JP4719915B2 - Method for estimating soil-derived suspension concentration in inland water - Google Patents

Method for estimating soil-derived suspension concentration in inland water Download PDF

Info

Publication number
JP4719915B2
JP4719915B2 JP2006044786A JP2006044786A JP4719915B2 JP 4719915 B2 JP4719915 B2 JP 4719915B2 JP 2006044786 A JP2006044786 A JP 2006044786A JP 2006044786 A JP2006044786 A JP 2006044786A JP 4719915 B2 JP4719915 B2 JP 4719915B2
Authority
JP
Japan
Prior art keywords
wavelength
wavelength band
reflectance
soil
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044786A
Other languages
Japanese (ja)
Other versions
JP2007225358A (en
Inventor
道郎 芝山
健一 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Agro Environmental Sciences
Original Assignee
National Institute for Agro Environmental Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Agro Environmental Sciences filed Critical National Institute for Agro Environmental Sciences
Priority to JP2006044786A priority Critical patent/JP4719915B2/en
Publication of JP2007225358A publication Critical patent/JP2007225358A/en
Application granted granted Critical
Publication of JP4719915B2 publication Critical patent/JP4719915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、河川、湖沼水の土壌由来懸濁物濃度の推定方法に関する。   The present invention relates to a method for estimating the concentration of suspended matter derived from soil in rivers and lakes.

河川、湖沼水等の水環境は、飲料水をはじめとする生活環境において、又水産資源において重要な要素の一つである。水質改善の前提となる水質監視技術はますます重要性を増している。そのための信頼性の高い水質測定手段が求められている。   The water environment such as rivers and lakes is one of the important elements in the living environment including drinking water and in fishery resources. Water quality monitoring technology, which is a prerequisite for improving water quality, is becoming increasingly important. Therefore, a highly reliable water quality measuring means is required.

従来の水質測定の技法は、人手による操作の観点から分類すれば、現場で技能者が測定器具等を用いて行うものと、現場で採取したサンプルを研究室に持ち帰ってから計測機器により測定するものとがある。   Conventional water quality measurement techniques can be categorized from the viewpoint of manual operation, and those that are performed by technicians using measuring instruments, etc. on the spot, and samples taken on-site are brought back to the laboratory and measured with measuring instruments. There is a thing.

前者は、例えば水の外観、匂い、水温、pH、ORP、電気伝導率、透視度、溶存酸素、CODmnなどの現場測定であり、測定器具があれば短時間で計測結果を入手することができるが、技能者を必要とすることおよび監視のための定期的な測定にコストがかかる難点がある。   The former is, for example, on-site measurement of water appearance, smell, water temperature, pH, ORP, electrical conductivity, transparency, dissolved oxygen, CODmn, etc., and if there is a measuring instrument, the measurement result can be obtained in a short time. However, there are drawbacks that require technicians and costly periodic measurements for monitoring.

また後者は、水の土壌または生物由来懸濁物濃度、BOD、CODcr、あるいはアンモニア、亜硝酸、硝酸などの窒素濃度等、測定項目に対応した精密測定機器を用いて研究室で測定可能であるが、現場で採取したサンプルを変質しない形態で研究室まで持ち帰る必要があり、遠隔地の水質を定期的に分析監視するには難点がある。   The latter can be measured in the laboratory using precision measuring equipment corresponding to the measurement items such as water soil or biological suspension concentration, BOD, CODcr, or nitrogen concentration of ammonia, nitrous acid, nitric acid, etc. However, it is necessary to take the sample collected at the site back to the laboratory in a form that does not change, and it is difficult to regularly analyze and monitor the water quality at remote locations.

前記方法はいずれにせよ、これらの測定結果から水質データがまとめられるには採水から数日ないし十数日の時間を必要とする。そこで、現場に光電式センサを利用した水質測定装置を設置して連続的または定期的に監視データの収集を行うことが一部で行われている。   In any case, the method requires several days to several tens of days after sampling to collect water quality data from these measurement results. In view of this, in some cases, monitoring data is collected continuously or periodically by installing a water quality measurement device using a photoelectric sensor at the site.

従来の土壌由来懸濁物濃度推定方法は、接触計測法としては、水を採取して分析するか、または測定装置を直接水中に敷設する方法に限られていた。非接触的計測法としては、リモートセンシング分野で上空から反射光の波長別強度を利用する方法として、特に可視および近赤外域の400-1050nmに含まれる複数の反射光の強さを利用するものであった(例えば特許文献1および非特許文献1、非特許文献2を参照。)。   In the conventional soil-derived suspension concentration estimation method, the contact measurement method is limited to a method in which water is collected and analyzed, or a measurement device is directly laid in water. As a non-contact measurement method, in the remote sensing field, a method using the intensity of reflected light from the sky, especially using the intensity of multiple reflected lights in the visible and near-infrared range of 400-1050 nm (See, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2.)

又、水深0.5ないし5m程度の中規模河川においては、上空から反射光の強度を測定すること等により、河川表層部の土壌由来懸濁物濃度の推定値をもって該河川の土壌由来懸濁物濃度とすることの可能性が示唆されているが(例えば非特許文献3を参照。)、本方法は表層と底層との土壌由来懸濁物濃度に差が少ない、定常的な水流がある場合に限定されている。   For medium-scale rivers with a depth of about 0.5 to 5m, the concentration of the soil-derived suspension in the river surface is estimated by measuring the intensity of reflected light from the sky, etc. (See, for example, Non-Patent Document 3). This method is effective when there is a steady water flow with little difference in soil-derived suspension concentration between the surface layer and the bottom layer. Limited.

上記の通り従来の接触計測法によれば、測定の迅速性および多点性に困難があり、反射光による方法では、観測の方向や水底色などの条件の多様性には十分対応できなかった。   As described above, according to the conventional contact measurement method, it is difficult to measure quickly and multipoint, and the method using reflected light cannot sufficiently cope with the variety of conditions such as the direction of observation and the color of the bottom of the water. It was.

特開2004−150916号公報JP 2004-150916 A 山田康晴・斉藤元也・奥山武彦「濁水の分光反射率測定-沖縄国頭マージを事例として」平成4年度農業土木学会大会講演会講演要旨集p468-469、1992.Yasuharu Yamada, Motoya Saito, Takehiko Okuyama “Spectral Reflectance Measurement of Turbid Water: Case Study of Okinawa Kunigami Merging” Annual Meeting of the Agricultural Civil Society of Japan, p468-469, 1992. J. A. Warrick、L. A. K. Mertes、 D. A. Siegel and C. Mackenzie、“Estimating suspended sediment concentrations in turbid coastal waters of theSanta Barbara Channel with SeaWiFS”、 International Journal ofRemote Sensing、 25、p1995-2002、 2004.J. A. Warrick, L. A. K. Mertes, D. A. Siegel and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS”, International Journal of Remote Sensing, 25, p1995-2002, 2004. 坂西研二・佐々木由佳・神田健一・中島康弘、「中規模流域における農耕地等から流出する懸濁物質の実態把握」 平成16年度農業土木学会講演会講演要旨集p636-637、 2004.Kenji Sakanishi, Yuka Sasaki, Ken-ichi Kanda, Yasuhiro Nakajima, “Understanding the Actual Conditions of Suspended Materials Effluent from Agricultural Lands in a Medium-Scale Basin” Abstracts of Proceedings of the 2004 Annual Meeting of the Agricultural Civil Society of Japan p636-637, 2004.

