を行い熱延鋼帯とする。本発明において巻取り温度は特に限定されないが、熱間圧延中にオーステナイト相が生成する鋼成分の場合、巻取り温度を500℃未満とした場合、オーステナイト相がマルテンサイト相へと変態し、熱延鋼板が硬質化して成形性が低下する場合がある。そのため、巻取り処理は500℃以上で行うことが好ましい。   After finishing rolling, the steel sheet is cooled, and then the steel sheet is wound to form a hot-rolled steel strip. In the present invention, the coiling temperature is not particularly limited, but in the case of a steel component in which an austenite phase is generated during hot rolling, when the coiling temperature is less than 500 ° C., the austenite phase is transformed into a martensite phase, The rolled steel sheet may become hard and formability may deteriorate. Therefore, the winding process is preferably performed at 500 ° C. or higher.

本発明では上記熱間圧延工程を完了した時点で所望の耐食性ならびに所望の縦弾性率の面内異方性が得られるが、成形性を向上させる目的で、フェライト系ステンレス熱延鋼板に対して、熱間圧延工程後に800〜900℃の範囲で熱延板焼鈍を行い、フェライト系ステンレス熱延焼鈍板を得てもよい。   In the present invention, when the above hot rolling step is completed, desired corrosion resistance and desired in-plane anisotropy of the longitudinal elastic modulus can be obtained. Further, after the hot rolling step, hot rolled sheet annealing may be performed in the range of 800 to 900 ° C. to obtain a ferritic stainless hot rolled sheet.

熱延板焼鈍温度:800〜900℃
熱延板焼鈍温度を800℃未満とした場合、再結晶が十分に生じないため、熱間圧延による加工組織が残存し成形性の向上効果が得られない。一方、900℃を超えると焼鈍時にオーステナイト相が生成して縦弾性率の異方性が大きくなり、すなわち熱延鋼板で発現していた所定の縦弾性率の面内異方性が消失する場合がある。また、900℃超で熱延板焼鈍を行った後の冷却速度が速い場合、オーステナイト相がマルテンサイト相へと変態して鋼板が硬質化するためにかえって成形性が低下する場合がある。そのため、熱延板焼鈍を行う場合には温度範囲を800〜900℃とすることが好ましい。なお、熱延板焼鈍の保持時間および手法に特に限定はなく、箱焼鈍(バッチ焼鈍)、連続焼鈍のどちらで実施してもかまわない。
Hot-rolled sheet annealing temperature: 800-900 ° C
When the hot-rolled sheet annealing temperature is less than 800 ° C., recrystallization does not occur sufficiently, so that the work structure by hot rolling remains and the effect of improving formability cannot be obtained. On the other hand, when the temperature exceeds 900 ° C., an anustenite phase is generated during annealing, and the anisotropy of the longitudinal elastic modulus increases, that is, the in-plane anisotropy of the predetermined longitudinal elastic modulus that has been developed in the hot-rolled steel sheet disappears. There is. In addition, when the cooling rate after hot-rolled sheet annealing is higher than 900 ° C., the austenite phase is transformed into the martensite phase and the steel sheet is hardened, which may deteriorate the formability. Therefore, when performing hot-rolled sheet annealing, it is preferable that a temperature range shall be 800-900 degreeC. In addition, there is no limitation in particular in the holding | maintenance time and method of hot-rolled sheet annealing, You may implement by either box annealing (batch annealing) or continuous annealing.

得られた熱延鋼板あるいは熱延板焼鈍を行った鋼板(熱延焼鈍板)には、必要に応じてショットブラストや酸洗による脱スケール処理を行っても良い。さらに、表面性状を向上させるために、研削や研磨等を施しても良い。   The obtained hot-rolled steel sheet or the steel sheet subjected to hot-rolled sheet annealing (hot-rolled annealed sheet) may be subjected to descaling treatment by shot blasting or pickling as necessary. Furthermore, in order to improve the surface properties, grinding or polishing may be performed.

