JPWO2016092993A1 - ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 - Google Patents

ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 Download PDF

Info

Publication number
JPWO2016092993A1
JPWO2016092993A1 JP2016506401A JP2016506401A JPWO2016092993A1 JP WO2016092993 A1 JPWO2016092993 A1 JP WO2016092993A1 JP 2016506401 A JP2016506401 A JP 2016506401A JP 2016506401 A JP2016506401 A JP 2016506401A JP WO2016092993 A1 JPWO2016092993 A1 JP WO2016092993A1
Authority
JP
Japan
Prior art keywords
roll
polyolefin microporous
microporous membrane
sheet
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016506401A
Other languages
English (en)
Other versions
JP5914790B1 (ja
Inventor
水野 直樹
直樹 水野
まさみ 菅田
まさみ 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Battery Separator Film Co Ltd
Original Assignee
Toray Battery Separator Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Battery Separator Film Co Ltd filed Critical Toray Battery Separator Film Co Ltd
Priority claimed from PCT/JP2015/081198 external-priority patent/WO2016092993A1/ja
Application granted granted Critical
Publication of JP5914790B1 publication Critical patent/JP5914790B1/ja
Publication of JPWO2016092993A1 publication Critical patent/JPWO2016092993A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

厚さのばらつきの少ない多孔層を設けるのに適した、長さ方向におけるF25値の変動幅が1MPa以下である、長さ1000m以上のポリオレフィン微多孔膜。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)

