JPWO2016093300A1 - Processing method and processing apparatus - Google Patents

Processing method and processing apparatus Download PDF

Info

Publication number
JPWO2016093300A1
JPWO2016093300A1 JP2016563729A JP2016563729A JPWO2016093300A1 JP WO2016093300 A1 JPWO2016093300 A1 JP WO2016093300A1 JP 2016563729 A JP2016563729 A JP 2016563729A JP 2016563729 A JP2016563729 A JP 2016563729A JP WO2016093300 A1 JPWO2016093300 A1 JP WO2016093300A1
Authority
JP
Japan
Prior art keywords
cutting tool
rotation
workpiece
standing wall
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016563729A
Other languages
Japanese (ja)
Other versions
JP6569686B2 (en
Inventor
裕海 谷川
裕海 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016093300A1 publication Critical patent/JPWO2016093300A1/en
Application granted granted Critical
Publication of JP6569686B2 publication Critical patent/JP6569686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/36Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning specially-shaped surfaces by making use of relative movement of the tool and work produced by geometrical mechanisms, i.e. forming-lathes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

回転方向に沿って向きが一様でない急峻な立壁を形成する場合であっても、切削用工具と目標形状とが干渉して形状劣化を生じさせることを防止できる加工方法を提供する。第1回転方向の回転(第1切削工程)に際して、進行方向に関して所定傾斜角以上の急峻な立壁(WO1)を切削用工具(80)を引込める動作によって選択的に加工し、第2回転方向の回転(第2切削工程)に際して、第1回転方向の回転に際して加工される立壁(WO1)に対してワーク(W)の周方向に関して立ち上がりの方向が異なり、かつ進行方向に関して所定傾斜角以上の急峻な立壁(WO2)を切削用工具(80)を引込める動作によって選択的に加工する。このため、第1及び第2回転方向のいずれの回転に際しても、切削用工具(80)を突き出すことで形成されるような急峻な立壁を加工する必要がなくなり、切削用工具(80)の裏面側と立壁(WO2)の頂点とが干渉して形状劣化が生じることを防止できる。Provided is a machining method capable of preventing a cutting tool and a target shape from interfering with each other and causing shape deterioration even when a steep standing wall whose direction is not uniform along the rotation direction is formed. During the rotation in the first rotation direction (first cutting step), the steep wall (WO1) having a predetermined inclination angle or more with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool (80), and the second rotation direction In the rotation (second cutting step), the rising direction differs with respect to the circumferential direction of the workpiece (W) with respect to the standing wall (WO1) processed during the rotation in the first rotation direction, and a predetermined inclination angle or more with respect to the traveling direction. The steep standing wall (WO2) is selectively processed by the operation of retracting the cutting tool (80). For this reason, it is not necessary to machine a steep standing wall formed by protruding the cutting tool (80) during both rotations in the first and second rotation directions, and the back surface of the cutting tool (80). It is possible to prevent the side wall and the top of the standing wall (WO2) from interfering with each other and shape deterioration.

Description

本発明は、切削用工具によって旋盤型の加工を行う加工方法及び加工装置に関し、特に光学素子又はその成形金型等の高精度部品用の加工方法及び加工装置に関する。  The present invention relates to a machining method and a machining apparatus that perform lathe machining with a cutting tool, and particularly to a machining method and a machining apparatus for high-precision parts such as an optical element or a molding die thereof.

光学面等の加工方法として、旋盤を用いて材料を回転させながら切削工具を半径方向に移動させることで凹面等を形成するものがある。このような旋盤加工によって、材料に球面等の回転対称な形状を加工することができるが、軸外し面のような非回転対称面の加工ができない。これを克服するものとして、回転するワークの回転位置に同期させて切削工具の切込み方向の位置を変化させるツールサーボ加工と呼ばれる方法がある。このツールサーボ加工は、ワークの回転角に応じて切削工具の切込み量等の刃先位置を制御するものであり、ワークの回転方向又は周方向の位置に応じて切削工具を突出したり引込めたりすることによって、軸外し面、自由曲面等の非回転対称な加工面を形成することができる。
ツールサーボ加工としては、ファストツールサーボ(Fast Tool ServoもしくはFTS、圧電素子等で工具を取り付けた工具台を駆動制御する方法)及びスローツールサーボ(Slow Tool ServoもしくはSTS、工具台を乗せた工作機械の軸を駆動させる方法)の2種類が知られている。
As a processing method of an optical surface or the like, there is a method of forming a concave surface or the like by moving a cutting tool in a radial direction while rotating a material using a lathe. By such lathe processing, a rotationally symmetric shape such as a spherical surface can be processed on the material, but a non-rotationally symmetric surface such as an off-axis surface cannot be processed. In order to overcome this, there is a method called tool servo processing in which the position of the cutting tool in the cutting direction is changed in synchronization with the rotational position of the rotating workpiece. This tool servo processing controls the cutting edge position such as the cutting depth of the cutting tool according to the rotation angle of the workpiece, and projects or retracts the cutting tool according to the rotation direction or circumferential position of the workpiece. As a result, non-rotationally symmetric processing surfaces such as off-axis surfaces and free-form surfaces can be formed.
Tool servo processing includes Fast Tool Servo (Fast Tool Servo or FTS, a method of driving and controlling a tool base with a tool attached with a piezoelectric element) and Slow Tool Servo (Slow Tool Servo or STS, a machine tool with a tool base on it) There are two known methods of driving the shaft.

しかしながら、上記のようなツールサーボ加工を用いても、ワークの加工後の目標形状に急峻な立壁が存在するとき、切削工具と目標形状とが干渉して高精度の加工を行えない場合が生じる。すなわち、ワークを回転させるワークスピンドルの回転方向と加工点の半径方向とによって決まる工具進行方向に対して、切削工具を引込める方向(立上がる方向)で形成されるような急峻な立壁が連続で並んでいるような目標形状の加工については、特に加工上の問題が生じない。しかしながら、工具進行方向に対して、切削工具を突き出す方向(立下がる方向)で形成されるような急峻な立壁が一部にでも存在するような目標形状の形成については、切削工具の切込み時に切削工具の裏面側と立壁の頂点とが干渉して形状劣化が生じる。  However, even when tool servo machining as described above is used, when there is a steep standing wall in the target shape after machining the workpiece, the cutting tool may interfere with the target shape and high-precision machining may not be performed. . In other words, a steep standing wall that is formed in the direction in which the cutting tool is retracted (rise direction) is continuous with respect to the tool traveling direction determined by the rotation direction of the work spindle that rotates the work and the radial direction of the machining point. For the processing of the target shapes that are arranged side by side, there is no particular problem in processing. However, with respect to the formation of a target shape that has a steep standing wall that is formed in a direction in which the cutting tool protrudes (downward direction) with respect to the tool traveling direction, the cutting is performed when the cutting tool is cut. The back side of the tool interferes with the apex of the standing wall to cause shape deterioration.

なお、アレイレンズ用の金型等の微細加工方法として、ワークを旋回させるのではなく切削工具側の回転姿勢を調節しつつ切削工具をワークに対して周回させるとともに切込み方向に変位させることによって、切削工具先端の軌跡として複数の凹面を加工する方法が公知となっている(特許文献1参照)。この微細加工方法は、切削工具を突き出す方向で形成されるような急峻な立壁が存在する形状を前提とするものではなく、上記ツールサーボ加工の場合と同様の問題が生じると思われる。  In addition, as a fine processing method such as a mold for an array lens, by rotating the cutting tool with respect to the work while adjusting the rotation posture on the cutting tool side instead of turning the work, it is displaced in the cutting direction. A method of machining a plurality of concave surfaces as a locus of a cutting tool tip is known (see Patent Document 1). This micromachining method does not presuppose a shape having a steep standing wall that is formed in the direction in which the cutting tool is projected, and seems to cause the same problem as in the case of the tool servo machining.

また、切削加工方法として、ワークを旋回させ、切削工具を切込み方向に変位させることにより、微小切込み加工を行う方法が公知となっている(特許文献2参照)。この切削加工方法は、刃先を高速振動させる振動切削を前提とするものであり、この手法を上記ツールサーボ加工にそのまま適用することはできない。  Further, as a cutting method, a method of performing a fine cutting process by turning a workpiece and displacing a cutting tool in a cutting direction is known (see Patent Document 2). This cutting method is premised on vibration cutting in which the cutting edge is vibrated at high speed, and this method cannot be directly applied to the tool servo processing.

特開2011−11295号公報JP 2011-11295 A 特開2002−96201号公報JP 2002-96201 A

本発明は、上記背景技術の問題に鑑みてなされたものであり、加工時の回転方向に沿って向きが一様でない急峻な立壁を形成する場合であっても、切削用工具と目標形状とが干渉して形状劣化を生じさせることを防止できる加工方法及び加工装置を提供することを目的とする。  The present invention has been made in view of the problems of the background art described above, and even when forming a steep standing wall whose direction is not uniform along the rotation direction during processing, the cutting tool and the target shape An object of the present invention is to provide a processing method and a processing apparatus that can prevent shape interference due to interference.