以下、本発明を実施例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

表1に示す化学組成を有するステンレス溶鋼を容量150tonの転炉と強攪拌・真空酸素脱炭処理(SS−VOD)の精錬で溶製し、連続鋳造により幅1000mm、厚さ200mmの鋼スラブとした。該スラブを1200℃で1h加熱後に、熱間圧延として3段のスタンドを用いたリバース式の粗圧延を行って約40mmの鋼板とし、ついで7パスからなる仕上げ圧延の最終3パス(5パス目、6パス目、7パス目)を表2に記載の条件で行い熱延鋼板とした。また、一部の熱延鋼板(表2中、No.25、26、38)については熱間圧延後に表2に記載の条件で8h保持後に炉冷する熱延板焼鈍を行い、熱延焼鈍板を得た。   A molten stainless steel having the chemical composition shown in Table 1 is melted by refining a converter with a capacity of 150 ton and strong stirring and vacuum oxygen decarburization (SS-VOD), and a steel slab having a width of 1000 mm and a thickness of 200 mm by continuous casting. did. The slab was heated at 1200 ° C. for 1 h, and then subjected to reverse rough rolling using a three-stage stand as hot rolling to obtain a steel plate of about 40 mm, and then the final three passes (fifth pass) of 7-pass finish rolling. , 6th pass, 7th pass) were performed under the conditions shown in Table 2 to obtain hot-rolled steel sheets. In addition, some hot-rolled steel sheets (No. 25, 26, and 38 in Table 2) were subjected to hot-rolled sheet annealing that was furnace-cooled after holding for 8 hours under the conditions shown in Table 2 after hot rolling. I got a plate.

得られた熱延鋼板および熱延焼鈍板について、以下の評価を行った。   The following evaluation was performed about the obtained hot-rolled steel plate and hot-rolled annealing plate.

(1)面内異方性の評価
圧延平行方向、圧延45°方向および圧延直角方向を長手として60mm長さ×10mm幅×2mm厚の試験片を、板厚中央±1mm内の位置からそれぞれ採取した。採取した試験片についてJIS Z 2280−1993に記載の横共振法により23℃における縦弾性率を測定し、下式(1)により縦弾性率の面内異方性の絶対値(|ΔE|)を算出した。
|ΔE|=|(E−2×E+E)/2| (1)
ここで、Eは圧延方向に平行な方向の縦弾性率(GPa)、Eは圧延方向に対して45°の方向の縦弾性率(GPa)、Eは圧延方向と垂直方向の縦弾性率(GPa)である。
縦弾性率の面内異方性|ΔE|が35GPa以下である場合を、フランジ等への成形後のたわみやねじれを十分に抑制可能であると判断し、合格(○)とした。縦弾性率の面内異方性|ΔE|が35GPa超である場合を、不合格(×)とした。
(1) Evaluation of in-plane anisotropy Test specimens of 60 mm length × 10 mm width × 2 mm thickness with the parallel direction of rolling, the 45 ° direction of rolling and the direction perpendicular to the rolling as the longitudinal direction were sampled from the position within the plate thickness center ± 1 mm, respectively. did. The sample specimen was measured for longitudinal elastic modulus at 23 ° C. by the transverse resonance method described in JIS Z 2280-1993, and the absolute value (| ΔE |) of in-plane anisotropy of the longitudinal elastic modulus by the following equation (1) Was calculated.
| ΔE | = | (E L −2 × E D + E C ) / 2 | (1)
Here, E L is the longitudinal elastic modulus (GPa) in the direction parallel to the rolling direction, E D is the longitudinal elastic modulus (GPa) in the direction of 45 ° with respect to the rolling direction, and E C is the longitudinal elasticity in the direction perpendicular to the rolling direction. Elastic modulus (GPa).
When the in-plane anisotropy | ΔE | of the longitudinal elastic modulus was 35 GPa or less, it was judged that the bending and twisting after forming on the flange or the like could be sufficiently suppressed, and the result was evaluated as acceptable (◯). A case where the in-plane anisotropy | ΔE | of the longitudinal elastic modulus was more than 35 GPa was regarded as rejected (x).

