JPWO2016181743A1 - Plant growth index measuring apparatus and method, and plant growth index measuring system - Google Patents

Plant growth index measuring apparatus and method, and plant growth index measuring system Download PDF

Info

Publication number
JPWO2016181743A1
JPWO2016181743A1 JP2017517834A JP2017517834A JPWO2016181743A1 JP WO2016181743 A1 JPWO2016181743 A1 JP WO2016181743A1 JP 2017517834 A JP2017517834 A JP 2017517834A JP 2017517834 A JP2017517834 A JP 2017517834A JP WO2016181743 A1 JPWO2016181743 A1 JP WO2016181743A1
Authority
JP
Japan
Prior art keywords
measurement
growth index
unit
angle
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017517834A
Other languages
Japanese (ja)
Inventor
片桐 哲也
哲也 片桐
昭洋 鈴木
昭洋 鈴木
渡辺 謙二
謙二 渡辺
紗織 天野
紗織 天野
啓司 深澤
啓司 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016181743A1 publication Critical patent/JPWO2016181743A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本発明にかかる植物生育指標測定装置および植物生育指標測定方法ならびに植物生育指標測定システムでは、第1および第2波長で測定することによって得られる、複数の葉を持つ測定対象の反射光の各光強度、ならびに、その測定の際における太陽光の測定対象への入射角度である太陽角度、および、前記反射光の測定方向に対する前記太陽の方向である太陽方向、に基づいて、前記測定対象における生育の度合いを表す生育指標が求められる。In the plant growth index measuring device, the plant growth index measuring method, and the plant growth index measuring system according to the present invention, each light of the reflected light of the measuring object having a plurality of leaves obtained by measuring at the first and second wavelengths. Growth in the measurement object based on the intensity, the solar angle that is the incident angle of the sunlight to the measurement object at the time of measurement, and the solar direction that is the direction of the sun with respect to the measurement direction of the reflected light A growth index that represents the degree of the above is obtained.

Description

本発明は、植物における生育の度合いを表す生育指標を求める植物生育指標測定装置および植物生育指標測定方法ならびに植物生育指標測定システムに関する。   The present invention relates to a plant growth index measuring apparatus, a plant growth index measuring method, and a plant growth index measuring system for obtaining a growth index representing the degree of growth in a plant.

農業では、高品質および安定多収穫な農作物の植物を育てるために、例えば追肥時期や追肥量等の施肥管理を適切に実施する必要がある。そのために、現状の植物の状態が判定される。この判定には、従前、葉色の濃さが植物の状態を表していることから、例えば黄緑色から濃い緑色まで徐々に色を変化させた複数の色見本を備える葉色板(葉色カラースケール)が用いられている。このような葉色板を用いた植物の状態の判定では、主観的な判定となるため、あるいは、農業の工業化に適さないため、近年では、種々の装置が研究、開発されている。その1つに、例えば、特許文献1に開示された技術がある。   In agriculture, it is necessary to appropriately carry out fertilization management such as the time of topdressing and the amount of topdressing, for example, in order to grow plants of high quality and stable crops. Therefore, the current plant state is determined. For this determination, a leaf color plate (leaf color scale) provided with a plurality of color samples whose colors gradually changed from yellowish green to dark green, for example, since the darkness of the leaf color represents the state of the plant. It is used. Since the determination of the state of a plant using such a leaf-colored plate is a subjective determination or is not suitable for agricultural industrialization, various devices have been researched and developed in recent years. For example, there is a technique disclosed in Patent Document 1.

この特許文献1に開示された植物の生育度測定装置は、植物の生育度を光学的に測定する装置であって、植物により反射された太陽光を入射させて分光し、2種以上の特定波長の光の反射強度を測定する第1の受光部と、太陽光を直接入射させて前記第1の受光部と同一波長の光に分光し、参照光としてその受光強度を測定する第2の受光部と、前記第1の受光部で検出した特定波長の反射強度を前記第2の受光部で検出した参照光の受光強度を基に補正し、補正された反射強度を基に、測定植物の葉色(SPAD値)、草丈、乾物重、(草丈×茎数)、{草丈×葉色(SPAD値)}及び{草丈×茎数×葉色(SPAD値)}の少なくとも1つを求める演算部と、を備える。   The plant growth degree measuring apparatus disclosed in Patent Document 1 is an apparatus for optically measuring the growth degree of a plant, in which sunlight reflected by a plant is incident and spectroscopically, and two or more kinds of identifications are made. A first light receiving unit that measures the reflection intensity of light having a wavelength; and a second light that directly enters sunlight and splits it into light having the same wavelength as that of the first light receiving unit, and measures the received light intensity as reference light. The reflected light intensity of the specific wavelength detected by the light receiving unit and the first light receiving unit is corrected based on the received light intensity of the reference light detected by the second light receiving unit, and the measurement plant is calculated based on the corrected reflection intensity. A calculation unit for obtaining at least one of leaf color (SPAD value), plant height, dry weight, (plant height x number of stems), {plant height x leaf color (SPAD value)} and {plant height x number of stems x leaf color (SPAD value)} .

ところで、前記特許文献1に開示されて植物の生育度測定装置は、生育度を求めるために、前記特定波長の反射強度を前記参照光の受光強度を基に補正している。しかしながら、実際の圃場では、植物の葉は、1枚だけの単葉ではなく、複数枚の群葉である。このため、植物により反射された太陽光は、群葉で透過や反射を繰り返した後に受光されることになり、この結果、受光強度は、例えばカメラ(撮像部)で受光する場合、前記カメラと太陽との位置関係に依存してしまう。したがって、前記特許文献1に開示されて植物の生育度測定装置は、精度の点で、改良の余地がある。   By the way, the plant growth degree measuring apparatus disclosed in Patent Document 1 corrects the reflection intensity of the specific wavelength based on the received light intensity of the reference light in order to obtain the growth degree. However, in an actual field, the leaves of the plant are not only a single leaf but a plurality of foliage. For this reason, the sunlight reflected by the plant will be received after repeating transmission and reflection in the foliage, and as a result, the received light intensity is, for example, when received by a camera (imaging unit) It depends on the positional relationship with the sun. Therefore, the plant growth degree measuring apparatus disclosed in Patent Document 1 has room for improvement in terms of accuracy.

特開2002−168771号公報(特許第4243014号公報)JP 2002-168771 A (Patent No. 4243014)

本発明は、上述の事情に鑑みて為された発明であり、その目的は、より精度良く生育指標を測定できる植物生育指標測定装置および植物生育指標測定方法ならびに植物生育指標測定システムを提供することである。   The present invention has been made in view of the above circumstances, and its object is to provide a plant growth index measuring device, a plant growth index measuring method, and a plant growth index measuring system capable of measuring a growth index with higher accuracy. It is.

本発明にかかる植物生育指標測定装置および植物生育指標測定方法ならびに植物生育指標測定システムでは、第1および第2波長で測定することによって得られる、複数の葉を持つ測定対象の反射光の各光強度、ならびに、その測定の際における太陽光の測定対象への入射角度である太陽角度、および、前記反射光の測定方向に対する前記太陽の方向である太陽方向、に基づいて、前記測定対象における生育の度合いを表す生育指標が求められる。したがって、本発明にかかる植物生育指標測定装置および植物生育指標測定方法は、より精度良く、植物の生育指標を測定できる。   In the plant growth index measuring device, the plant growth index measuring method, and the plant growth index measuring system according to the present invention, each light of the reflected light of the measuring object having a plurality of leaves obtained by measuring at the first and second wavelengths. Growth in the measurement object based on the intensity, the solar angle that is the incident angle of the sunlight to the measurement object at the time of measurement, and the solar direction that is the direction of the sun with respect to the measurement direction of the reflected light A growth index that represents the degree of the above is obtained. Therefore, the plant growth index measuring apparatus and the plant growth index measuring method according to the present invention can measure the plant growth index with higher accuracy.

上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。   The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

測定系を説明するための図である。It is a figure for demonstrating a measurement system. 拡散度Wが相対的に低い場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。It is a figure which shows the relationship between the sun direction (phi) according to camera angle (measurement angle) (beta), and NDVI value when the diffusivity W is relatively low. 拡散度Wが中程度の場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。It is a figure which shows the relationship between the sun direction (phi) according to camera angle (measurement angle) (beta), and NDVI value in case a diffusivity W is medium. 拡散度Wが相対的に高い場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。It is a figure which shows the relationship between the sun direction (phi) according to camera angle (measurement angle) (beta), and NDVI value in the case where the diffusivity W is relatively high. 実施形態における植物生育指標測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the plant growth parameter | index measurement system in embodiment. 実施形態における植物生育指標測定システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the plant growth parameter | index measurement system in embodiment. 実施形態の植物生育指標測定システムにおける測定結果の一例を示す図である。It is a figure which shows an example of the measurement result in the plant growth parameter | index measurement system of embodiment.

以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。   Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.

実際の圃場で、複数の葉から成る群葉のNDVI(Normalized Difference Vegetation Index、正規化植生指標)値を測定する場合において、反射強度を得るために前記群葉の測定対象を撮像するカメラと太陽との位置関係が前記NDVI値に与える影響について、まず、説明する。   When measuring the NDVI (Normalized Difference Vegetation Index) value of a foliage consisting of a plurality of leaves in an actual field, a camera that captures the measurement object of the foliage to obtain the reflection intensity and the sun First, the effect of the positional relationship with the above on the NDVI value will be described.

図1は、測定系を説明するための図である。図2は、拡散度Wが相対的に低い場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。図3は、拡散度Wが中程度の場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。図4は、拡散度Wが相対的に高い場合における、カメラ角度(測定角度)β別の太陽方向φとNDVI値との関係を示す図である。これら図2ないし図4において、図Aは、太陽角度αが0である場合におけるNDVI値を示し、図Bは、太陽角度αが30である場合におけるNDVI値を示し、図Cは、太陽角度αが60である場合におけるNDVI値を示す。実線は、カメラ角度βが0度である場合の測定結果を示し、破線は、カメラ角度βが30度である場合の測定結果を示し、二点鎖線は、カメラ角度βが60度である場合の測定結果を示し、一点鎖線は、カメラ角度βが90度である場合の測定結果を示す。そして、これら各図において、横軸は、度単位(degree)で表す太陽方向φであり、その縦軸は、NDVI値である。   FIG. 1 is a diagram for explaining a measurement system. FIG. 2 is a diagram illustrating the relationship between the sun direction φ for each camera angle (measurement angle) β and the NDVI value when the diffusivity W is relatively low. FIG. 3 is a diagram showing the relationship between the sun direction φ and the NDVI value for each camera angle (measurement angle) β when the diffusivity W is medium. FIG. 4 is a diagram illustrating the relationship between the sun direction φ and the NDVI value for each camera angle (measurement angle) β when the diffusivity W is relatively high. 2 to 4, FIG. A shows the NDVI value when the sun angle α is 0, FIG. B shows the NDVI value when the sun angle α is 30, and FIG. C shows the sun angle. The NDVI value when α is 60 is shown. A solid line indicates a measurement result when the camera angle β is 0 degrees, a broken line indicates a measurement result when the camera angle β is 30 degrees, and a two-dot chain line indicates a case where the camera angle β is 60 degrees The alternate long and short dash line indicates the measurement result when the camera angle β is 90 degrees. In each of these figures, the horizontal axis is the solar direction φ expressed in degrees, and the vertical axis is the NDVI value.

この実験では、測定対象は、複数の葉から成る群葉であり、図1に示すように、この測定対象に、太陽角度αの太陽から太陽光が照射されている場合に、この測定対象が、カメラ角度(測定角度)βで、NDVI値を測定するNDVIカメラによって測定された。前記測定では、太陽方向をφとし、太陽の拡散度をWとした場合に、これら太陽角度α、カメラ角度β、太陽方向φおよび拡散度WをパラメータとしてNDVI値が実測された。その結果が図2ないし図4それぞれに示されている。   In this experiment, the measurement object is a foliage consisting of a plurality of leaves. As shown in FIG. 1, when the measurement object is irradiated with sunlight from the sun at the sun angle α, the measurement object is , Measured by an NDVI camera that measures NDVI values at a camera angle (measurement angle) β. In the measurement, when the sun direction is φ and the sun diffusivity is W, the NDVI value was measured using the sun angle α, camera angle β, sun direction φ, and diffusivity W as parameters. The results are shown in FIGS. 2 to 4 respectively.

ここで、太陽角度αは、太陽の高さを表し、水平面の法線方向である鉛直方向を基準に(鉛直方向を0度として)、測定対象に入射する太陽光の角度によって表される。すなわち、太陽角度αは、水平面に入射する太陽光の入射角である。カメラ角度(測定角度)βは、鉛直方向を基準に(鉛直方向を0度として)、測定方向(NDVIカメラの光軸に沿った方向)と鉛直方向とのなす角度である。太陽方向φは、NDVIカメラの測定方向に対する太陽の方向であり、測定対象に対するNDVIカメラの測定方向と、前記測定対象に照射(入射)される太陽光の照射方向(入射方向)とのなす角度である。拡散度Wは、太陽光が前記測定対象に照射されるまでの間に、例えば雲や霧等の大気の状態(気象条件)によって拡散される度合いである。   Here, the sun angle α represents the height of the sun, and is represented by the angle of sunlight incident on the measurement object with reference to the vertical direction that is the normal direction of the horizontal plane (with the vertical direction set to 0 degree). That is, the sun angle α is an incident angle of sunlight incident on the horizontal plane. The camera angle (measurement angle) β is an angle formed by the measurement direction (the direction along the optical axis of the NDVI camera) and the vertical direction with respect to the vertical direction (the vertical direction is 0 degree). The sun direction φ is the direction of the sun with respect to the measurement direction of the NDVI camera, and the angle formed by the measurement direction of the NDVI camera with respect to the measurement target and the irradiation direction (incidence direction) of sunlight irradiated (incident) on the measurement target It is. The diffusivity W is the degree to which the sunlight is diffused by the atmospheric state (meteorological conditions) such as clouds and fog before the measurement object is irradiated.