上記目的を達成するため、本発明に係る加工方法は、すくい面及び逃げ面を有する切削用工具を用いて、切削用工具に対してワークを相対的な正回転及び逆回転のうち一方である第1回転方向と他方である第2回転方向とに回転させつつ、切削用工具を径方向に相対的に移動させ、ワークの相対的な回転方向及び回転角と切削用工具の径方向位置とに応じて切削用工具の軸方向位置を調整することでワークの切削加工を行う加工方法であって、第1回転方向の回転に際して、少なくとも切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、切削用工具を引込める動作によって選択的に加工し、第2回転方向の回転に際して、第1回転方向の回転に際して加工される立壁状の形状部分に対してワークの周方向に関して立ち上がりの方向が異なり、かつ少なくとも切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、切削用工具を引込める動作によって選択的に加工し、第1及び第2回転方向のいずれかの回転に付随して又は独立して、所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、切削用工具を切込ませ又は引込める動作によって加工する。  In order to achieve the above object, a machining method according to the present invention is one of forward rotation and reverse rotation of a workpiece relative to the cutting tool using a cutting tool having a rake face and a flank face. While rotating in the first rotation direction and the second rotation direction which is the other, the cutting tool is moved relatively in the radial direction, the relative rotation direction and rotation angle of the workpiece, and the radial position of the cutting tool, A cutting method for cutting a workpiece by adjusting the axial position of the cutting tool according to the above, and at the time of rotation in the first rotation direction, at least a standing wall shape having a predetermined inclination angle or more with respect to the traveling direction of the cutting tool The shape portion of the workpiece is selectively machined by the operation of retracting the cutting tool, and when rotating in the second rotation direction, the circumferential portion of the workpiece is related to the standing wall-like shape portion processed during the rotation in the first rotation direction. Standing up The vertical wall-shaped portion having a different inclination direction and at least a predetermined inclination angle with respect to the advancing direction of the cutting tool is selectively machined by the operation of retracting the cutting tool, and either of the first and second rotational directions is selected. In association with or independently of the rotation of the workpiece, the non-standing wall-shaped portion excluding the standing wall-shaped portion having a predetermined inclination angle or more is processed by an operation of cutting or retracting the cutting tool.

上記加工方法では、第1回転方向の回転に際して、進行方向に関して所定傾斜角以上の(急峻に立ち上がるタイプの)立壁状の形状部分を切削用工具を引込める動作によって選択的に加工し、第2回転方向の回転に際して、進行方向に関して所定傾斜角以上の(急峻に立ち上がるタイプの)立壁状の形状部分を切削用工具を引込める動作によって選択的に加工するので、第1及び第2回転方向のいずれの回転に際しても、切削用工具を突き出すことで形成されるような急峻な立壁を加工する必要がなくなり、切削用工具の裏面側と立壁の頂点とが干渉して形状劣化が生じることを防止できる。  In the above-described processing method, when rotating in the first rotation direction, a vertical wall-shaped portion having a predetermined inclination angle or more (steeply rising type) with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool, When rotating in the rotational direction, a vertical wall-shaped portion having a predetermined inclination angle or more (steeply rising type) with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool. During any rotation, it is no longer necessary to machine the steep standing wall that is formed by protruding the cutting tool, preventing the back side of the cutting tool and the top of the standing wall from interfering with each other to prevent shape deterioration. it can.

上記目的を達成するため、本発明に係る加工装置は、すくい面及び逃げ面を有する切削用工具と、切削用工具に対してワークを回転軸のまわりに相対的に回転させる第1駆動機構と、切削用工具を回転軸に垂直な径方向に相対的に移動させる第2駆動機構と、第1及び第2駆動機構に同期させつつ切削用工具を回転軸に平行な軸方向に相対的に移動させる第3駆動機構と、第1〜第3駆動機構の動作を制御する制御部とを備える加工装置であって、制御部は、第1駆動機構を動作させて、ワークを正回転及び逆回転のうち一方である第1回転方向と他方である第2回転方向とに回転させるとともに、第2駆動機構を動作させて、切削用工具を径方向に移動させ、第3駆動機構を第1及び第2駆動機構に同期させつつ動作させて、ワークの相対的な回転方向及び回転角と切削用工具の径方向位置とに応じて切削用工具の軸方向位置を調整することで切削加工を行わせ、第1回転方向の回転に際して、少なくとも切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、切削用工具を引込める動作によって選択的に加工し、第2回転方向の回転に際して、第1回転方向の回転に際して加工される立壁状の形状部分に対してワークの周方向に関して立ち上がりの方向が異なり、かつ少なくとも切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、切削用工具を引込める動作によって選択的に加工し、第1及び第2回転方向のいずれかの回転に付随して、所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、切削用工具を切込ませ又は引込める動作によって加工する。  In order to achieve the above object, a machining apparatus according to the present invention includes a cutting tool having a rake face and a flank face, and a first drive mechanism for rotating the workpiece relative to the cutting tool relative to the rotation axis. A second drive mechanism that moves the cutting tool relatively in a radial direction perpendicular to the rotation axis, and a cutting tool that is relatively parallel to the rotation axis while being synchronized with the first and second drive mechanisms. A processing apparatus comprising a third drive mechanism to be moved and a control unit that controls the operation of the first to third drive mechanisms, wherein the control unit operates the first drive mechanism to rotate the workpiece forward and backward. While rotating to the 1st rotation direction which is one side among rotation, and the 2nd rotation direction which is the other, a 2nd drive mechanism is operated, a cutting tool is moved to radial direction, and a 3rd drive mechanism is made into 1st. And the relative movement of the workpiece by operating in synchronization with the second drive mechanism. The cutting tool is adjusted by adjusting the axial position of the cutting tool in accordance with the rotational direction and angle of rotation and the radial position of the cutting tool, and at least the cutting tool advances during the rotation in the first rotational direction. A vertical wall-shaped portion that is selectively machined by an operation of retracting a cutting tool with a predetermined inclination angle or more with respect to the direction, and is processed when rotating in the first rotational direction when rotating in the second rotational direction. The rising direction differs with respect to the circumferential direction of the workpiece with respect to the portion, and at least the vertical wall-shaped shape portion having a predetermined inclination angle or more with respect to the traveling direction of the cutting tool is selectively processed by the operation of retracting the cutting tool, Along with the rotation in any of the first and second rotation directions, the cutting tool is cut or retracted in the non-standing wall-shaped portion excluding the standing wall-shaped portion having a predetermined inclination angle or more. Processed by the work.

上記加工装置では、第1回転方向の回転に際して、進行方向に関して所定傾斜角以上の立壁状の形状部分を切削用工具を引込める動作によって選択的に加工し、第2回転方向の回転に際して、進行方向に関して所定傾斜角以上の立壁状の形状部分を切削用工具を引込める動作によって選択的に加工するので、第1及び第2回転方向のいずれの回転に際しても、切削用工具を突き出すことで形成されるような急峻な立壁を加工する必要がなくなり、切削用工具の裏面側と立壁の頂点とが干渉して形状劣化が生じることを防止できる。  In the above processing apparatus, when rotating in the first rotational direction, the vertical wall-shaped portion having a predetermined inclination angle or more with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool, and proceeds during the rotation in the second rotational direction. Since the vertical wall-shaped portion with a predetermined inclination angle or more with respect to the direction is selectively machined by the operation of retracting the cutting tool, it is formed by protruding the cutting tool during both rotations in the first and second rotation directions. It is not necessary to machine such a steep standing wall, and it is possible to prevent the rear surface side of the cutting tool and the apex of the standing wall from interfering with each other to cause shape deterioration.

実施形態に係る加工装置を説明するブロック図である。It is a block diagram explaining the processing apparatus concerning an embodiment. 図2A及び2Bは、切削用工具の側面図及び平面図である。2A and 2B are a side view and a plan view of the cutting tool. 実施形態の加工方法を説明する概念図である。It is a conceptual diagram explaining the processing method of embodiment. 図4Aは、第1回転方向の回転による加工を説明する概念的な断面図であり、図4Bは、第2回転方向の回転による加工を説明する概念的な断面図である。4A is a conceptual cross-sectional view for explaining processing by rotation in the first rotation direction, and FIG. 4B is a conceptual cross-sectional view for explaining processing by rotation in the second rotation direction. 図5A及び5Bは、図4A及び4Bを変更した変形例を説明する概念的な断面図である。5A and 5B are conceptual cross-sectional views for explaining a modified example in which FIGS. 4A and 4B are changed. 図6Aは、第1回転方向の回転による加工を説明する平面図であり、図6Bは、第2回転方向の回転による加工を説明する平面図である。6A is a plan view for explaining processing by rotation in the first rotation direction, and FIG. 6B is a plan view for explaining processing by rotation in the second rotation direction. 図1の装置を用いた製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method using the apparatus of FIG. 図8A及び8Bは、具体的な加工例を説明する図である。8A and 8B are diagrams for explaining a specific processing example.

以下、図面を参照して、本発明の一実施形態に係る加工装置及び加工方法について説明する。  Hereinafter, a processing apparatus and a processing method according to an embodiment of the present invention will be described with reference to the drawings.

図1は、実施形態の加工装置を模式的に説明するブロック図である。図示の加工装置100は、ワークWを回転させつつ切削用工具80を2次元的に変位させる旋盤型の切削加工を可能にするNC駆動機構91と、NC駆動機構91を制御しつつ駆動する駆動制御装置97と、装置全体の動作を統括的に制御する主制御装置98とを備える。  FIG. 1 is a block diagram schematically illustrating a processing apparatus according to an embodiment. The illustrated machining apparatus 100 includes an NC drive mechanism 91 that enables a lathe-type cutting process that two-dimensionally displaces the cutting tool 80 while rotating the workpiece W, and a drive that drives while controlling the NC drive mechanism 91. A control device 97 and a main control device 98 that controls the overall operation of the device are provided.