(2)耐食性の評価
熱延鋼板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2hr)→乾燥(60℃、4hr、相対湿度40%)→湿潤(50℃、2hr、相対湿度≧95%)を1サイクルとして、8サイクル行った。
塩水噴霧サイクル試験を8サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆率が10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした。
(2) Evaluation of corrosion resistance A 60 × 100 mm test piece was taken from a hot-rolled steel sheet, and a test piece was prepared by polishing the surface with # 600 emery paper and sealing the end face, and was defined in JIS H8502. Subjected to a salt spray cycle test. In the salt spray cycle test, salt spray (5 mass% NaCl, 35 ° C., spray 2 hr) → dry (60 ° C., 4 hr, relative humidity 40%) → wet (50 ° C., 2 hr, relative humidity ≧ 95%) is one cycle. As a result, 8 cycles were performed.
Photograph the surface of the specimen after 8 cycles of salt spray cycle test, measure the rusting area on the specimen surface by image analysis, and calculate the rusting rate (( Rust area / total area of test piece) × 100 [%]) was calculated. A rusting rate of 10% or less was determined to pass with excellent corrosion resistance ()), more than 10% to 25% or less passed (◯), and more than 25% to reject (x).

評価結果を熱間圧延条件と併せて表2に示す。   The evaluation results are shown in Table 2 together with the hot rolling conditions.

Figure 2017013850
Figure 2017013850

Figure 2017013850
Figure 2017013850

鋼成分、熱間圧延条件および熱延板焼鈍条件が本発明の範囲を満たすNo.1〜21、No.25〜34は、縦弾性率の面内異方性の絶対値(|ΔE|)が35GPa以下と小さく所望の剛性が得られている。さらに得られた熱延鋼板あるいは熱延焼鈍板の耐食性を評価した結果、いずれも発錆率は25%以下であり十分な耐食性も有していることが確認された。   Steel components, hot rolling conditions and hot-rolled sheet annealing conditions satisfy the scope of the present invention. 1-21, no. Nos. 25 to 34 have a small absolute value (| ΔE |) of in-plane anisotropy of the longitudinal elastic modulus of 35 GPa or less, and a desired rigidity is obtained. Furthermore, as a result of evaluating the corrosion resistance of the obtained hot-rolled steel sheet or hot-rolled annealed sheet, it was confirmed that all had a rusting rate of 25% or less and sufficient corrosion resistance.

特に、0.52質量%のNiおよび0.4質量%のCuを含有させた鋼Cを用いたNo.14〜17、および0.3質量%のMoを含有させた鋼Jを用いたNo.32では、発錆率が10%以下と一層優れた耐食性が得られた。   In particular, No. 1 using steel C containing 0.52% by mass of Ni and 0.4% by mass of Cu. No. 14 to No. 17 using steel J containing 14 to 17 and 0.3% by mass of Mo. In No. 32, a further excellent corrosion resistance with a rusting rate of 10% or less was obtained.

最終3パスの累積圧下率が本発明の範囲を下回るNo.22では板厚中央部に展伸粒が多量に残存したために、縦弾性率の面内異方性が大きくなり、所定の|ΔE|が得られなかった。   No. in which the cumulative rolling reduction of the final three passes is below the range of the present invention. In No. 22, since a large amount of expanded grains remained in the central portion of the plate thickness, the in-plane anisotropy of the longitudinal elastic modulus was increased, and a predetermined | ΔE | was not obtained.