Description

本発明はポリオレフィン微多孔膜、ポリオレフィン微多孔膜の少なくとも片面に多孔層を有する電池用セパレータ及びそれらの製造方法に関する。
熱可塑性樹脂微多孔膜は物質の分離膜や選択透過膜隔離膜等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル−水素電池、ニッケル−カドミウム電池やポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等などである。
特にリチウムイオン二次電池用セパレータとしては、電解液の含浸によりイオン透過性を有し、電気絶縁性に優れ、電池内部の異常昇温時に120〜150℃程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞機能を備えているポリエチレン製微多孔膜が好適に使用されている。しかしながら、何らかの原因で孔閉塞後も電池内部の昇温が続く場合、ポリエチレン製微多孔膜の収縮により破膜を生じることがある。この現象はポリエチレン製微多孔膜に限定された現象ではなく、他の熱可塑性樹脂を用いた微多孔膜の場合においても、樹脂の融点以上では避けることができない。
リチウムイオン電池用セパレータは、電池特性、電池生産性及び電池安全性に深く関わっており、耐熱性、電極接着性、透過性、溶融破膜特性(メルトダウン)等が要求される。これまでに、例えば、ポリオレフィン製微多孔膜に多孔層を設けることで電池用セパレータに耐熱性や接着性を付与することが検討されている。多孔層に用いられる樹脂としては、耐熱性を持つポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂や接着性を持つフッ素系樹脂が好適に用いられている。また、近年、比較的簡易な工程で多孔層を積層できる水溶性または水分散性バインダーも用いられている。
なお、本明細書でいう多孔層とは湿式コーティング法によって得られる層をいう。
特許文献1の実施例5では、同時二軸延伸法にて得たポリエチレン微多孔膜前駆体にチタニア粒子とポリビニルアルコールを均一に分散させた水溶液を、グラビアコーターを用いて塗工した後、60℃にて乾燥して水を除去し総膜厚24μm(塗工厚さ4μm)の多層多孔膜を得ている。
特許文献2の実施例3では、同時二軸延伸法で得られたポリオレフィン微多孔膜にチタニア粒子とポリビニルアルコールを均一に分散させた水溶液を、バーコーターを用いて塗工した後、60℃にて乾燥して水を除去し、総膜厚19μm(塗工厚さ3μm)の多層多孔膜を得ている。
特許文献3の実施例1では、同時二軸延伸法で得られたポリオレフィン微多孔膜にアルミニウム粒子とポリビニルアルコールを均一に分散させた水溶液を、グラビアコーターを用いて塗工した後、60℃にて乾燥して水を除去し、総膜厚20μm(塗工厚さ4μm)の多層多孔膜を得ている。
特許文献4の実施例6では、逐次二軸延伸法で得られたポリエチレン微多孔膜をメタ型全芳香族ポリアミドとアルミナ粒子とジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)を含む塗工液を適量のせたマイヤーバーの間に通過させ、凝固、水洗・乾燥工程を経て、耐熱性多孔質層を形成した非水系二次電池用セパレータを得ている。
特許文献5では、逐次二軸延伸法で得られたポリエチレン微多孔膜をメタ型全芳香族ポリアミドと水酸化アルミニウムとDMAcとTPGからなる塗工液を適量のせた対峙するマイヤーバー間に通過させ、凝固、水洗・乾燥工程を経て、耐熱性多孔質層を形成した非水系二次電池用セパレータを得ている。
特許文献6では、逐次二軸延伸法で得られたポリエチレン微多孔膜をポリメタフェニレンイソフタルアミドと水酸化アルミニウムとDMAcとTPGからなる塗工液を適量のせた対峙するマイヤーバー間に通過させ、凝固、水洗・乾燥工程を経て、耐熱性多孔質層を形成した非水系二次電池用セパレータを得ている。
特許文献7では、外層にβ晶核剤を含有させたポリプロピレンを含む層を有する3層構造の無孔膜状物を縦延伸装置を用いて縦方向に延伸し、次いでアルミナ粒子とポリビニルアルコールを含む水分散液をマイヤーバーを用いて塗工した後、横方向に2倍延伸後、熱固定/弛緩処理を行う、いわゆる逐次二軸延伸法とインラインコート法を組み合わせて積層多孔フィルムを得ている。
特許文献8では、4個の延伸ロールで構成され縦方向延伸機において被延伸物と延伸ロールの接触する角度を一定以上とする延伸法を用いた逐次二軸延伸法で得られた分離膜を例示している。
特開2007−273443号公報 特開2008−186721号公報 特開2009−026733号公報 再表2008−149895号公報 特開2010−092882号公報 特開2009−205955号公報 特開2012−020437号公報 特表2013−530261号公報
近年、特にリチウムイオン二次電池は携帯電話や携帯情報端末等の小型電子機器に限らず、大型タブレット、草刈り機、電動二輪車、電気自動車、ハイブリッド自動車、小型船舶などの大型用途向けの展開が期待されている。大型電池の普及が想定されなか、リチウムイオン二次電池の高容量化と同時に、低コスト化が求められる。製造コストを削減するため、電池用セパレータは製造コストを削減するために1000m以上のような長尺化が今後ますます進むことが予想される。セパレータの長尺化によりスリット工程や電池組み立て工程において電池用セパレータ捲回体の切り替え時間を削減し、材料ロス低減のための電池用セパレータを得ることができる。
多孔層を設ける電池用セパレータにおいて、長さ方向に対する多孔層の厚み変動幅が大きいと、十分な機能を付与するだけの厚みとならない薄い部分が存在することとなる。このような場合、多孔層の機能を十分確保するために平均厚みを必要最低厚みの1.5倍から2倍の厚みとする必要があり、高コスト要因となる。また、セパレータの厚みが厚くなることで電極捲回体の捲回数が減少し、電池の高容量化を阻害する要因ともなる。
さらに、電池用セパレータの長尺化は捲回体とした時の直径の増大によって、巻きずれが生じやすくなるなど、捲回体の巻き姿にも悪影響を与える。こセパレータの薄膜化により捲回体の捲数はさらに増加し、この影響は顕著となる。
本発明は、多孔層の厚みを均一に設けるのに適した、長さ1000m以上で、長さ方向におけるF25値の変動幅が1MPa以下のポリオレフィン微多孔膜を得ることを目標とする。また、本発明は前記ポリオレフィン微多孔膜に多孔層の厚みを均一に設けた、電池の高容量化に適した電池用セパレータを得ることを目標とする。なお、本明細書でいう多孔層の厚みが均一とは、長さ方向における多孔層の厚みの変動幅(R)が1.0μm以下であることを意味する。
本発明者らは上記課題に鑑み、コーティング技術について鋭意研究を重ねたのみならず、ポリオレフィン微多孔膜についてもコーティングに対する適正を追求し成しえたものである。
上記課題を解決するために本発明の積層ポリオレフィン微多孔膜及び電池用セパレータは以下の構成を有する。
すなわち、
(1)長さ方向におけるF25値の変動幅が1MPa以下である、長さ1000m以上のポリオレフィン微多孔膜。ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。
(2)長さ方向におけるF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と、耐熱性粒子を含み、平均厚みT(ave)が1〜5μmの多孔層を設けた電池用セパレータ。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)
(3)(1)に記載のポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と、耐熱性粒子を含み、平均厚みT(ave)が1〜5μmの多孔層を設けた電池用セパレータ。
(4)前記多孔層の長さ方向における厚み変動幅(R)が1.0μm以下である電池用セパレータ。
(5)前記水溶性樹脂または水分散性樹脂がポリビニルアルコール、アクリル系樹脂、ポリフッ化ビニリデン系樹脂を少なくとも一種含む電池用セパレータ。
(6)前記ポリオレフィン微多孔膜の長さが2000m以上である電池用セパレータ。
(7)前記ポリオレフィン微多孔膜の幅が3000m以上である電池用セパレータ。
上記課題を解決するために本発明のポリオレフィン微多孔膜及び電池用セパレータの製造方法は以下の構成を有する。
すなわち、
(8)ポリオレフィン微多孔膜の製造方法であって、
(a)ポリオレフィン樹脂と成形用溶剤とを溶融混練してポリオレフィン樹脂溶液を調製する工程
(b)前記ポリオレフィン樹脂溶液を押出機よりシート状に押出し、冷却して未延伸ゲル状シートを形成する工程、
(c)前記未延伸ゲル状シートを少なくとも3対の縦延伸ロール群の間を通過させ、段階的に増大するロール群の周速比によって縦方向に延伸し、縦延伸ゲル状シートを得る工程(ここで、縦延伸ロールとこれに平行に接するニップロールを1対の縦延伸ロール群とし、該ニップロールが縦延伸ロールに接する圧力は0.05MPa以上、0.5MPa以下である)
(d)前記縦延伸ゲル状シートをクリップ間距離がテンター出口で50mm以下となるように把持して横方向に延伸し、二軸延伸ゲル状シートを得る工程
(e)前記二軸延伸ゲル状シートから成形用溶剤を抽出し、乾燥する工程
(f)前記乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
を含むポリオレフィン微多孔膜の製造方法。
(9)隣り合う延伸ロールの周速比が段階的に増大するポリオレフィン微多孔膜の製造方法。
(10)前記製造方法で得られたポリオレフィン微多孔膜を搬送速度が50m/分以上で巻き上げる工程を含むポリオレフィン微多孔膜捲回体の製造方法。
(11)前記製造方法で得られたポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と微粒子を含む塗工液を、振れ精度が10μm/Φ100mm以下の塗工ロールを用いて塗工し、乾燥する工程を含む電池用セパレータの製造方法。
(12)前記塗工ロールがグラビアロールである電池用セパレータの製造方法。
本発明によれば、多孔層の厚みを均一に設けるのに適した長さが1000m以上のポリオレフィン微多孔膜が得られる。また、本発明によればポリオレフィン微多孔膜に多孔層の厚みを均一に設けた電池の高容量化に適した電池用セパレータが得られる。
逐次二軸延伸に用いる縦延伸装置Aを示す略図である。 逐次二軸延伸に用いる縦延伸装置Bを示す略図である。 逐次二軸延伸に用いる縦延伸装置Cを示す略図である。 逐次二軸延伸に用いる縦延伸装置Dを示す略図である。 再延伸工程に用いる縦延伸装置の例を示す略図である。 塗工装置の例を示す略図である。
本発明のポリオレフィン微多孔膜は、長さ1000m以上で、長さ方向におけるF25値の変動幅が1MPa以下(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)である。