NC駆動機構91は、台座94a上に第1駆動機構94bと第2駆動機構94cとを載置した構造を有する。ここで、第1駆動機構94bは、ワークスピンドル95aを回転可能に支持している。第1駆動機構94bは、駆動制御装置97に駆動されてワークスピンドル95aをZ軸に平行で水平に延びる回転軸RAのまわりに所望の速度で正回転又は逆回転させることができるとともに、ワークスピンドル95aの回転角又は回転姿勢を検出して駆動制御装置97に角度情報として出力することができる。一方、第2駆動機構94cは、第3駆動機構95cを支持しており、この第3駆動機構95cは、切削用工具80を支持している。第2駆動機構94cは、第3駆動機構95c及び切削用工具80を支持して、これらを水平のX軸方向及び鉛直のY軸方向(すなわち、回転軸RAに垂直な径方向)に沿った所望の位置に所望の速度で移動させることができる。また、第3駆動機構95cは、支持台状の部材であり、切削用工具80を水平のZ軸方向(すなわち、回転軸RAに平行な軸方向)に沿った所望の位置に所望の速度で進退移動させることができる。駆動制御装置97では、第2駆動機構94c等を介して切削用工具80又はその刃先位置を監視することができる。  The NC drive mechanism 91 has a structure in which a first drive mechanism 94b and a second drive mechanism 94c are placed on a pedestal 94a. Here, the first drive mechanism 94b rotatably supports the work spindle 95a. The first drive mechanism 94b is driven by the drive control device 97 to rotate the work spindle 95a forward or backward at a desired speed around a rotation axis RA extending in parallel with the Z axis and extending horizontally. The rotation angle or the rotation attitude of 95a can be detected and output to the drive control device 97 as angle information. On the other hand, the second drive mechanism 94c supports the third drive mechanism 95c, and the third drive mechanism 95c supports the cutting tool 80. The second drive mechanism 94c supports the third drive mechanism 95c and the cutting tool 80 and extends them along the horizontal X-axis direction and the vertical Y-axis direction (that is, the radial direction perpendicular to the rotation axis RA). It can be moved to a desired position at a desired speed. The third drive mechanism 95c is a support base member, and the cutting tool 80 is moved to a desired position along the horizontal Z-axis direction (that is, an axial direction parallel to the rotation axis RA) at a desired speed. It can be moved forward and backward. The drive control device 97 can monitor the cutting tool 80 or its cutting edge position via the second drive mechanism 94c and the like.

図2A及び2Bを参照して、切削用工具80の主要部の形状について説明する。切削用工具80は、実際に切削が行われる先端部82を有するチップ部81aと、チップ部81aを支持するシャンク部81bとを有する。チップ部81aは、表面側のすくい面83aと、先端の第1逃げ面83bと、裏面側の第2逃げ面83cとを有する。チップ部81aにおいて、Z軸方向に延びる工具軸AXに垂直な面に対して第1逃げ面83bがなす角γ1を第1逃げ角と呼び、工具軸AXに垂直な面に対して第2逃げ面83cがなす角γ2を第2逃げ角と呼ぶ。第2逃げ角γ2は、チップ部81aの最大逃げ角となっている。第1逃げ面83bの上下方向すなわちY軸方向の幅tを刃厚と呼ぶ。切削用工具80の先端部82は、すくい面83aと第1逃げ面83bとの境界に形成される円弧であり、図1に示すワークWに対して相対的にY軸方向に移動することで、ワークWの表面Waを切削する。具体的な適用例では、第1逃げ角γ1が10〜60°に設定され、第2逃げ角γ2が45〜60°に設定され、刃厚(幅t)が0.05mm程度以上に設定された。なお、図示のチップ部81aは、V字型の先端形状を有するが、用途に応じて半円型又は剣先型の先端形状を採用することができる。  With reference to FIG. 2A and 2B, the shape of the principal part of the cutting tool 80 is demonstrated. The cutting tool 80 includes a tip portion 81a having a tip portion 82 where cutting is actually performed, and a shank portion 81b that supports the tip portion 81a. The tip portion 81a has a rake face 83a on the front side, a first flank 83b at the tip, and a second flank 83c on the back side. In the tip portion 81a, an angle γ1 formed by the first clearance surface 83b with respect to a surface perpendicular to the tool axis AX extending in the Z-axis direction is referred to as a first clearance angle, and a second clearance with respect to the surface perpendicular to the tool axis AX. An angle γ2 formed by the surface 83c is referred to as a second clearance angle. The second clearance angle γ2 is the maximum clearance angle of the tip portion 81a. The vertical direction t of the first flank 83b, that is, the width t in the Y-axis direction is referred to as the blade thickness. The tip portion 82 of the cutting tool 80 is an arc formed at the boundary between the rake face 83a and the first flank 83b, and moves in the Y-axis direction relative to the workpiece W shown in FIG. Then, the surface Wa of the workpiece W is cut. In a specific application example, the first clearance angle γ1 is set to 10 to 60 °, the second clearance angle γ2 is set to 45 to 60 °, and the blade thickness (width t) is set to about 0.05 mm or more. It was. Although the illustrated tip portion 81a has a V-shaped tip shape, a semicircular or sword-tip shape can be employed depending on the application.

図1に戻って、駆動制御装置97は、高精度の数値制御を可能にするものであり、NC駆動機構91に内蔵されたモーターや位置センサー等を主制御装置98の制御下で駆動することによって、第1及び第2駆動機構94b,94c、第3駆動機構95c等を目的とする状態に適宜動作させる。例えば、第1駆動機構94bによって、ワークスピンドル95a及びワークWを回転軸RAのまわりに比較的高速で回転させる。第1駆動機構94bによるワークスピンドル95aの回転は、正逆可能であり、ワークスピンドル95aを+Z軸方向に見て時計方向(CW)の回転を正回転とし、ワークスピンドル95aを+Z軸方向に見て反時計方向(CCW)の回転を逆回転とする。この際、第1駆動機構94bは、ワークスピンドル95aの回転角からワークWの回転角を割出す。一方、第2駆動機構94cによって、切削用工具80の先端部82の加工点を最初に回転軸RA上に配置し、先端部82を径方向であるX軸方向に比較的低速で移動(送り動作)させる。これと並行して、第3駆動機構95cは、切削用工具80の先端部82をZ軸方向又は工具軸AX方向に比較的高速で進退移動させる。この進退移動のうち、+Z方向は、切削用工具80の切込み動作又は前進動作に対応し、−Z方向は、切削用工具80を引込める動作又は後退動作に対応する。このような進退に際して切削用工具80のZ位置、換言すれば切削用工具80の軸方向位置は、ワークスピンドル95a又はワークWの回転方向及び回転角と切削用工具80の径方向位置とに応じて調整される。これにより、ワークWの表面Wa上の任意の位置に所望の形状を有する鏡面等を形成することができる。ワークWの表面Wa上に形成される形状には、平面、球面、自由曲面、段差等のほか、これらを複合したものが含まれる。  Returning to FIG. 1, the drive control device 97 enables high-precision numerical control, and drives a motor, a position sensor, and the like built in the NC drive mechanism 91 under the control of the main control device 98. Thus, the first and second drive mechanisms 94b and 94c, the third drive mechanism 95c, and the like are appropriately operated to a target state. For example, the work spindle 95a and the work W are rotated around the rotation axis RA at a relatively high speed by the first drive mechanism 94b. The rotation of the work spindle 95a by the first drive mechanism 94b can be forward and reverse. When the work spindle 95a is viewed in the + Z axis direction, the clockwise rotation (CW) is the forward rotation, and the work spindle 95a is viewed in the + Z axis direction. Thus, the counterclockwise (CCW) rotation is defined as reverse rotation. At this time, the first drive mechanism 94b calculates the rotation angle of the workpiece W from the rotation angle of the workpiece spindle 95a. On the other hand, the machining point of the tip 82 of the cutting tool 80 is first placed on the rotation axis RA by the second drive mechanism 94c, and the tip 82 is moved (feeded) in the radial X-axis direction at a relatively low speed. Operation). In parallel with this, the third drive mechanism 95c moves the distal end portion 82 of the cutting tool 80 forward and backward at a relatively high speed in the Z-axis direction or the tool axis AX direction. Among the forward and backward movements, the + Z direction corresponds to the cutting operation or the forward movement operation of the cutting tool 80, and the −Z direction corresponds to the operation for retracting the cutting tool 80 or the backward movement operation. In such advance and retreat, the Z position of the cutting tool 80, in other words, the axial position of the cutting tool 80 depends on the rotation direction and rotation angle of the work spindle 95a or the work W and the radial position of the cutting tool 80. Adjusted. Thereby, a mirror surface or the like having a desired shape can be formed at an arbitrary position on the surface Wa of the workpiece W. The shape formed on the surface Wa of the workpiece W includes a plane, a spherical surface, a free curved surface, a step, and the like, as well as a combination of these.

主制御装置98は、ワークWの加工形状に関する情報を外部から受け付けて保管する記憶部(不図示)を有している。主制御装置98は、駆動制御装置97と協働してNC駆動機構91の動作を制御する制御部となっている。ワークWの加工形状に関する情報は、第1及び第2駆動機構94b,94c、第3駆動機構95c等を動作させる工程を含んでおり、より具体的には、主制御装置98は、ワークWの設計形状又はこれを実現するために補正を加えた修正形状である目標形状を加工形状情報として受付ける。この加工形状情報は、例えばワークスピンドル95a又はワークWの回転軸RAからの径方向位置と、当該径方向位置における回転角との関数として、切削用工具80の軸方向位置を含むものとなっている。これにより、第2駆動機構94cからの径方向位置のフィードバックを受けつつ、第1駆動機構94bを介してワークスピンドル95a又はワークWの回転角を監視し、第3駆動機構95cによって切削用工具80の軸方向位置を調整することができ、切削用工具80の先端部82をワークWに対して相対的に回転させつつ目標形状に沿って移動させることができる。  The main control device 98 has a storage unit (not shown) that receives and stores information related to the machining shape of the workpiece W from the outside. The main control device 98 is a control unit that controls the operation of the NC drive mechanism 91 in cooperation with the drive control device 97. The information regarding the machining shape of the workpiece W includes a step of operating the first and second drive mechanisms 94b, 94c, the third drive mechanism 95c, and the like. More specifically, the main control device 98 A design shape or a target shape that is a corrected shape corrected to realize this is received as machining shape information. This machining shape information includes, for example, the axial position of the cutting tool 80 as a function of the radial position of the workpiece spindle 95a or the workpiece W from the rotation axis RA and the rotation angle at the radial position. Yes. Accordingly, the rotational angle of the workpiece spindle 95a or the workpiece W is monitored via the first drive mechanism 94b while receiving the radial position feedback from the second drive mechanism 94c, and the cutting tool 80 is monitored by the third drive mechanism 95c. The tip position 82 of the cutting tool 80 can be moved along the target shape while rotating relative to the workpiece W.