最終3パスの圧延において、7パス目の最終温度のみが本発明の範囲を下回るNo.23、および最終3パスの圧延温度が全て本発明の範囲を下回るNo.24では、所定の累積圧下率で圧延したにも関わらず、板厚中央部における再結晶が不十分となり、所定の|ΔE|が得られなかった。また、最終3パスの圧延温度が全て本発明の範囲を上回るNo.37では、結晶粒が粗大化し、所定の|ΔE|が得られなかった。   In rolling in the final 3 passes, only the final temperature in the 7th pass falls below the scope of the present invention. No. 23, and the rolling temperatures of the final three passes are all below the scope of the present invention. In No. 24, although the rolling was performed at a predetermined cumulative reduction, recrystallization in the central portion of the plate thickness became insufficient, and a predetermined | ΔE | was not obtained. In addition, No. 3 in which the rolling temperatures in the final three passes all exceed the scope of the present invention. In No. 37, the crystal grains became coarse, and a predetermined | ΔE | was not obtained.

熱延板焼鈍温度が本発明の範囲を上回るNo.38では、熱延板焼鈍時のオーステナイトが生成したために所定の|ΔE|が得られなかった。所定の|ΔE|を得られなかったNo.22〜24、37、38の鋼板を厚肉フランジに適用すると、振動時にたわみやねじれが発生することが確認できた。   No. of hot-rolled sheet annealing temperature exceeding the range of the present invention. In No. 38, since austenite at the time of hot-rolled sheet annealing was generated, a predetermined | ΔE | was not obtained. No. which could not obtain the predetermined | ΔE | When steel plates of 22 to 24, 37, and 38 were applied to the thick flange, it was confirmed that deflection and twist occurred during vibration.

Cr量が本発明の範囲を下回る鋼Mを用いたNo.35では、鋼板表面に十分に不動態皮膜を形成できず、所望の耐食性を得られなかった。   No. using steel M whose Cr content is below the range of the present invention. In No. 35, a passive film could not be sufficiently formed on the steel sheet surface, and the desired corrosion resistance could not be obtained.

Cr量が本発明の範囲を上回る鋼Nを用いたNo.36では鋳造後の冷却時にスラブ内に生じた割れを原因とした熱間圧延工程途中での破断が生じ、所定の評価を行うことができなかった。   No. using steel N in which the Cr amount exceeds the range of the present invention. In No. 36, breakage occurred during the hot rolling process due to cracks generated in the slab during cooling after casting, and a predetermined evaluation could not be performed.

本発明で得られるフェライト系ステンレス熱延鋼板は、剛性と耐食性が要求される用途、例えばEGRクーラーのフランジへの適用に特に好適である。
The ferritic stainless steel hot-rolled steel sheet obtained by the present invention is particularly suitable for applications requiring rigidity and corrosion resistance, for example, application to flanges of EGR coolers.

Claims (6)