本発明はポリオレフィン微多孔膜の長さ方向におけるF25値の変動幅を1MPa以下とすることで、ポリオレフィン微多孔膜と塗工ロールとの接線(以下、塗工接線と略記する。)における接触圧力がポリオレフィン微多孔膜の長さ方向に対して均一になりやすく、塗工厚を均一にしやすくなるという優れた効果を奏する。長さ方向におけるF25値の変動幅が1MPa超となるとスリット工程や塗工工程での巻き上げ時に微多孔膜の捲回体の巻き堅さにばらつきができ、たわみや巻きずれが発生しやすくなり捲き姿が悪化する。例えば、巻き芯への巻き上げ時の搬送速度が50m/分以上となるような高速で加工する場合には顕著になる。
1.ポリオレフィン微多孔膜
まず、本発明のポリオレフィン微多孔膜について説明する。
本発明のポリオレフィン微多孔膜は長さ方向のF25値の変動幅が1MPa以下であり、好ましくは0.8MPa以下、より好ましくは0.6MPa以下、さらに好ましくは0.4MPa以下である。下記に述べるように、特に、縦延伸工程及び横延伸工程を高度に制御することでポリエチレン微多孔膜の長さ方向のF25値の変動幅を制御することができる。
ポリオレフィン微多孔膜を構成するポリオレフィン樹脂としては、ポリエチレンやポリプロピレンが好ましい。単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えば、ポリエチレンとポリプロピレンの混合物であってもよいし、異なるオレフィンの共重合体でもよい。なかでもポリエチレンが孔閉塞性能の観点から特に好ましい。さらに孔閉塞性能の観点から、ポリエチレンは融点(軟化点)が70〜150℃が好ましい。
以下、本発明で用いるポリオレフィン樹脂としてポリエチレンを例に詳述する。
ポリエチレンとしては、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンなどが挙げられる。また、重合触媒には特に制限はなく、チーグラー・ナッタ系触媒、フィリップス系触媒やメタロセン系触媒などを用いることができる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα−オレフィンを少量含有する共重合体であってもよい。エチレン以外のα−オレフィンとしてはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。ポリエチレンとしては、単一物でもよいが、2種以上のポリエチレンからなるポリエチレン混合物であることが好ましい。
ポリエチレン混合物としては、重量平均分子量(Mw)の異なる2種類以上の超高分子量ポリエチレンの混合物、高密度ポリエチレンの混合物、中密度ポリエチレンの混合物、又は低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上のポリエチレンの混合物を用いてもよい。ポリエチレン混合物としては、Mw5×10以上の超高分子量ポリエチレンとMw1×10〜5×10未満のポリエチレンからなる混合物が好ましい。混合物中の超高分子量ポリエチレンの含有量は、引張強度の観点から1〜40重量%が好ましい。
ポリエチレンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、機械的強度の観点から5〜200の範囲内であることが好ましい。
2.ポリエチレン微多孔膜の製造方法
次いで、ポリエチレン微多孔膜の製造方法について説明する。
ポリエチレン微多孔膜の製造方法としては、乾式法(成形用溶剤を用いず結晶核剤や粒子を用いて多孔化する方法(延伸開孔法ともいう。))と湿式法(相分離法)があり、微細孔の均一化、平面性の観点から湿式法が好ましい。
湿式法による製造方法としては、例えば、ポリエチレンと成形用溶剤とを加熱溶融混練し、得られた樹脂溶液をダイより押出し、冷却することにより未延伸ゲル状シートを形成し、得られた未延伸ゲル状シートに対して少なくとも一軸方向に延伸を実施し、前記成形用溶剤を除去し、乾燥することによって微多孔膜を得る方法などが挙げられる。
ポリエチレン微多孔膜は単層膜であってもよいし、分子量あるいは平均細孔径の異なる二層以上からなる層構成であってもよい。二層以上からなる層構成の場合、少なくとも一つの最外層のポリエチレン樹脂の分子量、および分子量分布が前記を満足することが好ましい。
二層以上からなる多層ポリエチレン微多孔膜の製造方法としては、例えば、a層及びb層を構成する各ポリエチレンを成形用溶剤と加熱溶融混練し、得られた各樹脂溶液をそれぞれの押出機から1つのダイに供給し、一体化させて共押出する方法や各層を構成するゲル状シートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、層間の接着強度を得やすく、層間に連通孔を形成しやすいため高い透過性を維持しやすく、生産性にも優れているため好ましい。
本発明のポリオレフィン微多孔膜を得るための製造方法について詳述する。
本発明では前記未延伸ゲル状シートをロール法、テンター法もしくはこれらの方法の組み合わせによって長さ方向(「MD」又は「縦方向」ともいう)及び幅方向(「TD」又は「横方向」ともいう)の二方向に所定の倍率で延伸する。本発明において延伸は縦方向及び横方向を順次行う、逐次二軸延伸法が好ましい。同時二軸延伸法は、未延伸ゲル状シートの両端をつかむクリップで固定した後、縦方向及び横方向に同時に前記クリップを拡張させる延伸法である。このような同時二軸延伸法は延伸倍率に伴ってクリップの間隔が広くなり、長さ方向におけるシートの品質にばらつきが生じ、結果として長さ方向でF25値の変動幅が増大するので好ましくない。
本発明のポリオレフィン微多孔膜の製造方法は以下の(a)〜(f)の工程を含むものである。
(a)ポリオレフィン樹脂と成形用溶剤とを溶融混練し、ポリオレフィン樹脂溶液を調製する工程
(b)前記ポリオレフィン樹脂溶液を押出し、冷却し、未延伸ゲル状シートを形成する工程
(c)前記未延伸ゲル状シートを縦方向に延伸し、縦延伸ゲル状シートを形成する縦延伸工程
(d)前記縦延伸ゲル状シートを、クリップ間距離がテンター出口で50mm以下となるように把持して横方向に延伸し、二軸延伸ゲル状シートを得る工程
(e)前記二軸延伸ゲル状シートから成形用溶剤を除去し、乾燥する工程
(f)前記乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
さらに(a)〜(f)の工程の後、必要に応じてコロナ処理工程等を設けてもよい。
以下、各工程については、ポリオレフィン樹脂としてポリエチレン樹脂を使用した例で説明する。
(a)ポリエチレン樹脂溶液の調製工程
ポリエチレン樹脂溶液の調製工程としては、ポリエチレン樹脂に成形用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。溶融混練方法として、例えば、特公平06−104736号公報および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
成形用溶剤としては、ポリエチレンを十分に溶解できるものであれば特に限定されない。例えば、ノナン、デカン、ウンデカン、ドデカン、流動パラフィンなどの脂肪族または環式の炭化水素、あるいは沸点がこれらに対応する鉱油留分などがあげられるが、流動パラフィンのような不揮発性の溶剤が好ましい。
ポリエチレン樹脂溶液中のポリエチレン樹脂濃度は、ポリエチレン樹脂と成形用溶剤の合計を100重量部として、25〜40重量部であることが好ましい。ポリエチレン樹脂濃度が上記好ましい範囲であると、ポリエチレン樹脂溶液を押し出す際のダイ出口でスウェルやネックインを防止でき、ゲル状シートの成形性及び自己支持性が維持される。
(b)未延伸ゲル状シートを成形する工程
未延伸ゲル状シートを成形する工程としては、ポリエチレン樹脂溶液を押出機から直接的に又は別の押出機を介してダイに送給し、シート状に押し出し、冷却して未延伸ゲル状シートを成形する。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140〜250℃好ましく、押出速度は0.2〜15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば、特公平06−104736号公報および日本国特許第3347835号公報に開示の方法を利用することができる。
シート状に押し出されたポリエチレン樹脂溶液を冷却することによりゲル状シートを形成する。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。例えば、冷媒で表面温度20℃から40℃に設定した回転する冷却ロールにシート状に押し出されたポリエチレン樹脂溶液を接触させることにより未延伸ゲル状シートを形成することができる。押出されたポリエチレン樹脂溶液は25℃以下まで冷却するのが好ましい。
(c)縦延伸工程
縦延伸工程としては、未延伸ゲル状シートを複数本の予熱ロールを経由させ、所定の温度まで昇温させた後、各ロール間の周速を段階的に増大させた少なくとも3対の縦延伸ロール群を通過させ、縦方向に延伸し、縦延伸ゲル状シートを得る。
本発明では縦延伸におけるシート滑りを抑え、均一な縦延伸をすることが、長さ方向のF25値を制御する上で重要となる。
延伸工程において、縦延伸ロールと、縦延伸ロールに平行に一定の圧力をもって接するニップロールとを1対のロール群とし、少なくとも3対のロール群の間を未延伸ゲル状シートを通過させることで、ロール群の周速比によって縦延伸がなされる。縦延伸ロールと平行にニップロールを配置することで縦延伸ロール上にシートを密着させ、シートの延伸位置を固定することでシートを安定に走行させ、均一な縦延伸をすることができる。また、均一な縦延伸をするためには縦延伸工程は1段延伸より2段延伸以上に分けて所望の延伸倍率にすることが好ましい。つまり、縦延伸ロールを3対以上配置することが重要である。
本発明では、各延伸ロールの周速を段階的に増大することによって、未延伸ゲル状シートを長さ方向に延伸することが重要である。さらに隣り合う延伸ロールの周速比も段階的に増大させることが好ましい。つまり、1本目の延伸ロールと2本目の延伸ロールとの周速比を小さくし、2本目と3本目の延伸ロールの周速比、3本目と4本目の延伸ロールの周速比と順に周速比を増大させることで長さ方向のF25の変動幅を制御しつつ、生産性を両立できる。これは、未延伸ゲル状成形シートが1本目の延伸ロールを通過する時点では成形用溶剤を多く含んでおり滑りやすいが、各延伸ロール間の周速を段階的に増大することで成形用溶剤の絞り出し効果が得られやすく、縦延伸工程における滑りを防ぐことができるからである。ここで、絞り出し効果とは、未延伸ゲル状シートあるいは縦延伸中のゲル状シートから成形用溶剤を絞り出すことで縦延伸ロールとの滑りを抑制し安定して延伸できることをいう。
1段目の延伸工程における延伸ロールの周速比の上限は1.5以下が好ましく、より好ましくは1.3以下、さらに好ましくは1.2以下である。下限は1.1が好ましい。また、隣り合う各延伸ロールの周速比の差は0.5以下好ましくは0.4以下、さらに好ましくは0.3以下である。
隣り合う延伸ロールの間隔は、延伸中のゲル状成形シートが延伸ロールから離れて次の延伸ロールに接するまでの距離を150mmから500mmの範囲にするのが好ましい。隣り合う延伸ロールの間隔が上150mm未満ではF25の変動幅が大きくなる場合があり、500mmを超えると延伸中のゲル状成形シートの温度低下を防ぎ延伸斑が発生を抑制することができる。
縦延伸工程におけるシートの温度はポリオレフィン樹脂の融点+10℃以下が好ましい。また、延伸倍率はポリオレフィン微多孔膜の弾性、強度の観点から面倍率で9倍以上が好ましく、より好ましくは16〜400倍である。
縦延伸ロールの表面温度は、ロールごとに延伸ロールの有効幅(延伸中のシートが通過する幅)において表面温度の変動幅を±2℃以内に制御する。縦延伸ロールの表面温度は、例えば、赤外放射温度計で測定することができる。
縦延伸ロールは、表面粗度が0.3S〜5.0Sのハードクロムメッキが施された金属ロールが好ましい。表面粗度がこの範囲であると熱伝導もよく、ニップロールとの相乗効果でシートの滑りを効果的に抑制できる。
本発明では、ニップロールを用いて縦延伸工程における滑りを抑制する。ニップロールを用いずに縦延伸ロールとゲル状シートの接触面積を大きくするだけでは十分な滑り抑制効果は得られず、F25値の変動幅が増大するおそれがある。また、1本のニップロールでシートの滑りを抑制しようとするとニップロールが延伸ロールに接する圧力(ニップ圧ともいう)を高くする必要があり、得られるポリエチレン微多孔膜の細孔をつぶしてしまうおそれがある。よって、ニップロールは3本以上を使用して、各ニップロールの対となる縦延伸ロールへのニップ圧を比較的小さくすることが重要である。1本の縦延伸ロールに対して複数本のニップロールを用いてもよい。
各ニップロールのニップ圧は0.05MPa以上、0.5Mpa以下である。ニップロールのニップ圧が0.5MPaを超えると得られるポリエチレン微多孔膜の細孔がつぶれるおそれがある。0.05MPa未満ではニップ圧が十分でなく滑り抑制効果が得られず、また、成形用溶剤の絞り出し効果も得られにくい。ニップロールのニップ圧の下限は0.1MPaが好ましく、より好ましくは0.2MPaであり、上限は0.5MPaが好ましく、より好ましくは0.4MPaである。ニップロールのニップ圧が上記範囲内であると、適度な滑り抑制効果が得られる。
また、ニップロールは耐熱性ゴムで被覆する必要がある。縦延伸工程中、熱や張力による圧力でゲル状シートから成形用溶剤がブリードアウトし、特に、押出し直後の縦延伸工程でのブリードアウトは顕著である。ブリードアウトした成形用溶剤がシートとロール表面の境界に介在しながら、シートの搬送や延伸が行われることになり、シートは滑りやすい状態となる。耐熱性ゴムで被覆したニップロールを縦延伸ロールに平行に接するように配置し、未延伸ゲル状シートを通過させことによって、延伸中のゲル状シートから成形用溶剤を絞り出しながら延伸することができ、これによって滑りが抑制することができる。
ニップロールは、直径100mm〜300mmの金属ロールに厚さ3〜20mmの耐熱性ゴムで被覆したロールが好ましい。耐熱性ゴム部分の体積が80%以上を占める所謂ゴムロールではたわみやすく、幅方向に対して均一な圧力を与えにくいため好ましくない。
縦延伸工程において、縦延伸ロール及びニップロールに付着した成形用溶剤をとり除く方法(掻き取り手段ともいう)を併用するとさらに効果的に滑り抑制効果が得られる。掻き取り手段は特に限定されないが、ドクターブレード、圧縮空気で吹き飛ばす、吸引する、またはこれらの方法を組み合わることができる。特に、ドクターブレードを用いて掻き落とす方法は比較的容易に実施できるため好ましい。縦延伸ロール上にドクターブレードを縦延伸ロールの幅方向と平行になるようにあてて、ドクターブレードを通過した直後から延伸中のゲル状シートが接するまでの延伸ロール表面に成形用溶剤が視認できない程度に掻き落とす方法が好ましい。ドクターブレードは1枚でもよいし、複数枚用いてもよい。また、掻き取り手段は縦延伸ロール又はニップロールのいずれに設置してもよく、あるいは両方に設置してもよい。
ドクターブレードの材質は、成形用溶剤に耐性を有するものであれば特に限定されないが、金属製より樹脂製あるいはゴム製のものが好ましい。金属製の場合、延伸ロールにキズつけてしまうおそれがある。樹脂製ドクターブレードとしては、ポリエステル製、ポリアセタール製、ポリエチレン製などが挙げられる。
(d)横延伸工程
横延伸工程としては、縦延伸ゲル状シートの両端をクリップを用いて固定した後、テンター内で前記クリップを横方向に拡張させて縦延伸ゲル状シートを横方向に延伸し、二軸延伸ゲル状シートを得る。ここでシート進行方向のクリップ間距離はテンター入り口から出口まで50mm以下で維持されることが好ましく、より好ましくは25mm以下、さらに好ましくは10mm以下とする。クリップ間距離が上記好ましい範囲内にあると幅方向のF25値の変動幅を抑えることができる。
横延伸工程又は熱処理工程では急激な温度変化の影響を抑制するために、テンター内を10〜30ゾーンに分割し、各ゾーンで独立して温度制御することが好ましい。特に、熱処理工程の最高温度に設定されたゾーンにおいては、各ゾーンの温度をシート進行方向に対して段階的に熱風によって昇温させて、熱処理工程における各ゾーン間での急激な温度変化がおきないようにすることが好ましい。
(e)前記二軸延伸ゲル状シートから成形用溶剤を除去し、乾燥する工程
前記二軸延伸ゲル状シートから除去洗浄溶剤を用いて、成形用溶剤の除去(洗浄)を行う。洗浄溶剤としては、ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類などの易揮発性のものを用いることができる。これらの洗浄溶剤はポリエチレンの溶解に用いた成形用溶剤に応じて適宜選択し、単独もしくは混合して用いる。洗浄方法は、洗浄溶剤に浸漬し抽出する方法、洗浄溶剤をシャワーする方法、洗浄溶剤をシートの反対側から吸引する方法、またはこれらの組合せによる方法などにより行うことができる。上述のような洗浄は、シートの残留溶剤が1重量%未満になるまで行う。その後、シートを乾燥するが、乾燥方法は加熱乾燥、風乾などの方法で行うことができる。
(f)前記乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
乾燥後のシートを熱処理してポリエチレン微多孔膜を得る。熱処理は熱収縮率及び透気抵抗度の観点から90〜150℃の範囲内の温度で行うのが好ましい。熱処理工程の滞留時間は、特に限定されることはないが、通常は1秒以上10分以下が好ましく、より好ましくは3秒以上2分以下である。熱処理はテンター方式、ロール方式、圧延方式、フリー方式のいずれも採用できる。
熱処理工程では長さ方向及び幅方向の両方向の固定をしながら、長さ方向及び幅方向の少なくとも一方向に収縮させるのが好ましい。熱処理工程によってポリオレフィン微多孔膜の残留歪の除去を行うことができる。熱処理工程のおける長さ方向又は幅方向の収縮率は、熱収縮率及び透気抵抗度の観点から0.01〜50%が好ましく、より好ましくは3〜20%である。さらに、機械的強度向上のために再加熱し、再延伸してもよい。再延伸工程は延伸ロール式もしくはテンター式のいずれでもよい。なお、(a)〜(f)の工程の後、必要に応じてコロナ処理工程や親水化工程等の機能付与工程を設けてもよい。
上述のように高度に縦延伸及び横延伸を制御することによって、ポリエチレン微多孔膜の長さ方向のF25値の変動幅を小さくすることができる。これにより、後述する多孔層の積層工程において塗工厚の変動幅を小さくしやすくなるだけでなく、巻き姿の良好な電池用セパレータ捲回体が得られる。さらに、F25値の変動幅を1MPa以下とすることでスリット工程や塗工工程における搬送中の蛇行を、例えば、リワインダーによる巻き上げ時の搬送速度が50m/分を超えるような高速で加工する場合であっても抑制することができる。
ポリオレフィン微多孔膜の幅は特に制限はないが、下限は500mmが好ましく、より好ましくは600mm、さらに好ましくは1000mmであり、上限は4000mmが好ましく、より好ましくは3000mm、さらに好ましくは2000mmである。ポリオレフィン微多孔膜の厚さが上記範囲であると、高容量の電池作製に適し、自重によるたわみが生じにくい。
ポリオレフィン微多孔膜の長さは下限は1000mが好ましく、より好ましくは2000m、さらに好ましくは3000mである。上限は特に定めないが10000mが好ましく、より好ましくは8000m、さらに好ましくは7000mである。ポリオレフィン微多孔膜の長さが上記範囲であると、生産性を向上させ、捲回体とした場合に自重によりたわみが生じにくい。
ポリオレフィン微多孔膜の厚さは電池の高容量化の観点から5〜25μmが好ましい。
ポリオレフィン微多孔膜の透気抵抗度は、50sec/100ccAir〜300sec/100ccAirが好ましい。
ポリオレフィン微多孔膜の空孔率は30〜70%が好ましい。
ポリオレフィン微多孔膜の平均孔径は孔閉塞性能の観点から0.01〜1.0μmが好ましい。
3.多孔層
次に、多孔層について説明する。
本発明でいう多孔層とは、耐熱性、電極材料との密着性、電解液浸透性などの機能を少なくとも一つを付与、または向上させるものである。多孔層は無機粒子と樹脂で構成される。樹脂とは、前記機能を付与又は向上させるとともに無機粒子同士を結合させる役割、ポリオレフィン微多孔膜と多孔層とを結合させる役割を有するものである。樹脂としては、ポリビニルアルコール、セルロースエーテル系樹脂、アクリル系樹脂などが挙げられる。セルロースエーテル系樹脂としてはカルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、オキシエチルセルロース、ポリフッ化ビニリデン系樹脂等が挙げられる。また、樹脂は水溶液または水分散液として用いることができ、市販されているものでもよい。市販されているものとしては、例えば、日新化成(株)製“POVACOAT”(登録商標)、東亜合成(株)製“ジュリマー”(登録商標)AT−510、ET−410、FC−60、SEK−301、大成ファインケミカル(株)製UW−223SX、UW−550CS、DIC(株)製WE−301、EC−906EF、CG−8490、アルケマ(株)製“KYRNAR”(登録商標)WATERBORNE、東日本塗料(株)製VINYCOAT PVDF AQ360などが挙げられる。耐熱性を重視する場合はポリビニルアルコール、アクリル系樹脂が好適であり、電極接着性、非水電解液との親和性を重視する場合はポリフッ化ビニリデン系樹脂が好適である。
無機粒子の平均粒径は、ポリオレフィン微多孔膜の平均細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2倍以上、20倍以下である。粒子の平均粒径が上記好ましい範囲であると、耐熱性樹脂と粒子が混在した状態でポリオレフィン微多孔膜の細孔を塞ぐのを防ぎ、結果として透気抵抗度を維持できる。また、電池組み立て工程において粒子が脱落し、電池の重大な欠陥を招くのを防ぐ。
多孔層を積層したことによるセパレータのカールを低減させるために、多孔層には無機粒子が含まれることが重要である。無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。また、必要に応じて耐熱性架橋高分子粒子を添加してもよい。耐熱性架橋高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系粒子などが挙げられる。無機粒子の形状は真球形状、略球形状、板状、針状、多面体形状が挙げられるが特に限定されない。
多孔層に含まれる無機粒子の含有量は、上限は98vol%が好ましく、より好ましくは95vol%である。下限は50volvol%が好ましく、より好ましくは60vol%である。粒子の添加量が上記好ましい範囲であるとカール低減効果が十分であり、多孔層の総体積に対して機能性樹脂の割合が最適である。
多孔層の平均厚みT(ave)は、下限は1μmが好ましく、より好ましくは1.5μm、さらに好ましくは2.0μmであり、上限は5μmが好ましく、より好ましくは4μm、さらに好ましくは3μmである。多孔層の膜厚が上記好ましい範囲であると、多孔層の厚み変動幅(R)を抑制できる。多孔層を積層して得られた電池用セパレータは融点以上で溶融・収縮した際の破膜強度と絶縁性を確保できる。また、巻き嵩を抑制することができ電池の高容量化には適する。
多孔層の空孔率は、30〜90%が好ましく、より好ましくは40〜70%である。所望の空孔率は、無機粒子の濃度、バインダー濃度などを適宜調整することで得られる。
4.ポリオレフィン微多孔膜への多孔層の積層方法
次に、本発明におけるポリオレフィン微多孔膜への多孔層の積層方法について説明する。 本発明は、長さ方向のF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜に多孔層を積層することで電池用セパレータを得ることができる。本発明のポリオレフィン微多孔膜を用いることによって塗工ロールとの接線(以下、塗工接線と略記する。)における接触圧力がポリオレフィン微多孔膜の長さ方向に対して均一になりやすく、塗工厚を均一にしやすくなる。
ポリオレフィン微多孔膜へ多孔層を積層する方法は、例えば、後述する公知のロールコート法を用いて、樹脂、無機粒子及び分散溶媒を含む塗工液をポリオレフィン微多孔膜に所定の膜厚になるように後述する方法で塗工し、乾燥温度40〜80℃、乾燥時間5秒から60秒の条件下で乾燥させる方法がある。溶媒とは、例えば、水、アルコール類、及びこれらの混合液などが挙げられる。
ロールコート法としては、例えば、リバースロールコート法、グラビアコート法などが挙げられ、これらの方法は単独又は組み合わせて行うことができる。なかでも塗工厚の均一化の観点からはグラビアコート法が好ましい。
本発明ではロールコート法におけるロールとポリオレフィン微多孔膜との塗工接線の太さが、3mm以上、10mm以下であることが好ましい。塗工接線の太さが10mmを超えるとポリオレフィン微多孔膜と塗工ロールとの接触圧力が大きく、塗工面にキズが入りやすくなる。
本明細書でいう塗工接線とは、塗工ロールとポリオレフィン微多孔膜が接する線であり、塗工接線の太さとは塗工接線の長さ方向の幅を意味する(図5参照)。塗工接線の太さは、塗工ロールとポリオレフィン微多孔膜の塗工接線をポリオレフィン微多孔膜の裏面から観察することによって測定することができる。塗工接線の太さを調整するには、ポリオレフィン微多孔膜に対する塗工ロールの位置を前後に調整するほか、塗工面の背後に配したバックロールの水平方向に対する左右の位置バランスを調整することによって可能である。バックロールは塗工ロールに対して上流側、下流側の両方に配置することがより効果的である。
ロールコート法における塗工ロールの振れ精度は、10μm/Φ100mm以下であることが好ましく、より好ましくは8μm/Φ100mm以下、さらに好ましくは5μm/Φ100mm以下である。塗工ロールの振れ精度が上記範囲内であると、長さ方向に対しても均一な塗工厚さが得られやすくなる。塗工ロールの振れ精度が高くなるほど高価になるが、本発明の課題を為しえるためには重要である。
本明細書でセパレータの長さ方向における多孔層の厚みが均一とは、セパレータが長さ1000m以上に対して厚みの変動幅(R)が1.0μm以下であることを意味する。厚みの変動幅(R)は0.8μm以下が好ましく、より好ましくは0.5μm以下である。
塗工液の固形分濃度は、均一に塗工できれば特に制限されないが20重量%以上、80重量%以下が好ましく、50重量%以上、70重量%以下がより好ましい。塗工液の固形分濃度が上記好ましい範囲であると均一な塗工厚が得られやすくなり、多孔層が脆くなるのを防ぐことができる。
5.電池用セパレータ
ポリオレフィン微多孔膜に多孔層を積層して得られた電池用セパレータの膜厚は、機械強度、電池容量の観点から6μm〜30μmが好ましい。
電池用セパレータの幅は特に制限はないが、下限は30mmが好ましく、より好ましくは60mm、さらに好ましくは100mmであり、上限は2000mmが好ましく、より好ましくは1000mm、さらに好ましくは800mmである。電池用セパレータの厚さが上記範囲であると、高容量の電池作製に適し、自重によるたわみが生じにくい。
電池用セパレータの長さは、下限は1000mが好ましく、より好ましくは2000m、さらに好ましくは3000mである。上限は特に定めないが10000mが好ましく、より好ましくは8000m、さらに好ましくは7000mである。電池用セパレータの長さの長さが上記範囲であると、生産性を向上させ、捲回体とした場合に自重によりたわみが生じにくい。
電池用セパレータは、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
本発明の電池用セパレータは、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池、およびプラスチックフィルムコンデンサ、セラミックコンデンサ、電気二重層コンデンサなどのセパレータとして用いることができるが、特にリチウムイオン二次電池のセパレータとして用いるのが好ましい。以下にリチウムイオン二次電池を例にとって説明する。リチウムイオン二次電池は、正極と負極がセパレータを介して積層された電極体と電解液(電解質)を含有している。電極体の構造は特に限定されず、公知の構造であってよい。例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。
以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。
1.F25値の変動幅の測定
実施例及び比較例で得られたポリオレフィン微多孔膜の幅方向に対してTD10mm×MD50mmの試験片を5点切り出した。両端部の試験片は微多孔膜の幅方向の端部から30mm内側から切り出した。JIS K7113に準じ、卓上形精密万能試験機(オートグラフAGS‐J((株)島津製作所製))を用いて、試験片の長さ方向のSS曲線(垂直応力(stress)と垂直歪み(strein)との関係)を求めた。垂直歪みが25%伸長した時点での垂直応力値を読み取り、その値を各試験片の断面積で除した値をF25値とし、5点の幅方向の平均値を求めた。長さ方向に対して250m間隔で5箇所について、F25値の幅方向の各平均値を求め、その最大値と最小値の差からF25値の変動幅を求めた。なお、電池用セパレータから多孔層を剥離除去したポリオレフィン微多孔膜を試験片に供してもよい。
・測定条件
ロードセル容量:1kN
クリップ間距離:20mm
試験速度:20mm/min
測定環境:気温20℃、相対湿度60%
2.多孔層の膜厚の長さ方向の変動幅(R)
実施例及び比較例で得られたポリオレフィン微多孔膜の幅方向に対してTD10mm×MD50mmの試験片を5点切り出した。両端部の試験片は微多孔膜の幅方向の端部から30mm内側から切り出した。
各試験片の断面をSEM観察することによって多孔層の厚みを求めた。断面試験片はクライオCP法を用いて作製し、電子線によるチャージアップを防ぐため、僅かに金属微粒子を蒸着してSEM観察を行った。無機粒子の存在領域を多孔層として膜厚を測定し、5点の幅方向の平均値を求めた。長さ方向に対して250m間隔で5箇所について幅方向の各平均値を求め、その最大値と最小値の差から長さ方向に対する多孔層の厚みの変動幅(R)とした。上記計25点の試験片の厚みの平均値を多孔層の平均厚みT(ave)とした。
・測定装置
電界放射型走査電子顕微鏡(FE‐SEM)S‐4800((株)日立ハイテクノロジ−ズ製)
クロスセクションポリッシャ(CP)SM‐9010(日本電子(株)製)
・測定条件
加速電圧:1.0kV
3.縦延伸ロールの表面温度の変動幅
各ロールの表面を赤外放射温度計で5分間ごとに5回測定し、最大値と最小値の差から縦延伸ロールの表面温度の変動幅を求めた。
4.塗工接線の太さ測定
塗工接線とは、塗工の際に塗工ロールとポリオレフィン微多孔膜が接する幅方向の線である。塗工接線の太さとは、塗工接線の長さ方向の幅であり、ポリオレフィン微多孔膜の裏面を通してスケールを用いて読み取った値をいう。
5.巻き姿
実施例及び比較例で得られた電池用セパレータの捲回体を目視で観察を行い、たわみ、巻きずれの発生している箇所の数を数えた。
・判定基準
○(良好):なし
△(許容):1〜3ヶ所
×(不良):4ヶ所以上
6.キズの評価
実施例及び比較例で得られた電池用セパレータの捲回体から最外周部分を取り除いた後、内周部分1mを引き出し、評価用試料とした。
キズの検出には、ブロムライト(写真撮影、ビデオ撮影時用いる照明器具)を塗工面に照射し、キズを目視で検出し、数を数えた。
・判定基準
○(良好):1箇所以下
△(許容):2〜5箇所
×(不良):6箇所以上
(塗工液の作製)
参考例1
ポリビニルアルコール(平均重合度1700、ケン化度99%以上)、平均粒径0.5μmのアルミナ粒子、イオン交換水をそれぞれ6:54:40の重量比率で配合して十分に攪拌し、均一に分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗工液(a)を得た。
参考例2
ポリビニルアルコールとアクリル酸、メタクリル酸メチルの共重合体(“POVACOAT”(登録商標)、日新化成(株)製)、平均粒径0.5μmのアルミナ粒子、溶媒(イオン交換水:エタノール=70:30)をそれぞれ5:45:50の重量比率で配合し、十分に攪拌し、均一に分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗工液(b)を得た。
参考例3
ポリフッ化ビニリデン系樹脂の水系エマルション(VINYCOAT PVDF AQ360、東日本塗料(株)製)、平均粒径0.5μmのアルミナ粒子、イオン交換水をそれぞれ30:30:40の重量比率で配合して十分に攪拌し、均一に分散させた。次いで、濾過限界5μmのフィルターで濾過し、塗工液(c)を得た。
(ポリオレフィン微多孔膜の製造)
実施例1