主制御装置98では、図2Aに示す形状を有する切削用工具80による加工の都合を考慮して、加工工程を正逆の回転に対応する2つの切削工程に分けたものを準備する。すなわち、主制御装置98は、上記のような径方向位置、回転角、及び軸方向位置を含む加工形状情報から、ワークスピンドル95aの正回転に対応する第1切削工程での切削用工具80の先端部82に対応する加工点の軌跡と、ワークスピンドル95aの逆回転に対応する第2切削工程での切削用工具80の先端部82に対応する加工点の軌跡とを算出する。このように、主制御装置98は、通常ならば一括して行う切削工程を、ワークスピンドル95aの正回転を利用した第1切削工程と、ワークスピンドル95aの逆回転を利用した第2切削工程とに分割して行わせる。具体的には、ワークスピンドル95aを第1回転方向である時計方向(CW)に回転させる第1切削工程について、切削用工具80の先端部82に対応する加工点の軌跡を算出するとともに、ワークスピンドル95aを第2回転方向である反時計方向(CCW)に回転させる第2切削工程について、切削用工具80の先端部82に対応する加工点の軌跡を算出し、これらを個別に記憶部に保管する。なお、上記した第1切削工程の軌跡や第2切削工程の軌跡は、予め外部で準備され主制御装置98に入力されるものであってもよい。  The main control device 98 prepares a machining process divided into two cutting processes corresponding to forward and reverse rotations in consideration of machining convenience by the cutting tool 80 having the shape shown in FIG. 2A. That is, the main controller 98 determines the cutting tool 80 in the first cutting process corresponding to the normal rotation of the work spindle 95a from the machining shape information including the radial position, the rotation angle, and the axial position as described above. The locus of the machining point corresponding to the tip portion 82 and the locus of the machining point corresponding to the tip portion 82 of the cutting tool 80 in the second cutting process corresponding to the reverse rotation of the work spindle 95a are calculated. As described above, the main control device 98 performs a cutting process that is normally performed in a lump as a first cutting process using forward rotation of the work spindle 95a and a second cutting process using reverse rotation of the work spindle 95a. Divided into two. Specifically, for the first cutting process in which the work spindle 95a is rotated in the clockwise direction (CW), which is the first rotation direction, the locus of the machining point corresponding to the tip 82 of the cutting tool 80 is calculated, For the second cutting process in which the spindle 95a is rotated in the counterclockwise direction (CCW) that is the second rotation direction, the locus of the machining point corresponding to the tip portion 82 of the cutting tool 80 is calculated, and these are individually stored in the storage unit. store. The trajectory of the first cutting process and the trajectory of the second cutting process described above may be prepared externally in advance and input to the main controller 98.

以下、図3、図4A及び4B等を参照して、ワークWの加工方法の基本概念について説明する。  Hereinafter, the basic concept of the method for processing the workpiece W will be described with reference to FIGS. 3, 4A and 4B and the like.

図1に示すワークWは、第1駆動機構94bに支持されて、ワークスピンドル95aとともに回転軸RAのまわりに時計方向(CW)又は反時計方向(CCW)に回転する。一方、図3に示すようにワークWを固定して見た場合、切削用工具80が反対方向に回転し、円形の軌跡Aを描くことになる。つまり、ワークスピンドル95aとともにワークWが例えば時計方向に回転する場合、回転軸RAから半径rの径方向位置にある切削用工具80の先端部82は、ワークWに対して反時計方向である相対的な進行方向Dr又は回転方向に回転する。この際、切削用工具80の先端部82の相対的な回転角はθである。つまり、切削用工具80の先端部82のZ軸方向の座標値ztである軸方向位置を制御することで、円筒座標(r,θ,zt)で表される先端部82の軌跡Aを設定することができ、ワークWの表面Waに転写すべき形状を任意に設定することができる。ここで、切削用工具80の先端部82の軸方向位置である座標値ztの変化が従来の光学面のように緩やかに変化する経路に相当するものであれば特に問題が生じないが、先端部82の座標値ztが急激に変化する経路を与えるものである場合、特に先端部82が切込むように大きくZ軸方向に前進して加工を行う場合は、切削用工具80の先端部82以外の部分すなわち第2逃げ面(裏面)83c等がワークWに形成すべき目標形状と干渉して形状劣化が生じる。このような現象は、目標形状の下がり段差の傾斜が第2逃げ角γ2よりも急峻な傾斜を有する場合に顕著に生じる。  The workpiece W shown in FIG. 1 is supported by the first drive mechanism 94b and rotates clockwise (CW) or counterclockwise (CCW) around the rotation axis RA together with the workpiece spindle 95a. On the other hand, when the work W is fixed as shown in FIG. 3, the cutting tool 80 rotates in the opposite direction, and a circular locus A is drawn. That is, when the workpiece W rotates together with the workpiece spindle 95a, for example, in the clockwise direction, the tip portion 82 of the cutting tool 80 located at the radial position of the radius r from the rotation axis RA is relative to the workpiece W in the counterclockwise direction. It rotates in the general direction of travel Dr or the direction of rotation. At this time, the relative rotation angle of the tip portion 82 of the cutting tool 80 is θ. That is, the locus A of the tip portion 82 represented by the cylindrical coordinates (r, θ, zt) is set by controlling the axial position that is the coordinate value zt of the tip portion 82 of the cutting tool 80 in the Z-axis direction. The shape to be transferred to the surface Wa of the workpiece W can be arbitrarily set. Here, there is no particular problem as long as the change of the coordinate value zt, which is the axial position of the tip portion 82 of the cutting tool 80, corresponds to a slowly changing path as in the conventional optical surface. If the coordinate value zt of the portion 82 gives a path that changes abruptly, especially when machining is performed by moving forward in the Z-axis direction so that the tip 82 is cut, the tip 82 of the cutting tool 80 is used. Other portions, that is, the second flank (back surface) 83c and the like interfere with the target shape to be formed on the workpiece W, and shape deterioration occurs. Such a phenomenon remarkably occurs when the slope of the lower step of the target shape has a steeper slope than the second clearance angle γ2.

図4A及び4Bは、切削用工具80の先端部82以外がワークWに形成すべき目標形状と干渉して形状劣化が生じることを回避する手法を説明する断面図である。この断面図は、切削用工具80の先端部82の図3に示すような軌跡Aに沿った断面となっており、図面の縦方向は、±Z軸方向の位置を示し、図面の横方向は、先端部82の相対的な回転角θに対応する位置を示す。  4A and 4B are cross-sectional views for explaining a technique for avoiding shape deterioration caused by interference with a target shape to be formed on the workpiece W except for the tip portion 82 of the cutting tool 80. This cross-sectional view is a cross-section along the locus A as shown in FIG. 3 of the tip 82 of the cutting tool 80, and the vertical direction of the drawing indicates the position in the ± Z-axis direction, and the horizontal direction of the drawing. Indicates a position corresponding to the relative rotation angle θ of the tip 82.

図4A及び4Bに示すように、第1回転方向である時計方向(CW)の回転に際して、切削用工具80の進行方向Drに関して所定傾斜角以上の立壁状の形状部分である立壁WO1を、切削用工具80を引込める動作によって選択的に加工する。また、第2回転方向である反時計方向(CCW)の回転に際して、切削用工具80の進行方向Drに関して所定傾斜角度以上の立壁状の形状部分である立壁WO2を、切削用工具80を引込める動作によって選択的に加工する。また、時計方向(CW)又は反時計方向(CCW)の回転に付随して、所定傾斜角以上の立壁WO1,WO2を除いた非立壁状の形状部分である急峻な段差でない部分OF0を、切削用工具80を切込ませ又は引込める動作によって加工する。ここで、所定傾斜角は、切削用工具80の最大逃げ角(本実施形態では、第2逃げ角γ2)より大きい。これにより、切削用工具80の最大逃げ角に対応する部分と立壁WO1,WO2の頂点とが干渉して形状劣化が生じることを防止できる。  4A and 4B, when rotating in the clockwise direction (CW) which is the first rotation direction, the standing wall WO1 which is a standing wall-like shape portion having a predetermined inclination angle or more with respect to the traveling direction Dr of the cutting tool 80 is cut. The tool 80 is selectively processed by the operation of retracting the tool 80. Further, when rotating in the counterclockwise direction (CCW) which is the second rotation direction, the cutting tool 80 is retracted into the standing wall WO2 which is a standing wall-like shape portion having a predetermined inclination angle or more with respect to the traveling direction Dr of the cutting tool 80. Selectively process by movement. Further, in association with the rotation in the clockwise direction (CW) or counterclockwise direction (CCW), a portion OF0 that is not a steep step, which is a non-standing wall-shaped portion excluding the standing walls WO1 and WO2 having a predetermined inclination angle or more, is cut. Machining is performed by the operation of cutting or retracting the tool 80. Here, the predetermined inclination angle is larger than the maximum clearance angle of the cutting tool 80 (second clearance angle γ2 in the present embodiment). Thereby, it can prevent that a part corresponding to the maximum clearance angle of the cutting tool 80 interferes with the vertex of standing wall WO1, WO2, and shape deterioration arises.

立壁状の形状部分(立壁WO1,WO2)の段差量は、切削用工具80の軸方向位置の最大振幅以下となっている。切削用工具80の軸方向位置の最大振幅、つまりツールサーボの最大振幅は、一般にはFTSにおいて1000μm以下であり、STSにおいて20mm以下である。微細加工という範囲では1000μm以下が一般的である。  The step amount of the standing wall-shaped portion (standing walls WO1 and WO2) is less than or equal to the maximum amplitude of the axial position of the cutting tool 80. The maximum amplitude of the cutting tool 80 in the axial direction, that is, the maximum amplitude of the tool servo is generally 1000 μm or less in FTS and 20 mm or less in STS. In the range of microfabrication, 1000 μm or less is common.

図4Aに示すように、ワークWが第1回転方向である時計方向(CW)に回転している場合において、目標形状OFに急峻な段差があっても、切削用工具80の回転方向又は進行方向Drの先で上がる段差であれば、切削用工具80を−Z軸方向に後退させて引込めるだけで精密な加工が可能になる。つまり、切削用工具80の逃げ面83b,83cと目標形状OFの立壁WO1とは干渉せず、目標形状OFを劣化させないで加工することができる。一方、ワークWが時計方向(CW)に回転している場合において、切削用工具80の回転方向又は進行方向Drの先で下がる段差を加工するときは、切削用工具80を+Z軸方向に切込むように動作させて切削を行うと、目標形状OFの立壁WO2の頂点等と切削用工具80の逃げ面83b,83cとが干渉して、点線Dで示すように立壁WO2の形状が鈍って加工されることになり、根元に加工残りが発生する。
なお、立壁WO2が切削用工具80と干渉する問題は、立壁WO2の傾斜角Δが切削用工具80のチップ部81aの第2逃げ角γ2よりも大きくなるときに生じる。ただし、チップ部81aの第1逃げ面83bの幅tが比較的広いときは、立壁WO2の傾斜角Δが第1逃げ面83bに対応する第1逃げ角γ1よりも大きくなるときにも、同様の干渉の問題が生じる。
As shown in FIG. 4A, when the workpiece W is rotating in the clockwise direction (CW), which is the first rotation direction, even if there is a steep step in the target shape OF, the rotation direction or progress of the cutting tool 80 If it is a level | step difference which goes up in the direction Dr, precise processing will be attained only by retracting the cutting tool 80 in the −Z-axis direction and retracting it. That is, the flank surfaces 83b and 83c of the cutting tool 80 and the standing wall WO1 of the target shape OF do not interfere with each other and can be processed without deteriorating the target shape OF. On the other hand, when the workpiece W is rotating in the clockwise direction (CW), the cutting tool 80 is cut in the + Z-axis direction when machining a step that goes down in the rotational direction of the cutting tool 80 or the forward direction Dr. When cutting is performed so that the top wall WO2 of the target shape OF is cut and the flank surfaces 83b and 83c of the cutting tool 80 interfere with each other, the shape of the vertical wall WO2 becomes dull as shown by the dotted line D. It will be processed, and a processing residue will occur at the root.
The problem that the standing wall WO2 interferes with the cutting tool 80 occurs when the inclination angle Δ of the standing wall WO2 is larger than the second clearance angle γ2 of the tip portion 81a of the cutting tool 80. However, when the width t of the first clearance surface 83b of the tip portion 81a is relatively wide, the same applies when the inclination angle Δ of the standing wall WO2 is larger than the first clearance angle γ1 corresponding to the first clearance surface 83b. Cause interference problems.

そこで、図4Bに示すように、図4Aに示すものと同じ軌跡Aの一部に関して、ワークWを第2回転方向である反時計方向(CCW)に回転させる。この場合、立壁WO2の段差が逆転する。つまり、図4Aに示す時計方向(CW)の回転で回転方向又は進行方向Drに急激に下がる段差である立壁WO2は、図4Bに示す反時計方向(CCW)の回転で回転方向又は進行方向Drに急激に上がる段差となる。これにより、切削用工具80を−Z軸方向に引込めるように動作させて切削を行うことで立壁WO2を形成でき、立壁WO2の頂点等と切削用工具80の逃げ面83b,83cとが干渉して立壁WO2の形状が鈍って加工されることを確実に防止できる。  Therefore, as shown in FIG. 4B, the workpiece W is rotated in the counterclockwise direction (CCW), which is the second rotation direction, about a part of the same locus A as shown in FIG. 4A. In this case, the step of the standing wall WO2 is reversed. That is, the standing wall WO2 that is a step that suddenly falls in the rotational direction or the traveling direction Dr by the clockwise (CW) rotation shown in FIG. 4A is rotated by the counterclockwise (CCW) rotation shown in FIG. 4B. It becomes a step that rises rapidly. As a result, the standing wall WO2 can be formed by operating the cutting tool 80 so as to be retracted in the −Z-axis direction and performing cutting, and the apex of the standing wall WO2 and the flank surfaces 83b and 83c of the cutting tool 80 interfere with each other. Thus, it is possible to reliably prevent the standing wall WO2 from being processed with a dull shape.

結果的に、図4Aに示す時計方向(CW)の回転による加工と、図4Bに示す反時計方向(CCW)の回転による加工とを合成すれば、ワークWの表面Waに目標形状OFを形成することができることが分かる。この際、図示の例では、目標形状OFのうち急峻な段差でない部分(非立壁状の形状部分)OF0についても、図4Aに示す時計方向(CW)の回転による加工に付加して行うこととしている。つまり、図4Aに示す第1切削工程で、正回転方向の立壁WO1と急峻な段差でない部分(非立壁状の形状部分)OF0とを含めたパターンPA1が加工される。これにより、時計方向(CW)の回転に際して、急峻に立ち上がるタイプの立壁状の形状部分だけでなく、非立壁状の形状部分の加工も併せて行うことになる。そして、次の図4Bに示す第2切削工工程で、逆回転方向の立壁WO2及びそれに続く付随部分を含めたパターンPA2が加工される。ただし、急峻な段差でない部分(非立壁状の形状部分)OF0については、図4Bに示す反時計方向(CCW)の回転による第2切削工程に付加して行うこともできる。さらに、図4AのパターンPA1は、単一の立壁WO1を含むものに限らず、複数の立壁WO1を含むものであってもよいが、2つの第1タイプの立壁WO1の間に第2タイプの立壁WO2が存在する場合、この立壁WO2周辺はパターンPA1から外される。つまり、この場合、第1のパターンPA1と、第2のパターンPA2とは、交互に複数回繰り返される要素からなるものとなる。  As a result, if the processing by the clockwise (CW) rotation shown in FIG. 4A and the processing by the counterclockwise (CCW) rotation shown in FIG. 4B are combined, the target shape OF is formed on the surface Wa of the workpiece W. You can see that you can. At this time, in the example shown in the drawing, a portion (non-standing wall-shaped portion) OF0 that is not a steep step in the target shape OF is also added to the processing by the clockwise (CW) rotation shown in FIG. 4A. Yes. That is, in the first cutting step shown in FIG. 4A, the pattern PA1 including the standing wall WO1 in the forward rotation direction and the portion (non-standing wall-shaped portion) OF0 that is not a steep step is processed. As a result, during the clockwise rotation (CW), not only the standing wall-shaped portion that rises sharply but also the non-standing wall-shaped portion is processed. Then, in the next second cutting step shown in FIG. 4B, the pattern PA2 including the upright wall WO2 in the reverse rotation direction and the accompanying portion following it is processed. However, the portion that is not a steep step (non-standing wall-shaped portion) OF0 can be added to the second cutting step by the counterclockwise (CCW) rotation shown in FIG. 4B. Furthermore, the pattern PA1 of FIG. 4A is not limited to the pattern PA1 including the single standing wall WO1, and may include a plurality of standing walls WO1, but the second type of the standing wall WO1 is of the second type. When the standing wall WO2 exists, the periphery of the standing wall WO2 is removed from the pattern PA1. That is, in this case, the first pattern PA1 and the second pattern PA2 are composed of elements that are alternately repeated a plurality of times.

図4Aに示す加工と図4Bに示す加工とは、ワークWに対して切削用工具80が反転する必要があるため一般に同時に行うことができない。よって、一連の目標形状OFであっても時計方向(CW)の回転による加工と反時計方向(CCW)の回転による加工とを切替えて個別に実施する必要があり、回転の切替えに際してワークWの回転角θがずれないように調整する必要がある。さらに、図4Aに示す第1切削工程から図4Bに示す第2切削工程に切替える際には、通常は切削用工具80の先端部82をZ軸方向にシフトさせる必要があるが、このシフトが大きくなると、先端部82の位置精度を保つことが容易でなくなる。このため、図4Aに示す加工から図4Bに示す加工に切替える際の先端部82の軸方向の変移量又はシフトを20nm程度以下とすることが望ましい。つまり、時計方向(CW)から反時計方向(CCW)に切替える際の、切削用工具80の軸方向の変位量は、20nm以下であることが望ましい。これにより、回転方向を切替える際に誤差が生じにくくワークWの加工精度を高めることができる。ただし、かかる変移量又はシフトが上記20nmを超えても、先端部82の刃先位置は、リアルタイム又は事前の計測を用いた制御手法等を用いることで、精密に補正することができる。  The processing shown in FIG. 4A and the processing shown in FIG. 4B cannot generally be performed simultaneously because the cutting tool 80 needs to be reversed with respect to the workpiece W. Therefore, even for a series of target shapes OF, it is necessary to individually switch and perform processing by clockwise (CW) rotation and counterclockwise (CCW) rotation. It is necessary to adjust so that the rotation angle θ does not shift. Furthermore, when switching from the first cutting step shown in FIG. 4A to the second cutting step shown in FIG. 4B, it is usually necessary to shift the tip 82 of the cutting tool 80 in the Z-axis direction. When it becomes larger, it becomes difficult to maintain the positional accuracy of the tip end portion 82. For this reason, it is desirable that the amount of shift or shift in the axial direction of the tip end portion 82 when switching from the processing shown in FIG. 4A to the processing shown in FIG. 4B is about 20 nm or less. That is, the axial displacement of the cutting tool 80 when switching from the clockwise direction (CW) to the counterclockwise direction (CCW) is preferably 20 nm or less. Thereby, it is hard to produce an error when switching the rotation direction, and the machining accuracy of the workpiece W can be increased. However, even if the amount of shift or shift exceeds 20 nm, the cutting edge position of the tip 82 can be accurately corrected by using a control method using real-time or prior measurement.

また、図4Aに示す第1切削工程を行う場合、段差が逆の立壁WO2やこれに付随する手前部分(立壁状の形状部分)を加工しない必要がある。つまり、立壁WO2を劣化させることを防止するめ、立壁WO2を含む立壁状の形状部分を切削用工具80が通る際に、切削用工具80を−Z軸方向に十分なマージンを持って引込める空振りKが必要となる。この際、切削用工具80を引込めるマージンは、立壁WO2の段差量以上を確保する必要があるが、複数の立壁WO2が存在する場合、最大の段差量以上とする。このような最大段差は、切削用工具80のZ軸方向の可動量すなわち最大振幅以下とする必要があり、具体的な実施例ではFTSにおいて1000μm以下、STSにおいて20mm以下とした。逆に、また、図4Bに示す第2切削工程を行う場合、段差が逆の立壁WO1やこれに付随する手前部分(立壁状の形状部分)を加工しない必要がある。このため、立壁WO1を含む立壁状の形状部分を切削用工具80が通る際に、切削用工具80を−Z軸方向に十分なマージンを持って引込める空振りKを行っている。  In addition, when the first cutting step shown in FIG. 4A is performed, it is necessary not to process the standing wall WO2 having a reverse level difference or the front portion (standing wall-shaped shape portion) associated therewith. That is, in order to prevent the standing wall WO2 from being deteriorated, when the cutting tool 80 passes through the standing wall-shaped portion including the standing wall WO2, the cutting tool 80 is retracted with a sufficient margin in the −Z-axis direction. K is required. At this time, the margin for retracting the cutting tool 80 needs to be equal to or greater than the step amount of the standing wall WO2. However, when there are a plurality of standing walls WO2, the margin is set to the maximum step amount or more. Such a maximum step needs to be less than or equal to the movable amount of the cutting tool 80 in the Z-axis direction, that is, the maximum amplitude. In a specific embodiment, it is 1000 μm or less in FTS and 20 mm or less in STS. Conversely, when the second cutting step shown in FIG. 4B is performed, it is necessary not to process the standing wall WO1 having the opposite step and the front portion (standing wall-shaped shape portion) associated therewith. For this reason, when the cutting tool 80 passes through the standing wall-shaped portion including the standing wall WO1, the swinging K is performed to retract the cutting tool 80 with a sufficient margin in the −Z axis direction.

図5A及び5Bは、図4A及び4Bに示す加工動作の変形例を示している。この場合、図5Aに示す反時計方向(CCW)の回転による加工が先行し、図5Bに示す時計方向(CW)の回転による加工が続く。この場合、反時計方向(CCW)の回転が正回転となり、時計方向(CW)の回転が逆回転となる。この場合も、図5Aに示す反時計方向(CCW)の回転による第1切削工程と、図5Bに示す時計方向(CW)の回転による第2切削工程とが合成され、ワークWの表面Waに目標形状OFを形成することができる。この際、目標形状OFのうち急峻な段差でない部分OF0については、図示の例では、図5Aに示す反時計方向(CCW)の回転による加工に付加して行うこととしているが、図5Bに示す時計方向(CW)の回転による加工に付加して行うこともできる。  5A and 5B show a modification of the machining operation shown in FIGS. 4A and 4B. In this case, the processing by the counterclockwise (CCW) rotation shown in FIG. 5A precedes, and the processing by the clockwise (CW) rotation shown in FIG. 5B continues. In this case, the counterclockwise (CCW) rotation is forward rotation, and the clockwise (CW) rotation is reverse rotation. Also in this case, the first cutting process by the counterclockwise (CCW) rotation shown in FIG. 5A and the second cutting process by the clockwise (CW) rotation shown in FIG. 5B are combined to form the surface Wa of the workpiece W. The target shape OF can be formed. At this time, the portion OF0 of the target shape OF which is not a steep step is added to the processing by the counterclockwise (CCW) rotation shown in FIG. 5A in the illustrated example, but is shown in FIG. 5B. It can also be performed in addition to processing by clockwise rotation (CW).

以下、図4Aに示す時計方向(CW)の回転による第1切削工程と、図4Bに示す反時計方向(CCW)の回転による第2切削工程とを連続して行う具体的手法について説明する。第1回転方向である時計方向(CW)の回転と第2回転方向である反時計方向(CCW)の回転とは、独立して個別に行われ、切削用工具80の径方向位置は、ワークWの相対的な回転軸上の中心位置から外周位置にかけての範囲内で連続的に増加又は減少するように変化する。これにより、時計方向(CW)の加工と反時計方向(CCW)の加工とをそれぞれ1回実行するだけで全体の加工が完了し、加工を簡素化できる。  Hereinafter, a specific method for continuously performing the first cutting step by the clockwise (CW) rotation shown in FIG. 4A and the second cutting step by the counterclockwise (CCW) rotation shown in FIG. 4B will be described. The clockwise rotation (CW) that is the first rotation direction and the counterclockwise rotation (CCW) that is the second rotation direction are independently performed, and the radial position of the cutting tool 80 is the workpiece It changes so as to continuously increase or decrease within a range from the center position on the relative rotation axis of W to the outer peripheral position. As a result, the entire machining can be completed and the machining can be simplified by executing the clockwise (CW) machining and the counterclockwise (CCW) machining only once.

図6Aに示す第1切削工程では、第2駆動機構94cを適宜動作させることにより、切削用工具80の先端部82を回転軸RAの−X軸方向であってワークWの外周位置からスタートさせて、ワークWの中心である回転軸RAが通る位置Oまで+X方向に移動させる。つまり、ワークWの外周位置から中心の位置Oまでが先端部82の駆動範囲となっている。この際、第1及び第3駆動機構94b,95cも、第2駆動機構94cと同期して動作する。これにより、ワークWの表面Wa全体に図4Aに概念的に示す第1パターンPA1の加工が行われる。その後、図6Bに示す第2切削工程では、第2駆動機構94cを適宜動作させることにより、切削用工具80の先端部82をワークWの中心である回転軸RAが通る位置Oからスタートさせて、回転軸RAの+X軸方向であってワークWの外周位置まで+X方向に移動させる。つまり、ワークWの中心の位置Oから外周位置までが先端部82の駆動範囲となっている。この際、第1及び第3駆動機構94b,95cも、第2駆動機構94cと同期して動作する。これにより、ワークWの表面Wa全体に図4Bに概念的に示す第2パターンPA2の加工が行われ、結果的に両パターンPA1,PA2を合成したものによって、ワークWの表面Wa上に目標とする形状が得られる。
この場合、図6Aに示す工程から図6Bに示す工程に移る際に、回転方向が変わるため切削用工具80の先端部82を若干−Z軸方向に引込めることが望ましいが、これによって殆ど変位させる必要がないので、切削用工具80による加工精度を維持しやすい。なお、図6Aに示す工程から図6Bに示す工程に移る際に、切削用工具80については、回転方向の切替えに伴ってチップ部81aのすくい面83aが自動的に回転方向又は進行方向Drを向く。つまり、切削用工具80の向きを回転方向に対応させて自動的に反転させることになる。
In the first cutting step shown in FIG. 6A, the tip end portion 82 of the cutting tool 80 is started from the outer peripheral position of the workpiece W in the −X-axis direction of the rotation axis RA by appropriately operating the second drive mechanism 94c. Then, the workpiece is moved in the + X direction to a position O through which the rotation axis RA that is the center of the workpiece W passes. That is, the driving range of the tip 82 is from the outer peripheral position of the workpiece W to the center position O. At this time, the first and third drive mechanisms 94b and 95c also operate in synchronization with the second drive mechanism 94c. Thereby, the processing of the first pattern PA1 conceptually shown in FIG. 4A is performed on the entire surface Wa of the workpiece W. Thereafter, in the second cutting step shown in FIG. 6B, the tip end portion 82 of the cutting tool 80 is started from a position O through which the rotation axis RA that is the center of the workpiece W passes by appropriately operating the second drive mechanism 94c. Then, the rotation axis RA is moved in the + X-axis direction to the outer peripheral position of the workpiece W in the + X-direction. That is, the driving range of the tip 82 is from the center position O to the outer peripheral position of the workpiece W. At this time, the first and third drive mechanisms 94b and 95c also operate in synchronization with the second drive mechanism 94c. As a result, the entire surface Wa of the workpiece W is processed with the second pattern PA2 conceptually shown in FIG. 4B, and as a result, both the patterns PA1 and PA2 are combined to achieve the target on the surface Wa of the workpiece W. The shape to be obtained is obtained.
In this case, when moving from the step shown in FIG. 6A to the step shown in FIG. 6B, it is desirable to slightly retract the tip 82 of the cutting tool 80 in the −Z-axis direction because the rotation direction changes. Therefore, the machining accuracy by the cutting tool 80 can be easily maintained. When the process shown in FIG. 6A is shifted to the process shown in FIG. 6B, the rake face 83a of the tip portion 81a automatically changes the rotational direction or the traveling direction Dr as the cutting direction of the cutting tool 80 is changed. Turn to. That is, the direction of the cutting tool 80 is automatically reversed according to the rotation direction.

なお、図6Aに示す工程から図6Bに示す工程に移る切替えの際には、ワークWの回転方向の角度関係を整合させること、すなわち加工位置の回転角に関する座標を切替える必要がある。つまり、図6Bの加工では、図6Aの加工における回転角θの符号が反転するとともに位相が180°ずれることになる。この場合、時計方向(CW)の回転と反時計方向(CCW)の回転とを分離しつつも双方の加工内容を整合させることができる。  When switching from the process shown in FIG. 6A to the process shown in FIG. 6B, it is necessary to match the angular relationship in the rotation direction of the workpiece W, that is, to change the coordinates related to the rotation angle of the machining position. That is, in the processing of FIG. 6B, the sign of the rotation angle θ in the processing of FIG. 6A is reversed and the phase is shifted by 180 °. In this case, it is possible to match both processing contents while separating the clockwise (CW) rotation and the counterclockwise (CCW) rotation.