質量%で、C:0.005〜0.060%、Si:0.02〜0.50%、Mn:0.01〜1.00%、P:0.04%以下、S:0.01%以下、Cr:15.5〜18.0%、Al:0.001〜0.10%、N:0.005〜0.100%、Ni:0.1〜1.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
下式(1)で算出される縦弾性率の面内異方性の絶対値|ΔE|が35GPa以下であるフェライト系ステンレス熱延鋼板。
|ΔE|=|(E−2×E+E)/2| ・・・(1)
ここで、Eは圧延方向に平行な方向の縦弾性率(GPa)、Eは圧延方向に対して45°の方向の縦弾性率(GPa)、Eは圧延方向と直角方向の縦弾性率(GPa)である。
By mass%, C: 0.005 to 0.060%, Si: 0.02 to 0.50%, Mn: 0.01 to 1.00%, P: 0.04% or less, S: 0.01 %: Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.005 to 0.100%, Ni: 0.1 to 1.0%, The balance has a component composition consisting of Fe and inevitable impurities,
A ferritic stainless hot-rolled steel sheet having an in-plane anisotropy absolute value | ΔE | of the longitudinal elastic modulus calculated by the following formula (1) of 35 GPa or less.
| ΔE | = | (E L −2 × E D + E C ) / 2 | (1)
Here, E L is the longitudinal elastic modulus (GPa) in the direction parallel to the rolling direction, E D is the longitudinal elastic modulus (GPa) in the direction of 45 ° with respect to the rolling direction, and E C is the longitudinal elasticity in the direction perpendicular to the rolling direction. Elastic modulus (GPa).
成分組成として、質量%で、さらに、Cu:0.1〜1.0%、Mo:0.1〜0.5%、Co:0.01〜0.5%のうちから選ばれる1種または2種以上を含有する請求項1に記載のフェライト系ステンレス熱延鋼板。   As a component composition, it is 1% selected from Cu: 0.1-1.0%, Mo: 0.1-0.5%, Co: 0.01-0.5% by mass%, or The ferritic stainless steel hot-rolled steel sheet according to claim 1 containing two or more kinds. 成分組成として、質量%で、さらに、V:0.01〜0.25%、Ti:0.001〜0.015%、Nb:0.001〜0.025%、Mg:0.0002〜0.0050%、B:0.0002〜0.0050%、Ca:0.0002〜0.0020%、REM:0.01〜0.10%のうちから選ばれる1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス熱延鋼板。   As component composition, in mass%, V: 0.01-0.25%, Ti: 0.001-0.015%, Nb: 0.001-0.025%, Mg: 0.0002-0 .0050%, B: 0.0002 to 0.0050%, Ca: 0.0002 to 0.0020%, REM: One or more selected from 0.01 to 0.10% The ferritic stainless steel hot-rolled steel sheet according to claim 1 or 2. 請求項1〜3のいずれかに記載のフェライト系ステンレス熱延鋼板に熱延板焼鈍を施して得られるフェライト系ステンレス熱延焼鈍板。   A ferritic stainless steel hot-rolled annealed sheet obtained by subjecting the ferritic stainless hot-rolled steel sheet according to any one of claims 1 to 3 to hot-rolled sheet annealing. 請求項1〜3のいずれかに記載のフェライト系ステンレス熱延鋼板の製造方法であって、3パス以上の仕上げ圧延を行う熱間圧延工程で、仕上げ圧延の最終3パスを温度範囲900〜1100℃、累積圧下率25%以上で行うフェライト系ステンレス熱延鋼板の製造方法。   It is a manufacturing method of the ferritic stainless steel hot-rolled steel sheet in any one of Claims 1-3, Comprising: In the hot rolling process which performs the finish rolling of 3 passes or more, the final 3 passes of finish rolling are temperature range 900-1100. A method for producing a ferritic stainless hot-rolled steel sheet at a temperature of 25 ° C. or more at a reduced temperature of 25 ° C. 請求項5に記載のフェライト系ステンレス熱延鋼板の製造方法を用い、
前記熱間圧延工程後に、さらに800〜900℃で熱延板焼鈍を行うフェライト系ステンレス熱延焼鈍板の製造方法。

Using the method for producing a ferritic stainless hot-rolled steel sheet according to claim 5,
The manufacturing method of the ferritic stainless steel hot-rolled annealing board which performs a hot-rolling sheet annealing further at 800-900 degreeC after the said hot rolling process.

JP2016564107A 2015-07-17 2016-07-11 Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them Active JP6112273B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015142611 2015-07-17
JP2015142611 2015-07-17
PCT/JP2016/003286 WO2017013850A1 (en) 2015-07-17 2016-07-11 Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets

Publications (2)

Publication Number Publication Date
JP6112273B1 JP6112273B1 (en) 2017-04-12
JPWO2017013850A1 true JPWO2017013850A1 (en) 2017-07-27

Family

ID=57834141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016564107A Active JP6112273B1 (en) 2015-07-17 2016-07-11 Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them

Country Status (6)