本発明は、陸水中の土壌由来懸濁物濃度の計測において、観測方向や水底色の相違などの影響を受けにくい、非接触的な推定方法を提供することを課題とする。   This invention makes it a subject to provide the non-contact estimation method which is hard to be influenced by the difference of an observation direction, a bottom color, etc. in the measurement of the soil-derived suspension density | concentration in land water.

本発明者等は、短波長赤外域に含まれる1つの波長バンド、近赤外域に含まれる1つの波長バンド、および可視域に含まれる1つの波長バンドの反射光から偏光成分を除去することにより、観測方向による測定誤差を縮減し、土壌由来懸濁物濃度の推定精度を向上させることを見出し、本発明に至った。即ち本発明は以下の通りである。
<1>陸水表面の太陽光の反射光から、短波長赤外域に含まれる1つの波長バンド、近赤外域に含まれる1つの波長バンド、および可視域に含まれる1つの波長バンドについての非偏光反射率を測定し、演算処理することによる陸水中の土壌由来懸濁物濃度の推定方法であり、前記非偏光反射率が、1つの波長バンドの反射光が光軸を中心として回転する偏光フィルタを通過することにより検出される該波長バンド反射光中の偏光反射強度から算定されることが好ましい。
<2>更に本発明は、前記演算処理が、
SS=A+D+α×NPRs+β×NPRn+γ×NPRv
である土壌由来懸濁物濃度の推定方法である。
上記演算処理において、SSは陸水中の土壌由来懸濁物濃度、Dは水底色の違いによる補正値、NPRsは短波長赤外域に含まれる1つの波長バンドsの非偏光反射率、NPRnは近赤外域に含まれる1つの波長バンドnの非偏光反射率、NPRvは可視域に含まれる1つの波長バンドvの非偏光反射率、α、β、γ、およびAはあらかじめ設定された定数をそれぞれ示す。
<3>更に本発明は、測定対象である光を一定の視野範囲に絞って取り入れるアパーチャ部と、波長を選択するフィルタと、偏光フィルタと、偏光フィルタ回転機構と、反射光を光電変換する光電変換センサと、光電変換した電流を増幅したのち同期検波および平滑化し出力電圧を取り出す電圧出力装置とを備えた偏光反射強度の測定装置である。
The present inventors have removed the polarization component from the reflected light of one wavelength band included in the short-wavelength infrared region, one wavelength band included in the near-infrared region, and one wavelength band included in the visible region. The inventors have found that the measurement error due to the observation direction is reduced and the estimation accuracy of the soil-derived suspension concentration is improved, and the present invention has been achieved. That is, the present invention is as follows.
<1> From the reflected light of sunlight on the surface of land water, one wavelength band included in the short-wavelength infrared region, one wavelength band included in the near-infrared region, and one wavelength band included in the visible region It is a method for estimating the concentration of suspended matter derived from soil in land water by measuring and calculating the polarization reflectance, and the non-polarized reflectance is a polarized light whose reflected light in one wavelength band rotates around the optical axis. It is preferably calculated from the polarization reflection intensity in the wavelength band reflected light detected by passing through the filter.
<2> Further, in the present invention, the arithmetic processing is performed as follows:
SS = A + D + α × NPRs + β × NPRn + γ × NPRv
It is an estimation method of the soil-derived suspension concentration.
In the above calculation process, SS is the concentration of suspended soil derived from land water, D is a correction value due to the difference in bottom color, NPRs is the non-polarized reflectance of one wavelength band s included in the short wavelength infrared region, and NPRn is Non-polarized reflectance of one wavelength band n included in the near infrared region, NPRv is an unpolarized reflectance of one wavelength band v included in the visible region, and α, β, γ, and A are preset constants. Each is shown.
<3> Furthermore, the present invention relates to an aperture unit for focusing light to be measured within a certain visual field range, a filter for selecting a wavelength, a polarizing filter, a polarizing filter rotating mechanism, and a photoelectric converter for photoelectrically converting reflected light. It is a polarization reflection intensity measuring device including a conversion sensor and a voltage output device that amplifies the photoelectrically converted current and then performs synchronous detection and smoothing to extract an output voltage.

本発明によれば、陸水中の土壌由来懸濁物濃度を、観測方向にかかわらず精度よく推定でき、又水底色の相違を一つの係数の増減で調整できるため、極めて省力的である。   According to the present invention, the concentration of the soil-derived suspension in land water can be accurately estimated regardless of the observation direction, and the difference in the bottom color can be adjusted by increasing or decreasing one coefficient, which is extremely labor-saving.

本発明は、陸水表面の太陽光の反射光から、短波長赤外域に含まれる1つの波長バンド、近赤外域に含まれる1つの波長バンド、および可視域に含まれる1つの波長バンドについての非偏光反射率を測定し、演算処理することによる陸水中の土壌由来懸濁物濃度(mg/L、以下SSということがある。)の推定方法である。以下本発明の実施の形態について説明する。   The present invention relates to the reflected light of sunlight on the surface of land water, one wavelength band included in the short wavelength infrared region, one wavelength band included in the near infrared region, and one wavelength band included in the visible region. This is an estimation method of the concentration of suspended matter derived from soil in land water (mg / L, hereinafter sometimes referred to as SS) by measuring non-polarized reflectance and performing arithmetic processing. Embodiments of the present invention will be described below.

(特定波長バンドへの分光)
陸水表面の太陽光の反射光は、アパーチャ部により測定対象である光が一定の視野範囲に絞られる。該アパーチャ部は、陸水表面からの距離に応じて視野範囲を調整できる開口角切り替え方式が好ましい。該開口角切り替え方式の開口角切り替え範囲としては、開口角半値幅が2°〜10°の範囲が好ましい。前記開口角切り替え方式において、アパーチャ部と陸水表面との距離は0.5m〜20mの範囲が好ましい。
(Spectra to specific wavelength band)
The reflected light of sunlight on the surface of inland water is narrowed down to a certain visual field range by the aperture part. The aperture section is preferably an aperture angle switching system that can adjust the visual field range according to the distance from the surface of land water. The opening angle switching range of the opening angle switching method is preferably a range where the opening angle half width is 2 ° to 10 °. In the opening angle switching method, the distance between the aperture portion and the surface of land water is preferably in the range of 0.5 to 20 m.

前記アパーチャ部へ入射された反射光は、バンドパスフィルタにより、特定の波長バンドに分けられる。波長別の分光方法としては、バンドパスフィルタによることが好ましく、回折格子によるものは、分光時に偏光を生起するために好ましくない。   The reflected light incident on the aperture part is divided into specific wavelength bands by a band pass filter. As a spectral method for each wavelength, it is preferable to use a band-pass filter, and a method using a diffraction grating is not preferable because polarized light is generated at the time of spectroscopy.

前記波長バンドとしては短波長赤外域、近赤外域、および可視域に含まれる波長バンドを選択する。選択される波長バンドとしては、短波長赤外域では波長1500〜2300nmの範囲が、前記近赤外域では波長750〜1300nmの範囲が、前記可視域では波長450〜700nmの範囲が好ましく、中でも短波長赤外域では波長1600〜1700nmの範囲が、前記近赤外域では波長780〜880nmの範囲が、前記可視域では波長510〜610nmの範囲がより好ましい。   As the wavelength band, a wavelength band included in the short wavelength infrared region, the near infrared region, and the visible region is selected. As a wavelength band to be selected, a wavelength range of 1500 to 2300 nm is preferable in the short wavelength infrared region, a wavelength range of 750 to 1300 nm is preferable in the near infrared region, and a wavelength range of 450 to 700 nm is preferable in the visible range, and a short wavelength is particularly preferable. In the infrared region, a wavelength range of 1600 to 1700 nm is preferable, in the near infrared region, a wavelength range of 780 to 880 nm is more preferable, and in the visible range, a wavelength range of 510 to 610 nm is more preferable.

前記波長別反射光の反射強度の測定は、光電変換する光検出器による出力値(以下光電変換値という。)により測定する。該波長別反射光の反射強度は、偏光分光放射計により光電変換値として、連続的に測定される。該光電変換値に換算係数Kを乗じることにより、反射強度を得ることができる。   The reflection intensity of the reflected light according to wavelength is measured by an output value (hereinafter referred to as a photoelectric conversion value) from a photodetector that performs photoelectric conversion. The reflection intensity of the reflected light according to wavelength is continuously measured as a photoelectric conversion value by a polarization spectroradiometer. By multiplying the photoelectric conversion value by the conversion factor K, the reflection intensity can be obtained.

(偏光測定)
前記により波長バンドごとに分光された波長別反射光は、光軸を中心軸として回転する偏光フィルタを通過することにより、該波長別反射光中の偏光の割合(以下波長別偏光度という。)に応じて通過光の光量が増減する。該光量の増減は、連続的に偏光分光放射計により、波長別光電変換値として測定され、前記換算係数Kを乗じることにより、偏光成分の反射強度を得ることができる。なお、反射光中の偏光成分以外を、非偏光反射光とする。
(Polarization measurement)
The wavelength-specific reflected light that has been dispersed for each wavelength band as described above passes through a polarizing filter that rotates about the optical axis as a central axis, whereby the proportion of polarized light in the wavelength-specific reflected light (hereinafter referred to as the degree of polarization for each wavelength). The amount of passing light increases or decreases in accordance with. The increase / decrease in the amount of light is continuously measured as a photoelectric conversion value for each wavelength by a polarization spectroradiometer, and by multiplying the conversion factor K, the reflection intensity of the polarization component can be obtained. Note that light other than the polarization component in the reflected light is non-polarized reflected light.

前記偏光フィルタは、連続的に常時一定方向一定速度で光軸と平行な回転中心軸の周りを回転していることが好ましい。該回転速度は、1回転に1〜3秒が好ましく、1.5〜2.5秒がより好ましい。前記偏光フィルタの偏光角測定範囲は少なくとも0°〜180°が必要で、0°〜360°が好ましい。偏光角精度は−2〜+2°の範囲が好ましく、−1〜+1°の範囲がより好ましい。   It is preferable that the polarizing filter is continuously rotated around a rotation center axis parallel to the optical axis at a constant speed in a constant direction. The rotation speed is preferably 1 to 3 seconds per rotation, and more preferably 1.5 to 2.5 seconds. The polarization angle measurement range of the polarizing filter needs to be at least 0 ° to 180 °, preferably 0 ° to 360 °. The polarization angle accuracy is preferably in the range of -2 to + 2 °, and more preferably in the range of -1 to + 1 °.

さらに前記偏光フィルタは、フィルタ部位の製造ムラに起因する光透過率の偏差を補正されることが好ましい。該補正は、簡易積分球に太陽光を入射、多重反射させた偏光成分を含まない光により、較正値をあらかじめ作成することが好ましい。   Furthermore, it is preferable that the polarization filter is corrected for deviation in light transmittance due to manufacturing unevenness of the filter part. In this correction, it is preferable that a calibration value is created in advance using light that does not include a polarization component obtained by making sunlight enter the multiple integrating sphere and performing multiple reflection.

本発明は太陽光を用いるため、太陽光量の波長別推定値Sを使用するが、該「推定値S」は、「太陽定数」に測定地点の緯度、経度、および測定日、時刻から算出した「太陽天頂角の余弦」を乗じた値として算出する。また、偏光分光放射計は測定時の光軸の天頂角検出機構、および磁北を基準とした方位検出機構を備えることが好ましい。   Since the present invention uses sunlight, an estimated value S for each wavelength of sunlight is used, and the “estimated value S” is calculated from the latitude and longitude of the measurement point and the measurement date and time in the “solar constant”. Calculated as a value multiplied by the cosine of the solar zenith angle. The polarization spectroradiometer preferably includes a zenith angle detection mechanism for the optical axis at the time of measurement and an azimuth detection mechanism based on magnetic north.

(波長別偏光度および非偏光波長別反射率の算出)
前記波長別光電変換値について、回転角度ごとに得られる光電変換値の中から、光電変換最大値(Max)および光電変換最小値(Min)を検出する。
(Calculation of polarization degree by wavelength and reflectance by non-polarization wavelength)
For the photoelectric conversion values by wavelength, the maximum photoelectric conversion value (Max) and the minimum photoelectric conversion value (Min) are detected from the photoelectric conversion values obtained for each rotation angle.

前記光電変換最大値(Max)および光電変換最小値(Min)より、下記式1により波長別偏光度Pを算出する。なお該波長別偏光度Pは、対象物からの反射光中の、波長別の偏光反射強度の割合である。   From the photoelectric conversion maximum value (Max) and photoelectric conversion minimum value (Min), the polarization degree P for each wavelength is calculated by the following formula 1. The degree of polarization P for each wavelength is the ratio of the polarization reflection intensity for each wavelength in the reflected light from the object.

P=(Max−Min)/(Max+Min) (式1)     P = (Max−Min) / (Max + Min) (Formula 1)

前記光電変換最大値(Max)、光電変換最小値(Min)、換算係数Kおよび前記太陽光量の波長別推定値Sを用いて、下記式2により波長別反射率R(%)を算出する。   Using the photoelectric conversion maximum value (Max), photoelectric conversion minimum value (Min), conversion coefficient K, and the estimated amount S of sunlight for each wavelength, the reflectance R (%) for each wavelength is calculated by the following equation 2.

R=K×(Max+Min)/(2×S)×100 (式2)     R = K × (Max + Min) / (2 × S) × 100 (Formula 2)

上記波長別偏光度P、および波長別反射率Rから、下記式3により非偏光波長別反射率NPR(%)を算出する。   From the polarization degree P by wavelength and the reflectance R by wavelength, the reflectance NPR (%) by non-polarized wavelength is calculated by the following formula 3.

NPR=R×(1−P) (式3)     NPR = R × (1-P) (Formula 3)

上記により求められた短波長赤外域に含まれる1つの波長バンドsの非偏光反射率NPRs、近赤外域に含まれる1つの波長バンドnの非偏光反射率NPRn、可視域に含まれる1つの波長バンドvの非偏光反射率NPRv、およびあらかじめ設定された定数α、β、γ、およびA、並びに水底色の違いによる補正値Dを用いることにより、陸水中の土壌由来懸濁物濃度SSは下記式により得ることができる。   Non-polarized reflectance NPRs of one wavelength band s included in the short-wavelength infrared region obtained by the above, non-polarized reflectance NPRn of one wavelength band n included in the near-infrared region, one wavelength included in the visible region By using the non-polarized reflectance NPRv of band v and the preset constants α, β, γ, and A, and the correction value D due to the difference in the bottom color, the soil-derived suspension concentration SS in land water is It can be obtained by the following formula.

SS=A+D+α×NPRs+β×NPRn+γ×NPRv (式4)     SS = A + D + α × NPRs + β × NPRn + γ × NPRv (Formula 4)

以下、本発明の具体的内容を実施例により説明するが、本発明は以下の実施例に限定されるものではない。
(測定装置)
本実施例に用いた偏光反射強度の測定には、センサヘッド部、制御部、コンピュータおよび電池電源部より構成される偏光分光放射計を用いた。前記センサヘッド部は、外部より測定対象である光を一定の視野範囲に絞って取り入れるアパーチャ部(株式会社ドナレック加工品にて鏡筒に組み込み、開口角半値幅5°/7.5°切り替え式)、偏光フィルタ(株式会社ルケオ、可視域POLAX-42S、および近赤外域POLAX-381RII、株式会社ドナレック社でカットして同社加工の回転リングに組み込み、偏光角測定範囲:0-359°、偏光角測定精度:±1°)、およびそれらの回転機構(株式会社ドナレック製、上記回転リングをDCモーターで駆動、偏光フィルタ回転速度:1回転/2秒)、測定光を波長別に分けるバンドパスフィルタ(中心波長、可視域内の490nm、 560nm、 660nmの3バンド、近赤外域内の中心波長、830nm、 1150nm、 1250nmの3バンド、 短波長赤外域内より、1650nm、2200nmの2バンド、計8バンド、いずれも光伸光学工業製、特別注文品)と、それぞれの波長バンドごとの光量を光電変換する光検出器(浜松フォトニクス社製 シリコンフォトセンサ S2386-18K ×4、同じくゲルマニウムフォトセンサ B2538-01 ×3、同じくPbSフォトセンサ P2532 ×1)より構成される。
Hereinafter, although the concrete content of the present invention is explained by an example, the present invention is not limited to the following examples.
(measuring device)
For the measurement of the polarization reflection intensity used in this example, a polarization spectroradiometer composed of a sensor head unit, a control unit, a computer, and a battery power source unit was used. The sensor head unit is an aperture unit that incorporates the light to be measured from the outside within a certain visual field range (incorporated into a lens barrel by Donalec Co., Ltd., and the opening angle half-width 5 ° / 7.5 ° switching type), Polarizing filter (Luceo Co., Ltd., visible range POLAX-42S, and near infrared range POLAX-381RII, cut by Donarec Co., Ltd. and incorporated into a rotating ring processed by the company, polarization angle measurement range: 0-359 °, polarization angle measurement (Accuracy: ± 1 °), and their rotation mechanism (Donnarec Co., Ltd., the above rotating ring is driven by a DC motor, polarizing filter rotation speed: 1 rotation / 2 seconds), band pass filter that divides measurement light by wavelength (center) Wavelength, 490nm, 560nm, 660nm in the visible range, center wavelength in the near infrared range, 830nm, 1150nm, 1250nm, 3 bands, 1650nm, 2200nm, 2 bands from the short wavelength infrared range, 8 bands in total Also A photo detector that photoelectrically converts the amount of light for each wavelength band (manufactured by Shin Kogyo Kogyo Co., Ltd.) (Silicon photo sensor S2386-18K x4 from Hamamatsu Photonics, Germanium photo sensor B2538-01 x3) PbS photosensor P2532 × 1)

前記偏光方向は測定光軸に対し鉛直上向きな方向を0°とした。このセンサヘッド部には、さらに測定時の光軸の天頂角検出機構(観測天頂角測定方式:懸垂錘およびパルスエンコーダ、オムロン製 E6C2-A、観測天頂角測定範囲:0〜180°、1°ステップ(下方0°、水平時90°)、観測天頂角測定精度:±2°)、および磁北を基準とした方位検出機構(方位角測定方式:磁気方位センサ、株式会社エイプラス製 AP-311、方位角測定範囲:0〜359°、1°ステップ、方位角測定精度:±8°)を備えた。   The polarization direction was set to 0 ° vertically upward with respect to the measurement optical axis. This sensor head further includes a zenith angle detection mechanism for the optical axis during measurement (observation zenith angle measurement method: suspension weight and pulse encoder, OMRON E6C2-A, observation zenith angle measurement range: 0 to 180 °, 1 ° Step (0 ° downward, 90 ° horizontal), observation zenith angle measurement accuracy: ± 2 °), and azimuth detection mechanism based on magnetic north (azimuth angle measurement method: magnetic azimuth sensor, AP-311 manufactured by Aplus Co., Ltd.) Azimuth measurement range: 0 to 359 °, 1 ° step, azimuth measurement accuracy: ± 8 °).

前記制御部(株式会社ドナレック製、市販の半導体、抵抗、コンデンサー等の電子部品からなる同社内製)は、センサヘッドに入射する波長バンドごとの光量を電圧値に変換し(以下波長別光電変換値という。)、付属のコンピュータに伝送し、処理、記録する。前記波長別光電変換値は、偏光フィルタの回転に伴う角度1°毎に、0〜359°の間において出力される。   The control unit (manufactured by Donalec Co., Ltd., in-house made of commercially available semiconductors, resistors, capacitors, etc.) converts the amount of light for each wavelength band incident on the sensor head into a voltage value (hereinafter referred to as photoelectric conversion by wavelength). Value)), transmitted to the attached computer, processed and recorded. The photoelectric conversion value for each wavelength is output in the range of 0 to 359 ° for each 1 ° of angle accompanying the rotation of the polarizing filter.

