JPWO2016121117A1 - Thermal storage type exhaust heat recovery device, combustion device using the same, and cogeneration system - Google Patents

Thermal storage type exhaust heat recovery device, combustion device using the same, and cogeneration system Download PDF

Info

Publication number
JPWO2016121117A1
JPWO2016121117A1 JP2016571648A JP2016571648A JPWO2016121117A1 JP WO2016121117 A1 JPWO2016121117 A1 JP WO2016121117A1 JP 2016571648 A JP2016571648 A JP 2016571648A JP 2016571648 A JP2016571648 A JP 2016571648A JP WO2016121117 A1 JPWO2016121117 A1 JP WO2016121117A1
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage medium
wall
side space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016571648A
Other languages
Japanese (ja)
Other versions
JP6465366B2 (en
Inventor
健仁 福富
健仁 福富
山城 光
光 山城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMAS GIJUTSUKENKYUJO CORPORATION
Institute of National Colleges of Technologies Japan
Original Assignee
THOMAS GIJUTSUKENKYUJO CORPORATION
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THOMAS GIJUTSUKENKYUJO CORPORATION, Institute of National Colleges of Technologies Japan filed Critical THOMAS GIJUTSUKENKYUJO CORPORATION
Publication of JPWO2016121117A1 publication Critical patent/JPWO2016121117A1/en
Application granted granted Critical
Publication of JP6465366B2 publication Critical patent/JP6465366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本発明は、ポンプ等の動力を用いずに、温度が上昇するにしたがって体積が膨張する性質の熱媒体を利用して、排熱だけで熱媒体を自然循環させることで、熱変動の大きい排熱を効率よく蓄熱して回収する蓄熱式排熱回収装置及びこれを用いた燃焼装置並びにコージェネレーションシステムを提供することを課題とし、燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、蓄熱式排熱回収装置は、高温の壁面の外側に設けた蓄熱媒体を貯留または循環させるための壁面狭空間からなり、壁面狭空間には、作動媒体を循環させるための伝熱管が配管されており、壁面狭空間内に蓄熱媒体を貯留または循環させるとともに、伝熱管内に作動媒体を循環させることで、作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収することを特徴とする蓄熱式排熱回収装置である。The present invention uses a heat medium whose volume expands as the temperature rises without using power from a pump or the like, and naturally circulates the heat medium only by exhaust heat, thereby eliminating exhaust with large heat fluctuation. An object of the present invention is to provide a heat storage type exhaust heat recovery device that efficiently stores and recovers heat, a combustion device using the same, and a cogeneration system, and stores exhaust heat transmitted from the high-temperature wall of the combustion device. This is a heat storage type exhaust heat recovery device that recovers, and the heat storage type exhaust heat recovery device comprises a narrow wall surface for storing or circulating a heat storage medium provided outside the high temperature wall surface. A heat transfer pipe for circulating the medium is provided. The heat storage medium is stored or circulated in the narrow wall surface, and the working medium is circulated in the heat transfer pipe so that the working medium is transmitted from the hot wall surface. Ru Instead of recovering heat directly, a regenerative heat recovery apparatus characterized by indirectly recovered via the heat storage medium.

Description

本発明は、小規模の燃焼装置から排出される排熱を回収する蓄熱式排熱回収装置及びこれを用いた燃焼装置に関するものであり、また、回収した熱を顕熱として蓄熱し、蓄熱した熱を利用してタービンを駆動して発電を行うコージェネレーションシステムに関する。 The present invention relates to a heat storage type exhaust heat recovery device that recovers exhaust heat exhausted from a small-scale combustion device and a combustion device using the same, and also stores the recovered heat as sensible heat and stores the heat. The present invention relates to a cogeneration system that generates heat by driving a turbine using heat.

化学プラントや燃焼設備等の排熱(または廃熱)を有効に活用する技術は、化石燃料の消費削減のほか、環境負荷の小さい、低炭素循環型の社会システムの構築に貢献できる技術として、今後ますます重要になると考えられる。 Technologies that make effective use of waste heat (or waste heat) from chemical plants and combustion equipment, in addition to reducing fossil fuel consumption, can contribute to the construction of a low-carbon recycling social system with a low environmental impact. It will be more and more important in the future.

例えば、ごみ焼却設備からの排熱は主に、熱交換器を介して作動媒体の予熱を行なう形態、温水として回収、供給する形態、さらには、過熱蒸気によりタービンを駆動させて電気と熱の同時供給を行なうコージェネレーションシステム(熱電併用)の形態に大別される。
そして、いずれの形態についても、熱交換器の性能とともに排熱回収効率が向上し、各種センサーや制御技術を取り入れてシステム性能の進歩が図られてきた。
For example, waste heat from waste incineration equipment is mainly used for preheating the working medium via a heat exchanger, recovered and supplied as hot water, or driven by turbines with superheated steam to generate electricity and heat. It can be broadly divided into cogeneration systems that perform simultaneous supply (combined with thermoelectrics).
In any form, the exhaust heat recovery efficiency is improved together with the performance of the heat exchanger, and the system performance has been improved by incorporating various sensors and control technologies.

特に、排熱を利用して電気と熱の同時供給を行なうコージェネレーションシステムの形態については、経済的メリットを考慮しつつ、高温の排熱を安定的に確保できる大規模設備において広く普及している。一方、ごみ焼却量が1日100トン以下の小規模燃焼装置や間欠式の燃焼炉では、発電に必要な排熱を定常的に確保できない場合が多いために、タービンを駆動するための過熱蒸気を安定的に確保することが困難であり、小型燃焼装置のみの排熱ではコージェネレーションシステムを構築することは困難とされている。 In particular, the form of cogeneration systems that use waste heat to supply electricity and heat simultaneously has become widespread in large-scale facilities that can stably secure high-temperature waste heat while taking into account economic benefits. Yes. On the other hand, in small-scale combustors and intermittent combustion furnaces with an incineration amount of 100 tons or less per day, there are many cases where exhaust heat necessary for power generation cannot be constantly secured, so superheated steam for driving the turbine Therefore, it is difficult to establish a cogeneration system with exhaust heat only from a small combustion device.

小規模の燃焼装置や間欠型の燃焼炉については、近年、燃焼温度の高温化と排煙の急速冷却技術の進歩により、制御、モニタリング技術を融合させることでダイオキシン類を排出しないことが実現されている。これにより機器の需要が増加していることもあり、大型設備と同様に排熱の有効活用に向けた技術開発の動向が注目されている。 In recent years, for small-scale combustion devices and intermittent combustion furnaces, it has been realized that dioxins will not be discharged by combining control and monitoring technologies due to higher combustion temperatures and rapid cooling technology for flue gas. ing. As a result, the demand for equipment has increased, and the trend of technological development for effective use of exhaust heat, as well as large-scale equipment, has attracted attention.

例えば、特許文献1では、焼却物に伐採木材や生物資源物を混入して、一定の燃焼熱を確保することで、蒸気タービンの発電出力を一定に保持する方法が開示されている。 For example, Patent Document 1 discloses a method of maintaining a constant power generation output of a steam turbine by mixing felled wood and biological resources into an incinerated product and ensuring a certain amount of combustion heat.

また、特許文献2では、焼却炉内で熱交換を行なって予熱された作動媒体を、補助ボイラにより再加熱して、安定した過熱蒸気を確保する発電方法が開示されている。 Patent Document 2 discloses a power generation method that secures stable superheated steam by reheating a working medium preheated by heat exchange in an incinerator using an auxiliary boiler.

さらに、近年、温泉熱など、温度100℃前後の排熱を利用する形態として、低沸点の作動媒体を用いて排熱を回収し、比較的低温の過熱蒸気でタービンを駆動させるバイナリー発電システムが実用化されているが、当該システムにおいても、一定温度の熱を充分かつ定常的に確保できることが重要となる。 Furthermore, in recent years, a binary power generation system that recovers exhaust heat using a low-boiling working medium and drives a turbine with relatively low-temperature superheated steam as a form of using exhaust heat at a temperature of about 100 ° C. such as hot spring heat. Although it has been put into practical use, it is important that the heat of a certain temperature can be secured sufficiently and constantly in the system.

特開2013−064571号公報JP2013-066451A 特開平07−012303号公報Japanese Patent Laid-Open No. 07-012303

小規模の燃焼装置の排熱を利用してコージェネレーションシステムを構築するには、次の課題の解決が必要である。
(1)装置が小型化すると、排熱を回収するための伝熱面積を確保し難く(有効伝熱面積が小さい)、燃焼熱の変動が大きいことから、一定温度または一定量の排熱を定常的に確保するための技術的手段が必要である。
(2)装置が小型化するほど単位体積当たりの表面積が大きくなることから、大型装置よりも外気への放熱量すなわち熱損失が大きくなり、熱媒体または作動媒体を用いて回収された熱が、外気へ放熱されて、熱回収率が大幅に低下する。
すなわち、小型燃焼装置特有の「熱し易く、さめ易い」性質を改善する必要がある。
(3)従来の排熱回収装置の形態では、水や低沸点または低温の熱媒体を用いて排熱回収を行った場合、熱媒体の熱的条件(温度、圧力、熱伝達率)が燃焼室や高温の壁面に直接影響を及ぼすことから、燃焼温度の低下、壁面の変形を生じ、場合によっては燃焼室壁面が焼損(バーンアウト)する危険がある。
(4)従来の排熱回収装置をコージェネレーションシステムに適用した場合、燃焼室の熱的変動(温度、発熱量)が作動媒体の温度や圧力に直接影響を及ぼし、安定した過熱蒸気すなわち安定した発電出力を得ることが難しい。
In order to construct a cogeneration system using the exhaust heat of a small-scale combustion device, it is necessary to solve the following problems.
(1) When the device is downsized, it is difficult to secure a heat transfer area for recovering exhaust heat (the effective heat transfer area is small) and the fluctuation of combustion heat is large. Technical means are required to ensure it on a regular basis.
(2) Since the surface area per unit volume increases as the device becomes smaller, the amount of heat released to the outside air, that is, the heat loss, becomes larger than the large device, and the heat recovered using the heat medium or the working medium is Heat is released to the outside air, and the heat recovery rate is greatly reduced.
In other words, it is necessary to improve the characteristic of “easy to heat and easy to squeeze” unique to a small combustion apparatus.
(3) In the conventional exhaust heat recovery device, when exhaust heat recovery is performed using water or a low boiling point or low temperature heat medium, the thermal conditions (temperature, pressure, heat transfer coefficient) of the heat medium are combusted. Since it directly affects the chamber and the hot wall surface, the combustion temperature is lowered and the wall surface is deformed. In some cases, the combustion chamber wall surface may burn out.
(4) When a conventional exhaust heat recovery device is applied to a cogeneration system, the thermal fluctuation (temperature, calorific value) of the combustion chamber directly affects the temperature and pressure of the working medium, and stable superheated steam, that is, stable It is difficult to obtain power generation output.

そこで、上記課題に鑑み、本発明は、熱変動が大きい小型燃焼炉等の排熱を蓄熱して、一定温度の安定した熱を確保、供給できる蓄熱式排熱回収装置及びこれを用いた燃焼装置並びにコージェネレーションシステムを提供する。 Therefore, in view of the above problems, the present invention stores a heat storage type exhaust heat recovery device capable of storing and supplying a stable heat at a constant temperature by storing exhaust heat of a small combustion furnace or the like having a large thermal fluctuation, and a combustion using the same An apparatus and a cogeneration system are provided.

本発明に係る蓄熱式排熱回収装置は、
燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた蓄熱媒体を貯留または循環させるための壁面狭空間からなり、
壁面狭空間には、作動媒体を循環させるための伝熱管が配管されており、
壁面狭空間内に蓄熱媒体を貯留または循環させるとともに、伝熱管内に作動媒体を循環させることで、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収する
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow wall surface for storing or circulating a heat storage medium provided outside the high temperature wall surface,
A heat transfer tube for circulating the working medium is installed in the narrow wall surface,
By storing or circulating the heat storage medium in the narrow wall surface, and circulating the working medium in the heat transfer tube,
The working medium does not directly recover the exhaust heat transmitted from the high-temperature wall surface, but indirectly recovers it through the heat storage medium.

従来の排熱回収装置は、作動媒体または熱媒体(20℃前後の水)を高温の壁面に供給して、壁面と作動媒体とが直接接触した状態で、壁面から伝達される排熱を回収する形態である。この形態を、小規模の燃焼装置に適用した場合、次の問題がある。
(1)低温の作動媒体または熱媒体が装置内に供給されると、燃焼装置の壁面温度を低下させ、さらには燃焼室内部の燃焼状態(温度、発熱量)に影響を及ぼすおそれがある。これは、例えばごみの焼却装置においては、燃焼温度の低下が生じ、有害物質が発生する原因になる。
(2)燃焼装置の壁面の内側(燃焼室側、高温)と外側(熱媒体が接触している面)とで大きな温度差(温度勾配)が生じ、燃焼装置の壁面が熱応力により変形、破損の危険がある。
(3)熱媒体がドライアウトして過熱蒸気になると、壁面の急激な温度上昇と系内の圧力上昇とが起こり、壁面の焼損(バーンアウト)や加圧による壁面の変形が生じる。
(4)燃焼炉側壁面と外気側壁面とが作動媒体を介して接触している状態では、作動媒体の熱損失(外部への放熱)が大きくなり、熱回収率が低下して、蒸気生成が不安定となる。
A conventional exhaust heat recovery device supplies a working medium or heat medium (water at around 20 ° C.) to a hot wall surface, and collects the exhaust heat transmitted from the wall surface in a state where the wall surface and the working medium are in direct contact with each other. It is a form to do. When this form is applied to a small-scale combustion apparatus, there are the following problems.
(1) When a low-temperature working medium or heat medium is supplied into the apparatus, the wall surface temperature of the combustion apparatus may be lowered, and further the combustion state (temperature, calorific value) inside the combustion chamber may be affected. For example, in a waste incinerator, the combustion temperature is lowered, and a harmful substance is generated.
(2) A large temperature difference (temperature gradient) occurs between the inner side (combustion chamber side, high temperature) and the outer side (surface where the heat medium is in contact) of the combustion device, and the wall surface of the combustion device is deformed by thermal stress. Risk of damage.
(3) When the heat medium dries out and becomes superheated steam, a rapid temperature rise of the wall surface and a pressure increase in the system occur, and the wall surface is burned out and the wall surface is deformed by pressurization.
(4) When the combustion furnace side wall surface and the outside air side wall surface are in contact with each other via the working medium, the heat loss (heat radiation to the outside) of the working medium increases, the heat recovery rate decreases, and steam is generated. Becomes unstable.

そこで、本発明に係る蓄熱式排熱回収装置は、水の飽和温度(100℃、1気圧)よりも高い飽和温度となる液体すなわち高沸点かつ高熱容量の蓄熱媒体と、水または低沸点の作動媒体と、の2種類の熱媒体を用い、高温の壁面の外側に設けた蓄熱媒体を貯留または循環させる壁面狭空間内に伝熱管を配管して、伝熱管内に作動媒体を循環させることで、作動媒体が燃焼装置側壁面と外気側壁面に直接触れることなく、排熱を安全かつ効率よく回収できるようにした。 Therefore, the heat storage type exhaust heat recovery apparatus according to the present invention is a liquid having a saturation temperature higher than the saturation temperature of water (100 ° C., 1 atm), that is, a heat storage medium having a high boiling point and a high heat capacity, and water or a low boiling point operation. By using two types of heat medium, medium, and piping a heat transfer pipe in a narrow wall surface that stores or circulates the heat storage medium provided outside the high temperature wall, and circulating the working medium in the heat transfer pipe The exhausted heat can be recovered safely and efficiently without the working medium directly touching the side wall surface of the combustion device and the side wall surface of the outside air.

本願発明において、壁面とは、燃焼によって高温に熱せられる燃焼装置の燃焼室(燃焼炉)や煙突部等の壁面を意味する。
また、壁面狭空間とは、燃焼装置の燃焼室(燃焼炉)や煙突部等の壁面の外側に設けられる壁面で挟まれた空間であり、壁面の一部分だけで空間を設けることもできるし、全範囲、つまり、燃焼室(燃焼炉)や煙突部の壁面全てに設けることもできる。壁面狭空間の外気側壁面(外壁)は、外気環境の影響を受けないように断熱性を有することが望ましい。
In this invention, a wall surface means wall surfaces, such as a combustion chamber (combustion furnace) of a combustion apparatus and a chimney part heated to high temperature by combustion.
Moreover, the wall surface narrow space is a space sandwiched between wall surfaces provided on the outside of the wall surface of the combustion chamber (combustion furnace) or chimney of the combustion apparatus, and the space can be provided only by a part of the wall surface, It can also be provided in the entire range, that is, all the walls of the combustion chamber (combustion furnace) and chimney. It is desirable that the outside air side wall surface (outer wall) in the narrow wall surface has heat insulation so as not to be affected by the outside air environment.

本願発明において、伝熱管は、壁面狭空間内に配管され、管内部に作動媒体を循環させる。伝熱管は、壁面狭空間内を垂直方向に配管することもできるし、螺旋状に形成された管として壁面に沿って配管したり、壁面の周囲に沿って螺旋方向に配管することもできる。
なお、蓄熱媒体や作動媒体を装置外部で循環させる場合のポンプ等の動力源は、別に備えることができる。
In the present invention, the heat transfer tube is piped in a narrow wall surface and circulates the working medium inside the tube. The heat transfer tube can be piped in the vertical direction in the narrow space on the wall surface, piped along the wall surface as a spirally formed tube, or piped in the spiral direction along the periphery of the wall surface.
A power source such as a pump for circulating the heat storage medium or the working medium outside the apparatus can be provided separately.

本願発明における蓄熱媒体は、1気圧における沸点が約300〜400℃で、温度上昇とともに体積が増加する性質すなわち体積膨張率の温度依存性が大きい液体(例えば、温度25〜300℃における容積比1〜1.5以下)である。また、金属繊維または金属粒子等を埋入した蓄熱媒体で壁面狭空間を満たすと、高温壁面から蓄熱媒体への熱移動が促進され、蓄熱媒体の温度分布が均一化されて蓄熱性及び温度制御性が向上する。 The heat storage medium in the present invention has a boiling point of about 300 to 400 ° C. at 1 atm, and a liquid whose volume increases with increasing temperature, that is, a liquid having a large temperature expansion coefficient (for example, a volume ratio of 1 at a temperature of 25 to 300 ° C. ~ 1.5 or less). In addition, when the wall space is filled with a heat storage medium in which metal fibers or metal particles are embedded, heat transfer from the high temperature wall surface to the heat storage medium is promoted, and the temperature distribution of the heat storage medium is made uniform, so that heat storage and temperature control are achieved. Improves.

本願発明における作動媒体は、水または低沸点(沸点100℃以下)のペンタンやブタンの他、フロン系冷媒を用いることができる。このような作動媒体を用いることで、温度100℃以下の低温の排熱回収が可能となり、蒸気タービンの駆動に必要な過熱蒸気を、より安定的に確保することができる。 The working medium in the present invention can use water or a low-boiling point (boiling point of 100 ° C. or lower) pentane or butane, or a fluorocarbon refrigerant. By using such a working medium, low-temperature exhaust heat recovery at a temperature of 100 ° C. or lower is possible, and the superheated steam necessary for driving the steam turbine can be secured more stably.