質量平均分子量2.5×10の超高分子量ポリエチレンを40質量%と質量平均分子量2.8×10の高密度ポリエチレンを60質量%とからなる組成物100質量部に、テトラキス[メチレン‐3‐(3,5‐ジターシャリーブチル‐4‐ヒドロキシフェニル)−プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作成した。得られたポリエチレン組成物30重量部を二軸押出機に投入した。さらに、流動パラフィン70重量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。続いて、この押出機の先端に設置されたダイから190℃でポリエチレン樹脂溶液を押し出し、内部冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。
得られた未延伸ゲル状シートを、シート表面の温度が110℃になるように、4本の予熱ロール群を通過させ、図1に示す縦延伸装置Aに導いた。縦延伸ロールには、幅1000mm、直径300mm、ハードクロムメッキが施された金属ロール(表面粗度0.5S)を用いた。なお、各縦延伸ロールの表面温度は110℃であった。ドクターブレードにはポリエステル製のドクターブレードを用いた。また、ニップロールにはニトリルゴム被覆ロール((株)加貫ローラ製作所製)を用いた。縦延伸装置として縦延伸装置Aを用い、川下に進む方向に段階的に延伸ロールの周速を増大させ、第1延伸ロールと第2延伸ロールの周速比1.3、第2延伸ロールと第3延伸ロールの周速比1.5、第3延伸ロールと第4延伸ロールの周速比1.8、第4延伸ロールと第5延伸ロールの周速比2.1に設定した。また、隣り合う延伸ロールの間隔は延伸中のゲル状成形シートが延伸ロールから離れて次の延伸ロールに接するまでの距離を200mmとし、各ニップロールの圧力は0.3MPaとした。さらに、各延伸ロールの表面温度変動幅は±2℃以内となるよう制御した。次いで、4本の冷却ロールを通過させし、シート温度が50℃になるよう冷却し、縦延伸ゲル状シートを形成した。
得られた縦延伸ゲル状シートの両端部をクリップで把持し、20ゾーンに分割されたテンター内で、温度115℃で横方向に6倍延伸し、二軸延伸ゲル状シートを成形した。このときシート進行方向に対してクリップの間隔はテンター入り口から出口まで5mmとした。得られた二軸延伸ゲル状シートを30℃まで冷却し、25℃に温調した塩化メチレンの洗浄槽内にて流動パラフィンを除去し、60℃に調整された乾燥炉で乾燥した。
得られた乾燥後のシートを図4に示す再延伸装置にて縦倍率1.2倍となるよう再延伸し、125℃、20秒間熱処理し、厚さ16μmのポリオレフィン微多孔膜を得た。さらに、巻き上げ時の搬送速度を50m/分で幅4000mm、巻き長5050mのポリオレフィン微多孔膜捲回体を得た。得られた捲回体からポリオレフィン微多孔膜を繰り出し、幅950mmにスリット加工して塗工用基材として用いるポリオレフィン微多孔膜Aを得た。
実施例2
縦延伸装置として縦延伸装置Aの替わりに図2に示す縦延伸装置Bを用いた以外実施例1と同様にしてポリオレフィン微多孔膜Bを得た。
実施例3
縦延伸装置として縦延伸装置Aの替わりに図3に示す縦延伸装置Cを用いた以外実施例1と同様にしてポリオレフィン微多孔膜Cを得た。
実施例4
縦延伸装置として縦延伸装置Aの替わりに図4に示す縦延伸装置Dを用い、縦延伸装置Dの第1延伸ロールと第2延伸ロールの周速比1.5、第2延伸ロールと第3延伸ロールの周速比2.0、第3延伸ロールと第4延伸ロールの周速比2.5に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Dを得た。
実施例5
縦延伸装置において、各ニップロールの圧力を0.1MPaとした以外は実施例1と同様にしてポリオレフィン微多孔膜Eを得た。
実施例6
縦延伸装置において、各ニップロールの圧力を0.5MPaとした以外は実施例1と同様にしてポリオレフィン微多孔膜Fを得た。
実施例7
ポリエチレン樹脂溶液の押し出し量を調整し、実施例1と同様にして、厚さ7μmのポリオレフィン微多孔膜Gを得た。
実施例8
縦延伸装置Aにおいて、5本の縦延伸ロールとも表面粗度が5.0Sのセラミック被覆金属ロールを用いた以外は実施例1と同様にしてポリオレフィン微多孔膜Hを得た。
実施例9
縦延伸装置Aの第1延伸ロールと第2延伸ロールの周速比1.2、第2延伸ロールと第3延伸ロールの周速比1.5、第3延伸ロールと第4延伸ロールの周速比1.8、第4延伸ロールと第5延伸ロールの周速比2.3に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Iを得た。
実施例10
縦延伸装置Aの第1延伸ロールと第2延伸ロールの周速比1.3、第2延伸ロールと第3延伸ロールの周速比1.7、第3延伸ロールと第4延伸ロールの周速比1.8、第4延伸ロールと第5延伸ロールの周速比1.9に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Jを得た。
比較例1
実施例1で成形された未延伸ゲル状シートの両端部をクリップで把持し、温度116℃に調節した5ゾーンに分割されたテンターに導き同時二軸延伸法で縦方向に7倍、横方向に7倍に延伸して同時二軸延伸ゲル状シートを成形した。このとき、クリップの間隔は、シート進行方向に対してテンター入り口では5mmであり、テンター出口では95mmであった。次いで、同時二軸延伸ゲル状シートを30℃まで冷却し、25℃に温調した塩化メチレンの洗浄槽内にて洗浄し、流動パラフィンを除去したシートを60℃に調整された乾燥炉で乾燥し、ポリオレフィン微多孔膜を得た。さらに、巻き上げ時の搬送速度を50m/分で幅4000mm、巻き長5050mのポリオレフィン微多孔膜捲回体を得た。得られた捲回体からポリオレフィン微多孔膜を繰り出し、幅950mmにスリット加工して塗工用基材として用いるポリオレフィン微多孔膜Kを得た。
比較例2
縦延伸装置Aにおいて、5本の延伸ロールともニップロールを用いなかったこと以外は実施例1と同様にしてポリオレフィン微多孔膜Lを得た。
比較例3
縦延伸装置として縦延伸装置Bを用い、5本の延伸ロールともニップロールを用いなかったこと以外は実施例1と同様にしてポリオレフィン微多孔膜Mを得た。
比較例4
縦延伸装置Aにおいて、各ニップロールの圧力は0.04MPaとした以外は実施例1と同様にしてポリオレフィン微多孔膜Nを得た。
比較例5
縦延伸装置Aにおいて、縦延伸ロールを表面粗度0.1Sのハードクロムメッキされた金属ロールを用いた以外実施例1と同様にしてポリオレフィン微多孔膜Oを得た。
比較例6
縦延伸装置Aの第1延伸ロールと第2延伸ロールの周速比1.6、第2延伸ロールと第3延伸ロールの周速比1.6、第3延伸ロールと第4延伸ロールの周速比1.7、第4延伸ロールと第5延伸ロールの周速比1.7に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Pを得た。
比較例7
縦延伸装置Aの第1延伸ロールと第2延伸ロールの周速比1.1、第2延伸ロールと第3延伸ロールの周速比1.3、第3延伸ロールと第4延伸ロールの周速比1.5、第4延伸ロールと第5延伸ロールの周速比3.5に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Qを得た。
比較例8
縦延伸装置Aの第1延伸ロールと第2延伸ロールの周速比1.3、第2延伸ロールと第3延伸ロールの周速比1.7、第3延伸ロールと第4延伸ロールの周速比1.8、第4延伸ロールと第5延伸ロールの周速比1.9に設定した以外は実施例1と同様にしてポリオレフィン微多孔膜Rを得た。
比較例9
縦延伸装置Aにおいて、各縦延伸ロールそれぞれの温度変動幅が±3℃以内であった以外は実施例1と同様にしてポリオレフィン微多孔膜Sを得た。
(電池用セパレータの作製)
実施例11
実施例1で得られたポリオレフィン微多孔膜Aに図5に示す塗工装置(グラビアコート法)を用いて搬送速度50m/分で塗工液(a)を塗工し、50℃の熱風乾燥炉を10秒間通過させることで乾燥し電池用セパレータを得た。このとき、塗工装置の塗工ロールとバックロールの位置を調整し、塗工接線の太さが3〜5mmの範囲内になるようにした。また、塗工ロールは直径100mmのグラビアロールで振れ精度が8μm/Φ100mmのものを用いた。次いで、スリット加工し、電池用セパレータの厚み19μm、幅900mm、巻き長5000mの電池用セパレータを得た。
実施例12〜20
実施例2〜10で得られたポリオレフィン微多孔膜B〜Jを用いた以外は実施例11と同様にして電池用セパレータを得た。
実施例21
塗工液(a)を塗工液(b)に替えた以外は実施例11と同様にして電池用セパレータを得た。
実施例22
塗工液(a)を塗工液(c)に替えた以外は実施例11と同様にして電池用セパレータを得た。
実施例23
塗工ロールを直径100mmのグラビアロールで振れ精度が10μm/Φ100mmのものを用いた以外は実施例11と同様にして電池用セパレータを得た。
実施例24
塗工ロールを直径100mmのグラビアロールで振れ精度が5μm/Φ100mmのものを用いた以外は実施例11と同様にして電池用セパレータを得た。
実施例25
塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが5〜7mmの範囲とした以外は実施例11と同様にして電池用セパレータを得た。
実施例26
塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが8〜10mmの範囲とした以外は実施例11と同様にして電池用セパレータを得た。
実施例27
塗工装置におけるグラビアロールのセル容量を変更して、多孔層厚み5μmとした以外は実施例11と同様にして電池用セパレータを得た。
比較例10〜18
比較例1〜9で得られたポリオレフィン微多孔膜K〜Sを用いた以外は実施例11と同様にして電池用セパレータを得た。
比較例19
塗工ロールを直径100mmのグラビアロールで振れ精度が12μm/Φ100mmのものを用いた以外は実施例11と同様にして電池用セパレータを得た。
比較例20
塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが11〜13mmの範囲とした以外は実施例11と同様にして電池用セパレータを得た。
比較例21
多孔層厚み8μmとなるように塗工装置におけるグラビアロールのセル容量を変更した以外は実施例11と同様にして電池用セパレータを得た。
表1に実施例1〜10、比較例1〜9で得られるポリエチレン微多孔膜の製造条件及びその特性を示す。表2に実施例11〜27、比較例10〜21で得られる電池用セパレータの製造条件、その特性及び捲回体の特性を示す。
Figure 2016092993
Figure 2016092993
1.縦延伸ロール
2.ニップロール
3.ブレード
4.未延伸ゲル状シート
5.二軸延伸シート
6.再縦延伸ロール
7.再縦延伸用ニップロール
8.ポリオレフィン微多孔膜
9.塗工ロール
10.塗工接線
11.バックロール
12.ロール位置調整方向

Claims (12)

  1. 長さ方向におけるF25値の変動幅が1MPa以下である、長さ1000m以上のポリオレフィン微多孔膜。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)
  2. 長さ方向におけるF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と、耐熱性粒子を含み、平均厚みT(ave)が1〜5μmの多孔層を設けた電池用セパレータ。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)
  3. 請求項1に記載のポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と、耐熱性粒子を含み、平均厚みT(ave)が1〜5μmの多孔層を設けた電池用セパレータ。
  4. 多孔層の長さ方向における厚み変動幅(R)が1.0μm以下である請求項2又は3に記載の電池用セパレータ。
  5. 水溶性樹脂または水分散性樹脂が、ポリビニルアルコール、アクリル系樹脂及びポリフッ化ビニリデン系樹脂のうちを少なくとも一種含む請求項2〜4のいずれかに記載の電池用セパレータ。
  6. ポリオレフィン微多孔膜の長さが2000m以上の請求項3〜5のいずれかに記載の電池用セパレータ。
  7. ポリオレフィン微多孔膜の長さが3000m以上の請求項3〜6のいずれかに記載の電池用セパレータ。
  8. (a)ポリオレフィン樹脂と成形用溶剤とを溶融混練してポリオレフィン樹脂溶液を調製する工程
    (b)前記ポリオレフィン樹脂溶液を押出機よりシート状に押出し、冷却して未延伸ゲル状シートを形成する工程
    (c)前記未延伸ゲル状シートを少なくとも3対の縦延伸ロール群の間を通過させ、段階的に増大するロール群の周速によって縦方向に延伸し、縦延伸ゲル状シートを得る工程(ここで、縦延伸ロールとこれに平行に接する耐熱性ゴムで被覆したニップロールを1対の縦延伸ロール群とし、該ニップロールが縦延伸ロールに接する圧力は0.05MPa以上、0.5MPa以下である)
    (d)前記縦延伸ゲル状シートをクリップ間距離がテンター出口で50mm以下となるように把持して横方向に延伸し、二軸延伸ゲル状シートを得る工程
    (e)前記二軸延伸ゲル状シートから成形用溶剤を抽出し、乾燥する工程
    (f)前記乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
    を含むポリオレフィン微多孔膜の製造方法。
  9. (c)工程における隣り合う縦延伸ロールの周速比が段階的に増大する請求項8に記載のポリオレフィン微多孔膜の製造方法。
  10. 請求項8又は請求項9に記載のポリオレフィン微多孔膜の製造方法に、さらに、ポリオレフィン微多孔膜を搬送速度が50m/分以上で巻き芯に巻き上げる工程を含むポリオレフィン微多孔膜捲回体の製造方法。
  11. 請求項8又は請求項9に記載のポリオレフィン微多孔膜の製造方法に、さらに、ポリオレフィン微多孔膜の少なくとも片面に、水溶性樹脂または水分散性樹脂と、耐熱性粒子を含む塗工液を振れ精度が10μm/Φ100mm以下の塗工ロールを用いたロールコート法で塗工し、乾燥する工程を含む電池用セパレータの製造方法。
  12. 塗工ロールがグラビアロールである請求項11に記載の電池用セパレータの製造方法。
JP2016506401A 2014-12-11 2015-11-05 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 Active JP5914790B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014250824 2014-12-11
JP2014250824 2014-12-11
PCT/JP2015/081198 WO2016092993A1 (ja) 2014-12-11 2015-11-05 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法