図2ないし図4から分かるように、NDVI値は、これら太陽角度α、カメラ角度β、太陽方向φおよび拡散度Wに依存している。例えば、カメラ角度βが0度から90度へ変化するに従ってNDVI値は、小さくなる傾向にある。また例えば、拡散度Wが低い場合および拡散度Wが中程度である場合では、太陽角度αが0度から90度へ変化するに従ってNDVI値は、太陽方向φに依存するようになる傾向にある。   As can be seen from FIGS. 2 to 4, the NDVI value depends on the sun angle α, the camera angle β, the sun direction φ, and the diffusivity W. For example, the NDVI value tends to decrease as the camera angle β changes from 0 degrees to 90 degrees. For example, when the diffusivity W is low and the diffusivity W is medium, the NDVI value tends to depend on the solar direction φ as the sun angle α changes from 0 degrees to 90 degrees. .

このようにNDVI値が太陽角度α、カメラ角度(測定角度)β、太陽方向φおよび拡散度Wに依存する理由は、次のように推察されている。すなわち、群葉の場合、太陽光は、透過や反射を繰り返すが、この透過や反射の回数は、太陽角度α、カメラ角度β、太陽方向φおよび拡散度Wによって変化する。このため、群葉で反射した太陽光の反射光強度は、太陽角度α、カメラ角度β、太陽方向φおよび拡散度Wによって変化することになり、この結果、NDVI値は、太陽角度α、カメラ角度β、太陽方向φおよび拡散度Wに依存することになる。ここで、群葉の葉密度(単位面積における群葉の占有率)Lも、前記透過や反射の回数に影響を与えるため、NDVI値は、群葉の葉密度Lに依存するものとなる。   The reason why the NDVI value depends on the sun angle α, the camera angle (measurement angle) β, the sun direction φ, and the diffusivity W is presumed as follows. That is, in the case of foliage, sunlight repeats transmission and reflection, but the number of transmission and reflection changes depending on the sun angle α, the camera angle β, the sun direction φ, and the diffusivity W. For this reason, the reflected light intensity of sunlight reflected by the foliage changes depending on the sun angle α, the camera angle β, the sun direction φ, and the diffusivity W. As a result, the NDVI value is determined by the sun angle α, the camera. It depends on the angle β, the sun direction φ and the diffusivity W. Here, the foliage density (occupation ratio of foliage in a unit area) L also affects the number of transmissions and reflections, and therefore the NDVI value depends on the foliage density L of the foliage.

したがって、NDVI値は、このような原因に基づいて補正されることで、より精度が高くなる。この観点から、一態様では、NDVI値は、太陽角度αおよび太陽方向φに基づいて補正されることが好ましい。他の一態様では、NDVI値は、太陽角度α、太陽方向φおよび拡散度Wに基づいて補正されることがより好ましい。他の一態様では、NDVI値は、太陽角度α、太陽方向φ、拡散度W、カメラ角度(測定角度)および葉密度Lに基づいて補正されることがさらに好ましい。   Therefore, the NDVI value is corrected based on such a cause, so that the accuracy becomes higher. From this viewpoint, in one aspect, the NDVI value is preferably corrected based on the sun angle α and the sun direction φ. In another aspect, the NDVI value is more preferably corrected based on the sun angle α, the sun direction φ, and the diffusivity W. In another aspect, it is more preferable that the NDVI value is corrected based on the sun angle α, the sun direction φ, the diffusivity W, the camera angle (measurement angle), and the leaf density L.

次に、本実施形態について説明する。図5は、実施形態における植物生育指標測定システムの構成を示すブロック図である。   Next, this embodiment will be described. FIG. 5 is a block diagram illustrating a configuration of a plant growth index measurement system in the embodiment.

実施形態における植物生育指標測定装置は、第1および第2波長で測定した、複数の葉を持つ測定対象の反射光の各光強度データと、太陽光の測定対象への入射角度である太陽角度データと、前記各光強度データの測定方向に対する前記太陽の方向である太陽方向データと、に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算部を備える。好ましくは、上述の植物生育指標測定装置において、前記生育指標演算部は、さらに、第3および第4波長で測定した、前記太陽の太陽光の光強度データと、前記太陽の太陽光の拡散度データと、に基づいて、前記測定対象の前記生育指標を求める。より好ましくは、上述の植物生育指標測定装置において、前記生育指標演算部は、さらに、前記測定対象に対する前記各光強度データの測定方向の角度である測定角度データと、前記測定対象の葉密度データと、に基づいて、前記測定対象の前記生育指標を求める。   The plant growth index measuring device according to the embodiment measures the light intensity data of the reflected light of the measurement target having a plurality of leaves, measured at the first and second wavelengths, and the solar angle that is the incident angle of sunlight to the measurement target. A growth index calculation unit that obtains a growth index that represents the degree of growth in the measurement target is provided based on the data and solar direction data that is the direction of the sun relative to the measurement direction of each light intensity data. Preferably, in the above-described plant growth index measuring apparatus, the growth index calculation unit further includes light intensity data of the solar sunlight and diffusivity of the solar sunlight measured at the third and fourth wavelengths. The growth index of the measurement object is obtained based on the data. More preferably, in the above-described plant growth index measuring apparatus, the growth index calculation unit further includes measurement angle data that is an angle in a measurement direction of each light intensity data with respect to the measurement target, and leaf density data of the measurement target. And determining the growth index of the measurement target.

このような植物生育指標測定装置は、これら各データを入力するために、データを入力する入力回路または外部機器との間でデータの入出力を行うインターフェース回路と、前記生育指標演算部を機能的に構成するマイクロプロセッサと、これらの周辺回路とを備えたコンピュータを備えて構成されて良いが、ここでは、これら各データを得る各部と、前記生育指標演算部とを備えた植物生育指標測定システムの実施形態について説明する。すなわち、本実施形態における植物生育指標測定システムは、複数の葉を持つ測定対象における生育の度合いを表す生育指標を求める装置であって、複数の葉を持つ測定対象の反射光の光強度を、互いに異なる第1および第2波長で測定する反射光測定部と、太陽の高度を太陽角度として取得する太陽角度取得部と、前記反射光測定部の測定方向に対する前記太陽の方向を太陽方向として取得する太陽方向取得部と、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得部で取得した前記太陽角度、ならびに、前記太陽方向取得部で取得した前記太陽方向に基づいて、前記測定対象の生育指標を求める生育指標演算部とを備える。好ましくは、前記植物生育指標測定システムは、前記太陽の太陽光の光強度を、互いに異なる第3および第4波長で測定する太陽光測定部と、前記太陽の太陽光の拡散度を取得する拡散度取得部とをさらに備え、前記生育指標演算部は、前記生育指標を求める際に、前記太陽光測定部で測定した前記第3および第4波長それぞれでの前記太陽光の各光強度、および、前記拡散度取得部で取得した前記拡散度をさらに考慮するものである。より好ましくは、前記植物生育指標測定システムは、前記測定対象に対する前記反射光測定部の測定方向の角度を測定角度として取得する測定角度取得部と、前記測定対象の葉密度を取得する葉密度取得部とをさらに備え、前記生育指標演算部は、前記生育指標を求める際に、前記測定角度取得部で取得した前記測定角度、および、前記葉密度測定部で取得した前記葉密度をさらに考慮するものである。   In order to input these data, such a plant growth index measuring apparatus is functionally provided with an input circuit for inputting data or an interface circuit for inputting / outputting data to / from an external device, and the growth index calculating unit. However, in this case, a plant growth index measuring system including each section for obtaining the data and the growth index calculation section. The embodiment will be described. That is, the plant growth index measurement system in the present embodiment is a device for obtaining a growth index representing the degree of growth in a measurement target having a plurality of leaves, and the light intensity of the reflected light of the measurement target having a plurality of leaves, A reflected light measurement unit that measures at different first and second wavelengths, a solar angle acquisition unit that acquires the solar altitude as a solar angle, and the sun direction relative to the measurement direction of the reflected light measurement unit is acquired as the solar direction. The solar direction acquisition unit, each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit, the solar angle acquired by the solar angle acquisition unit, and the solar direction A growth index calculation unit for obtaining a growth index of the measurement target based on the solar direction acquired by the acquisition unit. Preferably, the plant growth index measurement system includes a solar light measurement unit that measures the light intensity of the solar sunlight at third and fourth wavelengths different from each other, and a diffusion that acquires the solar sunlight diffusion degree. A degree acquisition unit, and the growth index calculation unit, when obtaining the growth index, each light intensity of the sunlight at each of the third and fourth wavelengths measured by the sunlight measurement unit, and The diffusion degree acquired by the diffusion degree acquisition unit is further taken into consideration. More preferably, the plant growth index measurement system includes a measurement angle acquisition unit that acquires an angle of a measurement direction of the reflected light measurement unit with respect to the measurement target as a measurement angle, and a leaf density acquisition that acquires the leaf density of the measurement target. And the growth index calculation unit further considers the measurement angle acquired by the measurement angle acquisition unit and the leaf density acquired by the leaf density measurement unit when obtaining the growth index. Is.

このような実施形態における植物生育指標測定システムMは、例えば、図5に示すように、反射光測定部1と、GPS(Global Positioning System、全地球測位網)部2と、方位計3と、傾斜計4と、太陽光測定部5と、制御処理部6と、時計部7と、記憶部8と、インターフェース部9と、電源部10とを備える。   The plant growth index measurement system M in such an embodiment includes, for example, a reflected light measurement unit 1, a GPS (Global Positioning System) unit 2, an azimuth meter 3, as shown in FIG. An inclinometer 4, a sunlight measurement unit 5, a control processing unit 6, a clock unit 7, a storage unit 8, an interface unit 9, and a power supply unit 10 are provided.

反射光測定部1は、制御処理部6に接続され、制御処理部6の制御に従って、測定対象の反射光の光強度を、互いに異なる第1および第2波長で測定する装置であり、その測定結果を制御処理部6へ出力する。前記第1および第2波長は、求める生育指標に応じた適宜な波長であって良く、例えば、NDVI値を生育指標として求める場合には、650nm近辺の可視光の波長および750nm以上の赤外光の波長である。   The reflected light measurement unit 1 is an apparatus that is connected to the control processing unit 6 and measures the light intensity of the reflected light to be measured at different first and second wavelengths according to the control of the control processing unit 6. The result is output to the control processing unit 6. The first and second wavelengths may be appropriate wavelengths according to the growth index to be obtained. For example, when the NDVI value is obtained as the growth index, the wavelength of visible light near 650 nm and infrared light of 750 nm or more are used. Is the wavelength.

より具体的には、反射光測定部1は、可視光の画像(可視画像)を生成する第1可視撮像部1−1と、赤外光の画像(赤外画像)を生成する第1赤外撮像部1−2とを備える。第1可視撮像部1−1は、例えば、波長650nmを中心波長とする比較的狭帯域で光を透過する第1バンドパスフィルタ、前記第1バンドパスフィルタを透過した測定対象の可視光の光学像を所定の結像面上に結像する第1結像光学系、前記第1結像面に受光面を一致させて配置され、前記測定対象の可視光の光学像を電気的な信号に変換する第1イメージセンサ、前記第1イメージセンサの出力に対し公知の画像処理を施して可視光での第1画像データRvを生成する第1デジタルシグナルプロセッサ(DSP)等を備えて構成される、いわゆるカメラ等である。第2赤外撮像部1−2は、例えば、波長800nmを中心波長とする比較的狭帯域で光を透過する第2バンドパスフィルタ、前記第2バンドパスフィルタを透過した測定対象の赤外光の光学像を所定の結像面上に結像する第2結像光学系、前記第2結像面に受光面を一致させて配置され、前記測定対象の赤外光の光学像を電気的な信号に変換する第2イメージセンサ、前記第2イメージセンサの出力に対し公知の画像処理を施して赤外光での第2画像データRiを生成する第2DSP等を備えて構成される、いわゆる赤外カメラ等である。第1可視撮像部1−1は、可視光での前記第1画像データRvを制御処理部6へ出力し、第1赤外撮像部1−2は、赤外光での前記第2画像データRiを制御処理部6へ出力する。第1可視撮像部1−1の第1測定方向(第1光軸に沿った第1方向)と第1赤外撮像部1−2の第2測定方向(第2光軸に沿った第2方向)とが互いに平行となるように、第1可視撮像部1−1と第1赤外撮像部1−2とは、配設される。これら互いに平行な第1可視撮像部1−1の第1測定方向および第1赤外撮像部1−2の第2測定方向が当該植物生育指標測定装置Mの測定方向である。   More specifically, the reflected light measurement unit 1 includes a first visible imaging unit 1-1 that generates a visible light image (visible image) and a first red that generates an infrared light image (infrared image). And an external imaging unit 1-2. The first visible imaging unit 1-1 includes, for example, a first bandpass filter that transmits light in a relatively narrow band having a wavelength of 650 nm as a center wavelength, and optical light of a measurement target that has passed through the first bandpass filter. A first image-forming optical system for forming an image on a predetermined image-forming surface; a light-receiving surface that is aligned with the first image-forming surface; and an optical image of the visible light to be measured as an electrical signal A first image sensor for conversion, a first digital signal processor (DSP) for performing known image processing on the output of the first image sensor to generate first image data Rv with visible light, and the like are configured. A so-called camera or the like. The second infrared imaging unit 1-2 includes, for example, a second bandpass filter that transmits light in a relatively narrow band having a wavelength of 800 nm as a center wavelength, and infrared light of a measurement target that has passed through the second bandpass filter. A second image-forming optical system that forms an optical image on a predetermined image-forming surface, and a light-receiving surface that coincides with the second image-forming surface. A so-called second image sensor for converting to a simple signal, a second DSP for generating a second image data Ri with infrared light by performing known image processing on the output of the second image sensor, and so on. An infrared camera or the like. The first visible image capturing unit 1-1 outputs the first image data Rv in visible light to the control processing unit 6, and the first infrared image capturing unit 1-2 in the second image data in infrared light. Ri is output to the control processing unit 6. The first measurement direction (first direction along the first optical axis) of the first visible imaging unit 1-1 and the second measurement direction (second along the second optical axis) of the first infrared imaging unit 1-2. The first visible imaging unit 1-1 and the first infrared imaging unit 1-2 are arranged so that the direction is parallel to each other. The first measurement direction of the first visible imaging unit 1-1 and the second measurement direction of the first infrared imaging unit 1-2 that are parallel to each other are the measurement directions of the plant growth index measuring apparatus M.

なお、上述では、反射光測定部1は、第1可視撮像部1−1および第1赤外撮像部1−2を備えて構成されたが、反射光測定部1は、赤色を受光するR画素、緑色を受光するG画素、青色を受光するB画素および赤外を受光するIr画素を2行2列に配列した単位配列を持つイメージセンサ(RGBIrイメージセンサ)や、白色を受光するW画素、黄色を受光するY画素、赤色を受光するR画素および赤外を受光するIr画素を2行2列に配列した単位配列を持つイメージセンサ(WYRIrイメージセンサ)等を用いることで、1つの撮像部を備えて構成されても良い。この場合、例えば、R画素の出力およびIr画素の出力が用いられる。また例えば、G画素の出力およびIr画素の出力が用いられる。また例えば、B画素の出力およびIr画素の出力が用いられる。また例えば、W画素の出力およびIr画素の出力が用いられる。また例えば、Y画素の出力およびIr画素の出力が用いられる。また、反射光測定部1は、分光器を備えて構成されても良い。   In the above description, the reflected light measurement unit 1 includes the first visible imaging unit 1-1 and the first infrared imaging unit 1-2. However, the reflected light measurement unit 1 receives R in red. Image sensor (RGBIr image sensor) having a unit arrangement in which pixels, G pixels that receive green, B pixels that receive blue, and Ir pixels that receive infrared are arranged in 2 rows and 2 columns, and W pixels that receive white By using an image sensor (WYRIr image sensor) having a unit arrangement in which Y pixels for receiving yellow light, R pixels for receiving red light, and Ir pixels for receiving infrared light are arranged in 2 rows and 2 columns, one image pickup is performed. A portion may be provided. In this case, for example, the output of the R pixel and the output of the Ir pixel are used. For example, the output of G pixel and the output of Ir pixel are used. Further, for example, the output of the B pixel and the output of the Ir pixel are used. For example, the output of W pixel and the output of Ir pixel are used. For example, the output of Y pixel and the output of Ir pixel are used. The reflected light measurement unit 1 may be configured with a spectroscope.

GPS部2は、制御処理部6に接続され、制御処理部6の制御に従って、地球上の現在位置を測定するための衛星測位システムによって、当該植物生育指標測定装置Mの位置を測定する装置であり、その測位結果(緯度X、経度Y、高度Z)を制御処理部6へ出力する。なお、GPS部2は、DGSP(Differential GSP)等の誤差を補正する補正機能を持ったGPSであっても良い。   The GPS unit 2 is an apparatus that is connected to the control processing unit 6 and measures the position of the plant growth index measuring device M by a satellite positioning system for measuring the current position on the earth according to the control of the control processing unit 6. Yes, the positioning result (latitude X, longitude Y, altitude Z) is output to the control processing unit 6. The GPS unit 2 may be a GPS having a correction function for correcting an error such as DGSP (Differential GSP).

方位計(コンパス)3は、制御処理部6に接続され、制御処理部6の制御に従って、地磁気等に基づいて方位を測定することによって、当該植物生育指標測定装置Mの測定方向の方位を測定する装置であり、その測定方位φcを制御処理部6へ出力する。方位φcは、北を0度とし、東を90度とし、南を180度とし、そして、西を270度として表される。   The azimuth meter (compass) 3 is connected to the control processing unit 6 and measures the azimuth in the measurement direction of the plant growth index measuring device M by measuring the azimuth based on geomagnetism or the like according to the control of the control processing unit 6. The measurement direction φc is output to the control processing unit 6. The azimuth φc is expressed as 0 degrees north, 90 degrees east, 180 degrees south, and 270 degrees west.

傾斜計4は、制御処理部6に接続され、制御処理部6の制御に従って、傾斜を測定することによって、当該植物生育指標測定装置Mの測定方向の角度を測定する装置であり、その測定角度βを制御処理部6へ出力する。   The inclinometer 4 is an apparatus that is connected to the control processing unit 6 and measures the angle in the measurement direction of the plant growth index measuring device M by measuring the inclination according to the control of the control processing unit 6. β is output to the control processing unit 6.

太陽光測定部5は、制御処理部6に接続され、制御処理部6の制御に従って、前記太陽の太陽光の光強度を、互いに異なる第3および第4波長で測定する装置であり、その測定結果を制御処理部6へ出力する。前記第3および第4波長は、求める生育指標に応じた適宜な波長であって良いが、本実施形態では、太陽光測定部5は、反射光測定部1と同様の構成であり、したがって、第3波長は、前記第1波長とされ、第4波長は、前記第2波長とされる。太陽光測定部5は、第1可視撮像部1−1と同様の構成の第2可視撮像部5−1と、第2赤外撮像部1−2と同様の構成の第2赤外撮像部5−2とを備え、第2可視撮像部5−1は、可視光での第3画像データSvを生成して制御処理部6へ出力し、第2赤外撮像部5−2は、赤外光での第4画像データSiを生成して制御処理部6へ出力する。第2可視撮像部5−1の第3測定方向(第3光軸に沿った第3方向)と第2赤外撮像部5−2の第4測定方向(第4光軸に沿った第4方向)とが互いに平行となるように、そして、前記第3および第4測定方向が天空(上空)を向くように、これら第2可視撮像部5−1と第2赤外撮像部5−2とは、配設される。太陽光測定部5は、測定対象に照射される太陽光の光強度を取得することを目的とするため、前記結像光学系には、例えば魚眼レンズ等の広角レンズが用いられて良く、また、前面(例えば入射面等)に拡散板が配設されても良い。これによって幅広い方向からの太陽光を得ることができる。   The solar light measuring unit 5 is an apparatus that is connected to the control processing unit 6 and measures the light intensity of the solar sunlight at different third and fourth wavelengths according to the control of the control processing unit 6, and the measurement thereof. The result is output to the control processing unit 6. Although the said 3rd and 4th wavelength may be a suitable wavelength according to the growth parameter | index calculated | required, in this embodiment, the sunlight measurement part 5 is the structure similar to the reflected light measurement part 1, Therefore, The third wavelength is the first wavelength, and the fourth wavelength is the second wavelength. The sunlight measuring unit 5 includes a second visible imaging unit 5-1 having the same configuration as the first visible imaging unit 1-1 and a second infrared imaging unit having the same configuration as the second infrared imaging unit 1-2. 5-2, the second visible imaging unit 5-1 generates the third image data Sv with visible light and outputs it to the control processing unit 6, and the second infrared imaging unit 5-2 The fourth image data Si with external light is generated and output to the control processing unit 6. The third measurement direction (third direction along the third optical axis) of the second visible imaging unit 5-1 and the fourth measurement direction (fourth along the fourth optical axis) of the second infrared imaging unit 5-2. The second visible imaging unit 5-1 and the second infrared imaging unit 5-2 so that the third and fourth measurement directions face the sky (upward). Is arranged. Since the sunlight measuring unit 5 aims to acquire the light intensity of sunlight irradiated to the measurement object, a wide-angle lens such as a fish-eye lens may be used for the imaging optical system, A diffusion plate may be disposed on the front surface (for example, the incident surface). As a result, sunlight from a wide range can be obtained.

時計部7は、制御処理部6に接続され、制御処理部6の制御に従って、年月日時分を計る回路であり、その現在の年月日時分を制御処理部6へ出力する。   The clock unit 7 is connected to the control processing unit 6 and is a circuit that measures the year / month / day / hour / day according to the control of the control processing unit 6, and outputs the current year / month / date / time to the control processing unit 6.

IF部9は、制御処理部6に接続され、制御処理部6の制御に従って、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。また、IF部9は、有線または無線によって通信する通信カード等であり、例えばイーサネット環境等の通信ネットワークを介して例えばサーバ装置等の外部装置との間で通信しても良い(イーサネットは登録商標)。   The IF unit 9 is a circuit that is connected to the control processing unit 6 and inputs / outputs data to / from an external device according to the control of the control processing unit 6. For example, an RS232C interface circuit that is a serial communication method, Bluetooth An interface circuit using the (registered trademark) standard, an interface circuit for performing infrared communication such as an IrDA (Infrared Data Association) standard, and an interface circuit using the USB (Universal Serial Bus) standard. The IF unit 9 is a communication card or the like that communicates by wire or wireless, and may communicate with an external device such as a server device via a communication network such as an Ethernet environment (Ethernet is a registered trademark). ).

電源部10は、電力を必要とする、当該植物生育指標測定装置Mの各部へ各部に応じた電圧で電力を供給する回路である。   The power supply unit 10 is a circuit that supplies power to each unit of the plant growth index measuring apparatus M that requires power at a voltage corresponding to each unit.

記憶部8は、制御処理部6に接続され、制御処理部6の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、当該植物生育指標測定システムMの各部を当該各部の機能に応じて制御する制御プログラムや、測定対象の生育指標を求める生育指標演算プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、生育指標を補正するための補正情報や、葉密度を求めるための生育情報等の、生育指標の演算に必要なデータが含まれる。記憶部8は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部8は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部6のワーキングメモリとなるRAM(Random Access Memory)等を含む。なお、記憶部8は、比較的大容量のハードディスクを備えても良い。   The storage unit 8 is a circuit that is connected to the control processing unit 6 and stores various predetermined programs and various predetermined data under the control of the control processing unit 6. Examples of the various predetermined programs include control processing programs such as a control program for controlling each part of the plant growth index measurement system M according to the function of each part, and a growth index calculation program for obtaining a growth index to be measured. Is included. The various kinds of predetermined data include data necessary for calculating the growth index, such as correction information for correcting the growth index and growth information for obtaining the leaf density. The storage unit 8 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. The storage unit 8 includes a random access memory (RAM) serving as a working memory of a so-called control processing unit 6 that stores data generated during execution of the predetermined program. The storage unit 8 may include a relatively large capacity hard disk.

そして、記憶部8は、前記補正情報や生育情報を記憶するために、前記補正情報を予め記憶する補正情報記憶部81と、前記生育情報を予め記憶する生育情報記憶部82とを機能的に備える。前記補正情報は、例えば、太陽角度αおよび太陽方向φと補正値(第1補正値)との対応関係を表す情報(第1補正情報)である。前記補正値は、反射光測定部1で測定した前記第1および第2波長それぞれでの反射光の各光強度に基づいて求められた生育指標を補正するための値である。また例えば、前記補正情報は、太陽角度α、太陽方向φおよび拡散度Wと補正値(第2補正値)との対応関係を表す情報(第2補正情報)である。また例えば、前記補正情報は、太陽角度α、太陽方向φ、拡散度W、測定角度βおよび葉密度Lと補正値(第3補正値)との対応関係を表す情報(第3補正情報)である。前記補正情報(第1ないし第3補正情報)は、複数のサンプルを用いた実験等によって予め作成される。前記補正情報(第1ないし第3補正情報)は、所定の関数式の形式で補正情報記憶部81に記憶されても良いが、本実施形態では、テーブル形式(ルックアップテーブル)で補正情報記憶部81に予め記憶される。前記生育情報は、例えば、植え付け(例えば田植え)からの日数と葉密度Lとの対応関係を示す情報である。前記植え付けからの日数に代え、日付、葉齢(主稈(親茎)の葉の枚数)、平均草丈および平均茎数のうちのいずれかが用いられても良い。前記生育情報は、複数のサンプルから求めた平年値等に基づいて予め作成される。前記生育情報は、所定の関数式の形式で生育情報記憶部82に記憶されても良いが、本実施形態では、テーブル形式(ルックアップテーブル)で生育情報記憶部82に予め記憶される。   The storage unit 8 functionally includes a correction information storage unit 81 that stores the correction information in advance and a growth information storage unit 82 that stores the growth information in advance in order to store the correction information and the growth information. Prepare. The correction information is, for example, information (first correction information) indicating a correspondence relationship between the sun angle α and the sun direction φ and a correction value (first correction value). The correction value is a value for correcting the growth index obtained based on each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measuring unit 1. Further, for example, the correction information is information (second correction information) indicating a correspondence relationship between the sun angle α, the sun direction φ, the diffusivity W, and the correction value (second correction value). Further, for example, the correction information is information (third correction information) indicating a correspondence relationship between the sun angle α, the sun direction φ, the diffusivity W, the measurement angle β, the leaf density L, and the correction value (third correction value). is there. The correction information (first to third correction information) is created in advance by an experiment using a plurality of samples. The correction information (first to third correction information) may be stored in the correction information storage unit 81 in the form of a predetermined function formula, but in the present embodiment, the correction information is stored in a table format (lookup table). Stored in the unit 81 in advance. The growth information is information indicating the correspondence between the number of days since planting (for example, rice planting) and the leaf density L, for example. Instead of the number of days since planting, any of date, leaf age (number of leaves of main stem (parent stem)), average plant height and average number of stems may be used. The growth information is created in advance based on a normal value obtained from a plurality of samples. The growth information may be stored in the growth information storage unit 82 in the form of a predetermined functional expression, but in the present embodiment, it is stored in advance in the growth information storage unit 82 in a table format (lookup table).

制御処理部6は、植物生育指標測定システムMの各部を当該各部の機能に応じてそれぞれ制御し、生育指標を求めるための回路である。制御処理部6は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部6には、制御処理プログラムが実行されることによって、制御部61、太陽角度演算部62、太陽方向演算部63、拡散度演算部64、葉密度演算部65および生育指標演算部66が機能的に構成される。   The control processing unit 6 is a circuit for controlling each part of the plant growth index measurement system M in accordance with the function of each part to obtain a growth index. The control processing unit 6 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. In the control processing unit 6, a control processing program is executed, whereby a control unit 61, a sun angle calculation unit 62, a sun direction calculation unit 63, a diffusivity calculation unit 64, a leaf density calculation unit 65, and a growth index calculation unit 66. Is functionally configured.

制御部61は、植物生育指標測定システムMの各部を当該各部の機能に応じてそれぞれ制御するものである。   The control unit 61 controls each part of the plant growth index measurement system M according to the function of each part.

太陽角度演算部62は、GPS部2で取得した緯度Xおよび経度Y、ならびに、時計部7で計った年月日時分に基づいて、公知の手法によって、太陽角度αを求めるものである。太陽角度αを求める手法として、例えば、「“太陽方位、高度、大気外日射量の計算”、[online]、2015年3月23日検索、インターネット<http://www.es.ris.ac.jp/〜nakagawa/met_cal/solar.html>」に開示されている太陽高度Aおよび太陽方位ψを求める手法が利用できる。太陽高度Aは、仰角であり、太陽角度α=90度−太陽高度Aの関係にある。より具体的には、まず、1月1日からの通し日数dnからθ0=2π(dn−1)/365によってθ0が求められる。次に、次式1によって太陽赤緯δが求められ、次式2によって均時差Eqが求められる。次に、次式3によって、日本標準時間JSTから、太陽の時角hが求められる。そして、次式4によって太陽高度Aが求められる。なお、太陽方位ψは、次式5によって求められる。
δ=0.006918−0.399912cos(θ0)+0.070257sin(θ0)−0.006758cos(2θ0)−0.000907sin(2θ0)−0.002697cos(3θ0)−0.001480sin(3θ0)・・・(式1)
Eq=0.000075+0.001868cos(θ0)+0.032077sin(θ0)−0.014615cos(2θ0)−0.040849sin(2θ0)・・・(式2)
h=(JST−12)π/12+標準子午線からの経度差+均時差Eq・・・(式3)
A=arcsin[sin(Y)sin(δ)+cos(Y)cos(δ)cos(h)]・・・(式4)
ψ=arctan[cos(Y)cos(δ)sin(h)/[sin(Y)sin(α)−sin(δ)]]・・・(式5)
The sun angle calculation unit 62 obtains the sun angle α by a known method based on the latitude X and longitude Y acquired by the GPS unit 2 and the year, month, day and time measured by the clock unit 7. As a method for obtaining the sun angle α, for example, ““ Solar orientation, altitude, calculation of solar radiation amount outside the atmosphere ”, [online], search on March 23, 2015, Internet <http://www.es.ris.ac .Jp / ˜nakagawa / met_cal / solar.html> ”can be used to obtain the solar altitude A and the solar orientation ψ. The solar altitude A is an elevation angle, and the solar angle α = 90 degrees−the solar altitude A. More specifically, first, θ0 is obtained from θn = 2π (dn−1) / 365 from the number of consecutive days dn from January 1st. Next, the solar declination δ is obtained by the following equation 1, and the equation of time Eq is obtained by the following equation 2. Next, the solar hour angle h is obtained from the Japanese standard time JST by the following equation 3. Then, the solar altitude A is obtained by the following expression 4. The sun azimuth ψ is obtained by the following equation 5.
δ = 0.006918−0.399912 cos (θ0) +0.070257 sin (θ0) −0.006758 cos (2θ0) −0.000907 sin (2θ0) −0.002697 cos (3θ0) −0.001480 sin (3θ0) Formula 1)
Eq = 0.000075 + 0.001868 cos (θ0) + 0.032077sin (θ0) −0.014615cos (2θ0) −0.040849sin (2θ0) (Equation 2)
h = (JST-12) π / 12 + longitude difference from standard meridian + equal time difference Eq (Expression 3)
A = arcsin [sin (Y) sin (δ) + cos (Y) cos (δ) cos (h)] (Formula 4)
ψ = arctan [cos (Y) cos (δ) sin (h) / [sin (Y) sin (α) −sin (δ)]] (Formula 5)

太陽方向演算部63は、GPS部2で取得した緯度Xおよび経度Y、ならびに、時計部7で計った年月日時分に基づいて、公知の手法によって、太陽方位ψを求め、この求めた太陽方位ψと方位計3で求めた反射光測定部1の測定方向の方位φcに基づいて太陽方向φを求めるものである。より具体的には、太陽方向演算部63は、方位計3で測定した方位φcと前記式5から求められる太陽方位ψとの差分として太陽方向φを求めるものである(φ=ψ−φc)。   Based on the latitude X and longitude Y acquired by the GPS unit 2 and the year, month, day and time measured by the clock unit 7, the solar direction calculation unit 63 obtains the solar direction ψ by a known method, and the obtained sun Based on the azimuth ψ and the azimuth φc in the measurement direction of the reflected light measurement unit 1 obtained by the azimuth meter 3, the solar direction φ is obtained. More specifically, the sun direction calculation unit 63 obtains the sun direction φ as a difference between the direction φc measured by the direction meter 3 and the sun direction φ obtained from the equation 5 (φ = ψ−φc). .

拡散度演算部64は、拡散度Wを求めるものである。より具体的には、例えば、拡散度演算部64は、太陽光測定部5の測定結果に基づいて、拡散度Wを求めるものである。例えば、拡散度演算部64は、第2可視撮像部5−1で生成された可視光での第3画像データSvの標準偏差σsvを求め、この求めた標準偏差σsvで所定係数Kを除算することで拡散度Wを求める(W=K/σsv)。あるいは、例えば、拡散度演算部64は、第2赤外撮像部5−2で生成された赤外光での第4画像データSiの標準偏差σsiを求め、この求めた標準偏差σsiで所定係数Kを除算することで拡散度Wを求める(W=K/σsi)。前記所定係数Kは、雲1つ無い快晴(雲量0、無雲)の場合に拡散度Wが0となり、曇天(雲量8、全天雲)の場合に拡散度Wが1となるように正規化するための係数である。曇天から晴天になるに従って標準偏差σsv(σsi)は、大きくなるため、拡散度は、低下するため、前記標準偏差σsv(σsi)は、拡散度Wに利用できる。また例えば、拡散度演算部64は、反射光測定部1のシャッタースピード(例えば第1可視撮像部1−1のシャッタースピード)SSを反射光測定部1から取得し、この取得したシャッタースピードSSをそのまま拡散度Wとする(W=SS)。曇天から晴天になるに従ってシャッタースピードSSは、高速となり、拡散度Wは、低下するため、シャッタースピードSSは、そのまま拡散度Wにできる。   The diffusivity calculating unit 64 obtains the diffusivity W. More specifically, for example, the diffusivity calculating unit 64 obtains the diffusivity W based on the measurement result of the sunlight measuring unit 5. For example, the diffusivity calculating unit 64 obtains the standard deviation σsv of the third image data Sv with visible light generated by the second visible imaging unit 5-1, and divides the predetermined coefficient K by the obtained standard deviation σsv. Thus, the diffusivity W is obtained (W = K / σsv). Alternatively, for example, the diffusivity calculating unit 64 obtains the standard deviation σsi of the fourth image data Si with the infrared light generated by the second infrared imaging unit 5-2, and uses the obtained standard deviation σsi to determine a predetermined coefficient. The diffusivity W is obtained by dividing K (W = K / σsi). The predetermined coefficient K is normal so that the diffusivity W is 0 when the cloud is clear (cloud amount 0, no cloud) and the diffusivity W is 1 when cloudy (cloud amount 8, all clouds). It is a coefficient for making it. Since the standard deviation σsv (σsi) increases as it becomes cloudy and clear, the diffusivity decreases. Therefore, the standard deviation σsv (σsi) can be used for the diffusivity W. Further, for example, the diffusivity calculating unit 64 acquires the shutter speed SS of the reflected light measuring unit 1 (for example, the shutter speed of the first visible imaging unit 1-1) SS from the reflected light measuring unit 1, and uses the acquired shutter speed SS. The diffusion degree W is set as it is (W = SS). Since the shutter speed SS becomes higher and the diffusivity W decreases as it becomes cloudy and clear, the shutter speed SS can be set to the diffusivity W as it is.

葉密度演算部65は、生育情報記憶部82に記憶された生育情報に基づいて葉密度を求めるものである。例えば、前記生育情報が植え付け(例えば田植え)からの日数と葉密度Lとの対応関係を示す情報である場合では、葉密度演算部65は、IF部9を介して取得された植え付けからの日数に対応する葉密度を生育情報記憶部82に記憶された前記生育情報から求める。なお、植物生育指標測定装置Mは、外部からデータを入力するための入力部(例えばテンキーやキーボード等)をさらに備え、この入力部を介して植え付けからの日数が植物生育指標測定装置Mに入力されても良い。   The leaf density calculation unit 65 calculates the leaf density based on the growth information stored in the growth information storage unit 82. For example, in the case where the growth information is information indicating the correspondence between the number of days since planting (for example, rice planting) and the leaf density L, the leaf density calculation unit 65 uses the number of days since planting acquired via the IF unit 9. Is determined from the growth information stored in the growth information storage unit 82. The plant growth index measuring device M further includes an input unit (for example, a numeric keypad or a keyboard) for inputting data from the outside, and the number of days since planting is input to the plant growth index measuring device M via this input unit. May be.

生育指標演算部66は、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度、太陽角度演算部62で求めた太陽角度α、ならびに、太陽方向演算部63で求めた太陽方向φに基づいて、測定対象における生育の度合いを表す生育指標を求めるものである。これによれば、生育指標を求める際に、太陽角度および太陽方向を考慮するので、より精度良く生育指標が測定できる。好ましくは、生育指標演算部66は、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度、太陽角度演算部62で求めた太陽角度α、太陽方向演算部63で求めた太陽方向φ、太陽光測定部5で測定した第3および第4波長それぞれでの太陽光の各光強度、ならびに、拡散度演算部64で求めた拡散度Wに基づいて、測定対象における生育の度合いを表す生育指標を求める。これによれば、生育指標を求める際に、さらに、第3および第4波長それぞれでの太陽光の各光強度および拡散度Wも考慮するので、さらに精度良く生育指標が測定できる。より好ましくは、生育指標演算部66は、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度、太陽角度演算部62で求めた太陽角度α、太陽方向演算部63で求めた太陽方向φ、太陽光測定部5で測定した第3および第4波長それぞれでの太陽光の各光強度、拡散度演算部64で求めた拡散度W、傾斜計4で取得した測定角度β、ならびに、葉密度演算部65で求めた葉密度Lに基づいて、測定対象における生育の度合いを表す生育指標を求める。これによれば、生育指標を求める際に、さらに、測定角度βおよび葉密度Lも考慮するので、さらにより精度良く生育指標が測定できる。   The growth index calculation unit 66 is configured to measure each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit 1, the sun angle α obtained by the sun angle calculation unit 62, and the sun direction calculation unit 63. The growth index representing the degree of growth in the measurement target is obtained based on the sun direction φ obtained in step (1). According to this, since the sun angle and the sun direction are taken into consideration when obtaining the growth index, the growth index can be measured with higher accuracy. Preferably, the growth index calculation unit 66 has the light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit 1, the sun angle α obtained by the sun angle calculation unit 62, and the sun direction calculation unit. Measured based on the sun direction φ obtained in 63, the light intensity of sunlight at each of the third and fourth wavelengths measured by the sunlight measuring unit 5, and the diffusivity W obtained by the diffusivity calculating unit 64 A growth index representing the degree of growth in the subject is obtained. According to this, since the light intensity and the diffusivity W of sunlight at each of the third and fourth wavelengths are further taken into consideration when obtaining the growth index, the growth index can be measured with higher accuracy. More preferably, the growth index calculation unit 66 calculates each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit 1, the sun angle α obtained by the sun angle calculation unit 62, and the sun direction calculation. The solar direction φ obtained by the unit 63, the light intensity of sunlight at each of the third and fourth wavelengths measured by the sunlight measuring unit 5, the diffusivity W obtained by the diffusivity calculating unit 64, and obtained by the inclinometer 4 Based on the measured angle β and the leaf density L obtained by the leaf density calculator 65, a growth index representing the degree of growth in the measurement target is obtained. According to this, when the growth index is obtained, the measurement angle β and the leaf density L are further taken into consideration, so that the growth index can be measured with higher accuracy.

より具体的には、補正情報記憶部81に第1補正情報が記憶されている場合には、生育情報記憶部82は、省略可能であり、生育指標演算部66は、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度に基づいて、補正前の生育指標を求め、太陽角度演算部62で求めた太陽角度α、および、太陽方向演算部63で求めた太陽方向φとに対応する第1補正値を前記第1補正情報から求め、この求めた第1補正値で前記補正前の生育指標を補正して最終的な生育指標(補正後の生育指標)を求める。   More specifically, when the first correction information is stored in the correction information storage unit 81, the growth information storage unit 82 can be omitted, and the growth index calculation unit 66 is the reflected light measurement unit 1. Based on the measured light intensity of each reflected light at the first and second wavelengths, a growth index before correction is obtained, and the sun angle α obtained by the sun angle computing unit 62 and the sun direction computing unit 63 are obtained. A first correction value corresponding to the sun direction φ is obtained from the first correction information, and the growth index before correction is corrected with the calculated first correction value to obtain a final growth index (a growth index after correction). )

また、補正情報記憶部81に第2補正情報が記憶されている場合には、生育情報記憶部82は、省略可能であり、生育指標演算部66は、太陽光測定部5で測定した第3および第4波長それぞれでの太陽光の各光強度に基づいて、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度の比率が所定値となるように正規化しつつ、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度に基づいて、補正前の生育指標を求め、太陽角度演算部62で求めた太陽角度α、太陽方向演算部63で求めた太陽方向φ、および、拡散度演算部64で求めた拡散度Wとに対応する第2補正値を前記第2補正情報から求め、この求めた第2補正値で前記補正前の生育指標を補正して最終的な生育指標(補正後の生育指標)を求める。   Moreover, when the 2nd correction information is memorize | stored in the correction information storage part 81, the growth information storage part 82 is omissible, and the growth index calculating part 66 is the 3rd measured by the sunlight measurement part 5. Based on the respective light intensities of sunlight at each of the fourth wavelengths, the ratio of the respective light intensities of the reflected light at the first and second wavelengths measured by the reflected light measuring unit 1 is normalized so as to be a predetermined value. While calculating, based on each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measuring unit 1, a growth index before correction is obtained, and the sun angle α obtained by the sun angle calculating unit 62, A second correction value corresponding to the sun direction φ obtained by the sun direction calculation unit 63 and the diffusivity W obtained by the diffusivity calculation unit 64 is obtained from the second correction information, and the obtained second correction value is used. The growth index before the correction is corrected to obtain the final growth index (the corrected growth index). (Education index).

また、補正情報記憶部81に第3補正情報が記憶されている場合には、生育指標演算部66は、太陽光測定部5で測定した第3および第4波長それぞれでの太陽光の各光強度に基づいて、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度の比率が所定値となるように正規化しつつ、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度に基づいて、補正前の生育指標を求め、太陽角度演算部62で求めた太陽角度α、太陽方向演算部63で求めた太陽方向φ、および、拡散度演算部64で求めた拡散度W、傾斜計4で取得した測定角度β、および、葉密度演算部65で求めた葉密度Lとに対応する第3補正値を前記第3補正情報から求め、この求めた第3補正値で前記補正前の生育指標を補正して最終的な生育指標(補正後の生育指標)を求める。   Further, when the third correction information is stored in the correction information storage unit 81, the growth index calculation unit 66 uses each light of sunlight at the third and fourth wavelengths measured by the solar light measurement unit 5. Based on the intensity, the first measured by the reflected light measuring unit 1 while normalizing the ratio of the respective light intensities of the reflected light at the first and second wavelengths measured by the reflected light measuring unit 1 to be a predetermined value. Based on each light intensity of the reflected light at each of the first and second wavelengths, a growth index before correction is obtained, the solar angle α obtained by the sun angle computing unit 62, the solar direction φ obtained by the solar direction computing unit 63, The third correction value corresponding to the diffusivity W obtained by the diffusivity calculating unit 64, the measurement angle β obtained by the inclinometer 4, and the leaf density L obtained by the leaf density calculating unit 65 is the third correction value. It is calculated from the information, and the growth index before the correction is compensated with the calculated third correction value. To obtain a final growth index (growth index after correction).

このような植物生育指標測定装置Mでは、GPS部2、時計部7および太陽角度演算部62によって、太陽光の測定対象への入射角度を太陽角度として取得する太陽角度取得部の一例が構成される。GPS部2、時計部7、方位計3および太陽方向演算部63によって、反射光測定部1の測定方向に対する太陽の方向を太陽方向として取得する太陽方向取得部の一例が構成される。   In such a plant growth index measuring device M, the GPS unit 2, the clock unit 7, and the sun angle calculation unit 62 constitute an example of a solar angle acquisition unit that acquires the incident angle of sunlight on the measurement target as the solar angle. The The GPS unit 2, the clock unit 7, the azimuth meter 3, and the sun direction calculation unit 63 constitute an example of a solar direction acquisition unit that acquires the sun direction with respect to the measurement direction of the reflected light measurement unit 1 as the solar direction.

なお、植物生育指標測定システムMは、上述したように、必要に応じて、さらに、制御処理部6に接続され例えば各種コマンドや各種データ等を入力する入力部を備えて良く、また、前記入力部で入力された各種コマンドや各種データおよび測定結果等を出力する出力部等を備えても良い。   As described above, the plant growth index measurement system M may further include an input unit that is connected to the control processing unit 6 and inputs, for example, various commands and various data, as necessary. You may provide the output part etc. which output the various commands input by the part, various data, a measurement result, etc.

次に、本実施形態の動作について説明する。ここでは、補正情報記憶部81に第3補正情報が記憶され、生育指標演算部66は、前記第3補正値を用いて最終的な生育指標(補正後の生育指標)を求める場合について説明するが、補正情報記憶部81に第1補正情報が記憶され、生育指標演算部66は、前記第1補正値を用いて最終的な生育指標を求める場合や、補正情報記憶部81に第2補正情報が記憶され、生育指標演算部66は、前記第2補正値を用いて最終的な生育指標を求める場合も、以下に説明する処理を適宜に省略することで、同様に説明できる。   Next, the operation of this embodiment will be described. Here, a case will be described in which the third correction information is stored in the correction information storage unit 81 and the growth index calculation unit 66 obtains a final growth index (corrected growth index) using the third correction value. However, the first correction information is stored in the correction information storage unit 81, and the growth index calculation unit 66 obtains the final growth index using the first correction value, or the correction information storage unit 81 performs the second correction. The information is stored, and the growth index calculation unit 66 can similarly explain the process described below by appropriately omitting the process described below when obtaining the final growth index using the second correction value.

図6は、実施形態における植物生育指標測定システムの動作を示すフローチャートである。図7は、実施形態の植物生育指標測定システムにおける測定結果の一例を示す図である。図7の横軸は、SPAD(Soil & Plant Analyzer Development)値であり、その縦軸は、NDVI値である。   FIG. 6 is a flowchart showing the operation of the plant growth index measurement system in the embodiment. Drawing 7 is a figure showing an example of a measurement result in a plant growth index measuring system of an embodiment. The horizontal axis in FIG. 7 is a SPAD (Soil & Plant Analyzer Development) value, and the vertical axis is an NDVI value.

このような植物生育指標測定システムMでは、まず、ユーザ(オペレータ)によって測定対象の群葉に反射光測定部1が向くように、植物生育指標測定システムMが配置される。ユーザによって図略の電源スイッチがオンされると、制御処理部6は、必要な各部の初期化を実行し、制御処理プログラムの実行によって、制御処理部6には、制御部61、太陽角度演算部62、太陽方向演算部63、拡散度演算部64、葉密度演算部65および生育指標演算部66が機能的に構成される。そして、植物生育指標測定システムMは、次のように動作する。   In such a plant growth index measuring system M, first, the plant growth index measuring system M is arranged so that the reflected light measuring unit 1 faces the foliage to be measured by a user (operator). When a power switch (not shown) is turned on by the user, the control processing unit 6 executes initialization of each necessary unit, and by executing the control processing program, the control processing unit 6 includes the control unit 61, the sun angle calculation. The unit 62, the sun direction calculation unit 63, the diffusivity calculation unit 64, the leaf density calculation unit 65, and the growth index calculation unit 66 are functionally configured. The plant growth index measurement system M operates as follows.

図6において、制御処理部6は、制御部61によって反射光測定部1を制御することで反射光測定部1に可視光での第1画像データRvおよび赤外光での第2画像データRiを生成させ、制御部61によって太陽光測定部5を制御することで太陽光測定部5に可視光での第3画像データSvおよび赤外光での第4画像データSiを生成させ、反射光測定部1から可視光での第1画像データRvおよび赤外光での第2画像データRiを取得し、太陽光測定部5から可視光での第3画像データSvおよび赤外光での第4画像データSiを取得する(S1)。   In FIG. 6, the control processing unit 6 controls the reflected light measurement unit 1 by the control unit 61, so that the reflected light measurement unit 1 has the first image data Rv for visible light and the second image data Ri for infrared light. And the solar measurement unit 5 is controlled by the control unit 61 so that the solar measurement unit 5 generates the third image data Sv in the visible light and the fourth image data Si in the infrared light, and the reflected light The first image data Rv in visible light and the second image data Ri in infrared light are acquired from the measurement unit 1, and the third image data Sv in visible light and the first image data in infrared light are obtained from the sunlight measurement unit 5. Four image data Si is acquired (S1).

次に、制御処理部6は、制御部61によってGPS部2を制御することでGPS部2に緯度Xおよび経度Yを測定させ、制御部61によって方位計3を制御することで方位計3に方位φcを測定させ、制御部61によって傾斜計4を制御することで傾斜計4に測定角度βを測定させ、GPS部2から緯度Xおよび経度Yを取得し、方位計3から方位φcを取得し、そして、傾斜計4から測定角度βを取得する(S2)。   Next, the control processing unit 6 controls the GPS unit 2 by the control unit 61 to cause the GPS unit 2 to measure the latitude X and longitude Y, and the control unit 61 controls the direction meter 3 to cause the direction meter 3 to The azimuth φc is measured, and the inclinometer 4 is controlled by the control unit 61 to cause the inclinometer 4 to measure the measurement angle β, the latitude X and the longitude Y are obtained from the GPS unit 2, and the azimuth φc is obtained from the direction meter 3. Then, the measurement angle β is obtained from the inclinometer 4 (S2).

次に、制御処理部6は、時計部7から年月日時分を取得する(S3)。   Next, the control processing unit 6 obtains the year / month / date / time from the clock unit 7 (S3).

次に、制御処理部6は、生育指標演算部66によって、太陽光測定部5で測定した第3画像データSvおよび第4画像データSiに基づいて、太陽光の分光特性補正係数Iを求める(S4)。より具体的には、生育指標演算部66は、互いに同じ画素位置(x、y)の画素ごとに、第3画像データSvの画素値sv(x、y)と第4画像データSiの画素値si(x、y)との比を太陽光の分光特性補正係数I(x、y)として求める(I(x、y)=sv(x、y)/si(x、y))。太陽光のスペクトルは、時刻や天候や湿度等によって変化するが、これによって可視光での第1画像データRvと赤外光での第2画像データRiとの比率が所定値になるように正規化処理が可能となる。   Next, the control processing unit 6 calculates the spectral characteristic correction coefficient I of sunlight based on the third image data Sv and the fourth image data Si measured by the sunlight measuring unit 5 by the growth index calculating unit 66 ( S4). More specifically, the growth index calculation unit 66 calculates the pixel value sv (x, y) of the third image data Sv and the pixel value of the fourth image data Si for each pixel at the same pixel position (x, y). The ratio with si (x, y) is obtained as the spectral characteristic correction coefficient I (x, y) of sunlight (I (x, y) = sv (x, y) / si (x, y)). The spectrum of sunlight changes depending on time, weather, humidity, and the like, so that the ratio of the first image data Rv with visible light and the second image data Ri with infrared light becomes a predetermined value. Can be processed.

次に制御処理部6は、生育指標演算部66によって、太陽光測定部5で測定した第3および第4波長それぞれでの太陽光の各光強度Sv、Siに基づいて、反射光測定部1で測定した第1および第2波長それぞれでの反射光の各光強度の比率Rv、Riが所定値となるように正規化しつつ、反射光測定部1で測定した前記第1および第2波長それぞれでの前記反射光の各光強度Rv、Riに基づいて、補正前の生育指標、例えばNDVI値を求める(S5)。より具体的には、生育指標演算部66は、互いに同じ画素位置(x、y)の画素ごとに、第2画像データRiの画素値ri(x、y)に、前記処理S4で求めた太陽光の分光特性補正係数I(x、y)を乗算することで、正規化した第2画像データRiの画素値ri’(x、y)(=ri(x、y)×I(x、y))を求め、互いに同じ画素位置(x、y)の画素ごとに、次式6によってNDVI値を求める。なお、rv(x、y)は、画素位置(x、y)での第1画像データRvの画素値である。
NDVI(x、y)=[ri’−rv]/[ri’+rv]・・・(式6)
Next, the control processing unit 6 uses the growth index calculation unit 66 to calculate the reflected light measurement unit 1 based on the light intensities Sv and Si of sunlight at the third and fourth wavelengths measured by the sunlight measurement unit 5. Each of the first and second wavelengths measured by the reflected light measuring unit 1 while normalizing the ratios Rv and Ri of the respective light intensities of the reflected light at the first and second wavelengths measured in Step 1 to be predetermined values. Based on the respective light intensities Rv and Ri of the reflected light, a growth index before correction, for example, an NDVI value is obtained (S5). More specifically, the growth index calculation unit 66 calculates the sun obtained in the process S4 to the pixel value ri (x, y) of the second image data Ri for each pixel at the same pixel position (x, y). By multiplying the spectral characteristic correction coefficient I (x, y) of light, the pixel value ri ′ (x, y) (= ri (x, y) × I (x, y) of the normalized second image data Ri is obtained. )) For each pixel at the same pixel position (x, y). Note that rv (x, y) is a pixel value of the first image data Rv at the pixel position (x, y).
NDVI (x, y) = [ri′−rv] / [ri ′ + rv] (Expression 6)

次に、制御処理部6は、拡散度演算部64によって拡散度Wを求める(S6)。より具体的には、拡散度演算部64は、一例では、第2可視撮像部5−1で生成された可視光での第3画像データSvの標準偏差σsvを求め、この求めた標準偏差σsvで所定係数Kを除算することで拡散度Wを求める(W=K/σsv)。   Next, the control processing unit 6 obtains the diffusivity W by the diffusivity calculating unit 64 (S6). More specifically, in one example, the diffusivity calculating unit 64 obtains the standard deviation σsv of the third image data Sv with visible light generated by the second visible imaging unit 5-1, and the obtained standard deviation σsv. Then, the diffusivity W is obtained by dividing the predetermined coefficient K by (W = K / σsv).

次に、制御処理部6は、太陽角度演算部62によって、GPS部2で取得した緯度Xおよび経度Y、ならびに、時計部7で計った年月日時分に基づいて、太陽角度αを求める(S7)。   Next, the control processing unit 6 obtains the sun angle α based on the latitude X and longitude Y acquired by the GPS unit 2 and the year, month, date and time measured by the clock unit 7 by the sun angle calculation unit 62 ( S7).

次に、制御処理部6は、太陽方向演算部63によって、GPS部2で取得した緯度Xおよび経度Y、ならびに、時計部7で計った年月日時分に基づいて、太陽方位ψを求め、方位計3で測定した方位φcと前記求めた太陽方位ψとの差分として太陽方向φを求める(φ=ψ−φc)(S8)。   Next, the control processing unit 6 obtains the solar azimuth direction ψ based on the latitude X and longitude Y acquired by the GPS unit 2 and the year, month, day and time measured by the clock unit 7 by the sun direction calculation unit 63. The solar direction φ is obtained as a difference between the direction φc measured by the direction meter 3 and the obtained solar direction φ (φ = φ−φc) (S8).

次に、制御処理部6は、葉密度演算部65によって、IF部9等を介して取得された植え付けからの日数に対応する葉密度Lを生育情報記憶部82に記憶された前記生育情報から求める(S9)。   Next, the control processing unit 6 uses the leaf density calculation unit 65 to calculate the leaf density L corresponding to the number of days from planting acquired through the IF unit 9 and the like from the growth information stored in the growth information storage unit 82. Obtain (S9).

次に、制御処理部6は、生育指標演算部66によって、処理S2で取得した測定角度β、処理S6で求めた拡散度W、処理S7で求めた太陽角度α、処理S8で求めた太陽方向φおよび処理S9で求めた葉密度Lに対応する第3補正値を補正情報記憶部81に記憶された前記第3補正情報から求め、この求めた第3補正値で処理S5で求めた補正前の生育指標、この例ではNDVI値を補正し、最終的な生育指標(補正後の生育指標)を求める。例えば、生育指標演算部66は、前記求めた第3補正値を処理S5で求めた補正前のNDVI値に乗算することで補正後のNDVI値を求める((補正後のNDVI値)=(第3補正値)×(補正前のNDVI値))。なお、乗算に代え、足し算が用いられてもよい。   Next, the control processing unit 6 uses the growth index calculation unit 66 to measure the measurement angle β obtained in the process S2, the diffusivity W obtained in the process S6, the sun angle α obtained in the process S7, and the sun direction obtained in the process S8. A third correction value corresponding to φ and the leaf density L obtained in step S9 is obtained from the third correction information stored in the correction information storage unit 81, and the pre-correction obtained in step S5 with the obtained third correction value. In this example, the NDVI value is corrected to obtain a final growth index (corrected growth index). For example, the growth index calculating unit 66 obtains a corrected NDVI value by multiplying the calculated third correction value by the uncorrected NDVI value obtained in step S5 ((corrected NDVI value) = (first 3 correction value) × (NDVI value before correction)). Note that addition may be used instead of multiplication.

次に、制御処理部6は、この求めた最終的な生育指標(補正後の生育指標)を処理S3で取得した年月日時分に対応付けて記憶部8に記憶し、そして、前記求めた最終的な生育指標(補正後の生育指標)を処理S3で取得した年月日時分に対応付けてIF部9を介して外部へ出力する(S11)。   Next, the control processing unit 6 stores the obtained final growth index (corrected growth index) in the storage unit 8 in association with the year, month, day, hour, and day obtained in the process S3, and the above-described calculation. The final growth index (corrected growth index) is output to the outside via the IF unit 9 in association with the year / month / day / date obtained in step S3 (S11).

そして、制御処理部6は、処理を処理S1に戻し、上記各処理を繰り返す。   And the control process part 6 returns a process to process S1, and repeats said each process.

図7には、本実施形態の植物生育指標測定システムMによって求められた測定結果の一例が示されている。図7から分かるように、検量線は、ほぼ1本となり、良好に補正され、より精度の高いNDVI値が求められている。   FIG. 7 shows an example of measurement results obtained by the plant growth index measurement system M of the present embodiment. As can be seen from FIG. 7, there is almost one calibration curve, which is corrected well and a more accurate NDVI value is required.

以上説明したように、本実施形態における植物生育指標測定装置および該方法ならびに植物生育指標測定システムは、より精度良く生育指標を測定できる。   As described above, the plant growth index measuring device, the method, and the plant growth index measuring system in the present embodiment can measure the growth index with higher accuracy.

なお、上述の実施形態では、生育指標としてNDVI値が求められたが、これに限定されるものではない。例えば、RVI(Ratio Vegetation Index、比植生指標)が求められても良い(RVI=Ri’/Rv、RVI(x、y)=ri’(x、y)/rv(x、y))。また例えば、DVI(Difference Vegetation Index、差植生指標)が求められても良い(DVI=Ri’−Rv、DVI(x、y)=ri’(x、y)−rv(x、y))。また例えば、TVI(Transformed Vegetation Index)が求められても良い(TVI=NDVI+0.5)0.5)。また例えば、IPVI(Infrared Percentage Vegetation Index)が求められても良い(IPVI=Ri’/(Ri’+Rv)=(NDVI+1)/2)。In the above-described embodiment, the NDVI value is obtained as the growth index, but the present invention is not limited to this. For example, RVI (Ratio Vegetation Index, specific vegetation index) may be obtained (RVI = Ri ′ / Rv, RVI (x, y) = ri ′ (x, y) / rv (x, y)). Further, for example, DVI (Difference Vegetation Index, differential vegetation index) may be obtained (DVI = Ri′−Rv, DVI (x, y) = ri ′ (x, y) −rv (x, y)). Further, for example, TVI (Transformed Vegetation Index) may be obtained (TVI = NDVI + 0.5) 0.5 ). Further, for example, an IPVI (Infrared Percentage Index) may be obtained (IPVI = Ri ′ / (Ri ′ + Rv) = (NDVI + 1) / 2).

上述の植物生育指標測定装置システムMは、生育情報記憶部82に記憶された生育情報に基づいて葉密度Lを求めたが、反射光測定部1で生成される可視光での第1画像データRvおよび赤外光での第2画像データRiに基づいて、土の部分の面積と植物の部分の面積との面積比を求め、葉密度を求めても良い。   The above-described plant growth index measuring device system M calculates the leaf density L based on the growth information stored in the growth information storage unit 82, but the first image data with visible light generated by the reflected light measurement unit 1. Based on the second image data Ri with Rv and infrared light, an area ratio between the area of the soil portion and the area of the plant portion may be obtained to obtain the leaf density.

上述の植物生育指標測定システムMでは、第1ないし第3補正情報のうちのいずれかが用いられたが、太陽角度α、太陽方向φ、拡散度W、測定角度β、葉密度Lおよび太陽光の分光特性補正係数Iと補正値(第4補正値)との対応関係が用いられてもよい。   In the above-described plant growth index measurement system M, any one of the first to third correction information is used, but the sun angle α, the sun direction φ, the diffusivity W, the measurement angle β, the leaf density L, and the sunlight. The correspondence relationship between the spectral characteristic correction coefficient I and the correction value (fourth correction value) may be used.

上述の植物生育指標測定システムMでは、可視光での第3画像データSvおよび赤外光での第4画像データSiを求めるために、太陽光測定部5が用いられたが、これに代え、分光反射率が既知である太陽光測定用部材が用いられてもよい。この場合、前記太陽光測定用部材が反射光測定部1で測定され、可視光での第1画像データRvのうちの前記太陽光測定用部材を撮像した画像領域における画素値の平均値が可視光での第3画像データSvとされ、赤外光での第2画像データRiのうちの前記太陽光測定用部材を撮像した画像領域における画素値の平均値が赤外光での第4画像データSiとされる。   In the above-described plant growth index measurement system M, the solar light measurement unit 5 is used to obtain the third image data Sv with visible light and the fourth image data Si with infrared light. A member for measuring sunlight having a known spectral reflectance may be used. In this case, the member for measuring sunlight is measured by the reflected light measuring unit 1, and an average value of pixel values in an image region in which the member for measuring sunlight is imaged in the first image data Rv with visible light is visible. The third image data Sv with light, and the average value of the pixel values in the image region in which the solar measurement member is imaged in the second image data Ri with infrared light is the fourth image with infrared light. Data Si.

本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。   The present specification discloses various aspects of the technology as described above, and the main technologies are summarized below.

一態様にかかる植物生育指標測定装置は、第1および第2波長で測定した、複数の葉を持つ測定対象の反射光の各光強度データと、太陽光の測定対象への入射角度である太陽角度データと、前記各光強度データの測定方向に対する前記太陽の方向である太陽方向データと、に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算部を備える。   The plant growth index measuring apparatus according to one aspect includes the light intensity data of the reflected light of the measurement target having a plurality of leaves and the incident angle of sunlight to the measurement target, measured at the first and second wavelengths. Based on the angle data and solar direction data that is the direction of the sun with respect to the measurement direction of each light intensity data, a growth index calculation unit that obtains a growth index that represents the degree of growth in the measurement target is provided.

このような植物生育指標測定装置は、生育指標を求める際に、第1および第2波長それぞれでの反射光の各光強度だけでなく、太陽角度および太陽方向も考慮するので、より精度良く生育指標を測定できる。   Such a plant growth index measuring apparatus takes into account not only the light intensity of the reflected light at each of the first and second wavelengths, but also the sun angle and the sun direction when determining the growth index. Indicators can be measured.

他の一態様では、上述の植物生育指標測定装置において、前記生育指標演算部は、さらに、第3および第4波長で測定した、前記太陽の太陽光の光強度データと、前記太陽の太陽光の拡散度データと、に基づいて、前記測定対象の前記生育指標を求める。   In another aspect, in the above-described plant growth index measuring apparatus, the growth index calculation unit further includes light intensity data of the solar sunlight measured at the third and fourth wavelengths, and the solar sunlight. The growth index of the measurement object is obtained based on the diffusivity data.

このような植物生育指標測定装置は、生育指標を求める際に、さらに、第3および第4波長それぞれでの太陽光の各光強度および拡散度も考慮するので、さらに精度良く生育指標を測定できる。   Such a plant growth index measuring apparatus can further measure the growth index with higher accuracy since it also considers the light intensity and diffusivity of sunlight at the third and fourth wavelengths when determining the growth index. .

他の一態様では、上述の植物生育指標測定装置において、前記生育指標演算部は、さらに、前記測定対象に対する前記各光強度データの測定方向の角度である測定角度データと、前記測定対象の葉密度データと、に基づいて、前記測定対象の前記生育指標を求める。   In another aspect, in the above-described plant growth index measurement apparatus, the growth index calculation unit further includes measurement angle data that is an angle in a measurement direction of each light intensity data with respect to the measurement object, and leaves of the measurement object Based on the density data, the growth index of the measurement object is obtained.

このような植物生育指標測定装置は、生育指標を求める際に、さらに、測定角度および葉密度も考慮するので、さらにより精度良く生育指標を測定できる。   Such a plant growth index measuring apparatus can take into account the measurement angle and the leaf density when determining the growth index, so that the growth index can be measured with higher accuracy.

他の一態様にかかる植物生育指標測定方法は、複数の葉を持つ測定対象の反射光の光強度を、互いに異なる第1および第2波長で測定する反射光測定工程と、太陽光の測定対象への入射角度を太陽角度として取得する太陽角度取得工程と、前記反射光の測定方向に対する前記太陽の方向を太陽方向として取得する太陽方向取得工程と、前記反射光測定工程で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得工程で取得した前記太陽角度、ならびに、前記太陽方向取得工程で取得した前記太陽方向に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算工程とを備える。   The plant growth index measurement method according to another aspect includes a reflected light measurement step of measuring the light intensity of reflected light of a measurement object having a plurality of leaves at different first and second wavelengths, and a measurement object of sunlight. A solar angle acquisition step of acquiring the incident angle as a solar angle, a solar direction acquisition step of acquiring the sun direction as a solar direction with respect to the measurement direction of the reflected light, and the first measured in the reflected light measurement step And the light intensity of the reflected light at each of the second wavelengths, the sun angle acquired in the solar angle acquisition step, and the solar direction acquired in the solar direction acquisition step, A growth index calculating step for obtaining a growth index representing the degree.

このような植物生育指標測定方法は、生育指標を求める際に、第1および第2波長それぞれでの反射光の各光強度だけでなく、太陽角度および太陽方向も考慮するので、より精度良く生育指標を測定できる。   Such a plant growth index measurement method takes into account not only the light intensity of the reflected light at each of the first and second wavelengths, but also the sun angle and the sun direction when determining the growth index. Indicators can be measured.

他の一態様にかかる植物生育指標測定システムは、複数の葉を持つ測定対象の反射光の光強度を、互いに異なる第1および第2波長で測定する反射光測定部と、太陽光の測定対象への入射角度を太陽角度として取得する太陽角度取得部と、前記反射光測定部の測定方向に対する前記太陽の方向を太陽方向として取得する太陽方向取得部と、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得部で取得した前記太陽角度、ならびに、前記太陽方向取得部で取得した前記太陽方向に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算部とを備える。好ましくは、上述の植物生育指標測定システムにおいて、前記太陽角度取得部は、緯度および経度を取得するGPS部と、年月日時分を計る時計部と、前記GPS部で取得した前記緯度および経度ならびに前記時計部で計った年月日時分に基づいて前記太陽角度を求める太陽角度演算部とを備える。好ましくは、上述の植物生育指標測定システムにおいて、前記太陽方向取得部は、緯度および経度を取得するGPS部と、年月日時分を計る時計部と、前記反射光測定部の測定方向の方位を求める方位計と、前記GPS部で取得した前記緯度および経度ならびに前記時計部で計った年月日時分に基づいて太陽方位を求め、前記求めた太陽方位と前記方位計で求めた前記反射光測定部の測定方向の方位に基づいて前記太陽方向を求める太陽方向演算部とを備える。好ましくは、上述の植物生育指標測定システムにおいて、前記太陽角度および前記太陽方向と前記生育指標の第1補正値との対応関係を第1補正情報として記憶する第1補正情報記憶部をさらに備え、前記生育指標演算部は、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度に基づいて、補正前の生育指標を求め、前記太陽角度取得部で取得した前記太陽角度、および、前記太陽方向取得部で取得した前記太陽方向とに対応する第1補正値を前記第1補正情報から求め、前記求めた第1補正値で前記補正前の生育指標を補正して前記生育指標を求める。   A plant growth index measurement system according to another aspect includes a reflected light measurement unit that measures the light intensity of reflected light of a measurement object having a plurality of leaves at different first and second wavelengths, and a measurement object of sunlight. The solar angle acquisition unit that acquires the incident angle to the sun as the solar angle, the solar direction acquisition unit that acquires the solar direction as the solar direction with respect to the measurement direction of the reflected light measurement unit, and the reflected light measurement unit Based on each light intensity of the reflected light at each of the first and second wavelengths, the sun angle acquired by the sun angle acquisition unit, and the solar direction acquired by the solar direction acquisition unit, in the measurement object A growth index calculating unit for obtaining a growth index representing the degree of growth. Preferably, in the above-described plant growth index measurement system, the sun angle acquisition unit includes a GPS unit that acquires latitude and longitude, a clock unit that measures the date and time, the latitude and longitude acquired by the GPS unit, and A sun angle calculation unit that obtains the sun angle based on the date and time measured by the clock unit. Preferably, in the above-described plant growth index measurement system, the solar direction acquisition unit includes a GPS unit that acquires latitude and longitude, a clock unit that measures the date and time, and an orientation in the measurement direction of the reflected light measurement unit. Obtain the direction of the sun, determine the solar direction based on the latitude and longitude acquired by the GPS unit and the date and time measured by the clock unit, and the reflected light measurement obtained by the calculated direction of the sun and the direction meter A solar direction calculation unit that obtains the solar direction based on the direction of the measurement direction of the unit. Preferably, in the above-described plant growth index measurement system, the system further includes a first correction information storage unit that stores a correspondence relationship between the sun angle and the sun direction and the first correction value of the growth index as first correction information, The growth index calculation unit obtains a growth index before correction based on each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit, and the sun angle acquisition unit A first correction value corresponding to the acquired sun angle and the sun direction acquired by the sun direction acquisition unit is obtained from the first correction information, and the growth index before the correction is calculated using the obtained first correction value. Is corrected to obtain the growth index.

このような植物生育指標測定システムは、生育指標を求める際に、第1および第2波長それぞれでの反射光の各光強度だけでなく、太陽角度および太陽方向も考慮するので、より精度良く生育指標を測定できる。   Such a plant growth index measurement system takes into account not only the light intensity of the reflected light at each of the first and second wavelengths but also the sun angle and the sun direction when determining the growth index, so that it grows more accurately. Indicators can be measured.

他の一態様では、上述の植物生育指標測定システムにおいて、前記太陽の太陽光の光強度を、互いに異なる第3および第4波長で測定する太陽光測定部と、前記太陽の太陽光の拡散度を取得する拡散度取得部とをさらに備え、前記生育指標演算部は、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得部で取得した前記太陽角度、前記太陽方向取得部で取得した前記太陽方向、前記太陽光測定部で測定した前記第3および第4波長それぞれでの前記太陽光の各光強度、ならびに、前記拡散度取得部で取得した前記拡散度に基づいて、前記測定対象における生育の度合いを表す生育指標を求める。好ましくは、上述の植物生育指標測定システムにおいて、前記拡散度取得部は、前記太陽光測定部の測定結果に基づいて、前記拡散度を求める。好ましくは、上述の植物生育指標測定システムにおいて、前記反射光測定部は、前記測定対象を撮像するカメラを備えて構成され、前記拡散度取得部は、前記カメラのシャッタースピードを前記拡散度とする。好ましくは、上述の植物生育指標測定システムにおいて、前記太陽角度、前記太陽方向および前記拡散度と前記生育指標の第2補正値との対応関係を第2補正情報として記憶する第2補正情報記憶部をさらに備え、前記生育指標演算部は、前記太陽光測定部で測定した前記第3および第4波長それぞれでの前記太陽光の各光強度に基づいて、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度の比率が所定値となるように正規化しつつ、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度に基づいて、補正前の生育指標を求め、前記太陽角度取得部で取得した前記太陽角度、前記太陽方向取得部で取得した前記太陽方向、および、前記拡散度取得部で取得した前記拡散度とに対応する第2補正値を前記第2補正情報から求め、前記求めた第2補正値で前記補正前の生育指標を補正して前記生育指標を求める。   In another aspect, in the above-described plant growth index measurement system, a solar light measuring unit that measures the light intensity of the solar sunlight at different third and fourth wavelengths, and the solar sunlight diffusivity A diffusivity acquisition unit that acquires the light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit, and the solar angle acquisition unit. The solar angle acquired in Step 1, the solar direction acquired by the solar direction acquisition unit, the light intensity of the sunlight at each of the third and fourth wavelengths measured by the solar light measurement unit, and the diffusivity Based on the diffusivity acquired by the acquisition unit, a growth index representing the degree of growth in the measurement target is obtained. Preferably, in the above-described plant growth index measurement system, the diffusivity acquisition unit obtains the diffusivity based on a measurement result of the sunlight measurement unit. Preferably, in the above-described plant growth index measurement system, the reflected light measurement unit includes a camera that images the measurement target, and the diffusion degree acquisition unit sets the shutter speed of the camera as the diffusion degree. . Preferably, in the above-described plant growth index measurement system, a second correction information storage unit that stores a correspondence relationship between the sun angle, the sun direction, the diffusivity, and the second correction value of the growth index as second correction information. The growth index calculation unit is further configured to measure the reflected light measurement unit based on the light intensity of the sunlight at the third and fourth wavelengths measured by the sunlight measurement unit. While normalizing the ratio of each light intensity of the reflected light at each of the first and second wavelengths to be a predetermined value, the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit Based on each light intensity, a growth index before correction is obtained, the sun angle acquired by the sun angle acquisition unit, the solar direction acquired by the solar direction acquisition unit, and the diffusivity acquisition unit acquired Expansion Obtains a second correction value corresponding to the degree of the second correction information to correct the growth index before the correction by the second correction value calculated said determining the growth index.

このような植物生育指標測定システムは、生育指標を求める際に、さらに、第3および第4波長それぞれでの太陽光の各光強度および拡散度も考慮するので、さらに精度良く生育指標を測定できる。   Such a plant growth index measurement system can measure the growth index with higher accuracy because it further considers each light intensity and diffusivity of sunlight at the third and fourth wavelengths when determining the growth index. .

他の一態様では、上述の植物生育指標測定システムにおいて、前記測定対象に対する前記反射光測定部の測定方向の角度を測定角度として取得する測定角度取得部と、前記測定対象の葉密度を取得する葉密度取得部とをさらに備え、前記生育指標演算部は、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得部で取得した前記太陽角度、前記太陽方向取得部で取得した前記太陽方向、前記太陽光測定部で測定した前記第3および第4波長それぞれでの前記太陽光の各光強度、前記拡散度取得部で取得した前記拡散度、前記測定角度取得部で取得した前記測定角度、ならびに、前記葉密度測定部で取得した前記葉密度に基づいて、前記測定対象における生育の度合いを表す生育指標を求める。好ましくは、上述の植物生育指標測定システムにおいて、前記太陽角度、前記太陽方向、前記拡散度、前記測定角度および前記葉密度と前記生育指標の第3補正値との対応関係を第3補正情報として記憶する第3補正情報記憶部をさらに備え、前記生育指標演算部は、前記太陽光測定部で測定した前記第3および第4波長それぞれでの前記太陽光の各光強度に基づいて、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度の比率が所定値となるように正規化しつつ、前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度に基づいて、補正前の生育指標を求め、前記太陽角度取得部で取得した前記太陽角度、前記太陽方向取得部で取得した前記太陽方向、前記拡散度取得部で取得した前記拡散度、前記測定角度取得部で取得した前記測定角度、および、前記葉密度測定部で取得した前記葉密度とに対応する第3補正値を前記第3補正情報から求め、前記求めた第3補正値で前記補正前の生育指標を補正して前記生育指標を求める。   In another aspect, in the above-described plant growth index measurement system, a measurement angle acquisition unit that acquires an angle of a measurement direction of the reflected light measurement unit with respect to the measurement target as a measurement angle, and acquires a leaf density of the measurement target A leaf density acquisition unit, and the growth index calculation unit acquires the light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit, acquired by the sun angle acquisition unit. The solar angle, the solar direction acquired by the solar direction acquisition unit, the light intensity of the sunlight at each of the third and fourth wavelengths measured by the solar light measurement unit, and acquired by the diffusivity acquisition unit Based on the diffusivity, the measurement angle acquired by the measurement angle acquisition unit, and the leaf density acquired by the leaf density measurement unit, a growth index representing the degree of growth in the measurement target is obtained. That. Preferably, in the above-described plant growth index measurement system, the correspondence between the sun angle, the sun direction, the diffusivity, the measurement angle, the leaf density, and the third correction value of the growth index is used as third correction information. And further comprising a third correction information storage unit for storing the growth index calculation unit based on the light intensity of the sunlight at each of the third and fourth wavelengths measured by the sunlight measurement unit. The first and second measured by the reflected light measurement unit while normalizing the ratio of each light intensity of the reflected light at each of the first and second wavelengths measured by the light measurement unit to be a predetermined value. Based on each light intensity of the reflected light at each wavelength, a growth index before correction is obtained, the sun angle acquired by the sun angle acquisition unit, the solar direction acquired by the solar direction acquisition unit, and the diffusivity Get A third correction value corresponding to the diffusivity acquired in Step 1, the measurement angle acquired in the measurement angle acquisition unit, and the leaf density acquired in the leaf density measurement unit is obtained from the third correction information, The growth index before correction is corrected with the calculated third correction value to determine the growth index.

このような植物生育指標測定システムは、生育指標を求める際に、さらに、測定角度および葉密度も考慮するので、さらにより精度良く生育指標を測定できる。   Such a plant growth index measurement system can further measure the growth index with higher accuracy because the measurement angle and the leaf density are further taken into account when determining the growth index.

この出願は、2015年5月12日に出願された日本国特許出願特願2015−97586を基礎とするものであり、その内容は、本願に含まれるものである。   This application is based on Japanese Patent Application No. 2015-97586 filed on May 12, 2015, the contents of which are included in the present application.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.

本発明によれば、植物生育指標測定装置および植物生育指標測定方法ならびに植物生育指標測定システムが提供できる。
According to the present invention, a plant growth index measuring device, a plant growth index measuring method, and a plant growth index measuring system can be provided.

Claims (5)

第1および第2波長で測定した、複数の葉を持つ測定対象の反射光の各光強度データと、太陽光の測定対象への入射角度である太陽角度データと、前記各光強度データの測定方向に対する前記太陽の方向である太陽方向データと、に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算部を備える、
植物生育指標測定装置。
Measurement of each light intensity data of reflected light of a measurement object having a plurality of leaves, solar angle data which is an incident angle of sunlight to the measurement object, and measurement of each light intensity data measured at the first and second wavelengths Based on solar direction data that is the direction of the sun with respect to a direction, a growth index calculation unit that obtains a growth index that represents the degree of growth in the measurement target,
Plant growth index measuring device.
前記生育指標演算部は、さらに、第3および第4波長で測定した、前記太陽の太陽光の光強度データと、前記太陽の太陽光の拡散度データと、に基づいて、前記測定対象の前記生育指標を求める、
請求項1に記載の植物生育指標測定装置。
The growth index calculation unit further measures the measurement target based on the light intensity data of the solar sunlight and the diffusivity data of the solar sunlight measured at the third and fourth wavelengths. Find the growth index,
The plant growth index measuring device according to claim 1.
前記生育指標演算部は、さらに、前記測定対象に対する前記各光強度データの測定方向の角度である測定角度データと、前記測定対象の葉密度データと、に基づいて、前記測定対象の前記生育指標を求める、
請求項2に記載の植物生育指標測定装置。
The growth index calculation unit is further configured to measure the growth index of the measurement target based on measurement angle data that is an angle in a measurement direction of the light intensity data with respect to the measurement target and leaf density data of the measurement target. Seeking
The plant growth index measuring device according to claim 2.
複数の葉を持つ測定対象の反射光の光強度を、互いに異なる第1および第2波長で測定する反射光測定工程と、
太陽光の測定対象への入射角度を太陽角度として取得する太陽角度取得工程と、
前記反射光の測定方向に対する前記太陽の方向を太陽方向として取得する太陽方向取得工程と、
前記反射光測定工程で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得工程で取得した前記太陽角度、ならびに、前記太陽方向取得工程で取得した前記太陽方向に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算工程とを備える、
植物生育指標測定方法。
A reflected light measurement step of measuring the light intensity of the reflected light of the measurement object having a plurality of leaves at different first and second wavelengths;
A solar angle acquisition step of acquiring the incident angle of the sunlight on the measurement object as a solar angle;
A solar direction acquisition step of acquiring the solar direction as the solar direction with respect to the measurement direction of the reflected light;
Each light intensity of the reflected light at each of the first and second wavelengths measured in the reflected light measurement step, the sun angle obtained in the sun angle obtaining step, and the sun obtained in the solar direction obtaining step A growth index calculating step for obtaining a growth index representing the degree of growth in the measurement object based on the direction,
Plant growth index measurement method.
複数の葉を持つ測定対象の反射光の光強度を、第1および第2波長で測定する反射光測定部と、
太陽光の測定対象への入射角度を太陽角度として取得する太陽角度取得部と、
前記反射光測定部の測定方向に対する前記太陽の方向を太陽方向として取得する太陽方向取得部と、
前記反射光測定部で測定した前記第1および第2波長それぞれでの前記反射光の各光強度、前記太陽角度取得部で取得した前記太陽角度、ならびに、前記太陽方向取得部で取得した前記太陽方向に基づいて、前記測定対象における生育の度合いを表す生育指標を求める生育指標演算部とを備える、
植物生育指標測定システム。
A reflected light measuring unit that measures the light intensity of the reflected light of the measurement object having a plurality of leaves at the first and second wavelengths;
A solar angle acquisition unit that acquires the incident angle of the sunlight on the measurement target as a solar angle;
A solar direction acquisition unit that acquires, as a solar direction, the direction of the sun with respect to the measurement direction of the reflected light measurement unit;
Each light intensity of the reflected light at each of the first and second wavelengths measured by the reflected light measurement unit, the sun angle acquired by the sun angle acquisition unit, and the sun acquired by the solar direction acquisition unit A growth index calculation unit for obtaining a growth index representing the degree of growth in the measurement object based on the direction,
Plant growth index measurement system.
JP2017517834A 2015-05-12 2016-04-12 Plant growth index measuring apparatus and method, and plant growth index measuring system Pending JPWO2016181743A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015097586 2015-05-12
JP2015097586 2015-05-12
PCT/JP2016/061843 WO2016181743A1 (en) 2015-05-12 2016-04-12 Plant growth index measurement device and method, and plant growth index measurement system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020208242A Division JP7088277B2 (en) 2015-05-12 2020-12-16 Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system

Publications (1)

Publication Number Publication Date
JPWO2016181743A1 true JPWO2016181743A1 (en) 2018-03-01

Family

ID=57248224

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017517834A Pending JPWO2016181743A1 (en) 2015-05-12 2016-04-12 Plant growth index measuring apparatus and method, and plant growth index measuring system
JP2020208242A Active JP7088277B2 (en) 2015-05-12 2020-12-16 Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020208242A Active JP7088277B2 (en) 2015-05-12 2020-12-16 Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system

Country Status (4)

Country Link
JP (2) JPWO2016181743A1 (en)
KR (2) KR20190085181A (en)
CN (1) CN107532997B (en)
WO (1) WO2016181743A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017317412B2 (en) * 2016-08-22 2022-02-17 National University Corporation Hokkaido University Object state detection and transmission system
JP2018124814A (en) * 2017-02-01 2018-08-09 キヤノン株式会社 Image processor, imaging apparatus, image processing method, image processing program, and storage medium
JP6884584B2 (en) * 2017-02-01 2021-06-09 キヤノン株式会社 Image processing device, imaging device, image processing method, image processing program, and storage medium
WO2019035306A1 (en) * 2017-08-18 2019-02-21 コニカミノルタ株式会社 Plant growth index calculation method, plant growth index calculation program and plant growth index calculation system
CN108489906B (en) * 2018-03-29 2019-01-22 河北省科学院地理科学研究所 A kind of crop growing state multiple-angle thinking spectral detection device and its application method
KR102066481B1 (en) 2018-10-20 2020-01-15 주식회사 지농 Plant Growth Measuring Methods Using Dron
JP7388816B2 (en) * 2019-01-30 2023-11-29 株式会社トプコン Growth information management system, growth information management system control method, and growth information management system control program
CN113474635A (en) * 2019-03-01 2021-10-01 索尼集团公司 Image processing apparatus, image processing method, and program
JP7313906B2 (en) * 2019-05-28 2023-07-25 キヤノン株式会社 IMAGE PROCESSING METHOD, IMAGE PROCESSING APPARATUS, IMAGING SYSTEM AND PROGRAM
JP7228860B1 (en) 2022-02-07 2023-02-27 国立大学法人北海道大学 Spectrometer
JP7189585B1 (en) * 2022-02-07 2022-12-14 国立大学法人北海道大学 Information processing system and spectrometer
EP4356721A1 (en) * 2022-10-19 2024-04-24 Krebs Paysagistes SA Apparatus for monitoring a health status of a tree
WO2024084424A1 (en) 2022-10-19 2024-04-25 Krebs Paysagistes Sa Apparatus for monitoring a health status of a tree

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021688A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP2004301810A (en) * 2003-04-01 2004-10-28 Ebara Corp Growth degree measuring instrument for plant
JP2004536318A (en) * 2001-07-18 2004-12-02 ソムフィ Methods for measuring ambient light to control sun protection or lighting
JP2006101768A (en) * 2004-10-06 2006-04-20 Satake Corp Method for sorting raw unhulled rice in reception with rice center, country elevator or the like
WO2009116613A1 (en) * 2008-03-21 2009-09-24 株式会社 伊藤園 Method and apparatus of evaluating fitness-for-plucking of tea leaf, system of evaluating fitness-for-plucking of tea leaf, and computer-usable medium
JP2012159375A (en) * 2011-01-31 2012-08-23 Fujitsu Ltd Reflectance calculation device, reflectance calculation method, and program
JP2013231645A (en) * 2012-04-27 2013-11-14 Ito En Ltd Tea plucking appropriateness evaluation method, plucking appropriateness evaluation apparatus, plucking appropriateness evaluation system and computer available medium
US20140268094A1 (en) * 2013-03-15 2014-09-18 Digitalglobe, Inc. Using parallax in remote sensing to determine cloud feature height

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305795B2 (en) * 1999-08-10 2009-07-29 株式会社サタケ Crop diagnosis method
JP4243014B2 (en) 2000-12-01 2009-03-25 株式会社荏原製作所 Plant growth measuring device
JP2003294609A (en) * 2002-03-29 2003-10-15 Otsuka Denshi Co Ltd Apparatus and method for multipoint measurement
KR20040012255A (en) * 2002-08-02 2004-02-11 대한민국(관리부서:농촌진흥청) Chlorophyll content measuring apparatus
JP4284674B2 (en) * 2003-01-31 2009-06-24 日本光電工業株式会社 Absorbent concentration measuring device in blood
WO2007108328A1 (en) * 2006-03-16 2007-09-27 Kurashiki Boseki Kabushiki Kaisha Total reflection attenuation optical probe and aqueous solution spectrometric device
CN100510709C (en) * 2007-01-17 2009-07-08 南京农业大学 Portable multiway crop leaf nitrogen nutrient index nondestructive monitoring device
CN101059427A (en) * 2007-05-29 2007-10-24 浙江大学 Method for quickly non-destructive measurement for nitrogen content of tea using multiple spectrum imaging technology
WO2011045967A1 (en) * 2009-10-13 2011-04-21 浜松ホトニクス株式会社 Film thickness measurement device and film thickness measurement method
CN101715675A (en) * 2009-12-22 2010-06-02 江苏大学 Photoelectric type corn growing density online detection method and device thereof
CN101966521B (en) * 2010-06-30 2016-01-27 中山市嘉科电子有限公司 Based on the power battery pack high capacity battery automatic sieving system of technology of Internet of things
JP2012063321A (en) * 2010-09-17 2012-03-29 Hamamatsu Photonics Kk Reflectivity measurement device, reflectivity measurement method, film thickness measurement device, and film thickness measurement method
JP5737390B2 (en) * 2011-04-28 2015-06-17 コニカミノルタ株式会社 Multi-angle colorimeter
EP2783193A4 (en) * 2011-11-03 2015-08-26 Verifood Ltd Low-cost spectrometry system for end-user food analysis
JP5738210B2 (en) * 2012-02-09 2015-06-17 三菱電機株式会社 Solar simulator
CN104159504B (en) * 2012-02-28 2016-04-13 柯尼卡美能达株式会社 Biological information processing unit and signal processing method
US8976358B2 (en) * 2012-03-23 2015-03-10 Spectrasensors, Inc. Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
CN102967562B (en) * 2012-11-20 2015-05-13 南京农业大学 High-precision monitor for crop growth information and detection method thereof
CN203011825U (en) * 2012-12-19 2013-06-19 南京农业大学 Portable crop growth information monitor based on active light source
CN103149162B (en) * 2012-12-19 2015-04-29 南京农业大学 Portable crop growth information monitor based on active light source
JP2015021854A (en) * 2013-07-19 2015-02-02 日本電気株式会社 Apparatus, method and program for analysis of vegetation information
CN203709452U (en) * 2014-02-10 2014-07-16 孟欣欣 Draw-bar box

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021688A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP2004536318A (en) * 2001-07-18 2004-12-02 ソムフィ Methods for measuring ambient light to control sun protection or lighting
JP2004301810A (en) * 2003-04-01 2004-10-28 Ebara Corp Growth degree measuring instrument for plant
JP2006101768A (en) * 2004-10-06 2006-04-20 Satake Corp Method for sorting raw unhulled rice in reception with rice center, country elevator or the like
WO2009116613A1 (en) * 2008-03-21 2009-09-24 株式会社 伊藤園 Method and apparatus of evaluating fitness-for-plucking of tea leaf, system of evaluating fitness-for-plucking of tea leaf, and computer-usable medium
JP2012159375A (en) * 2011-01-31 2012-08-23 Fujitsu Ltd Reflectance calculation device, reflectance calculation method, and program
JP2013231645A (en) * 2012-04-27 2013-11-14 Ito En Ltd Tea plucking appropriateness evaluation method, plucking appropriateness evaluation apparatus, plucking appropriateness evaluation system and computer available medium
US20140268094A1 (en) * 2013-03-15 2014-09-18 Digitalglobe, Inc. Using parallax in remote sensing to determine cloud feature height

Also Published As

Publication number Publication date
WO2016181743A1 (en) 2016-11-17
CN107532997B (en) 2021-06-18
CN107532997A (en) 2018-01-02
JP7088277B2 (en) 2022-06-21
KR20190085181A (en) 2019-07-17
JP2021056236A (en) 2021-04-08
KR102109245B1 (en) 2020-05-11
KR20170133505A (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP7088277B2 (en) Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system
CN102901516B (en) A kind of multispectral image radiation correction method based on absolute radiometric calibration
Berkoff et al. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source
JP6507927B2 (en) Plant growth index measuring device, method and program
Miyoshi et al. Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment
CN108982369B (en) Plot scale crop growth monitoring method integrating GF-1WFV and MODIS data
JP2019040383A (en) Photographing schedule determination method, and photographing schedule determination control program
US11953872B2 (en) Methods and systems for the management of precise agricultural irrigation
Bendig et al. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction
Suomalainen et al. A novel tilt correction technique for irradiance sensors and spectrometers on-board unmanned aerial vehicles
CN111095339A (en) Crop cultivation supporting device
Seiz et al. Cloud mapping with ground‐based photogrammetric cameras
Feister et al. Ground-based cloud images and sky radiances in the visible and near infrared region from whole sky imager measurements
KR101010265B1 (en) Method for Calibration of COMS using Desert and Ocean
CN113408111B (en) Atmospheric precipitation inversion method and system, electronic equipment and storage medium
Valorge et al. Forty years of experience with SPOT in-flight calibration
JP6988898B2 (en) Plant growth index calculation method, plant growth index calculation program and plant growth index calculation system
Jiang et al. Intercalibration of SVISSR/FY-2C infrared channels against MODIS/Terra and AIRS/Aqua channels
Markelin et al. Validation of the radiometric processing chain of the Leica ADS40 airborne photogrammetric sensor
CN112381882A (en) Unmanned aerial vehicle image automatic correction method carrying hyperspectral equipment
Kuusk et al. Measured spectral bidirectional reflection properties of three mature hemiboreal forests
Behrens Radiation sensors
Gilliot et al. Correction of in-flight luminosity variations in multispectral UAS images, using a luminosity sensor and camera pair for improved biomass estimation in precision agriculture
EP3584549A1 (en) Polyhedral solar sensor
Lee et al. A handy imaging system for precision agriculture studies

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200923