図6A及び6Bに示す切削工程の組み合わせは例示であり、図6Bに示すような外向きの切削加工後に、図6Aに示す内向きの切削加工を行ったり、図6Aに示す内向きの切削加工を−X方向に逆進させた外向きの切削加工を行うこともできる。この場合、切削用工具80の向きを反転させる操作が必要となる。  The combination of the cutting processes shown in FIGS. 6A and 6B is an exemplification, and after the outward cutting as shown in FIG. 6B, the inward cutting shown in FIG. 6A is performed, or the inward cutting shown in FIG. 6A is performed. It is also possible to perform outward cutting by reversing the rotation in the −X direction. In this case, an operation for reversing the direction of the cutting tool 80 is required.

図7を参照して、図1の加工装置100を用いた加工方法の全体について簡単に説明する。まず、主制御装置98は、外部又は記憶部から対象とするワークWに関する加工形状情報を取り込む(ステップS11)。次に、主制御装置98は、ステップS11で取り込んだ加工形状情報から、第1回転方向である時計方向(CW)の回転に適合させた第1切削工程に関して加工点の軌跡を算出するとともに、反時計方向(CCW)の回転に適合させた第2切削工程に関して加工点の軌跡を算出する。つまり、加工形状情報を加工して第1及び第2回転方向に関する2つの分離された加工データを得る(ステップS12)。この際、図6A及び6Bに絡んで説明したように、2つの加工データは、回転角θの符号を反転させるとともに位相を180°ずらすことで整合性が保たれる。さらに、干渉を避けるべく各加工データに対して空振り量が適宜設定される。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第1回転方向である時計方向(CW)の第1切削工程に適合するようにワークWの回転角と切削用工具80の径方向位置とを初期化する(ステップS13)。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第1回転方向の加工すなわち第1切削工程を実行する(ステップS14)。これにより、図4Aに例示するような加工が行われる。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第2回転方向である反時計方向(CCW)の第2切削工程に適合するようにワークWの回転角と切削用工具80の径方向位置とを初期化する(ステップS15)。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第2回転方向の加工すなわち第2切削工程を実行する(ステップS16)。これにより、図4Bに例示するような加工が行われる。  With reference to FIG. 7, the whole processing method using the processing apparatus 100 of FIG. 1 is demonstrated easily. First, the main controller 98 takes in the machining shape information related to the target workpiece W from the outside or the storage unit (step S11). Next, the main controller 98 calculates the locus of the machining point with respect to the first cutting process adapted to the clockwise rotation (CW), which is the first rotation direction, from the machining shape information captured in step S11. The locus of the machining point is calculated for the second cutting process adapted to the counterclockwise (CCW) rotation. That is, the machining shape information is machined to obtain two separated machining data relating to the first and second rotation directions (step S12). At this time, as described with reference to FIGS. 6A and 6B, the consistency of the two processed data is maintained by inverting the sign of the rotation angle θ and shifting the phase by 180 °. In addition, an idle swing amount is appropriately set for each processing data in order to avoid interference. Next, the main controller 98 appropriately operates the NC drive mechanism 91 via the drive controller 97 to rotate the workpiece W so as to conform to the first cutting process in the clockwise direction (CW) which is the first rotation direction. The corners and the radial position of the cutting tool 80 are initialized (step S13). Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97, and executes the processing in the first rotational direction, that is, the first cutting step (step S14). Thereby, the process illustrated in FIG. 4A is performed. Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97 to adjust the workpiece W so as to conform to the second cutting process in the counterclockwise direction (CCW) that is the second rotation direction. The rotation angle and the radial position of the cutting tool 80 are initialized (step S15). Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97, and executes the processing in the second rotational direction, that is, the second cutting step (step S16). Thereby, the process illustrated in FIG. 4B is performed.

図8Aは、図1の加工装置100を用いた一加工例を示す図である。この場合、ワークWは、特殊な位相差板に加工されている。ここで、暗い部分は低い領域を示し、明るい部分は高い領域を示す。つまり、暗い部分と明るい部分とが明確な境界をなしている一対の箇所Bは、急な段差又は立壁を示している。これら一対の箇所Bに形成された段差は、図面の左右つまり周方向Dcに沿って対称的であるため、周方向Dcに関して立ち上がりの方向が異なり揃っていない。しかしながら、本実施形態の加工方法を実施することにより、箇所Bに示すように急峻で精密な立壁を形成できる。  FIG. 8A is a diagram showing an example of processing using the processing apparatus 100 of FIG. In this case, the workpiece W is processed into a special retardation plate. Here, a dark part shows a low area | region and a bright part shows a high area | region. That is, the pair of locations B where the dark portion and the bright portion form a clear boundary indicate steep steps or standing walls. The steps formed in the pair of places B are symmetrical along the left and right sides of the drawing, that is, along the circumferential direction Dc, and therefore the rising directions are different from each other with respect to the circumferential direction Dc. However, by carrying out the processing method of the present embodiment, a steep and precise standing wall can be formed as shown in the point B.

図8Bは、別の加工例を示す図である。この場合、ワークWの円形面の全体には、局所的な部分にのみ位相差構造が形成されている。この場合にも、一対の箇所Bに形成された段差は、図面の左右つまり周方向Dcに沿って対称的であるため、周方向Dcに関して立ち上がりの方向が異なり揃っていない。しかしながら、本実施形態の加工方法を実施することにより、箇所Bに示すように急峻で精密な立壁を形成できる。  FIG. 8B is a diagram illustrating another processing example. In this case, a phase difference structure is formed only on a local portion of the entire circular surface of the workpiece W. Also in this case, the steps formed at the pair of locations B are symmetrical along the left and right sides of the drawing, that is, along the circumferential direction Dc, and therefore the rising directions are not different with respect to the circumferential direction Dc. However, by carrying out the processing method of the present embodiment, a steep and precise standing wall can be formed as shown in the point B.

本実施形態に係る加工方法によれば、第1回転方向の回転(第1切削工程)に際して、進行方向に関して所定傾斜角以上の急峻な立壁WO1を切削用工具80を引込める動作によって選択的に加工し、第2回転方向の回転(第2切削工程)に際して、進行方向に関して所定傾斜角以上の急峻な立壁WO2を切削用工具80を引込める動作によって選択的に加工する。このため、第1及び第2回転方向のいずれの回転に際しても、切削用工具80を突き出すことで形成されるような急峻な立壁を加工する必要がなくなり、切削用工具80の裏面側と立壁WO2の頂点とが干渉して形状劣化が生じることを防止できる。  According to the processing method according to the present embodiment, during the rotation in the first rotation direction (first cutting step), the steep wall WO1 having a predetermined inclination angle or more with respect to the traveling direction is selectively selected by the operation of retracting the cutting tool 80. During the rotation in the second rotation direction (second cutting step), the steep standing wall WO2 having a predetermined inclination angle or more with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool 80. For this reason, it is not necessary to process a steep standing wall formed by protruding the cutting tool 80 during both rotations in the first and second rotation directions, and the back surface side and the standing wall WO2 of the cutting tool 80 are eliminated. It is possible to prevent the deterioration of the shape due to interference with the apex.

以上、本実施形態に係る加工方法等について説明したが、本発明に係る加工方法は、上記のものには限られない。例えば、上記実施形態では、切削用工具80をZ軸方向に進退させるとともにX軸方向に走査移動させたが、ワークW側をZ軸方向に進退させるとともにX軸方向に走査移動させることもできる。  The processing method according to the present embodiment has been described above, but the processing method according to the present invention is not limited to the above. For example, in the above embodiment, the cutting tool 80 is moved back and forth in the Z-axis direction and scanned in the X-axis direction, but the workpiece W side can be moved back and forth in the Z-axis direction and scanned and moved in the X-axis direction. .

また、上記実施形態では、ワークW側を回転させたが、ワークW側を回転させないで切削用工具80側を回転させることによっても同様の加工が可能になる。  Moreover, in the said embodiment, although the workpiece | work W side was rotated, the same process can be performed also by rotating the cutting tool 80 side, without rotating the workpiece | work W side.

また、図4Aに示す時計方向(CW)の回転による第1切削工程と、図4Bに示す反時計方向(CCW)の回転による第2切削工程との間で例えば誤差が生じる場合、これを補償するような制御を行うこともできるが、結果的に形成される意図しない段差が低いものであれば事後的に除去することもできる。段差の除去方法として、例えばGCIB(Gas Cluster Ion Beam)のようなビーム加工型の研磨法を用いることができる。  In addition, for example, when an error occurs between the first cutting process by the clockwise (CW) rotation shown in FIG. 4A and the second cutting process by the counterclockwise (CCW) rotation shown in FIG. 4B, this is compensated for. Such control can be performed, but if the unintentional step formed as a result is low, it can be removed afterwards. As a method for removing the step, for example, a beam processing type polishing method such as GCIB (Gas Cluster Ion Beam) can be used.

以上では、第1切削工程と第2切削工程とに分けたが、3つ以上の切削工程に分割してこれらを順次行うこともできる。例えば、第1及び第2切削工程とは独立して非立壁状の形状部分を加工することもできる。  In the above, although divided into the 1st cutting process and the 2nd cutting process, it can also divide into three or more cutting processes, and these can also be performed sequentially. For example, a non-standing wall-shaped portion can be processed independently of the first and second cutting steps.

以上では、位相差板の作製を例示したが、これに限ることなく多様な面を含む各種光学素子、その成形金型等を上記加工方法によって作製することができる。  In the above, the production of the retardation film has been exemplified. However, the present invention is not limited to this, and various optical elements including various surfaces, molding dies, and the like can be produced by the above processing method.

