JP2014151396A - Non-circular working method with turning - Google Patents

Non-circular working method with turning Download PDF

Info

Publication number
JP2014151396A
JP2014151396A JP2013023176A JP2013023176A JP2014151396A JP 2014151396 A JP2014151396 A JP 2014151396A JP 2013023176 A JP2013023176 A JP 2013023176A JP 2013023176 A JP2013023176 A JP 2013023176A JP 2014151396 A JP2014151396 A JP 2014151396A
Authority
JP
Japan
Prior art keywords
workpiece
machining
cutting tool
turning
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013023176A
Other languages
Japanese (ja)
Other versions
JP6008294B2 (en
Inventor
Yoshitaka Morimoto
喜隆 森本
Seiya Kunioka
誠也 國岡
Katsuhiro Nakagaki
勝敬 中垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Suzuki Motor Corp
Takamatsu Machinery Co Ltd
Original Assignee
Kanazawa Institute of Technology (KIT)
Suzuki Motor Corp
Takamatsu Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), Suzuki Motor Corp, Takamatsu Machinery Co Ltd filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2013023176A priority Critical patent/JP6008294B2/en
Publication of JP2014151396A publication Critical patent/JP2014151396A/en
Application granted granted Critical
Publication of JP6008294B2 publication Critical patent/JP6008294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a working method that achieves non-circular working with turning.SOLUTION: A non-circular working method with turning is provided for applying non-circular working to a workpiece 14 by using a lathe including a spindle loaded with chuck means and a tool table to which a cutting tool 32 is fitted and which is supported freely movably in the X-axis direction and Z-axis direction with respect to the spindle. The working peripheral surface of the workpiece 14 is divided into a first working area and a second working area. When the first working area B1 of the workpiece 14 is worked, the spindle is rotated in a prescribed rotation direction (arrow 36) and the blade tip of the cutting tool 32 is caused to act on the first working area B1 from one side of the workpiece 14, so that the first working area B1 is turned into a prescribed shape. When the second working area B2 of the workpiece 14 is worked, the spindle is rotated in a direction reverse to the prescribed rotation direction and causes the blade tip of the cutting tool 32 to act on the second working area B2 from the other side of the workpiece 14, so that the second working area B2 is turned into a prescribed shape.

Description

本発明は、NC旋盤などによる切削加工を用いて被加工物に非円形加工を行う旋削による非円形加工方法に関する。   The present invention relates to a non-circular machining method by turning that performs non-circular machining on a workpiece using cutting by an NC lathe or the like.

被加工物を旋削により非円形状に加工する加工方法として、被加工物を保持するためのチャック手段を備えた主軸と、切削工具を備えた工具テーブルと、主軸及び工具テーブルを第1の直線方向に相対的に移動自在に支持するための第1支持機構と、主軸及び工具テーブルを第1の直線方向に対して垂直な第2の直線方向に相対的に移動自在に支持するための第2支持機構と、を備えた旋盤を用い、切削工具の刃先を主軸の中心軸線より上下方向の上方又は下方にオフセットした加工位置にて作用させて非円形加工を行う旋削による非円形加工方法が提案されている(例えば、特許文献1参照)。   As a machining method for machining a workpiece into a non-circular shape by turning, a spindle provided with chuck means for holding the workpiece, a tool table provided with a cutting tool, and the spindle and the tool table are arranged in a first straight line. A first support mechanism for supporting the main shaft and the tool table in a second linear direction perpendicular to the first linear direction. There is a non-circular machining method by turning that uses a lathe provided with two support mechanisms and performs a non-circular machining by causing the cutting edge of a cutting tool to act at a machining position offset upward or downward in the vertical direction from the center axis of the main spindle. It has been proposed (see, for example, Patent Document 1).

この非円形加工方法においては、被加工物の最終加工形状に対応する加工形状データを読み込み、この被加工物の所定回転角度毎における切削工具のすくい面と被加工物の最終加工形状との交線を作成し、作成された交線に対応したスプライン曲線上に切削工具の送り量を考慮した切削工具の軌跡点列を作成し、この工具軌跡点列に基づいて切削工具の移動基準点の軌跡点列を作成する。そして、作成された基準点軌跡点列を連結した軌跡点列連結データに基づいて被加工物の所定回転角度毎の第1及び第2の直線方向の送り量を算出して旋削加工データを作成し、この旋削加工データに基づいて第1及び第2支持機構を介して切削工具を被加工物に対して相対的に移動させて非円形加工を行っており、このような加工方法によれば、旋盤を用いた旋削加工でもって高精度の非円形加工を行うことができる。尚、この明細書を通して「非円形加工方法」とは、主軸回転中心から加工点までの距離が主軸回転中に変化する加工方法をいい、例えば非円形状、偏心円形状などの形状に加工する加工方法をいう。   In this non-circular machining method, machining shape data corresponding to the final machining shape of the workpiece is read, and the rake face of the cutting tool and the final machining shape of the workpiece are exchanged at every predetermined rotation angle of the workpiece. Create a line, create a cutting tool trajectory point sequence considering the feed amount of the cutting tool on the spline curve corresponding to the created intersection line, and based on this tool trajectory point sequence, set the movement reference point of the cutting tool. Create a trajectory point sequence. Then, based on the locus point sequence connection data obtained by connecting the created reference point locus point sequences, the turning data is created by calculating the feed amounts in the first and second linear directions for each predetermined rotation angle of the workpiece. However, non-circular machining is performed by moving the cutting tool relative to the workpiece via the first and second support mechanisms based on the turning data, and according to such a machining method, High-precision non-circular machining can be performed by turning using a lathe. Throughout this specification, the “non-circular machining method” refers to a machining method in which the distance from the spindle rotation center to the machining point changes during spindle rotation, for example, machining into a shape such as a non-circular shape or an eccentric circular shape. A processing method.

特開2012−71381号公報JP 2012-71381 A

しかしながら、このような加工方法では、被加工物の最終加工形状によっては、切削工具の移動加速度が大きくなって旋盤の加工能力を超える場合があり、このような場合、上述した加工方法では、切削による非円形加工を行うことができない。このようなことから、種々の非円形形状に対応して旋削により高精度に加工を行うことができる加工方法の実現が望まれている。   However, in such a machining method, depending on the final machining shape of the workpiece, the moving acceleration of the cutting tool may increase and exceed the machining capability of the lathe. The non-circular machining by cannot be performed. For these reasons, it is desired to realize a machining method capable of machining with high accuracy by turning corresponding to various non-circular shapes.

本発明の目的は、種々の非円形形状の加工を旋削により行うことができる加工方法を提供することである。   An object of the present invention is to provide a machining method capable of performing various non-circular shapes by turning.

本発明の請求項1に記載の旋削による非円形加工方法は、被加工物を保持するためのチャック手段が装着された主軸と、前記被加工物を切削加工するための切削工具が取り付けられた工具テーブルと、前記主軸及び前記工具テーブルのいずれか一方をそれらの他方に対して第1の直線方向に相対的に移動自在に支持するための第1支持機構と、前記主軸及び前記工具テーブルのいずれか一方をそれらの他方に対して前記第1の直線方向に対して実質上垂直な第2の直線方向に相対的に移動自在に支持するための第2支持機構と、を備えた旋盤を用い、前記切削工具の刃先が前記主軸の中心軸線より上下方向の上方又は下方に所定距離オフセットした加工位置にて前記被加工物に作用して非円形加工を行う旋削による非円形加工方法であって、
前記被加工物の加工周面を第1加工領域と第2加工領域とに分け、前記被加工物の前記第1加工領域を加工するときには、前記主軸を所定回転方向に回動させるとともに、前記被加工物の片側から前記切削工具の前記刃先を前記第1加工領域に作用させて所定形状に切削加工し、また前記被加工物の前記第2加工領域を加工するときには、前記主軸を前記所定回転方向とは反対方向に回動させるとともに、前記被加工物の他側から前記切削工具の前記刃先を前記第2加工領域に作用させて所定形状に切削加工することを特徴とする。
In the non-circular machining method by turning according to claim 1 of the present invention, a spindle equipped with chuck means for holding a workpiece and a cutting tool for cutting the workpiece are attached. A tool table, a first support mechanism for movably supporting one of the spindle and the tool table relative to the other in a first linear direction, and the spindle and the tool table. A lathe comprising: a second support mechanism for movably supporting one of the other relative to the other in a second linear direction substantially perpendicular to the first linear direction; A non-circular machining method by turning that performs a non-circular machining by acting on the workpiece at a machining position where the cutting edge of the cutting tool is offset by a predetermined distance above or below the central axis of the main shaft. And
The machining peripheral surface of the workpiece is divided into a first machining area and a second machining area, and when machining the first machining area of the workpiece, the spindle is rotated in a predetermined rotation direction, When the cutting edge of the cutting tool is applied to the first machining area from one side of the workpiece to cut it into a predetermined shape, and when the second machining area of the workpiece is machined, the main shaft is moved to the predetermined area. While rotating in the direction opposite to the rotation direction, the cutting edge of the cutting tool is applied to the second processing region from the other side of the workpiece to perform cutting into a predetermined shape.

また、本発明の請求項2に記載の旋削による非円形加工方法では、前記切削工具の前記刃先断面が円形状であり、前記被加工物の前記第1加工領域を切削加工するときには、前記切削工具が所定方向に回動され、前記被加工物の前記第2加工領域を切削加工するときには、前記切削工具が前記所定方向又は前記所定方向と反対方向に回動されることを特徴とする。   In the non-circular machining method by turning according to claim 2 of the present invention, the cutting edge section of the cutting tool is circular, and when the first machining area of the workpiece is cut, the cutting is performed. When the tool is rotated in a predetermined direction and the second processing region of the workpiece is cut, the cutting tool is rotated in the predetermined direction or in a direction opposite to the predetermined direction.

また、本発明の請求項3に記載の旋削による非円形加工方法では、前記被加工物を所定回動方向に一定回転速度で回動させたときに、前記被加工物の最終加工形状を基準にして、前記被加工物の前記加工位置における前記切削工具の移動速度及び移動加速度が小さい領域を前記第1加工領域とし、前記切削工具の前記移動速度及び/又は移動加速度が大きい領域を前記第2加工領域とし、前記第1加工領域を切削加工するときには、前記主軸が前記所定回転方向に回動され、前記第2加工領域を切削加工するときには、前記主軸が前記所定回転方向と反対方向に回動されることを特徴とする。   In the non-circular machining method by turning according to claim 3 of the present invention, when the workpiece is rotated at a constant rotation speed in a predetermined rotation direction, the final machining shape of the workpiece is used as a reference. Thus, a region where the moving speed and moving acceleration of the cutting tool at the processing position of the workpiece is small is defined as the first processing region, and a region where the moving speed and / or moving acceleration of the cutting tool is large is defined as the first processing region. When the first machining area is cut, the main shaft is rotated in the predetermined rotation direction. When the second machining area is cut, the main shaft is in a direction opposite to the predetermined rotation direction. It is characterized by being rotated.

また、本発明の請求項4に記載の旋削による非円形加工方法では、前記被加工物の回転中心を中心として所定角度毎に放射状に延びる複数の分割基準線を想定するとともに、前記切削工具の前記刃先が前記上下方向にオフセットした前記所定距離を半径とする基準円を想定し、前記複数の分割基準線の各々と前記基準円とが交わる第1交点と、前記第1交点から前記切削工具側に延びる接線と前記被加工物の最終加工形状とが交わる第2交点との間の接線距離に基づき、前記被加工物が前記所定回動方向に回動したときに前記接線距離が減少する領域が前記第1加工領域となり、前記接線距離が増加する領域が第2加工領域となることを特徴とする。   Further, in the non-circular machining method by turning according to claim 4 of the present invention, a plurality of division reference lines extending radially at predetermined angles around the rotation center of the workpiece are assumed, and the cutting tool Assuming a reference circle whose radius is the predetermined distance in which the cutting edge is offset in the vertical direction, a first intersection where each of the plurality of division reference lines and the reference circle intersect, and the cutting tool from the first intersection The tangential distance decreases when the workpiece rotates in the predetermined rotation direction based on a tangential distance between a tangential line extending to the side and a second intersection where the final machining shape of the workpiece intersects. The region is the first processing region, and the region where the tangential distance is increased is the second processing region.

また、本発明の請求項5に記載の旋削による非円形加工方法では、前記被加工物が前記所定回動方向に回動したときに前記接線距離が変化しない領域は、前記第1加工領域及び/又は前記第2加工領域となり、前記第1加工領域に含めたときには、前記主軸を前記所定回動方向に回動させたときに前記切削工具により所定形状に切削加工され、前記第2加工領域に含めたときには、前記主軸を前記所定回動方向と反対方向に回動させたときに前記切削工具により所定形状に切削加工されることを特徴とする。   Further, in the non-circular machining method by turning according to claim 5 of the present invention, the area where the tangential distance does not change when the workpiece is rotated in the predetermined rotation direction is the first machining area and When the second machining area is included and included in the first machining area, the cutting tool is cut into a predetermined shape when the main shaft is rotated in the predetermined rotation direction, and the second machining area is When included, the cutting tool is cut into a predetermined shape when the main shaft is rotated in a direction opposite to the predetermined rotation direction.