Country Link
US (1) US20180202023A1 (en)
JP (1) JP6112273B1 (en)
KR (1) KR102088341B1 (en)
CN (1) CN107835865B (en)
TW (1) TWI605134B (en)
WO (1) WO2017013850A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304469B1 (en) * 2016-10-17 2018-04-04 Jfeスチール株式会社 Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
US20190226045A1 (en) * 2016-10-17 2019-07-25 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
MX2019012549A (en) * 2017-04-27 2019-12-02 Jfe Steel Corp Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same.
MX2020004428A (en) * 2017-10-30 2020-08-06 Jfe Steel Corp Ferritic stainless-steel sheet and method for manufacturing same.
CN109023072A (en) * 2018-09-04 2018-12-18 合肥久新不锈钢厨具有限公司 A kind of high stability corrosion-resistant stainless steel and preparation method thereof
CN113166831B (en) * 2018-12-11 2022-11-01 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100824B2 (en) * 1987-01-03 1995-11-01 日新製鋼株式会社 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2772237B2 (en) * 1994-03-29 1998-07-02 川崎製鉄株式会社 Method for producing ferritic stainless steel strip with small in-plane anisotropy
US5851316A (en) * 1995-09-26 1998-12-22 Kawasaki Steel Corporation Ferrite stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same
JP4065579B2 (en) * 1995-09-26 2008-03-26 Jfeスチール株式会社 Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP2001181798A (en) 1999-12-20 2001-07-03 Kawasaki Steel Corp Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP3551892B2 (en) * 2000-04-19 2004-08-11 住友金属工業株式会社 Heat resistant ferritic stainless steel and its steel plate
JP2003089851A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd High strength duplex stainless steel sheet having high elasticity, and production method therefor
JP4507114B2 (en) * 2005-02-03 2010-07-21 日新製鋼株式会社 High rigidity stainless steel plate for CPU socket frame or CPU fixed cover
JP5196807B2 (en) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
EP2980251B1 (en) 2013-03-27 2017-12-13 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CN103194689B (en) * 2013-03-28 2017-08-04 宝钢不锈钢有限公司 Possess the high-strength ferritic stainless steel and its manufacture method of excellent formability and decay resistance
CN103506383B (en) * 2013-09-26 2016-04-27 山西太钢不锈钢股份有限公司 Super-purity ferrite stainless steel hot rolling making method
KR20160105869A (en) * 2014-01-08 2016-09-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
CN103966516A (en) * 2014-04-28 2014-08-06 宝钢不锈钢有限公司 Low-cost stainless steel for tail gas purification system and manufacturing method of low-cost stainless steel

Also Published As

Publication number Publication date
US20180202023A1 (en) 2018-07-19
TW201708561A (en) 2017-03-01
KR20180017177A (en) 2018-02-20
WO2017013850A1 (en) 2017-01-26
JP6112273B1 (en) 2017-04-12
TWI605134B (en) 2017-11-11
CN107835865A (en) 2018-03-23
CN107835865B (en) 2020-05-05
KR102088341B1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
EP2987887B1 (en) High strength hot rolled steel sheet and method for producing same
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
US11261512B2 (en) Ferritic stainless steel
EP2548988B1 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
KR102201004B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and manufacturing method thereof
WO2014119796A1 (en) Ferritic stainless steel sheet with excellent workability and process for producing same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2013099136A1 (en) High-strength hot-rolled steel sheet and manufacturing method therefor
EP3556880A1 (en) Ferrite stainless hot-rolled steel sheet and production method therefor
JP6432720B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
WO2013054464A1 (en) High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same
EP3093362B1 (en) Ferritic stainless steel and method for producing same
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
KR101963705B1 (en) High-strength steel sheet and method for manufacturing the same
JP6304469B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
KR101673218B1 (en) Ferritic stainless steel
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JP3139302B2 (en) Manufacturing method of hot-rolled steel sheet for automobiles with excellent corrosion resistance
JP6119894B2 (en) High strength steel plate with excellent workability
JP2000045034A (en) Manufacture of steel plate excellent in surface characteristic

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6112273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250