JP6179675B2 - 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 - Google Patents

高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 Download PDF

Info

Publication number
JP6179675B2
JP6179675B2 JP2016556369A JP2016556369A JP6179675B2 JP 6179675 B2 JP6179675 B2 JP 6179675B2 JP 2016556369 A JP2016556369 A JP 2016556369A JP 2016556369 A JP2016556369 A JP 2016556369A JP 6179675 B2 JP6179675 B2 JP 6179675B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
hot
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016556369A
Other languages
English (en)
Other versions
JPWO2016067624A1 (ja
Inventor
由康 川崎
由康 川崎
松田 広志
広志 松田
横田 毅
毅 横田
孝子 山下
孝子 山下
瀬戸 一洋
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016067624A1 publication Critical patent/JPWO2016067624A1/ja
Application granted granted Critical
Publication of JP6179675B2 publication Critical patent/JP6179675B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法に関し、特に、自動車、電気等の産業分野で使用される部材として好適な、成形性に優れ、かつ高い降伏比を有する鋼板を得ることを目的とする。
近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。
しかしながら、一般に、鋼板の高強度化は成形性の低下を招くことから、高強度化を図ると鋼板の成形性が低下して、成形時の割れなどの問題を生じる。そのため、単純には鋼板の薄肉化が図れない。そこで、高強度と高成形性を併せ持つ材料の開発が望まれている。さらに、引張強度(TS)が980MPa以上の鋼板には、特に、この高成形性に加え、衝突吸収エネルギーが大きいという特性が求められている。衝突吸収エネルギー特性を向上させるためには、降伏比(YR)を高めることが有効である。降伏比が高いと、低い変形量で、鋼板に効率よく衝突エネルギーを吸収させることができるからである。
例えば、特許文献1には、引張強度が1000MPa以上で全伸び(EL)が30%以上の、残留オーステナイトの加工誘起変態を利用した極めて高い延性を有する高強度鋼板が提案されている。
また、特許文献2には、高Mn鋼を用いて、フェライトとオーステナイトの2相域での熱処理を施すことにより、強度と延性のバランスに優れた高強度鋼板が提案されている。
さらに、特許文献3には、高Mn鋼で熱延後の組織をベイナイトやマルテンサイトを含む組織とし、さらに、焼鈍と焼戻しを施すことによって微細な残留オーステナイトを形成させたのち、焼戻しベイナイトもしくは焼戻しマルテンサイトを含む組織とすることで局部延性を改善している高強度鋼板が提案されている。
特開昭61−157625号公報 特開平1−259120号公報 特開2003−138345号公報
ここで、特許文献1に記載された鋼板は、C、SiおよびMnを基本成分とする鋼板をオーステナイト化した後に、ベイナイト変態温度域に焼入れて等温保持する、いわゆるオーステンパー処理を行うことにより製造される。そして、このオーステンパー処理を施す際に、オーステナイトへのCの濃化によって残留オーステナイトが生成される。
しかしながら、多量の残留オーステナイトを得るためには、0.3%を超える多量のCが必要となるが、0.3%を超えるようなC濃度では、スポット溶接性の低下が顕著であり、自動車用鋼板としては実用化が困難である。
加えて、特許文献1に記載された鋼板は、延性を向上させることを主目的としていて、穴広げ性や曲げ性、降伏比については考慮が払われていない。
また、特許文献2や3では、成形性の観点から、鋼板の延性の向上については述べられているものの、その曲げ性や降伏比については考慮が払われていない。
本発明は、上記の問題点に着目してなされたものであって、その目的は、980MPa以上のTSを有すると共に、YRが68%以上の成形性に優れる高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法を提供することにある。
発明者らは、上記した課題を達成し、成形性に優れ、かつ高い降伏比と引張強度を有する高強度鋼板を製造するため、鋼板の成分組成および製造方法の観点から鋭意研究を重ねた。その結果、鋼の成分組成および組織を適正に調整することで、延性などの成形性に優れた高降伏比型の高強度鋼板の製造が可能となることが分かった。
すなわち、鋼成分を、Mn:4.20質量%超6.00質量%以下の範囲とし、Tiなどのその他の合金元素の添加量を適正に調整したのち、熱間圧延を施して熱延板とする。ついで、この熱延板を、酸洗によりスケールを除去したのち、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、さらに圧下率30%以上で冷間圧延を行い冷延板とする。さらに、この冷延板を、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20〜900s保持後、冷却する。
かかる工程を経ることにより、上記冷延板は、面積率で、ポリゴナルフェライトを15%以上55%以下、未再結晶フェライトを8%以上、マルテンサイトを15%以上30%以下有し、また、上記ポリゴナルフェライトの平均結晶粒径が4μm以下、上記マルテンサイトの平均結晶粒径が2μm以下、上記残留オーステナイトの平均結晶粒径が2μm以下の組織となる。さらに、上記冷延板は、上記残留オーステナイト中のMn量(質量%)を上記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上に制御され、Mnで安定化させた残留オーステナイトの体積率を12%以上確保することができる。
本発明は、上記知見に基づいてなされたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%で、C:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:4.20%超6.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.005%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
鋼組織は、面積率で、ポリゴナルフェライトが15%以上55%以下、未再結晶フェライトが8%以上およびマルテンサイトが15%以上30%以下であり、体積率で、残留オーステナイトが12%以上であり、
さらに、前記ポリゴナルフェライトの平均結晶粒径が4μm以下、前記マルテンサイトの平均結晶粒径が2μm以下、前記残留オーステナイトの平均結晶粒径が2μm以下であって、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である高強度鋼板。
2.前記1に記載の高強度鋼板に、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する高強度鋼板。
3.前記1または2に記載の高強度鋼板において、鋼組織に、さらに、hcp構造を有するε相が面積率で2%以上含まれる高強度鋼板。
4.前記1〜3のいずれかに記載の高強度鋼板において、前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式
0.04×[Mn量]+0.056−0.180≦[C量]≦0.04×[Mn量]+0.056+0.180