Publications (2)

Publication Number Publication Date
JP5914790B1 JP5914790B1 (ja) 2016-05-11
JPWO2016092993A1 true JPWO2016092993A1 (ja) 2017-04-27

Family

ID=55951973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016506401A Active JP5914790B1 (ja) 2014-12-11 2015-11-05 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法

Country Status (2)

Country Link
JP (1) JP5914790B1 (ja)
PL (1) PL3231837T3 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061489A1 (ja) * 2015-10-09 2017-04-13 東レバッテリーセパレータフィルム株式会社 積層ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366426B2 (ja) * 2008-04-04 2013-12-11 東芝機械株式会社 多孔性フィルムの製膜方法及び多孔性フィルム製膜用の逐次二軸延伸装置
JP5639578B2 (ja) * 2008-08-15 2014-12-10 東レバッテリーセパレータフィルム株式会社 微多孔膜の製造方法および微多孔膜の製造装置
KR101336593B1 (ko) * 2010-04-20 2013-12-05 에스케이이노베이션 주식회사 생산성이 우수하며 물성조절이 용이한 폴리올레핀계 미세다공막 제조방법
JP5832907B2 (ja) * 2012-01-10 2015-12-16 鉄郎 野方 ポリオレフィン微多孔膜の製造方法

Also Published As

Publication number Publication date
PL3231837T3 (pl) 2022-12-19
JP5914790B1 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6105185B1 (ja) 積層ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
US20200303705A1 (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR102164178B1 (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그 제조 방법
JP6645516B2 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
JP6540806B2 (ja) 電池用セパレータおよびその製造方法
CN108431108B (zh) 聚烯烃微多孔膜、电池用隔膜以及它们的制造方法
JP6624283B2 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびこれらの製造方法
WO2017094486A1 (ja) 電池用セパレータおよびその製造方法
JP5914789B1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法
JP5914790B1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
TW201819198A (zh) 積層聚烯烴微多孔膜、電池用隔膜及其製造方法以及積層聚烯烴微多孔膜捲繞體之製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160216

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350