本発明によれば、低温の水や低沸点の作動媒体を装置内に供給しても、燃焼装置の壁面や燃焼室内部の温度や発熱量を低下させることがなく、さらに壁面の変形や焼損を防ぐことができる。
また、低沸点の作動媒体が燃焼装置の高温の壁面と直に接触することがないため、壁面の内側と外側の温度差(温度勾配)が極端に大きくなることが回避されて、熱応力による壁面の変形や、熱伝達低下による燃焼炉壁面の焼損(バーンアウト)、過熱蒸気による壁面の加圧変形を防ぐことができる。
According to the present invention, even if low-temperature water or a low-boiling working medium is supplied into the apparatus, the temperature and heat generation amount of the wall surface of the combustion apparatus and the combustion chamber are not reduced, and the wall surface is deformed or burned out. Can be prevented.
In addition, since the low-boiling working medium does not come into direct contact with the high-temperature wall surface of the combustion device, it is avoided that the temperature difference (temperature gradient) between the inside and outside of the wall surface becomes extremely large, and is caused by thermal stress. It is possible to prevent deformation of the wall surface, burnout of the combustion furnace wall surface due to a decrease in heat transfer, and pressure deformation of the wall surface due to superheated steam.

さらに、燃焼装置の排熱を発電に利用するコージェネレーションでは、発電に必要な熱エネルギーを常に確保することが必要である。
従って、当該発明により小型燃焼装置に蓄熱機能を持たせることで、排熱の熱的変動が大きい小型燃焼装置においても、過熱蒸気の安定供給すなわち安定した発電出力をえることができる。
Further, in cogeneration that uses the exhaust heat of the combustion device for power generation, it is necessary to always secure the thermal energy necessary for power generation.
Accordingly, by providing the small combustion device with a heat storage function according to the present invention, a stable supply of superheated steam, that is, a stable power generation output can be obtained even in a small combustion device having a large thermal fluctuation of exhaust heat.

本発明に係る蓄熱式排熱回収装置は、
燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた壁面狭空間からなり、
壁面狭空間は、空間の上方と下方とが開口した隔壁によって、高温の壁面側の空間(内壁側空間)と、壁面狭空間の外壁側の空間(外壁側空間)とに区画され、
内壁側空間には、作動媒体を循環させるための伝熱管が配管されており、
内壁側空間内に貯留する蓄熱媒体が排熱を蓄熱して高温になると、蓄熱媒体は、隔壁上方の開口部分から外壁側空間に流れて冷却され、隔壁下方の開口部分から内壁側空間に戻って再度排熱を蓄熱して高温になり、これが繰り返されることで両空間内を循環するとともに、この循環によって一定の温度に制御された蓄熱媒体が循環する内壁側空間に配管された伝熱管内に、作動媒体を循環させることによって、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収する
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow space on the outside of the hot wall,
The wall surface narrow space is partitioned into a high temperature wall surface space (inner wall side space) and an outer wall side space (outer wall side space) of the wall surface narrow space by a partition that opens above and below the space.
In the inner wall side space, a heat transfer tube for circulating the working medium is installed,
When the heat storage medium stored in the inner wall side space stores exhaust heat and becomes high temperature, the heat storage medium flows from the opening part above the partition wall to the outer wall side space and is cooled, and returns from the opening part below the partition wall to the inner wall side space. In this case, the exhaust heat is stored again to become a high temperature, and this is repeated so that it circulates in both spaces, and the heat transfer pipe that is piped to the inner wall side space where the heat storage medium controlled to a constant temperature circulates by this circulation In addition, by circulating the working medium,
The working medium does not directly recover the exhaust heat transmitted from the high-temperature wall surface, but indirectly recovers it through the heat storage medium.

本発明は、前記蓄熱式排熱回収装置の壁面狭空間を、隔壁によって内壁側空間と外壁側空間とに区画し、壁面狭空間の上方と下方の開口している空間を通じて、蓄熱媒体が両空間間を自然循環するようにしたものである。 The present invention divides a wall surface narrow space of the heat storage type exhaust heat recovery device into an inner wall side space and an outer wall side space by a partition wall, and the heat storage medium passes through both spaces above and below the wall surface narrow space. It is designed to circulate naturally between spaces.

小規模の燃焼装置の排熱を発電に利用する場合には、熱的条件(温度、圧力、流量)が一定の過熱蒸気をタービン入口に供給して、周波数一定の安定した発電出力を得る必要がある。そのため、作動媒体の熱源となる蓄熱媒体の温度は、一定または一様に保たれていることが望ましい。 When using the exhaust heat from a small-scale combustion device for power generation, it is necessary to supply superheated steam with a constant thermal condition (temperature, pressure, flow rate) to the turbine inlet to obtain a stable power output with a constant frequency. There is. For this reason, it is desirable that the temperature of the heat storage medium serving as the heat source of the working medium be kept constant or uniform.

そこで、本発明では、高温の壁面の外側に設けた壁面狭空間を、上下両方に開口部を有する隔壁によって仕切り、高温の熱媒体(内壁側)と低温の熱媒体(外壁側)とが、開口部を通して循環できる構成とした。これにより、蓄熱媒体が熱的バランスを保つ形(密度差を補う様相)で自然循環をし、蓄熱媒体及び装置内の温度が一定または一様となるようにした。 Therefore, in the present invention, the narrow wall surface provided outside the high-temperature wall surface is partitioned by a partition wall having openings on both the upper and lower sides, and the high-temperature heat medium (inner wall side) and the low-temperature heat medium (outer wall side) It was set as the structure which can circulate through an opening part. As a result, the heat storage medium naturally circulates in a form that maintains a thermal balance (an aspect that compensates for the density difference) so that the temperature of the heat storage medium and the apparatus is constant or uniform.

本発明に用いる蓄熱媒体は、内壁側空間内で、壁面からの高温の排熱を顕熱として蓄熱し、温度上昇にともなって体積が増加し、隔壁上方の開口部分から外壁側空間に流れて、外壁側空間で放熱または冷却される。そして、冷却された蓄熱媒体は、比体積が減少(密度が増加)することで下降流となって隔壁下方の開口部分から内壁側空間に流れ込む。
これにより、加熱域と冷却域の熱的バランスを保つ形で自然循環が継続し、蓄熱媒体及び装置内の温度が、一定または一様に保たれて、熱的駆動力のみで温度制御が可能となる。
The heat storage medium used in the present invention stores high-temperature exhaust heat from the wall surface as sensible heat in the inner wall side space, and the volume increases as the temperature rises and flows from the opening above the partition wall to the outer wall side space. The heat is radiated or cooled in the outer wall side space. And the cooled thermal storage medium becomes a downward flow by the specific volume decreasing (density increasing), and flows into the inner wall side space from the opening part under a partition.
As a result, the natural circulation continues in a form that maintains the thermal balance between the heating and cooling zones, and the temperature of the heat storage medium and the device is kept constant or uniform, and temperature control is possible only with the thermal driving force. It becomes.

本発明における隔壁は、断熱性を有し、壁面狭空間を、高温の壁面側の空間(内壁側空間、高温)と、壁面狭空間の外壁側の空間(外壁側空間、低温)とに区画する。
しかし、壁面狭空間を外壁側空間と内壁側空間とに完全に隔てるものではなく、壁面狭空間の上方と下方の空間は開口した状態にしておく。この開口した状態の空間(開口部分)を通じて、蓄熱媒体が各空間を移動して循環する。壁面狭空間の外壁は、外気温の影響を受けないように断熱壁とする場合もあれば、蓄熱媒体を冷やすために冷却壁とする場合もあり、蓄熱媒体の温度条件により異なる。
また、壁面狭空間を内壁側空間と外壁側空間とに区画する隔壁は、内壁側空間と外壁側空間との間で隔壁を通じた熱の伝達が行われないように断熱性を有することが望ましい。
The partition wall in the present invention has heat insulating properties, and divides the narrow wall surface into a high-temperature wall-side space (inner wall-side space, high temperature) and an outer-wall-side space (outer wall-side space, low-temperature) in the narrow wall surface. To do.
However, the wall surface narrow space is not completely separated from the outer wall side space and the inner wall side space, and the upper and lower spaces of the wall surface narrow space are left open. Through this open space (opening portion), the heat storage medium moves through each space and circulates. The outer wall of the narrow wall surface may be a heat insulating wall so as not to be affected by the outside air temperature, or may be a cooling wall for cooling the heat storage medium, and varies depending on the temperature condition of the heat storage medium.
Further, the partition wall that divides the wall surface narrow space into the inner wall side space and the outer wall side space preferably has heat insulating properties so that heat is not transmitted through the partition wall between the inner wall side space and the outer wall side space. .

なお、この構成においても、低温の水や低沸点の作動媒体が装置内に供給されても、作動媒体が高温の壁面に直接触れることがないため、燃焼装置の壁面や燃焼室内部の温度を下げることがなく、壁面の変形や焼損に至ることもない。
なお、前述と同様、蓄熱媒体を循環させる壁面狭空間または内壁側空間に、金属繊維または金属粒子等を埋入することで、高温壁面から蓄熱媒体への熱移動が促進され、蓄熱媒体の温度分布が均一化されて蓄熱性及び温度制御性が向上する。
Even in this configuration, even if low-temperature water or a low-boiling working medium is supplied into the apparatus, the working medium does not directly touch the high-temperature wall surface. There is no lowering, and there is no wall deformation or burning.
As described above, by embedding metal fibers or metal particles in the narrow wall surface space or the inner wall space where the heat storage medium is circulated, heat transfer from the high temperature wall surface to the heat storage medium is promoted, and the temperature of the heat storage medium is increased. The distribution is made uniform to improve heat storage and temperature controllability.

本発明に係る蓄熱式排熱回収装置は、
燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた壁面狭空間からなり、
壁面狭空間は、隔壁によって、高温の壁面側の空間(内壁側空間)と、壁面狭空間の外壁側の空間(外壁側空間)とに区画され、
内壁側空間には、作動媒体を循環させるための伝熱管が配管され、
外壁側空間には、内壁側空間の蓄熱媒体を外壁側空間へ移送し、循環させるため、隔壁上方に形成された開口部から外壁側空間内を通って隔壁下方に形成された開口部を繋ぐ環状の放熱管が配管されており、
内壁側空間内に貯留する蓄熱媒体が排熱を蓄熱して高温になると、蓄熱媒体は、隔壁上方に形成された開口部から外壁側空間内に配管されている放熱管を流れる間に冷却され、隔壁下方に形成された開口部から内壁側空間に戻って再度排熱を蓄熱して高温になり、これが繰り返されることで両空間間を循環するとともに、この循環によって一定(所望)の温度に制御された蓄熱媒体と接触するように内壁側空間に配管された伝熱管内に、作動媒体を循環させることによって、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体と伝熱管壁面を介して間接的に回収する
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow space on the outside of the hot wall,
The wall surface narrow space is partitioned by a partition wall into a high temperature wall surface space (inner wall side space) and an outer wall side space (outer wall side space) of the wall surface narrow space,
In the inner wall side space, a heat transfer pipe for circulating the working medium is piped,
In order to transfer and circulate the heat storage medium in the inner wall side space to the outer wall side space, the outer wall side space connects the opening formed in the lower part of the partition through the outer wall side space to circulate. An annular heat radiating pipe is installed,
When the heat storage medium stored in the inner wall side space stores the exhaust heat and becomes high temperature, the heat storage medium is cooled while flowing through the heat radiating pipe piped in the outer wall side space from the opening formed above the partition wall. Then, it returns to the inner wall side space from the opening formed below the partition wall, accumulates the exhaust heat again and becomes high temperature, and this is repeated to circulate between both spaces, and this circulation makes the temperature constant (desired) By circulating the working medium in the heat transfer pipe piped in the inner wall side space so as to come into contact with the controlled heat storage medium,
The working medium does not directly recover the exhaust heat transmitted from the high-temperature wall surface, but indirectly recovers it through the heat storage medium and the heat transfer tube wall surface.

本発明は、前記蓄熱式排熱回収装置の壁面狭空間を、隔壁によって内壁側空間と外壁側空間とに区画し、隔壁の上方と下方とに形成された開口部を放熱管で繋ぎ、蓄熱媒体が外壁側空間に配管された放熱管内を移動、下降しながら冷却されて、蓄熱媒体が両空間内を温度差による熱駆動力によって自然循環するようにしたものである。 The present invention divides a narrow wall surface space of the heat storage type exhaust heat recovery apparatus into an inner wall side space and an outer wall side space by a partition wall, and connects openings formed above and below the partition wall with a heat radiating pipe to store heat. The medium is cooled while moving and descending in the heat radiating pipe piped in the outer wall side space, so that the heat storage medium naturally circulates in both spaces by a thermal driving force due to a temperature difference.

小規模の燃焼装置の排熱を発電に利用する場合には、タービン入口に供給される過熱蒸気の熱的条件(温度、圧力、流量)を一定にして、安定した周波数の発電出力を得る必要がある。そのため、作動媒体の熱源となる蓄熱媒体の温度は、一定または一様に保たれていることが望ましい。 When using the exhaust heat of a small-scale combustion device for power generation, it is necessary to obtain a stable frequency power output by keeping the thermal conditions (temperature, pressure, flow rate) of the superheated steam supplied to the turbine inlet constant. There is. For this reason, it is desirable that the temperature of the heat storage medium serving as the heat source of the working medium be kept constant or uniform.

そこで、本発明では、高温の壁面の外側に設けた壁面狭空間を、上下両方に開口部を有する隔壁によって仕切り、高温の熱媒体(内壁側)と低温の熱媒体(外壁側)とが、開口部を通して循環できる構成とした。これにより、蓄熱媒体が熱的バランスを保つ形(密度差を補う様相)で自然循環をし、蓄熱媒体及び装置内の温度が一定または一様となるようにした。
蓄熱媒体は、内壁側空間内で、壁面からの高温の排熱を回収して蓄熱し、温度が上昇するにしたがって隔壁上方に形成された開口部から外壁側空間内に配管されている放熱管内を流れて、外壁側空間で放熱または冷却される。
そして、冷却される蓄熱媒体は、温度が低下するにしたがって比体積が小さく(密度が大きく)なって下降流となり、隔壁下方に形成された開口部から内壁側空間に流れる。以上の循環のプロセスを繰り返すことにより、蓄熱媒体の温度が一定または一様に保たれる。
以上の結果、高温の壁面から伝達される排熱は、高沸点かつ高熱容量の蓄熱媒体に蓄熱され、蓄熱媒体が保有している顕熱を作動媒体が回収する形態であるため、小規模の燃焼装置であっても、燃焼室内部の熱変動(温度、熱量の変化)の影響を作動媒体が直接受けることがなく、安定した過熱蒸気を生成、供給できる。
Therefore, in the present invention, the narrow wall surface provided outside the high-temperature wall surface is partitioned by a partition wall having openings on both the upper and lower sides, and the high-temperature heat medium (inner wall side) and the low-temperature heat medium (outer wall side) It was set as the structure which can circulate through an opening part. As a result, the heat storage medium naturally circulates in a form that maintains a thermal balance (an aspect that compensates for the density difference) so that the temperature of the heat storage medium and the apparatus is constant or uniform.
The heat storage medium collects the high-temperature exhaust heat from the wall surface in the inner wall side space, stores the heat, and as the temperature rises, the inside of the heat radiating pipe piped into the outer wall side space from the opening formed above the partition wall Radiated or cooled in the outer wall side space.
Then, the heat storage medium to be cooled has a specific volume that decreases (density increases) as the temperature decreases and flows downward, and flows from the opening formed below the partition wall to the inner wall side space. By repeating the above circulation process, the temperature of the heat storage medium is kept constant or uniform.
As a result, the exhaust heat transferred from the high-temperature wall surface is stored in the heat storage medium with a high boiling point and a high heat capacity, and the working medium recovers the sensible heat held by the heat storage medium. Even in the combustion apparatus, the working medium is not directly affected by the heat fluctuation (change in temperature and amount of heat) in the combustion chamber, and stable superheated steam can be generated and supplied.

本発明における隔壁は、断熱性を有し、壁面狭空間を、高温の壁面側の空間(内壁側空間、高温)と、壁面狭空間の外壁側の空間(外壁側空間、低温)とに区画する。
本発明における隔壁は、隔壁の上方と下方とにそれぞれ開口部を設けてある。この上方と下方の開口部を繋ぐようにして環状の放熱管が配管されている。そのため、蓄熱媒体は、開口部を通じて内壁側空間から外壁側空間へと流れ、放熱管内を通過しながら冷却される。
また、壁面狭空間を内壁側空間と外壁側空間とに区画する隔壁は、内壁側空間と外壁側空間との間で隔壁を通じた熱移動がないように断熱性を有することが望ましい。
The partition wall in the present invention has heat insulating properties, and divides the narrow wall surface into a high-temperature wall-side space (inner wall-side space, high temperature) and an outer-wall-side space (outer wall-side space, low-temperature) in the narrow wall surface. To do.
The partition wall in the present invention is provided with an opening above and below the partition wall. An annular heat radiating pipe is piped so as to connect the upper and lower openings. Therefore, the heat storage medium flows from the inner wall side space to the outer wall side space through the opening, and is cooled while passing through the heat radiating pipe.
Moreover, it is desirable that the partition wall that partitions the wall surface narrow space into the inner wall side space and the outer wall side space has a heat insulating property so that there is no heat transfer through the partition wall between the inner wall side space and the outer wall side space.

放熱管の冷却には水または冷媒が用いられる。水の場合には、放熱管から得た熱を回収して温水として、装置外部に供給、利用できる。
また、冷媒を循環させる場合には、チラーなどの冷却装置が用いられ、室温または外気温以下の低温の冷却が可能となる。
Water or refrigerant is used for cooling the heat radiating pipe. In the case of water, the heat obtained from the heat radiating pipe can be recovered and supplied as hot water to the outside of the apparatus.
In addition, when circulating the refrigerant, a cooling device such as a chiller is used, and cooling at a low temperature not exceeding room temperature or outside temperature is possible.

放熱管表面に、放熱管内を循環する蓄熱媒体の放熱または冷却の効果を高めるため、フィンまたは溝を形成することもできる。フィンは放熱管の外周側に形成することもできるし、溝は放熱管の内周側に形成することができる。すなわち、放熱管の内外表面にフィンや溝を施すことで、放熱管内を循環する蓄熱媒体の放熱量を大きくする効果がある。 Fins or grooves can be formed on the surface of the heat radiating tube in order to enhance the effect of heat dissipation or cooling of the heat storage medium circulating in the heat radiating tube. The fins can be formed on the outer peripheral side of the heat radiating tube, and the grooves can be formed on the inner peripheral side of the heat radiating tube. That is, by providing fins and grooves on the inner and outer surfaces of the heat radiating tube, there is an effect of increasing the heat radiation amount of the heat storage medium circulating in the heat radiating tube.

壁面狭空間の外壁は、外気温の影響を受けないように断熱性を有する。外気への熱の移動を小さくして、蓄熱媒体および冷却水(冷媒)の熱損失の低減を図る構成であることが望ましい。 The outer wall of the narrow wall surface has heat insulation so as not to be affected by the outside air temperature. It is desirable that the heat transfer to the outside air be reduced to reduce the heat loss of the heat storage medium and the cooling water (refrigerant).

前述同様、この構成において、低温の水や低沸点の作動媒体が装置内に供給されても、作動媒体が高温の燃焼炉壁面に直接触れることがないため、燃焼装置壁面や燃焼室内部の温度を低下させることはなく、さらには壁面の変形や焼損を生ずることもない。
なお、蓄熱媒体を循環させる壁面狭空間、内壁側空間または外壁側空間に、金属繊維または金属粒子等を埋入することで、蓄熱性及び温度制御性を向上させることが可能である。
As described above, in this configuration, even when low-temperature water or a low-boiling working medium is supplied into the apparatus, the working medium does not directly touch the high-temperature combustion furnace wall. In addition, the wall surface is not deformed or burned out.
In addition, it is possible to improve heat storage property and temperature controllability by embedding metal fibers or metal particles in the narrow wall surface space, the inner wall side space, or the outer wall side space in which the heat storage medium is circulated.

本願発明における放熱管は、内壁側空間の蓄熱媒体を外壁側空間で冷却するため、外壁側空間内に配管されている管である。隔壁上方に形成された開口部(放熱管の入口)から外壁側空間内を通って隔壁下方に形成された開口部(放熱管の出口)までを繋ぐ管であり、垂直方向に繋ぐ垂直管にすることもできるし、壁面狭空間内を螺旋状に繋ぐ螺旋管にすることもできる。
なお、蓄熱媒体を循環させる壁面狭空間または内壁側空間に、金属繊維または金属粒子等を混入することで、高温壁面から蓄熱媒体への熱移動が促進され、蓄熱媒体の温度分布が均一化されて蓄熱性能及び温度の制御性が向上する。
The heat radiating pipe in the present invention is a pipe piped in the outer wall side space in order to cool the heat storage medium in the inner wall side space in the outer wall side space. It is a pipe that connects the opening formed above the partition wall (inlet of the heat radiating pipe) to the opening formed below the partition wall (exit of the heat radiating pipe) through the outer wall side space. It is also possible to make a spiral tube that spirally connects the inside of a narrow wall surface.
In addition, heat transfer from the high temperature wall surface to the heat storage medium is promoted and the temperature distribution of the heat storage medium is made uniform by mixing metal fibers or metal particles in the narrow wall surface space or the inner wall side space through which the heat storage medium is circulated. This improves heat storage performance and temperature controllability.

本発明に係る蓄熱式排熱回収装置は、
前記の内壁側空間を循環する蓄熱媒体は、
常圧における沸点が水のそれよりも高く、温度上昇とともに体積が増加する液体(25〜300℃における容積比が、常温時1に対して1.5倍以下)からなる熱媒体であり、
排熱を蓄熱する前の蓄熱媒体(初期状態)は、液面すなわち気液界面が隔壁上方の開口部または開口部分よりも低い位置で静止しているが、排熱を蓄熱した後の温度上昇に伴って体積が膨張し、隔壁上方の開口部または開口部分に向かって液面が上昇する場合において、
所望の温度に達すると、蓄熱媒体が、隔壁上方の開口部分から外壁側空間に、または隔壁上方に形成された開口部から外壁側空間内に配管された放熱管に、流れ込んで、内壁側空間と外壁側空間との間を循環して外壁側空間で放熱または冷却されるようにすることで、
排熱を回収して蓄熱した蓄熱媒体の温度を制御できる
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
The heat storage medium circulating through the inner wall side space is
It is a heat medium composed of a liquid whose boiling point at normal pressure is higher than that of water and whose volume increases as the temperature rises (volume ratio at 25 to 300 ° C. is 1.5 times or less than 1 at normal temperature),
The heat storage medium (initial state) before storing the exhaust heat is stationary at a position where the liquid surface, that is, the gas-liquid interface is lower than the opening or opening part above the partition wall, but the temperature rises after storing the exhaust heat As the volume expands along with the liquid level rises toward the opening or opening part above the partition wall,
When the desired temperature is reached, the heat storage medium flows into the outer wall side space from the opening part above the partition wall or into the heat radiating pipe that is piped into the outer wall side space from the opening part formed above the partition wall. By circulating between the outer wall side space and the outer wall side space so that heat is radiated or cooled in the outer wall side space,
It is characterized in that the temperature of the heat storage medium that collects and stores the exhaust heat can be controlled.

本発明における蓄熱媒体は、常圧における沸点が水のそれよりも高く(例えば、常圧における沸点が約350℃)、温度上昇とともに体積が増加する性質すなわち体積膨張率の温度依存性が大きい液体(例えば、温度25〜300℃における容積比1〜1.5以下)である。
また、蓄熱媒体の液面は、排熱を蓄熱する前(初期状態)においては、隔壁上方の開口部または開口部分よりも低い位置にあり、排熱を蓄熱した後の温度上昇に伴って体積が膨張して液面が上昇し、隔壁上方の開口部または開口部分よりも高くなる場合において、所望の温度に達すると、蓄熱媒体が、隔壁上方の開口部分から外壁側空間に、または、隔壁上方に形成された開口部から外壁側空間内に配管された放熱管に流れ込んで、内壁側空間と外壁側空間との間を循環して外壁側空間で放熱または冷却されるようにすることで、排熱を回収した蓄熱媒体の温度すなわち蓄熱温度を制御できる。
The heat storage medium in the present invention has a higher boiling point at normal pressure than that of water (for example, the boiling point at normal pressure is about 350 ° C.), and has a property that the volume increases with an increase in temperature, that is, a temperature dependence of volume expansion coefficient is large. (For example, a volume ratio of 1 to 1.5 or less at a temperature of 25 to 300 ° C.).
In addition, the liquid level of the heat storage medium is lower than the opening or the opening part above the partition wall before storing the exhaust heat (initial state), and the volume increases as the temperature rises after storing the exhaust heat. When the liquid level rises and becomes higher than the opening or the opening portion above the partition wall, when the desired temperature is reached, the heat storage medium is transferred from the opening portion above the partition wall to the outer wall side space or the partition wall. By flowing into the heat radiating pipe piped in the outer wall side space from the opening formed in the upper part, circulating between the inner wall side space and the outer wall side space so that heat is radiated or cooled in the outer wall side space. The temperature of the heat storage medium from which the exhaust heat is recovered, that is, the heat storage temperature can be controlled.

小規模の燃焼装置の排熱を発電に利用する場合には、熱的条件(温度、圧力、流量)が一定の過熱蒸気を、タービン入口に供給して、周波数一定の安定した発電出力を得る必要がある。そのため、作動媒体の熱源となる蓄熱媒体の温度は、一定または一様に保たれていることが望ましい。 When exhaust heat from a small-scale combustion device is used for power generation, superheated steam with a constant thermal condition (temperature, pressure, flow rate) is supplied to the turbine inlet to obtain a stable power output with a constant frequency. There is a need. For this reason, it is desirable that the temperature of the heat storage medium serving as the heat source of the working medium be kept constant or uniform.

そこで、本発明は、蓄熱媒体が、所望の温度に達したときに内壁側空間と外壁側空間との間を自然循環して外壁側空間で放熱または冷却されることで、一定の温度を維持できるようにするため、常圧における沸点が水のそれよりも高く(例えば、常圧における沸点が約350℃)、温度が25〜300℃まで上昇する間に容積比が1〜1.5以下まで増加する性質を有する蓄熱媒体とした。
従って、この容積変化(蓄熱媒体の温度と体積膨張率の関係)を考慮して、壁面狭空間を満たす蓄熱媒体の充填量が決定される。すなわち、所望の温度に達すると、蓄熱媒体の液面高さが隔壁上方の開口部に達するように、初期状態での充填量および液面高さが決定され、蓄熱媒体が壁面挟空間内を自然循環する際の開始温度が設定される。
Therefore, the present invention maintains a constant temperature by allowing the heat storage medium to circulate naturally between the inner wall side space and the outer wall side space and radiate or cool in the outer wall side space when the desired temperature is reached. In order to be able to do so, the boiling point at normal pressure is higher than that of water (for example, the boiling point at normal pressure is about 350 ° C.), and the volume ratio is 1 to 1.5 or less while the temperature rises to 25-300 ° C. The heat storage medium has the property of increasing up to.
Therefore, in consideration of this volume change (relationship between the temperature of the heat storage medium and the volume expansion coefficient), the filling amount of the heat storage medium that fills the wall surface narrow space is determined. That is, when the desired temperature is reached, the filling amount and the liquid level height in the initial state are determined so that the liquid level height of the heat storage medium reaches the opening above the partition wall, and the heat storage medium passes through the wall sandwiched space. The starting temperature for natural circulation is set.

本発明に係る蓄熱式排熱回収装置は、
前記の内壁側空間を循環する蓄熱媒体は、
常圧における沸点が水のそれよりも高く、温度上昇とともに体積が増加する液体(25〜300℃における容積比が、常温時1に対して1.5倍以下)からなる熱媒体に、螺旋状にカールした金属繊維や金属薄帯が混入された混合蓄熱媒体であり、
排熱を蓄熱する前は、隔壁上方の開口部または開口部分よりも低い位置で静止している蓄熱媒体の液面が、排熱を蓄熱した後の温度上昇に伴って体積が膨張することで液面が上昇し、それが隔壁上方の開口部または開口部分よりも高くなる場合において、
一定温度に達すると、蓄熱媒体が、隔壁上方の開口部分から外壁側空間に、または、隔壁上方に形成された開口部から外壁側空間内に配管された放熱管に、流れ込んで、内壁側空間と外壁側空間との間を循環して外壁側空間で放熱または冷却されるようにすることで、
排熱を回収して蓄熱した蓄熱媒体の温度を制御できる
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
The heat storage medium circulating through the inner wall side space is
A heating medium composed of a liquid whose boiling point at normal pressure is higher than that of water and whose volume increases as the temperature rises (volume ratio at 25 to 300 ° C. is 1.5 times or less than 1 at normal temperature) is spiral. Is a mixed heat storage medium in which curled metal fibers and metal ribbons are mixed,
Before storing the exhaust heat, the liquid level of the heat storage medium that is stationary at a position lower than the opening or opening portion above the partition wall expands as the temperature rises after storing the exhaust heat. In the case where the liquid level rises and becomes higher than the opening or opening part above the partition wall,
When a certain temperature is reached, the heat storage medium flows into the outer wall side space from the opening part above the partition wall or into the heat radiating pipe piped into the outer wall side space from the opening part formed above the partition wall, and the inner wall side space. By circulating between the outer wall side space and the outer wall side space so that heat is radiated or cooled in the outer wall side space,
It is characterized in that the temperature of the heat storage medium that collects and stores the exhaust heat can be controlled.

混合蓄熱媒体は、液体の蓄熱媒体に、螺旋状にカールした金属繊維や金属薄帯が混入されたものである。混合蓄熱媒体の金属繊維や金属薄帯は、断面形状が円形や楕円または角部を有する細線(等価直径De=0.02〜0.3mm)であり、螺旋状にカールした一連の連続体または寸断された細線の集合体からなる。ここに、等価直径Deとは、細線の断面積A[m2]を断面周長さS[m]で除した値として、De=A/Sで定義される。The mixed heat storage medium is a liquid heat storage medium mixed with spirally curled metal fibers or metal ribbons. The metal fiber or the metal ribbon of the mixed heat storage medium is a thin line (equivalent diameter De = 0.02 to 0.3 mm) having a circular shape, an ellipse, or a corner in cross section, and a series of continuous bodies curled spirally or It consists of an aggregate of fine lines that have been cut. Here, the equivalent diameter De is defined as De = A / S as a value obtained by dividing the cross-sectional area A [m 2 ] of the thin wire by the cross-sectional circumferential length S [m].

また、混合蓄熱媒体に混入される金属繊維や金属薄帯の長さは、連続した一連のものでも良いし、一定長さでも良い、または短くカットしたフレーク状の物でも良い。
つまり、螺旋状にカールした金属繊維や金属薄帯は、壁面狭空間内に蓄熱媒体とともに充填する形態で使用される。
Moreover, the length of the metal fiber or metal ribbon mixed in the mixed heat storage medium may be a continuous series, a fixed length, or a flake-like material cut short.
In other words, the spirally curled metal fiber or metal ribbon is used in a form that fills the wall surface narrow space together with the heat storage medium.

さらに、混合蓄熱媒体に混入される金属繊維や金属薄帯は、鉄、クロム、ニッケル、銅、アルミ等を主成分として製造されており、固体表面の摩擦損失の低減や固液界面の親和性を向上させるための表面処理が施されていてもよい。混合蓄熱媒体に使用される金属繊維や金属薄帯は、螺旋状にカールしており、その熱拡散率aは、0.1から100[mm2/s]で、蓄熱媒体のそれ(例えば、約0.02mm2/s)よりも大きいことを特徴とする。ここに、熱拡散率とは、熱容量を有する物体の熱が熱伝導により三次元的に広がる(拡散する)速度を表す物性値であり、物体の密度ρ[kg/m3]、比熱C「[J/kgK]、熱伝導率λ[W/m2]を用いて、a=λ/(ρ・C)で定義される。Furthermore, the metal fibers and ribbons mixed in the mixed heat storage medium are manufactured with iron, chromium, nickel, copper, aluminum, etc. as the main component, reducing the friction loss of the solid surface and the affinity of the solid-liquid interface. Surface treatment for improving the surface may be performed. The metal fiber or metal ribbon used for the mixed heat storage medium is curled in a spiral shape, and its thermal diffusivity a is 0.1 to 100 [mm 2 / s], that of the heat storage medium (for example, Greater than about 0.02 mm 2 / s). Here, the thermal diffusivity is a physical property value representing the speed at which the heat of an object having a heat capacity spreads (diffuses) three-dimensionally due to heat conduction, and the density ρ [kg / m 3 ] of the object, the specific heat C “ Using [J / kgK] and thermal conductivity λ [W / m 2 ], it is defined as a = λ / (ρ · C).

混合蓄熱媒体に埋入されている金属繊維や金属薄帯は、上記の幾何形状および熱的特性を有することから、以下の効果を発揮して、蓄熱媒体単体よりも高い伝熱効果および蓄熱性能を奏する。
(1)空間内を三次元的に広がって蓄熱媒体と接触しているため、熱伝導と対流および熱拡散の効果が向上する。
(2)蓄熱媒体よりも高い熱容量の金属製の材料を含むため、蓄熱媒体単体の場合より単位体積当たりの蓄熱量(熱容量)が増加する。
(3)螺旋状にカールした形状であることから、キャピラリー効果(液の吸い上げ効果)が作用し、蓄熱媒体の液面到達位置が高くなり、循環力が向上する。
(4)金属繊維や金属薄帯の本数や螺旋状のカール形状および螺旋角を変えることで、金属繊維や金属薄帯全体の表面積、比体積及び空隙率をコントロールできる。
Since the metal fibers and metal ribbons embedded in the mixed heat storage medium have the above geometric shape and thermal characteristics, the following effects are exhibited, and the heat transfer effect and heat storage performance are higher than those of the heat storage medium alone. Play.
(1) Since the space expands three-dimensionally and is in contact with the heat storage medium, the effects of heat conduction, convection, and heat diffusion are improved.
(2) Since a metal material having a higher heat capacity than the heat storage medium is included, the heat storage amount (heat capacity) per unit volume is increased as compared with the case of the heat storage medium alone.
(3) Since it has a spirally curled shape, the capillary effect (liquid suction effect) acts, the liquid surface arrival position of the heat storage medium is increased, and the circulation force is improved.
(4) The surface area, specific volume, and porosity of the entire metal fiber or metal ribbon can be controlled by changing the number of metal fibers or metal ribbon, the spiral curl shape, and the spiral angle.

本発明に係る蓄熱式排熱回収装置は、
前記の壁面狭空間または内壁側空間の天井部分には内圧調整弁が設けられており、
内圧調整弁は、
蓄熱媒体が一定温度以上になって体積が増大し、壁面狭空間内または内壁側空間内が高圧になると、
壁面狭空間内または内壁側空間内に貯留する空気を排出し、
蓄熱媒体が一定温度以下になって体積が減少し、壁面狭空間内または内壁側空間内が低圧になると、
壁面狭空間外または内壁側空間外から外気を吸入する
ことで、壁面狭空間内または内壁側空間内の圧力を一定に保つ
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
An internal pressure regulating valve is provided in the ceiling portion of the wall surface narrow space or the inner wall side space,
The internal pressure adjustment valve
When the heat storage medium reaches a certain temperature or more and the volume increases, the inside of the wall surface narrow space or the inner wall side space becomes high pressure,
Exhaust the air stored in the narrow wall space or the inner wall side space,
When the volume of the heat storage medium decreases below a certain temperature and the inside of the wall surface narrow space or the inner wall side space becomes low pressure,
By sucking outside air from outside the wall surface narrow space or from the inner wall side space, the pressure inside the wall surface narrow space or the inner wall side space is kept constant.

高温の壁面から蓄熱媒体に排熱が伝達されると、蓄熱媒体は温度上昇とともに体積が増大する。このとき、壁面狭空間または内壁側空間が密閉された状態では、壁面狭空間または内壁側空間が高圧状態になり、壁面が変形したり、破損する原因になる。
さらに、蓄熱媒体の温度上昇に伴う液面の上昇(体積の増大)を利用して内壁側空間から外壁側空間内に蓄熱媒体が流れ込む方法によって蓄熱媒体を循環させる前記発明においては、蓄熱媒体を循環させることができなくなる。
When exhaust heat is transmitted from the high-temperature wall surface to the heat storage medium, the volume of the heat storage medium increases as the temperature rises. At this time, in a state where the wall surface narrow space or the inner wall side space is sealed, the wall surface narrow space or the inner wall side space becomes a high pressure state, which causes the wall surface to be deformed or damaged.
Furthermore, in the above-described invention in which the heat storage medium is circulated by a method in which the heat storage medium flows from the inner wall side space into the outer wall side space by utilizing the increase in liquid level (increase in volume) accompanying the temperature increase of the heat storage medium. It becomes impossible to circulate.

そこで、本発明は、壁面狭空間または内壁側空間の内圧を調整できるように、内圧調整弁を設けた。内圧調整弁は、壁面狭空間または内壁側空間の天井部分(気相空間)に設けられ、蓄熱媒体が一定温度以上になって体積が増大すると、壁面狭空間内または内壁側空間内に存在する気体を排出し、蓄熱媒体が一定温度以下になって体積が減少すると、壁面狭空間外または内壁側空間外から外気を吸入する。空間内の圧力を一定に保つことで、例えば、高圧状態になることで生じる壁面の変形や破損を防ぎ、蓄熱媒体の温度上昇に伴う液面の上昇(体積の増大)を利用して内壁側空間から外壁側空間内に蓄熱媒体が流れ込む方法による蓄熱媒体の循環が行われる。
特に、蓄熱媒体の温度上昇に伴い、蓄熱媒体の液面が上昇して蓄熱媒体が循環する前記発明においては、内圧調整弁によって蓄熱媒体が自然循環を行うことができる。
また、内圧調整弁に、外気解放または伸縮性の蛇腹パック(袋)を設けることにより、壁面挟空間内を大気圧状態に保持することもできる。
Therefore, the present invention is provided with an internal pressure adjustment valve so that the internal pressure in the narrow wall surface space or the inner wall side space can be adjusted. The internal pressure regulating valve is provided in a narrow wall surface or a ceiling part (gas phase space) of the inner wall side space, and is present in the narrow wall surface or in the inner wall side space when the heat storage medium reaches a certain temperature or increases in volume. When the gas is discharged and the volume of the heat storage medium is reduced below a certain temperature, the outside air is sucked from the outside of the wall surface narrow space or from the inside wall side space. By keeping the pressure in the space constant, for example, deformation or breakage of the wall surface that occurs due to high pressure is prevented, and the inner wall side is increased by utilizing the increase in liquid level (increase in volume) accompanying the temperature increase of the heat storage medium. The heat storage medium is circulated by a method in which the heat storage medium flows from the space into the outer wall side space.
In particular, in the invention in which the liquid level of the heat storage medium rises and the heat storage medium circulates as the temperature of the heat storage medium rises, the heat storage medium can perform natural circulation by the internal pressure adjustment valve.
In addition, by providing the internal pressure adjusting valve with an outside air releasing or stretchable bellows pack (bag), it is possible to maintain the inside of the wall surface space in an atmospheric pressure state.

本発明に係る蓄熱式排熱回収装置は、
前記の伝熱管が、
高温の壁面の外側に設けられた壁面狭空間内または内壁側空間内を、壁面の周囲を、壁面に沿って螺旋状に配管されている
ことを特徴とする。
The regenerative exhaust heat recovery device according to the present invention is
The heat transfer tube
The inside of the narrow wall surface or the inner wall side space provided outside the high temperature wall surface is spirally piped around the wall surface along the wall surface.

作動媒体は、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収するが、蓄熱媒体が蓄熱した排熱を効率良く作動媒体に回収させるには、作動媒体が流れる伝熱管が蓄熱媒体と接する面積を増やすことが有効である。
そこで、本発明は、伝熱管を、壁面の周囲に設けられた壁面狭空間内または内壁側空間内に、壁面に沿って螺旋状に配管したものである。
The working medium does not directly recover the exhaust heat transmitted from the high-temperature wall surface, but indirectly recovers it via the heat storage medium, but to efficiently recover the exhaust heat stored by the heat storage medium to the working medium. It is effective to increase the area where the heat transfer tube through which the working medium flows is in contact with the heat storage medium.
Therefore, the present invention is such that the heat transfer tube is piped spirally along the wall surface in the narrow wall surface space or the inner wall side space provided around the wall surface.

本発明に係る燃焼装置は、
燃焼室や煙突部等の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置を用いた燃焼装置であって、
燃焼室や煙突部等の壁面の外側に、
前記の蓄熱式排熱回収装置が設けられている
ことを特徴とする。
Combustion apparatus according to the present invention,
A combustion apparatus using a heat storage type exhaust heat recovery device that stores and recovers exhaust heat transmitted from a high temperature wall such as a combustion chamber or a chimney,
Outside the wall of the combustion chamber or chimney,
The heat storage type exhaust heat recovery device is provided.

本発明に係る燃焼装置は、前記の蓄熱式排熱回収装置を備えた燃焼装置である。
前記の蓄熱式排熱回収装置は、燃焼室や煙突部等を有する燃焼装置に設けることができる。
燃焼装置の燃焼室や煙突部等の高温の壁面から伝達される排熱を、蓄熱式排熱回収装置が回収することで、外気への熱損失が小さくなり燃焼効率が向上するとともに、熱の有効利用に資する。
The combustion apparatus which concerns on this invention is a combustion apparatus provided with the said thermal storage type waste heat recovery apparatus.
The heat storage type exhaust heat recovery device can be provided in a combustion device having a combustion chamber, a chimney, or the like.
The heat storage exhaust heat recovery device recovers the exhaust heat transferred from the high-temperature walls such as the combustion chamber and chimney of the combustion device, reducing the heat loss to the outside air and improving the combustion efficiency. Contributes to effective use.

本発明に係るコージェネレーションシステムは、
前項の燃焼装置と、
作動媒体を圧送するポンプまたはコンプレッサーと、
蓄熱媒体との熱交換により過熱蒸気(飽和温度以上)になった作動媒体によって発電機を駆動するタービンと、
発電機及び復水器とから構成される
ことを特徴とする。
The cogeneration system according to the present invention is:
The combustion device of the previous section;
A pump or compressor for pumping the working medium;
A turbine that drives a generator with a working medium that has become superheated steam (saturation temperature or higher) due to heat exchange with the heat storage medium;
It is composed of a generator and a condenser.

本発明に係るコージェネレーションシステムは、前記の燃焼装置を利用したコージェネレーションシステムである。前記の蓄熱式排熱回収装置を備えた燃焼装置に、タービン(発電機)、復水器(冷却器)、ポンプまたは圧縮機を接続し、高温の蓄熱媒体と熱交換することで飽和蒸気になった作動媒体がさらに加熱され、過熱蒸気となってタービンを駆動させることで、小規模の燃焼装置でも、安定的に200〜300℃の過熱蒸気を生成することができ、小規模の燃焼装置であってもコージェネレーションシステムを構築することが可能になる。 A cogeneration system according to the present invention is a cogeneration system using the combustion apparatus. A turbine (generator), condenser (cooler), pump or compressor is connected to the combustion device equipped with the above-mentioned heat storage type exhaust heat recovery device, and it exchanges heat with a high-temperature heat storage medium. The heated working medium is further heated to form superheated steam to drive the turbine, so that even a small-scale combustion device can stably generate superheated steam at 200 to 300 ° C. Even so, it becomes possible to construct a cogeneration system.

本発明に係わる蓄熱式排熱回収装置は、高沸点かつ高熱容量の「蓄熱媒体」と低沸点の「作動媒体」との2種類の熱媒体を用いて、高温の壁面から伝達される排熱を蓄熱媒体に蓄熱した後に、蓄熱媒体が保有した排熱を作動媒体が間接的に回収する構成である。
これにより、次の効果を発揮する。
(1)水や低沸点または低温の作動媒体が装置内に供給されても、高温の壁面に作動媒体が直に接触していないため、作動媒体が燃焼装置の壁面や燃焼室内部の温度を過度に低下させる事態を回避できる。
(2)燃焼炉壁面の厚さ方向の温度差が急激に大きくなる状況が生じない、すなわち高温の蓄熱媒体の存在により壁面の厚さ方向ならびに長手方向の温度差が小さくなって、壁面厚さ方向の温度勾配が緩やかになるため、壁面が熱応力により変形する事態を回避できる。
(3)作動媒体の状態変化(圧力上昇、ドライアウト、気泡振動など)が生じても、それらが燃焼炉壁面に直接影響する事態を回避できる。
(4)作動媒体を流す伝熱管が蓄熱媒体中に配置(浸漬)された形態であるため、作動媒体の熱が外気へ直に伝わらないため、従来の排熱回収装置よりも作動媒体の熱損失が小さくなり、安定した過熱蒸気を得ることができる。
The heat storage type exhaust heat recovery apparatus according to the present invention uses two types of heat media, a “heat storage medium” having a high boiling point and a high heat capacity, and a “working medium” having a low boiling point, and exhaust heat transferred from a high-temperature wall surface. After the heat is stored in the heat storage medium, the working medium indirectly recovers the exhaust heat held by the heat storage medium.
Thereby, the following effects are exhibited.
(1) Even if water or a low boiling point or low temperature working medium is supplied into the apparatus, the working medium does not directly contact the high temperature wall surface. It is possible to avoid the situation of excessive reduction.
(2) The situation in which the temperature difference in the thickness direction of the combustion furnace wall surface does not suddenly increase, that is, the temperature difference in the wall thickness direction and the longitudinal direction decreases due to the presence of a high-temperature heat storage medium. Since the temperature gradient in the direction becomes gentle, it is possible to avoid a situation where the wall surface is deformed by thermal stress.
(3) Even if a change in the state of the working medium (pressure increase, dryout, bubble vibration, etc.) occurs, it is possible to avoid a situation in which they directly affect the combustion furnace wall surface.
(4) Since the heat transfer tube through which the working medium flows is arranged (immersed) in the heat storage medium, the heat of the working medium is not transmitted directly to the outside air, so the heat of the working medium is higher than that of the conventional exhaust heat recovery device. Loss is reduced and stable superheated steam can be obtained.

また、本発明に係わる蓄熱式排熱回収装置は、熱膨張率の大きな蓄熱媒体を用いることで、蓄熱媒体の液面が上昇し、自然循環により対流・撹拌される構成を採用したことで、ポンプなどの動力源や高価な電気的センサーを用いずに温度制御が可能なシステムを構成できる。
従って、システムの消費電力の削減に資する。
In addition, the heat storage type exhaust heat recovery device according to the present invention employs a configuration in which the liquid level of the heat storage medium rises by using a heat storage medium having a large coefficient of thermal expansion, and is convected and stirred by natural circulation. A system capable of temperature control can be configured without using a power source such as a pump or an expensive electrical sensor.
Therefore, it contributes to reduction of power consumption of the system.

さらに、本発明に係わるコージェネレーションシステムは、蓄熱媒体に蓄熱された排熱を、作動媒体が回収して過熱蒸気となり、タービンを駆動させる構成としたことで、次の効果を発揮する。
(5)作動媒体を流す伝熱管が蓄熱媒体中に浸漬されている状態であることから、燃焼炉の温度変動の影響を作動媒体が直に受けることが無く、比較的安定的安定した過熱蒸気を得ることができる。
(6)また、タービン入口の過熱蒸気の圧力や流量を大きくする操作を行なっても、作動媒体の温度圧力の変化が燃焼炉壁面や燃焼室内部に影響を及ぶことがない。
(7)さらに、放熱管の冷却に水を用いることで、電気と温水の同時供給(コージェネレーション)を行うシステムを構築できる。
以上、従来の廃熱回収装置よりも熱の安定確保及び熱制御性に優れた装置及びシステムを提供できる。
Furthermore, the cogeneration system according to the present invention exhibits the following effects by adopting a configuration in which the exhaust heat stored in the heat storage medium is recovered by the working medium and becomes superheated steam to drive the turbine.
(5) Since the heat transfer tube through which the working medium flows is immersed in the heat storage medium, the working medium is not directly affected by the temperature fluctuation of the combustion furnace, and is a relatively stable and stable superheated steam. Can be obtained.
(6) Even if an operation for increasing the pressure or flow rate of the superheated steam at the turbine inlet is performed, the change in the temperature and pressure of the working medium does not affect the combustion furnace wall surface or the combustion chamber.
(7) Furthermore, by using water for cooling the heat radiating pipe, a system for simultaneously supplying electricity and hot water (cogeneration) can be constructed.
As described above, it is possible to provide an apparatus and a system that are more stable in heat and more excellent in heat control than conventional waste heat recovery apparatuses.

従来の排熱回収装置の概略を示す構成図Configuration diagram showing outline of conventional exhaust heat recovery device 実施例1に係る蓄熱式排熱回収装置の概略を示す構成図The block diagram which shows the outline of the thermal storage-type waste heat recovery apparatus which concerns on Example 1. FIG. 実施例2に係る蓄熱式排熱回収装置の概略を示す構成図The block diagram which shows the outline of the heat storage type waste heat recovery apparatus which concerns on Example 2. FIG. 実施例3に係る蓄熱式排熱回収装置の概略を示す構成図The block diagram which shows the outline of the heat storage type waste heat recovery apparatus which concerns on Example 3. FIG. 環状の管に蓄熱媒体を貯留した状態を示した模式図Schematic diagram showing the state where the heat storage medium is stored in an annular tube 環状の管に貯留する蓄熱媒体を熱し始めた状態であり、小さな循環流が管内で発生している様子を示した模式図Schematic diagram showing how the heat storage medium stored in the annular tube starts to heat and a small circulating flow is generated in the tube 環状の管に貯留する蓄熱媒体が加熱及び冷却されている状態であり、蓄熱媒体の密度差による上昇流と下降流が管内で発生している様子を示した模式図A schematic diagram showing a state in which the heat storage medium stored in the annular pipe is heated and cooled, and an upward flow and a downward flow are generated in the pipe due to the density difference of the heat storage medium. 金属薄帯を蓄熱媒体に混入した状態の混合蓄熱媒体を模式的に示した図The figure which showed the mixed heat storage medium of the state which mixed the metal ribbon in the heat storage medium typically 蓄熱媒体と混合蓄熱媒体の液面上昇率を比較するために用いた実験装置の概要を示す断面図Sectional drawing which shows the outline | summary of the experimental apparatus used in order to compare the liquid level rise rate of a thermal storage medium and a mixed thermal storage medium 蓄熱媒体と混合蓄熱媒体の液面上昇率を比較したグラフGraph comparing liquid level rise rate of heat storage medium and mixed heat storage medium 蓄熱媒体と混合蓄熱媒体および水について、ヒータ加熱時の経過時間と温度変化の関係(蓄熱量及び蓄熱速度)を比較したグラフA graph comparing the relationship between elapsed time and temperature change (heat storage amount and heat storage speed) during heater heating for heat storage media, mixed heat storage media, and water 蓄熱式排熱回収装置を備えた燃焼装置の概略を示す断面図Sectional drawing which shows the outline of the combustion apparatus provided with the heat storage type waste heat recovery apparatus 図12の煙突部分の蓄熱式排熱回収装置の概略を示す断面図Sectional drawing which shows the outline of the thermal storage type waste heat recovery apparatus of the chimney part of FIG. 図13の蓄熱式排熱回収装置の一部を拡大した断面図Sectional drawing which expanded a part of the heat storage type exhaust heat recovery device of FIG. 蓄熱式排熱回収装置を備えたコージェネレーションシステムの系統図System diagram of cogeneration system equipped with heat storage type exhaust heat recovery device

図1は、作動媒体1(20℃前後の水または低沸点の熱媒体)が燃焼装置へ供給されて、作動媒体が高温の壁面に直接触れた状態で、壁面から伝わる熱を回収して、発生させた過熱蒸気によりタービンを回転させる従来の排熱回収装置の概略を示した構成図である。 FIG. 1 shows that a working medium 1 (water at around 20 ° C. or a low-boiling-point heat medium) is supplied to a combustion apparatus, and heat transferred from the wall surface is recovered while the working medium is in direct contact with a high-temperature wall surface. It is the block diagram which showed the outline of the conventional waste heat recovery apparatus which rotates a turbine with the generated superheated steam.

図1の実施形態では、作動媒体1が燃焼装置の壁面2に直接触れているため、次の問題がある。
(1) 常温近く(約20℃)の熱媒体1が接触する壁面2部分では、作動媒体1が壁面2の温度を急激に低下させ、壁面2の内側(燃焼装置側、高温)と外側(熱媒体側、低温)とで温度差(温度勾配)が大きくなるために、壁面2が熱応力によって変形する事態が生じる。
(2) 作動媒体1が壁面2の温度を急激に低下させ、燃焼熱が充分でないと、燃焼室内部の燃焼温度を低下させてしまい、不完全燃焼による有害ガスの発生を招く危険がある。
(3)液体と蒸気が混存する二相域において、ドライアウトが発生し、壁面2が焼損(バーンアウト)するおそれがある。
In the embodiment of FIG. 1, the working medium 1 directly touches the wall surface 2 of the combustion device, and therefore has the following problem.
(1) At the wall surface 2 portion where the heat medium 1 near normal temperature (about 20 ° C.) comes into contact, the working medium 1 sharply decreases the temperature of the wall surface 2, and the inner side (combustor side, high temperature) and the outer side ( Since the temperature difference (temperature gradient) increases between the heat medium side and the low temperature, the wall surface 2 is deformed by thermal stress.
(2) If the working medium 1 rapidly lowers the temperature of the wall surface 2 and the combustion heat is not sufficient, the combustion temperature in the combustion chamber is lowered, and there is a risk of causing harmful gas generation due to incomplete combustion.
(3) In a two-phase region where liquid and vapor are mixed, dryout may occur and the wall surface 2 may be burned out (burned out).

図1の実施形態では、燃焼装置の壁面2から熱を回収した作動媒体1が高温高圧の過熱蒸気3になって、タービン4を回転させる形態として利用した場合、次の事態を生じる。
(3)燃焼室内の発熱量の増減に伴って作動媒体1の蒸気発生量が増減することから、タービン4を駆動させる圧力や蒸気流量の変動が大きくなり、安定した回転数を維持できない。
(4)タービン4の入口に設置された流量調整バルブ5により、過熱蒸気3の流量を調整してタービン4の回転数を一定に保持する操作が行なわれるが、バルブの開閉に伴い過熱蒸気の圧力変動が生じて、それが炉内の燃焼条件に影響を及ぼし、操作性の低下を招く。
(5)タービン入口の圧力が燃焼炉壁面への力として直に作用する構造であることから、タービン入口の圧力によっては壁面の変形を生じる危険性がある。すなわち、タービン入口の圧力が燃焼炉壁面の耐圧により制限される。
In the embodiment shown in FIG. 1, when the working medium 1 that has recovered heat from the wall surface 2 of the combustion device becomes high-temperature and high-pressure superheated steam 3 and is used as a mode for rotating the turbine 4, the following situation occurs.
(3) Since the amount of steam generated in the working medium 1 increases / decreases as the amount of heat generated in the combustion chamber increases / decreases, fluctuations in pressure and steam flow for driving the turbine 4 increase, and stable rotation speed cannot be maintained.
(4) An operation of adjusting the flow rate of the superheated steam 3 to keep the rotation speed of the turbine 4 constant by the flow rate adjusting valve 5 installed at the inlet of the turbine 4 is performed. A pressure fluctuation occurs, which affects the combustion conditions in the furnace, resulting in a decrease in operability.
(5) Since the pressure at the turbine inlet acts directly as a force on the combustion furnace wall surface, there is a risk that the wall surface may be deformed depending on the turbine inlet pressure. That is, the pressure at the turbine inlet is limited by the pressure resistance of the combustion furnace wall.

上記を回避する手段として、壁面2の部材を厚くし、壁面2と熱源(火炎)との距離を十分に保つ方法が考えられる。しかし、部材の厚さが増すと、壁面2の熱抵抗が大きくなり、排熱回収量が大幅に低下するだけでなく、燃焼装置の巨大化につながる。 As a means for avoiding the above, a method of increasing the thickness of the member of the wall surface 2 and sufficiently maintaining the distance between the wall surface 2 and the heat source (flame) can be considered. However, when the thickness of the member is increased, the thermal resistance of the wall surface 2 is increased, and not only the amount of exhaust heat recovery is greatly reduced, but also the combustion apparatus is enlarged.

さらに、熱媒体1が充填されている流路上部に安全弁(バルブ)6を設けて、設定圧力値以上になると、蒸気を外気に放出(ベント)する安全策がとられる場合がある。しかし、作動媒体を外気へ放出することは、特に密閉系においては大幅な性能低下につながり、再充填の作業を必要とすることや、環境汚染をもたらすことから、極力回避することが望ましい。 Furthermore, when a safety valve (valve) 6 is provided in the upper part of the flow path filled with the heat medium 1 and the pressure exceeds a set pressure value, a safety measure may be taken to release (vent) the steam to the outside air. However, it is desirable to avoid the release of the working medium to the outside as much as possible because it leads to a significant performance degradation particularly in a closed system, requiring refilling work and causing environmental pollution.

図2は、実施例1に係る蓄熱式排熱回収装置の概略を示す構成図である。
実施例1に係る蓄熱式排熱回収装置は、高沸点かつ高熱容量の蓄熱媒体7と、水または低沸点の作動媒体8と、の2種類の熱媒体によって、排熱を回収、利用する装置である。蓄熱媒体7は、常圧における沸点が水のそれよりも高く、温度上昇とともに体積が増加する液体(25〜300℃における容積比が、常温時1に対して1.5倍以下)である。蓄熱式排熱回収装置は、燃焼装置の高温の壁面2の外側に、蓄熱媒体7を貯留する壁面狭空間9を設け、壁面狭空間9内に蓄熱媒体7を貯留する。
蓄熱媒体7を貯留する壁面狭空間9内には、伝熱管10が配管され、伝熱管内を作動媒体8が循環する。
FIG. 2 is a configuration diagram illustrating an outline of the regenerative exhaust heat recovery apparatus according to the first embodiment.
The heat storage-type exhaust heat recovery apparatus according to the first embodiment is an apparatus that recovers and uses exhaust heat by using two types of heat medium, that is, a heat storage medium 7 having a high boiling point and a high heat capacity, and a working medium 8 having water or a low boiling point. It is. The heat storage medium 7 is a liquid whose boiling point at normal pressure is higher than that of water and whose volume increases as the temperature rises (volume ratio at 25 to 300 ° C. is 1.5 times or less than 1 at normal temperature). In the heat storage type exhaust heat recovery device, a wall surface narrow space 9 for storing the heat storage medium 7 is provided outside the high temperature wall surface 2 of the combustion apparatus, and the heat storage medium 7 is stored in the wall surface narrow space 9.
A heat transfer tube 10 is provided in the narrow wall surface 9 for storing the heat storage medium 7, and the working medium 8 circulates in the heat transfer tube.

このような構成によって、蓄熱媒体7が、燃焼装置の高温の壁面2から伝達される排熱を回収して蓄熱したあと、蓄熱媒体7が蓄熱した排熱を、低沸点の作動媒体8に伝達して回収する。ここに、低沸点とは圧力0.1MP(大気圧)において飽和温度100℃以下の液体を意味する。
これにより、作動媒体8が、燃焼装置の高温の壁面2に対して直に接することがないため、燃焼装置の壁面2や燃焼室温度を急激に低下させる事態を回避できる。
With such a configuration, after the heat storage medium 7 collects and stores the exhaust heat transmitted from the high-temperature wall surface 2 of the combustion apparatus, the heat storage medium 7 transmits the exhaust heat stored in the heat storage medium 7 to the low boiling point working medium 8. And collect. Here, the low boiling point means a liquid having a saturation temperature of 100 ° C. or lower at a pressure of 0.1 MP (atmospheric pressure).
Thereby, since the working medium 8 does not contact the hot wall surface 2 of the combustion device directly, it is possible to avoid a situation in which the wall surface 2 of the combustion device or the temperature of the combustion chamber is rapidly lowered.

また、本実施例1に係る蓄熱式排熱回収装置によれば、壁面2部分の板厚方向および流れ方向の温度差(温度勾配)が従来装置(図1)よりも小さくなるため、壁面2が熱応力によって変形することがなく、作動媒体8の過熱蒸気3によって圧力が過大に上昇して壁面2が加圧による変形や破損を起こす危険がない。
そのため、壁面2を厚くする必要が無く、タービン4の入口の圧力値を大きく設定してタービン4を回転させることができる。
Further, according to the regenerative exhaust heat recovery device according to the first embodiment, the temperature difference (temperature gradient) between the thickness direction and the flow direction of the wall surface 2 portion is smaller than that of the conventional device (FIG. 1). Is not deformed by thermal stress, and there is no danger of the wall surface 2 being deformed or damaged by pressurization due to the excessive increase in pressure by the superheated steam 3 of the working medium 8.
Therefore, it is not necessary to make the wall surface 2 thick, and the turbine 4 can be rotated by setting a large pressure value at the inlet of the turbine 4.

さらに、蓄熱媒体7を循環させる壁面狭空間9に、金属繊維または金属薄帯、金属粒子等を埋入することで、熱伝達の促進を図るとともに、蓄熱性能及び温度制御性を向上させることが可能である。 Furthermore, by embedding metal fibers, metal ribbons, metal particles, or the like in the narrow wall surface 9 in which the heat storage medium 7 is circulated, heat transfer can be promoted and heat storage performance and temperature controllability can be improved. Is possible.

壁面狭空間9の外壁は、外気温の影響を受けないように断熱性を有することが望ましい。
なお、壁面狭空間9の天井部分には、内圧調整弁11が設けることができる。
内圧調整弁11は、蓄熱媒体7が熱せられて体積が増大すると、壁面狭空間9内に貯留する空気を排出し、蓄熱媒体7が冷却されて体積が減少すると、壁面狭空間9外から外気を吸入する。
このように、壁面狭空間9内の圧力を一定に保つことで、例えば、高圧状態になることで生じる壁面2の変形や破損を防ぐ。
また、内圧調整弁11に、外気解放または伸縮性の蛇腹パック(袋)を設けることにより、充填層内部を大気圧状態に保持することもできる。
It is desirable that the outer wall of the wall surface narrow space 9 has heat insulation so as not to be affected by the outside air temperature.
An internal pressure adjusting valve 11 can be provided on the ceiling portion of the wall surface narrow space 9.
When the heat storage medium 7 is heated and the volume is increased, the internal pressure adjusting valve 11 discharges air stored in the wall surface narrow space 9, and when the heat storage medium 7 is cooled and the volume is decreased, the outside air is discharged from the outside of the wall surface narrow space 9. Inhale.
In this way, by keeping the pressure in the wall surface narrow space 9 constant, for example, deformation or breakage of the wall surface 2 caused by a high pressure state is prevented.
Moreover, the inside of the packed bed can be maintained in an atmospheric pressure state by providing the internal pressure adjusting valve 11 with an outside air releasing or stretchable bellows pack (bag).

図3は、実施例2に係る蓄熱式排熱回収装置の概略を示す構成図である。
実施例2に係る蓄熱式排熱回収装置は、高沸点かつ高熱容量の蓄熱媒体7と、低沸点の作動媒体8と、の2種類の熱媒体によって、排熱を回収する装置である。
蓄熱式排熱回収装置は、燃焼装置の高温の壁面2の外側に、蓄熱媒体7を充填する壁面狭空間9を設け、壁面狭空間9内で蓄熱媒体7を自然循環させる。
蓄熱媒体7を充填・循環させる壁面狭空間9は、断熱性を有する隔壁12によって、高温の壁面側の空間(内壁側空間13)と、壁面狭空間の外壁側の空間(外壁側空間14)とに区画されている。
FIG. 3 is a configuration diagram illustrating an outline of the regenerative exhaust heat recovery apparatus according to the second embodiment.
The heat storage-type exhaust heat recovery apparatus according to the second embodiment is an apparatus that recovers exhaust heat by using two types of heat media, a heat storage medium 7 having a high boiling point and a high heat capacity, and a working medium 8 having a low boiling point.
In the heat storage type exhaust heat recovery device, a wall surface narrow space 9 filled with the heat storage medium 7 is provided outside the high temperature wall surface 2 of the combustion device, and the heat storage medium 7 is naturally circulated in the wall surface narrow space 9.
The wall surface narrow space 9 in which the heat storage medium 7 is filled and circulated is divided into a high temperature wall surface side space (inner wall side space 13) and an outer wall side space of the wall surface narrow space (outer wall side space 14) by a partition wall 12 having heat insulation properties. It is divided into and.

隔壁12は、壁面狭空間9の上方と下方とが開口していることから、内壁側空間13内で高温の壁面2から伝達される排熱を回収した蓄熱媒体7が、温度の上昇に伴い体積が増加し、隔壁12を越えたところで、外壁側空間14(図中の右側)に流れ込む。
外壁側空間14に流れ込んだ蓄熱媒体7は、放熱または冷却されると比体積が小さく(密度が大きく)なり、下降流となって隔壁12の下方(壁面狭空間9の底面付近)から、内壁側空間13に流れ込み、これを繰り返すことで、蓄熱媒体7が循環し、蓄熱媒体7の温度を一定または一様に保つことができる。
Since the partition wall 12 is open above and below the narrow wall surface 9, the heat storage medium 7 that collects the exhaust heat transmitted from the high temperature wall surface 2 in the inner wall side space 13 is used as the temperature rises. When the volume increases and exceeds the partition wall 12, it flows into the outer wall side space 14 (right side in the figure).
When the heat storage medium 7 that has flowed into the outer wall side space 14 is radiated or cooled, the specific volume becomes smaller (the density becomes larger) and becomes a downward flow from below the partition wall 12 (near the bottom surface of the wall surface narrow space 9) to the inner wall. By flowing into the side space 13 and repeating this, the heat storage medium 7 circulates, and the temperature of the heat storage medium 7 can be kept constant or uniform.

蓄熱媒体7が循環する内壁側空間13には、作動媒体8が循環する伝熱管10が配管されており、作動媒体8は伝熱管10を介して蓄熱媒体7から排熱を間接的に回収する。
これにより、低温の作動媒体8が、燃焼装置の高温の壁面2に直接触れることがないため、燃焼装置の壁面2や燃焼室内部の温度を下げたり、壁面2の変形や焼損が発生することを、防ぐことができる。
The inner wall side space 13 through which the heat storage medium 7 circulates is provided with a heat transfer pipe 10 through which the working medium 8 circulates. The working medium 8 indirectly recovers exhaust heat from the heat storage medium 7 through the heat transfer pipe 10. .
Thereby, since the low temperature working medium 8 does not directly touch the high temperature wall surface 2 of the combustion apparatus, the temperature of the wall surface 2 of the combustion apparatus or the inside of the combustion chamber is lowered, or deformation or burning of the wall surface 2 occurs. Can be prevented.

本実施例2に係る蓄熱式排熱回収装置によれば、壁面2部分の温度差(温度勾配)が従来装置(図1)よりも小さく、極端に大きくなることがないため、壁面2が熱応力によって変形することがなく、作動媒体8の過熱蒸気3(飽和温度以上)によって急激に圧力が上昇しても壁面2が加圧による変形や破損を起こす危険がない。
また、蓄熱媒体7自体の温度上昇に伴って、蓄熱媒体7が内壁側空間13と外壁側空間14との間を自然循環する構成を採用したことで、蓄熱媒体7の温度を一定に制御するための電気的温度センサーや電力を用いることなく、自然循環のみによって蓄熱媒体7を一定または所望の温度に制御することができる。
さらに、循環のためにポンプなどの動力源を使う必要が無く、省エネ効果が高い排熱回収装置を提供できる。
さらに、蓄熱媒体7を循環させる壁面狭空間9に、金属繊維または金属薄帯、金属粒子等を埋入することで、蓄熱性及び温度制御性を向上させることが可能である(図10、11参照)。
壁面狭空間9の外壁は、蓄熱媒体の熱を外気へ放熱できるよう、フィンなどの拡大伝熱面を有する場合もある。
According to the heat storage type exhaust heat recovery apparatus according to the second embodiment, the temperature difference (temperature gradient) of the wall surface 2 is smaller than that of the conventional apparatus (FIG. 1) and does not become extremely large. There is no risk of deformation due to stress, and there is no risk of the wall surface 2 being deformed or damaged by pressurization even if the pressure suddenly rises due to the superheated steam 3 (saturation temperature or higher) of the working medium 8.
Moreover, the temperature of the heat storage medium 7 is controlled to be constant by adopting a configuration in which the heat storage medium 7 naturally circulates between the inner wall side space 13 and the outer wall side space 14 as the temperature of the heat storage medium 7 itself increases. Therefore, the heat storage medium 7 can be controlled to a constant or desired temperature only by natural circulation without using an electrical temperature sensor or electric power.
Furthermore, it is not necessary to use a power source such as a pump for circulation, and an exhaust heat recovery device having a high energy saving effect can be provided.
Furthermore, it is possible to improve heat storage property and temperature controllability by embedding metal fibers, metal ribbons, metal particles or the like in the narrow wall surface 9 in which the heat storage medium 7 is circulated (FIGS. 10 and 11). reference).
The outer wall of the wall surface narrow space 9 may have an enlarged heat transfer surface such as a fin so that the heat of the heat storage medium can be radiated to the outside air.

図4は、実施例3に係る蓄熱式排熱回収装置の概略を示す構成図である。
実施例3に係る蓄熱式排熱回収装置は、高沸点かつ高熱容量の蓄熱媒体7と、水や低沸点の作動媒体8と、蓄熱媒体7を冷却する冷媒17と、の3種類の熱媒体によって、排熱を回収、利用する装置である。蓄熱式排熱回収装置は、燃焼装置の高温の壁面2の外側に蓄熱媒体7を循環させる壁面狭空間9を設け、壁面狭空間9内で蓄熱媒体7と水などの冷媒17とを循環させ、熱交換する。
FIG. 4 is a configuration diagram illustrating an outline of a heat storage type exhaust heat recovery device according to a third embodiment.
The heat storage type exhaust heat recovery apparatus according to the third embodiment includes three types of heat media: a heat storage medium 7 with a high boiling point and a high heat capacity, a working medium 8 with water or a low boiling point, and a refrigerant 17 that cools the heat storage medium 7. This is a device that collects and uses exhaust heat. The heat storage type exhaust heat recovery apparatus is provided with a wall surface narrow space 9 for circulating the heat storage medium 7 outside the high temperature wall surface 2 of the combustion apparatus, and the heat storage medium 7 and a refrigerant 17 such as water are circulated in the wall surface narrow space 9. , Heat exchange.

蓄熱媒体7を循環させる壁面狭空間9は、断熱性を有する隔壁12によって、燃焼装置の高温の壁面2側の空間(内壁側空間13)と、壁面狭空間9の外壁側の空間(外壁側空間14)とに区画されている。隔壁12は、内壁側空間13に貯留されている蓄熱媒体7が、隔壁12を越えて内壁側空間13から外壁側空間14へと流れ込むことがないように、設けられている。隔壁12には、その上方と下方に、内壁側空間13と外壁側空間14とを貫通する開口部15が形成されており、外壁側空間14には、隔壁12の上方に形成された開口部15と、隔壁12の下方に形成された開口部15とを結ぶ放熱管16が配管されている。放熱管16は、隔壁12の上方に形成された開口部15から外壁側空間14内を通って隔壁12の下方に形成された開口部15を繋ぐ環状の管であり、垂直方向に繋ぐ垂直管でも良いし、壁面狭空間9内を螺旋状に繋ぐ螺旋管も利用することができる。 The wall surface narrow space 9 in which the heat storage medium 7 is circulated is divided by a partition wall 12 having heat insulation properties, on the high temperature wall surface 2 side of the combustion device (inner wall side space 13), and on the outer wall side of the wall surface narrow space 9 (outer wall side). It is partitioned into a space 14). The partition wall 12 is provided so that the heat storage medium 7 stored in the inner wall side space 13 does not flow from the inner wall side space 13 to the outer wall side space 14 beyond the partition wall 12. The partition wall 12 is formed with an opening 15 penetrating the inner wall side space 13 and the outer wall side space 14 above and below the partition wall 12. The outer wall side space 14 has an opening formed above the partition wall 12. A heat radiating pipe 16 that connects 15 and an opening 15 formed below the partition wall 12 is provided. The heat radiating pipe 16 is an annular pipe that connects the opening 15 formed above the partition wall 12 and the opening 15 formed below the partition wall 12 through the outer wall side space 14, and is a vertical pipe connected in the vertical direction. However, a spiral tube that spirally connects the inside of the wall surface narrow space 9 can also be used.

外壁側空間14には、冷媒(水)17を循環させているため、蓄熱媒体7が外壁側空間14に配管された放熱管16内を循環することで、蓄熱媒体7は、外壁側空間14で放熱または冷却されて内壁側空間13に戻る。
そして、蓄熱媒体7が排熱の回収と放熱を繰り返すことで、液体の密度差による自然循環により、装置内の温度を一定または一様に保つとともに、冷媒(水)の熱を温水として利用することができる。
蓄熱媒体7を充填・循環させる内壁側空間13には、作動媒体8が循環する伝熱管10が配管されており、作動媒体8は伝熱管10を介して蓄熱媒体7から排熱を間接的に回収する。
これにより、低温の作動媒体8が、燃焼装置の高温の壁面2に直接触れることがないため、燃焼装置の壁面2や燃焼室内部の温度を下げたり、壁面2の変形や焼損が発生することを、防ぐことができる。
Since the refrigerant (water) 17 is circulated in the outer wall side space 14, the heat storage medium 7 circulates in the heat radiating pipe 16 piped in the outer wall side space 14. The heat is radiated or cooled down to return to the inner wall side space 13.
Then, the heat storage medium 7 repeats exhaust heat collection and heat release, so that the temperature in the apparatus is kept constant or uniform by natural circulation due to the density difference of the liquid, and the heat of the refrigerant (water) is used as hot water. be able to.
A heat transfer pipe 10 through which the working medium 8 circulates is piped in the inner wall side space 13 in which the heat storage medium 7 is filled and circulated, and the working medium 8 indirectly exhausts heat from the heat storage medium 7 via the heat transfer pipe 10. to recover.
Thereby, since the low temperature working medium 8 does not directly touch the high temperature wall surface 2 of the combustion apparatus, the temperature of the wall surface 2 of the combustion apparatus or the inside of the combustion chamber is lowered, or deformation or burning of the wall surface 2 occurs. Can be prevented.

本実施例3に係る蓄熱式排熱回収装置によれば、壁面2部分の温度差(温度勾配)が従来装置(図1)よりも小さく、極端に大きくなることがないため、壁面2が熱応力によって変形することがなく、作動媒体8の過熱蒸気3(飽和温度以上)によって急激に圧力が上昇しても壁面2が加圧による変形や破損を起こす危険がない。
また、蓄熱媒体7自体の温度上昇に伴って蓄熱媒体7が内壁側空間13と外壁側空間14との間を自然循環する構成を採用したことで、蓄熱媒体7の温度を一定または一様に制御するための電気的温度センサーや電力を用いることなく、自然循環のみによって蓄熱媒体7を一定または一様温度に保持し、過度の温度上昇に至らぬよう制御することができるほか、循環のためにポンプなどの動力源を使う必要が無く、省エネ効果が高い排熱回収装置を提供できる。
さらに、蓄熱媒体7に蓄熱された排熱の余剰熱は、外壁側空間14で冷却されるが、冷媒(例えば、水)17は、排熱を得ることで、温水として利用できるようになる。
さらには、蓄熱媒体7を循環させる壁面狭空間9または内壁側空間13に、金属繊維または金属薄帯、金属粒子等を埋入することで、伝熱促進効果や蓄熱性及び温度制御性を向上させることが可能である(図10、11参照)。
なお、壁面狭空間9の外壁は、外気温の影響を受けないように断熱性を有することが望ましい。
According to the heat storage type exhaust heat recovery device according to the third embodiment, the temperature difference (temperature gradient) of the wall surface 2 portion is smaller than that of the conventional device (FIG. 1) and does not become extremely large. There is no risk of deformation due to stress, and there is no risk of the wall surface 2 being deformed or damaged by pressurization even if the pressure suddenly rises due to the superheated steam 3 (saturation temperature or higher) of the working medium 8.
Further, by adopting a configuration in which the heat storage medium 7 naturally circulates between the inner wall side space 13 and the outer wall side space 14 as the temperature of the heat storage medium 7 itself rises, the temperature of the heat storage medium 7 is made constant or uniform. Without using an electrical temperature sensor or electric power for control, the heat storage medium 7 can be controlled at a constant or uniform temperature only by natural circulation, and can be controlled not to cause an excessive temperature rise. In addition, it is not necessary to use a power source such as a pump, and an exhaust heat recovery device with high energy saving effect can be provided.
Further, the excess heat of the exhaust heat stored in the heat storage medium 7 is cooled in the outer wall side space 14, but the refrigerant (for example, water) 17 can be used as hot water by obtaining the exhaust heat.
Furthermore, by embedding metal fibers, metal ribbons, metal particles, etc. in the narrow wall surface 9 or the inner wall side space 13 in which the heat storage medium 7 is circulated, the heat transfer promotion effect, heat storage performance and temperature controllability are improved. (See FIGS. 10 and 11).
In addition, it is desirable that the outer wall of the wall surface narrow space 9 has heat insulation so as not to be affected by the outside air temperature.

図3及び4の実施例に係る蓄熱式排熱回収装置の蓄熱媒体7は、次の図5〜7に示す原理に基づいて、内壁側空間と外壁側空間内とを自然循環する。
図5〜7は、上方に静圧ポート18により系内が一定の圧力に保持され、環状の管(管の内周部壁面は断熱性を有している)の図中左側を加熱部、図中右側を冷却部として、管内に充填された高沸点かつ高熱容量の蓄熱媒体7の流動様相および液面上昇を模式的に示した図である。
すなわち、図5〜7は、断熱壁で仕切られた実施例2(図3)及び実施例3(図4)における、内壁空間13と外壁空間14の熱移動の構成、および蓄熱媒体7の液面上昇および自然循環の様相をモデル化(単純化)して示した図である。
The heat storage medium 7 of the heat storage type exhaust heat recovery apparatus according to the embodiment of FIGS. 3 and 4 naturally circulates between the inner wall side space and the outer wall side space based on the principle shown in FIGS.
5-7, the inside of the system is maintained at a constant pressure by the static pressure port 18 upward, and the left side in the figure of the annular tube (the inner peripheral wall surface of the tube has heat insulation) is the heating unit, It is the figure which showed typically the flow aspect and the liquid level rise of the heat storage medium 7 with the high boiling point and the high heat capacity with which the inside of a pipe | tube was filled with the right side in the figure as a cooling part.
That is, FIGS. 5 to 7 show the configuration of heat transfer between the inner wall space 13 and the outer wall space 14 in Example 2 (FIG. 3) and Example 3 (FIG. 4) partitioned by a heat insulating wall, and the liquid of the heat storage medium 7. It is the figure which modeled (simplified) and showed the aspect of the surface rise and the natural circulation.

図5は、蓄熱媒体7を充填した環状の管を示したものである。
管には、左右の管が連通する高さよりも低い位置に液面が位置する量の蓄熱媒体7が充填されている。
蓄熱媒体7は、熱の出入りが無い初期等温状態である。
蓄熱媒体7で満たされていない上方の空間は空気が存在し、静圧ポート18が大気開放の場合には、系内圧力は1気圧である。
静圧ポート18は、伸縮性の容器等(蛇腹、ピストン、テフロン(登録商標)パック等)を接続することによって、密閉状態で系内の圧力を調整することもできる。
FIG. 5 shows an annular tube filled with the heat storage medium 7.
The pipe is filled with a heat storage medium 7 in such an amount that the liquid level is located at a position lower than the height at which the left and right pipes communicate with each other.
The heat storage medium 7 is in an initial isothermal state in which no heat enters and exits.
When there is air in the upper space not filled with the heat storage medium 7 and the static pressure port 18 is open to the atmosphere, the system pressure is 1 atm.
The static pressure port 18 can also adjust the pressure in the system in a sealed state by connecting a stretchable container or the like (such as a bellows, a piston, or a Teflon (registered trademark) pack).

図6は、管の図中左側だけを加熱した状態を示した模式図である。
環状の管の内周部分は断熱されているため、管の図中左側を加熱しても、その熱が直接管の図中右側に伝わることはない。管に充填されている蓄熱媒体7は、例えば、シリコン系、油脂系などの高沸点かつ高熱容量の液状の熱媒体の場合には、温度25℃から200℃上昇する間に体積が約20%増加する熱膨張性を有する。
従って、図中左側の管が加熱されると、温度が上昇にともなって熱膨張により体積が増加し、液面が上昇する。
また、加熱面近傍では、蓄熱媒体7の密度差(温度分布)に起因する対流(小さな循環流)が発生する。
FIG. 6 is a schematic view showing a state where only the left side of the tube is heated.
Since the inner peripheral portion of the annular pipe is insulated, even if the left side of the pipe is heated, the heat is not directly transferred to the right side of the pipe. The heat storage medium 7 filled in the tube is, for example, a liquid heat medium having a high boiling point and a high heat capacity, such as silicon-based or oil-based, and the volume is about 20% while the temperature rises from 25 ° C. to 200 ° C. Has increased thermal expansibility.
Accordingly, when the left pipe in the figure is heated, the volume increases due to thermal expansion as the temperature rises, and the liquid level rises.
Further, in the vicinity of the heating surface, convection (small circulating flow) due to the density difference (temperature distribution) of the heat storage medium 7 occurs.

図7は、図中左側の管を加熱し続けた結果、蓄熱媒体7の液面が上昇して、環状の管内を蓄熱媒体7が循環し続けている状態を示した模式図である。
液面が上昇して蓄熱媒体7が上方の空間を満たすことで、環状の管が一続きの流路を形成する。
そして、図中左側の管で加熱された蓄熱媒体7が図中右側の管へ流れて放熱、冷却され、図中右側の管で冷却されて比体積が小さく(密度が大きく)なると、蓄熱媒体7は下降流となって下方へ移動し、図中左側の管に戻る。
これが繰り返されることで、蓄熱媒体7が環状の管内を循環するようになる。
FIG. 7 is a schematic view showing a state in which the liquid level of the heat storage medium 7 rises as a result of continuing to heat the left pipe in the drawing, and the heat storage medium 7 continues to circulate in the annular pipe.
As the liquid level rises and the heat storage medium 7 fills the upper space, the annular tube forms a continuous flow path.
Then, when the heat storage medium 7 heated by the left pipe in the figure flows to the right pipe in the figure to be radiated and cooled, and cooled by the right pipe in the figure to reduce the specific volume (density increases), the heat storage medium 7 moves downward as a downward flow and returns to the left pipe in the figure.
By repeating this, the heat storage medium 7 circulates in the annular pipe.

流動性を有し、高沸点かつ熱膨張率が大きい蓄熱媒体7を用いて、加熱部と冷却部を有する系を構築すると、加熱部において膨張による上昇流が、冷却部において収縮による下降流が発生して、一種の熱的ポンピング機構による流体輸送(自然循環)を実現できる排熱回収装置を構築できる。
蓄熱媒体7が一定の温度に達すると、蓄熱媒体7の液面が上昇して環状の管内を循環するように蓄熱媒体7の充填率を予め定めておくことで、蓄熱媒体7の温度を制御することが可能になる。
When a system having a heating part and a cooling part is constructed using the heat storage medium 7 having fluidity, a high boiling point and a high thermal expansion coefficient, an upward flow due to expansion in the heating part and a downward flow due to contraction in the cooling part are generated. It is possible to construct an exhaust heat recovery device that can generate and realize fluid transportation (natural circulation) by a kind of thermal pumping mechanism.
When the heat storage medium 7 reaches a certain temperature, the temperature of the heat storage medium 7 is controlled by setting the filling rate of the heat storage medium 7 in advance so that the liquid level of the heat storage medium 7 rises and circulates in the annular pipe. It becomes possible to do.

また、蓄熱媒体7に、螺旋状にカールした金属薄帯25を混入した混合蓄熱媒体26を用いることもできる。
図8は、蓄熱媒体7に螺旋状にカールした金属薄帯25を混入した状態の混合蓄熱媒体26を、それぞれ模式的に示した図である。
図中の混合蓄熱媒体に混入されている金属薄帯25は、断面形状が四角形の金属製の薄帯(すなわち薄い帯状の細線、等価直径De=0.1mm)であり、螺旋状にカールした状態で集合させて、塊状にした状態で壁面狭空間内に充填される。
蓄熱媒体7よりも熱伝導率が大きな金属製の細線25が、高温の伝熱面と接触した状態で蓄熱媒体7内を三次元的に分布していることから、蓄熱媒体単体の場合よりも熱の拡散速度が向上し、媒体内の温度分布の均一化を図る手段となる。また、細線が螺旋状にカールした幾何形状であることから、表面張力によるキャピラリー効果(液の吸い上げ効果)を液の循環力すなわち重力と逆向きに作用する力として利用できる。
このような特徴を有する混合蓄熱媒体26は、混入させる金属薄帯25の本数や螺旋状のカール形状を変えることで、金属薄帯25全体の表面積、比体積及び空隙率を変え、材質を替えることで、熱伝導率を変えることもできる。
Moreover, the mixed heat storage medium 26 in which the metal ribbon 25 spirally curled is mixed into the heat storage medium 7 can also be used.
FIG. 8 is a diagram schematically showing the mixed heat storage medium 26 in a state in which the metal ribbon 25 spirally curled is mixed into the heat storage medium 7.
The metal ribbon 25 mixed in the mixed heat storage medium in the figure is a metal ribbon having a square cross-sectional shape (that is, a thin ribbon-like thin wire, equivalent diameter De = 0.1 mm), and is curled spirally. They are assembled in a state and filled into a narrow wall surface in a lump shape.
Since the metal thin wires 25 having a higher thermal conductivity than the heat storage medium 7 are three-dimensionally distributed in the heat storage medium 7 in contact with the high-temperature heat transfer surface, it is more than the case of the heat storage medium alone. The heat diffusion rate is improved, and the temperature distribution in the medium is made uniform. In addition, since the fine line has a spirally curled geometric shape, the capillary effect (liquid suction effect) due to surface tension can be used as the liquid circulation force, that is, the force acting in the direction opposite to gravity.
The mixed heat storage medium 26 having such characteristics changes the surface area, specific volume, and porosity of the entire metal ribbon 25 by changing the number of the metal ribbons 25 to be mixed and the spiral curl shape, and changes the material. Thus, the thermal conductivity can be changed.

蓄熱媒体の温度と膨張率(液面高さ)の関係は、例えば図9に示す装置を用いて、予め定量化する必要がある。すなわち、液面高さを可視化できる断熱容器28に蓄熱媒体7を満たし、ヒータ27を用いて一定温度に加熱された蓄熱媒体27の温度と液面高さを測定する。そして、蓄熱媒体の温度と膨張率(液面上昇率)の関係(検定曲線)をもとにして、実機への充填量が推算により決定される。 The relationship between the temperature of the heat storage medium and the expansion coefficient (liquid level height) needs to be quantified in advance using, for example, the apparatus shown in FIG. That is, the heat storage medium 7 is filled in the heat insulating container 28 that can visualize the liquid level height, and the temperature and the liquid level height of the heat storage medium 27 heated to a constant temperature using the heater 27 are measured. Then, based on the relationship (test curve) between the temperature of the heat storage medium and the expansion rate (liquid level rise rate), the filling amount to the actual machine is determined by estimation.

図10は、図9の装置を用いて測定されたシリコン系蓄熱媒体の温度と液面上昇率の関係であり、蓄熱媒体単体7と混合蓄熱媒体26について比較にしたグラフである。
液面上昇率は、各温度における液面の高さh[mm]を、温度25℃における高さh0[mm]との相対比(h/h0)によって表した。また、図中の「●」が蓄熱媒体7、図中の「■」が混合蓄熱媒体26である。温度250℃における液面上昇率は、蓄熱媒体単体●では1.22(約22%の上昇)であるのに対して、混合蓄熱媒体■では約1.35(約35%の上昇率)である。このように、蓄熱媒体単体よりも混合蓄熱媒体が高い液面上昇率を示す原因として、熱伝導率及び熱拡散率の大きい金属繊維が媒体中に存在するために蓄熱媒体の温度分布が均一化されること、螺旋形状の金属繊維の存在により液体の吸い上げ効果(キャピラリー効果)が作用していること、等が考えられる。よって、液面高さによって排熱の蓄熱量及ぶ循環温度を制御する本蓄熱回収装置においては、液面上昇率が大きい混合蓄熱媒体を用いる方が高精度な温度制御ができる。
FIG. 10 is a graph showing the relationship between the temperature of the silicon-based heat storage medium and the liquid level increase rate measured using the apparatus of FIG. 9 and comparing the heat storage medium alone 7 and the mixed heat storage medium 26.
The liquid level increase rate was expressed by the relative ratio (h / h0) of the liquid level height h [mm] at each temperature to the height h0 [mm] at a temperature of 25 ° C. Further, “●” in the figure is the heat storage medium 7, and “■” in the figure is the mixed heat storage medium 26. The liquid level rise rate at a temperature of 250 ° C. is 1.22 (about 22% increase) for the heat storage medium alone, whereas it is about 1.35 (about 35% increase rate) for the mixed heat storage medium ■. is there. As described above, the reason why the mixed heat storage medium shows a higher liquid level rise rate than the single heat storage medium is because the metal fiber having a large thermal conductivity and thermal diffusivity is present in the medium, so the temperature distribution of the heat storage medium is made uniform. It is conceivable that the liquid suction effect (capillary effect) acts due to the presence of the spiral-shaped metal fiber. Therefore, in the present heat storage and recovery apparatus that controls the circulating temperature that covers the amount of exhaust heat stored according to the liquid level, the temperature can be controlled with higher accuracy by using a mixed heat storage medium having a large liquid level rise rate.

図11は、加熱時間と温度の関係を、蓄熱媒体7、混合蓄熱媒体26および水で比較した結果である。
図中の「●」が蓄熱媒体7で、「■」が混合蓄熱媒体26で、「○」が水の場合である。
このグラフによれば、蓄熱媒体7の温度上昇は、水よりも高く、混合蓄熱媒体26はさらに高いことが示されている。
この結果から、蓄熱媒体7は水よりも蓄熱性能が高い。また、蓄熱媒体に熱容量及び熱拡散率の大きい金属繊維を混入することで、蓄熱媒体単体よりもさらに蓄熱性能及び伝熱性能を向上させる効果がある。
FIG. 11 shows the result of comparing the relationship between the heating time and temperature for the heat storage medium 7, the mixed heat storage medium 26, and water.
In the figure, “●” is the heat storage medium 7, “■” is the mixed heat storage medium 26, and “◯” is water.
According to this graph, the temperature rise of the heat storage medium 7 is higher than that of water, and the mixed heat storage medium 26 is further higher.
From this result, the heat storage medium 7 has higher heat storage performance than water. Moreover, there is an effect of improving the heat storage performance and the heat transfer performance further than the heat storage medium alone by mixing metal fibers having a large heat capacity and thermal diffusivity into the heat storage medium.

図12は、蓄熱式排熱回収装置を備えた燃焼装置の概略を示す断面図である。
蓄熱式排熱回収装置は、種々の燃焼装置の壁面外側に設けることができる。
図12の実施例では、燃焼装置の煙突20と燃焼室21の壁面2の外側に、蓄熱式排熱回収装置を設置しているが、これは、燃焼装置の煙突20をエコノマイザーまたは蒸発器(ボイラー)として、燃焼装置の燃焼室21を過熱器として利用する実施形態である。
FIG. 12 is a cross-sectional view showing an outline of a combustion apparatus provided with a heat storage type exhaust heat recovery apparatus.
The heat storage type exhaust heat recovery device can be provided outside the wall surface of various combustion devices.
In the embodiment of FIG. 12, a regenerative exhaust heat recovery device is installed outside the chimney 20 of the combustion device and the wall surface 2 of the combustion chamber 21. This is because the chimney 20 of the combustion device is replaced with an economizer or an evaporator. In this embodiment, the combustion chamber 21 of the combustion apparatus is used as a superheater.

蓄熱式排熱回収装置は、煙突20や燃焼室21に限られず、高温の壁面部分であれば、どこに設けることもできる。蓄熱式排熱回収装置は、高温の壁面2の外側に設けられる壁面狭空間9からなる。壁面狭空間9は、内壁側空間13と外壁側空間14とからなる。内壁側空間13と外壁側空間14とは、断熱性を有する隔壁12によって区画されている。内壁側空間13には蓄熱媒体7が循環し、その外側に隣接する外壁側空間14には冷媒17が循環する。 The heat storage type exhaust heat recovery device is not limited to the chimney 20 or the combustion chamber 21 and can be provided anywhere as long as it is a high-temperature wall surface portion. The heat storage type exhaust heat recovery device includes a wall surface narrow space 9 provided outside the high temperature wall surface 2. The wall surface narrow space 9 includes an inner wall side space 13 and an outer wall side space 14. The inner wall side space 13 and the outer wall side space 14 are partitioned by a partition wall 12 having heat insulation properties. The heat storage medium 7 circulates in the inner wall side space 13, and the refrigerant 17 circulates in the outer wall side space 14 adjacent to the outside.

図13は図12の煙突部を拡大した断面図である。
外壁側空間14には、フィン19を有する放熱管16が配管され、蓄熱媒体7は、内壁側空間13から開口部15を通じて放熱管16に流れ、放熱管16内を循環する間に外壁側空間14を循環する冷媒(水)によって冷却される(図13および図14も参照)。
冷却された蓄熱媒体7は、隔壁12の下方の開口部15から、内壁側空間13に流れ込み、これが繰り返されることで、蓄熱媒体7が循環し、蓄熱媒体7の温度を一定または一様に保つことができる。
すなわち、本実施形態において、蓄熱媒体7の温度を所望に保つことで、排熱量の変動が大きい小規模の燃焼装置においても、温度変動が小さい平準化された状態で、安定的に熱を確保できる。
FIG. 13 is an enlarged cross-sectional view of the chimney portion of FIG.
A heat radiating pipe 16 having fins 19 is piped in the outer wall side space 14, and the heat storage medium 7 flows from the inner wall side space 13 to the heat radiating pipe 16 through the opening 15 and circulates in the heat radiating pipe 16. It is cooled by the refrigerant (water) circulating through 14 (see also FIGS. 13 and 14).
The cooled heat storage medium 7 flows into the inner wall side space 13 from the opening 15 below the partition wall 12, and this is repeated, whereby the heat storage medium 7 circulates and keeps the temperature of the heat storage medium 7 constant or uniform. be able to.
That is, in this embodiment, by keeping the temperature of the heat storage medium 7 as desired, even in a small-scale combustion apparatus with a large amount of exhaust heat, heat is stably secured in a leveled state with a small temperature variation. it can.

内壁側空間13の天井部分には、内圧調整弁6を取付けるための静圧ポート18が設けられ、蓄熱媒体7が熱せられて体積が増大すると、内壁側空間13内に存在する空気を排出し、蓄熱媒体7が冷却されて体積が減少すると、内壁側空間13が低圧状態となり外部から空気を吸入する。
このように、内壁側空間13内の圧力を一定に保つことで、例えば、高圧状態になることで生じる壁面2の変形や破損を防ぐ。
The ceiling portion of the inner wall side space 13 is provided with a static pressure port 18 for mounting the inner pressure regulating valve 6. When the heat storage medium 7 is heated and its volume is increased, air existing in the inner wall side space 13 is discharged. When the heat storage medium 7 is cooled and the volume is reduced, the inner wall side space 13 is in a low pressure state and sucks air from the outside.
In this way, by keeping the pressure in the inner wall side space 13 constant, for example, deformation or breakage of the wall surface 2 caused by a high pressure state is prevented.

内壁側空間13には、伝熱管10が螺旋状に配管されている。作動媒体8は、伝熱管10内を循環し、その間に、蓄熱媒体7が蓄熱した排熱が伝達され、排熱を回収する。作動媒体8は、燃焼室の領域を通過して過熱蒸気3になり、タービン4を駆動させて発電に利用される(図15を参照)。作動媒体8が、蓄熱媒体を介して排熱を間接的に回収するため、作動媒体8は高温の壁面2に直接触れることがない。
これにより、燃焼装置の壁面2や燃焼室21内部の温度を下げることがなく、特に壁面を熱応力によって変形させる心配がない。
また、作動媒体8が過熱蒸気3になって急激に伝熱管内が高圧になっても、過熱蒸気3は壁面2に直接触れることがないため、壁面2を変形や破損させる危険がなく、仮にドライアウトが発生しても、伝熱管10内で発生するだけで、壁面2に影響を及ぼすわけではないため、壁面2の焼損のおそれがない。
In the inner wall side space 13, the heat transfer tube 10 is piped in a spiral shape. The working medium 8 circulates in the heat transfer tube 10, during which the exhaust heat accumulated in the heat storage medium 7 is transmitted and recovers the exhaust heat. The working medium 8 passes through the region of the combustion chamber to become superheated steam 3 and drives the turbine 4 to be used for power generation (see FIG. 15). Since the working medium 8 indirectly recovers the exhaust heat through the heat storage medium, the working medium 8 does not directly touch the high temperature wall surface 2.
Thereby, the temperature inside the wall surface 2 of the combustion apparatus and the combustion chamber 21 is not lowered, and there is no concern that the wall surface is deformed by thermal stress.
Even if the working medium 8 becomes superheated steam 3 and the inside of the heat transfer tube suddenly becomes high pressure, the superheated steam 3 does not directly touch the wall surface 2, so there is no danger of deforming or damaging the wall surface 2. Even if the dry-out occurs, it does not affect the wall surface 2 only because it occurs in the heat transfer tube 10, so there is no risk of burning the wall surface 2.

蓄熱式排熱回収装置を備えた燃焼装置によれば、高沸点かつ高熱容量の蓄熱媒体7が、燃焼装置を覆うように燃焼装置の壁面2外側を循環するため、燃焼装置全体の熱容量が実質的に大きくなる。そのため、外気環境の影響を受けやすい小規模の燃焼装置に蓄熱式排熱回収装置を設置すれば、燃焼室内の燃焼状態の変化や外気温度の変化に対する熱的変動を抑制する効果を発揮する。
また、高熱容量の蓄熱媒体7が伝熱管10全体を覆う形で保温し、その内部を流れる作動媒体へ熱を安定的に供給できるため、過熱蒸気の安定供給すなわちタービンの安定駆動および電気の安定供給に資することができる。
なお、蓄熱媒体7を冷却するために用いる冷媒(水)17を温水として利用することで、さらなる熱の有効活用及びシステム効率の向上に寄与できる。
According to the combustion device provided with the heat storage type exhaust heat recovery device, the heat storage medium 7 having a high boiling point and a high heat capacity circulates outside the wall surface 2 of the combustion device so as to cover the combustion device. Become bigger. Therefore, if the regenerative exhaust heat recovery device is installed in a small-scale combustion device that is easily affected by the outside air environment, the effect of suppressing thermal fluctuations due to changes in the combustion state in the combustion chamber and changes in the outside air temperature is exhibited.
Further, since the heat storage medium 7 having a high heat capacity covers the entire heat transfer tube 10 and heat can be stably supplied to the working medium flowing therethrough, stable supply of superheated steam, that is, stable driving of the turbine and electric stability Can contribute to supply.
In addition, by using the refrigerant | coolant (water) 17 used in order to cool the thermal storage medium 7 as warm water, it can contribute to the further effective utilization of heat, and the improvement of system efficiency.

壁面狭空間9の外壁は、外気温の影響を受けないように断熱性を有することが望ましい。
また、同じく、壁面狭空間9を内壁側空間13と外壁側空間14とに区画する隔壁12は、内壁側空間13と外壁側空間14との間で隔壁12を通じた熱の伝達が行われないように断熱性を有することが望ましい。
It is desirable that the outer wall of the wall surface narrow space 9 has heat insulation so as not to be affected by the outside air temperature.
Similarly, the partition wall 12 that partitions the wall surface narrow space 9 into the inner wall side space 13 and the outer wall side space 14 does not transmit heat through the partition wall 12 between the inner wall side space 13 and the outer wall side space 14. It is desirable to have heat insulation.

図13は図12の燃焼装置の煙突の壁面外側に設けた蓄熱式排熱回収装置の概略を示す断面図であり、また図14は図13の燃焼装置の煙突の壁面外側に設けた蓄熱式排熱回収装置の一部を拡大した断面図である。 13 is a cross-sectional view schematically showing a heat storage type exhaust heat recovery device provided outside the wall of the chimney of the combustion apparatus of FIG. 12, and FIG. 14 is a heat storage type provided outside the wall of the chimney of the combustion apparatus of FIG. It is sectional drawing to which some exhaust heat recovery apparatuses were expanded.

蓄熱式排熱回収装置は、燃焼装置の煙突20の壁面2外側に設けることができる。
煙突20内は、図の下方から上方に向かって高温の排ガスが移動し、煙突20の内壁2は高温になっている。
蓄熱式排熱回収装置は、断熱性を有する隔壁12によって内壁側空間13(煙突20の壁面2側の空間)と外壁側空間14(壁面狭空間9の外壁側の空間)とに区画された壁面挟空間9からなる。
The heat storage type exhaust heat recovery device can be provided outside the wall surface 2 of the chimney 20 of the combustion device.
In the chimney 20, high-temperature exhaust gas moves from the lower side to the upper side in the figure, and the inner wall 2 of the chimney 20 is at a high temperature.
The heat storage type exhaust heat recovery device was partitioned into an inner wall side space 13 (space on the wall surface 2 side of the chimney 20) and an outer wall side space 14 (space on the outer wall side of the wall surface narrow space 9) by the partition wall 12 having heat insulation properties. It consists of a wall surface sandwiching space 9.

内壁側空間13には、作動媒体8を循環させるための伝熱管10が、円筒状の煙突20の壁面2に沿って煙突20の周囲を螺旋状に配管されている。
外壁側空間14には、隔壁12の上方に形成された開口部15から外壁側空間14内を通って隔壁12の下方に形成された開口部15を繋ぐ環状の放熱管16が配管されている。
放熱管16は、煙突20の周囲の任意の箇所で、隔壁12の上方に形成された開口部15から隔壁12の下方に形成された開口部15までを垂直方向に繋ぐ垂直管を1以上配管するのでも良いし、煙突20の周囲全体を隔壁12の上方に形成された開口部15から隔壁12の下方に形成された開口部15までを層状または二重管式に形成することもできる。
A heat transfer pipe 10 for circulating the working medium 8 is spirally piped around the chimney 20 along the wall surface 2 of the cylindrical chimney 20 in the inner wall side space 13.
The outer wall side space 14 is provided with an annular heat radiating pipe 16 that connects the opening 15 formed above the partition wall 12 to the opening 15 formed below the partition wall 12 through the outer wall side space 14. .
The heat radiating pipe 16 is provided with one or more vertical pipes that vertically connect an opening 15 formed above the partition wall 12 to an opening 15 formed below the partition wall 12 at an arbitrary location around the chimney 20. Alternatively, the entire periphery of the chimney 20 may be formed in a layered or double tube manner from the opening 15 formed above the partition wall 12 to the opening 15 formed below the partition wall 12.

内壁側空間13には、蓄熱媒体7を貯留し、蓄熱媒体7が煙突20の壁面2から伝達される排熱を蓄熱して高温になると、蓄熱媒体7は、体積が膨張して液面が上昇する。蓄熱媒体7の液面が上昇すると、内壁側空間13と放熱管16とが一続きの流路を形成する。
そして、蓄熱媒体7の液面が上昇すると、内壁側空間13に貯留された蓄熱媒体7は、熱膨張による浮力すなわち上昇流を発生させながら隔壁12の上方に形成された開口部15の位置に到達し、開口部15から外壁側空間14内に配管されている放熱管16に流れ込む。
In the inner wall side space 13, the heat storage medium 7 is stored, and when the heat storage medium 7 stores the exhaust heat transmitted from the wall surface 2 of the chimney 20 and becomes high temperature, the volume of the heat storage medium 7 expands and the liquid level is increased. To rise. When the liquid level of the heat storage medium 7 rises, the inner wall side space 13 and the heat radiating pipe 16 form a continuous flow path.
Then, when the liquid level of the heat storage medium 7 rises, the heat storage medium 7 stored in the inner wall side space 13 is positioned at the position of the opening 15 formed above the partition wall 12 while generating buoyancy, that is, upward flow due to thermal expansion. And reaches the heat radiating pipe 16 piped in the outer wall side space 14 from the opening 15.

内壁側空間13の天井部分には、内圧調整弁6を取付けるための静圧ポート18が設けられ、蓄熱媒体7が熱せられて体積が増大すると、内壁側空間13内に貯留する空気を排出し、蓄熱媒体7が冷却されて体積が減少すると、内壁側空間13外から外気を吸入する。
このように、内壁側空間13内の圧力を一定に保つことで、例えば、高圧状態になることで生じる壁面2の変形や破損を防ぐ。
The ceiling portion of the inner wall side space 13 is provided with a static pressure port 18 for mounting the inner pressure regulating valve 6, and when the heat storage medium 7 is heated and the volume increases, the air stored in the inner wall side space 13 is discharged. When the heat storage medium 7 is cooled and the volume is reduced, outside air is sucked from outside the inner wall side space 13.
In this way, by keeping the pressure in the inner wall side space 13 constant, for example, deformation or breakage of the wall surface 2 caused by a high pressure state is prevented.

放熱管16が配管されている外壁側空間14には、冷媒(水)17が循環しており、放熱管16内を流れる蓄熱媒体7を冷却する。
放熱管16は、その周囲に放熱用のフィン19が形成されており、蓄熱媒体7の冷却を促進する。
放熱管16で冷却された蓄熱媒体7は、下降流を発生させながら隔壁12の下方に形成された開口部15から内壁側空間13に流れ込む。
これが繰り返されることで、蓄熱媒体7は、外部からポンプ動力を加えることなく、両空間間を自然循環し、加熱と冷却が連続して行われることで、温度が一定または一様に保たれる。
A refrigerant (water) 17 circulates in the outer wall side space 14 where the heat radiating pipe 16 is piped, and cools the heat storage medium 7 flowing in the heat radiating pipe 16.
The heat dissipating pipe 16 has heat dissipating fins 19 formed around it, and promotes cooling of the heat storage medium 7.
The heat storage medium 7 cooled by the heat radiating pipe 16 flows into the inner wall side space 13 from the opening 15 formed below the partition wall 12 while generating a downward flow.
By repeating this, the heat storage medium 7 naturally circulates between both spaces without applying pump power from the outside, and heating and cooling are continuously performed, so that the temperature is kept constant or uniform. .

そして、蓄熱媒体7が蓄熱した排熱は、最終的には、内壁側空間13内に配管された伝熱管10内を循環する作動媒体8に伝達される。
このようにして、作動媒体8は、高温の壁面2から伝達される排熱を直接回収するのではなく、蓄熱媒体7を介して間接的に回収する。
The exhaust heat stored by the heat storage medium 7 is finally transmitted to the working medium 8 that circulates in the heat transfer pipe 10 piped in the inner wall side space 13.
In this way, the working medium 8 does not directly recover the exhaust heat transmitted from the high temperature wall surface 2 but indirectly recovers it via the heat storage medium 7.

蓄熱媒体7の充填量を増やすと、早い段階で、内壁側空間13と放熱管16とが一続きの流路を形成して循環を開始するため、蓄熱媒体7の温度は低く保たれる。また、蓄熱媒体7の充填量を減らすと、内壁側空間13と放熱管16とが一続きの流路を形成するまでに長時間を要するが、蓄熱媒体7が循環を開始するまで熱を蓄える結果、蓄熱媒体7を高い温度に保持できる。
このように、蓄熱媒体7の充填量(すなわち液面高さ)を変えることで、排熱を蓄熱する蓄熱媒体7の温度及び蓄熱量を制御できる。
本実施例によれば、煙突20の高温の壁面2の周囲は、高熱容量の蓄熱媒体7で被覆された状態になるため、従来装置よりも熱容量が大きくなり排熱回収率が向上する。また、伝熱管10全体が高熱容量の蓄熱媒体7に浸漬されて被覆、保温された状態であるため、作動媒体が燃焼室内の発熱変動や外気環境の影響を直接受けることが低減され、排熱の安定的な供給、利用に資する。壁面狭空間9の外壁は、外気温の影響を受けないように断熱性を有することが望ましい。
When the filling amount of the heat storage medium 7 is increased, the inner wall side space 13 and the heat radiating pipe 16 form a continuous flow path at an early stage to start circulation, so that the temperature of the heat storage medium 7 is kept low. Further, when the filling amount of the heat storage medium 7 is reduced, it takes a long time for the inner wall side space 13 and the heat radiating pipe 16 to form a continuous flow path, but heat is stored until the heat storage medium 7 starts to circulate. As a result, the heat storage medium 7 can be kept at a high temperature.
Thus, by changing the filling amount (that is, the liquid level height) of the heat storage medium 7, the temperature and the heat storage amount of the heat storage medium 7 that stores the exhaust heat can be controlled.
According to the present embodiment, since the periphery of the high temperature wall surface 2 of the chimney 20 is covered with the heat storage medium 7 having a high heat capacity, the heat capacity becomes larger than that of the conventional apparatus, and the exhaust heat recovery rate is improved. In addition, since the entire heat transfer tube 10 is immersed in the heat storage medium 7 having a high heat capacity, and is covered and kept warm, it is possible to reduce that the working medium is directly affected by fluctuations in heat generated in the combustion chamber and the outside air environment, and exhaust heat. Contributes to the stable supply and use of It is desirable that the outer wall of the wall surface narrow space 9 has heat insulation so as not to be affected by the outside air temperature.

図15は、蓄熱式排熱回収装置を備えたコージェネレーションシステムの主要系統図であり、作動媒体および冷媒が流れる方向を図中の矢印で示している。
煙突20と燃焼室21に蓄熱式排熱回収装置を備えた燃焼装置、タービン4(発電機24)、復水器(冷却器)22、ポンプまたは圧縮機23が直列に接続されている。作動媒体8は、ポンプまたは圧縮機23によって煙突20の壁面2に設けられた蓄熱式排熱回収装置に送られ、高温の蓄熱媒体7と熱交換することで飽和蒸気になる。飽和蒸気になった作動媒体8は、燃焼室21の壁面2に設けられた蓄熱式排熱回収装置に送られてさらに加熱され、過熱蒸気3となってタービン4を駆動させる。
その後、作動媒体8は、復水器22へ送られて冷却される。
FIG. 15 is a main system diagram of a cogeneration system including a heat storage type exhaust heat recovery device, and the direction in which the working medium and the refrigerant flow is indicated by arrows in the drawing.
A combustion device provided with a heat storage type exhaust heat recovery device in a chimney 20 and a combustion chamber 21, a turbine 4 (generator 24), a condenser (cooler) 22, a pump or a compressor 23 are connected in series. The working medium 8 is sent to a heat storage type exhaust heat recovery device provided on the wall surface 2 of the chimney 20 by a pump or a compressor 23 and becomes saturated steam by exchanging heat with the high temperature heat storage medium 7. The working medium 8 that has become saturated steam is sent to a heat storage type exhaust heat recovery device provided on the wall surface 2 of the combustion chamber 21 and further heated to become superheated steam 3 to drive the turbine 4.
Thereafter, the working medium 8 is sent to the condenser 22 and cooled.

本実施例によれば、小規模の燃焼装置でも、安定的に200〜300℃の過熱蒸気3を生成することができ、小規模の燃焼装置であってもコージェネレーションシステムを構築することが可能になる。
また、過熱蒸気3となる作動媒体8は、伝熱管10内を循環して、燃焼室21の壁面2に直接触れることがないため、壁面2を変形させたり、損傷させることがないことから、タービン4の入口の圧力値は、燃焼室21の壁面2の耐圧値以上に設定することができ、その結果、蒸気圧力を効果的に発電に活かすことができる。
According to the present embodiment, even a small-scale combustion apparatus can stably generate superheated steam 3 at 200 to 300 ° C., and even a small-scale combustion apparatus can construct a cogeneration system. become.
Further, since the working medium 8 that becomes the superheated steam 3 circulates in the heat transfer tube 10 and does not directly touch the wall surface 2 of the combustion chamber 21, the wall surface 2 is not deformed or damaged. The pressure value at the inlet of the turbine 4 can be set to be equal to or higher than the pressure resistance value of the wall surface 2 of the combustion chamber 21, and as a result, the steam pressure can be effectively utilized for power generation.

以上のとおり、本発明によれば、温度上昇にともなって体積が増加する性質の熱媒体を用いて排熱駆動による熱媒体の自然循環を実現し、温度変動が大きい排熱に対しても効率よく熱を回収して蓄熱できることから、熱の安定供給に資する蓄熱式排熱回収装置及びこれを用いた燃焼装置並びにコージェネレーションシステムを提供できる。 As described above, according to the present invention, the heat medium whose volume increases as the temperature rises is used to realize natural circulation of the heat medium by exhaust heat drive, and is efficient even for exhaust heat with large temperature fluctuations. Since heat can be well recovered and stored, a heat storage type exhaust heat recovery device that contributes to a stable supply of heat, a combustion device using the same, and a cogeneration system can be provided.

符合の説明Explanation of sign

1 作動媒体
2 燃焼装置の壁面
3 過熱蒸気
4 タービン
5 流量調整バルブ
6 壁面挟空間内の圧力調整用バルブまたは安全弁
7 蓄熱媒体
8 作動媒体
9 壁面狭空間
10 伝熱管
11 伝熱管内の圧力調整用バルブまたは安全弁
12 隔壁
13 内壁側空間
14 外壁側空間
15 開口部
16 放熱管
17 冷媒(水など)
18 静圧ポート
19 フィン
20 煙突
21 燃焼室
22 復水器(冷却器)
23 圧縮機またはポンプ
24 発電機
25 金属薄帯または金属繊維
26 混合蓄熱媒体
27 ヒータ
28 断熱容器
DESCRIPTION OF SYMBOLS 1 Working medium 2 Combustion apparatus wall surface 3 Superheated steam 4 Turbine 5 Flow rate adjusting valve 6 Pressure adjusting valve or safety valve 7 in the wall sandwiching space 7 Heat storage medium 8 Working medium 9 Wall narrow space 10 Heat transfer tube 11 Valve or safety valve 12 Bulkhead 13 Inner wall side space 14 Outer wall side space 15 Opening portion 16 Radiation pipe 17 Refrigerant (water, etc.)
18 Static pressure port 19 Fin 20 Chimney 21 Combustion chamber 22 Condenser (cooler)
23 Compressor or pump 24 Generator 25 Metal ribbon or metal fiber 26 Mixed heat storage medium 27 Heater 28 Thermal insulation container

Claims (9)

燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた蓄熱媒体を貯留または循環させるための壁面狭空間からなり、
壁面狭空間には、作動媒体を循環させるための伝熱管が配管されており、
壁面狭空間内に蓄熱媒体を貯留または循環させるとともに、伝熱管内に作動媒体を循環させることで、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収する
ことを特徴とする蓄熱式排熱回収装置。
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow wall surface for storing or circulating a heat storage medium provided outside the high temperature wall surface,
A heat transfer tube for circulating the working medium is installed in the narrow wall surface,
By storing or circulating the heat storage medium in the narrow wall surface, and circulating the working medium in the heat transfer tube,
A heat storage-type exhaust heat recovery apparatus, wherein the working medium recovers indirectly through a heat storage medium rather than directly recovering the exhaust heat transmitted from the high-temperature wall surface.
燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた壁面狭空間からなり、
壁面狭空間は、空間の上方と下方とが開口した隔壁によって、高温の壁面側の空間(内壁側空間)と、壁面狭空間の外壁側の空間(外壁側空間)とに区画され、
内壁側空間には、作動媒体を循環させるための伝熱管が配管されており、
内壁側空間内に貯留する蓄熱媒体が排熱を蓄熱して高温になると、蓄熱媒体は、隔壁上方の開口部分から外壁側空間に流れて冷却され、隔壁下方の開口部分から内壁側空間に戻って再度排熱を蓄熱して高温になり、これが繰り返されることで両空間内を循環するとともに、この循環によって一定の温度に制御された蓄熱媒体が循環する内壁側空間に配管された伝熱管内に、作動媒体を循環させることによって、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体を介して間接的に回収する
ことを特徴とする蓄熱式排熱回収装置。
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow space on the outside of the hot wall,
The wall surface narrow space is partitioned into a high temperature wall surface space (inner wall side space) and an outer wall side space (outer wall side space) of the wall surface narrow space by a partition that opens above and below the space.
In the inner wall side space, a heat transfer tube for circulating the working medium is installed,
When the heat storage medium stored in the inner wall side space stores exhaust heat and becomes high temperature, the heat storage medium flows from the opening part above the partition wall to the outer wall side space and is cooled, and returns from the opening part below the partition wall to the inner wall side space. In this case, the exhaust heat is stored again to become a high temperature, and this is repeated so that it circulates in both spaces, and the heat transfer pipe that is piped to the inner wall side space where the heat storage medium controlled to a constant temperature circulates by this circulation In addition, by circulating the working medium,
A heat storage-type exhaust heat recovery apparatus, wherein the working medium recovers indirectly through a heat storage medium rather than directly recovering the exhaust heat transmitted from the high-temperature wall surface.
燃焼装置の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置であって、
蓄熱式排熱回収装置は、
高温の壁面の外側に設けた壁面狭空間からなり、
壁面狭空間は、隔壁によって、高温の壁面側の空間(内壁側空間)と、壁面狭空間の外壁側の空間(外壁側空間)とに区画され、
内壁側空間には、作動媒体を循環させるための伝熱管が配管され、
外壁側空間には、内壁側空間の蓄熱媒体を外壁側空間内に移送し、循環させるため、隔壁上方に形成された開口部から外壁側空間内を通って隔壁下方に形成された開口部を繋ぐ環状の放熱管が配管されており、
内壁側空間内に貯留する蓄熱媒体が排熱を蓄熱して高温になると、蓄熱媒体は、隔壁上方に形成された開口部から外壁側空間内に配管されている放熱管を流れる間に冷却され、隔壁下方に形成された開口部から内壁側空間に戻って再度排熱を蓄熱して高温になり、これが繰り返されることで両空間間を循環するとともに、この循環によって一定(所望)の温度に制御された蓄熱媒体と接触するように内壁側空間に配管された伝熱管内に、作動媒体を循環させることによって、
作動媒体が、高温の壁面から伝達される排熱を直接回収するのではなく、蓄熱媒体と伝熱管壁面を介して間接的に回収する
ことを特徴とする蓄熱式排熱回収装置。
A heat storage type exhaust heat recovery device for storing and recovering exhaust heat transmitted from a high temperature wall surface of a combustion device,
Thermal storage waste heat recovery equipment
It consists of a narrow space on the outside of the hot wall,
The wall surface narrow space is partitioned by a partition wall into a high temperature wall surface space (inner wall side space) and an outer wall side space (outer wall side space) of the wall surface narrow space,
In the inner wall side space, a heat transfer pipe for circulating the working medium is piped,
In the outer wall side space, in order to transfer and circulate the heat storage medium in the inner wall side space into the outer wall side space, an opening formed in the lower part of the partition through the outer wall side space from the opening formed in the upper part of the partition wall. An annular radiating pipe is connected,
When the heat storage medium stored in the inner wall side space stores the exhaust heat and becomes high temperature, the heat storage medium is cooled while flowing through the heat radiating pipe piped in the outer wall side space from the opening formed above the partition wall. Then, it returns to the inner wall side space from the opening formed below the partition wall, accumulates the exhaust heat again and becomes high temperature, and this is repeated to circulate between both spaces, and this circulation makes the temperature constant (desired) By circulating the working medium in the heat transfer pipe piped in the inner wall side space so as to come into contact with the controlled heat storage medium,
A heat storage type exhaust heat recovery apparatus, wherein the working medium recovers indirectly through the heat storage medium and the heat transfer tube wall surface rather than directly recovering the exhaust heat transferred from the high temperature wall surface.
前記の内壁側空間を循環する蓄熱媒体は、
常圧における沸点が水のそれよりも高く、温度上昇とともに体積が増加する液体(25〜300℃における容積比が、常温時1に対して1.5倍以下)からなる熱媒体であり、
排熱を蓄熱する前の蓄熱媒体(初期状態)は、液面すなわち気液界面が隔壁上方の開口部または開口部分よりも低い位置で静止しているが、排熱を蓄熱した後の温度上昇に伴って体積が膨張し、隔壁上方の開口部または開口部分に向かって液面が上昇する場合において、
所望の温度に達すると、蓄熱媒体が、隔壁上方の開口部分から外壁側空間に、または、隔壁上方に形成された開口部から外壁側空間内に配管された放熱管に、流れ込んで、内壁側空間と外壁側空間との間を循環して外壁側空間で放熱または冷却されるようにすることで、
排熱を回収して蓄熱した蓄熱媒体の温度を制御できる
ことを特徴とする請求項2または3のいずれかに記載の蓄熱式排熱回収装置。
The heat storage medium circulating through the inner wall side space is
It is a heat medium composed of a liquid whose boiling point at normal pressure is higher than that of water and whose volume increases as the temperature rises (volume ratio at 25 to 300 ° C. is 1.5 times or less than 1 at normal temperature),
The heat storage medium (initial state) before storing the exhaust heat is stationary at a position where the liquid surface, that is, the gas-liquid interface is lower than the opening or opening part above the partition wall, but the temperature rises after storing the exhaust heat As the volume expands along with the liquid level rises toward the opening or opening part above the partition wall,
When the desired temperature is reached, the heat storage medium flows into the outer wall side space from the opening portion above the partition wall or into the heat radiating pipe piped into the outer wall side space from the opening portion formed above the partition wall, By circulating between the space and the outer wall side space so that heat is radiated or cooled in the outer wall side space,
The regenerative exhaust heat recovery apparatus according to claim 2 or 3, wherein the temperature of the heat storage medium that recovers and stores the exhaust heat can be controlled.
前記の内壁側空間を循環する蓄熱媒体は、
常圧における沸点が水のそれよりも高く、温度上昇とともに体積が増加する液体(25〜300℃における容積比が、常温時1に対して1.5倍以下)からなる熱媒体に、螺旋状にカールした金属繊維や金属薄帯が混入された混合蓄熱媒体であり、
排熱を蓄熱する前は、隔壁上方の開口部または開口部分よりも低い蓄熱媒体の液面が、排熱を蓄熱した後の温度上昇に伴って体積が膨張することで液面が上昇し、それが隔壁上方の開口部または開口部分よりも高くなる場合において、
一定温度に達すると、蓄熱媒体が、隔壁上方の開口部分から外壁側空間に、または、隔壁上方に形成された開口部から外壁側空間内に配管された放熱管に、流れ込んで、内壁側空間と外壁側空間との間を循環して外壁側空間で放熱または冷却されるようにすることで、
排熱を回収して蓄熱した蓄熱媒体の温度を制御できる
ことを特徴とする請求項2または3のいずれかに記載の蓄熱式排熱回収装置。
The heat storage medium circulating through the inner wall side space is
A heating medium composed of a liquid whose boiling point at normal pressure is higher than that of water and whose volume increases as the temperature rises (volume ratio at 25 to 300 ° C. is 1.5 times or less than 1 at normal temperature) is spiral. Is a mixed heat storage medium in which curled metal fibers and metal ribbons are mixed,
Before storing the exhaust heat, the liquid level of the heat storage medium lower than the opening or the opening part above the partition wall rises as the volume expands as the temperature rises after storing the exhaust heat. In the case where it becomes higher than the opening or opening part above the partition wall,
When a certain temperature is reached, the heat storage medium flows into the outer wall side space from the opening part above the partition wall or into the heat radiating pipe piped into the outer wall side space from the opening part formed above the partition wall, and the inner wall side space. By circulating between the outer wall side space and the outer wall side space so that heat is radiated or cooled in the outer wall side space,
The regenerative exhaust heat recovery apparatus according to claim 2 or 3, wherein the temperature of the heat storage medium that recovers and stores the exhaust heat can be controlled.
前記の壁面狭空間または内壁側空間の天井部分には内圧調整弁が設けられており、
内圧調整弁は、
蓄熱媒体が一定温度以上になって体積が増大し、壁面狭空間内または内壁側空間内が高圧になると、
壁面狭空間内または内壁側空間内に貯留する空気を排出し、
蓄熱媒体が一定温度以下になって体積が減少し、壁面狭空間内または内壁側空間内が低圧になると、
壁面狭空間外または内壁側空間外から外気を吸入する
ことで、壁面狭空間内または内壁側空間内の圧力を一定に保つ
ことを特徴とする請求項1乃至5のいずれかに記載の蓄熱式排熱回収装置。
An internal pressure regulating valve is provided in the ceiling portion of the wall surface narrow space or the inner wall side space,
The internal pressure adjustment valve
When the heat storage medium reaches a certain temperature or more and the volume increases, the inside of the wall surface narrow space or the inner wall side space becomes high pressure,
Exhaust the air stored in the narrow wall space or the inner wall side space,
When the volume of the heat storage medium decreases below a certain temperature and the inside of the wall surface narrow space or the inner wall side space becomes low pressure,
The heat storage type according to any one of claims 1 to 5, wherein the pressure in the wall surface narrow space or the inner wall side space is kept constant by sucking outside air from outside the wall surface narrow space or from the inner wall side space. Waste heat recovery device.
前記の伝熱管は、
高温の壁面の外側に設けられた壁面狭空間内または内壁側空間内を、壁面の周囲を、壁面に沿って螺旋状に配管されている
ことを特徴とする請求項1乃至6のいずれかに記載の蓄熱式排熱回収装置。
The heat transfer tube is
7. The pipe according to claim 1, wherein the pipe is spirally piped around the wall surface in a narrow wall surface space or an inner wall side space provided outside the high temperature wall surface. The regenerative exhaust heat recovery device described.
燃焼室や煙突部等の高温の壁面から伝達される排熱を蓄熱して回収する蓄熱式排熱回収装置を用いた燃焼装置であって、
燃焼室や煙突部等の壁面の外側に、
請求項1乃至7のいずれかに記載の蓄熱式排熱回収装置が設けられている
ことを特徴とする燃焼装置。
A combustion apparatus using a heat storage type exhaust heat recovery device that stores and recovers exhaust heat transmitted from a high temperature wall such as a combustion chamber or a chimney,
Outside the wall of the combustion chamber or chimney,
A combustion apparatus comprising the regenerative exhaust heat recovery apparatus according to any one of claims 1 to 7.
前項の燃焼装置と、
作動媒体を圧送するポンプまたはコンプレッサーと、
蓄熱媒体との熱交換により過熱蒸気(飽和温度以上)になった作動媒体によって発電機を駆動するタービンと、
発電機及び復水器とから構成される
ことを特徴とするコージェネレーションシステム。
The combustion device of the previous section;
A pump or compressor for pumping the working medium;
A turbine that drives a generator with a working medium that has become superheated steam (saturation temperature or higher) due to heat exchange with the heat storage medium;
A cogeneration system comprising a generator and a condenser.
JP2016571648A 2015-01-30 2015-01-30 Thermal storage type exhaust heat recovery device, combustion device using the same, and cogeneration system Active JP6465366B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052756 WO2016121117A1 (en) 2015-01-30 2015-01-30 Heat storing waste heat recovering device, combustion device using same, and cogeneration system

Publications (2)

Publication Number Publication Date
JPWO2016121117A1 true JPWO2016121117A1 (en) 2017-11-16
JP6465366B2 JP6465366B2 (en) 2019-02-06

Family

ID=56542765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016571648A Active JP6465366B2 (en) 2015-01-30 2015-01-30 Thermal storage type exhaust heat recovery device, combustion device using the same, and cogeneration system

Country Status (2)

Country Link
JP (1) JP6465366B2 (en)
WO (1) WO2016121117A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082800B2 (en) * 2018-05-22 2022-06-09 独立行政法人国立高等専門学校機構 Micro cogeneration power generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666645U (en) * 1979-10-25 1981-06-03
JPH0712303A (en) * 1993-06-25 1995-01-17 Ishikawajima Harima Heavy Ind Co Ltd Method and device for generating power utilizing waste heat of incineration of waste material
JPH08100606A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Rankine cycle generating system and its operation method
JPH09217909A (en) * 1996-02-13 1997-08-19 Sanyo Electric Co Ltd Incinerator
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
JP2000356487A (en) * 1999-06-11 2000-12-26 Yuuki:Kk Heat storage system
JP2005345089A (en) * 2003-11-05 2005-12-15 Eiburu:Kk Method for burning flammable waste, and incinerator
JP2013064571A (en) * 2011-09-20 2013-04-11 Mitake Sogyo:Kk Power generation method in garbage incineration facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666645U (en) * 1979-10-25 1981-06-03
JPH0712303A (en) * 1993-06-25 1995-01-17 Ishikawajima Harima Heavy Ind Co Ltd Method and device for generating power utilizing waste heat of incineration of waste material
JPH08100606A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Rankine cycle generating system and its operation method
JPH09217909A (en) * 1996-02-13 1997-08-19 Sanyo Electric Co Ltd Incinerator
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
JP2000356487A (en) * 1999-06-11 2000-12-26 Yuuki:Kk Heat storage system
JP2005345089A (en) * 2003-11-05 2005-12-15 Eiburu:Kk Method for burning flammable waste, and incinerator
JP2013064571A (en) * 2011-09-20 2013-04-11 Mitake Sogyo:Kk Power generation method in garbage incineration facility

Also Published As

Publication number Publication date
JP6465366B2 (en) 2019-02-06
WO2016121117A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
CN105121978A (en) Co-fired absorption system generator
JP6183759B2 (en) Combined heat and power system
JP4931614B2 (en) Cogeneration system using cold heat of liquefied gas and its operation method
JP6583617B2 (en) Evaporator, Rankine cycle device and cogeneration system
KR101393315B1 (en) Cover of latent heat exchanger having cooling line
WO2014185007A1 (en) Combined heat and power system
US10180116B2 (en) Heat medium circulation structure and hot water temperature control method for micro combined heat and power generator
Sadhu et al. Steady-state analysis of a high-temperature natural circulation loop based on water-cooled supercritical CO2
CN108709177B (en) Loop heat pipe steam generator with medicine fumigation and washing treatment function
JP6465366B2 (en) Thermal storage type exhaust heat recovery device, combustion device using the same, and cogeneration system
CN207555643U (en) A kind of double-layer spiral coil pipe membrane wall burner hearth and its furnace body, heating plant
Law et al. Experimental investigation into the feasibility of using a variable conductance heat pipe for controlled heat release from a phase-change material thermal store
TWI548854B (en) Device of downwardly transferring heat through reverse thermosyphon
RU2641775C1 (en) Caloric engine unit heating system
KR101583524B1 (en) High efficiency energy generation
CN110273778B (en) Heater for Stirling engine and Stirling cycle system
JP2005188846A (en) Thermoacoustic heat pump type water heater
JP5029039B2 (en) Hot water system
JP2010229975A (en) Stirling engine
JP2016521826A (en) Stirling engine
JP2008008527A (en) Operation method of absorption type water cooler and operation system of absorption type water cooler
KR20160001512A (en) Storage tank for boiler
CN102840570A (en) Energy-saving high-efficiency boiler
RU2306490C1 (en) Device for control of temperature of heating devices
JP2007024023A (en) Rankine cycle engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6465366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250