更に、本発明の請求項6に記載の旋削による非円形加工方法では、前記被加工物の前記第1及び第2加工領域の最終加工形状に対応する第1及び第2最終加工形状データを読み込む最終形状読込み工程と、前記被加工物の前記第1及び第2加工領域の所定回転角度毎における前記切削工具のすくい面と前記被加工物の前記第1及び第2加工領域の前記最終加工形状との第1及び第2交線を作成する交線作成工程と、前記交線作成工程にて作成された前記第1及び第2加工領域に関する第1及び第2交線に対応した第1及び第2スプライン曲線上に前記切削工具の送り量を考慮した前記切削工具の第1及び第2軌跡点列を作成する工具軌跡点列作成工程と、前記軌跡点列作成工程にて作成された第1及び第2前記工具軌跡点列に基づいて前記切削工具の第1及び第2移動基準点の第1及び第2軌跡点列を作成する基準点軌跡点列作成工程と、前記基準点軌跡点列作成工程にて作成された前記第1及び第2基準点軌跡点列を連結した第1及び第2軌跡点列連結データに基づいて前記被加工物の前記所定回転角度毎の前記第1及び第2の直線方向の送り量を算出して第1及び第2旋削加工データを作成する旋削加工データ作成工程と、を含むことを特徴とする。   Furthermore, in the non-circular machining method by turning according to claim 6 of the present invention, first and second final machining shape data corresponding to final machining shapes of the first and second machining regions of the workpiece are read. The final shape reading step, and the rake face of the cutting tool and the final machining shapes of the first and second machining regions of the workpiece for each predetermined rotation angle of the first and second machining regions of the workpiece. And a first line corresponding to the first and second lines of intersection with respect to the first and second processing regions created in the intersection line creation step. A tool trajectory point sequence creating step for creating first and second trajectory point sequences of the cutting tool in consideration of the feed amount of the cutting tool on a second spline curve, and a trajectory point sequence creating step created by the trajectory point sequence creating step 1 and 2 based on the tool trajectory point sequence A reference point locus point sequence creating step for creating first and second locus point sequences of the first and second movement reference points of the tool, and the first and second points created in the reference point locus point sequence creating step. Based on the first and second trajectory point sequence connection data obtained by connecting the reference point trajectory sequence, the first and second linear feed amounts for the predetermined rotation angle of the workpiece are calculated to be the first. And a turning data creation step of creating second turning data.

本発明の請求項1に記載の旋削による非円形加工方法によれば、第1加工領域を加工するときには、主軸を所定回転方向に回動させるとともに、被加工物の片側から切削工具の前記刃先を第1加工領域に作用させて切削加工し、また被加工物の第2加工領域を加工するときには、主軸を所定回転方向とは反対方向に回動させるとともに、被加工物の他側から切削工具の刃先を第2加工領域に作用させて切削加工するので、例えば被加工物を加工する際の切削工具の刃先の移動速度(及び/又は移動加速度)の大きさを考慮して第1加工領域と第2加工領域に分けて切削加工することによって、断面形状が非円形状であっても所定形状に旋削加工することができる。   According to the non-circular machining method by turning according to claim 1 of the present invention, when machining the first machining area, the cutting edge of the cutting tool is rotated from one side of the workpiece while rotating the spindle in a predetermined rotation direction. Is applied to the first machining area and when the second machining area of the workpiece is machined, the main shaft is rotated in the direction opposite to the predetermined rotation direction, and cutting is performed from the other side of the workpiece. Since cutting is performed by causing the cutting edge of the tool to act on the second processing region, for example, the first processing is performed in consideration of the moving speed (and / or moving acceleration) of the cutting edge of the cutting tool when processing the workpiece. By cutting into the region and the second processing region, even if the cross-sectional shape is non-circular, it can be turned into a predetermined shape.

また、本発明の請求項2に記載の旋削による非円形加工方法によれば、切削工具の刃先の断面形状が円形状であるので、被加工物の第1加工領域を加工するときにはこの切削工具を被加工物の片側から作用させることができるとともに、第2加工領域を加工するときには切削工具を被加工物の他側から作用させることができ、同じ切削工具を用いて被加工部の第1及び第2加工領域を旋削加工することができる。そして、被加工物の第1加工領域を加工するときには切削工具を所定方向に回動し、その第2加工領域を加工するときには切削工具を所定方向(又は所定方向と反対方向)に回動させて旋削加工することができる。   Further, according to the non-circular machining method by turning according to claim 2 of the present invention, since the cross-sectional shape of the cutting edge of the cutting tool is circular, the cutting tool is used when machining the first machining area of the workpiece. Can be applied from one side of the workpiece, and when the second machining area is machined, the cutting tool can be applied from the other side of the workpiece. And the second machining region can be turned. When the first machining area of the workpiece is machined, the cutting tool is rotated in a predetermined direction, and when the second machining area is machined, the cutting tool is rotated in a predetermined direction (or a direction opposite to the predetermined direction). Can be turned.

また、本発明の請求項3に記載の旋削による非円形加工方法によれば、被加工物を所定回動方向に一定回転速度で回動させたときに、被加工物の最終加工形状を基準にして、被加工物の加工位置における切削工具の移動速度及び移動加速度の小さい領域を第1加工領域とし、切削工具の移動速度(及び/又は移動加速度)が大きい領域を第2加工領域として旋削加工することによって、非円形状に旋削加工する際に旋盤の切削能力を超えて切削工具の移動速度(及び/又は加速度)が大きくなることが抑えられ、被加工物を所定形状に高精度に旋削加工することができる。   According to the non-circular machining method by turning according to claim 3 of the present invention, when the workpiece is rotated at a constant rotation speed in a predetermined rotation direction, the final machining shape of the workpiece is used as a reference. Turning a region where the moving speed and moving acceleration of the cutting tool are small at the processing position of the workpiece as a first working region and a region where the moving speed (and / or moving acceleration) of the cutting tool is large as a second working region By machining, when turning into a non-circular shape, it is possible to suppress the moving speed (and / or acceleration) of the cutting tool from exceeding the cutting ability of the lathe and to suppress the workpiece to a predetermined shape with high accuracy. Can be turned.

また、本発明の請求項4に記載の旋削による非円形加工方法によれば、被加工物の回転中心を中心として所定角度毎に放射状に延びる複数の分割基準線を想定するとともに、切削工具の刃先が上下方向にオフセットした所定距離を半径とする基準円を想定する。そして、複数の分割基準線の各々と基準円とが交わる第1交点と、第1交点から切削工具側に延びる接線と被加工物の最終加工形状とが交わる第2交点との間の接線距離に基づき、この接線距離が減少する領域が切削工具の移動速度及び移動加速度が小さい領域であり、この領域が第1加工領域となり、またこの接線距離が増加する領域が切削工具の移動速度(及び/又は移動加速度)が大きい領域であり、この領域が第2加工領域となり、このように加工領域を選定することによって、切削工具の移動速度(及び/又は移動加速度)が大きくなる領域での旋削加工を回避して所要の通りに高精度に切削加工することができる。   According to the non-circular machining method by turning according to claim 4 of the present invention, a plurality of division reference lines extending radially at predetermined angles around the rotation center of the workpiece are assumed, and the cutting tool A reference circle whose radius is a predetermined distance in which the cutting edge is offset in the vertical direction is assumed. And the tangent distance between the 1st intersection which each of a some division | segmentation reference line and a reference | standard circle cross, and the 2nd intersection which the tangent extended from the 1st intersection to the cutting tool side and the final process shape of a workpiece cross Therefore, the region where the tangential distance decreases is a region where the moving speed and the moving acceleration of the cutting tool are small, this region becomes the first processing region, and the region where the tangential distance increases is the moving speed of the cutting tool (and Turning in a region where the moving speed (and / or moving acceleration) of the cutting tool is increased by selecting the processing region in this manner. Cutting can be performed with high accuracy as required by avoiding machining.

また、本発明の請求項5に記載の旋削による非円形加工方法によれば、被加工物が所定回動方向に回動したときに接線距離が変化しない領域においては、切削工具の移動加速度が実質上ゼロで変化せず、かかる領域については、例えば被加工物の最終加工形状に応じて第1加工領域及び/又は第2加工領域に含ませることができる。   According to the non-circular machining method by turning according to claim 5 of the present invention, the movement acceleration of the cutting tool is increased in the region where the tangential distance does not change when the workpiece is rotated in the predetermined rotation direction. The region does not change substantially at zero, and such a region can be included in the first processing region and / or the second processing region, for example, depending on the final processing shape of the workpiece.

更に、本発明の請求項6に記載の旋削による非円形加工方法によれば、被加工物の第1加工領域の最終加工形状に対応してこの第1加工領域の最終加工形状の第1旋削加工データが作成され、またその第2加工領域の最終加工形状に対応して第2加工領域の旋削加工形状の第2旋削加工データが作成されるので、第1及び第2旋削加工データを用いて被加工物を非円形状に高精度に旋削加工することができる。また、第1及び第2旋削加工データを作成する際に、被加工物の第1及び第2加工領域について所定回転角度毎における切削工具のすくい面と最終加工形状の表面との第1及び第2交線を作成するので、加工時における被加工物に対する切削工具の作用状態を所定の関係に保った加工が可能となる。更に、この第1及び第2交線に対応した第1及び第2スプライン曲線上に切削工具の送り量を考慮した切削工具の第1及び第2軌跡点列を作成し、この第1及び第2工具軌跡点列に基づいて切削工具の第1及び第2移動基準点の第1及び第2軌跡点列を作成し、この第1及び第2基準点軌跡点列を連結した第1及び第2軌跡点列連結データに基づいて被加工物の所定回転角度毎の第1及び第2の方向の送り量を算出するので、被加工物を切削加工する際の切削工具の第1及び第2方向の正確な送り量を算出することができる。   Furthermore, according to the non-circular machining method by turning according to claim 6 of the present invention, the first turning of the final machining shape of the first machining area corresponding to the final machining shape of the first machining area of the workpiece. Machining data is created, and second turning data of the turning shape of the second machining area corresponding to the final machining shape of the second machining area is created, so the first and second turning data are used. The workpiece can be turned into a non-circular shape with high accuracy. Further, when creating the first and second turning data, the first and second rake surfaces of the cutting tool and the surface of the final machining shape for each of the predetermined rotation angles with respect to the first and second machining regions of the workpiece. Since two intersecting lines are created, it is possible to perform processing while maintaining the action state of the cutting tool on the workpiece during processing in a predetermined relationship. Further, first and second trajectory point sequences of the cutting tool are generated on the first and second spline curves corresponding to the first and second intersecting lines in consideration of the feed amount of the cutting tool. First and second trajectory point sequences of the first and second movement reference points of the cutting tool are created based on the two tool trajectory point sequences, and the first and second first and second reference point trajectory point sequences connected to each other. Since the feed amounts in the first and second directions for each predetermined rotation angle of the workpiece are calculated based on the two locus point sequence connection data, the first and second cutting tools used when cutting the workpiece. An accurate feed amount in the direction can be calculated.

本発明に従う非円形加工方法を実施するための旋盤の一実施形態を簡略的に示す斜視図。The perspective view which shows simply one Embodiment of the lathe for enforcing the non-circular machining method according to this invention. 図1の旋盤を用いて第1加工領域を加工する状態における切削工具及び被加工物の近傍を拡大して示す部分拡大斜視図。The partial expansion perspective view which expands and shows the vicinity of the cutting tool and workpiece in the state which processes a 1st process area | region using the lathe of FIG. 図1の旋盤を用いて第2加工領域を加工する状態における切削工具及び被加工物の近傍を拡大して示す部分拡大斜視図。The partial expansion perspective view which expands and shows the vicinity of the cutting tool and workpiece in the state which processes a 2nd process area | region using the lathe of FIG. 旋削用加工データを作成する作業の流れを示すフローチャート。The flowchart which shows the flow of the operation | work which produces the process data for turning. 第1切削加工データを作成する作業の流れを示すフローチャート。The flowchart which shows the flow of the operation | work which produces 1st cutting process data. 被加工物を旋削加工するときの被加工物と切削工具とのオフセット位置関係を簡略的に示す図。The figure which shows simply the offset positional relationship of a workpiece and a cutting tool when turning a workpiece. 第1加工領域を旋削加工するときの切削工具が作用する加工位置の関係を簡略的に示す図。The figure which shows simply the relationship of the process position which the cutting tool acts when turning the 1st process area. 図7に示す状態から被加工物が回動した状態を簡略的に示す図。The figure which shows simply the state which the to-be-processed object rotated from the state shown in FIG. 被加工物を所定方向に回動させて加工するときの切削工具の各加工位置における接線を示す図。The figure which shows the tangent in each process position of the cutting tool when rotating a workpiece in a predetermined direction and processing. 被加工物を所定方向と反対方向に回動させて加工するときの旋削加工するときの切削工具の各加工位置における接線を示す図。The figure which shows the tangent in each process position of the cutting tool at the time of turning when processing by rotating a workpiece in the direction opposite to a predetermined direction. 被加工物を所定方向に回動させて加工するときの切削工具の移動加速度を説明するための図。The figure for demonstrating the movement acceleration of the cutting tool when turning and processing a workpiece in a predetermined direction. 被加工物を所定方向と反対方向に回動させて加工するときの切削工具の移動加速度を説明するための図。The figure for demonstrating the movement acceleration of the cutting tool when rotating a workpiece in the direction opposite to a predetermined direction and processing. 他の形態の被加工物を所定方向に回動させて加工するときの切削工具の移動加速度を説明するための図。The figure for demonstrating the movement acceleration of the cutting tool when rotating the workpiece of another form to a predetermined direction, and processing. 図14の被加工物を所定方向と反対方向に回動させて加工するときの切削工具の移動加速度を説明するための図。The figure for demonstrating the movement acceleration of the cutting tool when processing the workpiece of FIG. 14 by rotating in the direction opposite to a predetermined direction. 本発明に従う非円形加工方法を実施するための旋盤の他の実施形態を簡略的に示す斜視図。The perspective view which shows simply other embodiment of the lathe for enforcing the non-circular machining method according to this invention.

以下、添付図面を参照して、本発明に従う非円形加工方法の一実施例について説明する。まず、図1〜図3を参照して、本発明に従う非円形加工方法を用いて加工する旋盤の一実施形態について説明する。   Hereinafter, an embodiment of a non-circular machining method according to the present invention will be described with reference to the accompanying drawings. First, with reference to FIGS. 1-3, one Embodiment of the lathe processed using the non-circular machining method according to this invention is described.

図1〜図3において、図示の旋盤(例えば、NC旋盤、CNC旋盤)2は、工場の床面などに設置されるベッド本体4を具備し、このベッド本体4は、本体支持部6及びこの本体支持部6の後側に設けられた補助支持部8を備えている。これら本体支持部6及び補助支持部8は一体的に構成してもよいが、別体に構成して相互に連結固定するようにしてもよい。   1 to 3, a lathe (for example, an NC lathe, a CNC lathe) 2 shown in FIG. 1 includes a bed main body 4 installed on a floor surface of a factory or the like. An auxiliary support portion 8 provided on the rear side of the main body support portion 6 is provided. The main body support portion 6 and the auxiliary support portion 8 may be configured integrally, but may be configured separately and connected and fixed to each other.

この形態では、本体支持部6の片側部(図1において右上部)に主軸部10が設けられている。この主軸部10には主軸(図示せず)が回転自在に支持され、この主軸にチャック手段12が取り付けられ、加工すべき被加工物14は、このチャック手段12に着脱自在に保持される。   In this embodiment, the main shaft portion 10 is provided on one side portion (upper right portion in FIG. 1) of the main body support portion 6. A main shaft (not shown) is rotatably supported by the main shaft portion 10, chuck means 12 is attached to the main shaft, and a workpiece 14 to be processed is detachably held by the chuck means 12.

また、補助支持部8には、第1支持機構(図示せす)を介して移動テーブル16が第1の直線方向(主軸の軸線方向であるZ軸方向であって、図1において左下から右上の方向)に往復移動自在に支持されている。第1支持機構は、図示していないが、上記第1の直線方向(Z軸方向)に延びる一対の第1案内支持部を有し、かかる一対の第1案内支持部が補助支持部8の上面に配設され、移動テーブル16は、第1支持機構の一対の案内支持部に支持され、これらに沿って第1の直線方向、即ち矢印18,20で示す方向に往復移動自在である。尚、この形態では、主軸(図示せず)に対して移動テーブル16をZ軸方向に移動させているが、このような構成に代えて、移動テーブル16に対して主軸(即ち、主軸部10)をZ軸方向に移動させるようにしてもよい。   In addition, a moving table 16 is provided in the auxiliary support portion 8 via a first support mechanism (not shown) in the first linear direction (the Z-axis direction, which is the axial direction of the main shaft). ) In such a way that it can reciprocate freely. Although not shown, the first support mechanism has a pair of first guide support portions extending in the first linear direction (Z-axis direction), and the pair of first guide support portions is the auxiliary support portion 8. Arranged on the upper surface, the moving table 16 is supported by a pair of guide support portions of the first support mechanism, and can reciprocate along the first linear direction, that is, the direction indicated by the arrows 18 and 20. In this embodiment, the moving table 16 is moved in the Z-axis direction with respect to the main shaft (not shown), but instead of such a configuration, the main table (that is, the main shaft portion 10) is moved with respect to the moving table 16. ) May be moved in the Z-axis direction.

また、移動テーブル16には、第2支持機構(図示せず)を介して工具テーブル22が第2の直線方向(主軸の軸線方向に対して実質上垂直であるX軸方向であって、図1において右下から左上の方向)に往復移動自在に支持されている。第2支持機構は、図示していないが、上記第2の直線方向(X軸方向)に延びる一対の第2案内支持部を有し、かかる一対の第2案内支持部が移動テーブル16の上面に配設され、工具テーブル22は、第2支持機構の一対の第2案内支持部に支持され、これらに沿って第2の直線方向、即ち矢印24,26で示す方向に往復移動自在である。尚、この形態では、主軸(図示せず)に対して工具テーブル22をX軸方向に移動させているが、このような構成に代えて、工具テーブル22に対して主軸(即ち、主軸部10)をX軸方向に移動させるようにしてもよい。   The moving table 16 has a tool table 22 in a second linear direction (X axis direction substantially perpendicular to the axial direction of the main shaft) via a second support mechanism (not shown). 1 is supported so as to be reciprocally movable from the lower right to the upper left. Although not shown, the second support mechanism has a pair of second guide support portions extending in the second linear direction (X-axis direction), and the pair of second guide support portions is the upper surface of the moving table 16. The tool table 22 is supported by a pair of second guide support portions of the second support mechanism, and is reciprocally movable along the second linear direction, that is, the direction indicated by the arrows 24 and 26 along these. . In this embodiment, the tool table 22 is moved in the X-axis direction with respect to the spindle (not shown). However, instead of such a configuration, the spindle (that is, the spindle portion 10) with respect to the tool table 22. ) May be moved in the X-axis direction.

工具テーブル22には、主軸の上方に向けて延びる支持アーム28が設けられ、この支持アーム28の先端部に工具ユニット30が取り付けられている。工具ユニット30は、被加工物14を切削加工するための切削工具32を備えている。この切削工具32は略円筒形状であり、その刃先(被加工物14に旋削加工を施す部位)の断面形状は円形状になっている。この切削工具32は、工具ユニット30内に内蔵された工具用駆動源(例えば、電動モータから構成される)(図示せず)により所定方向(例えば、図2及び図3において矢印34で示す方向)に回動され、所定方向に回動する旋削工具32の刃先が被加工物14に作用して所要の旋削加工が施される。   The tool table 22 is provided with a support arm 28 extending upward from the main shaft, and a tool unit 30 is attached to the tip of the support arm 28. The tool unit 30 includes a cutting tool 32 for cutting the workpiece 14. The cutting tool 32 has a substantially cylindrical shape, and the cross-sectional shape of the cutting edge (the portion where the workpiece 14 is turned) is circular. The cutting tool 32 is provided in a predetermined direction (for example, a direction indicated by an arrow 34 in FIGS. 2 and 3) by a tool drive source (for example, an electric motor) (not shown) built in the tool unit 30. ) And the cutting edge of the turning tool 32 that rotates in a predetermined direction acts on the workpiece 14 to perform a required turning process.

この旋盤2においては、主軸部10の主軸(図示せず)に関連して、例えば電動モータから構成される主軸用駆動源(図示せず)が設けられ、主軸用駆動源が正転すると、主軸及びチャック手段12は、図2に矢印36で示す所定回転方向(図2において反時計方向)に回動され、またこの主軸用駆動源が逆転すると、主軸及びチャック手段12は、図3に矢印38で示す所定回転方向と反対方向(図3において時計方向)に回動される。   In this lathe 2, a spindle drive source (not shown) constituted by, for example, an electric motor is provided in association with the spindle (not shown) of the spindle unit 10, and when the spindle drive source rotates forward, The spindle and chuck means 12 are rotated in a predetermined rotational direction (counterclockwise in FIG. 2) indicated by an arrow 36 in FIG. 2, and when the spindle drive source is reversed, the spindle and chuck means 12 are It is rotated in the direction opposite to the predetermined rotation direction indicated by the arrow 38 (clockwise in FIG. 3).

また、移動テーブル16に関連して、例えばリニアモータから構成される移動テーブル用駆動源(図示せず)が設けられ、この移動テーブル用駆動源に所定方向の電流が送給されると、移動テーブル16(及びこれに取り付けられた工具テーブル22及び工具ユニット30)が矢印18で示す方向(図1において左下の方向)に移動され、またこの移動テーブル用駆動源に所定方向と反対方向の電流が送給されると、移動テーブル16(及びこれに取り付けられた工具テーブル22及び工具ユニット30)が矢印20で示す方向(図1において右上の方向)に移動される。   In addition, a moving table drive source (not shown) composed of, for example, a linear motor is provided in association with the moving table 16, and when a current in a predetermined direction is supplied to the moving table drive source, the moving table 16 moves. The table 16 (and the tool table 22 and tool unit 30 attached thereto) is moved in the direction indicated by the arrow 18 (the lower left direction in FIG. 1), and the current in the direction opposite to the predetermined direction is applied to the moving table drive source. Is moved, the moving table 16 (and the tool table 22 and the tool unit 30 attached thereto) is moved in the direction indicated by the arrow 20 (upper right direction in FIG. 1).

また、工具テーブル22に関連して、例えばリニアモータから構成される工具テーブル用駆動源(図示せず)が設けられ、この工具テーブル用駆動源に所定方向の電流が送給されると、工具テーブル22(及びこれに取り付けられた工具ユニット30)が矢印24で示す方向(図1において左上の方向)に移動され、またこの工具テーブル用駆動源に所定方向と反対方向の電流が送給されると、工具テーブル22(及びこれに取り付けられた工具ユニット30)が矢印26で示す方向(図1において右下の方向)に移動される。   In addition, a tool table drive source (not shown) composed of, for example, a linear motor is provided in association with the tool table 22, and when a current in a predetermined direction is supplied to the tool table drive source, The table 22 (and the tool unit 30 attached thereto) is moved in the direction indicated by the arrow 24 (the upper left direction in FIG. 1), and a current in a direction opposite to the predetermined direction is supplied to the tool table drive source. Then, the tool table 22 (and the tool unit 30 attached thereto) is moved in the direction indicated by the arrow 26 (the lower right direction in FIG. 1).

この旋盤2においては、被加工物14を非円形状に所要の通りに切削加工できるように、次の通りに構成されている。図2及び図3とともに図6を参照して、まず、切削工具32(具体的には、その刃先)が主軸(図示せず)の中心軸線(換言すると、チャック手段12に保持された被加工物14の中心軸線O)よりも上下方向の上方に所定距離Hオフセットして位置するように工具テーブル22に所要の通りに取り付けられており、このように切削工具32をオフセットさせることにより、切削加工時の切削工具32と被加工物14とが干渉する干渉範囲を狭くし、種々の非円形加工が可能となる。   The lathe 2 is configured as follows so that the workpiece 14 can be cut into a non-circular shape as required. Referring to FIG. 6 together with FIGS. 2 and 3, first, the cutting tool 32 (specifically, its cutting edge) is the center axis (in other words, the work piece held by the chuck means 12) of the main shaft (not shown). It is attached to the tool table 22 as required so as to be offset by a predetermined distance H above the central axis O) of the object 14 as described above, and by cutting the cutting tool 32 in this way, cutting is performed. The interference range in which the cutting tool 32 and the workpiece 14 interfere with each other during processing is narrowed, and various non-circular processing is possible.

切削工具32が上方にオフセットした所定距離H(即ち、オフセット量H)は、切削加工すべき被加工物14の最終加工形状にもよるが、主軸の中心軸線(被加工物14の中心軸線O)を通る軸L1(即ち、図6におけるX軸線)を基準に、切削工具32の刃先のすくい面40を通る線L2と被加工物14の基礎円42との交点をAとしたときにこの交点Aと基礎円の中心Oとを結ぶ線Mとの角度α、換言するとオフセット量Hに関連するオフセット角度α(図6参照)が20〜70度程度の角度範囲、好ましくは40〜60度の角度範囲となるようにするのが好ましい。尚、この切削工具32は、この実施形態のように上下方向の上方にオフセットさせてもよく、これとは反対に、後の実施形態で説明するように上下方向の下方にオフセットさせても同様の作用効果が得られる。   The predetermined distance H (ie, the offset amount H) at which the cutting tool 32 is offset upward depends on the final machining shape of the workpiece 14 to be cut, but depends on the central axis of the main shaft (the central axis O of the workpiece 14). ) On the basis of the axis L1 (that is, the X axis line in FIG. 6) passing through the rake face 40 of the cutting edge of the cutting tool 32 and the intersection of the basic circle 42 of the workpiece 14 with this as A. An angle α with the line M connecting the intersection A and the center O of the base circle, in other words, an offset angle α (see FIG. 6) related to the offset amount H is an angle range of about 20 to 70 degrees, preferably 40 to 60 degrees. It is preferable that the angle range is as follows. The cutting tool 32 may be offset upward in the vertical direction as in this embodiment. On the contrary, the cutting tool 32 may be offset downward in the vertical direction as will be described later. The following effects can be obtained.

更に、被加工物14の最終加工形状に基づいて、後述するようにして第1加工領域B1と第2加工領域B2とに分けられ(図11及び図12参照)、第1加工領域B1を旋削加工するときには、図2に示すように、主軸(即ち、これに装着されたチャック手段12及び被加工物14)が矢印36で示す所定回転方向に回動されるとともに、この回動時に加工工具32の刃先のすくい面40が被加工物14の表面に食い込むように、加工工具32が被加工物14の片側(この実施形態では、旋盤2の背面側であって、図6において右側)から作用して旋削が行われ、また第2加工領域B2を旋削加工するときには、図3に示すように、主軸(即ち、これに装着されたチャック手段12及び被加工物14)が矢印38で示す所定回転方向と反対に回動されるとともに、この回動時に加工工具32の刃先のすくい面40が被加工物14の表面に食い込むように、加工工具32が被加工物14の他側(この実施形態では、旋盤2の手前側であって、図6において左側)から作用して旋削が行われる(図10参照)。   Further, based on the final machining shape of the workpiece 14, it is divided into a first machining area B1 and a second machining area B2 as described later (see FIGS. 11 and 12), and the first machining area B1 is turned. When machining, as shown in FIG. 2, the main shaft (that is, the chuck means 12 and the workpiece 14 attached thereto) is rotated in a predetermined rotation direction indicated by an arrow 36, and at this time, the machining tool is rotated. The machining tool 32 is from one side of the workpiece 14 (in this embodiment, on the back side of the lathe 2 and on the right side in FIG. 6) so that the rake face 40 of the cutting edge 32 bites into the surface of the workpiece 14. When the turning is performed and the second machining area B2 is turned, the spindle (that is, the chuck means 12 and the workpiece 14 attached thereto) is indicated by an arrow 38 as shown in FIG. Opposite to the specified direction of rotation The tool 32 is moved to the other side of the work piece 14 (in this embodiment, the lathe 2) so that the rake face 40 of the cutting edge of the work tool 32 bites into the surface of the work piece 14 during this rotation. Turning is performed from the front side (left side in FIG. 6) (see FIG. 10).