[C量]:残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足する高強度鋼板。
5.前記1〜4のいずれかに記載の高強度鋼板において、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイト体積率で除した値が0.3以上である高強度鋼板。
6.前記1〜5のいずれかに記載の高強度鋼板が、さらに溶融亜鉛めっき層をそなえる高強度溶融亜鉛めっき鋼板。
7.前記1〜5のいずれかに記載の高強度鋼板が、さらに溶融アルミニウムめっき層をそなえる高強度溶融アルミニウムめっき鋼板。
8.前記1〜5のいずれかに記載の高強度鋼板が、さらに電気亜鉛めっき層をそなえる高強度電気亜鉛めっき鋼板。
9.前記1〜5のいずれかに記載の高強度鋼板の製造方法であって、
前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却する高強度鋼板の製造方法。
10.前記6に記載の高強度溶融亜鉛めっき鋼板の製造方法であって、
前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、亜鉛めっき処理を施す、あるいは亜鉛めっき処理を施したのちさらに、450℃以上600℃以下で合金化処理を施す高強度溶融亜鉛めっき鋼板の製造方法。
11.前記7に記載の高強度溶融アルミニウムめっき鋼板の製造方法であって、
前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、溶融アルミニウムめっき処理を施す高強度溶融アルミニウムめっき鋼板の製造方法。
12.前記8に記載の高強度電気亜鉛めっき鋼板の製造方法であって、
前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、電気亜鉛めっき処理を施す高強度電気亜鉛めっき鋼板の製造方法。
本発明によれば、980MPa以上のTSで、YRが68%以上の成形性に優れた高降伏比型高強度鋼板が得られる。本発明の高強度鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。
引張加工の加工度と残留オーステナイト量の関係を示す図である。 伸び値で10%の引張加工を付与したときの残留オーステナイトの残存する体積率を加工前の残留オーステナイト体積率で除した値と、鋼板の伸びとの関係を示す図である。
以下、本発明を具体的に説明する。
まず、本発明において、鋼の成分組成を本発明の範囲に限定した理由について説明する。なお、以下の鋼やスラブの成分組成にかかる%表示は質量%を意味する。また、鋼やスラブの成分組成の残部は、Feおよび不可避的不純物である。
C:0.030%以上0.250%以下
Cは、マルテンサイトなどの低温変態相を生成させて、強度を上昇させるために必要な元素である。また、残留オーステナイトの安定性を向上させ、鋼の延性を向上させるのに有効な元素でもある。ここに、C量が0.030%未満では所望のマルテンサイトの面積率を確保することが難しく、所望の強度が得られない。また、十分な残留オーステナイトの体積率を確保することが難しく、良好な延性が得られない。一方、Cを、0.250%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、Cの過剰な添加は、溶接部および熱影響部の硬化を著しくし、溶接部の機械的特性を低下させるため、スポット溶接性、アーク溶接性などが劣化する。これらの観点からC量は0.030%以上0.250%以下の範囲とする。好ましくは、0.080%以上0.200%以下の範囲である。
Si:0.01%以上3.00%以下
Siは、フェライトの加工硬化能を向上させるため、良好な延性の確保に有効な元素である。Si量が0.01%に満たないとその添加効果が乏しくなるため、下限を0.01%とする。一方、3.00%を超えるSiの過剰な添加は、鋼の脆化を引き起こすばかりか、赤スケールなどの発生による表面性状の劣化を引き起こす。このため、Si量は0.01%以上3.00%以下の範囲とする。好ましくは、0.20%以上2.00%以下の範囲である。
Mn:4.20%超6.00%以下
Mnは、本発明において極めて重要な元素である。Mnは、残留オーステナイトを安定化させる元素であって、良好な延性の確保に有効である。さらに、Mnは、固溶強化によって鋼の強度を上昇させることができる元素でもある。また、残留オーステナイト中のMn濃化により、hcp構造を有するε相を2%以上確保することができ、さらには、残留オーステナイトを体積率で12%以上と、多量に確保することが可能となる。このような効果は、鋼中のMn量が4.20%超となって初めて認められる。一方、Mn量が6.00%を超える過剰な添加は、コストアップの要因になる。こうした観点から、Mn量は4.20%超6.00%以下の範囲とする。好ましくは、4.80%以上6.00%以下の範囲である。
P:0.001%以上0.100%以下
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進し、鋼板の複合組織化にも有効な元素でもある。こうした効果を得るためには、鋼板中のP量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には合金化速度を低下させ、亜鉛めっきの品質を損なう。したがって、P量は0.001%以上0.100%以下、好ましくは0.005%以上0.050%以下の範囲とする。
S:0.0001%以上0.0200%以下
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して、鋼板の局部変形能を低下させる。そのため、S量は0.0200%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下とする。しかし、生産技術上の制約から、S量は0.0001%以上にする。したがって、S量は、0.0001%以上0.0200%以下の範囲とする。好ましくは0.0001%以上0.0100%以下、より好ましくは0.0001%以上0.0050%以下の範囲である。
N:0.0005%以上0.0100%以下
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となる。従って、N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする。このため、N量は0.0005%以上0.0100%以下、好ましくは0.0010%以上0.0070%以下の範囲とする。
Ti:0.005%以上0.200%以下
Tiは、本発明において極めて重要な添加元素である。Tiは、鋼の析出強化に有効であり、また所望の未再結晶フェライトの面積率を確保することができ、鋼板の高降伏比化に寄与する。加えて、比較的硬質な未再結晶フェライトを活用することにより、硬質第2相(マルテンサイトもしくは残留オーステナイト)との硬度差を低減することができ、伸びフランジ性の向上にも寄与する。そして、これらの効果は、Ti量が0.005%以上の添加で得られる。一方、鋼板中のTi量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなって、鋼板の曲げ性や伸びフランジ性が低下する。
従って、Tiの添加は、その量を0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.100%以下の範囲である。
Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有
Alは、フェライトとオーステナイトの二相域を拡大させ、焼鈍温度依存性の低減、すなわち、材質安定性に有効な元素である。また、Alは、脱酸剤として作用し、鋼の清浄度維持に有効な元素でもある。しかしながら、Al量が0.01%に満たないとその添加効果に乏しいので、下限を0.01%とする。一方、2.00%を超える多量の添加は、連続鋳造時の鋼片割れ発生の危険性が高まり、製造性を低下させる。こうした観点から、添加する場合のAl量は、0.01%以上2.00%以下の範囲とする。好ましくは、0.20%以上1.20%以下の範囲である。
Nbは、鋼の析出強化に有効で、その添加効果は0.005%以上で得られる。また、Ti添加の効果と同様に、所望の未再結晶フェライトの面積率を確保することができ、鋼板の高降伏比化に寄与する。加えて、比較的硬質な未再結晶フェライトを活用することによって、硬質第2相(マルテンサイトもしくは残留オーステナイト)との硬度差を低減することができ、伸びフランジ性の向上にも寄与する。一方、Nb量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験時および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、Nbを添加する場合には、0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.100%以下の範囲である。
Bは、オーステナイト粒界からのフェライトの生成および成長を抑制する作用を有し、臨機応変な組織制御が可能なため、必要に応じて添加することができる。その添加効果は、0.0003%以上で得られる。一方で、B量が0.0050%を超えると、鋼板の成形性が低下する。従って、Bを添加する場合は0.0003%以上0.0050%以下の範囲とする。好ましくは0.0005%以上0.0030%以下の範囲である。
Niは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼の強度を上昇させる元素である。その添加効果は、0.005%以上で得られる。一方、1.000%を超えて添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、Niを添加する場合には、0.005%以上1.000%以下の範囲とする。
Cr、VおよびMoは、強度と延性のバランスを向上させる作用を有するので必要に応じて添加することができる元素である。その添加効果は、Cr:0.005%以上、V:0.005%以上およびMo:0.005%以上で得られる。一方、それぞれ、Cr:1.000%、V:0.500%およびMo:1.000%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、これらの元素を添加する場合には、それぞれCr:0.005%以上1.000%以下、V:0.005%以上0.500%以下およびMo:0.005%以上1.000%以下の範囲とする。
Cuは、鋼の強化に有効な元素であり、本発明で規定した範囲内であれば鋼の強化に使用して差し支えない。その添加効果は、0.005%以上で得られる。一方、1.000%を超えて添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。従って、Cuを添加する場合には、0.005%以上1.000%以下の範囲とする。
Sn、Sbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の厚み領域の脱炭を抑制する観点から、必要に応じて添加する。このように、窒化や酸化を抑制することで、鋼板表面におけるマルテンサイトの面積率が減少するのを防止し、TSや材質安定性を確保するのに有効である。一方で、0.200%を超えて過剰に添加すると靭性の低下を招く。従って、Sn、Sbを添加する場合には、それぞれ、0.002%以上0.200%以下の範囲とする。
Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して鋼の高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成することで析出物の粗大化を効果的に抑制し、析出強化による鋼板の強度向上への寄与を安定化させる効果があると考えられる。このため、本発明では、Taを含有することが好ましい。ここで、Taの添加効果は、Taの含有量を0.001%以上とすることで得られる。一方で、Taを過剰に添加しても、その添加効果は飽和する上、合金コストも増加する。従って、Taを添加する場合には、0.001%以上0.010%以下の範囲とする。
Ca、MgおよびREMは、硫化物の形状を球状化し、穴広げ性(伸びフランジ性)への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには、それぞれ0.0005%以上の添加が必要である。一方、それぞれ0.0050%を超える過剰な添加は、介在物等の増加を引き起こし、鋼板の表面および内部欠陥などを引き起こす。従って、Ca、MgおよびREMを添加する場合は、それぞれ0.0005%以上0.0050%以下の範囲とする。
次に、ミクロ組織について説明する。
ポリゴナルフェライトの面積率:15%以上55%以下
十分な延性を確保するために、本発明では、ポリゴナルフェライトの面積率を15%以上にする必要がある。一方、980MPa以上の強度を確保するためには、軟質なポリゴナルフェライトの面積率を55%以下に抑制する必要がある。好ましくは、面積率で20%以上50%以下の範囲である。なお、本発明におけるポリゴナルフェライトとは、比較的軟質で延性に富むフェライトのことである。
未再結晶フェライトの面積率:8%以上
未再結晶フェライトの面積率が8%以上であることは、本発明において極めて重要である。ここで、未再結晶フェライトは、鋼板の強度上昇に有効であるものの、鋼板の著しい延性の低下を招くため、一般的に低減させることが多い。
しかし、本発明では、ポリゴナルフェライトと残留オーステナイトによって、良好な延性を確保し、さらに比較的硬質な未再結晶フェライトを積極的に活用することで、例えば、面積率で30%を超えるような多量のマルテンサイトを要することなく、所期した鋼板のTSの確保が可能となるのである。
さらに、本発明では、ポリゴナルフェライトとマルテンサイトの異相界面量を低減しているので、鋼板の降伏強度(YP)やYRを高めることが可能となる。
以上の効果を得るためには、未再結晶フェライトの面積率を8%以上にする必要がある。好ましくは、10%以上である。なお、本発明における未再結晶フェライトとは、粒内に結晶方位差15°未満のひずみを含むフェライトであって、上記した延性に富むポリゴナルフェライトより硬質なフェライトのことである。
なお、本発明において、未再結晶フェライトの面積率の上限は、特に制限されないが、鋼板の面内の材質異方性が大きくなる可能性があるため、45%程度とするのが好ましい。
マルテンサイトの面積率:15%以上30%以下
980MPa以上のTSを達成するためには、マルテンサイトの面積率を15%以上にする必要がある。一方、良好な延性の確保のためには、マルテンサイトの面積率を30%以下に制限する必要がある。
ここで、本発明において、フェライト(ポリゴナルフェライトと未再結晶フェライト)とマルテンサイトの面積率は、以下のようにして求めることができる。
すなわち、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野程度観察し、組織画像を得る。この得られた組織画像を用いて、Media Cybernetics社のImage−Proを用いて各組織(フェライト、マルテンサイト)の面積率を、10視野分算出し、それらの面積率を平均して求めることができる。また、上記の組織画像において、ポリゴナルフェライトと未再結晶フェライトは灰色の組織(下地組織)、マルテンサイトは白色の組織を呈していることで識別される。
また、本発明において、ポリゴナルフェライトと未再結晶フェライトの面積率は、以下のようにして求めることができる。
すなわち、EBSD(Electron BackScatter Diffraction;電子線後方散乱回折法)を用いて、結晶方位差が2°から15°未満の低角粒界、結晶方位差が15°以上の大角粒界を識別する。そして、低角粒界を粒内に含むフェライトを未再結晶フェライトとして、IQ Mapを作成する。次に、作成したIQ Mapから10視野分を抽出した後、低角粒界と大角粒界の面積をそれぞれ求めることで、ポリゴナルフェライトと未再結晶フェライトの面積をそれぞれ算出し、10視野分のポリゴナルフェライトと未再結晶フェライトの面積率を求める。そして、それらの面積率を平均して、上記ポリゴナルフェライトと未再結晶フェライトの面積率を求める。
残留オーステナイトの体積率:12%以上
本発明では、十分な延性を確保するために、残留オーステナイトの体積率を12%以上にする必要がある。好ましくは14%以上である。
なお、本発明において、残留オーステナイトの体積率の上限は、特に制限されないが、延性向上への効果が小さいCやMnなどの、成分濃化が希薄で不安定な残留オーステナイトが増加するため、50%程度とするのが好ましい。
また、残留オーステナイトの体積率は、鋼板を板厚方向の1/4面(鋼板表面から深さ方向で板厚の1/4に相当する面)まで研磨し、この板厚1/4面の回折X線強度を測定することにより求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
ポリゴナルフェライトの平均結晶粒径:4μm以下
ポリゴナルフェライトの結晶粒の微細化は、YPやTSの向上に寄与する。そのため、高いYPおよび高いYRと、所望のTSを確保するためには、ポリゴナルフェライトの平均結晶粒径を4μm以下にする必要がある。好ましくは、3μm以下とする。
なお、本発明において、ポリゴナルフェライトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.2μm程度とするのが好ましい。
マルテンサイトの平均結晶粒径:2μm以下
マルテンサイトの結晶粒の微細化は、曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。そのため、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するために、マルテンサイトの平均結晶粒径を2μm以下に抑制する必要がある。好ましくは、1.5μm以下である。
なお、本発明において、マルテンサイトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.05μm程度とするのが好ましい。
残留オーステナイトの平均結晶粒径:2μm以下
残留オーステナイトの結晶粒の微細化は延性の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。そのため、良好な延性、曲げ性、伸びフランジ性(穴広げ性)を確保するためには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。好ましくは、1.5μm以下である。
なお、本発明において、残留オーステナイトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.05μm程度とするのが好ましい。
また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径は、上述のImage−Proを用いて、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々の面積を求め、円相当直径を算出し、それらの値を平均して求める。なお、マルテンサイトと残留オーステナイトは、EBSDのPhase Mapで識別する。なお、本発明において、上記平均結晶粒径を求める場合には、いずれも0.01μm以上の粒径のものを測定する。0.01μm未満のものは、本発明に影響を与えないためである。
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値:2.0以上
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を2.0以上とすることは、本発明において極めて重要である。というのは、良好な延性を確保するためには、Mnが濃化した安定な残留オーステナイトを多くする必要があるからである。
なお、本発明において、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値の上限は、制限されないが、伸びフランジ性を確保する観点から、16.0程度とするのが好ましい。
また、残留オーステナイト中のMn量(質量%)とポリゴナルフェライト中のMn量(質量%)は、以下のようにして、求めることができる。
すなわち、EPMA(Electron Probe Micro Analyzer;電子プローブマイクロアナライザ)を用いて、板厚1/4位置における圧延方向断面の各相へのMnの分布状態を定量化する。ついで、30個の残留オーステナイト粒と30個のフェライト粒のMn量を分析する。そしてその分析の結果から求められるMn量を平均して求めることができる。
ここで、本発明のミクロ組織には、上述した、ポリゴナルフェライトやマルテンサイト等以外に、グラニュラーフェライト、アシキュラーフェライト、ベイニティックフェライト、焼戻しマルテンサイト、パーライトおよびセメンタイト等の鉄鋼板に通常認められる炭化物(パーライト中のセメンタイトを除く)がある。これらの組織が、面積率で10%以下の範囲であれば、含まれていても本発明の効果が損なわれることはない。
また、本発明では、鋼組織にhcp構造を有するε相が面積率で2%以上含まれることが好ましい。ここで、hcp構造を有するε相を多量に含む鋼には脆化の危険性がある。しかしながら、本発明のように、適量のhcp構造を有するε相をフェライトおよび未再結晶フェライトの粒界および粒内に微細分散させると、良好な強度と延性のバランスを確保しつつ、優れた制振性能を示す。
なお、hcp構造を有するε相とマルテンサイトと残留オーステナイトは、EBSDのPhase Mapを用いて識別することができる。また、本発明において、ε相の面積率の上限は、制限されないが、脆化の懸念があるため、35%程度とするのが好ましい。
また、発明者らは、鋼板にプレス成形や加工を加えた際の鋼板組織を鋭意調査した。
その結果、プレス成形や加工を加えたとき、すぐにマルテンサイト変態してしまうものと、加工量が大きくなるまで残留オーステナイトとして存在し、最後にマルテンサイト変態してTRIP現象を生じるものとがあることを見出した。そして、加工量が大きくなってからマルテンサイト変態する残留オーステナイトが多いと、特に効果的に、良好な伸びが得られることが究明された。
すなわち、伸びが良好なものと低位なものを種々選択し、引張加工の加工度を0〜20%まで変えて残留オーステナイト量を測定したところ、加工度と残留オーステナイト量との間には図1に示すような傾向が認められた。ここに、加工度とは、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて引張試験を行い、そのときの伸び率を意味する。
図1に示したように、伸びが良好な試料は、加工度を上げたときの残留オーステナイトの減少の仕方が緩やかであることが分かる。
そこで、TSが980MPa級で、伸び値で10%の引張加工を付与した試料の残留オーステナイト量を測定し、この値と加工前の残留オーステナイト量との比が、鋼板の全伸びに及ぼす影響について調査した。その結果を図2に示す。
図2に示したとおり、伸び値で10%の引張加工を付与したときの残留オーステナイトの残存する体積率を、加工前の残留オーステナイト体積率で除した値が0.3以上の範囲であると高い伸びが得られ、この範囲から外れるものは伸びが低位であることが分かる。
よって、本発明では、伸び値で10%の引張加工を付与した後の鋼中に残存する残留オーステナイトの体積率を、引張加工前の残留オーステナイト体積率で除した値で0.3以上にすることが好ましい。加工量が大きくなってからマルテンサイト変態する残留オーステナイトが確保できるからである。
なお、上記TRIP現象は、残留オーステナイトがプレス成形や加工前に存在していることが必須であるが、残留オーステナイトは、鋼の組織に含まれる成分元素によって決まるMs点(マルテンサイト変態開始点)が15℃以下程度と低い場合に残存する相である。
また、本発明における伸び値で10%の引張加工を付与する工程を具体的に説明すると、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて引張試験を行い、その伸び率が10%のときに試験を中断することである。
なお、残留オーステナイトの体積率は、既述した方法で求めることができる。
さらに、上記条件を満足した試料を詳細に調べたところ、残留オーステナイト中のC量とMn量の関係が、
0.04×[Mn量]+0.056−0.180≦[C量]≦0.04×[Mn量]+0.056+0.180
[C量]:残留オーステナイト中のC量(質量%)
[Mn量]:残留オーステナイト中のMn量(質量%)
を満足する場合に、加工を加えたときに高い加工硬化能を示すTRIP現象を生じて一層良好な伸びを示すことが分かった。
上記した要件を満足することによって、延性向上の主要因である加工誘起変態(TRIP)現象を、鋼板の加工終盤まで断続的に発現させることができ、いわゆる安定な残留オーステナイトの生成を達成することができる。
また、残留オーステナイト中のC量(質量%)は、以下の手順で求めることができる。
すなわち、前記のEPMAを用いて、板厚1/4位置における圧延方向断面の各相へのCの分布状態を定量化する。ついで、30個の残留オーステナイト粒のC量を分析する。そしてその分析の結果から求められるC量を平均して求める。
なお、残留オーステナイト中のMn量(質量%)は、上記残留オーステナイト中のC量と同じ手順で求めることができる。
次に製造条件について説明する。
鋼スラブの加熱温度:1100℃以上1300℃以下
鋼スラブ(または単にスラブ)の加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しない。このため、鋳造時に析出したTi、Nb系析出物は、再溶解させる必要がある。
ここで、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な固溶が困難であり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。そのため、鋼スラブの加熱温度は1100℃以上にする必要がある。
また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂や凹凸を減少して平滑な鋼板表面を達成する観点からも、鋼スラブの加熱温度は1100℃以上にする必要がある。
一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴ってスケールロスが増大する。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。従って、スラブの加熱温度は1100℃以上1300℃以下にする必要がある。好ましくは、1150℃以上1250℃以下の範囲である。
鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、本発明では、鋼スラブを製造した後、一旦室温まで冷却し、その後、再度加熱する従来法を用いることができる。さらに、本発明では、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用することができる。なお、鋼スラブは、通常の条件で粗圧延によりシートバーとされるが、加熱温度を低目にした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーをさらに加熱することが好ましい。
熱間圧延の仕上げ圧延出側温度:750℃以上1000℃以下
加熱後の鋼スラブは、粗圧延および仕上げ圧延によって熱間圧延され熱延板となる。このとき、仕上げ温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れて、酸洗、冷間圧延を施した後の、鋼板の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、鋼板の延性や伸びフランジ性に悪影響を及ぼす。さらには、結晶粒径が過度に粗大となって、加工時にプレス品の表面荒れを生じる場合がある。一方、仕上げ温度が750℃未満では、圧延荷重が増大し、オーステナイトが未再結晶状態での圧下率が高くなる。その結果、鋼板に異常な集合組織が発達し、最終製品における面内異方性が顕著となって、材質の均一性(材質安定性)が損なわれるだけでなく、鋼板の延性そのものも低下する。
従って、本発明は、熱間圧延の仕上げ圧延出側温度を、750℃以上1000℃以下にする必要がある。好ましくは800℃以上950℃以下の範囲である。
熱間圧延後の平均巻き取り温度:300℃以上750℃以下
熱間圧延後の平均巻き取り温度が750℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなって、最終焼鈍板の所望の強度確保が困難となる。一方、熱間圧延後の平均巻き取り温度が300℃未満では、熱延板強度が上昇して、冷間圧延における圧延負荷が増大したり、板形状の不良が発生したりするため、生産性が低下する。従って、熱間圧延後の平均巻き取り温度は300℃以上750℃以下にする必要がある。好ましくは400℃以上650℃以下の範囲である。
なお、本発明では、熱延時に、粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。さらに、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下とすることが好ましい。
かかる工程を経て製造した熱延板に、酸洗を行う。酸洗は、鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板の良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回で行っても良いし、複数回に分けて行っても良い。
熱延板焼鈍(熱処理):Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持
Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持することは、本発明において、極めて重要である。
熱延板焼鈍の焼鈍温度が、Ac1変態点+20℃未満や、Ac1変態点+120℃超えの場合、また保持時間が600s未満の場合には、いずれもオーステナイト中へのMnの濃化が進行せずに、最終焼鈍後に十分な残留オーステナイトの体積率の確保が困難となって、延性が低下する。一方、21600sを超えて保持すると、オーステナイト中へのMnの濃化が飽和して、最終焼鈍後の延性への効き代が小さくなるだけでなく、コストアップの要因にもなる。
したがって、本発明の熱延板焼鈍(熱処理)は、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で、600s以上21600s以下の時間保持するものとする。
なお、上記熱処理方法は、連続焼鈍やバッチ焼鈍のいずれの焼鈍方法でも構わない。また、上記の熱処理後、室温まで冷却するが、その冷却方法および冷却速度は特に規定せず、バッチ焼鈍における炉冷、空冷および連続焼鈍におけるガスジェット冷却、ミスト冷却および水冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。
冷間圧延の圧下率:30%以上
本発明の冷間圧延では、圧下率を30%以上とする。30%以上の圧下率で冷間圧延を施すことによって、熱処理時にオーステナイトが微細に生成する。その結果、鋼板中に微細な残留オーステナイトおよびマルテンサイトが得られ、強度-延性バランスが向上する。また、鋼板の曲げ性と伸びフランジ性(穴広げ性)も向上する。
なお、本発明において、冷間圧延の圧下率の上限は、特に、制限されないが、冷間圧延の荷重が過度にかかることを防止する観点から、85%程度とするのが好ましい。
冷延板焼鈍(熱処理):Ac1変態点以上、Ac1変態点+100℃以下の温度域で20〜900s保持
Ac1変態点以上、Ac1変態点+100℃以下の温度域で20〜900s保持することは、本発明において極めて重要である。冷延板の焼鈍温度が、Ac1変態点未満や、Ac1変態点+100℃超えの場合、また保持時間が20s未満の場合には、いずれもオーステナイト中へのMnの濃化が進行せず、十分な残留オーステナイトの体積率の確保が困難となって、延性が低下する。一方、900sを超えて保持する場合には、未再結晶フェライトの面積率が低下して、フェライトと硬質第2相(マルテンサイトおよび残留オーステナイト)の異相界面量が増加し、YPが低下すると共に、YRも低下する。
溶融亜鉛めっき処理を施すこと
本発明において溶融亜鉛めっき処理を施すときは、前記した冷延板焼鈍(熱処理)を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して、溶融亜鉛めっき処理を施す。その後、ガスワイピング等によって、鋼板表面のめっき付着量を調整する。なお、溶融亜鉛めっきは、Al量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。
さらに、溶融亜鉛めっきの合金化処理を施すときは、上記溶融亜鉛めっき処理後に、450℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことができる。ここで、600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できずに、延性が低下する。一方、合金化処理温度が450℃に満たないと、合金化が進行せずに、合金層の生成が困難となる。したがって、亜鉛めっきの合金化処理を行うときは、450℃以上600℃以下の温度域で処理を施す。
その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。
また、溶融アルミニウムめっき処理を施すときは、前記焼鈍処理を施した鋼板を660〜730℃のアルミニウムめっき浴中に浸漬し、溶融アルミニウムめっき処理を施す。その後、ガスワイピング等によって、めっき付着量を調整する。また、アルミニウムめっき浴温度が、Ac1変態点以上、Ac1変態点+100℃以下の温度域に適合する組成を有する鋼板は、溶融アルミニウムめっき処理により、さらに微細で安定な残留オーステナイトが生成されるため、更なる延性の向上が可能となるため好ましい。
さらに、本発明では、電気亜鉛めっき処理を施してもよい。その際の電気亜鉛めっき処理は、条件はとくに限定しないが、皮膜厚が5μmから15μmの範囲になるように電気亜鉛めっき処理の条件を調整することが好ましい。
ここで、本発明では、上記の「高強度鋼板」、「高強度溶融亜鉛めっき鋼板」、「高強度溶融アルミニウムめっき鋼板」および「高強度電気亜鉛めっき鋼板」に、形状矯正や表面粗度の調整等を行うことを目的にスキンパス圧延を行うことができる。スキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。
スキンパス圧延の圧下率が0.1%未満では、スキンパス圧延の効果が小さく、制御も困難であることから、0.1%が好適範囲の下限となる。一方、スキンパス圧延の圧下率が2.0%を超えると、鋼板の生産性が著しく低下するので、2.0%を好適範囲の上限とする。
なお、スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
さらに、本発明に従う「高強度鋼板」、「高強度溶融亜鉛めっき鋼板」、「高強度溶融アルミニウムめっき鋼板」および「高強度電気亜鉛めっき鋼板」は、樹脂や油脂を用いたコーティングなどの各種塗装処理を施すこともできる。
表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を、転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを、表2に示す条件で以下の種々の鋼板とした。
すなわち、熱間圧延後、Ac1変態点+20℃以上、Ac1変態点+120℃以下で焼鈍を行い、冷間圧延後、Ac1変態点以上、Ac1変態点+100℃以下で焼鈍を行った。その後、高強度冷延鋼板(CR)を得て、さらに、亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、溶融アルミニウムめっき鋼板(Al)および電気亜鉛めっき鋼板(EG)などを得た。
なお、溶融亜鉛めっき浴として、溶融亜鉛めっき鋼板(GI)では、Al:0.19質量%含有亜鉛浴を、また合金化溶融亜鉛めっき鋼板(GA)では、Al:0.14質量%含有亜鉛浴を使用した。またいずれも、浴温は465℃、めっき付着量は片面あたり45g/m2(両面めっき)とした。さらにGAでは、めっき層中のFe濃度を9質量%以上12質量%以下になるように調整した。溶融アルミニウムめっき鋼板用の溶融アルミニウムめっき浴の浴温は700℃とした。
かくして得られた鋼板の、断面ミクロ組織、引張特性、穴広げ性および曲げ性等についてそれぞれ調査を行い、その結果を表3および4に示した。
Ac1変態点は以下の式を用いて求めた。
Ac1変態点(℃)
=751−16×(%C)+11×(%Si)−28×(%Mn)−5.5×(%Cu)−16×(%Ni)+13×(%Cr)+3.4×(%Mo)
ここで、(%C)、(%Si)、(%Mn)、(%Ni)、(%Cu)、(%Cr)および(%Mo)は、それぞれの元素の鋼中含有量(質量%)である。
引張試験は、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、YP、YR、TSおよびELを測定した。なお、YRは、YPをTSで除して、百分率で表した値である。なお、本発明では、YR≧68%の場合であって、かつTS×EL≧22000MPa・%の場合を良好と判断した。また、TS:980MPa級ではEL≧26%、TS:1180MPa級ではEL≧22%、TS:1470MPa級ではEL≧18%の場合をそれぞれ良好と判断した。なお、本実施例で、TS:980MPa級は、TSが980MPa以上1180MPa未満の鋼板であり、TS:1180MPa級は、TSが1180MPa以上1470MPa未満の鋼板であり、TS:1470MPa級は、TSが1470MPa以上1760MPa未満の鋼板である。
曲げ試験は、JIS Z 2248(1996年)のVブロック法に基づき測定を実施した。曲げ部外側について実体顕微鏡で亀裂の有無を判定し、亀裂が発生していない最小の曲げ半径を限界曲げ半径Rとした。なお、本発明では、90°V曲げでの限界曲げR/t≦2.0(t:鋼板の板厚)を満足する場合を、鋼板の曲げ性が良好と判定した。
穴広げ性は、JIS Z 2256(2010年)に準拠して行った。得られた各鋼板を100mm×100mmに切断後、クリアランス12%±1%で直径10mmの穴を打ち抜いた。ついで、内径75mmのダイスを用いてしわ押さえ力9ton(88.26kN)で抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定した。さらに、下記の式から、限界穴広げ率λ(%)を求めて、この限界穴広げ率の値から穴広げ性を評価した。
限界穴広げ率λ(%)={(Df−D0)/D0}×100
ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。なお、本発明では、TS:980MPa級ではλ≧20%、TS:1180MPa級ではλ≧15%、TS:1470MPa級ではλ≧10%の場合をそれぞれ良好と判断した。
熱間圧延の通板性が、熱間圧延の仕上げ温度が低く、オーステナイトが未再結晶状態での圧下率が高くなる、もしくは、オーステナイトとフェライトの二相域での圧延になる場合などには、圧延荷重の増大による熱間圧延時の板形状の不良などのトラブル発生の危険が増大する場合と擬制して、この場合を不良と判断した。
また、同じく冷間圧延の通板性が、熱間圧延の巻取り温度が低く、熱延板の鋼組織がベイナイトやマルテンサイトなどの低温変態相が主体となる場合などには、圧延荷重の増大による冷間圧延時の板形状の不良などのトラブル発生の危険が増大する場合と擬制して、この場合を不良と判断した。
最終焼鈍板の表面性状は、スラブ表層の気泡、偏析などの欠陥をスケールオフできずに、鋼板表面の亀裂、凹凸が増大し、平滑な鋼板表面が得られない場合を不良と判断した。また、最終焼鈍板の表面性状は、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する場合や酸洗後に熱延スケールの取れ残りなどが一部に存在する場合も不良と判断した。
生産性は、(1)熱延板の形状不良が発生し、(2)次工程に進むために熱延板の形状矯正が必要であるときや、(3)焼鈍処理の保持時間が長いときなどのリードタイムコストを評価した。そして、(1)〜(3)のいずれにも該当しない場合を「良好」、(1)〜(3)のいずれかに該当する場合を「不良」と判断した。
引張加工として、10%付与したときの残留オーステナイトの残存する体積率を、加工(10%付与)前の残留オーステナイト体積率で除した値を求めた。なお、残留オーステナイト体積率は、既述の方法に従い測定した。
測定結果を、表3に併記する。
残留オーステナイト中のC量(質量%)と残留オーステナイト中のMn量(質量%)を既述の方法に従い測定した。
測定結果を、表3に併記する。
Figure 0006179675
Figure 0006179675
Figure 0006179675
Figure 0006179675
以上の結果から、本発明に従うことでいずれも980MPa以上のTSを有すると共に、YRが68%以上の成形性に優れ、かつ高い降伏比を有する高強度鋼板が得られていることが分かる。一方、比較例では、YR、TS、EL、λおよびR/tのうち少なくとも一の特性が劣っている。なお、ε相が面積率で2%以上含まれると、鋼板の一段良好な強度と延性のバランスが認められる。
本発明によれば、いずれも980MPa以上のTSを有すると共に、YRが68%以上あって、かつTS×EL≧22000MPa・%の成形性に優れ、かつ高い降伏比を有する高強度鋼板の製造が可能になる。本発明の高強度鋼板を、例えば、自動車構造部材に適用することで、車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。

Claims (12)

  1. 成分組成が、質量%で、C:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:4.20%超6.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、N:0.0005%以上0.0100%以下およびTi:0.005%以上0.200%以下を含有し、残部がFeおよび不可避的不純物からなり、
    鋼組織は、面積率で、ポリゴナルフェライトが15%以上55%以下、未再結晶フェライトが8%以上およびマルテンサイトが15%以上30%以下であり、体積率で、残留オーステナイトが12%以上であって、残部が面積率で10%以下であり、
    さらに、前記ポリゴナルフェライトの平均結晶粒径が4μm以下、前記マルテンサイトの平均結晶粒径が2μm以下、前記残留オーステナイトの平均結晶粒径が2μm以下であって、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である高強度鋼板。
  2. 請求項1に記載の高強度鋼板に、さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する高強度鋼板。
  3. 請求項1または2に記載の高強度鋼板において、鋼組織に、さらに、hcp構造を有するε相が面積率で2%以上含まれる高強度鋼板。
  4. 請求項1〜3のいずれかに記載の高強度鋼板において、前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式
    0.04×[Mn量]+0.056−0.180≦[C量]≦0.04×[Mn量]+0.056+0.180
    [C量]:残留オーステナイト中のC量(質量%)
    [Mn量]:残留オーステナイト中のMn量(質量%)
    を満足する高強度鋼板。
  5. 請求項1〜4のいずれかに記載の高強度鋼板において、伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイト体積率で除した値が0.3以上である高強度鋼板。
  6. 請求項1〜5のいずれかに記載の高強度鋼板が、さらに溶融亜鉛めっき層をそなえる高強度溶融亜鉛めっき鋼板。
  7. 請求項1〜5のいずれかに記載の高強度鋼板が、さらに溶融アルミニウムめっき層をそなえる高強度溶融アルミニウムめっき鋼板。
  8. 請求項1〜5のいずれかに記載の高強度鋼板が、さらに電気亜鉛めっき層をそなえる高強度電気亜鉛めっき鋼板。
  9. 請求項1〜5のいずれかに記載の高強度鋼板の製造方法であって、
    請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却する高強度鋼板の製造方法。
  10. 請求項6に記載の高強度溶融亜鉛めっき鋼板の製造方法であって、
    請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、亜鉛めっき処理を施す、あるいは亜鉛めっき処理を施したのちさらに、450℃以上600℃以下で合金化処理を施す高強度溶融亜鉛めっき鋼板の製造方法。
  11. 請求項7に記載の高強度溶融アルミニウムめっき鋼板の製造方法であって、
    請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、溶融アルミニウムめっき処理を施す高強度溶融アルミニウムめっき鋼板の製造方法。
  12. 請求項8に記載の高強度電気亜鉛めっき鋼板の製造方法であって、
    請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、圧下率30%以上で冷間圧延し、その後、Ac1変態点以上、Ac1変態点+100℃以下の温度域で20s以上900s以下保持して冷却し、ついで、電気亜鉛めっき処理を施す高強度電気亜鉛めっき鋼板の製造方法。

JP2016556369A 2014-10-30 2015-10-29 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 Active JP6179675B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014221901 2014-10-30
JP2014221901 2014-10-30
PCT/JP2015/005458 WO2016067624A1 (ja) 2014-10-30 2015-10-29 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法

Publications (2)

Publication Number Publication Date
JPWO2016067624A1 JPWO2016067624A1 (ja) 2017-05-25
JP6179675B2 true JP6179675B2 (ja) 2017-08-16

Family

ID=55856988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016556369A Active JP6179675B2 (ja) 2014-10-30 2015-10-29 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法

Country Status (7)

Country Link
US (1) US10550446B2 (ja)
EP (1) EP3214193B1 (ja)
JP (1) JP6179675B2 (ja)
KR (1) KR101915917B1 (ja)
CN (1) CN107075643B (ja)
MX (1) MX2017005568A (ja)
WO (1) WO2016067624A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179676B2 (ja) 2014-10-30 2017-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2016067624A1 (ja) 2014-10-30 2016-05-06 Jfeスチール株式会社 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6245386B2 (ja) * 2015-08-11 2017-12-13 Jfeスチール株式会社 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
KR102100746B1 (ko) * 2015-11-26 2020-04-14 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판의 제조 방법, 고강도 용융 아연 도금 강판용 열연 강판의 제조 방법, 고강도 용융 아연 도금 강판용 냉연 강판의 제조 방법 및, 고강도 용융 아연 도금 강판
MX2018012658A (es) * 2016-04-19 2019-02-28 Jfe Steel Corp Lamina de acero, lamina de acero recubierta, y metodos para la fabricacion de las mismas.
JP6210184B1 (ja) * 2016-04-19 2017-10-11 Jfeスチール株式会社 鋼板、めっき鋼板、およびそれらの製造方法
US20190276907A1 (en) * 2016-04-19 2019-09-12 Jfe Steel Corporation Steel sheet, coated steel sheet, and methods for manufacturing same
EP3543365B1 (en) * 2016-11-16 2021-01-20 JFE Steel Corporation High-strength steel sheet and method for producing same
EP3543364B1 (en) * 2016-11-16 2020-11-11 JFE Steel Corporation High-strength steel sheet and method for producing same
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
WO2018115936A1 (en) 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP6624136B2 (ja) * 2017-03-24 2019-12-25 Jfeスチール株式会社 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材
EP3421629B1 (en) * 2017-06-28 2020-04-22 Tata Steel Nederland Technology B.V. High strength high ductility steel with superior formability
JP6699711B2 (ja) * 2017-11-28 2020-05-27 Jfeスチール株式会社 高強度鋼帯の製造方法
WO2019122964A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
EP3741878B1 (en) * 2018-01-17 2022-07-06 JFE Steel Corporation High strength alloyed electrolytic zinc-plated steel sheet and method for producing same
MX2020010313A (es) * 2018-03-30 2020-10-22 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para su produccion.
JP6705562B2 (ja) 2018-03-30 2020-06-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6705560B2 (ja) 2018-03-30 2020-06-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
TWI688666B (zh) * 2018-04-03 2020-03-21 日商日本製鐵股份有限公司 鋼板及鋼板的製造方法
WO2019194251A1 (ja) * 2018-04-03 2019-10-10 日本製鉄株式会社 鋼板及び鋼板の製造方法
EP3821041A1 (en) * 2018-07-11 2021-05-19 Tata Steel Nederland Technology B.V. Process for producing a high strength cold-rolled and heat-treated steel strip and product produced thereby
CN110726064A (zh) 2018-07-17 2020-01-24 欣诺冷弯型钢产业研究院(曹妃甸)有限公司 一种角部增厚冷热复合成型的方矩形钢管及制备方法
WO2020017606A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
KR102109265B1 (ko) * 2018-09-04 2020-05-11 주식회사 포스코 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
CN113454244B (zh) * 2019-02-25 2023-03-03 杰富意钢铁株式会社 高强度钢板及其制造方法
CN112877592B (zh) * 2019-11-29 2022-06-28 宝山钢铁股份有限公司 具有优异漆膜附着力的热成形部件及其制造方法
WO2022079970A1 (ja) * 2020-10-12 2022-04-21 日本製鉄株式会社 溶融亜鉛めっき鋼板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (ja) 1984-12-29 1986-07-17 Nippon Steel Corp 高強度鋼板の製造方法
JP2588420B2 (ja) 1988-04-11 1997-03-05 日新製鋼株式会社 延性の良好な超高強度鋼材の製造方法
JP3857939B2 (ja) * 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
JP4288364B2 (ja) 2004-12-21 2009-07-01 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れる複合組織冷延鋼板
JP5440375B2 (ja) 2010-05-17 2014-03-12 新日鐵住金株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP5825119B2 (ja) * 2011-04-25 2015-12-02 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
EP2772556B1 (en) * 2011-10-24 2018-12-19 JFE Steel Corporation Method for producing high-strength steel sheet having superior workability
JP5949253B2 (ja) 2012-07-18 2016-07-06 新日鐵住金株式会社 溶融亜鉛めっき鋼板とその製造方法
WO2016067624A1 (ja) 2014-10-30 2016-05-06 Jfeスチール株式会社 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法

Also Published As

Publication number Publication date
KR20170074995A (ko) 2017-06-30
EP3214193A4 (en) 2017-12-06
KR101915917B1 (ko) 2018-11-06
CN107075643A (zh) 2017-08-18
US10550446B2 (en) 2020-02-04
JPWO2016067624A1 (ja) 2017-05-25
EP3214193A1 (en) 2017-09-06
WO2016067624A1 (ja) 2016-05-06
US20170327919A1 (en) 2017-11-16
CN107075643B (zh) 2019-03-26
EP3214193B1 (en) 2019-03-06
WO2016067624A8 (ja) 2017-03-02
MX2017005568A (es) 2017-06-23

Similar Documents

Publication Publication Date Title
JP6179675B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6179674B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5943156B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
JP5943157B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2017183348A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
WO2019188640A1 (ja) 高強度鋼板およびその製造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP6210183B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
CN114585758A (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250