JP2016203328A - Processing method and processing device - Google Patents

Processing method and processing device Download PDF

Info

Publication number
JP2016203328A
JP2016203328A JP2015089873A JP2015089873A JP2016203328A JP 2016203328 A JP2016203328 A JP 2016203328A JP 2015089873 A JP2015089873 A JP 2015089873A JP 2015089873 A JP2015089873 A JP 2015089873A JP 2016203328 A JP2016203328 A JP 2016203328A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
cutting tool
tool
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089873A
Other languages
Japanese (ja)
Inventor
裕海 谷川
Hiromi Tanigawa
裕海 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015089873A priority Critical patent/JP2016203328A/en
Priority to CN201610256727.5A priority patent/CN106064243B/en
Publication of JP2016203328A publication Critical patent/JP2016203328A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting method or the like, which can prevent shape deterioration resulting from interference between a cutting tool and a target shape even in a case where a standing wall that is not uniform in direction along a radial direction during processing is formed.SOLUTION: In a processing method, while a workpiece W is rotated with respect to a cutting tool 80, the cutting tool 80 is relatively moved in a radial direction R, and in accordance with a blade edge position, which is the position of the blade edge 80a of the cutting tool 80 with respect to the workpiece W, the cutting tool 80 is displaced in the extending direction of a tool axis TX through which the blade edge 80 passes, thereby cutting the workpiece W. Here, a rotating position around the tool axis TX of the cutting tool 80 is adjusted in accordance with the blade edge position with respect to the workpiece W. Thus, even when a standing wall OW that is not uniform in direction along a radial direction R during processing is formed, interference between a target shape OF and a side part 80b of the blade edge 80a of the cutting tool 80 can be prevented.SELECTED DRAWING: Figure 3

Description

本発明は、切削用工具によって旋盤型の加工を行う加工方法及び加工装置に関し、特に光学素子又はその成形金型等の高精度部品に適する加工方法及び加工装置に関する。   The present invention relates to a machining method and a machining apparatus that perform lathe machining with a cutting tool, and particularly to a machining method and a machining apparatus suitable for high-precision parts such as an optical element or a molding die thereof.

光学面等の加工方法として、旋盤を用いて材料を回転させながら切削工具を半径方向に移動させることで凹面等を形成するものがある。このような旋盤加工によって、材料に球面等の回転対称な形状を加工することができるが、軸外し面のような非回転対称面の加工ができない。これを克服するものとして、回転するワークの回転位置に同期させて切削工具の切込み方向の位置を変化させるツールサーボ加工と呼ばれる方法がある。このツールサーボ加工は、ワークの回転方向又は周方向の位置に応じて切削工具を突き出したり引込めたりするものであり、軸外し面、自由曲面等の非回転対称な加工面を形成することができる。
ツールサーボ加工としては、ファストツールサーボ(Fast Tool ServoもしくはFTS、圧電素子等で切削工具を取り付けた工具台を駆動制御する方法)、及びスローツールサーボ(Slow Tool ServoもしくはSTS、工具台を乗せた工作機械の軸を駆動させる方法)の2種類が知られている。
As a processing method of an optical surface or the like, there is a method of forming a concave surface or the like by moving a cutting tool in a radial direction while rotating a material using a lathe. By such lathe processing, a rotationally symmetric shape such as a spherical surface can be processed on the material, but a non-rotationally symmetric surface such as an off-axis surface cannot be processed. In order to overcome this, there is a method called tool servo processing in which the position of the cutting tool in the cutting direction is changed in synchronization with the rotational position of the rotating workpiece. In this tool servo machining, the cutting tool is protruded or retracted according to the position of the workpiece in the rotational direction or circumferential direction, and non-rotationally symmetric machining surfaces such as off-axis surfaces and free-form surfaces can be formed. it can.
Tool servo processing includes Fast Tool Servo (Fast Tool Servo or FTS, a method for driving and controlling a tool table with a cutting tool attached by a piezoelectric element), and Slow Tool Servo (Slow Tool Servo or STS, a tool table) There are two known methods of driving the axis of a machine tool.

しかしながら、上記のようなツールサーボ加工を用いても、ワークの加工後の目標形状において半径方向に沿って向きが一様でない立壁が存在するとき、切削工具と目標形状とが干渉して高精度の加工を行えない場合が生じる。すなわち、例えばらせん状の回折格子のように、半径位置の増加に伴って向きが徐々に変化する立壁状の部分を有するものを形成する場合、このような目標形状の少なくとも一部に対して工具すくい面でない部分(例えば側面)や工具すくい面の周辺部との間で干渉が生じ、目標形状を崩しながら加工することになって、加工精度を低下させていた。   However, even if tool servo machining as described above is used, when there is a standing wall whose direction is not uniform along the radial direction in the target shape after machining the workpiece, the cutting tool and the target shape interfere with each other to achieve high accuracy. In some cases, it may not be possible to perform the processing. That is, for example, when forming an object having an upright wall portion whose direction gradually changes as the radial position increases, such as a spiral diffraction grating, a tool is applied to at least a part of such a target shape. Interference occurs between a portion that is not a rake face (for example, a side face) or a peripheral portion of the tool rake face, and machining is performed while destroying the target shape, thereby reducing machining accuracy.

なお、アレイレンズ用の金型等の微細加工方法として、ワークを旋回させるのではなく切削工具側の回転姿勢を調節しつつ切削工具をワークに対して周回させるとともに切込み方向に変位させることによって、切削工具先端の軌跡として複数の凹面を加工する方法が公知となっている(特許文献1参照)。この微細加工方法は、立壁が存在する形状を前提とするものではなく、上記ツールサーボ加工の場合と同様の問題が生じると思われる。
また、旋盤主軸に保持されたワークに対し切り込み方向の振動を与えることでワークを切削する切削加工方法であって、振動周波数、振幅、工具逃げ角、プランジカット角度等を所定条件が満たされるような範囲に設定することで、振動に際して工具逃げ面とワークとが衝突することを回避するものが公知となっている(特許文献2参照)。この切削加工方法は、刃先を高速振動させる振動切削を前提とするものであり、この手法を上記ツールサーボ加工そのまま適用することはできない。
In addition, as a fine processing method such as a mold for an array lens, by rotating the cutting tool with respect to the work while adjusting the rotation posture on the cutting tool side instead of turning the work, it is displaced in the cutting direction. A method of machining a plurality of concave surfaces as a locus of a cutting tool tip is known (see Patent Document 1). This fine processing method does not presuppose a shape in which a standing wall exists, and seems to cause the same problem as in the case of the tool servo processing.
Further, it is a cutting method for cutting a workpiece by applying vibration in the cutting direction to the workpiece held on the lathe spindle so that predetermined conditions are satisfied such as vibration frequency, amplitude, tool clearance angle, plunge cut angle, etc. It has been known that the tool flank and the workpiece are prevented from colliding with each other during vibration by setting within a range (see Patent Document 2). This cutting method is premised on vibration cutting in which the cutting edge is vibrated at high speed, and this method cannot be applied as it is to the above-mentioned tool servo processing.

特開2011−11295号公報JP 2011-11295 A 特開2002−96201号公報JP 2002-96201 A

本発明は、上記背景技術の問題に鑑みてなされたものであり、加工時の半径方向に沿って向きが一様でない立壁状の形状部分を形成する場合であっても、切削用工具と目標形状とが干渉して形状劣化が生じることを防止できる加工方法及び加工装置を提供することを目的とする。   The present invention has been made in view of the problems of the background art described above, and even when a vertical wall-shaped portion whose direction is not uniform along the radial direction during processing is formed, the cutting tool and the target An object of the present invention is to provide a processing method and a processing apparatus capable of preventing the shape from being deteriorated due to interference with the shape.

上記目的を達成するため、本発明に係る加工方法は、刃先にすくい面及び逃げ面を有する切削用工具に対してワークを回転させつつ切削用工具をワークの径方向に相対的に移動させ、ワークに対する切削用工具の刃先の位置(具体的には径方向や周方向に関する位置)である刃先位置に応じて刃先が通る工具軸の延びる方向に切削用工具を変位させることによって、ワークの切削加工を行う加工方法であって、ワークに対する切削用工具の刃先位置に応じて、切削用工具の工具軸のまわりの回転姿勢を調整する。なお、切削用工具の工具軸は、工具割出し軸とも呼ばれ、刃先位置に相当する加工点に対して切削用工具が延びる方向に相当し、通常はすくい面に略平行に延びるが、これに限るものではない。   In order to achieve the above object, the machining method according to the present invention moves the cutting tool relatively in the radial direction of the workpiece while rotating the workpiece with respect to the cutting tool having a rake face and a flank surface at the cutting edge, The workpiece is cut by displacing the cutting tool in the extending direction of the tool axis through which the cutting edge passes according to the cutting edge position, which is the position of the cutting edge of the cutting tool with respect to the workpiece (specifically, the position in the radial direction or circumferential direction). This is a processing method for performing processing, and the rotational posture around the tool axis of the cutting tool is adjusted in accordance with the cutting edge position of the cutting tool with respect to the workpiece. The tool axis of the cutting tool is also called a tool indexing axis, which corresponds to the direction in which the cutting tool extends with respect to the machining point corresponding to the cutting edge position, and usually extends substantially parallel to the rake face. It is not limited to.

上記加工方法では、ワークに対する切削用工具の刃先位置に応じて切削用工具の工具軸のまわりの回転姿勢を調整するので、加工時のワークの径方向に沿って向きが一様でない立壁等を形成する場合であっても、切削用工具の刃先の外側や周辺部の形状と目標形状とが干渉することを防止でき、得られる形状に形状劣化が生じることを防止できる。   In the above processing method, the rotational posture around the tool axis of the cutting tool is adjusted according to the cutting edge position of the cutting tool with respect to the workpiece. Even in the case of forming, it is possible to prevent the outer shape of the cutting edge of the cutting tool, the shape of the peripheral portion and the target shape from interfering with each other, and it is possible to prevent the shape from being deteriorated.

本発明の具体的な側面によれば、上記加工方法において、切削用工具の刃先に対するワークの相対的な回転角と、ワークに対する刃先の回転軸を基準とする径方向位置とに応じて、刃先の工具軸のまわりの上記径方向を基準としての傾斜角を調整する。この場合、回転角及び径方向位置に基づいて、工具軸の方向の切込み量だけでなく工具軸のまわりの傾き角が調整されることになる。   According to a specific aspect of the present invention, in the above processing method, the cutting edge according to the relative rotation angle of the workpiece with respect to the cutting edge of the cutting tool and the radial position with respect to the rotation axis of the cutting edge with respect to the workpiece. The inclination angle with reference to the radial direction around the tool axis is adjusted. In this case, not only the cutting amount in the direction of the tool axis but also the inclination angle around the tool axis is adjusted based on the rotation angle and the radial position.

本発明の別の側面によれば、刃先の工具軸のまわりの傾斜角は、最大で±45°の範囲で変化させる。この場合、刃先の工具軸のまわりの傾き角が大きくなることを防止でき、刃先位置に応じた刃先の工具軸のまわりの回転姿勢の調整の精度を高めることができる。   According to another aspect of the present invention, the inclination angle of the cutting edge around the tool axis is changed in a range of ± 45 ° at the maximum. In this case, the inclination angle around the tool axis of the cutting edge can be prevented from increasing, and the accuracy of adjusting the rotational posture around the tool axis of the cutting edge according to the position of the cutting edge can be increased.

本発明のさらに別の側面によれば、切削用工具に対するワークの回転速度は、500rpm以下である。この場合、刃先位置の変動が大きくなることを防止でき、切削用工具による加工精度を高めることができる。   According to still another aspect of the present invention, the rotation speed of the workpiece with respect to the cutting tool is 500 rpm or less. In this case, it is possible to prevent fluctuations in the cutting edge position from increasing, and it is possible to increase the processing accuracy of the cutting tool.

本発明のさらに別の側面によれば、ワークに形成される立壁状の形状部分に沿うように刃先の工具軸のまわりの回転姿勢を変化させる。この場合、立壁状の形状部分を高精度で形成することができる。なお、立壁状の形状部分の加工は、切削用工具の刃先の上記径方向に関する外側等が目標形状と干渉する典型的な場合である。   According to still another aspect of the present invention, the rotational posture around the tool axis of the cutting edge is changed so as to follow a standing wall-like shape portion formed on the workpiece. In this case, the standing wall-shaped portion can be formed with high accuracy. Note that the processing of the standing wall-shaped portion is a typical case where the outside of the cutting edge of the cutting tool in the radial direction interferes with the target shape.

本発明のさらに別の側面によれば、刃先に対してワークを一方の第1回転方向に回転させつつ、少なくとも刃先の進行方向に関して所定傾斜角以上の立壁状の形状部分を、刃先を引込める動作によって選択的に加工し、刃先に対してワークを他方の第2回転方向に回転させつつ、少なくとも刃先の進行方向に関して所定傾斜角以上の立壁状の形状部分を、刃先を引込める動作によって選択的に加工し、第1及び第2回転方向のいずれかの回転に付随して、所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、刃先を切込ませ又は引込める動作によって加工する。
この場合、第1回転方向の回転に際して、進行方向に関して所定傾斜角以上の(比較的急峻に立ち上がるタイプの)立壁状の形状部分を切削用工具を引込める動作によって選択的に加工し、第2回転方向の回転に際して、進行方向に関して所定傾斜角以上の(比較的急峻に立ち上がるタイプの)立壁状の形状部分を切削用工具を引込める動作によって選択的に加工するので、第1及び第2回転方向のいずれの回転に際しても、切削用工具を突き出すように切り込ませることで形成されるような急峻な立壁を加工する必要がなくなり、切削用工具の裏面側つまり逃げ面側と立壁の頂点とが干渉して形状劣化が生じることを防止できる。
According to still another aspect of the present invention, the cutting edge can be retracted at least in a vertical wall-shaped part having a predetermined inclination angle or more with respect to the moving direction of the cutting edge while rotating the workpiece in one first rotation direction with respect to the cutting edge. Select a vertical wall-shaped part with a predetermined inclination angle or more with respect to the direction of movement of the cutting edge by the action of retracting the cutting edge, while selectively processing by operation and rotating the workpiece in the other second rotation direction with respect to the cutting edge. In connection with the rotation in either of the first and second rotational directions, the blade edge is cut or pulled away from the non-standing wall-shaped portion excluding the standing wall-shaped portion having a predetermined inclination angle or more. Machining according to the motion that can be put.
In this case, at the time of rotation in the first rotation direction, a vertical wall-shaped portion (of a type that rises relatively steeply) with a predetermined inclination angle or more with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool, When rotating in the rotational direction, the vertical wall-shaped portion (of a type that rises relatively steeply) with a predetermined inclination angle or more with respect to the traveling direction is selectively processed by the operation of retracting the cutting tool, so the first and second rotations In any rotation of the direction, it is not necessary to machine a steep standing wall formed by cutting the cutting tool so that it protrudes, and the back side of the cutting tool, that is, the flank side and the apex of the standing wall Can prevent the deterioration of the shape due to interference.

本発明のさらに別の側面によれば、ワークに形成される立壁状の形状部分の段差量は、切削用工具の軸方向位置の最大振幅以下である。この場合、立壁状の形状部分の精密な加工が可能になる。   According to still another aspect of the present invention, the step amount of the standing wall-shaped portion formed on the workpiece is equal to or less than the maximum amplitude of the axial position of the cutting tool. In this case, it is possible to precisely process the standing wall-shaped portion.

上記目的を達成するため、本発明に係る加工装置は、刃先にすくい面及び逃げ面を有する切削用工具と、切削用工具に対してワークを回転軸のまわりに相対的に回転させる第1駆動機構と、切削用工具を回転軸に垂直な径方向に相対的に移動させる第2駆動機構と、ワークに対する切削用工具の刃先の位置である刃先位置に応じて、切削用工具の刃先が通る工具軸の延びる方向に切削用工具を変位させる第3駆動機構と、ワークに対する切削用工具の刃先位置に応じて、切削用工具の工具軸のまわりの回転姿勢を調整する第4駆動機構とを備える。   In order to achieve the above object, a machining apparatus according to the present invention includes a cutting tool having a rake face and a flank face at a cutting edge, and a first drive for rotating a work relative to the cutting tool around a rotation axis. The cutting edge of the cutting tool passes according to the mechanism, the second drive mechanism that moves the cutting tool relatively in the radial direction perpendicular to the rotation axis, and the cutting edge position that is the cutting edge position of the cutting tool with respect to the workpiece. A third drive mechanism for displacing the cutting tool in the direction in which the tool axis extends; and a fourth drive mechanism for adjusting the rotational attitude of the cutting tool around the tool axis in accordance with the cutting edge position of the cutting tool relative to the workpiece. Prepare.

上記加工装置では、第4駆動機構がワークに対する切削用工具の刃先位置に応じて切削用工具の工具軸のまわりの回転姿勢を調整するので、加工時のワークの径方向に沿って向きが一様でない立壁状の形状部分を形成する場合であっても、切削用工具の刃先周辺の形状と目標形状とが干渉することを防止でき、形状劣化が生じることを防止できる。   In the above processing apparatus, the fourth drive mechanism adjusts the rotational posture around the tool axis of the cutting tool in accordance with the cutting edge position of the cutting tool with respect to the work, so the direction is uniform along the radial direction of the work during processing. Even when a standing wall-like shape portion that is not like is formed, the shape around the cutting edge of the cutting tool and the target shape can be prevented from interfering with each other, and shape deterioration can be prevented.

実施形態に係る加工装置を説明するブロック図である。It is a block diagram explaining the processing apparatus concerning an embodiment. (A)及び(B)は、切削用工具の側面図及び平面図である。(A) And (B) is the side view and top view of a tool for cutting. 実施形態の加工方法を説明する概念図である。It is a conceptual diagram explaining the processing method of embodiment. (A)は、切削用工具の回転姿勢の調整を説明する拡大図であり、(B)は、切削用工具の傾斜角の調整範囲を説明する図である。(A) is an enlarged view explaining the adjustment of the rotational posture of the cutting tool, and (B) is a diagram explaining the adjustment range of the inclination angle of the cutting tool. (A)は、第1回転方向の回転による加工を説明する概念的な断面図であり、(B)は、第2回転方向の回転による加工を説明する概念的な断面図である。(A) is a conceptual sectional view explaining processing by rotation in the first rotation direction, and (B) is a conceptual sectional view explaining processing by rotation in the second rotation direction. (A)及び(B)は、図5(A)及び5(B)を変更した変形例を説明する概念的な断面図である。(A) And (B) is a conceptual sectional view explaining the modification which changed Drawing 5 (A) and 5 (B). (A)は、第1回転方向の回転による加工を説明する平面図であり、(B)は、第2回転方向の回転による加工を説明する平面図である。(A) is a top view explaining the process by rotation of a 1st rotation direction, (B) is a top view explaining the process by rotation of a 2nd rotation direction. (A)は、加工例を説明する平面図であり、(B)は、加工例及び切削用工具の姿勢を説明する斜視図である。(A) is a top view explaining a processing example, (B) is a perspective view explaining the attitude | position of a processing example and the tool for cutting. 図1の装置を用いた製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method using the apparatus of FIG. 別の加工例を説明する平面図である。It is a top view explaining another example of processing.

以下、図面を参照して、本発明の一実施形態に係る加工装置及び加工方法について説明する。   Hereinafter, a processing apparatus and a processing method according to an embodiment of the present invention will be described with reference to the drawings.

図1は、実施形態の加工装置を模式的に説明するブロック図である。図示の加工装置100は、ワークWを回転させつつ切削用工具80を3次元的に変位させる旋盤型の切削加工を可能にするNC駆動機構91と、NC駆動機構91を制御しつつ駆動する駆動制御装置97と、装置全体の動作を統括的に制御する主制御装置98とを備える。   FIG. 1 is a block diagram schematically illustrating a processing apparatus according to an embodiment. The illustrated machining apparatus 100 includes an NC drive mechanism 91 that enables a lathe-type cutting process that three-dimensionally displaces the cutting tool 80 while rotating the workpiece W, and a drive that drives while controlling the NC drive mechanism 91. A control device 97 and a main control device 98 that controls the overall operation of the device are provided.

NC駆動機構91は、台座94a上に第1駆動機構94bと第2駆動機構94cとを載置した構造を有する。ここで、第1駆動機構94bは、ワークスピンドル95aを回転可能に支持している。第1駆動機構94bは、駆動制御装置97に駆動されてワークスピンドル95aをZ軸に平行で水平に延びる回転軸RAのまわりに所望の速度で正転又は逆転させることができるとともに、ワークスピンドル95aの回転角又は回転姿勢を検出して駆動制御装置97に角度情報として出力することができる。一方、第2駆動機構94cは、切削用工具80を取り付けた可動部95bを支持しており、この可動部95b内には、第3駆動機構95c及び第4駆動機構95dが組み込まれている。第2駆動機構94cは、可動部95b及び切削用工具80を支持して、これらを水平のX軸方向及び鉛直のY軸方向に沿った所望の位置に所望の速度で移動させることができる。また、第3駆動機構95cは、可動部95b内で第4駆動機構95dに支持されており、切削用工具80を水平のZ軸方向に沿った所望の位置に所望の速度で進退移動させることができる。第4駆動機構95dは、切削用工具80を水平に延びるZ軸方向のまわりに回転させることができる。より具体的には、第4駆動機構95dは、Z軸に平行で水平に延びる切削用工具80の工具割出し軸又は工具軸TXのまわりに切削用工具80を回転させ、その回転姿勢を調整することができる。駆動制御装置97では、第2駆動機構94c等を介して切削用工具80又はその刃先80aの位置や回転姿勢を制御することができる。
なお、加工対象であるワークWは、金属、ガラス、セラミックス、樹脂等からなり、それ自体に微細構造を直接切削形成することにより、特殊な回折格子、位相差板等の光学素子に形成されるものであるが、この種の光学素子を樹脂、ガラス等から成形するための型として対応する形状に加工されるものであってもよい。
The NC drive mechanism 91 has a structure in which a first drive mechanism 94b and a second drive mechanism 94c are placed on a pedestal 94a. Here, the first drive mechanism 94b rotatably supports the work spindle 95a. The first drive mechanism 94b is driven by the drive control device 97 to rotate the work spindle 95a forward or reverse at a desired speed around a rotation axis RA extending in parallel with the Z axis and extending horizontally, and the work spindle 95a. Can be detected and output to the drive control device 97 as angle information. On the other hand, the second drive mechanism 94c supports a movable portion 95b to which the cutting tool 80 is attached, and a third drive mechanism 95c and a fourth drive mechanism 95d are incorporated in the movable portion 95b. The second drive mechanism 94c can support the movable portion 95b and the cutting tool 80, and move them to desired positions along the horizontal X-axis direction and the vertical Y-axis direction at a desired speed. The third drive mechanism 95c is supported by the fourth drive mechanism 95d in the movable portion 95b, and moves the cutting tool 80 forward and backward at a desired speed to a desired position along the horizontal Z-axis direction. Can do. The fourth drive mechanism 95d can rotate the cutting tool 80 around the Z-axis direction extending horizontally. More specifically, the fourth drive mechanism 95d rotates the cutting tool 80 around the tool index axis or the tool axis TX of the cutting tool 80 that extends parallel to the Z axis and extends horizontally, and adjusts the rotation posture thereof. can do. The drive control device 97 can control the position and rotation posture of the cutting tool 80 or its cutting edge 80a via the second drive mechanism 94c and the like.
The workpiece W to be processed is made of metal, glass, ceramics, resin, or the like, and is formed on an optical element such as a special diffraction grating or a phase difference plate by directly cutting and forming a fine structure on itself. However, the optical element of this type may be processed into a corresponding shape as a mold for molding from resin, glass or the like.

図2(A)及び2(B)を参照して、切削用工具80の主要部の形状について説明する。切削用工具80は、刃先80aとして、実際に切削が行われる先端部82を有するチップ部81aと、チップ部81aを支持するシャンク部81bとを有する。チップ部81aは、表面側のすくい面83aと、先端の第1逃げ面83bと、裏面側の第2逃げ面83cとを有する。チップ部81aにおいて、先端部82の中央又は中心をZ軸方向に延びるように工具軸(工具割出し軸)TXが通る。工具軸TXに垂直な面に対して第1逃げ面83bがなす角γ1を第1逃げ角と呼び、工具軸TXに垂直な面に対して第2逃げ面83cがなす角γ2を第2逃げ角と呼ぶ。第2逃げ角γ2は、チップ部81aの最大逃げ角となっている。第1逃げ面83bの上下方向すなわちY軸方向の幅tを刃厚と呼ぶ。切削用工具80の先端部82は、すくい面83aと第1逃げ面83bとの境界に形成される円弧であり、図1に示すワークWに対して相対的にY軸方向に移動することで、ワークWの表面Waを切削する。具体的な適用例では、第1逃げ角γ1が10〜60°に設定され、第2逃げ角γ2が45〜60°に設定され、刃厚tが0.05mm程度以上に設定された。また、すくい面83aは、XZ面に略平行に延びているが、根元のシャンク部81b側で−Y側となるように若干傾いている。なお、図示のチップ部81aは、V字型の先端形状を有するが、用途に応じて半円型等の先端形状を採用することができる。   With reference to FIG. 2 (A) and 2 (B), the shape of the principal part of the cutting tool 80 is demonstrated. The cutting tool 80 includes, as a cutting edge 80a, a tip portion 81a having a tip portion 82 where cutting is actually performed, and a shank portion 81b that supports the tip portion 81a. The tip portion 81a has a rake face 83a on the front side, a first flank 83b at the tip, and a second flank 83c on the back side. In the tip part 81a, a tool axis (tool indexing axis) TX passes through the center or center of the tip part 82 so as to extend in the Z-axis direction. An angle γ1 formed by the first flank 83b with respect to the surface perpendicular to the tool axis TX is called a first flank angle, and an angle γ2 formed by the second flank 83c with respect to the surface perpendicular to the tool axis TX is set as the second flank. Called the corner. The second clearance angle γ2 is the maximum clearance angle of the tip portion 81a. The vertical direction t of the first flank 83b, that is, the width t in the Y-axis direction is referred to as the blade thickness. The tip portion 82 of the cutting tool 80 is an arc formed at the boundary between the rake face 83a and the first flank 83b, and moves in the Y-axis direction relative to the workpiece W shown in FIG. Then, the surface Wa of the workpiece W is cut. In a specific application example, the first clearance angle γ1 was set to 10 to 60 °, the second clearance angle γ2 was set to 45 to 60 °, and the blade thickness t was set to about 0.05 mm or more. Further, the rake face 83a extends substantially parallel to the XZ plane, but is slightly inclined so as to be on the −Y side on the root shank portion 81b side. In addition, although the illustrated chip part 81a has a V-shaped tip shape, a tip shape such as a semicircular shape can be adopted depending on the application.

図1に戻って、駆動制御装置97は、高精度の数値制御を可能にするものであり、NC駆動機構91に内蔵されたモータや位置センサ等を主制御装置98の制御下で駆動することによって、第1及び第2駆動機構94b,94c、第3駆動機構95c、第4駆動機構95d等を目的とする状態に適宜動作させる。例えば、第1駆動機構94bによって、ワークスピンドル95a及びワークWを回転軸RAのまわりに比較的高速で回転させる。第1駆動機構94bによるワークスピンドル95aの回転は、例えば正方向のみとすることができるが、正逆の双方向とすることもできる。なお、ワークスピンドル95aを+Z軸方向に見て時計方向(CW)の回転を正方向の回転とし、ワークスピンドル95aを+Z軸方向に見て反時計方向(CCW)の回転を逆方向の回転とする。この際、第1駆動機構94bは、ワークスピンドル95aの回転角からワークWの回転角を割出す。
一方、第2駆動機構94cによって、切削用工具80の先端部82の加工点を最初に回転軸RA上に配置し、つまり回転軸RAと工具軸TXとを一致させ、先端部82をワークW又はワークスピンドル95aの径方向であるX軸方向に比較的低速で移動(送り動作)させる。これと並行して、第3駆動機構95cは、切削用工具80の先端部82をZ軸方向又は工具軸TX方向に比較的高速で進退移動させる。この進退移動のうち、+Z方向は、切削用工具80の切込み動作又は前進動作に対応し、−Z方向は、切削用工具80を引込める動作又は後退動作に対応する。このような進退に際して切削用工具80の刃先80aのZ位置、換言すれば切削用工具80の刃先80aの軸方向位置は、ワークスピンドル95a又はワークWの回転方向及び回転角と切削用工具80の径方向位置とに応じて調整される。これにより、ワークWの表面Wa上の任意の位置に所望の形状を有する鏡面等を形成することができる。ワークWの表面Wa上に形成される形状には、段差、斜面等の立壁形状のほか、これらと平面、球面、自由曲面等を複合したものが含まれる。さらに、以上の動作に対応させて、第4駆動機構95dは、切削用工具80の刃先80aの回転姿勢を変化させる。すなわち、第4駆動機構95dは、切削用工具80を水平に延びる工具軸(工具割出し軸)TXのまわりに回転させることにより、切削用工具80の刃先80aの側部80b等が目標形状と干渉することを防止する。ここで、干渉の原因となる側部80bには、チップ部81aの側面のほか、すくい面83aの周辺部が含まれる。このような干渉回避を達成すべく、切削用工具80又は刃先80aの回転姿勢又は傾き角は、ワークスピンドル95a又はワークWの回転方向及び回転角と切削用工具80の径方向位置とに応じて調整される。これにより、刃先80aの側部80b等が目標形状と干渉することを防止でき、刃先80a自体で目標形状を崩しながら加工することを防止して、表面Wa上に形成される段差、斜面等の立壁形状の加工精度を維持することができる。
Returning to FIG. 1, the drive control device 97 enables high-precision numerical control, and drives a motor, a position sensor, and the like built in the NC drive mechanism 91 under the control of the main control device 98. Thus, the first and second drive mechanisms 94b and 94c, the third drive mechanism 95c, the fourth drive mechanism 95d, and the like are appropriately operated to a target state. For example, the work spindle 95a and the work W are rotated around the rotation axis RA at a relatively high speed by the first drive mechanism 94b. The rotation of the work spindle 95a by the first drive mechanism 94b can be, for example, only in the forward direction, but can also be bidirectional in the forward and reverse directions. When the work spindle 95a is viewed in the + Z axis direction, the clockwise rotation (CW) is the forward rotation, and when the work spindle 95a is viewed in the + Z axis direction, the counterclockwise (CCW) rotation is the reverse rotation. To do. At this time, the first drive mechanism 94b calculates the rotation angle of the workpiece W from the rotation angle of the workpiece spindle 95a.
On the other hand, the machining point of the tip end portion 82 of the cutting tool 80 is first placed on the rotation axis RA by the second drive mechanism 94c, that is, the rotation axis RA and the tool axis TX are aligned, and the tip end portion 82 is moved to the workpiece W. Alternatively, the workpiece spindle 95a is moved (feeded) at a relatively low speed in the X-axis direction that is the radial direction of the workpiece spindle 95a. In parallel with this, the third drive mechanism 95c moves the tip portion 82 of the cutting tool 80 forward and backward at a relatively high speed in the Z-axis direction or the tool axis TX direction. Among the forward and backward movements, the + Z direction corresponds to the cutting operation or the forward movement operation of the cutting tool 80, and the −Z direction corresponds to the operation for retracting the cutting tool 80 or the backward movement operation. In such advancement and retreat, the Z position of the cutting edge 80a of the cutting tool 80, in other words, the axial position of the cutting edge 80a of the cutting tool 80, the rotation direction and rotation angle of the work spindle 95a or the work W, and the cutting tool 80 It is adjusted according to the radial position. Thereby, a mirror surface or the like having a desired shape can be formed at an arbitrary position on the surface Wa of the workpiece W. The shape formed on the surface Wa of the workpiece W includes not only a standing wall shape such as a step and a slope, but also a composite of these with a flat surface, a spherical surface, a free curved surface, and the like. Further, the fourth drive mechanism 95d changes the rotational posture of the cutting edge 80a of the cutting tool 80 in correspondence with the above operation. That is, the fourth drive mechanism 95d rotates the cutting tool 80 around a horizontally extending tool axis (tool indexing axis) TX so that the side portion 80b of the cutting edge 80a of the cutting tool 80 has a target shape. Prevent interference. Here, the side part 80b that causes interference includes the peripheral part of the rake face 83a in addition to the side face of the chip part 81a. In order to achieve such interference avoidance, the rotation posture or inclination angle of the cutting tool 80 or the cutting edge 80a depends on the rotation direction and rotation angle of the workpiece spindle 95a or workpiece W and the radial position of the cutting tool 80. Adjusted. Thereby, it is possible to prevent the side portion 80b of the blade edge 80a and the like from interfering with the target shape, and to prevent the blade edge 80a itself from working while breaking the target shape, such as a step formed on the surface Wa, a slope, etc. The processing accuracy of the standing wall shape can be maintained.

主制御装置98は、ワークWの加工形状に関する情報を外部から受け付けて保管する記憶部(不図示)を有している。主制御装置98は、駆動制御装置97と協働してNC駆動機構91の動作を制御する制御部となっている。ワークWの加工形状に関する情報は、第1駆動機構94b、第2駆動機構94c、第3駆動機構95c、第4駆動機構95d等を動作させる工程に相当するものを含んでおり、より具体的には、主制御装置98は、ワークWの設計形状又はこれを実現するために補正を加えた修正形状である目標形状を加工形状情報として受付ける。この加工形状情報は、例えばワークスピンドル95a又はワークWの回転軸RAからの径方向位置と、当該径方向位置におけるワークスピンドル95aの回転角との関数として、切削用工具80の刃先80aの軸方向位置を含むとともに、切削用工具80の刃先80aの回転姿勢(具体的には傾斜角)を含むものとなっている。これにより、第2駆動機構94cからの径方向位置のフィードバックを受けつつ、第1駆動機構94bを介してワークスピンドル95a又はワークWの回転角を監視し、第3駆動機構95cによって切削用工具80の軸方向位置を調整するとともに切削用工具80の回転姿勢を調整することができ、切削用工具80の先端部82をワークWに対して相対的に回転させつつ目標形状に沿って移動させ、かつ、その傾斜姿勢を目標形状に対して適正に保つことができる。
さらに、主制御装置98では、図2(A)に示す形状を有する切削用工具80による加工の都合を考慮して、目標形状が溝形状又は畝形状のように反対向きの立壁を含む場合、加工工程を正転のみに限らず正逆の回転に対応する2つの切削工程に分けたものを準備する。すなわち、主制御装置98は、上記のような径方向位置、回転角、軸方向位置等を含む加工形状情報から、ワークスピンドル95aの正転に対応する第1切削工程での切削用工具80の先端部82に対応する加工点の軌跡と、ワークスピンドル95aの逆転に対応する第2切削工程での切削用工具80の先端部82に対応する加工点の軌跡とを算出する。このように、主制御装置98は、通常ならば一括して行う切削工程を、ワークスピンドル95aの正転を利用した第1切削工程と、ワークスピンドル95aの逆転を利用した第2切削工程とに分割して行わせることができる。具体的には、ワークスピンドル95aを第1回転方向である時計方向(CW)に回転させる第1切削工程について、切削用工具80の先端部82に対応する加工点の軌跡及び刃先80aの回転姿勢又は傾斜角を算出するとともに、ワークスピンドル95aを第2回転方向である反時計方向(CCW)に回転させる第2切削工程について、切削用工具80の先端部82に対応する加工点の軌跡及び刃先80aの回転姿勢又は傾斜角を算出し、これらを個別に記憶部に保管する。なお、上記した第1切削工程の軌跡や第2切削工程の軌跡は、予め外部で準備され主制御装置98に入力されるものであってもよい。
The main control device 98 has a storage unit (not shown) that receives and stores information related to the machining shape of the workpiece W from the outside. The main control device 98 is a control unit that controls the operation of the NC drive mechanism 91 in cooperation with the drive control device 97. The information regarding the machining shape of the workpiece W includes information corresponding to a step of operating the first drive mechanism 94b, the second drive mechanism 94c, the third drive mechanism 95c, the fourth drive mechanism 95d, and the like, and more specifically. The main controller 98 accepts the design shape of the workpiece W or a target shape which is a corrected shape corrected to realize this as machining shape information. This machining shape information is, for example, the axial direction of the cutting edge 80a of the cutting tool 80 as a function of the radial position of the workpiece spindle 95a or the workpiece W from the rotation axis RA and the rotation angle of the workpiece spindle 95a at the radial position. In addition to the position, the rotation posture (specifically, the inclination angle) of the cutting edge 80a of the cutting tool 80 is included. Accordingly, the rotational angle of the workpiece spindle 95a or the workpiece W is monitored via the first drive mechanism 94b while receiving the radial position feedback from the second drive mechanism 94c, and the cutting tool 80 is monitored by the third drive mechanism 95c. And the rotational posture of the cutting tool 80 can be adjusted, and the tip portion 82 of the cutting tool 80 is moved relative to the workpiece W along the target shape, And the inclination attitude | position can be kept appropriate with respect to a target shape.
Furthermore, in the main control device 98, in consideration of the convenience of processing by the cutting tool 80 having the shape shown in FIG. 2A, when the target shape includes a standing wall facing in the opposite direction like a groove shape or a saddle shape, The machining process is prepared not only for forward rotation but also divided into two cutting processes corresponding to forward and reverse rotation. That is, the main controller 98 determines the cutting tool 80 in the first cutting process corresponding to the normal rotation of the work spindle 95a from the machining shape information including the radial position, the rotation angle, the axial position and the like as described above. The locus of the machining point corresponding to the tip portion 82 and the locus of the machining point corresponding to the tip portion 82 of the cutting tool 80 in the second cutting process corresponding to the reverse rotation of the work spindle 95a are calculated. As described above, the main control device 98 performs the cutting process that is normally performed in a lump into a first cutting process that uses normal rotation of the work spindle 95a and a second cutting process that uses reverse rotation of the work spindle 95a. It can be divided and performed. Specifically, in the first cutting process in which the work spindle 95a is rotated in the clockwise direction (CW), which is the first rotation direction, the locus of the machining point corresponding to the tip portion 82 of the cutting tool 80 and the rotational attitude of the cutting edge 80a. Alternatively, for the second cutting step of calculating the tilt angle and rotating the work spindle 95a in the counterclockwise direction (CCW), which is the second rotation direction, the locus of the machining point and the cutting edge corresponding to the tip 82 of the cutting tool 80 The rotational attitude or inclination angle of 80a is calculated and stored individually in the storage unit. The trajectory of the first cutting process and the trajectory of the second cutting process described above may be prepared externally in advance and input to the main controller 98.

以下、図3等を参照して、ワークWの加工方法の基本概念について説明する。   Hereinafter, with reference to FIG. 3 etc., the basic concept of the processing method of the workpiece | work W is demonstrated.

図1に示すワークWは、第1駆動機構94bに支持されて、ワークスピンドル95aとともに回転軸RAのまわりに時計方向(CW)又は反時計方向(CCW)に回転する。一方、図3に示すようにワークWを固定して見た場合、切削用工具80が反対方向に回転し、円形の軌跡Aを描くことになる。つまり、ワークスピンドル95aとともにワークWが例えば時計方向に回転する場合、回転軸RAから径方向Rにおいて半径位置(径方向位置)rにある切削用工具80の刃先80a又は先端部82は、ワークWに対して反時計方向である相対的な進行方向又は回転方向Drに回転する。この際、切削用工具80の先端部82の相対的な回転角はθである。つまり、切削用工具80の刃先80a又は先端部82のZ軸方向の座標値ztである軸方向位置を制御することで、円筒座標(r,θ,zt)で表される刃先80a又は先端部82の軌跡Aを設定することができ、ワークWの表面Waに転写すべき形状を任意に設定することができる。この際、ワークスピンドル95aの回転数は、500rpm以下の比較的低速とする。ワークスピンドル95aやワークWの回転数が大きいと、切削用工具80の刃先80aをワークスピンドル95aの回転に同期させることが容易でなくなり、加工精度を確保することが容易でなくなるので、ワークスピンドル95aの回転数を500rpm以下として、加工精度を簡易に確保できるようにしている。
なお、切削用工具80の先端部82の軸方向位置である座標値ztの変化が従来の光学面のように緩やかに変化する経路に相当するものであれば特に問題が生じないが、先端部82の座標値ztが急激に変化する経路を与えるものである場合、切削用工具80の刃先80aがワークWに形成すべき目標形状と干渉する問題が生じる。
The workpiece W shown in FIG. 1 is supported by the first drive mechanism 94b and rotates clockwise (CW) or counterclockwise (CCW) around the rotation axis RA together with the workpiece spindle 95a. On the other hand, when the work W is fixed as shown in FIG. 3, the cutting tool 80 rotates in the opposite direction, and a circular locus A is drawn. That is, when the workpiece W rotates together with the workpiece spindle 95a in the clockwise direction, for example, the cutting edge 80a or the tip portion 82 of the cutting tool 80 at the radial position (radial position) r in the radial direction R from the rotation axis RA is Rotates in the relative traveling direction or the rotational direction Dr, which is counterclockwise. At this time, the relative rotation angle of the tip portion 82 of the cutting tool 80 is θ. That is, the cutting edge 80a or the tip portion represented by the cylindrical coordinates (r, θ, zt) is controlled by controlling the axial position that is the coordinate value zt in the Z-axis direction of the cutting edge 80a or the tip portion 82 of the cutting tool 80. 82 trajectories A can be set, and the shape to be transferred to the surface Wa of the workpiece W can be arbitrarily set. At this time, the rotation speed of the work spindle 95a is set to a relatively low speed of 500 rpm or less. If the rotation speed of the workpiece spindle 95a or the workpiece W is large, it becomes difficult to synchronize the cutting edge 80a of the cutting tool 80 with the rotation of the workpiece spindle 95a, and it becomes difficult to ensure the processing accuracy. Is set to 500 rpm or less so that the processing accuracy can be easily secured.
If the change in the coordinate value zt, which is the axial position of the tip 82 of the cutting tool 80, corresponds to a slowly changing path as in the conventional optical surface, no particular problem occurs. When the coordinate value zt of 82 gives a path that changes rapidly, there arises a problem that the cutting edge 80a of the cutting tool 80 interferes with a target shape to be formed on the workpiece W.

図3、4等を参照して、切削用工具80の刃先80aがワークWに形成すべき目標形状と干渉する現象の一例について説明する。   An example of a phenomenon in which the cutting edge 80a of the cutting tool 80 interferes with a target shape to be formed on the workpiece W will be described with reference to FIGS.

切削用工具80の刃先80aは、図2(A)に示すように、先端部82だけでなく、先端部82の近傍に側部80bを有する。このため、ワークWに加工する目標形状が比較的平坦な場合は特に問題が生じないが、ワークWに加工する目標形状が溝形状又は畝形状のような急峻な立壁を形成する場合、目標形状が刃先80aと干渉する可能性がある。
図4(A)は、目標形状OFが急峻な立壁OWである場合を示している。このような立壁OWを加工する場合において、仮に点線で示すように刃先80aのすくい面83aが径方向Rに延び目標形状OFの立壁OWと平行でないとすると、刃先80aのうち先端部82の外側に隣接する側部80bが目標形状OFの立壁OWにめり込むように配置されるので、これらの間で干渉が生じて、刃先80a自体で目標形状OFを崩しながら加工することになって、加工精度を低下させることになる。その一方で、刃先80aのすくい面83aが目標形状OFの立壁OWと平行に延びるように配置されるならば、刃先80aの側部80b等が目標形状OFの立壁OWと干渉することを防止でき、刃先80a自体で目標形状OFを崩しながら加工することを防止して加工精度を維持することができる。このため、図3に示すように、刃先80aの回転角θ及び径方向Rの半径位置r(例えばr1,r2)に応じて、刃先80aの回転姿勢、すなわち径方向Rに対する傾斜角αを調整し、図4(A)に実線で示すようにすくい面83aが立壁OWに沿って延びるように配置する。なお、立壁OWを加工しない場合、つまり、比較的平坦な部分を加工する場合、刃先80aの傾斜角αをゼロに戻すのが原則である。ただし、このように比較的平坦な部分を加工する場合、刃先80aの傾斜角αをゼロに戻さなくても、加工自体は可能であり精度の劣化はない。よって、刃先80aの回転角θが立壁OWの位置に対して所定角度以下の範囲内で近づく近傍角度領域では、刃先80aの傾斜角αを徐々に増減変化させて、立壁OWに達した状態では、すくい面83aが立壁OWに沿って延びるようにする。逆に、刃先80aの回転角θが立壁OWの位置に対して所定角度以下の範囲内で離れる近傍角度領域では、刃先80aの傾斜角αを徐々にゼロに戻すように変化させる。つまり、立壁OWを加工しない場合、刃先80aの傾斜角αの設定にある程度の自由度があるが、刃先80aの傾斜角αの変化は、連続的で緩やかなものとすることが望ましい。
図4(B)は、刃先80aの傾斜角αの適正な範囲を説明する図である。刃先80aの傾斜角αが±45°を超えると、すくい面83aが刃先80aの進行方向に対して大きく傾くことになり、先端部82による精密な加工が容易でなくなる。図示のように、刃先80aの傾斜角αが±45°の範囲内であれば、刃先80aの軌跡に応じた精密な形状加工が比較的容易に達成される。また、刃先80aの傾斜角αを45°に近い比較的大きな角度で変化させる場合、加工精度確保の観点から、ワークスピンドル95aやワークWの回転数を大きくすることは容易でなくなる。このように、刃先80aの傾斜角αを比較的大きな角度で変化させる場合、ワークスピンドル95aの回転数は、刃先80aの傾斜角αの変化速度又は回転数に近づけることが望ましくなる。
As shown in FIG. 2A, the cutting edge 80a of the cutting tool 80 has not only the tip portion 82 but also a side portion 80b in the vicinity of the tip portion 82. For this reason, there is no particular problem when the target shape to be processed into the workpiece W is relatively flat. However, when the target shape to be processed into the workpiece W forms a steep standing wall such as a groove shape or a bowl shape, the target shape May interfere with the cutting edge 80a.
FIG. 4A shows a case where the target shape OF is a steep standing wall OW. When machining such a standing wall OW, if the rake face 83a of the blade edge 80a extends in the radial direction R and is not parallel to the standing wall OW of the target shape OF as indicated by a dotted line, the outer edge of the tip end portion 82 of the blade edge 80a. Since the side part 80b adjacent to is arranged so as to be recessed into the standing wall OW of the target shape OF, interference occurs between them, and the cutting edge 80a itself performs processing while destroying the target shape OF. Will be reduced. On the other hand, if the rake face 83a of the blade edge 80a is arranged so as to extend in parallel with the standing wall OW of the target shape OF, the side portion 80b of the blade edge 80a and the like can be prevented from interfering with the standing wall OW of the target shape OF. The cutting edge 80a itself can prevent the machining while breaking the target shape OF and maintain the machining accuracy. Therefore, as shown in FIG. 3, the rotational attitude of the cutting edge 80a, that is, the inclination angle α with respect to the radial direction R is adjusted according to the rotation angle θ of the cutting edge 80a and the radial position r (for example, r1, r2) in the radial direction R. Then, as shown by a solid line in FIG. 4A, the rake face 83a is arranged so as to extend along the standing wall OW. In principle, when the standing wall OW is not processed, that is, when a relatively flat portion is processed, the inclination angle α of the blade edge 80a is returned to zero. However, when machining such a relatively flat portion, the machining itself is possible and the accuracy is not deteriorated without returning the inclination angle α of the blade edge 80a to zero. Therefore, in the vicinity angle region in which the rotation angle θ of the blade edge 80a approaches within the predetermined angle or less with respect to the position of the standing wall OW, the inclination angle α of the blade edge 80a is gradually increased or decreased to reach the standing wall OW. The rake face 83a extends along the standing wall OW. Conversely, in the vicinity angle region where the rotation angle θ of the blade edge 80a is within a predetermined angle or less with respect to the position of the standing wall OW, the inclination angle α of the blade edge 80a is changed to gradually return to zero. That is, when the standing wall OW is not processed, there is a certain degree of freedom in setting the inclination angle α of the cutting edge 80a, but it is desirable that the change in the inclination angle α of the cutting edge 80a is continuous and gentle.
FIG. 4B is a diagram illustrating an appropriate range of the inclination angle α of the blade edge 80a. When the inclination angle α of the blade edge 80a exceeds ± 45 °, the rake face 83a is greatly inclined with respect to the traveling direction of the blade edge 80a, and precise machining by the tip portion 82 becomes difficult. As shown in the drawing, when the inclination angle α of the blade edge 80a is within a range of ± 45 °, precise shape processing corresponding to the locus of the blade edge 80a is relatively easily achieved. Further, when the inclination angle α of the blade edge 80a is changed at a relatively large angle close to 45 °, it is not easy to increase the rotation speed of the workpiece spindle 95a and the workpiece W from the viewpoint of ensuring machining accuracy. Thus, when the inclination angle α of the cutting edge 80a is changed at a relatively large angle, it is desirable that the rotation speed of the work spindle 95a be close to the changing speed or the rotation speed of the inclination angle α of the cutting edge 80a.

さらに、目標形状が溝形状又は畝形状のように反対向きの一対の立壁又は段差を含む場合、図2(A)に示す切削用工具80の先端部82に設けられている第2逃げ面(裏面)83c等がワークWに形成すべき目標形状と干渉して形状劣化が生じる可能性がある。このような現象は、目標形状の下がり段差の傾斜が第2逃げ角γ2よりも急峻な傾斜を有するような立壁OWの場合に顕著に生じる。   Furthermore, when the target shape includes a pair of standing walls or steps opposite to each other such as a groove shape or a saddle shape, a second flank surface provided on the tip 82 of the cutting tool 80 shown in FIG. There is a possibility that the back surface) 83c and the like interfere with the target shape to be formed on the workpiece W to cause shape deterioration. Such a phenomenon remarkably occurs in the case of the standing wall OW in which the slope of the lower step of the target shape has a steeper slope than the second clearance angle γ2.

図5(A)及び5(B)は、切削用工具80の先端部82以外の第2逃げ面83c等がワークWに形成すべき目標形状と干渉して形状劣化が生じることを回避する手法を説明する断面図である。この断面図は、切削用工具80の先端部82の図3に示すような軌跡Aに沿った断面となっており、図面の縦方向は、±Z軸方向の位置を示し、図面の横方向は、先端部82の相対的な回転角θに対応する位置を示す。   5 (A) and 5 (B) show a technique for avoiding shape degradation caused by interference of the second flank 83c other than the tip 82 of the cutting tool 80 with the target shape to be formed on the workpiece W. FIG. FIG. This cross-sectional view is a cross-section along the locus A as shown in FIG. 3 of the tip 82 of the cutting tool 80, and the vertical direction of the drawing indicates the position in the ± Z-axis direction, and the horizontal direction of the drawing. Indicates a position corresponding to the relative rotation angle θ of the tip 82.

図5(A)に示すように、ワークWが第1回転方向である時計方向(CW)に回転している場合において、目標形状OFに急峻な段差があっても、切削用工具80の回転方向又は進行方向Drの先で上がる段差であれば、切削用工具80を−Z軸方向に後退させて引込めるだけで精密な加工が可能になる。つまり、切削用工具80の逃げ面83b,83cと目標形状OFの立壁OW1とは干渉せず、目標形状OFを劣化させないで加工することができる。一方、ワークWが時計方向(CW)に回転している場合において、切削用工具80の回転方向又は進行方向Drの先で下がる段差を加工するときは、切削用工具80を+Z軸方向に切込むように動作させて切削を行うと、目標形状OFの立壁OW2の頂点等と切削用工具80の逃げ面83b,83cとが干渉して、点線Dで示すように立壁OW2の形状が鈍って加工されることになり、根元に加工残りが発生する。
なお、立壁OW2が切削用工具80と干渉する問題は、立壁OW2の傾斜角Δが切削用工具80のチップ部81aの第2逃げ角γ2よりも大きくなるときに生じる。ただし、チップ部81aの第1逃げ面83bが比較的広いときは、立壁OW2の傾斜角Δが第1逃げ面83bに対応する第1逃げ角γ1よりも大きくなるときにも、同様の干渉の問題が生じる。
As shown in FIG. 5A, when the workpiece W is rotating in the clockwise direction (CW), which is the first rotation direction, the cutting tool 80 is rotated even if there is a steep step in the target shape OF. If the level difference is higher than the direction or the direction of travel Dr, precise machining can be performed only by retracting the cutting tool 80 in the −Z axis direction. That is, the flank surfaces 83b and 83c of the cutting tool 80 and the standing wall OW1 of the target shape OF do not interfere with each other, and processing can be performed without degrading the target shape OF. On the other hand, when the workpiece W is rotating in the clockwise direction (CW), the cutting tool 80 is cut in the + Z-axis direction when machining a step that goes down in the rotational direction of the cutting tool 80 or the forward direction Dr. When cutting is performed so that the top wall OW2 of the target shape OF is cut and the flank surfaces 83b and 83c of the cutting tool 80 interfere with each other, the shape of the vertical wall OW2 becomes dull as shown by the dotted line D. It will be processed, and a processing residue will occur at the root.
The problem that the standing wall OW2 interferes with the cutting tool 80 occurs when the inclination angle Δ of the standing wall OW2 is larger than the second clearance angle γ2 of the tip portion 81a of the cutting tool 80. However, when the first flank 83b of the tip portion 81a is relatively wide, the same interference occurs when the inclination angle Δ of the standing wall OW2 is larger than the first flank angle γ1 corresponding to the first flank 83b. Problems arise.

そこで、図5(B)に示すように、図5(A)に示すものと同じ軌跡Aの一部に関して、ワークWを第2回転方向である反時計方向(CCW)に回転させる。この場合、立壁OW2の段差が逆転する。つまり、図5(A)に示す時計方向(CW)の回転で回転方向又は進行方向Drに急激に下がる段差である立壁OW2は、図5(B)に示す反時計方向(CCW)の回転で回転方向又は進行方向Drに急激に上がる段差となる。これにより、切削用工具80を−Z軸方向に引込めるように動作させて切削を行うことで立壁OW2を形成でき、立壁OW2の頂点等と切削用工具80の逃げ面83b,83cとが干渉して立壁OW2の形状が鈍って加工されることを確実に防止できる。   Therefore, as shown in FIG. 5B, the workpiece W is rotated in the counterclockwise direction (CCW), which is the second rotation direction, with respect to a part of the same locus A as shown in FIG. In this case, the step of the standing wall OW2 is reversed. That is, the standing wall OW2, which is a step that rapidly decreases in the rotation direction or the traveling direction Dr by the clockwise rotation (CW) shown in FIG. 5A, is counterclockwise (CCW) rotation shown in FIG. 5B. It becomes a level | step difference which goes up rapidly in the rotation direction or the advancing direction Dr. Thus, the standing wall OW2 can be formed by operating the cutting tool 80 so as to be retracted in the −Z-axis direction, and the top of the standing wall OW2 and the flank surfaces 83b and 83c of the cutting tool 80 interfere with each other. Thus, it is possible to reliably prevent the standing wall OW2 from being processed with a dull shape.

結果的に、図5(A)に示す時計方向(CW)の回転による加工と、図5(B)に示す反時計方向(CCW)の回転による加工とを合成すれば、ワークWの表面Waに目標形状OFを形成することができることが分かる。この際、図示の例では、目標形状OFのうち急峻な段差でない部分(非立壁状の形状部分)OF0についても、図5(A)に示す時計方向(CW)の回転による加工に付加して行うこととしている。つまり、図5(A)に示す第1切削工程で、正転方向の立壁OW1と急峻な段差でない部分(非立壁状の形状部分)OF0とを含めたパターンPA1が加工される。そして、次の図5(B)に示す第2切削工工程で、逆転方向の立壁OW2及びそれに続く付随部分を含めたパターンPA2が加工される。ただし、急峻な段差でない部分(非立壁状の形状部分)OF0については、図5(B)に示す反時計方向(CCW)の回転による第2切削工程に付加して行うこともできる。さらに、図5(A)のパターンPA1は、単一の立壁OW1を含むものに限らず、複数の立壁OW1を含むものであってもよいが、2つの第1タイプの立壁OW1の間に第2タイプの立壁OW2が存在する場合、この立壁OW2周辺はパターンPA1から外される。つまり、この場合、第1のパターンPA1と、第2のパターンPA2とは、交互に複数回繰り返される要素からなるものとなる。   As a result, the surface Wa of the workpiece W can be obtained by combining the processing by the clockwise rotation (CW) shown in FIG. 5A and the processing by the counterclockwise rotation (CCW) shown in FIG. It can be seen that the target shape OF can be formed. At this time, in the illustrated example, a portion (non-standing wall-shaped portion) OF0 that is not a steep step in the target shape OF is also added to the processing by the clockwise rotation (CW) shown in FIG. To do. That is, in the first cutting step shown in FIG. 5A, the pattern PA1 including the standing wall OW1 in the forward rotation direction and the portion (non-standing wall-shaped shape portion) OF0 that is not a steep step is processed. Then, in the second cutting step shown in FIG. 5B, the pattern PA2 including the upright wall OW2 in the reverse direction and the accompanying portion following it is processed. However, the portion that is not a steep step (non-standing wall-shaped portion) OF0 can be added to the second cutting step by the counterclockwise (CCW) rotation shown in FIG. 5B. Furthermore, the pattern PA1 in FIG. 5A is not limited to the pattern PA1 including the single standing wall OW1, but may include a plurality of standing walls OW1, but the pattern PA1 may be formed between the two first type standing walls OW1. When there are two types of standing wall OW2, the periphery of the standing wall OW2 is removed from the pattern PA1. That is, in this case, the first pattern PA1 and the second pattern PA2 are composed of elements that are alternately repeated a plurality of times.

図5(A)に示す加工と図5(B)に示す加工とは、ワークWに対して切削用工具80が反転する必要があるため一般に同時に行うことができない。よって、一連の目標形状OFであっても時計方向(CW)の回転による加工と反時計方向(CCW)の回転による加工とを切換えて個別に実施する必要があり、回転の切換えに際してワークWの回転角θがずれないように調整する必要がある。さらに、図5(A)に示す第1切削工程から図5(B)に示す第2切削工程に切換える際には、通常は切削用工具80の先端部82をZ軸方向にシフトさせる必要があるが、このシフトが大きくなると、先端部82の位置精度を保つことが容易でなくなる。このため、図5(A)に示す加工から図5(B)に示す加工に切換える際の先端部82の変位量又はシフトを20nm程度以下とすることが望ましい。ただし、かかる変位量又はシフトが上記20nmを超えても、先端部82の刃先位置は、リアルタイム又は事前の計測を用いた制御手法等を用いることで、精密に補正することができる。   The machining shown in FIG. 5A and the machining shown in FIG. 5B cannot generally be performed simultaneously because the cutting tool 80 needs to be reversed with respect to the workpiece W. Therefore, even with a series of target shapes OF, it is necessary to switch between clockwise machining (CW) rotation and counterclockwise rotation (CCW) rotation, and to perform them individually. It is necessary to adjust so that the rotation angle θ does not shift. Furthermore, when switching from the first cutting step shown in FIG. 5A to the second cutting step shown in FIG. 5B, it is usually necessary to shift the tip 82 of the cutting tool 80 in the Z-axis direction. However, when this shift becomes large, it becomes difficult to maintain the positional accuracy of the tip 82. For this reason, it is desirable that the displacement amount or shift of the tip 82 when switching from the processing shown in FIG. 5A to the processing shown in FIG. 5B is about 20 nm or less. However, even if the amount of displacement or shift exceeds 20 nm, the cutting edge position of the tip 82 can be accurately corrected by using a control method using real-time or prior measurement.

また、図5(A)に示す第1切削工程を行う場合、段差が逆の立壁OW2やこれに付随する手前部分(立壁状の形状部分)を加工しない必要がある。つまり、立壁OW2を劣化させることを防止するため、立壁OW2を含む立壁状の形状部分を切削用工具80が通る際に、切削用工具80を−Z軸方向に十分なマージンを持って引込める空振りKが必要となる。この際、切削用工具80を引込めるマージンは、立壁OW2の段差量以上を確保する必要があるが、複数の立壁OW2が存在する場合、最大の段差量以上とする。このような最大段差は、切削用工具80のZ軸方向の可動量すなわち最大振幅以下とする必要があり、具体的な実施例では1000μm以下とした。逆に、また、図5(B)に示す第2切削工程を行う場合、段差が逆の立壁OW1やこれに付随する手前部分(立壁状の形状部分)を加工しない必要がある。このため、立壁OW1を含む立壁状の形状部分を切削用工具80が通る際に、切削用工具80を−Z軸方向に十分なマージンを持って引込める空振りKを行っている。   When performing the 1st cutting process shown in Drawing 5 (A), it is necessary not to process standing wall OW2 and the near part (standing wall-like shape part) accompanying this in which a level | step difference is reverse. That is, in order to prevent the standing wall OW2 from being deteriorated, the cutting tool 80 is retracted with a sufficient margin in the −Z-axis direction when the cutting tool 80 passes through the standing wall-shaped portion including the standing wall OW2. Missed swing K is required. At this time, the margin for retracting the cutting tool 80 needs to be equal to or greater than the step amount of the standing wall OW2, but when there are a plurality of standing walls OW2, the margin is equal to or greater than the maximum step amount. Such a maximum step needs to be less than or equal to the movable amount of the cutting tool 80 in the Z-axis direction, that is, the maximum amplitude, and is set to 1000 μm or less in a specific embodiment. Conversely, when performing the 2nd cutting process shown in Drawing 5 (B), it is necessary not to process upright wall OW1 and the front part (standing wall-like shape part) accompanying this in which a level | step difference is reverse. For this reason, when the cutting tool 80 passes through the standing wall-shaped portion including the standing wall OW1, the idle swing K is performed to retract the cutting tool 80 with a sufficient margin in the −Z-axis direction.

図6(A)及び6(B)は、図5(A)及び5(B)に示す加工動作の変形例を示している。この場合、図6(A)に示す反時計方向(CCW)の回転による加工が先行し、図6(B)に示す時計方向(CW)の回転による加工が続く。この場合も、図6(A)に示す反時計方向(CCW)の回転による第1切削工程と、図6(B)に示す時計方向(CW)の回転による第2切削工程とが合成され、ワークWの表面Waに目標形状OFを形成することができる。この際、目標形状OFのうち急峻な段差でない部分OF0については、図示の例では、図6(A)に示す反時計方向(CCW)の回転による加工に付加して行うこととしているが、図6(B)に示す時計方向(CW)の回転による加工に付加して行うこともできる。   6 (A) and 6 (B) show a modification of the machining operation shown in FIGS. 5 (A) and 5 (B). In this case, the processing by the counterclockwise (CCW) rotation shown in FIG. 6 (A) precedes, and the processing by the clockwise (CW) rotation shown in FIG. 6 (B) continues. Also in this case, the first cutting step by the counterclockwise rotation (CCW) shown in FIG. 6A and the second cutting step by the clockwise rotation (CW) shown in FIG. The target shape OF can be formed on the surface Wa of the workpiece W. At this time, the portion OF0 which is not a steep step in the target shape OF is added to the processing by the counterclockwise (CCW) rotation shown in FIG. 6A in the illustrated example. It can also be added to the processing by the clockwise (CW) rotation shown in FIG.

以下、図5(A)に示す時計方向(CW)の回転による第1切削工程と、図5(B)に示す反時計方向(CCW)の回転による第2切削工程とを連続して行う具体的手法について説明する。
図7(A)に示す第1切削工程では、第2駆動機構94cを適宜動作させることにより、切削用工具80の先端部82つまり工具軸TXを回転軸RAの−X軸方向であってワークWの外周位置からスタートさせて、ワークWの中心である回転軸RAが通る位置Oまで+X方向に移動させる。つまり、ワークWの外周位置から中心の位置Oまでが先端部82の駆動範囲となっている。この際、第2駆動機構94cだけでなく、第3駆動機構95c及び第4駆動機構95dも、第1駆動機構94bと同期して動作する。これにより、ワークWの表面Wa全体に図5(A)に例示する第1パターンPA1の加工が、切削用工具80の回転姿勢を適正に保ちつつ実行される。なお、図7(A)に示すようにワークWの外周位置から加工を開始する場合、予め刃先80aの回転姿勢又は傾斜角αを調整し、すくい面83aが立壁OWに沿って延びるように事前準備動作を行うことが望ましい。これにより、刃先80aの回転姿勢の調節を精密にでき、ワークWの外周位置における加工精度を確保することができる。
その後、図7(B)に示す第2切削工程では、第2駆動機構94cを適宜動作させることにより、切削用工具80の先端部82をワークWの中心である回転軸RAが通る位置Oからスタートさせて、回転軸RAの+X軸方向であってワークWの外周位置まで+X方向に移動させる。つまり、ワークWの中心の位置Oから外周位置までが先端部82の駆動範囲となっている。この際、第2駆動機構94cだけでなく、第3駆動機構95c及び第4駆動機構95dも、第1駆動機構94bと同期して動作する。これにより、ワークWの表面Wa全体に図5(B)に例示する第2パターンPA2の加工が、切削用工具80又は刃先80aの回転姿勢を適正に保ちつつ実行さる。結果的に、両パターンPA1,PA2を合成したものによって、ワークWの表面Wa上に目標とする形状が得られる。
この場合、図7(A)に示す工程から図7(B)に示す工程に移る際に、回転方向が変わるため切削用工具80の先端部82を若干−Z軸方向に引込めることが望ましいが、引込めるとしても殆ど変位させる必要がないので、切削用工具80による加工精度を維持しやすい。なお、図7(A)に示す工程から図7(B)に示す工程に移る際に、切削用工具80は、そのまま回転しないでも、刃先80aのすくい面83aが自動的に回転方向又は進行方向Drを向く。つまり、切削用工具80の向きを回転方向に対応させて自動的に機能的な意味で反転させることになる。この際、切削用工具80の回転姿勢を調整することもでき、この場合、刃先80aの反転に傾斜角を追加した効果を得ることができる。
Hereinafter, the first cutting process by the clockwise rotation (CW) shown in FIG. 5A and the second cutting process by the counterclockwise rotation (CCW) shown in FIG. A typical method will be described.
In the first cutting step shown in FIG. 7A, the tip end portion 82 of the cutting tool 80, that is, the tool axis TX is set in the −X-axis direction of the rotation axis RA by appropriately operating the second drive mechanism 94c. Starting from the outer peripheral position of W, it is moved in the + X direction to a position O through which the rotation axis RA, which is the center of the workpiece W, passes. That is, the driving range of the tip 82 is from the outer peripheral position of the workpiece W to the center position O. At this time, not only the second drive mechanism 94c but also the third drive mechanism 95c and the fourth drive mechanism 95d operate in synchronization with the first drive mechanism 94b. Thereby, the processing of the first pattern PA1 illustrated in FIG. 5A is performed on the entire surface Wa of the workpiece W while the rotation posture of the cutting tool 80 is appropriately maintained. When machining is started from the outer peripheral position of the workpiece W as shown in FIG. 7A, the rotation posture or the inclination angle α of the cutting edge 80a is adjusted in advance so that the rake face 83a extends along the standing wall OW. It is desirable to perform a preparatory operation. Thereby, the rotation posture of the cutting edge 80a can be adjusted precisely, and the machining accuracy at the outer peripheral position of the workpiece W can be ensured.
Thereafter, in the second cutting step shown in FIG. 7B, the second drive mechanism 94c is appropriately operated to move the tip 82 of the cutting tool 80 from the position O through which the rotation axis RA that is the center of the workpiece W passes. It is started and moved in the + X direction of the rotation axis RA to the outer peripheral position of the workpiece W in the + X direction. That is, the driving range of the tip 82 is from the center position O to the outer peripheral position of the workpiece W. At this time, not only the second drive mechanism 94c but also the third drive mechanism 95c and the fourth drive mechanism 95d operate in synchronization with the first drive mechanism 94b. Thereby, the processing of the second pattern PA2 illustrated in FIG. 5B is performed on the entire surface Wa of the workpiece W while the rotational posture of the cutting tool 80 or the cutting edge 80a is appropriately maintained. As a result, a target shape can be obtained on the surface Wa of the workpiece W by combining the patterns PA1 and PA2.
In this case, when moving from the step shown in FIG. 7 (A) to the step shown in FIG. 7 (B), it is desirable to slightly retract the tip 82 of the cutting tool 80 in the −Z-axis direction because the rotation direction changes. However, since it is not necessary to displace even if it retracts, it is easy to maintain the processing accuracy by the cutting tool 80. When the process shown in FIG. 7 (A) is shifted to the process shown in FIG. 7 (B), the rake face 83a of the cutting edge 80a is automatically rotated in the rotational direction or the traveling direction, even though the cutting tool 80 does not rotate as it is. Turn to Dr. That is, the direction of the cutting tool 80 is automatically reversed in a functional sense in accordance with the rotation direction. At this time, the rotational posture of the cutting tool 80 can also be adjusted. In this case, the effect of adding an inclination angle to the reversal of the blade edge 80a can be obtained.

なお、図7(A)に示す工程から図7(B)に示す工程に移る切替えの際には、ワークWの回転方向の角度関係を整合させること、すなわち加工位置の回転角に関する座標を切換える必要がある。つまり、図7(B)の加工では、図7(A)の加工における回転角θの符号が反転するとともに位相が180°ずれることになる。   When switching from the process shown in FIG. 7A to the process shown in FIG. 7B, the angular relationship in the rotation direction of the workpiece W is matched, that is, the coordinates relating to the rotation angle of the machining position are switched. There is a need. That is, in the processing of FIG. 7B, the sign of the rotation angle θ in the processing of FIG. 7A is reversed and the phase is shifted by 180 °.

図7(A)及び7(B)に示す切削工程の組み合わせは例示であり、図7(B)に示すような外向きの切削加工後に、図7(A)に示す内向きの切削加工を行ったり、図7(A)に示す内向きの切削加工を−X方向に逆進させたような外向きの切削加工を行うこともできる。   The combinations of the cutting processes shown in FIGS. 7A and 7B are examples, and after the outward cutting as shown in FIG. 7B, the inward cutting shown in FIG. 7A is performed. It is also possible to perform an outward cutting process in which the inward cutting process shown in FIG. 7A is reversed in the −X direction.

図8(A)及び8(B)を参照して、ワークWに形成すべき目標形状の具体例について説明する。ワークWには、上記のような手法によって、らせん形状の微細構造を効率良く、かつ、高精度に作製することができ、これにより、高精度のらせん状の回折格子を得る。加工形状PAの具体例であるらせん形状は、溝1a又は突起1bが径方向外側に広がるように湾曲して延びており、各溝1a又は突起1bの円周方向断面は矩形となっている。この場合、目標形状の立壁OWの面方向が刃先80aの径方向Rの半径位置rの増加に伴って徐々に時計方向に回転するので、刃先80aの傾斜角αを半径位置rに合わせて徐々に増加させる、つまり時計方向に回転させる必要がある。さらに、目標形状の突起1bを構成する立壁OWが、ワークWが時計方向(CW)に回転している場合の立壁OW1と、ワークWが反時計方向(CCW)に回転している場合の立壁OW2とを含むので、上記のように、図5(A)に例示するような時計方向(CW)の回転による第1切削工程と、図5(B)に例示するような反時計方向(CCW)の回転による第2切削工程とを連続して行うことになる。   A specific example of the target shape to be formed on the workpiece W will be described with reference to FIGS. The workpiece W can be produced with high accuracy and a spiral-shaped fine structure by the above-described method, thereby obtaining a highly accurate spiral diffraction grating. The spiral shape, which is a specific example of the processed shape PA, is curved and extended so that the groove 1a or the protrusion 1b expands radially outward, and the circumferential cross section of each groove 1a or protrusion 1b is rectangular. In this case, since the surface direction of the standing wall OW of the target shape is gradually rotated clockwise as the radial position r in the radial direction R of the blade edge 80a increases, the inclination angle α of the blade edge 80a is gradually adjusted to the radial position r. Must be increased, that is, rotated clockwise. Further, the standing wall OW constituting the target-shaped protrusion 1b includes the standing wall OW1 when the workpiece W is rotating in the clockwise direction (CW) and the standing wall when the workpiece W is rotating in the counterclockwise direction (CCW). OW2, as described above, the first cutting step by clockwise rotation (CW) as exemplified in FIG. 5A and the counterclockwise direction (CCW as exemplified in FIG. 5B) ) In the second cutting step by rotation.

図9を参照して、図1の加工装置100を用いた加工方法の全体について簡単に説明する。まず、主制御装置98は、外部又は記憶部から対象とするワークWに関する加工形状情報を取り込む(ステップS11)。次に、主制御装置98は、ステップS11で取り込んだ加工形状情報から、第1回転方向である時計方向(CW)の回転に適合させた第1切削工程に関して加工点の軌跡及び刃先80aの傾斜角を算出するとともに、反時計方向(CCW)の回転に適合させた第2切削工程に関して加工点の軌跡及び刃先80aの傾斜角を算出する。つまり、加工形状情報を加工して第1及び第2回転方向に関する2つの分離された加工データを得る(ステップS12)。この際、図7(A)及び7(B)等を参照して説明したように、2つの加工データは、回転角θの符号を反転させるとともに位相を180°ずらすことで整合性が保たれる。さらに、干渉を避けるべく各加工データに対して空振り量が適宜設定される。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第1回転方向である時計方向(CW)の第1切削工程に適合するようにワークWの回転角と切削用工具80の径方向位置とを初期化する(ステップS13)。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第1回転方向の加工すなわち第1切削工程を実行する(ステップS14)。これにより、図5(A)に例示するような加工が刃先80aの回転姿勢又は傾斜角を適正に設定しつつ行われる。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第2回転方向である反時計方向(CCW)の第2切削工程に適合するようにワークWの回転角と切削用工具80の径方向位置とを初期化する(ステップS15)。次に、主制御装置98は、駆動制御装置97を介してNC駆動機構91を適宜動作させ、第2回転方向の加工すなわち第2切削工程を実行する(ステップS16)。これにより、図5(B)に例示するような加工が刃先80aの回転姿勢又は傾斜角を適正に設定しつつ行われる。   With reference to FIG. 9, the whole processing method using the processing apparatus 100 of FIG. 1 is demonstrated easily. First, the main controller 98 takes in the machining shape information related to the target workpiece W from the outside or the storage unit (step S11). Next, the main controller 98 determines the locus of the machining point and the inclination of the cutting edge 80a with respect to the first cutting process adapted to the clockwise rotation (CW), which is the first rotation direction, from the machining shape information acquired in step S11. While calculating | requiring an angle, the locus | trajectory of a process point and the inclination | tilt angle of the blade edge | tip 80a are calculated regarding the 2nd cutting process adapted to rotation of a counterclockwise direction (CCW). That is, the machining shape information is machined to obtain two separated machining data relating to the first and second rotation directions (step S12). At this time, as described with reference to FIGS. 7A and 7B and the like, the consistency of the two processed data is maintained by inverting the sign of the rotation angle θ and shifting the phase by 180 °. It is. In addition, an idle swing amount is appropriately set for each processing data in order to avoid interference. Next, the main controller 98 appropriately operates the NC drive mechanism 91 via the drive controller 97 to rotate the workpiece W so as to conform to the first cutting process in the clockwise direction (CW) which is the first rotation direction. The corners and the radial position of the cutting tool 80 are initialized (step S13). Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97, and executes the processing in the first rotational direction, that is, the first cutting step (step S14). Thereby, the processing illustrated in FIG. 5A is performed while appropriately setting the rotation posture or the inclination angle of the blade edge 80a. Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97 to adjust the workpiece W so as to conform to the second cutting process in the counterclockwise direction (CCW) that is the second rotation direction. The rotation angle and the radial position of the cutting tool 80 are initialized (step S15). Next, the main control device 98 appropriately operates the NC drive mechanism 91 via the drive control device 97, and executes the processing in the second rotational direction, that is, the second cutting step (step S16). Thereby, the process illustrated in FIG. 5B is performed while appropriately setting the rotation posture or the inclination angle of the blade edge 80a.

本実施形態に係る加工方法によれば、ワークWに対する切削用工具80の刃先位置に応じて切削用工具80の工具軸TXのまわりの回転姿勢を調整するので、加工時の径方向Rに沿って向きが一様でない立壁OWを形成する場合であっても、切削用工具80の刃先80aの側部80bと目標形状OFとが干渉することを防止でき、得られる形状に形状劣化が生じることを防止できる。   According to the machining method according to the present embodiment, the rotational posture around the tool axis TX of the cutting tool 80 is adjusted in accordance with the cutting edge position of the cutting tool 80 with respect to the workpiece W. Even when the standing wall OW having a non-uniform orientation is formed, the side portion 80b of the cutting edge 80a of the cutting tool 80 and the target shape OF can be prevented from interfering with each other, and the resulting shape can be deteriorated. Can be prevented.

以上、本実施形態に係る加工方法等について説明したが、本発明に係る加工方法は、上記のものには限られない。例えば、上記実施形態では、切削用工具80をZ軸方向に進退させるとともにX軸方向に走査移動させたが、ワークW側をZ軸方向に進退させるとともにX軸方向に走査移動させることもできる。   The processing method according to the present embodiment has been described above, but the processing method according to the present invention is not limited to the above. For example, in the above embodiment, the cutting tool 80 is moved back and forth in the Z-axis direction and scanned in the X-axis direction, but the workpiece W side can be moved back and forth in the Z-axis direction and scanned and moved in the X-axis direction. .

また、上記実施形態では、ワークW側を回転させたが、ワークW側を回転させないで切削用工具80側を回転させることによっても同様の加工が可能になる。   Moreover, in the said embodiment, although the workpiece | work W side was rotated, the same process can be performed also by rotating the cutting tool 80 side, without rotating the workpiece | work W side.

また、図4(A)に示す時計方向(CW)の回転による第1切削工程と、図4(B)に示す反時計方向(CCW)の回転による第2切削工程との間で例えば誤差が生じる場合、これを補償するような制御を行うこともできるが、結果的に形成される意図しない段差が低いものであれば事後的に除去することもできる。段差の除去方法として、例えばGCIB(Gas Cluster Ion Beam)のようなビーム加工型の研磨法を用いることができる。   Further, for example, there is an error between the first cutting process by the clockwise (CW) rotation shown in FIG. 4A and the second cutting process by the counterclockwise (CCW) rotation shown in FIG. If it occurs, control can be performed to compensate for this, but if the unintentional step formed as a result is low, it can be removed later. As a method for removing the step, for example, a beam processing type polishing method such as GCIB (Gas Cluster Ion Beam) can be used.

以上では、第1切削工程と第2切削工程とに分けたが、3つ以上の切削工程に分割してこれらを順次行うこともできる。   In the above, although divided into the 1st cutting process and the 2nd cutting process, it can also divide into three or more cutting processes, and these can also be performed sequentially.

以上では、加工形状PAとしてらせん状の回折格子の作製を図示したが、本発明はこれに限ることなく、本発明の手法により多様な面を含む各種光学素子、その成形金型等を上記加工方法によって作製することができる。図10に、加工形状PAとして、扇状の領域にストライプ状に延びる多数の突起からなる回折格子を形成したものを例示した。このような光学素子も本発明の手法により精密かつ効率的に作製することができる。
また、ワークWに形成すべき目標形状は、図8(B)等に示すように円周方向断面が矩形のものに限る必要はなく、円周方向断面が三角形又は鋸歯状であってもよい。この場合、図5(A)に示す第1切削工程のみでワークWの加工を完結することも可能になる。
In the above, the production of the spiral diffraction grating is illustrated as the processed shape PA. However, the present invention is not limited to this, and various optical elements including various surfaces, molding dies, and the like are processed by the method of the present invention. It can be produced by a method. FIG. 10 illustrates a processed shape PA in which a diffraction grating composed of a large number of protrusions extending in a stripe shape is formed in a fan-shaped region. Such an optical element can also be precisely and efficiently manufactured by the method of the present invention.
Further, the target shape to be formed on the workpiece W does not have to be limited to a rectangular cross section in the circumferential direction as shown in FIG. 8B or the like, and the cross section in the circumferential direction may be a triangle or a sawtooth shape. . In this case, it becomes possible to complete the processing of the workpiece W only by the first cutting step shown in FIG.

A…軌跡、 TX…工具軸、 RA…回転軸、 W…ワーク、 OF…目標形状、 OW…立壁、 OW1…立壁、 OW2…立壁、 80…切削用工具、 80b…側部、 81a…チップ部、 82…先端部、 81a…チップ部、 81b…シャンク部、 82…先端部、 83a…すくい面、 83b,83c…逃げ面、 91…NC駆動機構、 94b…第1駆動機構、 94c…第2駆動機構、 95a…ワークスピンドル、 95c…第3駆動機構、 95c…第3駆動機構、 97…駆動制御装置、 98…主制御装置、 100…加工装置   A ... locus, TX ... tool axis, RA ... rotary axis, W ... work, OF ... target shape, OW ... standing wall, OW1 ... standing wall, OW2 ... standing wall, 80 ... cutting tool, 80b ... side, 81a ... tip part 82 ... tip portion, 81a ... tip portion, 81b ... shank portion, 82 ... tip portion, 83a ... rake face, 83b, 83c ... relief surface, 91 ... NC drive mechanism, 94b ... first drive mechanism, 94c ... second Drive mechanism, 95a ... work spindle, 95c ... third drive mechanism, 95c ... third drive mechanism, 97 ... drive control device, 98 ... main control device, 100 ... processing device

Claims (8)

刃先にすくい面及び逃げ面を有する切削用工具に対してワークを回転させつつ前記切削用工具をワークの径方向に相対的に移動させ、ワークに対する前記切削用工具の前記刃先の位置である刃先位置に応じて前記刃先が通る工具軸の延びる方向に前記切削用工具を変位させることによって、ワークの切削加工を行う加工方法であって、
ワークに対する前記切削用工具の前記刃先位置に応じて、前記切削用工具の前記工具軸のまわりの回転姿勢を調整することを特徴とする加工方法。
The cutting edge which is the position of the cutting edge of the cutting tool relative to the workpiece by moving the cutting tool relatively in the radial direction of the workpiece while rotating the workpiece with respect to the cutting tool having a rake face and a flank on the cutting edge. A machining method for cutting a workpiece by displacing the cutting tool in a direction in which a tool axis passes through the cutting edge according to a position,
A processing method comprising adjusting a rotational posture of the cutting tool around the tool axis in accordance with the cutting edge position of the cutting tool with respect to a workpiece.
前記切削用工具の前記刃先に対するワークの相対的な回転角と、ワークに対する前記刃先の回転軸を基準とする径方向位置とに応じて、前記刃先の前記工具軸のまわりの前記径方向を基準としての傾斜角を調整することを特徴とする請求項1に記載の加工方法。   Based on the relative rotation angle of the workpiece with respect to the cutting edge of the cutting tool and the radial position with respect to the rotation axis of the cutting edge with respect to the workpiece, the radial direction around the tool axis of the cutting edge is referred to The processing method according to claim 1, wherein the inclination angle is adjusted. 前記刃先の前記工具軸のまわりの傾斜角は、最大で±45°の範囲で変化させることを特徴とする請求項2に記載の加工方法。   The machining method according to claim 2, wherein an inclination angle of the cutting edge around the tool axis is changed in a range of ± 45 ° at the maximum. 前記切削用工具に対するワークの回転速度は、500rpm以下であることを特徴とする請求項1〜3のいずれか一項に記載の加工方法。   The processing method according to any one of claims 1 to 3, wherein a rotation speed of the workpiece with respect to the cutting tool is 500 rpm or less. ワークに形成される立壁状の形状部分に沿うように前記刃先の前記工具軸のまわりの回転姿勢を変化させることを特徴とする請求項1〜4のいずれか一項に記載の加工方法。   The machining method according to any one of claims 1 to 4, wherein a rotational posture of the cutting edge around the tool axis is changed along a vertical wall-shaped portion formed on the workpiece. 前記刃先に対してワークを一方の第1回転方向に回転させつつ、少なくとも前記刃先の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記刃先を引込める動作によって選択的に加工し、
前記刃先に対してワークを他方の第2回転方向に回転させつつ、少なくとも前記刃先の進行方向に関して所定傾斜角以上の立壁状の形状部分を、前記刃先を引込める動作によって選択的に加工し、
前記第1及び第2回転方向のいずれかの回転に付随して、前記所定傾斜角以上の立壁状の形状部分を除いた非立壁状の形状部分を、前記刃先を切込ませ又は引込める動作によって加工することを特徴とする請求項1〜5のいずれか一項に記載の加工方法。
While rotating the workpiece in one first rotation direction with respect to the cutting edge, at least a vertical wall-shaped part having a predetermined inclination angle or more with respect to the traveling direction of the cutting edge is selectively processed by an operation of retracting the cutting edge,
While rotating the workpiece in the other second rotation direction with respect to the cutting edge, at least a vertical wall-shaped part having a predetermined inclination angle or more with respect to the traveling direction of the cutting edge is selectively processed by an operation of retracting the cutting edge,
The operation of cutting or retracting the cutting edge of the non-standing wall-shaped portion excluding the standing wall-shaped shape portion having a predetermined inclination angle or more accompanying the rotation in any of the first and second rotation directions. The processing method according to any one of claims 1 to 5, wherein the processing method is performed.
ワークに形成される立壁状の形状部分の段差量は、前記切削用工具の軸方向位置の最大振幅以下であることを特徴とする請求項5及び6のいずれか一項に記載の加工方法。   The machining method according to any one of claims 5 and 6, wherein a step amount of the standing wall-shaped portion formed on the workpiece is equal to or less than a maximum amplitude of an axial position of the cutting tool. 刃先にすくい面及び逃げ面を有する切削用工具と、
前記切削用工具に対してワークを回転軸のまわりに相対的に回転させる第1駆動機構と、
前記切削用工具を前記回転軸に垂直な径方向に相対的に移動させる第2駆動機構と、
ワークに対する前記切削用工具の前記刃先の位置である刃先位置に応じて、前記切削用工具の前記刃先が通る工具軸の延びる方向に前記切削用工具を変位させる第3駆動機構と、
ワークに対する前記切削用工具の前記刃先位置に応じて、前記切削用工具の前記工具軸のまわりの回転姿勢を調整する第4駆動機構と、
を備えることを特徴とする加工装置。
A cutting tool having a rake face and a flank face at the cutting edge;
A first drive mechanism for rotating the workpiece relative to the cutting tool relative to a rotation axis;
A second drive mechanism for moving the cutting tool relatively in a radial direction perpendicular to the rotation axis;
A third drive mechanism for displacing the cutting tool in a direction in which a tool axis passes through the cutting edge of the cutting tool in accordance with a cutting edge position that is a position of the cutting edge of the cutting tool with respect to a workpiece;
A fourth drive mechanism for adjusting a rotational attitude of the cutting tool around the tool axis in accordance with the cutting edge position of the cutting tool with respect to a workpiece;
A processing apparatus comprising:
JP2015089873A 2015-04-24 2015-04-24 Processing method and processing device Pending JP2016203328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015089873A JP2016203328A (en) 2015-04-24 2015-04-24 Processing method and processing device
CN201610256727.5A CN106064243B (en) 2015-04-24 2016-04-22 Processing method and processing unit (plant)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089873A JP2016203328A (en) 2015-04-24 2015-04-24 Processing method and processing device

Publications (1)

Publication Number Publication Date
JP2016203328A true JP2016203328A (en) 2016-12-08

Family

ID=57419961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089873A Pending JP2016203328A (en) 2015-04-24 2015-04-24 Processing method and processing device

Country Status (2)

Country Link
JP (1) JP2016203328A (en)
CN (1) CN106064243B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811977B1 (en) 2015-10-02 2017-12-22 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 The method of cutting for inner around surface and outer around surface of works

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121453A (en) * 2020-01-31 2021-08-26 マツダ株式会社 Groove processing tool for connection rod, connection rod fracture promotion part forming device
CN113495527B (en) * 2020-04-07 2022-11-04 南京理工大学 Servo master-slave cooperative cutting method for fast-slow tool
CN112872909B (en) * 2021-01-12 2022-08-05 华中科技大学 Device and method for compensating dynamic contour error of machine tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648608B1 (en) * 2000-09-22 2006-11-23 시티즌 도케이 가부시키가이샤 Numerically controlled lathe and method of cutting workpiece on numerically controlled lathe
JP2006159331A (en) * 2004-12-06 2006-06-22 Olympus Corp Cutting method and cutting device
ITUD20070162A1 (en) * 2007-09-10 2009-03-11 Danieli Off Mecc DEVICE AND PROCEDURE FOR ADJUSTING THE RADIAL POSITION OF THE MACHINES OF A PEELER FOR BARS, TUBES, OR SIMILAR OBLUNG PRODUCTS
KR20130025267A (en) * 2011-09-01 2013-03-11 이장원 Cutting work apparatus
KR101368761B1 (en) * 2013-10-25 2014-02-28 주식회사 영남하이닉스 Machining process of flange yoke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811977B1 (en) 2015-10-02 2017-12-22 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 The method of cutting for inner around surface and outer around surface of works

Also Published As

Publication number Publication date
CN106064243B (en) 2018-08-31
CN106064243A (en) 2016-11-02

Similar Documents

Publication Publication Date Title
US8424427B2 (en) Method and apparatus for roll surface machining
JP4659847B2 (en) Screw rotor processing method and processing apparatus, and screw compressor manufacturing method
US10569348B2 (en) Groove-forming method, control device for machine tool and tool path generating device
JP2016203328A (en) Processing method and processing device
KR20020091208A (en) Machine and method for producing bevel gears
JP2000503602A (en) How to machine gears during indexing
JP5355206B2 (en) Processing apparatus and processing method
JP2006297715A (en) Method for producing annular optical element and method for producing mold for annular optical element
JP2012030354A (en) Method and system for milling bevel gear tooth system in continuous milling process
JP2004181621A (en) Cnc machine of spiral bevel gears, and machining method of spiral bevel gears by cnc machine
JP2015217484A (en) Gear processing device
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
US9623502B2 (en) Gear machining device and gear machining method
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP5413913B2 (en) Non-circular machining method by turning
CN111318771A (en) Gear cutting tool, gear machining apparatus, and gear machining method
CN110026617A (en) Gear machining equipment and gear working method
JP2014151396A (en) Non-circular working method with turning
JP6569686B2 (en) Processing method and processing apparatus
CN106985004B (en) Cam grinding device and cam grinding method
JP7161254B2 (en) Processing method, processing equipment and program
JP5249794B2 (en) Arc groove machining method for workpiece
JP4676413B2 (en) Method and system for cutting a mold
JP2007203457A (en) Nc processing method and processing machine
CN111451586A (en) Gear machining device and gear machining method