JP4243014B2 - Plant growth measuring device - Google Patents

Plant growth measuring device Download PDF

Info

Publication number
JP4243014B2
JP4243014B2 JP2000367375A JP2000367375A JP4243014B2 JP 4243014 B2 JP4243014 B2 JP 4243014B2 JP 2000367375 A JP2000367375 A JP 2000367375A JP 2000367375 A JP2000367375 A JP 2000367375A JP 4243014 B2 JP4243014 B2 JP 4243014B2
Authority
JP
Japan
Prior art keywords
light
plant
measurement
light receiving
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000367375A
Other languages
Japanese (ja)
Other versions
JP2002168771A (en
Inventor
秀樹 田中
勝弘 飯塚
陽平 奥西
隆志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Agriculture and Food Research Organization
Original Assignee
Ebara Corp
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, National Agriculture and Food Research Organization filed Critical Ebara Corp
Priority to JP2000367375A priority Critical patent/JP4243014B2/en
Publication of JP2002168771A publication Critical patent/JP2002168771A/en
Application granted granted Critical
Publication of JP4243014B2 publication Critical patent/JP4243014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、植物の生育度測定装置に関し、特に植物からの反射太陽光を測定して植物の生育度を光学的に測定する装置に関する。
【0002】
【従来の技術】
従来より農家等において、農作物の生育に合わせて施肥が行われている。その際、施肥の時期や量の決定が重要になるが、従来では、(1)植物の草丈、(2)茎数、(3)葉色を示すSPAD値(以下、「葉色( SPAD 値)」とも表記)、(4)乾物重等を基に植物の生育度を求め、その生育度に合わせて施肥時期や施肥量を決定している。
【0003】
上記(1)植物の草丈とは株の根元から葉の先端までの長さであり、人が田畑に入り、適当な1株の葉を手で揃え、物差で株の根元から葉の先端までの長さを測定している。また、上記(2)茎数とは一株当たりの茎の数であり、これも人が田畑に入り、適当な株を選び、手でより分けながらその茎数を数えている。また、上記(3)葉色(SPAD値)の測定では、通常、ハンディータイプの葉色計で葉を挟み込み、光の透過率からSPAD値を計測したり、葉色板(色見本)を対照して目視により判定している。また、上記(4)乾物重の測定では、適当量の植物を採取して乾燥し、重量を測定して乾物重を求めている。
【0004】
しかしながら、上記の各測定項目はそれぞれ問題点を抱えており、(1)植物の草丈、(2)茎数及び(3)葉色(SPAD値)の測定は、何れも人が田畑に入り、煩雑な作業をしなければならず、多大な労力を要する。また、1株毎、あるいは1葉毎の測定しかできないため、代表値を得ることが困難であり、1圃場内の生育度を把握しようとすると膨大な数のサンプリングが必要となる。しかし、実際には十数株程度のサンプリングにとどまっており、生育度を正確に把握できているとは言えない状況にある。また(4)乾物重の測定では、乾燥までに1週間以上を要することもあり、迅速な対処ができないという問題がある。
【0005】
一方で、測定作業の労力軽減や測定時間の短縮等を目的として、植物の生育度を光学的に測定する試みもなされている。例えば、特開昭62−282243号や特開昭62−282244号公報では、所定面積に生育している植物群落からの反射太陽光を受光し、その受光強度から測定植物群落全体としてのクロロフィル濃度を測定し、これをもとに生育度を求める生育度測定装置を提案している。この生育度測定装置では、従来のように1株毎の測定ではなく、また物差を当てたり、より分る必要もなく、しかも瞬時に測定結果が得られるため、測定作業の労力軽減及び測定時間の短縮が図られる。更に、一度の測定により植物群落をサンプリングできることから、測定精度の上でも有利となる。また、この測定装置では、直接入射する太陽光を同時に測定し、反射太陽光との受光強度比から補正を行い、より正確な測定を行う構成としてある。
【0006】
【発明が解決しようとする課題】
上記したように、生育度を測定して的確な施肥時期や施肥量を決定して科学的、計画的に収穫を行う所謂「精密農業」の実現に向けた研究が,近年押し進められている。その前提となるのは、農作物の生育度をより正確に、瞬時に把握することにあるが、上記のクロロフィル濃度の測定だけでは不十分であり、新たな指標が求められている。例えば、従来と同様に草丈や茎数、乾物重との関係も同時に求めることができれば、より多様な分析が可能となり、より的確な生育計画を立てることも可能になる。
【0007】
本発明はこのような状況に鑑みてなされたものであり、測定作業の労力軽減や測定時間の短縮を維持しつつ、従来以上に正確に生育度を把握できる植物の生育度測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、植物の生育度を光学的に測定する装置であって、植物と対向する第1面に、植物により反射された太陽光を入射させて分光し、2種以上の特定波長の光の反射強度を測定する第1の受光部を設けるとともに、前記第1面とは反対側の面に、太陽光を直接入射させて前記第1の受光部と同一波長の光に分光し、参照光としてその受光強度を測定する第2の受光部を設けてなる基板と、前記第1の受光部で検出した特定波長の反射強度を前記第2の受光部で検出した参照光の受光強度を基に補正し、補正された反射強度を基に、測定植物 SPAD値、草丈、乾物重、(草丈×茎数)草丈× SPAD値)値及び(草丈×茎数× SPAD値)値の少なくとも1つを求める演算部と、を備えることを特徴とする植物の生育度測定装置を提供する。
【0009】
本発明は、光学的に植物の生育度を測定する方式において、反射率と、測定植物の葉色(SPAD値)、草丈、乾物重、(草丈×茎数)、{草丈×葉色(SPAD値)}及び{草丈×茎数×葉色(SPAD値)}との間に高い相関があることを見出し、この知見に基づき完成されたものである。以下、本発明に関して詳細に説明する。
【0010】
【発明の実施の形態】
図1は本発明に係る生育度測定装置の一実施形態を示す概略斜視図であり、図2は図1に示した受光部の拡大断面図である。
【0011】
図示されるように、生育度測定装置1は、受光部10と、受光部10を支持するための支持部20、及び受光部10に接続する演算部(図示せず)とを備える。
【0012】
支持部20は、例えば4本の脚21を受光部10の四隅から斜め外方に突出させ、脚21の先端同士、更に必要に応じて中間の複数箇所にて水平方向に延びる連結棒22a,22bで連結して構成されている。脚21の長さやその突出角度、脚21の先端部の間隔は測定対象となる植物(例えば「水稲」;以下、この水稲を基にして説明する)の一般的な草丈、植付け間隔等に応じて適宜設定することができ、水稲の生育度を測定する場合には、水稲の上端から受光部10までの高さが50cm程度、脚21の先端部の間隔が60cm程度となるように設計することができる。また、脚21や連結棒22a,22bを伸縮自在な可変式とすることもできる。そして、この支持部20は、測定に際して、上方から水稲を覆うようにして水田の測定個所に設置される。その際、この支持部20により、測定エリアの確認を行うことができる。また、この支持部20には、設置や運搬に便利なように、脚21の適所に適応な把手(図示せず)を付設してもよい。