Claims (8)

すくい面及び逃げ面を有する切削用工具を用いて、前記切削用工具に対してワークを相対的な正回転及び逆回転のうち一方である第1回転方向と他方である第2回転方向とに回転させつつ、前記切削用工具を径方向に相対的に移動させ、ワークの相対的な回転方向及び回転角と前記切削用工具の径方向位置とに応じて前記切削用工具の軸方向位置を調整することでワークの切削加工を行う加工方法であって、
前記第1回転方向の回転に際して、少なくとも前記切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記切削用工具を引込める動作によって選択的に加工し、
前記第2回転方向の回転に際して、前記第1回転方向の回転に際して加工される立壁状の形状部分に対してワークの周方向に関して立ち上がりの方向が異なり、かつ少なくとも前記切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記切削用工具を引込める動作によって選択的に加工し、
前記第1及び第2回転方向のいずれかの回転に付随して又は独立して、前記所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、前記切削用工具を切込ませ又は引込める動作によって加工する加工方法。
Using a cutting tool having a rake face and a flank face, the workpiece is moved relative to the cutting tool in a first rotation direction that is one of forward rotation and reverse rotation and a second rotation direction that is the other. While rotating, the cutting tool is relatively moved in the radial direction, and the axial position of the cutting tool is set according to the relative rotation direction and rotation angle of the workpiece and the radial position of the cutting tool. A machining method for cutting a workpiece by adjusting,
When rotating in the first rotation direction, at least a vertical wall-shaped portion having a predetermined inclination angle or more with respect to the traveling direction of the cutting tool is selectively processed by an operation of retracting the cutting tool,
When rotating in the second rotation direction, the rising direction differs with respect to the circumferential direction of the workpiece with respect to the standing wall-shaped portion processed during the rotation in the first rotation direction, and at least predetermined with respect to the traveling direction of the cutting tool A vertical wall-shaped shape part having an inclination angle or more is selectively processed by the operation of retracting the cutting tool,
Along with or independently of the rotation in one of the first and second rotational directions, the cutting tool is cut into a non-standing wall-shaped shape portion excluding the standing wall-shaped shape portion having the predetermined inclination angle or more. Machining method to process by moving or retracting.
前記第1回転方向の回転に際して、前記非立壁状の形状部分を加工する、請求項1に記載の加工方法。  The processing method according to claim 1, wherein the non-standing wall-shaped portion is processed during the rotation in the first rotation direction. 前記立壁状の形状部分についての前記所定傾斜角は、前記切削用工具の最大逃げ角よりも大きい、請求項1及び2のいずれか一項に記載の加工方法。  The processing method according to any one of claims 1 and 2, wherein the predetermined inclination angle of the vertical wall-shaped portion is larger than a maximum clearance angle of the cutting tool. 前記第1及び第2回転方向のいずれか一方から他方に切替える際の、前記切削用工具の軸方向の変位量は、20nm以下である、請求項1〜3のいずれか一項に記載の加工方法。  The processing according to any one of claims 1 to 3, wherein an amount of axial displacement of the cutting tool when switching from one of the first and second rotational directions to the other is 20 nm or less. Method. 前記立壁状の形状部分の段差量は、前記切削用工具の軸方向位置の最大振幅以下である、請求項1〜4のいずれか一項に記載の加工方法。  The processing method according to any one of claims 1 to 4, wherein a step amount of the standing wall-shaped portion is equal to or less than a maximum amplitude of an axial position of the cutting tool. 前記第1及び第2回転方向のいずれか一方から他方に切替える際に、前記切削用工具の向きを回転方向に対応させて反転させるとともに、ワークの回転方向の角度関係を整合させる、請求項1〜5のいずれか一項に記載の加工方法。  2. When switching from one of the first and second rotation directions to the other, the direction of the cutting tool is reversed to correspond to the rotation direction, and the angular relationship in the rotation direction of the workpiece is matched. The processing method as described in any one of -5. 前記第1回転方向の回転と前記第2回転方向の回転とは、独立して個別に行われ、前記切削用工具の径方向位置は、ワークの相対的な回転軸上の中心位置から外周位置にかけての範囲内で連続的に増加又は減少するように変化する、請求項1〜5のいずれか一項に記載の加工方法。  The rotation in the first rotation direction and the rotation in the second rotation direction are independently performed, and the radial position of the cutting tool is set to the outer peripheral position from the center position on the relative rotation axis of the workpiece. The processing method according to any one of claims 1 to 5, wherein the processing method changes so as to continuously increase or decrease within a range up to. すくい面及び逃げ面を有する切削用工具と、前記切削用工具に対してワークを回転軸のまわりに相対的に回転させる第1駆動機構と、前記切削用工具を前記回転軸に垂直な径方向に相対的に移動させる第2駆動機構と、前記第1及び第2駆動機構に同期させつつ前記切削用工具を前記回転軸に平行な軸方向に相対的に移動させる第3駆動機構と、第1〜第3駆動機構の動作を制御する制御部とを備える加工装置であって、
前記制御部は、前記第1駆動機構を動作させて、ワークを正回転及び逆回転のうち一方である第1回転方向と他方である第2回転方向とに回転させるとともに、前記第2駆動機構を動作させて、前記切削用工具を径方向に移動させ、前記第3駆動機構を前記第1及び第2駆動機構に同期させつつ動作させて、ワークの相対的な回転方向及び回転角と前記切削用工具の径方向位置とに応じて前記切削用工具の軸方向位置を調整することで切削加工を行わせ、
前記第1回転方向の回転に際して、少なくとも前記切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記切削用工具を引込める動作によって選択的に加工し、
前記第2回転方向の回転に際して、前記第1回転方向の回転に際して加工される立壁状の形状部分に対してワークの周方向に関して立ち上がりの方向が異なり、かつ少なくとも前記切削用工具の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記切削用工具を引込める動作によって選択的に加工し、
前記第1及び第2回転方向のいずれかの回転に付随して又は独立して、前記所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、切削用工具を切込ませ又は引込める動作によって加工する加工装置。
A cutting tool having a rake face and a flank; a first drive mechanism for rotating a work relative to the cutting tool around a rotation axis; and a radial direction perpendicular to the rotation axis of the cutting tool. A second drive mechanism that moves relative to the first drive mechanism, a third drive mechanism that moves the cutting tool relatively in an axial direction parallel to the rotation axis, in synchronization with the first and second drive mechanisms, A processing device including a control unit that controls the operation of the first to third drive mechanisms,
The control unit operates the first drive mechanism to rotate the workpiece in a first rotation direction which is one of forward rotation and reverse rotation and a second rotation direction which is the other, and the second drive mechanism. To move the cutting tool in the radial direction, and operate the third drive mechanism in synchronization with the first and second drive mechanisms, and the relative rotation direction and rotation angle of the workpiece and the Cutting is performed by adjusting the axial position of the cutting tool according to the radial position of the cutting tool,
When rotating in the first rotation direction, at least a vertical wall-shaped portion having a predetermined inclination angle or more with respect to the traveling direction of the cutting tool is selectively processed by an operation of retracting the cutting tool,
When rotating in the second rotation direction, the rising direction differs with respect to the circumferential direction of the workpiece with respect to the standing wall-shaped portion processed during the rotation in the first rotation direction, and at least predetermined with respect to the traveling direction of the cutting tool A vertical wall-shaped shape part having an inclination angle or more is selectively processed by the operation of retracting the cutting tool,
A cutting tool is cut into a non-standing wall-like shape portion excluding the standing wall-like shape portion having a predetermined inclination angle or more, accompanying or independently of rotation in any of the first and second rotation directions. A processing device that processes by moving or retracting.
JP2016563729A 2014-12-12 2015-12-10 Processing method and processing apparatus Expired - Fee Related JP6569686B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014252430 2014-12-12
JP2014252430 2014-12-12
PCT/JP2015/084620 WO2016093300A1 (en) 2014-12-12 2015-12-10 Machining method and machining device

Publications (2)

Publication Number Publication Date
JPWO2016093300A1 true JPWO2016093300A1 (en) 2017-10-05
JP6569686B2 JP6569686B2 (en) 2019-09-04

Family

ID=56107477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016563729A Expired - Fee Related JP6569686B2 (en) 2014-12-12 2015-12-10 Processing method and processing apparatus

Country Status (2)

Country Link
JP (1) JP6569686B2 (en)
WO (1) WO2016093300A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173452U (en) * 1983-03-31 1983-11-19 橋本フオ−ミング工業株式会社 Foreign matter cutting device that occurs on stepped surfaces
JP2008126322A (en) * 2006-11-17 2008-06-05 Toshiba Mach Co Ltd Cutting tool working method and cutting tool working device
JP2008246594A (en) * 2007-03-29 2008-10-16 Fujinon Corp Machining data calculating method of free curved surface and manufacturing method of free curved surface
WO2009128313A1 (en) * 2008-04-18 2009-10-22 コニカミノルタオプト株式会社 Method for processing die for optical element, molding die, and optical element

Also Published As

Publication number Publication date
JP6569686B2 (en) 2019-09-04
WO2016093300A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP4659847B2 (en) Screw rotor processing method and processing apparatus, and screw compressor manufacturing method
US10569348B2 (en) Groove-forming method, control device for machine tool and tool path generating device
JP2006297715A (en) Method for producing annular optical element and method for producing mold for annular optical element
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
JP2016203328A (en) Processing method and processing device
JP2004181621A (en) Cnc machine of spiral bevel gears, and machining method of spiral bevel gears by cnc machine
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP6255885B2 (en) Numerical controller
US9623502B2 (en) Gear machining device and gear machining method
JP5413913B2 (en) Non-circular machining method by turning
JP6457169B2 (en) Lathe control system
JPH07285024A (en) Method and device for manufacturing gear
JPWO2020084771A1 (en) Numerical control device and numerical control method
JP6769424B2 (en) Laser processing method, controller and robot system
JP6569686B2 (en) Processing method and processing apparatus
CN113547174A (en) Gear machining device
JP2002273623A (en) Spiral bevel gear manufacturing device and spiral bevel gear manufacturing method
JP2009082994A (en) Machining method and machining device
JP2017126274A (en) Numerical control device having cut-in control function by turret rotation
JP2020023001A (en) Lathe turning tool, gear processing device and gear processing method
JP5359844B2 (en) Fresnel lens manufacturing method, Fresnel lens mold manufacturing method, and cutting apparatus
JP6561596B2 (en) Cutting apparatus and cutting method
JP2021516625A (en) How to perform variable pitch gear cutting on the steering rack
JP2018134711A (en) Method for processing work-piece by use of machine tool, and machine tool
JP5199015B2 (en) Cam surface grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees