JPWO2016067626A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
JPWO2016067626A1
JPWO2016067626A1 JP2016556371A JP2016556371A JPWO2016067626A1 JP WO2016067626 A1 JPWO2016067626 A1 JP WO2016067626A1 JP 2016556371 A JP2016556371 A JP 2016556371A JP 2016556371 A JP2016556371 A JP 2016556371A JP WO2016067626 A1 JPWO2016067626 A1 JP WO2016067626A1
Authority
JP
Japan
Prior art keywords
less
amount
retained austenite
hot
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016556371A
Other languages
English (en)
Other versions
JP6179677B2 (ja
Inventor
由康 川崎
由康 川崎
松田 広志
広志 松田
横田 毅
毅 横田
孝子 山下
孝子 山下
瀬戸 一洋
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016067626A1 publication Critical patent/JPWO2016067626A1/ja
Application granted granted Critical
Publication of JP6179677B2 publication Critical patent/JP6179677B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

所定の成分組成とし、かつ、鋼組織を、面積率で、ポリゴナルフェライト:15%以上55%以下、マルテンサイト:15%以上30%以下とし、体積率で、残留オーステナイト:12%以上とし、また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径をそれぞれ4μm以下、2μm以下、2μm以下にするとともに、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比をそれぞれ2.0以下とし、さらに、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を2.0以上とする。

Description

本発明は、自動車、電気等の産業分野で使用される部材として好適な、成形性に優れ、かつ低い降伏比を有する高強度鋼板およびその製造方法に関する。
近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。
しかしながら、一般的に鋼板の高強度化は成形性の低下を招くことから、高強度化を図ると鋼板の成形性が低下して、成形時の割れなどの問題を生じる。そのため、単純には鋼板の薄肉化が図れない。そこで、高強度と高成形性を併せ持つ材料の開発が望まれている。また、TS(引張強さ):980MPa以上の鋼板は、自動車の製造工程において、プレス加工後にアーク溶接、スポット溶接等により組み付けられて、モジュール化されるため、組付け時に高い寸法精度が求められる。
そのため、このような鋼板では、成形性に加え、加工後にスプリングバック等を起こりにくくする必要があり、そのためには、加工前にYR(降伏比)が低いことが重要となる。
例えば、特許文献1には、引張強さが1000MPa以上で、全伸び(EL)が30%以上の残留オーステナイトの加工誘起変態を利用した非常に高い延性を有する高強度鋼板が提案されている。
また、特許文献2には、高Mn鋼を用いて、フェライトとオーステナイトの2相域での熱処理を施すことにより、高い強度−延性バランスを得ようとする鋼板が提案されている。
さらに、特許文献3には、高Mn鋼で熱延後の組織をベイナイトやマルテンサイトを含む組織とし、さらに焼鈍と焼戻しを施すことによって微細な残留オーステナイトを形成させたのち、焼戻しベイナイトもしくは焼戻しマルテンサイトを含む組織とすることで、局部延性を改善しようとする鋼板が提案されている。
特開昭61−157625号公報 特開平1−259120号公報 特開2003−138345号公報
ここで、特許文献1に記載された鋼板では、C、SiおよびMnを基本成分とする鋼板をオーステナイト化した後に、ベイナイト変態温度域に焼入れて等温保持する、いわゆるオーステンパー処理を行うことにより製造される。そして、このオーステンパー処理を施す際に、オーステナイトへのCの濃化によって残留オーステナイトが生成される。
しかしながら、多量の残留オーステナイトを得るためには、0.3質量%を超える多量のCが必要となるが、0.3質量%を超えるようなC濃度では、スポット溶接性の低下が顕著であり、自動車用鋼板としては実用化が困難である。
加えて、特許文献1に記載された鋼板では、延性の向上を主目的としており、穴広げ性や曲げ性、降伏比については考慮が払われていない。
さらに、特許文献2および3に記載された鋼板では、成形性の観点では延性の向上について述べられているが、その曲げ性や降伏比については考慮が払われていない。
本発明は、かかる事情に鑑み開発されたものであって、成形性に優れるとともに、低い降伏比を有する高強度鋼板、具体的には、YR(降伏比)が68%未満で、かつTS(引張強さ)が980MPa以上の高強度鋼板を、その有利な製造方法とともに提供することを目的とする。
なお、本発明でいう高強度鋼板には、表面に溶融亜鉛めっき層をそなえる高強度鋼板(高強度溶融亜鉛めっき鋼板)や、表面に溶融アルミニウムめっき層をそなえる高強度鋼板(高強度溶融アルミニウムめっき鋼板)、表面に電気亜鉛めっき層をそなえる高強度鋼板(高強度電気亜鉛めっき鋼板)が含まれる。
さて、発明者らは、成形性に優れ、低い降伏比を有する高強度鋼板を開発すべく、鋭意検討を重ねたところ、以下のことを見出した。
(1)延性や曲げ性、穴広げ性といった成形性に優れ、YRが68%未満でかつTSが980MPa以上の高強度鋼板を得るには、以下の点が重要である。
・Mnを4.20質量%超6.00質量%以下の範囲で含有させるとともに、その他の成分組成を所定の範囲に調整する。
・鋼組織を、ポリゴナルフェライトとマルテンサイト、残留オーステナイトを適正量含むとともに、これらの構成相を微細化する。また、これらの構成相の結晶粒の平均アスペクト比や、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を、適正化する。
(2)さらに、このような組織を造り込むには、成分組成を所定の範囲に調整するとともに、製造条件、特に熱間圧延後の熱処理(熱延板焼鈍)条件および冷間圧延後の熱処理(冷延板焼鈍)条件を適正に制御することが重要である。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%でC:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:4.20%超6.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.003%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
鋼組織が、面積率で、ポリゴナルフェライトが15%以上55%以下、マルテンサイトが15%以上30%以下であって、体積率で、残留オーステナイトが12%以上であり、
また、前記ポリゴナルフェライトの平均結晶粒径が4μm以下、前記マルテンサイトの平均結晶粒径が2μm以下、前記残留オーステナイトの平均結晶粒径が2μm以下であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以下であり、
さらに、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である、高強度鋼板。
2.前記成分組成が、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、前記1に記載の高強度鋼板。
3.前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式:
0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
[C量] :残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足する、前記1または2に記載の高強度鋼板。
4.前記1〜3のいずれかに記載の高強度鋼板であって、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイトの体積率で除した値が0.3以上である、高強度鋼板。
5.前記1〜4のいずれかに記載の高強度鋼板であって、溶融亜鉛めっき層をさらにそなえる、高強度鋼板。
6.前記1〜4のいずれかに記載の高強度鋼板であって、溶融アルミニウムめっき層をさらにそなえる、高強度鋼板。
7.前記1〜4のいずれかに記載の高強度鋼板であって、電気亜鉛めっき層をさらにそなえる、高強度鋼板。
8.前記1〜7のいずれかに記載の高強度鋼板の製造方法であって、
前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、
前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、
前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、
前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、
前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、
とをそなえる、高強度鋼板の製造方法。
9.前記冷延板焼鈍工程後、前記冷延板に、亜鉛めっき処理を施す、または溶融亜鉛めっき処理を施したのち、450℃以上600℃以下の温度域で合金化処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
10.前記冷延板焼鈍工程後、前記冷延板に溶融アルミニウムめっき処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
11.前記冷延板焼鈍工程後、前記冷延板に電気亜鉛めっき処理を施す工程をさらにそなえる、前記8に記載の高強度鋼板の製造方法。
本発明によれば、成形性に優れるとともに、YR(降伏比)が68%未満で、980MPa以上のTS(引張強さ)を有する高強度鋼板が得られる。
また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することにより、車体軽量化による燃費改善を図ることができ、産業的な利用価値は極めて大きい。
引張加工の加工度と残留オーステナイトの体積率との関係を示す図である。 伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を引張加工前の残留オーステナイト体積率で除した値と、鋼板の伸びとの関係を示す図である。
以下、本発明を具体的に説明する。まず、本発明の高強度鋼板の成分組成について説明する。
なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.030%以上0.250%以下
Cは、マルテンサイトなどの低温変態相を生成させて、強度を上昇させるために必要な元素である。また、残留オーステナイトの安定性を向上させ、鋼の延性を向上させるのに有効な元素である。
ここで、C量が0.030%未満では所望のマルテンサイトの面積率を確保することが難しく、所望の強度が得られない。また、十分な残留オーステナイトの体積率を確保することが難しく、良好な延性が得られない。一方、Cを、0.250%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、溶接部および熱影響部の硬化が著しくなって、溶接部の機械的特性が低下するため、スポット溶接性やアーク溶接性なども劣化する。
こうした観点から、C量は0.030%以上0.250%以下の範囲とする。好ましくは、0.080%以上0.200%以下の範囲である。
Si:0.01%以上3.00%以下
Siはフェライトの加工硬化能を向上させるため、良好な延性の確保に有効な元素である。しかしながら、Si量が0.01%に満たないとその添加効果が乏しくなるため、その下限は0.01%とする。一方、3.00%を超えるSiの過剰な添加は、鋼の脆化を引き起こすばかりか赤スケールなどの発生による表面性状の劣化を引き起こす。そのため、Si量は0.01%以上3.00%以下の範囲とする。好ましくは、0.20%以上2.00%以下の範囲である。
Mn:4.20%超6.00%以下
Mnは、本発明において極めて重要な元素である。すなわち、Mnは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼の強度を上昇させる元素である。また、残留オーステナイト中のMn濃化により、残留オーステナイトを体積率で12%以上と多量に確保することが可能となる。このような効果は、Mn量が4.20%超で認められる。一方、Mn量が6.00%を超える過剰な添加は、コストアップの要因になる。こうした観点から、Mn量は4.20%超6.00%以下の範囲とする。好ましくは4.80%以上である。
P:0.001%以上0.100%以下
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進し、鋼板の複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招く。また、亜鉛めっきを合金化処理する場合には、合金化速度を低下させ、亜鉛めっきの品質を損なわせる。したがって、P量は0.001%以上0.100%以下の範囲とする。好ましくは0.005%以上0.050%以下の範囲である。
S:0.0001%以上0.0200%以下
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して鋼板の局部変形能を低下させる。そのため、S量は0.0200%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下にする必要がある。しかしながら、生産技術上の制約から、S量は0.0001%以上にする。したがって、S量は0.0001%以上0.0200%以下の範囲とする。好ましくは0.0001%以上0.0100%以下の範囲、より好ましくは0.0001%以上0.0050%以下の範囲である。
N:0.0005%以上0.0100%以下
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となる。N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする。したがって、N量は0.0005%以上0.0100%以下の範囲とする。好ましくは0.0010%以上0.0070%以下の範囲である。
Ti:0.003%以上0.200%以下
Tiは、本発明において極めて重要な元素である。すなわち、Tiは、鋼の析出強化に有効であり、その効果はTiを0.003%以上添加することにより得られる。しかし、Ti量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。したがって、Ti量は0.003%以上0.200%以下の範囲とする。好ましくは、0.010%以上0.100%以下の範囲とする。
また、上記の成分に加えて、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有させることができる。
Al:0.01%以上2.00%以下
Alは、フェライトとオーステナイトの二相域を拡大させ、焼鈍温度依存性の低減、つまり、材質安定性に有効な元素である。また、Alは、脱酸剤として作用し、鋼の清浄度に有効な元素でもある。しかしながら、Al量が0.01%に満たないとその添加効果に乏しいので、その下限は0.01%とする。一方、Alの2.00%を超える多量の添加は、連続鋳造時の鋼片割れ発生の危険性が高まり、製造性を低下させる。したがって、Alを添加する場合、その量は0.01%以上2.00%以下の範囲とする。好ましくは、0.20%以上1.20%以下の範囲である。
Nb:0.005%以上0.200%以下
Nbは、鋼の析出強化に有効で、その添加効果は0.005%以上で得られる。しかし、Nb量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、Nbを添加する場合、その量は0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.100%以下の範囲である。
B:0.0003%以上0.0050%以下
Bは、オーステナイト粒界からのフェライトの生成および成長を抑制する作用を有し、臨機応変な組織制御が可能なため、必要に応じて添加することができる。その添加効果は、0.0003%以上で得られる。一方、B量が0.0050%を超えると、成形性が低下する。したがって、Bを添加する場合、その量は0.0003%以上0.0050%以下の範囲とする。好ましくは、0.0005%以上0.0030%以下の範囲である。
Ni:0.005%以上1.000%以下
Niは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼の強度を上昇させる元素である。その添加効果は、0.005%以上で得られる。一方、Ni量が1.000%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、Niを添加する場合、その量は0.005%以上1.000%以下の範囲とする。
Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下
Cr、VおよびMoは、強度と延性のバランスを向上させる作用を有するので、必要に応じて添加することができる元素である。その添加効果は、Cr:0.005%以上、V:0.005%以上およびMo:0.005%以上で得られる。しかしながら、それぞれCr:1.000%、V:0.500%およびMo:1.000%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。したがって、これらの元素を添加する場合、その量はそれぞれCr:0.005%以上1.000%以下、V:0.005%以上0.500%以下およびMo:0.005%以上1.000%以下の範囲とする。
Cu:0.005%以上1.000%以下
Cuは、鋼の強化に有効な元素であり、上記の範囲内であれば鋼の強化に使用して差し支えない。また、その添加効果は0.005%以上で得られる。一方、Cu量が1.000%を超えると、硬質なマルテンサイトの面積率が過大となり、マルテンサイトの結晶粒界でのマイクロボイドが増加する。このため、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。したがって、Cuを添加する場合、その量は0.005%以上1.000%以下の範囲とする。
Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下
SnおよびSbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の厚み領域の脱炭を抑制する観点から、必要に応じて添加することができる元素である。このような窒化や酸化を抑制することで、鋼板表面においてマルテンサイトの面積率が減少するのを防止できるため、SnおよびSbは強度や材質安定性の確保に有効である。一方、SnおよびSbをそれぞれ0.200%を超えて過剰に添加すると、靭性の低下を招く。したがって、Sn、Sbを添加する場合、その量はそれぞれ0.002%以上0.200%以下の範囲とする。
Ta:0.001%以上0.010%以下
Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Taは、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成することで析出物の粗大化を抑制し、析出強化による強度向上への寄与を安定化させる効果があると考えられる。このため、Taを含有させることが好ましい。ここで、前述の析出物安定化の効果は、Taの含有量を0.001%以上とすることで得られる。一方、Taを過剰に添加してもその添加効果が飽和する上、合金コストも増加する。したがって、Taを添加する場合、その量は0.001%以上0.010%以下の範囲とする。
Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下
Ca、MgおよびREMは、硫化物の形状を球状化し、穴広げ性(伸びフランジ性)への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには、それぞれ0.0005%以上の添加が必要である。一方、Ca、MgおよびREMのそれぞれ0.0050%を超える過剰な添加は、介在物等の増加を引き起こし表面および内部欠陥などを引き起こす。したがって、Ca、MgおよびREMを添加する場合、その量はそれぞれ0.0005%以上0.0050%以下の範囲とする。
なお、上記以外の成分はFeおよび不可避的不純物である。
次に、本発明の高強度鋼板のミクロ組織について説明する。
ポリゴナルフェライトの面積率:15%以上55%以下
本発明の高強度鋼板では、十分な延性を確保するため、ポリゴナルフェライトの面積率を15%以上にする必要がある。一方、980MPa以上のTSを確保するため、軟質なポリゴナルフェライトの面積率を55%以下にする必要がある。好ましくは、20%以上50%以下の範囲である。なお、ここでいうポリゴナルフェライトとは、比較的軟質で延性に富むフェライトのことである。
マルテンサイトの面積率:15%以上30%以下
また、980MPa以上のTSを達成するためには、マルテンサイトの面積率を15%以上にする必要がある。一方、良好な延性の確保のためには、マルテンサイトの面積率を30%以下にする必要がある。好ましくは17%以上25%以下の範囲である。
ここで、ポリゴナルフェライトとマルテンサイトの面積率は、以下のようにして求めることができる。
すなわち、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、組織画像を得る。この得られた組織画像を用いて、Media Cybernetics社のImage−Proにより各組織(ポリゴナルフェライト、マルテンサイト)の面積率を10視野分算出し、それらの値を平均して求めることが出来る。また、上記の組織画像において、ポリゴナルフェライトは灰色の組織(下地組織)、マルテンサイトは白色の組織を呈していることで識別される。
残留オーステナイトの体積率:12%以上
本発明の高強度鋼板では、十分な延性を確保するため、残留オーステナイトの体積率を12%以上にする必要がある。好ましくは14%以上である。また、残留オーステナイトの体積率の上限は、特に限定はされないが、延性向上の効果が小さい残留オーステナイト、すなわちCやMnなどの成分が希薄ないわゆる不安定な残留オーステナイトが増加することから、65%程度とすることが好ましい。より好ましくは55%以下である。
残留オーステナイトの体積率は、鋼板を板厚方向の1/4面(鋼板表面から深さ方向で板厚の1/4に相当する面)まで研磨し、この板厚1/4面の回折X線強度を測定することにより求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
ポリゴナルフェライトの平均結晶粒径:4μm以下
ポリゴナルフェライトの結晶粒の微細化は、TS(引張強さ)の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、所望のTSを確保し、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するためには、ポリゴナルフェライトの平均結晶粒径を4μm以下にする必要がある。好ましくは3μm以下である。
なお、ポリゴナルフェライトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.2μm程度とすることが好ましい。
マルテンサイトの平均結晶粒径:2μm以下
マルテンサイトの結晶粒の微細化は、曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するためには、マルテンサイトの平均結晶粒径を2μm以下にする必要がある。好ましくは、1.5μm以下である。
なお、マルテンサイトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.05μm程度とすることが好ましい。
残留オーステナイトの平均結晶粒径:2μm以下
残留オーステナイトの結晶粒の微細化は、延性の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。ここに、良好な延性、曲げ性、伸びフランジ性(穴広げ性)を確保するためには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。好ましくは、1.5μm以下である。
なお、残留オーステナイトの平均結晶粒径の下限値は特に限定されるものではないが、工業的には0.05μm程度とすることが好ましい。
また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径は、上述のImage−Proを用いて、面積率の測定と同様にして得られる組織画像から、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々の面積を求め、円相当直径を算出し、それらの値を平均して求める。なお、マルテンサイトと残留オーステナイトは、EBSD(Electron BackScatter Diffraction;電子線後方散乱回折法)のPhase Mapにより識別できる。
なお、上記の平均結晶粒径を求める際には、いずれも、粒径が0.01μm以上の結晶粒を測定することとする。
ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比:2.0以下
ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比を2.0以下とすることは、本発明において極めて重要である。
すなわち、結晶粒のアスペクト比が小さいことは、冷間圧延後の熱処理(冷延板焼鈍)における保持中に、フェライトおよびオーステナイトが回復および再結晶を起こした後に粒成長し、等軸粒に近い結晶粒が生成したことを意味している。このような低アスペクト比の結晶粒は、YR(降伏比)の低下に大きく寄与する。また、このような結晶粒により構成される組織では、マイクロボイドが発生し難く、曲げ試験時および穴広げ試験時に亀裂の伝播方向を分散させることにより、亀裂の進展が抑制される。その結果、曲げ性や伸びフランジ性の向上にも寄与する。
したがって、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比は2.0以下とする。好ましくは1.8以下、さらに好ましくは1.6以下である。
なお、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比の下限値は特に限定されるものではないが、1.1程度とすることが好ましい。
また、ここでいう結晶粒のアスペクト比とは、結晶粒の長軸長さを短軸長さで除した値のことであり、各結晶粒の平均アスペクト比は以下のようにして求めることができる。
すなわち、上述のImage−Proを用いて、面積率の測定と同様にして得られる組織画像から、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々において、30個の結晶粒の長軸長さと短軸長さを算出し、結晶粒ごとにその長軸長さを短軸長さで除し、それらの値を平均して求めることができる。
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値:2.0以上
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上であることは、本発明において極めて重要である。というのは、良好な延性を確保するためには、Mnが濃化した安定な残留オーステナイトを多くする必要があるからである。
なお、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値の上限値は特に限定されるものではないが、伸びフランジ性の観点から、16.0程度とすることが好ましい。
また、残留オーステナイトおよびポリゴナルフェライト中のMn量は、以下のようにして求めることができる。
すなわち、EPMA(Electron Probe Micro Analyzer;電子プローブマイクロアナライザ)を用いて、板厚1/4位置における圧延方向断面の各相へのMnの分布状態を定量化する。ついで、30個の残留オーステナイト粒および30個のポリゴナルフェライト粒のMn量を分析し、分析結果より得られる各残留オーステナイト粒およびポリゴナルフェライト粒のMn量をそれぞれ平均することにより、求めることができる。
なお、本発明の高強度鋼板のミクロ組織には、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイト以外に、グラニュラーフェライト、アシキュラーフェライト、ベイニティックフェライト、焼戻しマルテンサイト、パーライトおよびセメンタイト等の炭化物(パーライト中のセメンタイトを除く)が含まれる場合がある。これらの組織は、合計で面積率:10%以下の範囲であれば、含まれていてもよく、本発明の効果が損なわれることはない。
また、hcp構造を有するε相が面積率で2%以上含まれることが好ましい。hcp構造を有するε相を多量に含む鋼には脆化の危険性があるが、面積率で2%以上のhcp構造を有するε相をフェライト粒界および粒内に微細分散させると良好な強度と延性のバランスを確保しつつ、優れた制振性能を示す。一方、上限については35%程度とすることが好ましい。
なお、hcp構造を有するε相とマルテンサイトおよび残留オーステナイトは、上述のEBSD(Electron BackScatter Diffraction;電子線後方散乱回折法)のPhase Mapにより識別できる。
また、本発明の高強度鋼板では、残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で、次式:
0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
[C量] :残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足することが好適である。
ここで、残留オーステナイトは加工を加えるとTRIP現象によりマルテンサイトに変態するが、この変態により、良好な伸びを確保できる。つまり、TRIP現象には、残留オーステナイトがプレス成形や加工前に存在していることが必須である。なお、残留オーステナイトは、鋼の組織に含まれる成分元素によって決まるMs点(マルテンサイト変態開始点)が低い場合(例えば、15℃以下程度と低い場合)に、残存しやすい組織である。
発明者らは、この残留オーステナイトのTRIP現象による変態挙動をより詳しく調査すべく、鋼板にプレス成形や加工を加えた後の鋼組織について、鋭意調査を行った。
その結果、鋼中に存在する残留オーステナイトには、プレス成形や加工を加えたときに、すぐにマルテンサイト変態してしまうもの(いわゆる不安定な残留オーステナイト)と、加工量が大きくなるまで残留オーステナイトとして存在し、加工量が大きくなってからマルテンサイト変態してTRIP現象を生じるもの(いわゆる安定な残留オーステナイト)があることを見出した。そして、加工量が大きくなってからマルテンサイト変態する安定な残留オーステナイトが多いと、特に効果的に、良好な伸びが得られることを究明した。
すなわち、種々の鋼板から、伸びが良好なものと低位なものを選択し、これらの鋼板に0〜20%の種々の加工度で引張加工を施し、引張加工後の鋼板に残存する残留オーステナイトの体積率を測定した。そして、鋼板の加工度と引張加工後の鋼板の残留オーステナイトの体積率との関係を調査したところ、両者の間には、図1に示すような傾向が認められた。
図1に示したように、伸びが良好な鋼板では、加工度を上げたときの残留オーステナイトの減少の仕方が緩やかであることが分かる。なお、ここでいう加工度とは、引張方向が鋼板の圧延方向と直角方向となるように採取したJIS 5号試験片を用いて引張試験を行ったときの伸び値である。
そこで、発明者らは、TSが980MPa級の種々の鋼板を準備し、これらの鋼板に、伸び値で10%の引張加工を付与し、引張加工後の鋼板において、残留オーステナイトの体積率を測定した。なお、残留オーステナイトの体積率の測定方法は、上述した方法により行った。
そして、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値(すなわち、[伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率]/[引張加工前の残留オーステナイトの体積率])が、鋼板の伸びに与える影響について調査した。その結果を図2に示す。
なお、上記した伸び値で10%となる引張加工を付与する際の条件を具体的に説明すると、次のとおりである。
すなわち、引張方向が鋼板の圧延方向と直角方向となるように採取したJIS 5号試験片を用いて引張試験を行い、当該試験片の伸び値が10%のときに試験を中断することによって、伸び値で10%となる引張加工を付与するものである。
また、図2の鋼板の伸びとは、引張加工前の鋼板に対し、後述する実施例と同様の引張試験を行って求めた全伸びである。
図2に示したように、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値が0.3以上である場合には、高い伸びが得られる一方、この範囲から外れるものは伸びが低位である。
このため、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、引張加工前の残留オーステナイトの体積率で除した値を、0.3以上にすることが好ましい。
また、上記の条件を満足する鋼板の引張加工前の鋼組織をさらに詳細に調べたところ、残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で、次式:
0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
[C量] :残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足する場合に、加工を加えたときに高い加工硬化能を示すTRIP現象を生じて一層の良好な伸びを示すことがわかった。
すなわち、上記の残留オーステナイト中のC量を、残留オーステナイト中のMn量との関係で適正に制御することにより、延性向上の主要因である加工誘起変態(TRIP)現象を鋼板の加工終盤まで断続的に発現させる、いわゆる安定な残留オーステナイトが多く得られ、これによって、高い強度とともに、一層の良好な伸びを達成できるのである。
また、残留オーステナイト中のC量(質量%)は、上述した残留オーステナイト中のMn量と同様にして、以下の手順で求めることができる。
すなわち、上述したEPMAを用いて、板厚1/4位置における圧延方向断面の各相へのCの分布状態を定量化する。ついで、30個の残留オーステナイト粒のC量を分析し、分析結果より得られる各残留オーステナイト粒のC量をそれぞれ平均することにより、求めることができる。
次に、本発明の高強度鋼板の製造方法について説明する。
本発明の高強度鋼板の製造方法は、上記の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、とをそなえるものである。
以下、これらの製造条件の限定理由について、説明する。
鋼スラブの加熱温度:1100℃以上1300℃以下
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
ここに、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な溶解が困難であり、さらに、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。そのため、鋼スラブの加熱温度は1100℃以上にする必要がある。
また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂や凹凸を減少し、平滑な鋼板表面を達成する観点からも、鋼スラブの加熱温度は1100℃以上にする必要がある。
一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。
したがって、鋼スラブの加熱温度は1100℃以上1300℃以下の範囲とする。好ましくは、1150℃以上1250℃以下の範囲である。
なお、鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法を用いることができる。さらに、鋼スラブを製造した後、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。さらに、鋼スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低目にした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。
熱間圧延の仕上げ圧延出側温度: 750℃以上1000℃以下
加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の鋼板の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性や伸びフランジ性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品の表面荒れを生じる場合がある。
一方、仕上げ圧延出側温度が750℃未満では、圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶の状態での圧下率が高くなる。その結果、異常な集合組織が発達し、最終製品における面内異方性が顕著となり、材質の均一性が損なわれるだけでなく、延性そのものも低下する。
したがって、熱間圧延の仕上げ圧延出側温度を750℃以上1000℃以下の範囲にする必要がある。好ましくは800℃以上950℃以下の範囲である。
熱間圧延後の平均巻き取り温度:300℃以上750℃以下
熱間圧延後の平均巻き取り温度が750℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなり、所望の強度確保が困難となる。一方、熱間圧延後の平均巻き取り温度が300℃未満では、熱延板強度が上昇して、冷間圧延における圧延負荷が増大したり、板形状の不良が発生したりするため、生産性が低下する。したがって、熱間圧延後の平均巻き取り温度を300℃以上750℃以下の範囲にする必要がある。好ましくは400℃以上650℃以下の範囲である。
なお、熱間圧延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物(スケール)の除去が可能であることから、最終製品の高強度鋼板の良好な化成処理性やめっき品質の確保のために重要である。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。
熱延板焼鈍(熱処理)条件:Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持
熱延板焼鈍において、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持することは、本発明において極めて重要である。
すなわち、熱延板焼鈍の焼鈍温度(保持温度)がAc1変態点+20℃未満またはAc1変態点+120℃超となる場合や、保持時間が600s未満となる場合、オーステナイト中へのMnの濃化が進行せず、また最終焼鈍(冷延板焼鈍)後に十分な量の残留オーステナイトを確保することが困難となり、延性が低下する。一方、保持時間が21600sを超えると、オーステナイト中へのMnの濃化が飽和し、最終焼鈍後に得られる鋼板における延性への効き代が小さくなるだけでなく、コストアップの要因にもなる。
また、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持することは、鋼組織における残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で次式を満足するためにも重要である。
0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
[C量] :残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
したがって、熱延板焼鈍では、Ac1変態点+20℃以上Ac1変態点+120℃以下(好ましくは、Ac1変態点+30℃以上Ac1変態点+100℃以下)の温度域で、600s以上21600s以下(好ましくは、1000s以上18000s以下)の時間、保持するものとする。
なお、熱処理方法は連続焼鈍やバッチ焼鈍のいずれの焼鈍方法でも構わない。また、前記の熱処理後、室温まで冷却するが、その冷却方法および冷却速度は特に規定せず、バッチ焼鈍における炉冷、空冷および連続焼鈍におけるガスジェット冷却、ミスト冷却および水冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。
冷間圧延の圧下率:30%以上
冷間圧延では、圧下率を30%以上とする。30%以上の圧下率で冷間圧延を施すことにより、熱処理時にオーステナイトが微細に生成する。その結果、最終的に微細な残留オーステナイトおよびマルテンサイトが得られ、強度−延性バランスが向上するだけでなく、曲げ性と伸びフランジ性(穴広げ性)も向上する。
なお、冷間圧延の圧下率の上限値は特に限定されるものではないが、冷間圧延の荷重負荷の点から、85%程度とすることが好ましい。
冷延板焼鈍(熱処理)条件:Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持
冷延板焼鈍において、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持することは、本発明において、極めて重要である。
すなわち、冷延板焼鈍の焼鈍温度(保持温度)が、Ac1変態点未満またはAc1変態点+100℃超となる場合、オーステナイト中へのMnの濃化が進行せず、また十分な量の残留オーステナイトを確保することが困難となり、延性が低下する。
加えて、保持時間が900s以下となる場合、未再結晶フェライトが残存し、フェライトと硬質第2相(マルテンサイトおよび残留オーステナイト)の異相界面量が低下し、また、各構成相における結晶粒のアスペクト比も増大する。その結果、YP(降伏強度)が上昇し、YR(降伏比)が高くなる。一方、保持時間が21600sを超えると、リードタイムコストが高くなり、生産性が低下する。
したがって、冷延板焼鈍では、Ac1変態点以上Ac1変態点+100℃以下(好ましくは、Ac1変態点+20℃以上Ac1変態点+80℃以下)の温度域で、900s超21600s以下(好ましくは、1200s以上18000s以下)の時間、保持するものとする。
なお、鋼組織における残留オーステナイト中のC量が、残留オーステナイト中のMn量との関係で次式:
0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
[C量] :残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足するためには、上記の冷延板焼鈍条件も重要であり、特に、Ac1変態点+20℃以上Ac1変態点+80℃以下の温度域で保持することが好適である。
また、上記のようにして得た冷延板に、溶融亜鉛めっき処理や溶融アルミニウムめっき処理、電気亜鉛めっき処理といっためっき処理を施すことで、表面に溶融亜鉛めっき層や溶融アルミニウムめっき層、電気亜鉛めっき層をそなえる高強度鋼板を得ることができる。なお、「溶融亜鉛めっき」には、合金化溶融亜鉛めっきも含むものとする。
例えば、溶融亜鉛めっき処理を施すときは、前記冷延板焼鈍を施して得た冷延板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整する。なお、溶融亜鉛めっきはAl量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、450℃以上600℃以下の温度域で溶融亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、延性が低下する場合がある。一方、合金化処理温度が450℃に満たないと、合金化が進行せず、合金層の生成が困難となる。したがって、亜鉛めっきの合金化処理を行うときは、450℃以上600℃以下の温度域で溶融亜鉛めっきの合金化処理を施すことが好ましい。
なお、その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。
また、溶融アルミニウムめっき処理を施すときは、前記冷延板焼鈍を施して得た冷延板を660〜730℃のアルミニウムめっき浴中に浸漬し、溶融アルミニウムめっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整する。また、アルミニウムめっき浴温度がAc1変態点以上Ac1変態点+100℃以下の温度域に適合する鋼は、溶融アルミニウムめっき処理により、さらに微細で安定な残留オーステナイトが生成されるため、更なる延性の向上が可能となる。
さらに、電気亜鉛めっき処理を施すときは、とくに限定しないが、皮膜厚が5μmから15μmの範囲にすることが好ましい。
なお、上記のようにして製造した高強度鋼板に、形状矯正や表面粗度の調整等を目的にスキンパス圧延を行うことができる。スキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが良好範囲の下限となる。また、2.0%を超えると、生産性が著しく低下するので、これを良好範囲の上限とする。
また、スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。さらに、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。さらに、上記のようにして製造した高強度鋼板に、さらに樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にて鋼スラブとした。得られた鋼スラブを、表2に示す条件で熱間圧延し、酸洗後、熱延板焼鈍を施し、ついで冷間圧延し、その後、冷延板焼鈍を施すことにより、冷延板(CR)を得た。また、一部のものについては、さらに溶融亜鉛めっき処理(溶融亜鉛めっき処理後に合金化処理を行うものも含む)、溶融アルミニウムめっき処理または電気亜鉛めっき処理を施して、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、溶融アルミニウムめっき鋼板(Al)、電気亜鉛めっき鋼板(EG)とした。
なお、溶融亜鉛めっき浴は、GIでは、Al:0.19質量%含有亜鉛浴を使用し、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温はいずれも465℃とした。また、めっき付着量は片面あたり45g/m2(両面めっき)とし、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。さらに、溶融アルミニウムめっき鋼板用の溶融アルミニウムめっき浴の浴温は700℃とした。
なお、表1中のAc1変態点(℃)は、以下の式を用いて求めた。
Ac1変態点(℃)=
751−16×(%C)+11×(%Si)−28×(%Mn)−5.5×(%Cu)−16×(%Ni)+13×(%Cr)+3.4×(%Mo)
ここで、(%C)、(%Si)、(%Mn)、(%Cu)、(%Ni)、(%Cr)、(%Mo)は、それぞれの元素の鋼中含有量(質量%)である。
Figure 2016067626
Figure 2016067626
かくして得られた鋼板について、前述した方法により断面ミクロ組織を調査した。また、前述した条件により各鋼板に伸び値で10%の引張加工を施し、引張加工後の鋼板における残留オーステナイトの体積率を前述した方法により求めた。これらの結果を表3−1および表3−2に示す。
Figure 2016067626
Figure 2016067626
また、上記のようにして、得られた鋼板について、引張試験、曲げ試験および穴広げ試験を行い、引張特性、曲げ性および穴広げ性を以下のようにして評価した。
引張試験は、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、YP(降伏応力)、YR(降伏比)、TS(引張強さ)およびEL(全伸び)を測定した。ここで、YRは、YPをTSで除して、百分率で表した値である。
なお、YR<68%、TS≧980MPa以上でかつ、TS×EL≧22000MPa・%であり、さらにTS980MPa級ではEL≧26%、TS1180MPa級ではEL≧22%、TS1470MPa級ではEL≧18%である場合を良好と判断した。
また、TS:980MPa級とは、TSが980MPa以上1180MPa未満の鋼板であり、TS:1180MPa級は、TSが1180MPa以上1470MPa未満の鋼板であり、TS:1470MPa級は、TSが1470MPa以上1760MPa未満の鋼板である。
また、曲げ試験は、JIS Z 2248(1996年)のVブロック法に基づき実施した。曲げ部外側について実体顕微鏡で亀裂の有無を判定し、亀裂が発生していない最小の曲げ半径を限界曲げ半径Rとした。
なお、90°V曲げにおいて、R/t≦2.0(t:鋼板の板厚)を満足する場合を、曲げ性が良好と判定した。
さらに、穴広げ試験は、JIS Z 2256(2010年)に準拠して行った。得られた各鋼板を100mm×100mmに切断後、クリアランス12%±1%で直径10mmの穴を打ち抜いた後、内径75mmのダイスを用いてしわ押さえ力9ton(88.26kN)で抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定した。そして、下記の式から、限界穴広げ率λ(%)を求め、この限界穴広げ率の値から穴広げ性を評価した。
限界穴広げ率λ(%)={(Df−D0)/D0}×100
ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。
なお、TS980MPa級ではλ≧20%、TS1180MPa級ではλ≧15%、TS1470MPa級ではλ≧10%の場合を良好と判断した。
加えて、鋼板の製造に際し、生産性、さらには熱間圧延および冷間圧延時の通板性、最終焼鈍板(冷延板焼鈍後の鋼板)の表面性状について評価を行った。
ここで、生産性については、
(1)熱延板の形状不良が発生し、
(2)次工程に進むために熱延板の形状矯正が必要であるときや、
(3)焼鈍処理の保持時間が長いとき、
などのリードタイムコストを評価した。そして、(1)〜(3)のいずれにも該当しない場合を「良好」、(1)〜(3)のいずれかに該当する場合を「不良」と判断した。
また、熱間圧延の通板性は、圧延荷重の増大によって、圧延時のトラブル発生の危険が増大する場合を不良と判断した。
同様に、冷間圧延の通板性も、圧延荷重の増大によって、圧延時のトラブル発生の危険が増大する場合を不良と判断した。
さらに、最終焼鈍板の表面性状については、スラブ表層の気泡、偏析などの欠陥をスケールオフできず、鋼板表面の亀裂、凹凸が増大し、平滑な鋼板表面が得られない場合を不良と判断した。また、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する場合や酸洗後に熱延スケールの取れ残りなどが一部に存在する場合についても、不良と判断した。
これらの評価結果を表4に示す。
Figure 2016067626
本発明例ではいずれも、引張強さ(TS)が980MPa以上で、かつ降伏比(YR)が68%未満であるとともに、良好な延性および強度と延性のバランス、さらには曲げ性および穴広げ性に優れる高強度鋼板が、製造できることがわかる。また、本発明例ではいずれも、生産性や熱間圧延および冷間圧延の通板性、さらには最終焼鈍板の表面性状にも優れている。
一方、比較例では、引張強さ、降伏比、延性、強度と延性のバランス、曲げ性、穴広げ性のいずれか一つ以上について、所望の特性が得られていない。
本発明によれば、YR(降伏比)が68%未満で、かつ980MPa以上のTS(引張強さ)を有する成形性に優れ、かつ低い降伏比を有する高強度鋼板の製造が可能になる。また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することで、車体軽量化による燃費改善を図ることができ、産業上の利用価値は非常に大きい。

Claims (11)

  1. 成分組成が、質量%でC:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:4.20%超6.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.003%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
    鋼組織が、面積率で、ポリゴナルフェライトが15%以上55%以下、マルテンサイトが15%以上30%以下であって、体積率で、残留オーステナイトが12%以上であり、
    また、前記ポリゴナルフェライトの平均結晶粒径が4μm以下、前記マルテンサイトの平均結晶粒径が2μm以下、前記残留オーステナイトの平均結晶粒径が2μm以下であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以下であり、
    さらに、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である、高強度鋼板。
  2. 前記成分組成が、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する、請求項1に記載の高強度鋼板。
  3. 前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式:
    0.04×[Mn量]+0.058−0.094≦[C量]≦0.04×[Mn量]+0.058+0.094
    [C量] :残留オーステナイト中のC量(質量%)
    [Mn量]:残留オーステナイト中のMn量(質量%)
    を満足する、請求項1または2に記載の高強度鋼板。
  4. 請求項1〜3のいずれかに記載の高強度鋼板であって、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイトの体積率で除した値が0.3以上である、高強度鋼板。
  5. 請求項1〜4のいずれかに記載の高強度鋼板であって、溶融亜鉛めっき層をさらにそなえる、高強度鋼板。
  6. 請求項1〜4のいずれかに記載の高強度鋼板であって、溶融アルミニウムめっき層をさらにそなえる、高強度鋼板。
  7. 請求項1〜4のいずれかに記載の高強度鋼板であって、電気亜鉛めっき層をさらにそなえる、高強度鋼板。
  8. 請求項1〜7のいずれかに記載の高強度鋼板の製造方法であって、
    請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、平均巻き取り温度を300℃以上750℃以下で巻き取り、熱延板とする、熱間圧延工程と、
    前記熱延板に、酸洗を施し、スケールを除去する、酸洗工程と、
    前記熱延板を、Ac1変態点+20℃以上Ac1変態点+120℃以下の温度域で600s以上21600s以下保持する、熱延板焼鈍工程と、
    前記熱延板を、圧下率:30%以上で冷間圧延して冷延板とする、冷間圧延工程と、
    前記冷延板を、Ac1変態点以上Ac1変態点+100℃以下の温度域で900s超21600s以下保持した後、冷却する、冷延板焼鈍工程、
    とをそなえる、高強度鋼板の製造方法。
  9. 前記冷延板焼鈍工程後、前記冷延板に、亜鉛めっき処理を施す、または溶融亜鉛めっき処理を施したのち、450℃以上600℃以下の温度域で合金化処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
  10. 前記冷延板焼鈍工程後、前記冷延板に溶融アルミニウムめっき処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
  11. 前記冷延板焼鈍工程後、前記冷延板に電気亜鉛めっき処理を施す工程をさらにそなえる、請求項8に記載の高強度鋼板の製造方法。
JP2016556371A 2014-10-30 2015-10-29 高強度鋼板およびその製造方法 Active JP6179677B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014221905 2014-10-30
JP2014221905 2014-10-30
PCT/JP2015/005460 WO2016067626A1 (ja) 2014-10-30 2015-10-29 高強度鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2016067626A1 true JPWO2016067626A1 (ja) 2017-04-27
JP6179677B2 JP6179677B2 (ja) 2017-08-16

Family

ID=55856990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016556371A Active JP6179677B2 (ja) 2014-10-30 2015-10-29 高強度鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10711333B2 (ja)
EP (1) EP3214196B1 (ja)
JP (1) JP6179677B2 (ja)
KR (1) KR101949628B1 (ja)
CN (1) CN107075642B (ja)
MX (1) MX2017005569A (ja)
WO (1) WO2016067626A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11814695B2 (en) 2015-11-26 2023-11-14 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet and high-strength galvanized steel sheet
DE102016117508B4 (de) * 2016-09-16 2019-10-10 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
JP6123966B1 (ja) * 2016-09-21 2017-05-10 新日鐵住金株式会社 鋼板
KR101839235B1 (ko) * 2016-10-24 2018-03-16 주식회사 포스코 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
EP3543365B1 (en) * 2016-11-16 2021-01-20 JFE Steel Corporation High-strength steel sheet and method for producing same
KR102242067B1 (ko) * 2016-11-16 2021-04-19 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN107312981A (zh) * 2017-06-13 2017-11-03 南京钢铁股份有限公司 一种低屈强比高强韧厚规格钢板及其制造方法
EP3421629B1 (en) * 2017-06-28 2020-04-22 Tata Steel Nederland Technology B.V. High strength high ductility steel with superior formability
JP6699711B2 (ja) * 2017-11-28 2020-05-27 Jfeスチール株式会社 高強度鋼帯の製造方法
US20190217363A1 (en) * 2018-01-17 2019-07-18 The Nanosteel Company, Inc. Alloys And Methods To Develop Yield Strength Distributions During Formation Of Metal Parts
US11118252B2 (en) * 2018-03-30 2021-09-14 Nippon Steel Corporation Galvannealed steel sheet
US11661642B2 (en) 2018-03-30 2023-05-30 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
CN111936658B (zh) 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度钢板及其制造方法
MX2021003246A (es) * 2018-10-04 2021-05-12 Nippon Steel Corp Lamina de acero galvanorrecocido.
WO2020096271A1 (en) * 2018-11-08 2020-05-14 Renault-Samsung Motors Co., Ltd. Combination structure of metal sheets for automobile by using trip steel and method for manufacturing the same
CN109554615B (zh) * 2018-12-29 2021-07-23 首钢集团有限公司 一种抗拉强度900MPa级热轧TRIP钢及其制备方法
MX2021010031A (es) * 2019-02-25 2021-09-14 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para fabricar la misma.
CN113272461B (zh) * 2019-03-15 2023-04-25 日本制铁株式会社 钢板
JP7311807B2 (ja) * 2019-09-03 2023-07-20 日本製鉄株式会社 鋼板
KR102264344B1 (ko) * 2019-09-30 2021-06-11 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법
WO2021079754A1 (ja) * 2019-10-23 2021-04-29 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR102275916B1 (ko) * 2019-12-09 2021-07-13 현대제철 주식회사 초고강도 및 고성형성을 갖는 합금화 용융아연도금강판 및 이의 제조방법
RU2749411C1 (ru) * 2020-07-08 2021-06-09 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного горячеоцинкованного проката из стали с двухфазной феррито-мартенситной структурой
WO2022018499A1 (en) 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet
CN112404437B (zh) * 2020-10-30 2022-12-16 中泽电气科技有限公司 一种高硬度不锈钢配电柜
CN112251688B (zh) * 2020-10-30 2021-12-21 中泽电气科技有限公司 一种降低不锈钢配电柜加工材料残余应力的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237054A (ja) * 2011-04-25 2012-12-06 Jfe Steel Corp 加工性と材質安定性に優れた高強度鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (ja) 1984-12-29 1986-07-17 Nippon Steel Corp 高強度鋼板の製造方法
JP2588420B2 (ja) 1988-04-11 1997-03-05 日新製鋼株式会社 延性の良好な超高強度鋼材の製造方法
JP3857939B2 (ja) 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
JP4288364B2 (ja) * 2004-12-21 2009-07-01 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れる複合組織冷延鋼板
US20140044988A1 (en) * 2011-03-31 2014-02-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) High-strength steel sheet excellent in workability and manufacturing method thereof
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237054A (ja) * 2011-04-25 2012-12-06 Jfe Steel Corp 加工性と材質安定性に優れた高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3214196A4 (en) 2017-11-15
US20170298482A1 (en) 2017-10-19
CN107075642B (zh) 2018-11-02
KR101949628B1 (ko) 2019-02-18
MX2017005569A (es) 2017-06-23
WO2016067626A1 (ja) 2016-05-06
CN107075642A (zh) 2017-08-18
EP3214196B1 (en) 2019-07-31
US10711333B2 (en) 2020-07-14
JP6179677B2 (ja) 2017-08-16
EP3214196A1 (en) 2017-09-06
KR20170072333A (ko) 2017-06-26

Similar Documents

Publication Publication Date Title
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP6179675B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6179674B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP5943156B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2017183349A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5943157B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5967319B2 (ja) 高強度鋼板およびその製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP5967320B2 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
KR102128838B1 (ko) 강판, 도금 강판 및, 그들의 제조 방법
WO2019188640A1 (ja) 高強度鋼板およびその製造方法
JP2016141859A (ja) 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2016141857A (ja) 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2016141858A (ja) 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
WO2021079753A1 (ja) 高強度鋼板およびその製造方法
WO2021079755A1 (ja) 高強度鋼板およびその製造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP6210183B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250