次に、主として図1とともに図4〜図10を参照して、上述した旋盤2を用いて加工する際に使用する旋削用加工データの作成の手順について説明する。この実施形態では、上述した旋削加工を行うための旋削用加工データの作成は、旋盤2のコントローラ(図示せず)とは別個のコンピュータ(例えば、パソコン)(図示せず)が用いられ、このコンピュータを用いて第1及び第2旋削加工データが作成され、その後、第1及び第2旋削加工データを合成した後に旋盤2のコントローラに読み込む際に加工に必要な命令が付加されてNC加工データが作成される。   Next, with reference to FIGS. 4 to 10 together with FIG. 1, a procedure for creating turning machining data used when machining using the lathe 2 described above will be described. In this embodiment, the creation of turning machining data for performing the above-described turning is performed using a computer (for example, a personal computer) (not shown) separate from the controller (not shown) of the lathe 2. The first and second turning data are created using a computer, and then the first and second turning data are synthesized and then added to the machining command when reading into the controller of the lathe 2 to add NC machining data. Is created.

図4〜図10を参照して詳述すると、旋削用加工データを作成するには、まず、被加工物14(例えば、図1〜図3に示す三次元カム)の最終加工形状に関するデータ(即ち、被加工物14の設計データ)の読込みが行われ、このデータの読込みは、コンピュータを用いて行われる(被加工物の最終加工形状読込み工程S1)。   4 to 10 will be described in detail. In order to create the machining data for turning, first, data on the final machining shape of the workpiece 14 (for example, the three-dimensional cam shown in FIGS. 1 to 3) ( That is, the design data of the workpiece 14 is read, and this data is read using a computer (final machining shape reading step S1 of the workpiece).

次いで、図6に示すように、切削工具32の刃先のオフセット量を設定し、次のようにして被加工物14の加工周表面を第1及び第2加工領域B1、B2に分ける(第1及び第2加工領域の選定工程S2)。この第1及び第2加工領域B1,B2の仕分け手順は、次のようにして行う。尚、理解を容易にするために、切削工具32のすくい面40は、X軸に平行な面とし、その逃げ面46は、Y軸に平行な面としている。   Next, as shown in FIG. 6, the offset amount of the cutting edge of the cutting tool 32 is set, and the processing peripheral surface of the workpiece 14 is divided into first and second processing regions B1 and B2 as follows (first And a second processing region selection step S2). The sorting procedure of the first and second processing regions B1 and B2 is performed as follows. For easy understanding, the rake face 40 of the cutting tool 32 is a plane parallel to the X axis, and the flank face 46 is a plane parallel to the Y axis.

まず、図7に示すように、被加工物14の図7に示す角度位置の形状をPとし、このときの切削工具32の刃先の加工位置Cpの座標Cp(x,y)は、
X軸座標値x=Rcosθ ・・・(1)
Y軸座標値y=Rsinθ ・・・(2)
となり、このY軸座標値yは、切削工具32のオフセット量Hと一致する。
First, as shown in FIG. 7, the shape of the angular position shown in FIG. 7 of the workpiece 14 is P 0, and the coordinates Cp 0 (x 0 , y 0) of the machining position Cp 0 of the cutting edge of the cutting tool 32 at this time are set. )
X-axis coordinate value x 0 = R 0 cos θ 0 (1)
Y axis coordinate value y 0 = R 0 sin θ 0 (2)
Thus, this Y-axis coordinate value y 0 coincides with the offset amount H of the cutting tool 32.

次に、被加工物14の所定回転角度(即ち、主軸の所定回転角度)毎の被加工物14の加工位置Cpを設定する。この所定回転角度とは、例えば、0.5〜2度程度の角度、例えば1度の角度に設定することができ、この回転角度が1度の場合、被加工物14の全周を360に分割することになる。そして、図8に示す角度位置まで回動したときの被加工物14の形状をPとすると、このときの切削工具32の刃先の加工位置Cpの座標Cp(x,y)は、
X軸座標値x=Rcosθ ・・・(3)
Y軸座標値y=Rsinθ ・・・(4)
となる。
Next, a machining position Cp of the workpiece 14 is set for each predetermined rotation angle of the workpiece 14 (that is, a predetermined rotation angle of the main shaft). The predetermined rotation angle can be set to, for example, an angle of about 0.5 to 2 degrees, for example, an angle of 1 degree. When the rotation angle is 1 degree, the entire circumference of the workpiece 14 is set to 360. Will be divided. When the shape of the workpiece 14 when rotated to the angular position shown in FIG. 8, P n, the coordinates Cp n processing position Cp n of the cutting edge of the cutting tool 32 at this time (x n, y n) Is
X-axis coordinate value x n = R n cos θ n (3)
Y axis coordinate value y n = R n sin θ n (4)
It becomes.

被加工物14を旋削加工する場合、一般に、主軸(即ち、チャック手段12及び被加工物14)の回転数を一定にして旋削加工が行われており、このような旋削加工のときには、被加工物14の回転角速度は一定となる。また、切削工具32のZ軸方向(図6〜図10において紙面に垂直な方向)の送り速度も一定にして被加工物14に対する旋削加工が行われている。   When the workpiece 14 is turned, the turning is generally performed with the number of revolutions of the spindle (that is, the chuck means 12 and the workpiece 14) being constant, and in such a turning, the workpiece is processed. The rotational angular velocity of the object 14 is constant. Further, the workpiece 14 is turned with the feeding speed of the cutting tool 32 in the Z-axis direction (direction perpendicular to the paper surface in FIGS. 6 to 10) being constant.

このようなことから、非円形状の被加工物14を旋削加工する場合、被加工物14の最終加工形状に応じて変動する切削工具32の移動量は、切削工具32のX軸方向(即ち、被加工物14に近接及び離隔する方向であって、矢印24及び26(図1参照)で示す方向)であり、このX軸方向の移動量を考慮すればよく、切削工具32のこの移動量の移動速度及び/又は移動加速度が旋盤2自体の性能を越えるようになると、被加工物14を所要の通りの非円形状に旋削加工することができなくなる。   For this reason, when the non-circular workpiece 14 is turned, the amount of movement of the cutting tool 32 that varies depending on the final machining shape of the workpiece 14 is the X-axis direction of the cutting tool 32 (ie, the cutting tool 32). This is the direction of approaching and separating from the workpiece 14 and the direction indicated by arrows 24 and 26 (see FIG. 1). If the amount of moving speed and / or moving acceleration exceeds the performance of the lathe 2 itself, the workpiece 14 cannot be turned into the required non-circular shape.

このようなことから、被加工物14の各回転角度位置のX軸方向の移動量から切削工具32の移動速度及び/又は移動加速度が大きくなる領域を探すと、次のようになる。図9において、主軸(即ち、被加工物14)が矢印36で示す所定回転方向に回動する場合において、被加工物14の所定回転角度毎の分割基準線M(M,M,M・・・)と切削工具32の刃先のオフセット量Hを半径とする基準円48との交わる点を第1交点Q(Q,Q,Q・・・)とし、またこの第1交点Q(Q,Q,Q・・・)から切削工具32側に延びる接線L(L,L,L・・・)と被加工物14の最終加工形状Pとが交わる点を第2交点R(R,R,R・・・)とすると、切削工具32の刃先の加工位置Cp(Cp,Cp,Cp・・・)のX軸座標の値はx(x,x,x・・・)となり、Y軸座標の値はy(y,y,y・・・)となり、このX軸座標の値xが第1交点Q と第2交点Rとの間の接線距離D(|x|)(D,D,D・・・)となり、この接線距離Dは変動するが、y軸座標の値yは一定値(y=オフセット量H)となる。尚、図9において、理解を容易にするために、被加工物14を周方向に18に分割し、分割基準線M(M,M,M・・・)の角度間隔を20度として示している。 For this reason, when a region in which the moving speed and / or moving acceleration of the cutting tool 32 is increased from the amount of movement in the X-axis direction of each rotational angle position of the workpiece 14 is as follows. In FIG. 9, when the main shaft (that is, the workpiece 14) rotates in the predetermined rotation direction indicated by the arrow 36, the division reference line M n (M 0 , M 1 , The point where M 2 ... Intersects the reference circle 48 whose radius is the offset amount H of the cutting edge of the cutting tool 32 is defined as a first intersection Q n (Q 0 , Q 1 , Q 2 ...) The tangent line L n (L 0 , L 1 , L 2 ...) Extending from the first intersection point Q n (Q 0 , Q 1 , Q 2 ...) To the cutting tool 32 side and the final machining shape of the workpiece 14. the point where the P intersects the second intersection point R n (R 0, R 1 , R 2 ···) If that, the processing position of the cutting edge of the cutting tool 32 Cp n (Cp 0, Cp 1, Cp 2 ···) The value of the X-axis coordinate is x n (x 0 , x 1 , x 2 ...), And the value of the Y-axis coordinate is y n (y 0 , y 1 , y 2 ), and the value x n of the X-axis coordinate is the tangential distance D n (| x n |) (D 0 , D 1 , D 2 ) between the first intersection Q n and the second intersection R n. The tangential distance D n varies, but the value y n of the y-axis coordinate is a constant value (y = offset amount H). In FIG. 9, for easy understanding, the workpiece 14 is divided into 18 in the circumferential direction, and the angular interval between the division reference lines M (M 0 , M 1 , M 2 ...) Is 20 degrees. As shown.

この図9から理解されるように、X軸座標の座標値x(x,x,x・・・)が切削工具32の刃先の切削位置を示し、このX軸座標の座標値xの変化量Δx(即ち、接線距離Dの変化量ΔD)は、
変化量Δx=|x|−|xn−1| ・・・(5)
変化量ΔD=D−Dn−1 ・・・(6)
で表され、この変化量Δx(ΔD)が正の値(Δx>0)の領域、負の値(Δx<0)の領域及び零(ゼロ)の領域(Δx=0)が存在する。被加工物14の最終加工形状が図示の略卵状の形状Pである場合、図9のXY座標において、90〜180度の範囲の領域Vにおいてこの変化量Δx が正の値(Δx>0)となり、0〜90度の範囲の領域Uにおいて変化量Δxが負の値(Δx<0)となり、180〜360度の範囲の領域Wが零の領域(Δx=0)となる。
As understood from FIG. 9, the coordinate value x n (x 0 , x 1 , x 2 ...) Of the X-axis coordinate indicates the cutting position of the cutting edge of the cutting tool 32, and the coordinate value of the X-axis coordinate. x n of variation [Delta] x n (i.e., the change amount [Delta] D n tangent distance D n) is
Change amount Δx n = | x n | − | x n−1 | (5)
Change amount ΔD n = D n −D n−1 (6)
The change amount Δx n (ΔD n ) is a positive value (Δx n > 0) region, a negative value (Δx n <0) region, and a zero (zero) region (Δx n = 0). Exists. When the final processed shape of the workpiece 14 is the substantially egg-shaped shape P shown in FIG. 9, the change amount Δx n is a positive value (Δx n) in the region V in the range of 90 to 180 degrees in the XY coordinates of FIG. > 0), the change amount Δx n is a negative value (Δx n <0) in the region U in the range of 0 to 90 degrees, and the region W in the range of 180 to 360 degrees is the zero region (Δx n = 0). It becomes.

この変化量Δx が正の値の領域Vにおいては、図9から理解されるように、被加工物14を矢印36で示す方向に所定回転角度(即ち、一定の角速度)でもって回動させて旋削加工したときに、被加工物14の周表面の旋削加工領域が長く、このことは切削工具32の移動速度及び/又は移動加速度が大きくなることを示し、この正の値の領域V(換言すると、接線距離が増加する領域)において切削工具32の移動速度及び/又は移動加速度が旋盤2の性能を超えるおそれがあり、旋削加工中に加工不良が生じるとすればこの正の値の領域Vとなることが多い。 In the region V where the change amount Δx n is a positive value, as can be understood from FIG. 9, the workpiece 14 is rotated in the direction indicated by the arrow 36 at a predetermined rotation angle (that is, a constant angular velocity). When the turning is performed, the turning region on the peripheral surface of the workpiece 14 is long, which indicates that the moving speed and / or the moving acceleration of the cutting tool 32 is increased, and this positive value region V ( In other words, the moving speed and / or moving acceleration of the cutting tool 32 may exceed the performance of the lathe 2 in a region where the tangential distance increases, and if a machining failure occurs during turning, this positive value region. V often.

これに対して、変化量Δx が負の値の領域Uにおいては、図9において正の領域Vと対比することによって容易に理解されるように、被加工物14を矢印36で示す方向に所定回転角度でもって回動させて旋削加工したときに、被加工物14の周表面の旋削加工領域が正の領域Vに比して短く、このことは切削工具32の移動速度及び移動加速度が小さくなることを示し、この負の値の領域U(換言すると、接線距離が減少する領域)において切削工具32の移動速度及び移動加速度が旋盤2の性能を超えることはなく、被加工物14を所要の通りに旋削加工することができる。また、この変化量Δx が零の値の領域Wにおいても、図9から容易に理解されるように、被加工物14を矢印36で示す方向に所定回転角度でもって回動させて旋削加工したときに、切削工具32の移動加速度が一定でその移動速度も大きくなく、この零の値の領域W(換言すると、接線距離が一定で変化しない領域)においても切削工具32の移動速度及び移動加速度が旋盤2の性能を超えることはなく、被加工物14を所要の通りに旋削加工することができる。 On the other hand, in the region U where the amount of change Δx n is negative, the workpiece 14 is moved in the direction indicated by the arrow 36 as can be easily understood by comparing with the positive region V in FIG. When turning with a predetermined rotation angle and turning, the turning region of the peripheral surface of the workpiece 14 is shorter than the positive region V, which means that the moving speed and moving acceleration of the cutting tool 32 are reduced. In this negative value region U (in other words, the region where the tangential distance decreases), the moving speed and the moving acceleration of the cutting tool 32 do not exceed the performance of the lathe 2, and the workpiece 14 is moved. It can be turned as required. Even in the region W where the amount of change Δx n is zero, as is easily understood from FIG. 9, the workpiece 14 is turned by a predetermined rotation angle in the direction indicated by the arrow 36 to perform turning. In this case, the moving acceleration of the cutting tool 32 is constant and the moving speed is not large, and the moving speed and movement of the cutting tool 32 are also in this zero value area W (in other words, the tangential distance is constant and does not change). The acceleration does not exceed the performance of the lathe 2, and the workpiece 14 can be turned as required.

ここで、この被加工物14を所定回転方向と反対方向(矢印38で示す方向)に回動させた場合について検討する。この場合、切削工具32のオフセット量は変わらず、切削工具32は上述した場合と反対側から被加工物14の周表面に作用するようになる。この場合、図9に対応する図面が図10となり、この図10の内容は、図9と同様にして描くことができ、その説明は省略する。   Here, a case where the workpiece 14 is rotated in the direction opposite to the predetermined rotation direction (the direction indicated by the arrow 38) will be considered. In this case, the offset amount of the cutting tool 32 does not change, and the cutting tool 32 acts on the peripheral surface of the workpiece 14 from the opposite side to the case described above. In this case, the drawing corresponding to FIG. 9 is FIG. 10, and the contents of FIG. 10 can be drawn in the same manner as FIG.

図10のXY座標において、図9において負の値であった0〜90度の範囲の領域V’においてこの変化量Δx が正の値(Δx>0)となり、図9において正の値であった90〜180度の範囲の領域U’において変化量Δxが負の値(Δx<0)となり、図9において零の値であった180〜360度の範囲の領域W’において変化量Δx はそのままの零の値(Δx=0)となる。 In the XY coordinates of FIG. 10, this change amount Δx n becomes a positive value (Δx n > 0) in the region V ′ in the range of 0 to 90 degrees which was a negative value in FIG. 9, and a positive value in FIG. The change amount Δx n is a negative value (Δx n <0) in the region U ′ in the range of 90 to 180 degrees, and in the region W ′ in the range of 180 to 360 degrees that is zero in FIG. The change amount Δx n is a zero value (Δx n = 0) as it is.

この変化量Δx が正の値の領域V’においては、被加工物14を矢印38で示す方向に所定回転角度(即ち、一定の角速度)でもって回動させて旋削加工したときに、被加工物14の周表面の旋削加工領域が長く、このことは切削工具32の移動速度及び/又は移動加速度が大きくなることを示し、この正の値の領域V’(換言すると、接線距離が増加する領域)において切削工具32の移動速度及び/又は移動加速度が旋盤2の性能を超えるおそれがある。 In the region V ′ where the change amount Δx n is a positive value, when the workpiece 14 is turned at a predetermined rotation angle (that is, a constant angular velocity) in the direction indicated by the arrow 38, the workpiece 14 is turned. The turning region of the peripheral surface of the workpiece 14 is long, which indicates that the moving speed and / or moving acceleration of the cutting tool 32 increases, and this positive value region V ′ (in other words, the tangential distance increases). The moving speed and / or moving acceleration of the cutting tool 32 may exceed the performance of the lathe 2.

これに対して、変化量Δx が負の値の領域U’においては、被加工物14を矢印38で示す方向に所定回転角度でもって回動させて旋削加工したときに、被加工物14の周表面の旋削加工領域が正の領域V’に比して短く、このことは切削工具32の移動速度及び/又は移動加速度が小さくなることを示し、この負の値の領域U’(換言すると、接線距離が減少する領域)において切削工具32の移動速度及び移動加速度が旋盤2の性能を超えることはなく、このことは、所定方向(例えば、矢印36で示す方向)に回動させて旋削加工するのが難しい領域については、所定回転方向と反対方向(例えば、矢印38で示す方向)に回動させれば旋削加工を行うことができることを意味する。また、この変化量Δx が零の値の領域W’においても、被加工物14を矢印38で示す方向に所定回転角度でもって回動させて旋削加工したときに、切削工具32の移動速度及び移動加速度が旋盤2の性能を超えることはない。 On the other hand, in the region U ′ in which the change amount Δx n is negative, the workpiece 14 is turned when the workpiece 14 is turned by a predetermined rotation angle in the direction indicated by the arrow 38. The turning area of the circumferential surface of the cutting tool 32 is shorter than the positive area V ′, which indicates that the moving speed and / or moving acceleration of the cutting tool 32 is reduced, and this negative value area U ′ (in other words, Then, the moving speed and the moving acceleration of the cutting tool 32 do not exceed the performance of the lathe 2 in a region where the tangential distance decreases, and this is caused by rotating in a predetermined direction (for example, the direction indicated by the arrow 36). For regions that are difficult to turn, it means that turning can be performed by rotating in a direction opposite to the predetermined rotation direction (for example, the direction indicated by arrow 38). Further, even in a region W 'of the value of the change amount [Delta] x n is zero, when it is rotated with a predetermined rotational angle in the direction indicated by the workpiece 14 by the arrows 38 and turning, the moving speed of the cutting tool 32 The moving acceleration does not exceed the performance of the lathe 2.

上述したこと(図9及び図10の内容)をまとめると、被加工物14を所定回転方向(矢印36で示す方向)に回動させたときには、図9に示すように、0〜90度の範囲の領域U及び180〜360度の範囲の領域Wについては所要の通りに切削加工することができるが、90〜180度の範囲の領域Vについては切削加工を避けた方が望ましく、また被加工物14を所定回転方向と反対方向(矢印38で示す方向)に回動させたときには、図10に示すように、90〜180度の範囲の領域U’及び180〜360度の範囲の領域W’については所要の通りに切削加工することができるが、0〜90度の範囲の領域V’については切削加工を避けた方が望ましい。   Summarizing the above (contents of FIG. 9 and FIG. 10), when the workpiece 14 is rotated in a predetermined rotation direction (the direction indicated by the arrow 36), as shown in FIG. Cutting can be performed as required for the region U in the range and the region W in the range of 180 to 360 degrees, but it is desirable to avoid cutting in the region V in the range of 90 to 180 degrees. When the workpiece 14 is rotated in the direction opposite to the predetermined rotation direction (the direction indicated by the arrow 38), as shown in FIG. 10, the region U ′ in the range of 90 to 180 degrees and the region in the range of 180 to 360 degrees. W ′ can be cut as required, but it is desirable to avoid cutting for the region V ′ in the range of 0 to 90 degrees.

このようなことから、この加工方法では、0〜90度の範囲の領域Uを含む第1加工領域B1については、図11に示すように、被加工物14を所定回転方向(矢印36で示す方向)に回動させ、且つ切削工具32の刃先を被加工物14の片側(図11及び図12において右側)から作用させて旋削加工を行い、一方90〜180度の範囲の領域U’の範囲を含む第2加工領域B2については、図12に示すように、被加工物14を所定回転方向と反対方向(矢印38で示す方向)に回動させ、且つ切削工具32の刃先を被加工物14の他側(図11及び図12において左側)から作用させて旋削加工を行うようにし、このようにして被加工物14を非円形状に加工するものである。   For this reason, in this processing method, as shown in FIG. 11, in the first processing region B1 including the region U in the range of 0 to 90 degrees, the workpiece 14 is rotated in a predetermined rotational direction (indicated by an arrow 36). And the cutting edge of the cutting tool 32 is turned from one side (right side in FIGS. 11 and 12) of the workpiece 14 to perform turning, while the region U ′ in the range of 90 to 180 degrees. For the second processing region B2 including the range, as shown in FIG. 12, the workpiece 14 is rotated in the direction opposite to the predetermined rotation direction (direction indicated by the arrow 38), and the cutting edge of the cutting tool 32 is processed. Turning is performed by acting from the other side of the workpiece 14 (left side in FIGS. 11 and 12), and the workpiece 14 is thus machined into a non-circular shape.

尚、180〜360度の範囲の領域W(W’)については、被加工物14を所定回転方向に回動させ、且つ切削工具32の刃先を被加工物14の片側から作用させて旋削加工を行ってもよく、或いは被加工物14を所定回転方向と反対方向に回動させ、且つ切削工具32の刃先を被加工物14の他側から作用させて旋削加工を行ってもよく、この実施形態では、図11及び図12に示すように、被加工物14の最終加工形状を考慮して、例えば上記領域W(W’)のうち270〜360度の範囲の領域W1については第1加工領域B1に含め、例えば上記領域W(W’)のうち180〜270の領域W2については第2加工領域B2に含めている。   In the region W (W ′) in the range of 180 to 360 degrees, the workpiece 14 is turned in a predetermined rotation direction, and the cutting edge of the cutting tool 32 is applied from one side of the workpiece 14 to perform turning. Alternatively, the workpiece 14 may be turned in a direction opposite to the predetermined rotation direction, and the cutting edge of the cutting tool 32 may be turned from the other side of the workpiece 14 to perform turning. In the embodiment, as shown in FIGS. 11 and 12, in consideration of the final processed shape of the workpiece 14, for example, the region W1 in the range of 270 to 360 degrees out of the region W (W ′) is the first. For example, the region W2 of 180 to 270 in the region W (W ′) is included in the second processing region B2 in the processing region B1.

図4に戻って、このようにして被加工物14の周表面を所要の非円形状に旋削加工できるように第1及び第2加工領域B1,B2に分けた後に、被加工物14の第1加工領域B1についての第1旋削加工データを作成し(第1旋削加工データの作成工程S3)、次いでその第2加工領域B2についての第2旋削加工データを作成する(第2旋削加工データの作成工程S4)。   Returning to FIG. 4, after dividing the peripheral surface of the workpiece 14 into the first and second machining regions B1 and B2 so that the peripheral surface of the workpiece 14 can be turned into a required non-circular shape, First turning data for the first machining area B1 is created (first turning data creation step S3), and then second turning data for the second machining area B2 is created (of the second turning data). Creation step S4).

この第1旋削加工データの作成工程S3においては、図11に示すように、第1加工領域B1、即ち0〜90度の領域(領域U)及び270〜360度の領域(領域W1)については、被加工物14の最終加工形状に旋削加工するように旋削加工データが作成され、第2加工領域B2(即ち、90〜270度の領域)については、第1加工領域B1の下流側端からその上流側端に、第2加工領域B2の最終加工形状に影響を与えることがなく(換言すると、最終加工形状を越えて旋削加工をすることがなく)、滑らかに移行するような中間加工形状、例えば図11に実線Fで示す形状に旋削加工するように旋削加工データが作成される。   In the first turning data creation step S3, as shown in FIG. 11, the first machining region B1, that is, the region of 0 to 90 degrees (region U) and the region of 270 to 360 degrees (region W1) are shown. Turning data is created so that the workpiece 14 is turned to the final machining shape, and the second machining area B2 (that is, an area of 90 to 270 degrees) is from the downstream end of the first machining area B1. An intermediate machining shape that has a smooth transition without affecting the final machining shape of the second machining area B2 at the upstream end (in other words, without turning beyond the final machining shape). For example, turning data is created so as to turn into a shape indicated by a solid line F in FIG.

即ち、第1旋削加工データの作成工程においては、被加工物14の加工形状として第1加工領域B1については被加工物14の最終加工形状と、また第2加工領域B2としては被加工物14の中間加工形状(例えば、実線Fで示す形状)となるように第1旋削加工データが作成される。   That is, in the first turning data creation step, the processed shape of the workpiece 14 is the final processed shape of the workpiece 14 for the first processing region B1, and the processed material 14 is the second processing region B2. The first turning data is created so as to have an intermediate machining shape (for example, a shape indicated by a solid line F).

この第1旋削加工データの作成は、特願2010−218038号の明細書及び図面(特開2012−71381号公報)に開示された加工方法を用いて作成することができ、その詳細については、特開2012−71381号公報を参照されたい。この第1旋削加工データの作成手順を概説すると、次の通りである。   The first turning data can be created using the machining method disclosed in the specification and drawings of Japanese Patent Application No. 2010-218038 (Japanese Patent Application Laid-Open No. 2012-71381). Refer to JP2012-71381A. An outline of the procedure for creating the first turning data is as follows.

図5を参照して、被加工物14の加工すべき形状データ(第1加工領域B1については最終加工形状で、第2加工領域B2については中間加工形状である形状データ)に基づいて、切削工具32のすくい面40と被加工物14の形状表面との第1交線を作成する(第1交線作成工程S3−1)。この第1交線はスプライン曲線で表すことができ、その代表的な通過点、或いはスプライン曲線の式を表す係数を求める。このスプライン曲線Xを求める場合、NC旋盤の座標系に従うと、点群データ(xi,zi),i=0,1,2,・・・(m−1)が得られるが、これら点群間を更に補間するのが望ましく、このように補間して主軸回転数及び送りに同期した点群データを作成する。   Referring to FIG. 5, cutting is performed based on the shape data to be processed of workpiece 14 (the shape data that is the final processing shape for the first processing region B1 and the intermediate processing shape for the second processing region B2). A first intersection line between the rake face 40 of the tool 32 and the shape surface of the workpiece 14 is created (first intersection line creation step S3-1). This first intersection line can be represented by a spline curve, and a representative passing point or a coefficient representing the expression of the spline curve is obtained. When the spline curve X is obtained, point cloud data (xi, zi), i = 0, 1, 2,... (M−1) is obtained according to the NC lathe coordinate system. Is preferably further interpolated, and point cloud data synchronized with the spindle rotation speed and feed is generated by interpolation in this way.

次に、第1交線作成工程S3−1にて得られた第1交線のスプライン曲線X上に切削工具32の送り量を考慮した通過点を改めてこのスプライン曲線X上に作成する(第1工具軌跡点列作成工程S3−2)。このとき、切削工具32の形状に起因して、その半径の影響でもって加工位置により切込みすぎる箇所が生じるために、切削工具32のすくい面40上においてスプライン曲線Xの法線方向に切削工具32の半径Rだけオフセットした第1基準点軌跡点列を作成する(第1基準点軌跡点列作成工程S3−3)。そして、この第1基準点軌跡点列を連結することによって、第1軌跡点列連結データが作成される。   Next, on the spline curve X of the first intersection line obtained in the first intersection line creation step S3-1, a passing point considering the feed amount of the cutting tool 32 is newly created on the spline curve X (first). 1 tool locus point sequence creation step S3-2). At this time, due to the shape of the cutting tool 32, a portion that is excessively cut depending on the processing position is generated due to the influence of the radius of the cutting tool 32, so that the cutting tool 32 extends in the normal direction of the spline curve X on the rake face 40 of the cutting tool 32. The first reference point locus point sequence offset by the radius R of the first reference point locus point sequence is created (first reference point locus point sequence creation step S3-3). And the 1st locus | trajectory point sequence connection data are produced by connecting this 1st reference point locus | trajectory point sequence.

その後、第1基準点軌跡点列作成工程S3−3で作成された第1基準点軌跡点列を連結した第1軌跡点列連結データに基づいて被加工物14の所定回転角度毎のZ軸方向における送り速度が一定となる第1補正基準点軌跡点列を作成する(第1補正基準点軌跡点列作成工程S3−4)。第1基準点軌跡点列の間隔は一定とならず、被加工物14の切削加工中にX軸方向における送り量(即ち、切削工具32の切込み量)及びZ軸方向における送り量を主軸(被加工物14)の回転角度に従い位置制御する必要があるが、被加工物14の所定回転角度毎のZ軸方向における送り速度が一定となるように補正基準点軌跡点列を作成したときには、X軸方向の送り量(即ち、切削工具32の切込み量)を位置制御すればよく、その追従制御が容易となる。   Thereafter, the Z-axis for each predetermined rotation angle of the workpiece 14 based on the first trajectory point sequence connection data obtained by connecting the first reference point trajectory sequence generated in the first reference point trajectory sequence sequence S3-3. A first correction reference point locus point sequence in which the feed rate in the direction is constant is created (first correction reference point locus point sequence creation step S3-4). The interval of the first reference point locus point sequence is not constant, and the feed amount in the X-axis direction (that is, the cutting amount of the cutting tool 32) and the feed amount in the Z-axis direction during the machining of the workpiece 14 are changed to the main axis ( Although it is necessary to control the position according to the rotation angle of the workpiece 14), when the correction reference point locus point sequence is created so that the feed speed in the Z-axis direction for each predetermined rotation angle of the workpiece 14 is constant, The position of the feed amount in the X-axis direction (that is, the cut amount of the cutting tool 32) may be controlled, and the follow-up control becomes easy.

この第1補正基準点軌跡点列作成工程S3−4にて作成した第1補正基準点軌跡点列を連結した第1補正軌跡点列連結データ(換言すると、第1補正基準点軌跡点列を連結したスプライン曲線)に基づいて主軸(即ち、被加工物14)の所定回転角度毎のX軸方向の送り量を算出し、Z軸方向の所定送り量及びX軸方向の算出された送り量に基づいて第1旋削加工データが完成する。   First correction trajectory point sequence concatenation data (in other words, the first correction reference point trajectory sequence is obtained by connecting the first correction reference point trajectory sequence generated in the first correction reference point trajectory sequence sequence S3-4. Based on the connected spline curve), a feed amount in the X-axis direction for each predetermined rotation angle of the spindle (that is, the workpiece 14) is calculated, and a predetermined feed amount in the Z-axis direction and a calculated feed amount in the X-axis direction are calculated. Based on the above, the first turning data is completed.

上述したようにして第1加工領域B1を含む第1旋削加工データを作成した後、続いて第2加工領域B2を含む第2旋削加工データを作成する。第2旋削加工データの作成工程S4においては、図12に示すように、第2加工領域B2、即ち90〜180度の領域(領域U’)及び180〜270度の領域(領域W2)については、被加工物14の最終加工形状に旋削加工するようにするように旋削加工データが作成され、第1加工領域B1(即ち、0〜90度の領域及び270〜360度の領域)については、第2加工領域B2の下流側端からその上流側端に、第1加工領域B1の最終加工形状に影響を与えることがなく(換言すると、加工された後の部分に更に旋削加工を施すことがなく)、滑らかに移行するような仮想加工形状、例えば図12に実線F’で示す形状に沿って加工することなく切削工具32が移動するように旋削加工データが作成される、この第2旋削加工データの作成手順は、上述した第1旋削加工データの作成手順と同様にして行われ、第1旋削加工データの作成手順における「第1交線作成工程」を「第2交線作成工程」と、その「第1交点」を「第2交線」と、その「第1工具軌跡点列作成工程」を「第2工具軌跡点列作成工程」と、その「第1基準点軌跡点列」を「第2基準点軌跡点列」と、その「第1基準点軌跡点列作成工程」を「第2基準点軌跡点列作成工程」と、その「第1軌跡点列連結データ」を「第2軌跡点列連結データ」と、その「第1補正基準点軌跡点列」を「第2補正基準点軌跡点列」と、その「第1補正基準点軌跡点列作成工程」を「第2補正基準点軌跡点列作成工程」と、「第1補正軌跡点列連結データ」を「第2補正軌跡点列連結データ」と、またその「第1旋削加工データ」を「第2旋削加工データ」と読み替えればよい。   After creating the first turning data including the first machining area B1 as described above, the second turning data including the second machining area B2 is subsequently created. In the second turning data creation step S4, as shown in FIG. 12, the second machining region B2, that is, the region of 90 to 180 degrees (region U ′) and the region of 180 to 270 degrees (region W2) are used. Turning data is created so as to turn to the final machining shape of the workpiece 14, and the first machining area B1 (that is, an area of 0 to 90 degrees and an area of 270 to 360 degrees) From the downstream end of the second processing region B2 to the upstream end thereof, the final processing shape of the first processing region B1 is not affected (in other words, the processed portion can be further turned. This second turning, in which the turning data is created so that the cutting tool 32 moves without machining along a virtual machining shape that moves smoothly, for example, the shape indicated by the solid line F ′ in FIG. Processing data The creation procedure is performed in the same manner as the first turning data creation procedure described above. The “first intersection line creation step” in the first turning data creation procedure is referred to as the “second intersection line creation step”. The “first intersection point” is the “second intersection line”, the “first tool locus point sequence creation step” is the “second tool locus point sequence creation step”, and the “first reference point locus point sequence” is “ The “second reference point locus point sequence”, its “first reference point locus point sequence creation step” as “second reference point locus point sequence creation step”, and its “first locus point sequence connection data” as “second”. The “trajectory point sequence concatenated data”, its “first correction reference point trajectory point sequence” as “second correction reference point trajectory point sequence”, and its “first correction reference point trajectory sequence” as “second correction”. “Reference point trajectory point sequence creation step”, “first correction trajectory point sequence concatenated data” as “second correction trajectory point sequence concatenated data” and its “first turning process” Over data "and may be read as" the second turning data ".

上述したように第1及び第2旋削加工データが作成された後、第1及び第2旋削加工データの合成が行われ(第1及び第2旋削加工データの合成工程S5)、このようにして被加工物14を旋削加工するための旋削加工データが作成される。そして、このように作成された旋削加工データは、コンピュータ(図示せず)から旋盤2のコントローラに入力され、かかる入力の際に、旋削加工に必要な命令が付加され、このようにしてNC加工データが作成され(NC加工データ作成工程S6)、作成されたNC加工データはコントローラのメモリに登録される。   As described above, after the first and second turning data are created, the first and second turning data are combined (the first and second turning data combining step S5), and in this way. Turning data for turning the workpiece 14 is created. Then, the turning data created in this way is inputted to the controller of the lathe 2 from a computer (not shown), and at the time of such input, a command necessary for turning is added, and thus NC machining is performed. Data is created (NC machining data creation step S6), and the created NC machining data is registered in the memory of the controller.

このように作成されたNC加工データを用いて旋削加工するときには、まず、第1加工領域B1の旋削加工が行われ(このとき、第2加工領域B2については、中間加工形状に旋削加工される)、その後、第2加工領域B2の旋削加工が行われる(このとき、第1加工領域B1については、旋削加工は全く行われない)。第1加工領域B1を加工するときには、図2及び図11に示すように、被加工物14が所定回転方向(矢印36で示す方向)に所定回転数で回動され、切削工具32の刃先は被加工物14の片側(図11及び図12において右側)から被加工物14に作用し、被加工物14の第1加工領域B1については最終加工形状となるように旋削加工され、その第2加工領域B2については中間加工形状Fとなるように旋削加工される。また、第2加工領域B2を加工するときには、図3及び図12に示すように、被加工物14が所定回転方向と反対方向(矢印38で示す方向)に所定回転数で回動され、切削工具32の刃先は被加工物14の他側(図11及び図12において左側)から被加工物14に作用し、被加工物14の第2加工領域B2については最終加工形状となるように旋削加工される(このとき、第1加工領域B1については切削加工されることはない)。このようにして旋盤2による旋削でもって、被加工物14を所定の非円形状に加工することができ、この旋削加工の際に切削工具32の移動速度及び/又は移動加速度が大きくなることが回避され、被加工物14を高精度に加工することができる。   When turning using the NC machining data created in this way, first, the first machining area B1 is turned (at this time, the second machining area B2 is turned into an intermediate machining shape). Then, the turning process of the second machining area B2 is performed (at this time, the turning process is not performed at all for the first machining area B1). When processing the first processing region B1, as shown in FIGS. 2 and 11, the workpiece 14 is rotated at a predetermined rotational speed in a predetermined rotational direction (direction indicated by an arrow 36), and the cutting edge of the cutting tool 32 is It acts on the workpiece 14 from one side of the workpiece 14 (the right side in FIGS. 11 and 12), and the first machining area B1 of the workpiece 14 is turned so as to have a final machining shape. The machining region B2 is turned so as to have an intermediate machining shape F. When processing the second processing region B2, as shown in FIGS. 3 and 12, the workpiece 14 is rotated at a predetermined rotational speed in a direction opposite to the predetermined rotational direction (the direction indicated by the arrow 38), and cutting is performed. The cutting edge of the tool 32 acts on the workpiece 14 from the other side of the workpiece 14 (left side in FIGS. 11 and 12), and the second machining region B2 of the workpiece 14 is turned so as to have a final machining shape. (At this time, the first processing region B1 is not cut). In this way, the workpiece 14 can be processed into a predetermined non-circular shape by turning with the lathe 2, and the moving speed and / or moving acceleration of the cutting tool 32 may increase during the turning process. Thus, the workpiece 14 can be processed with high accuracy.

このような非円形加工方法は、被加工物を種々の非円形状に旋削加工するのに適用することができ、例えば、図13及び図14に示す形状に加工する場合にも適用することができる。尚、以下の説明において、上述した実施形態と実質同一の部材には同一の参照番号を付し、その説明を省略する。   Such a non-circular machining method can be applied to turning a workpiece into various non-circular shapes, and for example, can be applied to the case of machining into the shapes shown in FIGS. 13 and 14. it can. In the following description, members that are substantially the same as those in the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted.

図13及び図14に示す形状に加工する場合においても、上述したと同様にして、被加工物52の各回転角度位置のX軸方向の移動量から切削工具の移動速度及び/又は移動加速度が大きくなる領域を探して第1及び第2加工領域に分ける。図13において、主軸(即ち、被加工物52)が矢印54で示す所定回転方向に回動する場合において、被加工物52の所定回転角度毎の分割基準線M(M,M,M・・・)と切削工具32の刃先のオフセット量Hを半径とする基準円48との交わる点を第1交点Q(Q,Q,Q・・・)とし、またこの第1交点Q(Q,Q,Q・・・)から切削工具32側に延びる接線L(L,L,L・・・)と被加工物52の最終加工形状Pとが交わる点を第2交点R(R,R,R・・・)とすると、切削工具32の刃先の加工位置Cp(Cp,Cp,Cp・・・)のX軸座標の値はx(x,x,x・・・)となり、Y軸座標の値はy(y,y,y・・・)となり、このときのX軸座標の座標値xの変化量Δx(即ち、接線距離Dの変化量ΔD)を、上述したと同様にして検討すればよい。 In the case of machining into the shape shown in FIG. 13 and FIG. 14 as well, the moving speed and / or moving acceleration of the cutting tool is determined from the amount of movement of each rotational angle position of the workpiece 52 in the X-axis direction in the same manner as described above. A region to be enlarged is searched and divided into first and second processing regions. In FIG. 13, when the main shaft (that is, the workpiece 52) rotates in the predetermined rotation direction indicated by the arrow 54, the division reference line M n (M 0 , M 1 , M) for each predetermined rotation angle of the workpiece 52. The point where M 2 ... Intersects the reference circle 48 whose radius is the offset amount H of the cutting edge of the cutting tool 32 is defined as a first intersection Q n (Q 0 , Q 1 , Q 2 ...) The tangent line L n (L 0 , L 1 , L 2 ...) Extending from the first intersection point Q n (Q 0 , Q 1 , Q 2 ...) To the cutting tool 32 side and the final machining shape of the workpiece 52. the point where the P intersects the second intersection point R n (R 0, R 1 , R 2 ···) If that, the processing position of the cutting edge of the cutting tool 32 Cp n (Cp 0, Cp 1, Cp 2 ···) The value of the X-axis coordinate is x n (x 0 , x 1 , x 2 ...), And the value of the Y-axis coordinate is y n (y 0 , y 1 , y 2 · · ·) becomes, X amount of change in coordinate values x n of axis coordinates [Delta] x n at this time (i.e., the [Delta] D n) variation of the tangential distance D n, may be considered in the same manner as described above.

図13及び図14に示す形状では、例えば、90〜150度の範囲の領域V1及び210〜290度の範囲の領域V2において、この変化量Δx が正の値(Δx>0)となり、0〜90度の範囲の領域U1及び150〜210度の範囲の領域U2において、この変化量Δxが負の値(Δx<0)となり、290〜360度の範囲の領域Wが零の領域(Δx=0)となる。 In the shape shown in FIGS. 13 and 14, for example, in the region V1 in the range of 90 to 150 degrees and the region V2 in the range of 210 to 290 degrees, the amount of change Δx n is a positive value (Δx n > 0). in the region U2 regions U1 and 150 to 210 degrees in the range of 0 to 90 ° range, the amount of change [Delta] x n is a negative value (Δx n <0), and the coverage area W is zero in the 290 to 360 degrees Region (Δx n = 0).

一方、図14で示すように、主軸(即ち、被加工物52)が矢印56で示す所定回転方向と反対方向に回動する場合において、被加工物52の所定回転角度毎の分割基準線M(M,M,M・・・)と切削工具32の刃先のオフセット量Hを半径とする基準円48との交わる点を第1交点Q(Q,Q,Q・・・)とし、またこの第1交点Q(Q,Q,Q・・・)から切削工具32側に延びる接線L(L,L,L・・・)と被加工物52の最終加工形状Pとが交わる点を第2交点R(R,R,R・・・)とすると、切削工具32の刃先の加工位置Cp(Cp,Cp,Cp・・・)のX軸座標の値はx(x,x,x・・・)となり、このときのX軸座標の座標値xの変化量Δx(即ち、接線距離Dの変化量ΔD)を、上述したと同様にして検討すればよい。 On the other hand, as shown in FIG. 14, when the main shaft (that is, the workpiece 52) rotates in the direction opposite to the predetermined rotation direction indicated by the arrow 56, the division reference line M for each predetermined rotation angle of the workpiece 52. n (M 0 , M 1 , M 2 ...) and a reference circle 48 whose radius is the offset amount H of the cutting edge of the cutting tool 32 are defined as first intersection points Q n (Q 0 , Q 1 , Q 2). )) And a tangent line L n (L 0 , L 1 , L 2 ...) Extending from the first intersection point Q n (Q 0 , Q 1 , Q 2 ...) To the cutting tool 32 side. When the point where the final machining shape P of the workpiece 52 intersect second intersection R n (R 0, R 1 , R 2 ···), the processing position of the cutting edge of the cutting tool 32 Cp n (Cp 0, Cp 1 , Cp 2 ... X-axis coordinate value is x n (x 0 , x 1 , x 2 ...), And the X-axis seat at this time The amount of change in coordinate values x n of characteristic [Delta] x n (i.e., [Delta] D n the amount of change in the tangential distance D n) and may be considered in the same manner as described above.

この場合には、例えば、0〜90度の範囲の領域V1’及び150〜210度の範囲の領域V2’において、この変化量Δx が正の値(Δx>0)となり、90〜150度の範囲の領域U1’及び210〜290度の範囲の領域U2’において、この変化量Δxが負の値(Δx<0)となり、290〜360度の範囲の領域W’が零の領域(Δx=0)となる。 In this case, for example, in the 'region V2 in the range of and 150 to 210 degrees' region V1 in the range of 0 to 90 degrees, the amount of change [Delta] x n is a positive value (Δx n> 0), and the 90 to 150 in every range of the region U1 of 'and 210 to 290 degrees in the range of areas U2', the amount of change [Delta] x n is a negative value (Δx n <0), and the 290-360 ° range area W 'is zero in Region (Δx n = 0).

このようなことから、図13及び図14に示す最終加工形状の被加工物52にこの加工方法を適用すると、矢印54で示す方向に回動するときに切削工具32により旋削加工が施される第1加工領域(図示せず)は、矢印54で示す方向に回動させたときに変化量Δxが負の値Δx<0)となる領域(即ち、0〜90度の範囲の領域U1及び150〜210度の範囲の領域U2)を含み、また矢印56で示す方向に回動するときに旋削加工が施される第2加工領域(図示せず)は、矢印56で示す方向に回動させたときに変化量Δxが負の値(Δx<0)となる領域(即ち、90〜150度の範囲の領域U1’及び210〜290度の範囲の領域U2’)を含み、残りの領域(即ち、変化量Δx が零となる290〜360度の範囲の領域W)については、上記第1加工領域又は第2加工領域に含ませるようにし、或いは上述した形態のように、その一部(領域U1に続く部分)については第1加工領域に含ませ、その残部(領域V2に続く部分)については第2加工領域に含ませるようにしてもよい。 For this reason, when this machining method is applied to the workpiece 52 having the final machining shape shown in FIGS. 13 and 14, turning is performed by the cutting tool 32 when rotating in the direction indicated by the arrow 54. The first machining region (not shown) is a region where the change amount Δx n becomes a negative value Δx n <0 when rotated in the direction indicated by the arrow 54 (that is, a region in the range of 0 to 90 degrees). U2 and a region U2 in the range of 150 to 210 degrees), and a second machining region (not shown) to which turning is performed when rotating in the direction indicated by arrow 56 is in the direction indicated by arrow 56. Including regions where the amount of change Δx n is negative (Δx n <0) when rotated (ie, a region U1 ′ in the range of 90 to 150 degrees and a region U2 ′ in the range of 210 to 290 degrees). , The remaining region (that is, in the range of 290 to 360 degrees where the change Δx n is zero) The region W) is included in the first processing region or the second processing region, or a part thereof (portion following the region U1) is included in the first processing region as described above. The remaining portion (portion following the region V2) may be included in the second processing region.

このように被加工物52の周表面を第1加工領域と第2加工領域とに分け、上述した第1加工領域を加工する際には、図13に示すように、被加工物52を所定回転方向(矢印54で示す方向)に回動させるとともに、切削工具32を被加工物52の片側(図13及び図14において右側)から作用させて最終加工形状となるように加工を行い(このとき、第2加工領域については、上述したような中間加工形状となるように加工する)、その後第2加工領域を加工する際には、図14に示すように、被加工物52を所定回転方向と反対方向(矢印56で示す方向)に回動させるとともに、切削工具32を被加工物52の他側(図13及び図14において左側)から作用させて最終加工形状となるように加工を行い(このとき、第1加工領域については、切削工具32により旋削加工されることはない)、このようにして被加工物52を所要の非円形状の旋削加工することができる。   In this way, when the peripheral surface of the workpiece 52 is divided into the first machining area and the second machining area, and the first machining area described above is machined, the workpiece 52 is set to a predetermined shape as shown in FIG. While rotating in the rotation direction (direction shown by the arrow 54), the cutting tool 32 is acted from one side (the right side in FIGS. 13 and 14) of the workpiece 52 to perform the machining so as to have a final machining shape (this) When the second machining area is processed, the workpiece 52 is rotated by a predetermined amount as shown in FIG. 14 when the second machining area is processed. While rotating in the direction opposite to the direction (the direction indicated by the arrow 56), the cutting tool 32 is applied from the other side of the workpiece 52 (left side in FIGS. 13 and 14) so as to obtain a final machining shape. Perform (At this time, the first machining area For, the cutting tool 32 will not be turning by), can this way be turning of the workpiece 52 the required non-circular.

以上、本発明に従う非円形加工方法の実施形態について説明したが、本発明はこの実施形態に限定されず、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   Although the embodiment of the non-circular machining method according to the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and corrections can be made without departing from the scope of the present invention.

例えば、上述した実施形態では、被加工物14(52)を所定回転方向に回動させてその第1加工領域B1を加工し(このとき、その第2加工領域B2は中間加工形状に加工される)、その後、被加工物14(52)を所定回転方向と反対方向に回動させてその第2加工領域B2を加工しているが、これとは反対に、被加工物14(52)を所定回転方向と反対方向に回動させてその第2加工領域B2を加工し(このとき、その第1加工領域B1は中間加工形状に加工される)、その後、被加工物14(52)を所定回転方向に回動させてその第1加工領域B1を加工するようにしてもよい。   For example, in the above-described embodiment, the workpiece 14 (52) is rotated in a predetermined rotation direction to process the first processing region B1 (at this time, the second processing region B2 is processed into an intermediate processing shape). Then, the workpiece 14 (52) is rotated in the direction opposite to the predetermined rotation direction to process the second processing region B2, but on the contrary, the workpiece 14 (52) Is rotated in the direction opposite to the predetermined rotation direction to process the second processing region B2 (at this time, the first processing region B1 is processed into an intermediate processing shape), and then the workpiece 14 (52) The first processing region B1 may be processed by rotating in a predetermined rotational direction.

また、この非円形加工方法を適用するための旋盤として、図15に示す形態のものを用いることもでき、適用する旋盤の形態については、種々のものが考えられる。図15において、この形態の旋盤2Aにおいては、ベッド本体の主軸部10Aに主軸が回転自在に支持され、この主軸にチャック手段12Aを介して被加工物14Aが装着される。また、図示していないが、ベッド本体に第1支持機構を介して移動テーブルがZ軸方向(主軸の軸線方向)に移動自在に支持され、この移動テーブルに第2支持機構を介して工具テーブル22AがX軸方向(Z軸方向に対して実質上垂直な方向)に移動自在に支持され、この工具テーブル22Aに工具ユニット30Aが取り付けられている。この工具ユニット30Aは切削工具32Aを備え、切削工具32Aは被加工物14Aに向けて上方に延びている。工具ユニット30A内には工具用駆動源(図示せず)が内蔵され、この工具用駆動源によって矢印62で示す方向に回動される。   Further, as a lathe for applying this non-circular machining method, the one shown in FIG. 15 can be used, and various types of lathes can be considered. In FIG. 15, in the lathe 2A of this embodiment, the main shaft is rotatably supported by the main shaft portion 10A of the bed body, and a workpiece 14A is mounted on the main shaft via the chuck means 12A. Although not shown, a movable table is supported on the bed body via a first support mechanism so as to be movable in the Z-axis direction (axial direction of the main shaft), and the tool table is supported on the movable table via a second support mechanism. 22A is supported to be movable in the X-axis direction (direction substantially perpendicular to the Z-axis direction), and a tool unit 30A is attached to the tool table 22A. The tool unit 30A includes a cutting tool 32A, and the cutting tool 32A extends upward toward the workpiece 14A. A tool drive source (not shown) is built in the tool unit 30A, and is rotated in the direction indicated by the arrow 62 by the tool drive source.

この旋盤2Aにおいては、工具ユニット30Aが被加工物14Aの下側に配置され、このことに関連して、切削工具32Aの刃先は、上下方向の下方にオフセットしており、このように上下方向の下方にオフセットさせた場合にもこの非円形加工方法を上述と同様に適用することができる。この場合、被加工物14Aを矢印64で示す方向(図15において時計方向)に回動して加工するときには、工具ユニット30Aは図15に実線で示すように位置し、その切削工具32Aは被加工物14Aの片側(図15において右側)から作用して加工を施し、このときに被加工物14Aの例えば第1加工領域を上述したように旋削加工し、また被加工物14Aを矢印66で示す方向(図15において反時計方向)に回動して加工するときには、工具ユニット30Aは図15に一点鎖線で示すように位置し、その切削工具32Aは被加工物14Aの他側(図15において左側)から作用して加工を施し、このときに被加工物14Aの例えば第2加工領域を上述したように旋削加工する。   In this lathe 2A, the tool unit 30A is disposed below the workpiece 14A. In this connection, the cutting edge of the cutting tool 32A is offset downward in the vertical direction, and thus the vertical direction. This non-circular machining method can be applied in the same manner as described above even when offset downward. In this case, when the workpiece 14A is rotated and processed in the direction indicated by the arrow 64 (clockwise in FIG. 15), the tool unit 30A is positioned as indicated by the solid line in FIG. Machining is performed by acting from one side (right side in FIG. 15) of the workpiece 14A. At this time, for example, the first machining area of the workpiece 14A is turned as described above, and the workpiece 14A is indicated by an arrow 66. When turning and machining in the direction shown (counterclockwise in FIG. 15), the tool unit 30A is positioned as shown by a one-dot chain line in FIG. 15, and the cutting tool 32A is located on the other side of the workpiece 14A (FIG. 15). In this case, for example, the second machining area of the workpiece 14A is turned as described above.

2,2A 旋盤
10 主軸部
14,52,14A 被加工物
16 移動テーブル
22,22A 工具テーブル
30,3A 工具ユニット
32,32A 切削工具
B1 第1加工領域
B2 第2加工領域














2,2A Lathe 10 Spindle part 14, 52, 14A Workpiece 16 Moving table 22, 22A Tool table 30, 3A Tool unit 32, 32A Cutting tool B1 First machining area B2 Second machining area














Claims (6)

被加工物を保持するためのチャック手段が装着された主軸と、前記被加工物を切削加工するための切削工具が取り付けられた工具テーブルと、前記主軸及び前記工具テーブルのいずれか一方をそれらの他方に対して第1の直線方向に相対的に移動自在に支持するための第1支持機構と、前記主軸及び前記工具テーブルのいずれか一方をそれらの他方に対して前記第1の直線方向に対して実質上垂直な第2の直線方向に相対的に移動自在に支持するための第2支持機構と、を備えた旋盤を用い、前記切削工具の刃先が前記主軸の中心軸線より上下方向の上方又は下方に所定距離オフセットした加工位置にて前記被加工物に作用して非円形加工を行う旋削による非円形加工方法であって、
前記被加工物の加工周面を第1加工領域と第2加工領域とに分け、前記被加工物の前記第1加工領域を加工するときには、前記主軸を所定回転方向に回動させるとともに、前記被加工物の片側から前記切削工具の前記刃先を前記第1加工領域に作用させて所定形状に切削加工し、また前記被加工物の前記第2加工領域を加工するときには、前記主軸を前記所定回転方向とは反対方向に回動させるとともに、前記被加工物の他側から前記切削工具の前記刃先を前記第2加工領域に作用させて所定形状に切削加工することを特徴とする旋削による非円形加工方法。
A spindle having chuck means for holding the workpiece, a tool table to which a cutting tool for cutting the workpiece is attached, and either the spindle or the tool table are attached to them. A first support mechanism for supporting the other in a relatively movable manner in the first linear direction, and either the main shaft or the tool table in the first linear direction with respect to the other of them. A lathe provided with a second support mechanism for movably supporting in a second linear direction substantially perpendicular to the cutting tool, wherein the cutting edge of the cutting tool is positioned in a vertical direction with respect to the central axis of the main shaft A non-circular machining method by turning that performs non-circular machining by acting on the workpiece at a machining position offset by a predetermined distance upward or downward,
The machining peripheral surface of the workpiece is divided into a first machining area and a second machining area, and when machining the first machining area of the workpiece, the spindle is rotated in a predetermined rotation direction, When the cutting edge of the cutting tool is applied to the first machining area from one side of the workpiece to cut it into a predetermined shape, and when the second machining area of the workpiece is machined, the main shaft is moved to the predetermined area. Non-rotating by turning, characterized in that it is rotated in a direction opposite to the direction of rotation, and the cutting edge of the cutting tool is applied to the second machining area from the other side of the workpiece to be cut into a predetermined shape. Circular machining method.
前記切削工具の前記刃先断面が円形状であり、前記被加工物の前記第1加工領域を切削加工するときには、前記切削工具が所定方向に回動され、前記被加工物の前記第2加工領域を切削加工するときには、前記切削工具が前記所定方向又は前記所定方向と反対方向に回動されることを特徴とする請求項1に記載の旋削による非円形加工方法。   The cutting edge section of the cutting tool is circular, and when the first machining area of the workpiece is cut, the cutting tool is rotated in a predetermined direction, and the second machining area of the workpiece is 2. The non-circular machining method by turning according to claim 1, wherein when cutting the workpiece, the cutting tool is rotated in the predetermined direction or in a direction opposite to the predetermined direction. 前記被加工物を所定回動方向に一定回転速度で回動させたときに、前記被加工物の最終加工形状を基準にして、前記被加工物の前記加工位置における前記切削工具の移動速度及び移動加速度が小さい領域を前記第1加工領域とし、前記切削工具の前記移動速度及び/又は移動加速度が大きい領域を前記第2加工領域とし、前記第1加工領域を切削加工するときには、前記主軸が前記所定回転方向に回動され、前記第2加工領域を切削加工するときには、前記主軸が前記所定回転方向と反対方向に回動されることを特徴とする請求項1又は2に記載の旋削による非円形加工方法。   When the workpiece is rotated at a constant rotation speed in a predetermined rotation direction, the moving speed of the cutting tool at the machining position of the workpiece, with reference to the final machining shape of the workpiece, and When the area where the movement acceleration is small is the first machining area, the area where the moving speed and / or movement acceleration of the cutting tool is large is the second machining area, and when the first machining area is cut, the spindle is 3. The turning according to claim 1, wherein the main shaft is rotated in a direction opposite to the predetermined rotation direction when turning in the predetermined rotation direction and cutting the second machining region. Non-circular processing method. 前記被加工物の回転中心を中心として所定角度毎に放射状に延びる複数の分割基準線を想定するとともに、前記切削工具の前記刃先が前記上下方向にオフセットした前記所定距離を半径とする基準円を想定し、前記複数の分割基準線の各々と前記基準円とが交わる第1交点と、前記第1交点から前記切削工具側に延びる接線と前記被加工物の最終加工形状とが交わる第2交点との間の接線距離に基づき、前記被加工物が前記所定回動方向に回動したときに前記接線距離が減少する領域が前記第1加工領域となり、前記接線距離が増加する領域が第2加工領域となることを特徴とする請求項3に記載の旋削による非円形加工方法。   Assuming a plurality of divided reference lines extending radially at predetermined angles around the rotation center of the workpiece, a reference circle having a radius of the predetermined distance where the cutting edge of the cutting tool is offset in the vertical direction Assuming, a first intersection point where each of the plurality of division reference lines and the reference circle intersect, a second intersection point where a tangent line extending from the first intersection point toward the cutting tool and a final machining shape of the workpiece intersect The area where the tangent distance decreases when the workpiece rotates in the predetermined rotation direction is the first processing area, and the area where the tangential distance increases is the second The non-circular machining method by turning according to claim 3, wherein the machining area is a machining area. 前記被加工物が前記所定回動方向に回動したときに前記接線距離が変化しない領域は、前記第1加工領域及び/又は前記第2加工領域となり、前記第1加工領域に含めたときには、前記主軸を前記所定回動方向に回動させたときに前記切削工具により所定形状に切削加工し、前記第2加工領域に含めたときには、前記主軸を前記所定回動方向と反対方向に回動させたときに前記切削工具により所定形状に切削加工することを特徴とする請求項4に記載の旋削による非円形加工方法。   The region where the tangential distance does not change when the workpiece is rotated in the predetermined rotation direction is the first processing region and / or the second processing region, and when included in the first processing region, When the main shaft is rotated in the predetermined rotation direction, it is cut into a predetermined shape by the cutting tool, and when included in the second processing region, the main shaft is rotated in a direction opposite to the predetermined rotation direction. 5. The non-circular machining method by turning according to claim 4, wherein the cutting tool cuts into a predetermined shape with the cutting tool. 前記被加工物の前記第1及び第2加工領域の最終加工形状に対応する第1及び第2最終加工形状データを読み込む最終形状読込み工程と、前記被加工物の前記第1及び第2加工領域の所定回転角度毎における前記切削工具のすくい面と前記被加工物の前記第1及び第2加工領域の前記最終加工形状との第1及び第2交線を作成する交線作成工程と、前記交線作成工程にて作成された前記第1及び第2加工領域に関する第1及び第2交線に対応した第1及び第2スプライン曲線上に前記切削工具の送り量を考慮した前記切削工具の第1及び第2軌跡点列を作成する工具軌跡点列作成工程と、前記軌跡点列作成工程にて作成された第1及び第2前記工具軌跡点列に基づいて前記切削工具の第1及び第2移動基準点の第1及び第2軌跡点列を作成する基準点軌跡点列作成工程と、前記基準点軌跡点列作成工程にて作成された前記第1及び第2基準点軌跡点列を連結した第1及び第2軌跡点列連結データに基づいて前記被加工物の前記所定回転角度毎の前記第1及び第2の直線方向の送り量を算出して第1及び第2旋削加工データを作成する旋削加工データ作成工程と、を含むことを特徴とする請求項1〜5のいずれかに記載の旋削による非円形加工方法。














A final shape reading step of reading first and second final machining shape data corresponding to final machining shapes of the first and second machining regions of the workpiece; and the first and second machining regions of the workpiece. An intersecting line creating step of creating first and second intersecting lines between the rake face of the cutting tool and the final machining shape of the first and second machining regions of the workpiece at each predetermined rotation angle; The cutting tool considering the feed amount of the cutting tool on the first and second spline curves corresponding to the first and second intersecting lines related to the first and second machining regions created in the intersecting line creating step. A tool trajectory point sequence creating step for creating first and second trajectory point sequences, and the first and second tool trajectory point sequences created in the trajectory point sequence creating step based on the first and second tool trajectory point sequences. Create first and second trajectory point sequences of second movement reference points Based on the reference point locus point sequence creation step and the first and second locus point sequence connection data obtained by connecting the first and second reference point locus point sequences created in the reference point locus point sequence creation step. A turning data creating step of creating first and second turning data by calculating feed amounts in the first and second linear directions for each predetermined rotation angle of the workpiece; A non-circular machining method by turning according to any one of claims 1 to 5.














JP2013023176A 2013-02-08 2013-02-08 Non-circular machining method by turning Active JP6008294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013023176A JP6008294B2 (en) 2013-02-08 2013-02-08 Non-circular machining method by turning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013023176A JP6008294B2 (en) 2013-02-08 2013-02-08 Non-circular machining method by turning

Publications (2)

Publication Number Publication Date
JP2014151396A true JP2014151396A (en) 2014-08-25
JP6008294B2 JP6008294B2 (en) 2016-10-19

Family

ID=51573784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013023176A Active JP6008294B2 (en) 2013-02-08 2013-02-08 Non-circular machining method by turning

Country Status (1)

Country Link
JP (1) JP6008294B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130781A (en) * 2017-02-13 2018-08-23 学校法人金沢工業大学 Nc lathe and machining method using the same
JP2019089167A (en) * 2017-11-15 2019-06-13 株式会社ジェイテクト Cutting device and cutting processing method
CN112974859A (en) * 2021-03-01 2021-06-18 中国工程物理研究院机械制造工艺研究所 Double-curved-surface pole rod precision turning method
CN113333785A (en) * 2021-05-24 2021-09-03 大连理工大学 Non-circular section part circumferential partition area variable spindle rotating speed turning method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503373A (en) * 1987-04-24 1989-11-16 インノフィナンツェ・アールタラーノシュ・インノヴァーツィオーシュ・ペーイジンテーゼト Method and machine tool for manufacturing surfaces with non-circular and regular cross sections
JPH0236045A (en) * 1988-07-25 1990-02-06 Toyoda Mach Works Ltd Working method for non-cylindrical work
JPH05237703A (en) * 1992-02-25 1993-09-17 Okuma Mach Works Ltd Lathe for working non-circular workpiece
JPH0691479A (en) * 1992-09-11 1994-04-05 Okuma Mach Works Ltd Machining method of noncircular work
JPH0751989A (en) * 1993-08-06 1995-02-28 Yachiyoda Kogyo Kk Free-form surface machining device
JP2002239815A (en) * 2001-02-08 2002-08-28 Nakamura Tome Precision Ind Co Ltd Tool holder for modified cross-section work
US20060024130A1 (en) * 2004-05-14 2006-02-02 Aktiebolaget Skf Apparatus and a method for machining elements with non-circular cross section, in particular for axial couplings for mechanical connection, and coupling made applying said method and apparatus
JP2012071381A (en) * 2010-09-29 2012-04-12 Kanazawa Inst Of Technology Non-circular machining method by turning

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503373A (en) * 1987-04-24 1989-11-16 インノフィナンツェ・アールタラーノシュ・インノヴァーツィオーシュ・ペーイジンテーゼト Method and machine tool for manufacturing surfaces with non-circular and regular cross sections
JPH0236045A (en) * 1988-07-25 1990-02-06 Toyoda Mach Works Ltd Working method for non-cylindrical work
JPH05237703A (en) * 1992-02-25 1993-09-17 Okuma Mach Works Ltd Lathe for working non-circular workpiece
JPH0691479A (en) * 1992-09-11 1994-04-05 Okuma Mach Works Ltd Machining method of noncircular work
JPH0751989A (en) * 1993-08-06 1995-02-28 Yachiyoda Kogyo Kk Free-form surface machining device
JP2002239815A (en) * 2001-02-08 2002-08-28 Nakamura Tome Precision Ind Co Ltd Tool holder for modified cross-section work
US20060024130A1 (en) * 2004-05-14 2006-02-02 Aktiebolaget Skf Apparatus and a method for machining elements with non-circular cross section, in particular for axial couplings for mechanical connection, and coupling made applying said method and apparatus
JP2012071381A (en) * 2010-09-29 2012-04-12 Kanazawa Inst Of Technology Non-circular machining method by turning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130781A (en) * 2017-02-13 2018-08-23 学校法人金沢工業大学 Nc lathe and machining method using the same
JP2019089167A (en) * 2017-11-15 2019-06-13 株式会社ジェイテクト Cutting device and cutting processing method
CN112974859A (en) * 2021-03-01 2021-06-18 中国工程物理研究院机械制造工艺研究所 Double-curved-surface pole rod precision turning method
CN113333785A (en) * 2021-05-24 2021-09-03 大连理工大学 Non-circular section part circumferential partition area variable spindle rotating speed turning method
CN113333785B (en) * 2021-05-24 2023-09-19 大连理工大学 Turning method for changing spindle rotation speed in circumferential subarea of non-circular section part

Also Published As

Publication number Publication date
JP6008294B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5818987B2 (en) Grooving method, machine tool control device, and tool path generation device
JP6620393B2 (en) Gear machining method
JP2014180750A (en) Method for controlling direction and step-over distance of tool in front face shaving of curved surface
EP3101498A1 (en) Machining method and machine-tool control device
JP6008294B2 (en) Non-circular machining method by turning
JP2013059839A (en) Machining control method of machine tool
JP5911595B2 (en) Machine tool control device and machine tool
JP5413913B2 (en) Non-circular machining method by turning
JP5881850B2 (en) Machine tool control device and machine tool
JP6565399B2 (en) Gear processing equipment
JP5881843B2 (en) Tool path generation method, machine tool control apparatus, and tool path generation apparatus
JPWO2014002228A1 (en) Machine tool control device and machine tool
JP6865413B2 (en) NC lathe and cutting method using it
US10427259B2 (en) Tilt device for machine tool
JP6531353B2 (en) Gear processing device
JP2015006713A (en) Gear processing device
JP5736667B2 (en) NC program creation device
CN114258454B (en) Method for manufacturing an integrated rotor, storage medium and integrated rotor
CN109270890B (en) Workpiece turning method and turning control system
JP6546795B2 (en) WORK PROCESSING METHOD AND WORK PROCESSING APPARATUS
CN114258454A (en) Method for manufacturing integrated rotor, cutting process program for blade of integrated rotor, and integrated rotor
CN115476005A (en) Sectional gear ring side edge milling method
Gao et al. Studies on NC Machining for Cylindrical Cams
JP2001282332A (en) Nc data preparing method
JP2001147708A (en) Circular working method and nc data preparation device for executing working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6008294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250