【0013】
受光部10は、基板11に、水稲と対向する第1の受光部12と、太陽と対向する第2の受光部13とをそれぞれ固定して構成される。また、第1の受光部12は測定波長の数に応じて複数の受光素子12a,12b・・で構成され、それに対応して第2の受光部13も同数の受光素子13a,13bで構成されており、更に第1の受光部12を構成する各受光素子12a,12b・・と、第2の受光部13を構成する各受光素子13a,13b・・とで測定波長毎に対をなすように構成される。ここでは、測定波長を最大4波長とする構成を示しており、それに対応して第1の測定波長について第1の受光部12の受光素子12aと第2の受光部13の受光素子13aとが対をなし、第2の測定波長について第1の受光部12の受光素子12bと第2の受光部13の受光素子13bとが対をなし、第3の測定波長について第1の受光部12の受光素子12cと第2の受光部13の受光素子13cとが対をなし、第4の測定波長について第1の受光部12の受光素子12dと第2の受光部13の受光素子13dとが対をなすように構成されている。そしてこれら4対の受光素子は、平面略正方形の基板11の四隅に一対ずつ配置される。
【0014】
各受光素子は公知のもので構わず、例えばSiフォトダイオードとすることができる。また、入射光を測定波長に分光するために、図示されない分光フィルタが各受光素子の受光面に付設される。尚、測定波長は以下のように選択することができる。
【0015】
即ち、図3に植物(水稲)の波長−反射率特性図を示すが、波長550nm(緑色)付近に反射率最大のピーク、波長670nm(赤)付近に反射率最小のピークが現れ、更に波長850nm(近赤外)から1000nm(近赤外)付近の範囲において反射率が一定となることがわかる。そこで、本発明においては、反射率の変化に特徴があるこれら4波長の中から2種以上を選択して測定波長とすることが好ましい。特に、後述する実施例に示すように、550nmを含んだ組み合わせが好ましく、これら4波長全てを選択することが最も好ましい。
【0016】
また、例えば日中と夕暮時、あるいは季節により太陽光の入射角度が異なるため、第2の受光部13の上方に白色拡散板30を載置し、入射する太陽光の安定化を図ることが好ましい。更に、測定個所以外からの不要光の入射を防ぐために、第1の受光部12及び第2の受光部13を構成する各受光素子の視野角を60°程度にすることが好ましい。
【0017】
生育度測定装置1は上記の如く構成され、測定に際して支持部20を水稲の上方から、この水稲を覆うようにして水田の測定個所に設置される。それにより、第1の受光部12が水稲側を向き、第2の受光部13が太陽(天空)を向いて測定個所に設置される。
【0018】
測定は、上記した生育度測定装置1において、第2の受光部13により直接入射する太陽光の入射強度を測定する。このとき、太陽光は、選択した各測定波長(ここでは上記4波長を想定)に応じて、強度I1(λ1=550nm)、I2(λ2=670nm)、I3(λ3=850nm)及びI4(λ4=1000nm)の各波長成分を含んでおり、第2の受光部13では各受光素子13a〜13dにより、それぞれの分光フィルタを透過する光を受光し、その受光強度A1,A2,A3,A4を図示されない演算部に出力する。
【0019】
一方で水稲により反射された太陽光の反射強度を、第1の受光部12により測定する。ここで、上記λ1の波長成分に対する水稲の反射率をR1とすると、反射太陽光におけるλ1の波長成分の強度はR1×I1となり、順次、各波長成分に対する反射太陽光の強度は、R2×I2、R3×I3及びR4×I4となる。第1の受光部12では各受光素子12a〜12dにより、それぞれの分光フィルタを透過する光を受光し、その受光強度B1,B2,B3,B4を演算部に出力する。
【0020】
演算部では、第2の受光部13からの受光信号を基に、第1の受光部12からの受光信号を補正して、各測定波長毎に反射率の補正を行う。即ち、第1の受光部12による受光強度B1,B2,B3,B4は、第2の受光部13による受光強度A1,A2,A3,A4に、それぞれの波長における反射率を乗じた値となる。従って、第2の受光部13による受光強度で、第1の受光部12による受光強度を除すことにより、各測定波長の反射率が求められる。式で示せば、それぞれ測定波長に対して、
1(λ1=550nm)=B1/A1
2(λ2=670nm)=B2/A2
3(λ3=850nm)=B3/A3
4(λ4=1000nm)=B4/A4
である。
【0021】
尚、実際には各受光素子毎に特性差があるため、ダーク値(バックグランド)を測定しておき、更に白色校正係数Wsによる補正を加えることが望ましい。即ち、式で示せば下記の通りとなる。尚、B10〜B40及びA10〜A40は、対応する受光素子のダーク値である。
1(λ1=550nm)=Ws・(B1―B10)/(A1―A10
2(λ2=670nm)=Ws・(B2―B20)/(A2―A20
3(λ3=850nm)=Ws・(B3―B30)/(A3―A30
4(λ4=1000nm)=Ws・(B4―B40)/(A4―A40
【0022】
そして、上記の補正反射率を基にして、水稲の▲1▼葉色(SPAD値)、▲2▼草丈、▲3▼乾物重、▲4▼草丈×茎数、▲5▼草丈×葉色(SPAD値)、▲6▼草丈×茎数×葉色(SPAD値)の何れか一つの値を求める。これらの値は、何れも水稲の生育度の指標として従来より採用されている指標である。例えば図4は、測定波長1000nmにおける反射率と、実際に人手により各値を測定して得た「草丈×茎数×SPAD値」の値との相関を示すグラフであるが、両者の間に高い相関が認められる。また、その他の測定波長についてもほぼ同様の相関が得られ、測定波長の種類が増すほど相関が高くなる。従って、上記に従い反射率を測定することにより、▲6▼草丈×茎数×葉色(SPAD値)が得られ、これを基に生育状況を推定することができる。
【0023】
また、後述される実施例にも示すように、他の指標である▲1▼葉色(SPAD値)、▲2▼草丈、▲3▼乾物重、▲4▼草丈×茎数、▲5▼草丈×葉色(SPAD値)についても反射率との間に高い相関が得られる。従って、反射率を測定するだけで、従来より採用されているこれらの指標を高い精度をもって得られることは、測定作業の軽減に大きく寄与する。また、測定結果も瞬時に得られ、測定時間の短縮にもなる。
【0024】
また、本発明の生育度測定装置において、上記の反射率を基にした生育度データに、測定位置情報を付加してマップ化することもできる。更に、測定時期や気候データ(天候、気温等)等を付加してもよい。そして、これらの情報を年次データとして蓄積し、生育計画に反映させる。
【0025】
上記した生育度測定装置では、第1の受光部12及び第2の受光部13は、測定波長の種類に応じて複数個の受光素子(フォトダイオード)を備えているが、第1の受光部12及び第2の受光部13のそれぞれに、上記した550nm〜1000nmの波長範囲を連続して測光可能なスペクトロメータを配置してもよい。そして、得られたスペクトルパターンの全体を使用、あるいは相関がより高くなるように測定波長を選択して上記と同様の演算を行うことにより、生育度のより精密な推定が可能になる。
【0026】
【実施例】
以下、実施例を挙げて本発明を更に説明する。
【0027】
(実施例1)
図1に示した生育度測定装置を水田に設置し、測定波長として550nm(G)、670nm(R)及び1000nm(IR2)を選択し、測定波長の組み合わせを変えて水田の反射率を測定した。尚、受光素子として、浜松ホトニクス(株)製Siフォトダイオード「S1336−5BQ」を用い、白色拡散板としてオパール型拡散板を用い、測定範囲は一辺約60cm(約8株)とした。また、同一測定個所に生育する水稲を、従来と同様にして人手により草丈、茎数及び葉色(SPAD値)を測定し、これらの積を実測値とした。
【0028】
測定波長の種類毎に、反射率から求めた「草丈×茎数×SPAD値」の値(予測値)と前記実測値との相関を図5(1000nm)、図6(550nm、1000nmの2波長)、図7(550nm、670nm、1000nmの3波長)に示すが、測定波長の種類が増すほど相関も高くなることがわかる。このことから、本発明においては、2波長以上、特に550nmを含む2波長以上を測定波長とすることが好ましいことが確認された。
【0029】
(実施例2)
測定波長として550nm(G)及び1000nm(IR2)を選択して実施例1と同様に水田の反射率を測定した。そして、反射率から求めたSPAD値(予測値)と、実施例1で実測して得たSPAD値(実測値)との相関を求めた。図8に示すように、両者の間に高い相関が認められた。
【0030】
(実施例3)
測定波長として550nm(G)、670nm(R)及び850nm(IR1)を選択して実施例1と同様に水田の反射率を測定した。そして、反射率から求めた草丈(予測値)と、実施例1で実測して得た草丈(実測値)との相関を求めた。図9に示すように、両者の間に高い相関が認められた。
【0031】
(実施例4)
測定波長として550nm(G)、670nm(R)及び1000nm(IR2)を選択して実施例1と同様に水田の反射率を測定した。そして、反射率から求めた「草丈×茎数」(予測値)と、実施例1で実測して得た「草丈×茎数」(実測値)との相関を求めた。図10に示すように、両者の間に高い相関が認められた。
【0032】
(実施例5)
測定波長として550nm(G)、670nm(R)、850nm(IR1)及び1000nm(IR2)を選択して実施例1と同様に水田の反射率を測定した。そして、反射率から求めた「草丈×SPAD値」(予測値)と、実施例1で実測して得た「草丈×SPAD値」(実測値)との相関を求めた。図11に示すように、両者の間に高い相関が認められた。
【0033】
(実施例6)
測定波長として550nm(G)、670nm(R)、850nm(IR1)及び1000nm(IR2)を選択して実施例1と同様に水田の反射率を測定した。
また、同一測定個所に生育する水稲を、人手により採取し、その乾物重を測定して実測値とした。そして、反射率から求めた「乾物重」(予測値)と実測値との相関を求めた。図12に示すように、両者の間に高い相関が認められた。
【0034】
【発明の効果】
以上説明したように、本発明によれば、反射率を基にして従来より採用されている、測定植物の▲1▼葉色(SPAD値)、▲2▼草丈、▲3▼乾物重、▲4▼草丈×茎数、▲5▼草丈×葉色(SPAD値)、▲6▼草丈×茎数×葉色(SPAD値)の何れか一つの値を求めることができ、測定作業の軽減や測定時間の短縮を維持しつつ、従来以上に正確に生育度を把握できるようになる。
【図面の簡単な説明】
【図1】本発明に係る生育度測定装置の一実施形態を示す概略斜視図である。
【図2】図1に示す受光部の拡大断面図である。
【図3】植物(水稲)の波長−反射率特性図である。
【図4】測定波長1000nmにおける反射率と、「草丈×茎数×SPAD値」実測値との相関を示すグラフである。
【図5】実施例1において、測定波長を単一波長(550nm)としたときの反射率から求めた「草丈×茎数×SPAD値」の予測値と、実測値との相関を示すグラフである。
【図6】実施例1において、測定波長を2波長(550nm、1000nm)としたときの反射率から求めた「草丈×茎数×SPAD値」の予測値と、実測値との相関を示すグラフである。
【図7】実施例1において、測定波長を3波長(550nm、670nm、1000nm)としたときの反射率から求めた「草丈×茎数×SPAD値」の予測値と、実測値との相関を示すグラフである。
【図8】実施例2で得られた、SPAD値の予測値と実測値との相関を示すグラフである。
【図9】実施例3で得られた、草丈の予測値と実測値との相関を示すグラフである。
【図10】実施例4で得られた、「草丈×茎数」の予測値と実測値との相関を示すグラフである。
【図11】実施例5で得られた、「草丈×SPAD値」の予測値と実測値との相関を示すグラフである。
【図12】実施例6で得られた、「乾物量」の予測値と実測値との相関を示すグラフである。
【符号の説明】
1 生育度測定装置
10 受光部
11 基板
12 第1の受光部
13 第2の受光部
20 支持部
21 脚
30 白色拡散板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plant growth degree measuring apparatus, and more particularly to an apparatus for optically measuring a plant growth degree by measuring reflected sunlight from a plant.
[0002]
[Prior art]
Conventionally, farmers have applied fertilizer according to the growth of crops. At that time, it is important to determine the time and amount of fertilization. Conventionally, (1) plant height, (2) number of stems, (3) SPAD value indicating leaf color (hereinafter referred to as “leaf color ( SPAD value)”) And (4) the degree of plant growth is determined based on dry matter weight, etc., and the fertilization time and amount are determined according to the degree of growth.
[0003]
(1) Plant height refers to the length from the root of the plant to the tip of the leaf. A person enters the field, prepares an appropriate leaf by hand, and the difference between the root of the plant and the tip of the leaf. The length up to is measured. In addition, the above (2) stem number is the number of stems per strain. This is also the case where a person enters a field, selects an appropriate strain, and counts the number of stems while dividing by hand. In the above (3) measurement of leaf color (SPAD value), the leaf is usually sandwiched with a handy type leaf color meter, and the SPAD value is measured from the light transmittance, or the leaf color plate (color sample) is contrasted visually. It is judged by. In the above (4) dry weight measurement, an appropriate amount of plants is collected and dried, and the dry weight is determined by measuring the weight.
[0004]
However, each of the above measurement items has its own problems. (1) Plant height, (2) number of stems, and (3) leaf color (SPAD value) are all complicated by people entering the field. Work is required and requires a lot of labor. Moreover, since it is possible to measure only for each strain or for each leaf, it is difficult to obtain a representative value, and an enormous number of samplings are required to grasp the degree of growth in one field. However, in reality, only about a dozen strains are sampled, and it cannot be said that the growth degree can be accurately grasped. In addition, (4) dry matter weight measurement may require one week or more to dry, and there is a problem in that it cannot be promptly handled.
[0005]
On the other hand, attempts have been made to optically measure the growth of plants for the purpose of reducing the labor of measurement work and shortening the measurement time. For example, in Japanese Patent Laid-Open Nos. 62-282243 and 62-282244, reflected sunlight from a plant community growing in a predetermined area is received, and the chlorophyll concentration as a whole plant community is measured from the received light intensity. Has proposed a growth degree measuring device that measures the degree of growth and determines the degree of growth based on this. This growth measuring device is not a measurement for each strain as in the past, it is not necessary to apply physical differences or understand more, and the measurement result can be obtained instantly. Time is shortened. Furthermore, since the plant community can be sampled by a single measurement, it is advantageous in terms of measurement accuracy. In addition, this measuring apparatus is configured to measure directly incident sunlight at the same time and correct the received light intensity ratio with reflected sunlight to perform more accurate measurement.
[0006]
[Problems to be solved by the invention]
As described above, research toward the realization of so-called “precision agriculture” in which the degree of fertilization and the amount of fertilization are determined by measuring the degree of growth and scientifically and systematically harvesting has been promoted in recent years. The premise is to grasp the degree of growth of crops more accurately and instantaneously, but the above-mentioned measurement of chlorophyll concentration alone is insufficient, and a new index is required. For example, if the relationship between the plant height, the number of stems, and the dry matter weight can be obtained at the same time as in the conventional case, more various analyzes are possible, and a more accurate growth plan can be made.
[0007]
The present invention has been made in view of such a situation, and provides a plant growth degree measuring apparatus capable of grasping the degree of growth more accurately than in the past while maintaining the reduction of measurement labor and measurement time. For the purpose.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an apparatus for optically measuring the degree of growth of a plant, and the first surface facing the plant is made incident with sunlight reflected by the plant to perform spectroscopy. While providing the 1st light-receiving part which measures the reflection intensity of the light of 2 or more types of specific wavelengths , sunlight is directly incident on the surface on the opposite side to the said 1st surface, and is the same as the said 1st light-receiving part A substrate provided with a second light receiving unit that splits the light into wavelengths and measures the received light intensity as reference light; and the second light receiving unit detects the reflection intensity of the specific wavelength detected by the first light receiving unit. was corrected based on the received light intensity of the detected reference light, based on the corrected reflection intensities, S PAD value of the measurement plant, plant height, dry weight (plant height × tillers) values, (plant height × S PAD value) value and plant characterized by comprising an arithmetic unit for obtaining at least one of (plant height × number of stems × S PAD value) value raw To provide a degree measurement device.
[0009]
The present invention is a method for optically measuring the degree of growth of a plant. Reflectance, leaf color (SPAD value) of the measured plant, plant height, dry weight, (plant height x number of stems), {plant height x leaf color (SPAD value) } And {plant height × number of stems × leaf color (SPAD value)}, and was founded based on this finding. Hereinafter, the present invention will be described in detail.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic perspective view showing an embodiment of a growth degree measuring apparatus according to the present invention, and FIG. 2 is an enlarged sectional view of a light receiving portion shown in FIG.
[0011]
As illustrated, the growth measuring apparatus 1 includes a light receiving unit 10, a support unit 20 for supporting the light receiving unit 10, and a calculation unit (not shown) connected to the light receiving unit 10.
[0012]
For example, the support portion 20 has four legs 21 projecting obliquely outward from the four corners of the light receiving portion 10, and connecting rods 22 a extending horizontally at the tips of the legs 21 and further at intermediate positions as necessary. 22b is connected. The length of the legs 21, the protrusion angle thereof, and the distance between the tips of the legs 21 depend on the general plant height, planting interval, etc. of the plant to be measured (for example, “paddy rice”; hereinafter described based on this paddy rice). When measuring the degree of growth of paddy rice, the height from the upper end of the paddy rice to the light receiving unit 10 is about 50 cm, and the distance between the tips of the legs 21 is about 60 cm. be able to. Further, the leg 21 and the connecting rods 22a and 22b can be made variable and extendable. And this support part 20 is installed in the measurement part of a paddy field so that a paddy rice may be covered from upper direction in the case of a measurement. At this time, the measurement area can be confirmed by the support portion 20. In addition, a handle (not shown) adapted to an appropriate position of the leg 21 may be attached to the support portion 20 so as to be convenient for installation and transportation.
[0013]
The light receiving unit 10 is configured by fixing a first light receiving unit 12 facing the paddy rice and a second light receiving unit 13 facing the sun to the substrate 11. Further, the first light receiving unit 12 is configured by a plurality of light receiving elements 12a, 12b,... According to the number of measurement wavelengths, and the second light receiving unit 13 is also configured by the same number of light receiving elements 13a, 13b. Further, the light receiving elements 12a, 12b,... Constituting the first light receiving part 12 and the light receiving elements 13a, 13b,. Configured. Here, a configuration is shown in which the measurement wavelength is a maximum of four wavelengths. Correspondingly, the light receiving element 12a of the first light receiving unit 12 and the light receiving element 13a of the second light receiving unit 13 correspond to the first measurement wavelength. The light receiving element 12b of the first light receiving unit 12 and the light receiving element 13b of the second light receiving unit 13 form a pair for the second measurement wavelength, and the first light receiving unit 12 for the third measurement wavelength. The light receiving element 12c and the light receiving element 13c of the second light receiving unit 13 form a pair, and the light receiving element 12d of the first light receiving unit 12 and the light receiving element 13d of the second light receiving unit 13 form a pair for the fourth measurement wavelength. It is comprised so that it may make. These four pairs of light receiving elements are arranged one by one at the four corners of the substantially square substrate 11.
[0014]
Each light receiving element may be a known element, for example, a Si photodiode. In addition, a spectral filter (not shown) is attached to the light receiving surface of each light receiving element in order to split incident light into the measurement wavelength. The measurement wavelength can be selected as follows.
[0015]
That is, FIG. 3 shows a wavelength-reflectance characteristic diagram of a plant (paddy rice). A peak with the maximum reflectance appears near the wavelength 550 nm (green), and a peak with the minimum reflectance appears near the wavelength 670 nm (red). It can be seen that the reflectance is constant in the range from 850 nm (near infrared) to 1000 nm (near infrared). Therefore, in the present invention, it is preferable to select two or more of these four wavelengths, which are characterized by changes in reflectance, as measurement wavelengths. In particular, as shown in the examples described later, a combination including 550 nm is preferable, and it is most preferable to select all four wavelengths.
[0016]
In addition, for example, since the incident angle of sunlight differs depending on the daytime, sunset, or season, it is possible to place the white diffuser plate 30 above the second light receiving unit 13 to stabilize the incident sunlight. preferable. Furthermore, in order to prevent unnecessary light from entering from other than the measurement location, it is preferable to set the viewing angle of each light receiving element constituting the first light receiving unit 12 and the second light receiving unit 13 to about 60 °.
[0017]
The growth degree measuring apparatus 1 is configured as described above, and in the measurement, the support portion 20 is installed from above the paddy rice at a measurement point of the paddy rice so as to cover the paddy rice. Thereby, the 1st light-receiving part 12 faces the paddy rice side, and the 2nd light-receiving part 13 faces the sun (sky), and is installed in a measurement location.
[0018]
The measurement is performed by measuring the incident intensity of sunlight that is directly incident on the second light receiving unit 13 in the growth degree measuring apparatus 1 described above. At this time, the sunlight is intensities I 11 = 550 nm), I 22 = 670 nm), I 33 =) in accordance with each selected measurement wavelength (here, the above four wavelengths are assumed). 850 nm) and I 44 = 1000 nm), and the second light receiving unit 13 receives the light transmitted through the respective spectral filters by the light receiving elements 13a to 13d, and the received light intensity. A 1 , A 2 , A 3 , A 4 are output to a calculation unit (not shown).
[0019]
On the other hand, the reflection intensity of sunlight reflected by paddy rice is measured by the first light receiving unit 12. Here, when the reflectance of rice for the wavelength component of the lambda 1 and R 1, the intensity of the wavelength components lambda 1 in the reflective sunlight R 1 × I 1, and the sequence, the intensity of the reflected sunlight for each wavelength component Are R 2 × I 2 , R 3 × I 3 and R 4 × I 4 . In the first light receiving unit 12, the light receiving elements 12 a to 12 d receive the light transmitted through the respective spectral filters and output the received light intensity B 1 , B 2 , B 3 , B 4 to the arithmetic unit.
[0020]
The calculation unit corrects the light reception signal from the first light receiving unit 12 based on the light reception signal from the second light receiving unit 13 and corrects the reflectance for each measurement wavelength. That is, the received light intensity B 1 , B 2 , B 3 , B 4 by the first light receiving unit 12 is changed to the received light intensity A 1 , A 2 , A 3 , A 4 by the second light receiving unit 13 at each wavelength. The value is multiplied by the reflectance. Accordingly, the reflectance of each measurement wavelength is obtained by dividing the light reception intensity by the first light receiving unit 12 by the light reception intensity by the second light receiving unit 13. In the equation, for each measurement wavelength,
R 11 = 550 nm) = B 1 / A 1
R 22 = 670 nm) = B 2 / A 2
R 33 = 850 nm) = B 3 / A 3
R 44 = 1000 nm) = B 4 / A 4
It is.
[0021]
Actually, since there is a characteristic difference for each light receiving element, it is desirable to measure a dark value (background) and further correct by a white calibration coefficient Ws. In other words, it can be represented by the following formula. B 10 to B 40 and A 10 to A 40 are dark values of the corresponding light receiving elements.
R 11 = 550 nm) = Ws · (B 1 −B 10 ) / (A 1 −A 10 )
R 22 = 670 nm) = Ws · (B 2 −B 20 ) / (A 2 −A 20 )
R 33 = 850 nm) = Ws · (B 3 -B 30 ) / (A 3 -A 30 )
R 44 = 1000 nm) = Ws · (B 4 -B 40 ) / (A 4 -A 40 )
[0022]
Based on the above corrected reflectance, paddy rice (1) leaf color (SPAD value), (2) plant height, (3) dry weight, (4) plant height x number of stems, (5) plant height x leaf color (SPAD) Value), (6) any one of plant height × number of stems × leaf color (SPAD value) is obtained. These values are all indexes that have been conventionally used as indicators of the degree of growth of paddy rice. For example, FIG. 4 is a graph showing the correlation between the reflectance at a measurement wavelength of 1000 nm and the value of “plant height × number of stems × SPAD value” obtained by actually measuring each value manually. A high correlation is observed. In addition, almost the same correlation is obtained for other measurement wavelengths, and the correlation increases as the types of measurement wavelengths increase. Therefore, by measuring the reflectance according to the above, (6) plant height × number of stems × leaf color (SPAD value) is obtained, and the growth situation can be estimated based on this.
[0023]
In addition, as shown in the examples described later, other indexes are (1) leaf color (SPAD value), (2) plant height, (3) dry weight, (4) plant height x number of stems, (5) plant height. X The leaf color (SPAD value) is also highly correlated with the reflectance. Therefore, the fact that these indexes that have been conventionally employed can be obtained with high accuracy simply by measuring the reflectance greatly contributes to the reduction of the measurement work. In addition, the measurement result can be obtained instantly and the measurement time can be shortened.
[0024]
Moreover, in the growth measuring apparatus of this invention, it can also map by adding measurement position information to the growth data based on said reflectance. Furthermore, measurement time, climate data (weather, temperature, etc.) may be added. These information is accumulated as annual data and reflected in the growth plan.
[0025]
In the growth degree measuring apparatus described above, the first light receiving unit 12 and the second light receiving unit 13 include a plurality of light receiving elements (photodiodes) according to the type of measurement wavelength. A spectrometer capable of continuously measuring light in the above-described wavelength range of 550 nm to 1000 nm may be disposed in each of the 12 and the second light receiving unit 13. Then, by using the entire obtained spectrum pattern or selecting the measurement wavelength so that the correlation is higher and performing the same calculation as described above, the growth degree can be estimated more precisely.
[0026]
【Example】
Hereinafter, the present invention will be further described with reference to examples.
[0027]
(Example 1)
The growth measuring apparatus shown in FIG. 1 was installed in a paddy field, and 550 nm (G), 670 nm (R), and 1000 nm (IR2) were selected as measurement wavelengths, and the reflectivity of paddy fields was measured by changing the combination of measurement wavelengths. . Note that a Si photodiode “S1336-5BQ” manufactured by Hamamatsu Photonics Co., Ltd. was used as the light receiving element, an opal diffuser plate was used as the white diffuser plate, and the measuring range was about 60 cm (about 8 strains) per side. In addition, the plant height, the number of stems and the leaf color (SPAD value) of the rice grown at the same measurement location were measured by hand as in the conventional method, and the product of these was used as the actual measurement value.
[0028]
For each type of measurement wavelength, the correlation between the value (predicted value) of “plant height × number of stems × SPAD value” obtained from the reflectance and the measured value is shown in FIG. 5 (1000 nm), FIG. 6 (550 nm, 1000 nm, two wavelengths ), FIG. 7 (three wavelengths of 550 nm, 670 nm, and 1000 nm), it can be seen that the correlation increases as the types of measurement wavelengths increase. From this, in the present invention, it was confirmed that it is preferable to set two or more wavelengths, in particular, two or more wavelengths including 550 nm as measurement wavelengths.
[0029]
(Example 2)
550 nm (G) and 1000 nm (IR2) were selected as measurement wavelengths, and the reflectance of paddy fields was measured in the same manner as in Example 1. Then, the correlation between the SPAD value (predicted value) obtained from the reflectance and the SPAD value (actually measured value) obtained by actual measurement in Example 1 was obtained. As shown in FIG. 8, a high correlation was observed between the two.
[0030]
(Example 3)
The reflectance of the paddy field was measured in the same manner as in Example 1 by selecting 550 nm (G), 670 nm (R), and 850 nm (IR1) as measurement wavelengths. Then, the correlation between the plant height (predicted value) obtained from the reflectance and the plant height (actually measured value) obtained by actual measurement in Example 1 was obtained. As shown in FIG. 9, a high correlation was recognized between the two.
[0031]
(Example 4)
The reflectance of the paddy field was measured in the same manner as in Example 1 by selecting 550 nm (G), 670 nm (R), and 1000 nm (IR2) as the measurement wavelengths. Then, a correlation between “plant height × number of stems” (predicted value) obtained from the reflectance and “plant height × number of stems” (actual value) obtained by actual measurement in Example 1 was obtained. As shown in FIG. 10, a high correlation was recognized between the two.
[0032]
(Example 5)
The reflectance of the paddy field was measured in the same manner as in Example 1 by selecting 550 nm (G), 670 nm (R), 850 nm (IR1), and 1000 nm (IR2) as the measurement wavelengths. Then, a correlation between “plant height × SPAD value” (predicted value) obtained from the reflectance and “plant height × SPAD value” (actual value) obtained by actual measurement in Example 1 was obtained. As shown in FIG. 11, a high correlation was observed between the two.
[0033]
(Example 6)
The reflectance of the paddy field was measured in the same manner as in Example 1 by selecting 550 nm (G), 670 nm (R), 850 nm (IR1), and 1000 nm (IR2) as the measurement wavelengths.
In addition, paddy rice grown at the same measurement location was collected manually, and its dry weight was measured to obtain an actual measurement value. Then, the correlation between the “dry weight” (predicted value) obtained from the reflectance and the actually measured value was obtained. As shown in FIG. 12, a high correlation was recognized between the two.
[0034]
【The invention's effect】
As described above, according to the present invention, (1) leaf color (SPAD value), (2) plant height, (3) dry matter weight, (4), which has been conventionally employed based on reflectance. ▼ Plant height x number of stems, ▲ 5 ▼ Plant height x leaf color (SPAD value), ▲ 6 ▼ Plant height x number of stems x leaf color (SPAD value) can be obtained, reducing measurement work and measuring time While maintaining the shortening, it becomes possible to grasp the degree of growth more accurately than before.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an embodiment of a growth degree measuring apparatus according to the present invention.
FIG. 2 is an enlarged cross-sectional view of the light receiving unit shown in FIG.
FIG. 3 is a wavelength-reflectance characteristic diagram of a plant (paddy rice).
FIG. 4 is a graph showing the correlation between the reflectance at a measurement wavelength of 1000 nm and an actual measurement value of “plant height × number of stems × SPAD value”.
FIG. 5 is a graph showing the correlation between the predicted value of “plant height × number of stems × SPAD value” obtained from the reflectance when the measurement wavelength is a single wavelength (550 nm) and the actual measurement value in Example 1. is there.
FIG. 6 is a graph showing the correlation between the predicted value of “plant height × number of stems × SPAD value” obtained from the reflectance when the measurement wavelength is two wavelengths (550 nm and 1000 nm) and the actual measurement value in Example 1. It is.
7 shows the correlation between the predicted value of “plant height × number of stems × SPAD value” obtained from the reflectance when the measurement wavelength is 3 wavelengths (550 nm, 670 nm, 1000 nm) and the actual measurement value in Example 1. FIG. It is a graph to show.
8 is a graph showing the correlation between the predicted value of the SPAD value and the actual measurement value obtained in Example 2. FIG.
9 is a graph showing the correlation between the predicted value of plant height and the actual measurement value obtained in Example 3. FIG.
10 is a graph showing the correlation between the predicted value of “plant height × the number of stems” and the actual measurement value obtained in Example 4. FIG.
11 is a graph showing a correlation between a predicted value of “plant height × SPAD value” and an actual measurement value obtained in Example 5. FIG.
12 is a graph showing a correlation between a predicted value of “dry matter amount” and an actual measurement value obtained in Example 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Growth degree measuring apparatus 10 Light-receiving part 11 Board | substrate 12 1st light-receiving part 13 2nd light-receiving part 20 Support part 21 Leg 30 White diffuser plate

Claims (4)

植物の生育度を光学的に測定する装置であって、
植物と対向する第1面に、植物により反射された太陽光を入射させて分光し、2種以上の特定波長の光の反射強度を測定する第1の受光部を設けるとともに、前記第1面とは反対側の面に、太陽光を直接入射させて前記第1の受光部と同一波長の光に分光し、参照光としてその受光強度を測定する第2の受光部を設けてなる基板と、
前記第1の受光部で検出した特定波長の反射強度を前記第2の受光部で検出した参照光の受光強度を基に補正し、補正された反射強度を基に、測定植物 SPAD値、草丈、乾物重、(草丈×茎数)草丈× SPAD値)値及び草丈×茎数× SPAD値)値の少なくとも1つを求める演算部と、
を備えることを特徴とする植物の生育度測定装置。
An apparatus for optically measuring the degree of growth of a plant,
The first surface facing the plant is provided with a first light-receiving unit that makes sunlight reflected by the plant incident on the first surface and measures the reflection intensity of light of two or more specific wavelengths , and the first surface. A substrate provided with a second light receiving portion that directly enters sunlight on the surface opposite to the first light and separates the light into light having the same wavelength as that of the first light receiving portion and measures the received light intensity as reference light; ,
The reflection intensity of the specific wavelength detected by the first light receiving unit is corrected based on the received light intensity of the reference light detected by the second light receiving unit, and based on the corrected reflection intensity, the S PAD value of the measurement plant An arithmetic unit for obtaining at least one of plant height, dry weight, (plant height x number of stems) value , ( plant height x number of S PAD values) and ( plant height x number of stems x S PAD value) ;
A plant growth degree measuring apparatus comprising:
更に、前記基板を地面から一定の距離離間させて測定場所に配置するための脚部を備えることを特徴とする請求項1記載の植物の生育度測定装置。The plant growth degree measuring apparatus according to claim 1, further comprising legs for placing the substrate at a measurement location at a predetermined distance from the ground . 更に、測定位置情報を基に生育度をマップ化する手段を備えることを特徴とする請求項1または2記載の植物の生育度測定装置。 Furthermore, according to claim 1 or 2 Growth measurement device plant wherein Rukoto comprising a means for mapping the degree of growth on the basis of the measurement location. 第1の受光部及び第2の受光部のそれぞれが、2種以上の特定波長を含む波長範囲を連続して測光可能なスペクトロメータで構成されることを特徴とする請求項1〜3の何れか1項に記載の生育度測定装置。Each of the 1st light-receiving part and the 2nd light-receiving part is comprised with the spectrometer which can carry out photometry of the wavelength range containing 2 or more types of specific wavelengths continuously, Any one of Claims 1-3 characterized by the above-mentioned. The growth degree measuring apparatus according to claim 1.
JP2000367375A 2000-12-01 2000-12-01 Plant growth measuring device Expired - Lifetime JP4243014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367375A JP4243014B2 (en) 2000-12-01 2000-12-01 Plant growth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367375A JP4243014B2 (en) 2000-12-01 2000-12-01 Plant growth measuring device

Publications (2)

Publication Number Publication Date
JP2002168771A JP2002168771A (en) 2002-06-14
JP4243014B2 true JP4243014B2 (en) 2009-03-25

Family

ID=18837810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367375A Expired - Lifetime JP4243014B2 (en) 2000-12-01 2000-12-01 Plant growth measuring device

Country Status (1)

Country Link
JP (1) JP4243014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353635A (en) * 2011-06-15 2012-02-15 江苏省农业科学院 Method for determining individual eichhornia crassipes plant dry weight by phosphoenolpyruvate carboxylase (PEPC) activity determination, and use thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301810A (en) * 2003-04-01 2004-10-28 Ebara Corp Growth degree measuring instrument for plant
JP2005211045A (en) * 2004-02-02 2005-08-11 National Agriculture & Bio-Oriented Research Organization Combine harvester
JP2006250827A (en) * 2005-03-11 2006-09-21 Pasuko:Kk Analytical method for growth condition of crop
JP4621891B2 (en) * 2005-03-28 2011-01-26 独立行政法人農業環境技術研究所 Method and apparatus for estimating grain weight of grain
JP4599590B2 (en) * 2005-05-10 2010-12-15 独立行政法人農業・食品産業技術総合研究機構 Plant growth measuring device
JP4719915B2 (en) * 2006-02-22 2011-07-06 独立行政法人農業環境技術研究所 Method for estimating soil-derived suspension concentration in inland water
CN103323404B (en) * 2013-05-30 2015-09-16 中国农业科学院北京畜牧兽医研究所 A kind ofly obtain the method that cold-season-type graminous pasture colony supplements amount of nitrogenous fertilizer
KR102109245B1 (en) 2015-05-12 2020-05-11 코니카 미놀타 가부시키가이샤 Plant growth index measurement device and method, and plant growth index measurement system
CN106124450A (en) * 2016-06-16 2016-11-16 浙江大学 The assay method of awns platymiscium dry matter weight of leaf
JP7313906B2 (en) 2019-05-28 2023-07-25 キヤノン株式会社 IMAGE PROCESSING METHOD, IMAGE PROCESSING APPARATUS, IMAGING SYSTEM AND PROGRAM
JP2023130726A (en) * 2022-03-08 2023-09-21 千代田化工建設株式会社 Growth status estimation method and cultivation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353635A (en) * 2011-06-15 2012-02-15 江苏省农业科学院 Method for determining individual eichhornia crassipes plant dry weight by phosphoenolpyruvate carboxylase (PEPC) activity determination, and use thereof
CN102353635B (en) * 2011-06-15 2013-02-13 江苏省农业科学院 Method for determining individual eichhornia crassipes plant dry weight by phosphoenolpyruvate carboxylase (PEPC) activity determination, and use thereof

Also Published As

Publication number Publication date
JP2002168771A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
Liu et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy
Yang et al. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests
Daumard et al. Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field
Thenkabail et al. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
Meroni et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications
JP4243014B2 (en) Plant growth measuring device
Garrity et al. A simple filtered photodiode instrument for continuous measurement of narrowband NDVI and PRI over vegetated canopies
Pinter Jr Solar angle independence in the relationship between absorbed PAR and remotely sensed data for alfalfa
US20060208171A1 (en) Light sensor with modulated radiant polychromatic source
WO2008009093A1 (en) Method and apparatus for determining intensities and peak wavelengths of light
Sui et al. Multi-spectral sensor for detection of nitrogen status in cotton
Daughtry et al. Variability of Reflectance Measurements with Sensor Altitude and Canopy Type 1
Harris et al. Retrieval of the photochemical reflectance index for assessing xanthophyll cycle activity: a comparison of near-surface optical sensors
Mõttus et al. Seasonal course of the spectral properties of alder and birch leaves
JP2006317195A (en) Growth degree measuring device for plant
Huete et al. Monitoring photosynthesis from space
JP2004301810A (en) Growth degree measuring instrument for plant
JP2008076346A (en) Measuring instrument and method for measuring degree of growth of plant
Min et al. Design of a hyperspectral nitrogen sensing system for orange leaves
Smith et al. A plot-based method for rapid estimation of forest canopy chemistry
GomezChova et al. Solar induced fluorescence measurements using a field spectroradiometer
Gitelson et al. Uncertainty in the evaluation of photosynthetic canopy traits using the green leaf area index
Hamidisepehr et al. A method for reflectance index wavelength selection from moisture-controlled soil and crop residue samples
Tumbo et al. Hyperspectral characteristics of corn plants under different chlorophyll levels
US6713764B2 (en) Field based spectral radiometer

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4243014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term