(偏光フィルタの製造ムラの補正法)
偏光フィルタの回転にともなうフィルタ部位の製造ムラに起因する光透過率の偏差については、市販の発泡スチロール製球(内部直径260mm)内部を水性ペイント白つや消しスプレーで塗装した簡易積分球(株式会社ドナレック製)に太陽光を入射させ、内部で多重反射させることにより偏光成分を含まないと仮定できる光としたうえで、該光をセンサヘッド部に入射させて、波長別光電変換値を偏光フィルタの角度位置とともに記録した較正値をあらかじめ作成し、対象測定時波長別光電変換値を該較正値で偏光フィルタ回転角ごとに除することにより補正した。
(Correction method for manufacturing unevenness of polarizing filter)
Regarding the deviation of the light transmittance due to the manufacturing unevenness of the filter part due to the rotation of the polarizing filter, a simple integrating sphere (made by Donalec Co., Ltd.) where the inside of a commercially available polystyrene foam sphere (inner diameter 260 mm) was painted with water-based white paint frosted spray ) And the light that can be assumed to contain no polarization component by multiple reflection inside, and then the light is incident on the sensor head unit, and the photoelectric conversion value for each wavelength is converted into the angle of the polarization filter. A calibration value recorded with the position was created in advance, and the photoelectric conversion value for each wavelength at the time of target measurement was corrected by dividing the calibration value for each rotation angle of the polarization filter.

(波長別光電変換値から反射強度への換算係数Kの算出)
前記補正された波長別光電変換値については、100V500Wの波長別放射照度標準電球(ウシオ電機株式会社製、JPD-100-500CS、日本電気計器検定所にて波長別放射照度の検定済。)に指定電圧を与えて得た照明光を、硫酸バリウム粉末を塗布したアルミ板(EastmanKodak: White Reflectance Coating、反射率1.0の完全拡散面とみなした。)に照射した反射光の光電変換値を測定し、波長別放射照度と光電変換値との換算係数Kを求め、前記波長別光電変換値を波長別反射強度(μW・cm-2・sr-1・nm-1)に変換した。以後該波長別反射強度により観測結果を処理した。
(Calculation of conversion factor K from photoelectric conversion value by wavelength to reflection intensity)
About the corrected photoelectric conversion value for each wavelength, the standard irradiance light bulb for each wavelength of 100V500W (USHIO INC., JPD-100-500CS, verified by the Japan Electric Meters Laboratory). Measure the photoelectric conversion value of the reflected light applied to the aluminum plate (EastmanKodak: White Reflectance Coating, considered to be a perfect diffusion surface with a reflectance of 1.0) coated with barium sulfate powder using the illumination light obtained by applying the specified voltage. Then, a conversion coefficient K between the irradiance by wavelength and the photoelectric conversion value was obtained, and the photoelectric conversion value by wavelength was converted into the reflection intensity by wavelength (μW · cm −2 · sr −1 · nm −1 ). Thereafter, the observation results were processed based on the reflection intensity for each wavelength.

(水槽)
水中の土壌由来懸濁物濃度( mg/L、以下SSということがある。)、および底面の色の異なる水槽を以下により作成した。水槽として、底面直径70cm、高さ50cmの白色プラスチック製の円筒(側壁透光率約30%、底面透光率約20%、底面反射率可視域65%、近赤外域5〜60%)を用いた。
(Aquarium)
Water tanks having different soil-derived suspension concentration in water (mg / L, hereinafter sometimes referred to as SS) and bottom color were prepared as follows. As a water tank, a cylinder made of white plastic with a bottom diameter of 70cm and a height of 50cm (side wall transmittance of about 30%, bottom surface transmittance of about 20%, bottom surface reflectance of visible region 65%, near infrared region 5-60%) Using.

黒色と黄褐色のウレタン防炎加工厚地布を2枚重ねて縫い合わせた、表裏の色の異なる遮光幕(約2m×2m)を用いて、前記円筒の底面に、該遮光幕の黒色面を上面として敷設した区(以下黒色底面区という。透光率は無視可能、反射率は約2%。)と、黄褐色面を上面として敷設した区(以下黄褐色底面区という。透光率は無視可能、反射率は可視域で約10〜25%、近赤外域で約40%。)と、遮光幕を敷設しない区(以下白色底面区という。反射率は、可視域と830nmで65%、1150nmで45%、1250および1650nmで28%、2200nmで約7%。)との、底面の色の異なる3種類の円筒を設け、各円筒に水道水を水深45cmまで注入して、本実施例の水槽とした。   Using black and tan urethane flame proof thick cloth with two layers and stitched together, the black and white sides of the light-shielding curtain are placed on the bottom of the cylinder. (Hereinafter referred to as the black bottom section; the transmissivity is negligible; the reflectance is about 2%); and the section laid with the tan surface as the upper surface (hereinafter referred to as the tan base section. The transmissivity is ignored. Possible, reflectivity is about 10-25% in the visible range, about 40% in the near infrared range), and a section where no light-shielding curtain is laid (hereinafter referred to as white bottom section. Reflectance is 65% in the visible range and 830 nm, 3 types of cylinders with different bottom colors, including 45% at 1150 nm, 28% at 1250 and 1650 nm, and 7% at 2200 nm.) Tap water into each cylinder to a depth of 45 cm. It was set as a water tank.

前記底面の色の異なる各水槽に、愛知県安城市内の水田表層から採取した細粒黄色土の高濃度懸濁液を、注入量を変えて注入し、充分撹拌することにより、SSが 0mg/Lから約200mg/Lまで、5段階のSSレベルを設定した。   A high-concentration suspension of fine-grained yellow soil collected from the surface of the paddy field in Anjo City, Aichi Prefecture, is poured into each water tank with a different color on the bottom surface, changing the injection amount, and by sufficiently stirring, SS becomes 0 mg. Five SS levels were set from / L to about 200 mg / L.

(水槽材料の反射率、透光率の測定方法)
前記反射率は、前記偏光分光放射計を用いて、対象物による太陽光の反射強度と、同じ条件で太陽光により照明された標準拡散板(ラブスフェア社製、型式:SRT-99-120I、 絶対反射率のメーカ保証値97%以上。)からの反射強度との比として求めた。
(Measurement method of reflectance and transmissivity of aquarium materials)
The reflectance is the standard diffuser plate (manufactured by Labsphere, model: SRT-99-120I, absolute) illuminated with sunlight under the same conditions as the reflection intensity of sunlight from the object using the polarized spectroradiometer. (The manufacturer's guaranteed value of reflectivity is 97% or more.)

前記透光率も同様に前記偏光分光放射計を用いて、地面に対して45°に傾斜させた前記標準拡散板を太陽光で照明して得られた反射強度と、前記標準拡散板と前記偏光分光放射計との間に対象物を垂直に挿入したときに得られた反射強度との比として求めた。   Similarly, the light transmittance using the polarization spectroradiometer, the reflection intensity obtained by illuminating the standard diffuser plate inclined at 45 ° with respect to the ground with sunlight, the standard diffuser plate and the It calculated | required as ratio with the reflective intensity | strength obtained when the target object was inserted perpendicularly | vertically between polarization | polarized-light spectroradiometers.

(光電変換最大値(Max)および光電変換最小値(Min)の測定)
茨城県つくば市の農業環境技術研究所構内における周囲の開けた芝生上に、前記SSレベルの異なる水槽を設置し、前記偏光分光放射計を用いて、各水槽からの反射光の波長別反射率および波長別偏光度を測定した。測定波長は、可視域として中心波長、490nm、 560nm、 660nmの3バンド、近赤外域として中心波長、830nm、 1150nm、 1250nmの3バンド、 短波長赤外域として、1650nm、2200nmの2バンド、計8バンドとした。
(Measurement of photoelectric conversion maximum value (Max) and photoelectric conversion minimum value (Min))
Installed aquariums with different SS levels on the open lawn in the Agricultural Environment Technology Laboratory in Tsukuba City, Ibaraki Prefecture, and used the polarized spectroradiometer to reflect the reflectance of each reflected light from each aquarium. And the polarization degree according to wavelength was measured. The measurement wavelength is center band for visible region, 3 bands of 490nm, 560nm and 660nm, center wavelength for near infrared region, 3 bands for 830nm, 1150nm and 1250nm, 2 bands for short wavelength infrared region of 1650nm and 2200nm, total 8 A band.

前記偏光分光放射計を高さ約1mの三脚上に設置し、観測視野を10°として、かつ該観測視野が対象水面のほぼ中心となり、水槽壁および外部にかからないように該偏光分光放射計と水槽水面との離隔距離を0.5m〜1.5mの範囲で調節した。なお前記偏光分光放射計には測定位置および範囲を確認するための照準器を付属した。   The polarized spectroradiometer is installed on a tripod having a height of about 1 m, the observation field of view is set to 10 °, and the observation field of view is substantially at the center of the target water surface so that it does not reach the aquarium wall or outside. The separation distance from the aquarium water surface was adjusted in the range of 0.5m to 1.5m. The polarization spectroradiometer was provided with a sight for confirming the measurement position and range.

測定は7月28日に実施した。天候は快晴無風だった。実験は午前10時から12時半まで行い、その間に太陽天頂角は、28°から17°まで減少したのち、再び19°まで増加した。測定時の測定地点直上大気上端における太陽光量の波長別推定値は、太陽定数に測定地点の緯度、経度および測定日・時刻から算出した太陽天頂角の余弦を乗じた値とした。   The measurement was conducted on July 28. The weather was clear and windless. The experiment was conducted from 10 am to 12.30 am, during which the solar zenith angle decreased from 28 ° to 17 ° and then increased again to 19 °. The estimated value by wavelength of the amount of sunlight at the top of the atmosphere immediately above the measurement point at the time of measurement was a value obtained by multiplying the solar constant by the cosine of the solar zenith angle calculated from the latitude and longitude of the measurement point and the measurement date / time.

測定時の太陽方位は、真北を0°とし、東を90°、南を180°とした場合に、測定開始時点においては約120°で、測定終了時においては約210°まで変化した。波長別反射率ならびに波長別偏光度の測定は、観測方向として測定時の太陽方位を基準に、約180°(太陽正対)、約90°(横方向)および約60°(斜め後ろ)の3方向を、観測天頂角として、0、15、30、45および60°の5角度を前記各観測方向で設定した。以上より測定は、SSレベル5段階のそれぞれに関して、底色×3、観測方向×3および観測天頂角×5の45測定を行った。   The solar direction at the time of measurement was about 120 ° at the start of measurement and about 210 ° at the end of measurement when true north was 0 °, east was 90 °, and south was 180 °. The reflectance by wavelength and the degree of polarization by wavelength are measured at about 180 ° (solar facing), about 90 ° (lateral direction) and about 60 ° (diagonally behind) based on the solar direction at the time of measurement. Three angles were set as observation zenith angles, and five angles of 0, 15, 30, 45, and 60 ° were set in each of the observation directions. From the above, measurements were made for 45 SS levels of 5 levels, bottom color x 3, observation direction x 3, and observation zenith angle x 5.

前記太陽光で照明された対象物からの反射光が偏光分光放射計へ入射されて、該反射光が前記バンドパスフィルタを通過することにより、前記波長バンドに分光される。該波長別反射光が光軸を中心として回転する偏光フィルタを通過することにより、該波長別反射光中の偏光反射強度の割合に応じて通過光が増減し、これにともない偏光分光放射計の波長別光電変換値も増減する。そこで偏光フィルタの回転にともなって、その回転角度1°ごとに得られる光電変換値の中から、光電変換最大値(Max)および光電変換最小値(Min)を検出した。なお、本手順は、文献(R. Ghosh、 V. N. Sridhar、H. Venkatesh、 A. N. Mehta、and K. I. Patel、 “Linear polarizationmeasurements of a wheat canopy”、 International Journal ofRemote Sensing 14、 p2501-2508、1993.)の記載に基づいて行った。   Reflected light from the object illuminated with sunlight is incident on a polarization spectroradiometer, and the reflected light passes through the bandpass filter and is split into the wavelength band. When the reflected light by wavelength passes through a polarizing filter that rotates around the optical axis, the passing light increases or decreases in accordance with the ratio of the polarization reflection intensity in the reflected light by wavelength, and accordingly, the polarization spectroradiometer The photoelectric conversion value for each wavelength also increases or decreases. Therefore, with the rotation of the polarizing filter, the maximum photoelectric conversion value (Max) and the minimum photoelectric conversion value (Min) were detected from the photoelectric conversion values obtained at every rotation angle of 1 °. This procedure is described in the literature (R. Ghosh, VN Sridhar, H. Venkatesh, AN Mehta, and KI Patel, “Linear polarization measurements of a wheat canopy”, International Journal of Remote Sensing 14, p2501-2508, 1993.) Based on.

(波長別偏光度および非偏光波長別反射率の算出)
波長別偏光度Pは、前記光電変換最大値(Max)および光電変換最小値(Min)より、下記式1により算出した。なお該波長別偏光度Pは、対象物からの反射光中の、波長別の偏光反射強度の割合である。
(Calculation of polarization degree by wavelength and reflectance by non-polarization wavelength)
The polarization degree P for each wavelength was calculated from the photoelectric conversion maximum value (Max) and the photoelectric conversion minimum value (Min) by the following formula 1. The degree of polarization P for each wavelength is the ratio of the polarization reflection intensity for each wavelength in the reflected light from the object.

P=(Max‐Min)/(Max+Min) (式1)   P = (Max−Min) / (Max + Min) (Formula 1)

波長別反射率R(%)を、前記光電変換最大値(Max)、光電変換最小値(Min)、換算係数Kおよび前記太陽光量の波長別推定値Sを用いて、下記式2により算出した。
R=K×(Max+Min)/(2×S)×100 (式2)
The reflectance R (%) for each wavelength was calculated by the following formula 2 using the photoelectric conversion maximum value (Max), the photoelectric conversion minimum value (Min), the conversion coefficient K, and the estimated value S for each wavelength of sunlight. .
R = K × (Max + Min) / (2 × S) × 100 (Formula 2)

更に、非偏光波長別反射率NPR(%)を、下記式3により算出した。   Further, the reflectance NPR (%) for each non-polarization wavelength was calculated by the following formula 3.

NPR=R×(1‐P) (式3)   NPR = R × (1-P) (Formula 3)

上記により求められる波長別反射率、および非偏光波長別反射率の測定結果について、底面の色とSSとの関係を検討した。SSの実測値は、サンプル水を500ml採取し、フィルタ(Millipore社製 Membrane filter 0.45μm HV、 Cat. No.HVLP04700)で吸引濾過し、捉えた土壌粒子をフィルタとともに105℃で充分に通風乾燥したのち秤量し、あらかじめ秤量しておいた濾過前のフィルタの乾燥重を差し引いて、土壌粒子の質量を求め、これをサンプル水の体積で除して1L当たりの土壌mg数としてSS(mg/L)を算出した。   Regarding the measurement results of the reflectance by wavelength and the reflectance by wavelength of non-polarized light obtained as described above, the relationship between the color of the bottom surface and SS was examined. The measured value of SS was obtained by collecting 500 ml of sample water, suction filtering with a filter (Membrane filter 0.45 μm HV, Cat. No. HVLP04700, manufactured by Millipore), and drying the captured soil particles with a filter at 105 ° C. Then, weigh and subtract the dry weight of the pre-filtered filter weighed in advance to determine the mass of the soil particles. Divide this by the volume of the sample water to obtain the number of soil mg per liter as SS (mg / L ) Was calculated.

(結果1:非偏光波長別反射率、観測角度および底色を独立変数とするSS推定重回帰分析)
上記により得た8バンドの測定値から、2200nmを除く7バンドの非偏光波長別反射率、太陽相対観測方位角、観測天頂角および底色ダミー変数を独立変数とし、SSを従属変数とした重回帰分析を行った。なお底色ダミー変数とは、本実施例においては底色が3色なので、2個の変数d1とd2を導入し、黒の場合、d1=1、d2=0、白の場合、d1=0、 d2=1、黄褐色の場合d1=d2=-1とした。該重回帰分析の結果を表1に示す。
(Result 1: SS estimation multiple regression analysis with independent polarization as a function of reflectance, observation angle, and bottom color)
Based on the 8 band measurement values obtained above, the 7-band non-polarized wave reflectance excluding 2200 nm, the solar relative observation azimuth angle, the observation zenith angle and the bottom color dummy variable are independent variables, and SS is the dependent variable. A regression analysis was performed. Note that the base color dummy variable has three base colors in this embodiment, so two variables d1 and d2 are introduced, d1 = 1, d2 = 0 for black, d1 = 0 for white , D2 = 1, and in the case of tan, d1 = d2 = -1. The results of the multiple regression analysis are shown in Table 1.

表1の回帰分析を要約すると、決定係数(R2)=0.843、誤差の標準偏差(RMSE)=26.56 mg/L、観測数(N)=213となり、観測天頂角ならびに太陽相対観測方位角の項はいずれも有意とならなかった。したがって非偏光波長別反射率を用いることにより観測方向や観測天頂角の項をモデルの説明変数から除去できることが明らかとなった。 To summarize the regression analysis in Table 1, the coefficient of determination (R 2 ) = 0.843, the standard deviation of error (RMSE) = 26.56 mg / L, the number of observations (N) = 213, and the observed zenith angle and solar relative observation azimuth None of the terms were significant. Therefore, it became clear that the terms of observation direction and observation zenith angle can be removed from the explanatory variables of the model by using the reflectance for each non-polarized wavelength.

(結果2:3バンド非偏光波長別反射率と底色ダミー変数のみから成るSS推定モデル)
前記結果1の解析から、非偏光波長別反射率を測定した5観測天頂角での値を加算平均して45個の観測データに要約した。次に変数増減法などのステップワイズ重回帰法を利用して使用バンド数を絞った結果、560nm、830nm、 1650nmの3バンドの非偏光波長別反射率と底色ダミー変数を用いることで、下記式5に示すモデルを得た。結果を図1に示す。
(Result 2: SS estimation model consisting of 3-band non-polarized wavelength reflectance and bottom color dummy variable only)
From the analysis of the result 1, the values at the five observation zenith angles at which the reflectance by wavelength of unpolarized light was measured were averaged and summarized into 45 observation data. Next, as a result of narrowing the number of bands used using the stepwise multiple regression method such as variable increase / decrease method, by using the reflectance by wavelength of non-polarized light of 3 bands of 560 nm, 830 nm, 1650 nm and the bottom color dummy variable, A model shown in Equation 5 was obtained. The results are shown in Figure 1.

SS=-47.25+D−95.34×NPR1650+85.32×NPR830−4.53×NPR560 (式5)   SS = -47.25 + D−95.34 × NPR1650 + 85.32 × NPR830−4.53 × NPR560 (Formula 5)

式5において、NPR1650、NPR830、NPR560はそれぞれ1650nm、830nm、 560nmの3バンドの非偏光波長別反射率を、Dは底色係数で、底色が黒色では、D=59.83、底色が白色では、D=-80.56、底色が黄褐色では、D=20.72、である。本式による推定値と実測値との関係は決定係数(R2)=0.95、誤差の標準偏差(RMSE)=15.2mg/L、観測数(N)=45で表された。 In Equation 5, NPR1650, NPR830, and NPR560 are the non-polarized wavelength reflectances of three bands of 1650 nm, 830 nm, and 560 nm, respectively, D is the base color coefficient, black is D = 59.83, and the base color is white. , D = -80.56, and D = 20.72 when the base color is tan. The relationship between the estimated value and the actually measured value according to this equation was expressed by the coefficient of determination (R 2 ) = 0.95, the standard deviation of error (RMSE) = 15.2 mg / L, and the number of observations (N) = 45.

したがって上記の3バンドで測定された非偏光波長別反射率を用いた式5は、底色係数を観測対象に応じて調整することにより、観測方向の影響を考慮することなくSSを推定するのに有効である。   Therefore, Equation 5 using the non-polarized wavelength reflectance measured in the above three bands estimates the SS without considering the effect of the observation direction by adjusting the base color coefficient according to the observation target. It is effective for.

本発明の方法を用いることにより、陸水中の土壌由来懸濁物濃度を非接触的に計測できる。   By using the method of the present invention, the concentration of the soil-derived suspension in land water can be measured in a non-contact manner.

非偏光波長別反射率3バンドを用いた重回帰モデルによるSS推定SS estimation by multiple regression model using non-polarized wavelength-dependent reflectance 3 bands

Claims (4)

陸水表面の太陽光の反射光から、短波長赤外域に含まれる波長バンド、近赤外域に含まれる波長バンド、および可視域に含まれる波長バンドについての非偏光反射率を、前記波長バンドの反射光が光軸を中心として回転する偏光フィルタを通過することにより検出される該波長バンド反射光の偏光反射強度から算定し、演算処理することによる陸水中の土壌由来懸濁物濃度の推定方法。 From the reflected light of the sunlight inland water surface, the wavelength bands included in the short-wavelength infrared, unpolarized light reflectance for the wavelength band included wavelength band included in the near infrared region, and in the visible range, of the wavelength band Method for estimating the concentration of suspended matter derived from soil in inland water by calculating from the polarized light reflection intensity of the reflected light in the wavelength band detected when the reflected light passes through a polarizing filter that rotates around the optical axis . 前記短波長赤外域が波長1500〜2300nmの範囲で、前記近赤外域が波長750〜1300nmの範囲で、前記可視域が波長450〜700nmの範囲である請求項1に記載の土壌由来懸濁物濃度の推定方法。   The soil-derived suspension according to claim 1, wherein the short-wavelength infrared region is in a wavelength range of 1500 to 2300 nm, the near-infrared region is in a wavelength range of 750 to 1300 nm, and the visible region is in a wavelength range of 450 to 700 nm. Concentration estimation method. 前記演算処理が、
SS=A+D+α×NPRs+β×NPRn+γ×NPRv
である請求項1又は請求項2に記載の土壌由来懸濁物濃度の推定方法。
上記演算処理において、SSは陸水中の土壌由来懸濁物濃度、Dは水底色の違いによる補正値、NPRsは短波長赤外域に含まれる1つの波長バンドsの非偏光反射率、NPRnは近赤外域に含まれる1つの波長バンドnの非偏光反射率、NPRvは可視域に含まれる1つの波長バンドvの非偏光反射率、α、β、γ、およびAはあらかじめ設定された定数をそれぞれ示す。
The arithmetic processing is
SS = A + D + α × NPRs + β × NPRn + γ × NPRv
The estimation method of the soil-derived suspension concentration according to claim 1 or claim 2.
In the above calculation processing, SS is the concentration of suspended soil derived from land water, D is a correction value due to the difference in bottom color, NPRs is the non-polarized reflectance of one wavelength band s included in the short wavelength infrared region, and NPRn is Non-polarized reflectance of one wavelength band n included in the near infrared region, NPRv is an unpolarized reflectance of one wavelength band v included in the visible region, and α, β, γ, and A are preset constants. Each is shown.
測定対象である光を一定の視野範囲に絞って取り入れるアパーチャ部と、波長を選択するフィルタと、偏光フィルタと、偏光フィルタ回転機構と、反射光を光電変換する光電変換センサと、光電変換した電流を増幅したのち同期検波および平滑化し出力電圧を取り出す電圧出力装置とを備えた請求項1の土壌由来懸濁物濃度の推定方法における波長バンド反射光の偏光反射強度の測定装置。 Aperture unit for focusing light to be measured within a certain visual field range, a filter for selecting a wavelength, a polarizing filter, a polarizing filter rotating mechanism, a photoelectric conversion sensor for photoelectrically converting reflected light, and a photoelectrically converted current A device for measuring the polarization reflection intensity of wavelength band reflected light in the method for estimating the concentration of suspended matter derived from soil according to claim 1, further comprising: a voltage output device for extracting the output voltage after synchronous detection and smoothing after amplification.
JP2006044786A 2006-02-22 2006-02-22 Method for estimating soil-derived suspension concentration in inland water Expired - Fee Related JP4719915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044786A JP4719915B2 (en) 2006-02-22 2006-02-22 Method for estimating soil-derived suspension concentration in inland water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044786A JP4719915B2 (en) 2006-02-22 2006-02-22 Method for estimating soil-derived suspension concentration in inland water

Publications (2)

Publication Number Publication Date
JP2007225358A JP2007225358A (en) 2007-09-06
JP4719915B2 true JP4719915B2 (en) 2011-07-06

Family

ID=38547324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044786A Expired - Fee Related JP4719915B2 (en) 2006-02-22 2006-02-22 Method for estimating soil-derived suspension concentration in inland water

Country Status (1)

Country Link
JP (1) JP4719915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414516B (en) * 2021-04-30 2024-03-15 中国人民解放军91977部队 Photoelectric environment grading method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131218A (en) * 1998-10-26 2000-05-12 Ntt Data Corp Method and device for estimating concentration of substance in water, and record medium
JP2002168771A (en) * 2000-12-01 2002-06-14 Ebara Corp Growth degree measuring device of plant
JP2004213627A (en) * 2003-11-28 2004-07-29 Tokyu Construction Co Ltd Method for creating image for evaluating energy fluctuation of plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131218A (en) * 1998-10-26 2000-05-12 Ntt Data Corp Method and device for estimating concentration of substance in water, and record medium
JP2002168771A (en) * 2000-12-01 2002-06-14 Ebara Corp Growth degree measuring device of plant
JP2004213627A (en) * 2003-11-28 2004-07-29 Tokyu Construction Co Ltd Method for creating image for evaluating energy fluctuation of plant

Also Published As

Publication number Publication date
JP2007225358A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
Röttgers et al. Measurements of optical absorption by chromophoric dissolved organic matter using a point‐source integrating‐cavity absorption meter
Dekker Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing
Gitelson et al. Comparative reflectance properties of algal cultures with manipulated densities
Zhang et al. Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid case-2 waters (Lake Taihu, China)
Bresciani et al. Analysis of within-and between-day chlorophyll-a dynamics in Mantua Superior Lake, with a continuous spectroradiometric measurement
Davies‐Colley et al. Predicting light penetration into river waters
Gallegos et al. Optical closure in lakes with contrasting extremes of reflectance
Hochberg et al. Trends and variability in spectral diffuse attenuation of coral reef waters
Reinart et al. Inherent and apparent optical properties of Lake Peipsi, Estonia
Bagheri et al. Chlorophyll-a estimation in New Jersey's coastal waters using Thematic Mapper data
Wagner et al. Proximal VIS-NIR spectrometry to retrieve substance concentrations in surface waters using partial least squares modelling
Minghelli-Roman et al. Discrimination of coral reflectance spectra in the Red Sea
Gin et al. Application of spectral signatures and colour ratios to estimate chlorophyll in Singapore's coastal waters
JP4719915B2 (en) Method for estimating soil-derived suspension concentration in inland water
Kisevic et al. The use of hyperspectral data for evaluation of water quality parameters in the River Sava
Salih Developing spectral reflectance measurement system for environmental remote sensing applications
Paavel et al. Variability of bio-optical parameters in two North-European large lakes
Montes-Hugo et al. Ocean colour and distribution of suspended particulates in the St. Lawrence estuary
Miller et al. A portable fiber optic system for measuring particle absorption using the quantified filter technique (QFT)
Chen et al. An empirical algorithm for hyperspectral remote sensing of chlorophyll-a in turbid waters: a case study on Hyperion sensor
Qiu et al. Monitoring the water quality of water resources reservation area in upper region of Huangpu River using remote sensing
Bagheri et al. Comparison of field spectroradiometers in preparation for bio-optical modelling
Zheng et al. Analysis of chlorophyll concentration during the phytoplankton spring bloom in the Yellow Sea based on the MODIS data
Abayaratne et al. A low-cost partially automated polarimeter for investigating skylight polarisation
Tveiterås Characterization of hyper spectral irradiance and radiance sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees