JPWO2015194378A1 - Three-dimensional structure molding composition, method for producing three-dimensional structure using the same, and three-dimensional structure - Google Patents

Three-dimensional structure molding composition, method for producing three-dimensional structure using the same, and three-dimensional structure Download PDF

Info

Publication number
JPWO2015194378A1
JPWO2015194378A1 JP2016529227A JP2016529227A JPWO2015194378A1 JP WO2015194378 A1 JPWO2015194378 A1 JP WO2015194378A1 JP 2016529227 A JP2016529227 A JP 2016529227A JP 2016529227 A JP2016529227 A JP 2016529227A JP WO2015194378 A1 JPWO2015194378 A1 JP WO2015194378A1
Authority
JP
Japan
Prior art keywords
molding
composition
dimensional
elastomers
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016529227A
Other languages
Japanese (ja)
Other versions
JP6477698B2 (en
Inventor
大造 林田
大造 林田
阿部 慈
慈 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2015194378A1 publication Critical patent/JPWO2015194378A1/en
Application granted granted Critical
Publication of JP6477698B2 publication Critical patent/JP6477698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Instructional Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

重合体と、分子量が1,000以下である極性基含有有機化合物を含有し、少なくとも25℃において固体状である、立体造形物成形用組成物である。極性基含有有機化合物は、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、脂肪族アミン化合物、シリルエーテル化合物からなる群より選ばれる少なくとも一種である。重合体は、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマーから選ばれる少なくとも一種である。A composition for molding a three-dimensional structure, which includes a polymer and a polar group-containing organic compound having a molecular weight of 1,000 or less and is solid at least at 25 ° C. The polar group-containing organic compound is selected from the group consisting of an aliphatic carboxylic acid compound, an aliphatic carboxylic acid ester compound, an aliphatic ether compound, an aliphatic ketone compound, an aliphatic alcohol compound, an aliphatic amine compound, and a silyl ether compound. At least one kind. The polymer is at least selected from conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, olefin elastomers, vinyl chloride elastomers, urethane elastomers, ester elastomers and amide elastomers. It is a kind.

Description

本発明は、立体造形物成形用組成物、及びそれを用いた立体造形物の製造方法、並びに立体造形物に関する。   The present invention relates to a composition for molding a three-dimensional model, a method for manufacturing a three-dimensional model using the composition, and a three-dimensional model.

従来、立体(3次元)形状の造形物を得る方法としては、一般的に熱硬化性樹脂または光硬化性樹脂を用いたキャスト成型法、熱可塑性樹脂や光硬化性樹脂を用いた積層造形法、熱可塑性樹脂による射出成型法などが知られている。また、柔軟な立体造形物を成形する際には、熱硬化性であって軟質性のポリウレタンエラストマーやシリコーンエラストマーを用いたキャスト成型法が用いられることが多い。   Conventionally, as a method for obtaining a three-dimensional (three-dimensional) shaped molded article, generally, a cast molding method using a thermosetting resin or a photocurable resin, or a layered molding method using a thermoplastic resin or a photocurable resin. An injection molding method using a thermoplastic resin is known. Moreover, when molding a flexible three-dimensional model, a cast molding method using a thermosetting and soft polyurethane elastomer or silicone elastomer is often used.

また、従来、医学生の教育や実習、医師による練習に使用される生体模型として、シリコーンエラストマー、ポリウレタンエラストマー等の軟質エラストマーを用いて作製されるものが知られている(特許文献1)。さらに、近年では、手術前に個々の患者の患部状況を忠実に再現した生体模型を用いて、医療用シミュレーションを行った上で、手術の正確性や安全性を高めるといった試みがなされている。   Conventionally, as a living body model used for medical student education and practice, or practice by a doctor, one produced using a soft elastomer such as a silicone elastomer or a polyurethane elastomer is known (Patent Document 1). Furthermore, in recent years, attempts have been made to improve the accuracy and safety of surgery after performing a medical simulation using a biological model that faithfully reproduces the affected area of each patient before surgery.

特開2006−113440号公報JP 2006-113440 A

しかしながら、従来の立体造形物成形用組成物では、用いられる樹脂材料の特性により、成形性、柔軟性及び機械的強度に優れた立体造形物を成形するには十分ではなかった。   However, the conventional three-dimensional molded object molding composition is not sufficient for molding a three-dimensional molded article having excellent moldability, flexibility and mechanical strength due to the characteristics of the resin material used.

本発明の目的は、上述のような従来技術の問題点に鑑みてなされたものであって、成形性、柔軟性及び機械的特性に優れた立体造形物成形用組成物、及びそれを用いた立体造形物の製造方法、並びに立体造形物を提供することである。   The object of the present invention has been made in view of the above-mentioned problems of the prior art, and is a composition for molding a three-dimensional structure that is excellent in moldability, flexibility, and mechanical properties, and the same. It is providing the manufacturing method of a three-dimensional molded item, and a three-dimensional molded item.

本発明者らは、このような立体造形物成形用組成物、及びそれを用いた立体造形物の製造方法、並びに立体造形物を開発すべく鋭意検討を重ねた結果、立体造形物成形用組成物として、重合体、及び分子量が1,000以下である極性基含有有機化合物を含有し、少なくとも25℃において固体状であるものを用いた場合に、従来の立体造形物成形用組成物よりも優れた成形性、柔軟性及び機械的特性が得られることを見出し、本発明を完成させた。   As a result of intensive studies to develop such a three-dimensional structure molding method, a three-dimensional structure manufacturing method using the same, and a three-dimensional structure, the present inventors have obtained a three-dimensional structure molding composition. As a product, when a polymer and a polar group-containing organic compound having a molecular weight of 1,000 or less are contained and are solid at least at 25 ° C., than a conventional three-dimensionally shaped article molding composition The inventors have found that excellent moldability, flexibility and mechanical properties can be obtained, and completed the present invention.

具体的には、本発明により、以下の立体造形物成形用組成物、及びそれを用いた立体造形物の製造方法、並びに立体造形物が提供される。
[1]重合体と、分子量が1,000以下である極性基含有有機化合物を含有し、少なくとも25℃において固体状である、立体造形物成形用組成物。
[2]前記極性基含有有機化合物が、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、脂肪族アミン化合物、シリルエーテル化合物からなる群より選ばれる少なくとも一種を含む、前記[1]に記載の立体造形物成形用組成物。
[3]前記極性基含有有機化合物は、示差走査熱量測定法(DSC法)により測定される融点が−50〜30℃の範囲にある化合物を含む、前記[1]または[2]に記載の立体造形物成形用組成物。
[4]前記重合体が、エラストマーを含む、前記[1]〜[3]のいずれかに記載の立体造形物成形用組成物。
[5]前記エラストマーが、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、シリコーン系エラストマー、エステル系エラストマー、アミド系エラストマーから選ばれる少なくとも一種を含む、前記[1]〜[4]のいずれかに記載の立体造形物成形用組成物。
[6]前記エラストマーが、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマーから選ばれる少なくとも一種を含む、前記[1]〜[4]のいずれかに記載の立体造形物成形用組成物。
[7]前記エラストマーが、結晶性ポリオレフィンを含む、前記[1]〜[4]のいずれかに記載の立体造形物成形用組成物。
[8]前記重合体と前記極性基含有有機化合物の含有比率が、前記重合体100質量部に対して、100質量部以上2,000質量部以下である、前記[1]〜[7]のいずれかに記載の立体造形物成形用組成物。
[9]立体造形物が、生体器官模型である、前記[1]〜[8]のいずれかに記載の立体造形物成形用組成物。
[10]前記[1]〜[9]のいずれかに記載の立体造形物成形用組成物から成形されてなる、立体造形物。
[11]前記[1]〜[9]のいずれかに記載の立体造形物成形用組成物を用いて立体造形物を成形する工程を有する、立体造形物の製造方法。
[12]前記[11]に記載の立体造形物の製造方法において、立体造形物を成形する工程が、立体造形物成形用組成物を加熱により流動化させた後、冷却して固化させて立体造形物を成形する工程を有する、立体造形物の製造方法。
Specifically, according to the present invention, the following composition for molding a three-dimensional model, a method for manufacturing a three-dimensional model using the composition, and a three-dimensional model are provided.
[1] A composition for molding a three-dimensional structure, which contains a polymer and a polar group-containing organic compound having a molecular weight of 1,000 or less and is solid at least at 25 ° C.
[2] The polar group-containing organic compound comprises an aliphatic carboxylic acid compound, an aliphatic carboxylic acid ester compound, an aliphatic ether compound, an aliphatic ketone compound, an aliphatic alcohol compound, an aliphatic amine compound, or a silyl ether compound. The composition for molding a three-dimensional structure according to [1], including at least one selected from the group.
[3] The polar group-containing organic compound includes the compound having a melting point measured by a differential scanning calorimetry (DSC method) in the range of −50 to 30 ° C. Three-dimensional molded object molding composition.
[4] The composition for molding a three-dimensional structure according to any one of [1] to [3], wherein the polymer includes an elastomer.
[5] The elastomer is conjugated diene elastomer (excluding hydrogenated conjugated diene elastomer), hydrogenated conjugated diene elastomer, olefin elastomer, vinyl chloride elastomer, urethane elastomer, silicone elastomer, ester elastomer, The three-dimensional molded object molding composition according to any one of [1] to [4], including at least one selected from amide-based elastomers.
[6] Any of [1] to [4], wherein the elastomer includes at least one selected from conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, and olefin elastomers. A composition for molding a three-dimensional structure according to crab.
[7] The three-dimensional structure molding composition according to any one of [1] to [4], wherein the elastomer includes a crystalline polyolefin.
[8] The content ratio of the polymer and the polar group-containing organic compound is 100 parts by mass or more and 2,000 parts by mass or less with respect to 100 parts by mass of the polymer. The composition for three-dimensional molded item shaping | molding in any one.
[9] The composition for molding a three-dimensional structure according to any one of [1] to [8], wherein the three-dimensional structure is a living organ model.
[10] A three-dimensional molded article formed from the three-dimensional molded article molding composition according to any one of [1] to [9].
[11] A method for manufacturing a three-dimensional structure, including a step of forming a three-dimensional structure using the composition for forming a three-dimensional structure according to any one of [1] to [9].
[12] In the method for manufacturing a three-dimensional structure according to [11], the step of forming the three-dimensional structure is a method in which the three-dimensional structure molding composition is fluidized by heating and then cooled and solidified. The manufacturing method of a three-dimensional molded item which has the process of shape | molding a molded item.

本発明によれば、得られる立体造形物の柔軟性が非常に高く、また強度も高くて長期保存での性能低下も少なく、さらには立体造形が簡便な組成物を提供することができる。   According to the present invention, it is possible to provide a composition in which the three-dimensional structure to be obtained has a very high flexibility, a high strength, a little deterioration in performance during long-term storage, and a simple three-dimensional structure.

以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。   Hereinafter, although embodiment of this invention is described, this invention is not limited to the following embodiment. That is, it is understood that modifications and improvements as appropriate to the following embodiments also belong to the scope of the present invention based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should.

1.立体造形物成形用組成物
まず、本発明の立体造形物成形用組成物について説明する。本発明の立体造形物成形用組成物は、(A)重合体(以下、「重合体(A)」ともいう。)と、(B)分子量が1,000以下である極性基含有有機化合物(以下、「極性基含有有機化合物(B)」ともいう。)を含有し、少なくとも25℃において固体状である。
1. First, the composition for molding a three-dimensional object will be described. The composition for molding a three-dimensional structure according to the present invention includes (A) a polymer (hereinafter also referred to as “polymer (A)”) and (B) a polar group-containing organic compound having a molecular weight of 1,000 or less. Hereinafter, it is also referred to as “polar group-containing organic compound (B)”) and is solid at least at 25 ° C.

(A)重合体
本発明に用いられる重合体(A)としては、エラストマーが好ましく用いられ、中でも熱可塑性エラストマーがさらに好ましく用いられる。エラストマーは、ゴム弾性を有し、極性基含有有機化合物(B)を良好に包接するバインダー成分として働く。そのため、立体造形物を成形した際の極性基含有有機化合物(B)の漏出を防ぐことができる。とくに、熱可塑性エラストマーは、立体造形物の製造時において成形加工を繰り返し行うことが可能であるため好ましい。
(A) Polymer As the polymer (A) used in the present invention, an elastomer is preferably used, and among them, a thermoplastic elastomer is more preferably used. The elastomer has rubber elasticity and serves as a binder component that favorably includes the polar group-containing organic compound (B). Therefore, it is possible to prevent leakage of the polar group-containing organic compound (B) when the three-dimensional model is formed. In particular, the thermoplastic elastomer is preferable because the molding process can be repeatedly performed at the time of manufacturing the three-dimensional model.

エラストマーとしては、例えば、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマー等のエラストマーを挙げることができる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、後述する極性基含有有機化合物(B)として、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、または脂肪族アミン化合物を用いる場合には、相溶性、並びに優れた成形性、柔軟性及び機械的強度の観点から、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマーがより好ましい。   Examples of elastomers include conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, olefin elastomers, vinyl chloride elastomers, urethane elastomers, ester elastomers, amide elastomers, and the like. Mention may be made of elastomers. These may be used alone or in combination of two or more. In addition, as the polar group-containing organic compound (B) described later, an aliphatic carboxylic acid compound, an aliphatic carboxylic acid ester compound, an aliphatic ether compound, an aliphatic ketone compound, an aliphatic alcohol compound, or an aliphatic amine compound is used. In some cases, conjugated diene-based elastomers (excluding hydrogenated conjugated diene-based elastomers), hydrogenated conjugated diene-based elastomers, and olefin-based elastomers are more preferable from the viewpoints of compatibility and excellent moldability, flexibility, and mechanical strength. preferable.

[共役ジエン系エラストマー]
共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)としては、例えば、天然ゴムを挙げることができ、また、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)、イソプレンゴム(IR)、ブチルゴム(IIR)などの合成ゴムを挙げることもできる。
[Conjugated diene elastomer]
Examples of conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers) include natural rubber, and also include butadiene rubber (BR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), and isoprene. Synthetic rubbers such as rubber (IR) and butyl rubber (IIR) can also be mentioned.

[水添共役ジエン系エラストマー]
水添共役ジエン系エラストマーとしては、例えば、スチレン−エチレン/ブチレン−スチレンブロック(共)重合体(SEBS)、スチレン−エチレン/プロピレン−スチレンブロック(共)重合体(SEPS)、スチレン−エチレン/ブチレンブロック(共)重合体(SEB)、スチレン−エチレン/プロピレンブロック(共)重合体(SEP)等のアルケニル芳香族化合物及び共役ジエン化合物のブロック(共)重合体の水素添加物などが挙げられる。また、水添共役ジエン系エラストマーとしては、例えば、スチレン−エチレン/ブチレン−オレフィン結晶ブロック(共)重合体(SEBC)等のアルケニル芳香族化合物−オレフィン結晶系ブロック(共)重合体、オレフィン結晶−エチレン/ブチレン−オレフィン結晶ブロック(共)重合体(CEBC)等のオレフィン結晶系ブロック(共)重合体なども挙げられる。また、水添共役ジエン系エラストマーとしては、重合体末端にカルボキシ基、ヒドロキシ基、アミノ基等の極性基を含有する官能基が結合した末端変性水添共役ジエン系エラストマーを用いることもできる。なお、後述する極性基含有有機化合物として、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、または脂肪族アミン化合物を用いる場合には、成形性、相溶性の観点から、オレフィン結晶−エチレン/ブチレン−オレフィン結晶ブロック(共)重合体(CEBC)等のオレフィン結晶系ブロック(共)重合体を用いることが好ましい。
[Hydrogenated conjugated diene elastomer]
Examples of hydrogenated conjugated diene elastomers include styrene-ethylene / butylene-styrene block (co) polymer (SEBS), styrene-ethylene / propylene-styrene block (co) polymer (SEPS), and styrene-ethylene / butylene. Examples thereof include alkenyl aromatic compounds such as block (co) polymer (SEB) and styrene-ethylene / propylene block (co) polymer (SEP), and hydrogenated products of block (co) polymers of conjugated diene compounds. Examples of the hydrogenated conjugated diene elastomer include, for example, alkenyl aromatic compounds such as styrene-ethylene / butylene-olefin crystal block (co) polymer (SEBC), olefin crystal block (co) polymer, and olefin crystals. Examples also include olefin crystal block (co) polymers such as ethylene / butylene-olefin crystal block (co) polymer (CEBC). In addition, as the hydrogenated conjugated diene elastomer, a terminal-modified hydrogenated conjugated diene elastomer in which a functional group containing a polar group such as a carboxy group, a hydroxy group, or an amino group is bonded to the polymer terminal can also be used. In the case of using an aliphatic carboxylic acid compound, an aliphatic carboxylic acid ester compound, an aliphatic ether compound, an aliphatic ketone compound, an aliphatic alcohol compound, or an aliphatic amine compound as the polar group-containing organic compound described later. From the viewpoint of moldability and compatibility, it is preferable to use an olefin crystal block (co) polymer such as olefin crystal-ethylene / butylene-olefin crystal block (co) polymer (CEBC).

[オレフィン系エラストマー]
オレフィン系エラストマーとしては、例えば、エチレン・α−オレフィン共重合体ゴムを挙げることができる。エチレン・α−オレフィン共重合体ゴムとしては、例えば、エチレンとα−オレフィンとの二元共重合体ゴム(例:エチレン・プロピレン共重合体ゴム(EPM))、エチレンとα−オレフィンと非共役ジエンとの三元共重合体ゴム(例:エチレン・プロピレン・ジエン共重合体ゴム(EPDM))が挙げられる。
上記α−オレフィンとしては、例えば、プロピレン、1−オクテンなどの炭素数3〜20、好ましくは炭素数3〜8のα−オレフィンが挙げられる。α−オレフィンは、1種単独で使用してもよく、2種以上を併用してもよい。上記非共役ジエンとしては、例えば、エチリデン−2−ノルボルネンが挙げられる。非共役ジエンは、1種単独で使用してもよく、2種以上を併用してもよい。
[Olefin elastomer]
Examples of the olefin-based elastomer include ethylene / α-olefin copolymer rubber. Examples of the ethylene / α-olefin copolymer rubber include binary copolymer rubber of ethylene and α-olefin (eg, ethylene / propylene copolymer rubber (EPM)), non-conjugated with ethylene and α-olefin. And terpolymer rubber with diene (eg, ethylene / propylene / diene copolymer rubber (EPDM)).
Examples of the α-olefin include α-olefins having 3 to 20 carbon atoms, preferably 3 to 8 carbon atoms such as propylene and 1-octene. The α-olefin may be used alone or in combination of two or more. Examples of the non-conjugated diene include ethylidene-2-norbornene. A nonconjugated diene may be used individually by 1 type, and may use 2 or more types together.

[ウレタン系エラストマー]
ウレタン系エラストマーとしては、例えば、ポリエステルジオールとイソシアナートとの反応により生成した主鎖を有するポリエステルウレタン系エラストマーと、ポリエーテルジオールとイソシアナートとの反応により生成した主鎖を有するポリエーテルウレタン系エラストマーを挙げることができる。
[Urethane elastomer]
Examples of the urethane elastomer include, for example, a polyester urethane elastomer having a main chain generated by a reaction between a polyester diol and an isocyanate, and a polyether urethane elastomer having a main chain generated by a reaction between a polyether diol and an isocyanate. Can be mentioned.

[エステル系エラストマー]
エステル系エラストマーとしては、例えば、ポリエステルセグメントとポリエーテルセグメントを有する共重合体ゴムを挙げることができる。ポリエステルセグメントとポリエーテルセグメントを有する共重合体ゴムとしては、具体的には、ポリブチレンテレフタレート系ポリエステル−ポリテトラメチレングリコール共重合体ゴム等が挙げられる。
[Ester elastomer]
Examples of the ester elastomer include a copolymer rubber having a polyester segment and a polyether segment. Specific examples of the copolymer rubber having a polyester segment and a polyether segment include polybutylene terephthalate-based polyester-polytetramethylene glycol copolymer rubber.

[アミド系エラストマー]
アミド系エラストマーとしては、例えば、ポリアミドセグメントとポリエーテルセグメントを有する共重合体ゴムを挙げることができる。ポリアミドセグメントとしては、ナイロン6、ナイロン66、ナイロン11、ナイロン12等を挙げることができ、ポリエーテルセグメントとしては、ポリエチレングリコール、ポリプロピレングリコール等を挙げることができる。
[Amide elastomer]
Examples of the amide elastomer include a copolymer rubber having a polyamide segment and a polyether segment. Examples of the polyamide segment include nylon 6, nylon 66, nylon 11 and nylon 12, and examples of the polyether segment include polyethylene glycol and polypropylene glycol.

[エラストマーの物性]
重合体(A)として、エラストマーを含む場合、用いられるエラストマーの物性について以下に記す。エラストマーとしては、ポリスチレン換算の重量平均分子量(以下「Mw」ともいう。)が1万以上70万以下であることが好ましく、10万以上50万以下であることが更に好ましく、20万以上50万以下であることが特に好ましい。所要の力学的性質を得るためには、Mwが1万以上であることが好ましく、立体造形物成形用組成物を成形加工するための流動性を確保するためには、Mwが70万以下であることが好ましい。
[Physical properties of elastomer]
When an elastomer is contained as the polymer (A), the physical properties of the elastomer used are described below. The elastomer preferably has a polystyrene equivalent weight average molecular weight (hereinafter also referred to as “Mw”) of 10,000 to 700,000, more preferably 100,000 to 500,000, and more preferably 200,000 to 500,000. It is particularly preferred that In order to obtain the required mechanical properties, it is preferable that Mw is 10,000 or more, and in order to ensure fluidity for molding a three-dimensional shaped object molding composition, Mw is 700,000 or less. Preferably there is.

また、重合体(A)が熱可塑性エラストマーである場合には、エラストマーとしては、示差走査式熱量測定法(DSC法)により測定される融点が70℃以上140℃以下であることが好ましく、80℃以上120℃以下であることがより好ましい。なお、本明細書における重合体(A)の融点とは、JIS K−7121に準拠して測定した際のTimに相当する。   In the case where the polymer (A) is a thermoplastic elastomer, the elastomer preferably has a melting point of 70 ° C. or higher and 140 ° C. or lower as measured by a differential scanning calorimetry (DSC method). It is more preferable that the temperature is not lower than 120 ° C and not higher than 120 ° C. The melting point of the polymer (A) in this specification corresponds to Tim when measured according to JIS K-7121.

また、エラストマーのメルトフローレート(以下「MFR」ともいう。)の値は特に限定されるものではないが、一般に0.01g/10min以上100g/10min以下であることが好ましい。なお、本明細書において、重合体(A)のMFRは、JIS K7210に準拠して、230℃、21.2Nの荷重で測定した値である。   The value of the melt flow rate (hereinafter also referred to as “MFR”) of the elastomer is not particularly limited, but is generally preferably 0.01 g / 10 min or more and 100 g / 10 min or less. In addition, in this specification, MFR of a polymer (A) is the value measured by 230 degreeC and the load of 21.2N based on JISK7210.

また、立体造形物成形用組成物に用いられる重合体(A)は、エラストマーを含有する他にも、得られる立体造形物の機械的強度を向上させる観点から、エラストマー以外の重合体をさらに含有することができる。   Moreover, the polymer (A) used for the composition for three-dimensional molded object shaping | molding contains further polymers other than an elastomer from a viewpoint of improving the mechanical strength of the three-dimensional molded article obtained besides containing an elastomer. can do.

エラストマー以外の重合体としては、例えば、結晶性ポリオレフィン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリエステル等を挙げることができる。これらの中でも、エラストマーとして、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマーから選ばれる少なくとも一種を用いる場合には、相溶性の観点から結晶性ポリオレフィンを用いることが好ましい。重合体(A)が結晶性ポリオレフィンの樹脂を含有することで、立体造形物の機械的強度を容易に向上させることができる。   Examples of polymers other than elastomers include crystalline polyolefin, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polyamide, polyacetal, polycarbonate, polyphenylene ether, and polyester. Among these, when at least one selected from conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, and olefin elastomers is used as the elastomer, crystallinity from the viewpoint of compatibility. It is preferable to use polyolefin. When the polymer (A) contains a crystalline polyolefin resin, the mechanical strength of the three-dimensional structure can be easily improved.

結晶性ポリオレフィンは、高温領域における立体造形物の形状保持性やブリード抑制の観点から、示差走査熱量測定法(DSC)法により測定した場合に、極性基含有有機化合物(B)の融点以上の融点を有することが好ましく、極性基含有有機化合物(B)の融点よりも20℃以上高い融点を有することがより好ましい。また同様の観点から、結晶性ポリオレフィンは、熱可塑性エラストマーの融点よりも高い融点を有することが好ましい。なお、本明細書における結晶性ポリオレフィンの融点とは、JIS K−7121に準拠して測定した際のTimに相当する。   The crystalline polyolefin has a melting point equal to or higher than the melting point of the polar group-containing organic compound (B) when measured by a differential scanning calorimetry (DSC) method from the viewpoint of shape retention of a three-dimensional structure and suppression of bleeding in a high temperature region. It is preferable to have a melting point higher by 20 ° C. or more than the melting point of the polar group-containing organic compound (B). From the same viewpoint, the crystalline polyolefin preferably has a melting point higher than that of the thermoplastic elastomer. In addition, the melting point of the crystalline polyolefin in the present specification corresponds to Tim when measured according to JIS K-7121.

結晶性ポリオレフィンのポリスチレン換算の重量平均分子量(以下「Mw」ともいう。)は、1,000〜10,000,000であることが好ましく、10,000〜5,000,000であることが更に好ましく、10,000〜1,000,000であることが特に好ましい。   The polystyrene equivalent weight average molecular weight (hereinafter also referred to as “Mw”) of the crystalline polyolefin is preferably 1,000 to 10,000,000, and more preferably 10,000 to 5,000,000. It is preferably 10,000 to 1,000,000.

本明細書において「ポリオレフィン」とは、エチレン及びα−オレフィンから選択される少なくとも1種のオレフィンを重合して得られる重合体を意味する。その重合方法については特に制限はなく、例えば、従来公知の重合方法(例:高圧法、低圧法等)を用いてポリオレフィンを製造することができる。   In the present specification, the “polyolefin” means a polymer obtained by polymerizing at least one olefin selected from ethylene and α-olefin. The polymerization method is not particularly limited, and for example, a polyolefin can be produced using a conventionally known polymerization method (eg, high pressure method, low pressure method).

α−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3−エチル−1−ペンテン、1−オクテン、1−デセン、1−ウンデセン等の炭素数3〜12のα−オレフィンが挙げられる。   Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene and 3-ethyl- C3-C12 alpha olefins, such as 1-pentene, 1-octene, 1-decene, 1-undecene, are mentioned.

結晶性ポリオレフィンとしては、例えば、結晶性ポリエチレン、結晶性ポリプロピレン、結晶性ポリブテン、結晶性ポリメチルペンテンが挙げられ、汎用性の観点から、結晶性ポリエチレン、結晶性ポリプロピレンを用いることが好ましく、結晶性ポリエチレンを用いることが特に好ましい。   Examples of the crystalline polyolefin include crystalline polyethylene, crystalline polypropylene, crystalline polybutene, and crystalline polymethylpentene. From the viewpoint of versatility, it is preferable to use crystalline polyethylene and crystalline polypropylene. It is particularly preferable to use polyethylene.

結晶性ポリエチレンとしては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、エチレン・プロピレン共重合体、エチレン・オクテン共重合体が挙げられる。また、これらの結晶性ポリエチレンは、再生可能な(植物)資源から作られるエチレンを原料としたバイオポリエチレンであってもよい。   Examples of crystalline polyethylene include low density polyethylene (LDPE), medium density polyethylene, high density polyethylene (HDPE), linear low density polyethylene (LLDPE), ethylene / propylene copolymer, and ethylene / octene copolymer. It is done. In addition, these crystalline polyethylenes may be biopolyethylenes made from ethylene made from renewable (plant) resources.

結晶性ポリプロピレンとしては、例えば、プロピレン・α−オレフィン共重合体、プロピレン・エチレン共重合体、プロピレン・ブテン共重合体、プロピレン・エチレン・ブテン共重合体が挙げられる。結晶性ポリプロピレンは、単独重合体及び共重合体のどちらであってもよい。   Examples of crystalline polypropylene include propylene / α-olefin copolymers, propylene / ethylene copolymers, propylene / butene copolymers, and propylene / ethylene / butene copolymers. The crystalline polypropylene may be either a homopolymer or a copolymer.

結晶性ポリエチレンの、示差走査熱量測定法(DSC)法により測定される融点は、好ましくは80〜140℃、より好ましくは90〜140℃である。さらに、結晶性ポリエチレンとしては、極性基含有有機化合物(B)の融点以上の融点を有するものを用いることが好ましい。   The melting point of crystalline polyethylene measured by the differential scanning calorimetry (DSC) method is preferably 80 to 140 ° C, more preferably 90 to 140 ° C. Furthermore, as crystalline polyethylene, it is preferable to use what has melting | fusing point more than melting | fusing point of a polar group containing organic compound (B).

また、結晶性ポリプロピレンの、示差走査熱量測定法(DSC)法により測定される融点は、好ましくは100〜170℃、より好ましくは120〜170℃である。さらに、結晶性ポリプロピレンとしては、極性基含有有機化合物(B)の融点以上の融点を有するものを用いることが好ましい。   The melting point of crystalline polypropylene measured by a differential scanning calorimetry (DSC) method is preferably 100 to 170 ° C, more preferably 120 to 170 ° C. Furthermore, it is preferable to use what has melting | fusing point more than melting | fusing point of a polar group containing organic compound (B) as crystalline polypropylene.

結晶性ポリエチレンの、JIS K7210に準拠した、温度190℃、荷重2.16kg下におけるメルトフローレート(MFR)は、好ましくは0.01〜100g/10分、より好ましくは0.1〜80g/10分である。   The melt flow rate (MFR) of crystalline polyethylene according to JIS K7210 at a temperature of 190 ° C. and a load of 2.16 kg is preferably 0.01 to 100 g / 10 minutes, more preferably 0.1 to 80 g / 10. Minutes.

結晶性ポリプロピレンの、JIS K7210に準拠した、温度230℃、荷重2.16kg下におけるメルトフローレート(MFR)は、好ましくは0.01〜100g/10分、より好ましくは0.1〜80g/10分である。   The melt flow rate (MFR) of crystalline polypropylene according to JIS K7210 at a temperature of 230 ° C. and a load of 2.16 kg is preferably 0.01 to 100 g / 10 minutes, more preferably 0.1 to 80 g / 10. Minutes.

結晶性ポリエチレン及び結晶性ポリプロピレンのMFRが0.01g/10分以上であると、成形加工性等がより向上する。これらのMFRが100g/10分以下であると、極性基含有有機化合物(B)のブリード抑制等がより向上する。   When the MFR of crystalline polyethylene and crystalline polypropylene is 0.01 g / 10 min or more, the moldability and the like are further improved. When these MFRs are 100 g / 10 min or less, the suppression of bleeding of the polar group-containing organic compound (B) is further improved.

エラストマー以外の重合体の含有量は、エラストマー100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上50質量部以下であることがより好ましく、3質量部以上30質量部以下であることが更に好ましい。エラストマー以外の重合体の含有量が前記範囲にあると、相容性の増加及び極性基含有有機化合物(B)のブリード抑制の観点から好ましい。なお、エラストマー以外の重合体は1種単独で用いてもよく、2種以上を併用してもよい。   The content of the polymer other than the elastomer is preferably 0.1 parts by mass or more and 100 parts by mass or less, more preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the elastomer. More preferably, it is at least 30 parts by mass. When the content of the polymer other than the elastomer is within the above range, it is preferable from the viewpoint of increasing the compatibility and suppressing bleeding of the polar group-containing organic compound (B). In addition, polymers other than an elastomer may be used individually by 1 type, and may use 2 or more types together.

[重合体(A)の配合量]
重合体(A)の立体造形物成形用組成物中における含有量としては、成形性、柔軟性及び機械的強度の観点から、0.5質量%以上50質量%以下であることが好ましく、3質量%以上40質量%以下であることがより好ましく、5質量%以上〜30質量%以下であることがさらに好ましい。
[Amount of polymer (A)]
The content of the polymer (A) in the composition for molding a three-dimensional structure is preferably 0.5% by mass or more and 50% by mass or less from the viewpoint of moldability, flexibility, and mechanical strength. The content is more preferably no less than 40% by mass and no greater than 5% by mass and no greater than 30% by mass.

(B)分子量が1,000以下である極性基含有有機化合物
極性基含有有機化合物(B)の分子量は、立体造形物の優れた成形性、柔軟性及び機械的強度を得る観点からは、1,000以下であることが好ましく、800以下であることがより好ましく、500以下であることがさらに好ましい。また、極性基含有有機化合物(B)の分子量は、立体造形物の優れた成形性、柔軟性及び機械的強度を得る観点から、50以上であることが好ましい。
(B) Polar group-containing organic compound having a molecular weight of 1,000 or less The molecular weight of the polar group-containing organic compound (B) is 1 from the viewpoint of obtaining excellent moldability, flexibility and mechanical strength of the three-dimensional structure. Is preferably 1,000 or less, more preferably 800 or less, and even more preferably 500 or less. Moreover, it is preferable that the molecular weight of a polar group containing organic compound (B) is 50 or more from a viewpoint of obtaining the moldability, the softness | flexibility, and mechanical strength which were excellent in the three-dimensional molded item.

極性基としては、カルボキシ基、−C(=O)−O−(エステル結合)、−O−(エーテル結合)、カルボニル基、ヒドロキシ基、アミノ基、スルホ基、アミド基等を挙げることができる。立体造形物の優れた成形性、柔軟性及び機械的強度を得る観点からは、カルボキシ基、−C(=O)−O−(エステル結合)、−O−(エーテル結合)、カルボニル基、ヒドロキシ基、アミノ基を用いることが好ましく、カルボキシ基、エステル結合を用いることがより好ましい。   Examples of the polar group include a carboxy group, —C (═O) —O— (ester bond), —O— (ether bond), carbonyl group, hydroxy group, amino group, sulfo group, amide group, and the like. . From the viewpoint of obtaining excellent moldability, flexibility and mechanical strength of a three-dimensional model, a carboxy group, -C (= O) -O- (ester bond), -O- (ether bond), carbonyl group, hydroxy A group or an amino group is preferably used, and a carboxy group or an ester bond is more preferably used.

また、極性基含有有機化合物(B)としては、具体的には、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、脂肪族アミン化合物、シリルエーテル化合物からなる群より選ばれる少なくも一種が挙げられる。なお、以下に例示される化合物の丸括弧内の数字は、示差走査熱量測定法(DSC法)により測定される融点を示す。この融点は、昇温速度を10℃/minとし、常圧であって空気中の環境下において測定した。   Specific examples of the polar group-containing organic compound (B) include aliphatic carboxylic acid compounds, aliphatic carboxylic acid ester compounds, aliphatic ether compounds, aliphatic ketone compounds, aliphatic alcohol compounds, aliphatic amines. And at least one selected from the group consisting of compounds and silyl ether compounds. In addition, the number in the parenthesis of the compound illustrated below shows melting | fusing point measured by the differential scanning calorimetry (DSC method). This melting point was measured under a normal pressure and in an air environment at a heating rate of 10 ° C./min.

[脂肪族カルボン酸化合物]
脂肪族カルボン酸化合物としては、例えば炭素数が5〜30の脂肪族カルボン酸を用いることができる。脂肪族カルボン酸化合物は、飽和脂肪族カルボン酸と不飽和脂肪族カルボン酸とに大別される。また、飽和脂肪族カルボン酸、不飽和脂肪族カルボン酸としては、直鎖状、分岐状のいずれであってもよい。
飽和脂肪族カルボン酸としては、例えば、ヘキサン酸(−3℃)、ヘプタン酸(−7.5℃)、オクタン酸(17℃)、ペラルゴン酸(11〜13℃)、デカン酸(16℃)等が挙げられ、これらの中でも、入手性の観点から、炭素数が6〜18の直鎖飽和脂肪族カルボン酸が好ましく用いられる。
不飽和脂肪族カルボン酸としては、例えば、オレイン酸(16℃)、パルミトレイン酸(−0.1℃)、アラキドン酸(−49℃)、リノール酸(−5℃)、α−リノレイン酸(−11℃)、ドコサヘキサエン酸(−44℃)等が挙げられ、これらの中でも、入手性の観点から、炭素数が6〜20の直鎖不飽和脂肪族酸が好ましく用いられる。
[Aliphatic carboxylic acid compound]
As the aliphatic carboxylic acid compound, for example, an aliphatic carboxylic acid having 5 to 30 carbon atoms can be used. Aliphatic carboxylic acid compounds are roughly classified into saturated aliphatic carboxylic acids and unsaturated aliphatic carboxylic acids. The saturated aliphatic carboxylic acid and unsaturated aliphatic carboxylic acid may be either linear or branched.
Examples of saturated aliphatic carboxylic acids include hexanoic acid (-3 ° C), heptanoic acid (-7.5 ° C), octanoic acid (17 ° C), pelargonic acid (11-13 ° C), decanoic acid (16 ° C). Among these, a linear saturated aliphatic carboxylic acid having 6 to 18 carbon atoms is preferably used from the viewpoint of availability.
Examples of the unsaturated aliphatic carboxylic acid include oleic acid (16 ° C.), palmitoleic acid (−0.1 ° C.), arachidonic acid (−49 ° C.), linoleic acid (−5 ° C.), α-linolenic acid (− 11 ° C.), docosahexaenoic acid (−44 ° C.) and the like. Among these, a linear unsaturated aliphatic acid having 6 to 20 carbon atoms is preferably used from the viewpoint of availability.

[脂肪族カルボン酸のエステル化合物]
脂肪族カルボン酸のエステル化合物としては、例えば、炭素数5〜30の長鎖脂肪族カルボン酸エステルを用いることができ、具体的には、オレイン酸メチル(−20℃)、ステアリン酸ビニル(28℃)、セバシン酸ジメチル(21℃)、ステアリン酸ブチル(19℃)、ステアリン酸イソプロピル(16℃)、パルミチン酸イソプロピル(11℃)、パルミチン酸プロピル(10℃)が挙げられる。脂肪族カルボン酸のエステル化合物の中では、入手性の観点から、炭素数が6〜18の直鎖飽和脂肪族カルボン酸のメチル、エチル、プロピル、ブチルエステルが好ましく用いられる。
[Ester compound of aliphatic carboxylic acid]
As the ester compound of the aliphatic carboxylic acid, for example, a long chain aliphatic carboxylic acid ester having 5 to 30 carbon atoms can be used. Specifically, methyl oleate (−20 ° C.), vinyl stearate (28 ° C), dimethyl sebacate (21 ° C), butyl stearate (19 ° C), isopropyl stearate (16 ° C), isopropyl palmitate (11 ° C), propyl palmitate (10 ° C). Among the ester compounds of aliphatic carboxylic acids, methyl, ethyl, propyl and butyl esters of linear saturated aliphatic carboxylic acids having 6 to 18 carbon atoms are preferably used from the viewpoint of availability.

[脂肪族エーテル化合物]
脂肪族エーテル化合物としては、例えば、炭素数14〜60の脂肪族エーテルを用いることができ、具体的には、ヘプチルエーテル(−24℃)、オクチルエーテル(−7℃)等が挙げられる。これらの中でも、立体造形物の優れた成形性、柔軟性及び機械的強度が得られ、合成も容易であるという観点から、酸素原子数が一つであり、対称構造を持つエーテル化合物(対称型エーテル化合物)が好ましく用いられる。
[Aliphatic ether compounds]
As the aliphatic ether compound, for example, an aliphatic ether having 14 to 60 carbon atoms can be used, and specific examples include heptyl ether (−24 ° C.) and octyl ether (−7 ° C.). Among these, an ether compound (symmetric type) having a single oxygen atom and a symmetric structure from the viewpoint that the excellent moldability, flexibility and mechanical strength of the three-dimensional structure can be obtained and synthesis is easy. Ether compounds) are preferably used.

[脂肪族ケトン化合物]
脂肪族ケトン化合物としては、例えば、炭素数6〜30の脂肪族ケトンを用いることができ、具体的には、2−ノナノン(−9℃)等が挙げられる。これら中でも、立体造形物の優れた成形性、柔軟性及び機械的強度が得られ、合成も容易であるという観点から、酸素原子数が一つである脂肪族ケトンが好ましく用いられる。
[Aliphatic ketone compounds]
As an aliphatic ketone compound, a C6-C30 aliphatic ketone can be used, for example, 2-nonanone (-9 degreeC) etc. are mentioned specifically ,. Among these, an aliphatic ketone having one oxygen atom is preferably used from the viewpoint that excellent moldability, flexibility and mechanical strength of the three-dimensional structure can be obtained and synthesis is easy.

[脂肪族アルコール化合物]
脂肪族アルコール化合物としては、例えば、炭素数6〜30の脂肪族アルコールを用いることができ、具体的には、1−オクタノール(−16℃)、1−ドデカノール(24℃)、2−ドデカノール(19℃)等が挙げられる。これら中でも、立体造形物の優れた成形性、柔軟性及び機械的強度が得られる観点から、水酸基が分子末端に存在するアルコール化合物(末端アルコール化合物)が好ましく用いられる。
[Fatty alcohol compound]
As the aliphatic alcohol compound, for example, an aliphatic alcohol having 6 to 30 carbon atoms can be used. Specifically, 1-octanol (−16 ° C.), 1-dodecanol (24 ° C.), 2-dodecanol ( 19 ° C.). Among these, from the viewpoint of obtaining excellent moldability, flexibility and mechanical strength of the three-dimensional structure, an alcohol compound having a hydroxyl group at the molecular end (terminal alcohol compound) is preferably used.

[脂肪族アミン化合物]
脂肪族アミン化合物としては、例えば、炭素数5〜30の脂肪族アミンを用いることができる。脂肪族アミン化合物は、飽和脂肪族アミンと不飽和脂肪族アミンとに大別される。また、アミン類は、1級アミンと2級アミンと3級アミンとに大別される。
飽和脂肪族1級アミンとしては、オクチルアミン(−18℃)、ドデシルアミン(24〜29℃)等が挙げられる。不飽和脂肪族1級アミンとしては、オレイルアミン(8〜18℃)等が挙げられる。
また、飽和脂肪族3級アミンとしては、ジメチルドデシルアミン(−20〜10℃)、ジメチルヘキサデシルアミン(3〜8℃)、ジメチルオクタデシルアミン(22〜26℃)等が挙げられる。不飽和脂肪族3級アミンとしては、ジメチルオレイルアミン(0℃未満)等が挙げられる。
[Aliphatic amine compounds]
As the aliphatic amine compound, for example, an aliphatic amine having 5 to 30 carbon atoms can be used. Aliphatic amine compounds are roughly classified into saturated aliphatic amines and unsaturated aliphatic amines. The amines are roughly classified into primary amines, secondary amines, and tertiary amines.
Examples of saturated aliphatic primary amines include octylamine (−18 ° C.) and dodecylamine (24 to 29 ° C.). Examples of unsaturated aliphatic primary amines include oleylamine (8 to 18 ° C.).
Examples of the saturated aliphatic tertiary amine include dimethyldodecylamine (-20 to 10 ° C), dimethylhexadecylamine (3 to 8 ° C), and dimethyloctadecylamine (22 to 26 ° C). Examples of the unsaturated aliphatic tertiary amine include dimethyloleylamine (less than 0 ° C.).

[シリルエーテル化合物]
シリルエーテル化合物としては、例えば、炭素数5〜30のシリルエーテル類を用いることができ、具体的には、ヘキシルトリメトキシシラン(0℃未満)、デシルトリメトキシシラン(−37℃)等が挙げられる。
[Silyl ether compound]
As the silyl ether compound, for example, silyl ethers having 5 to 30 carbon atoms can be used. Specific examples include hexyltrimethoxysilane (less than 0 ° C.) and decyltrimethoxysilane (−37 ° C.). It is done.

[極性基含有有機化合物(B)の物性]
極性基含有有機化合物(B)の示差走査熱量測定法(DSC法)により測定される融点は、立体造形物の成形性、柔軟性及び機械的強度に優れる観点から、−50℃以上30℃以下の範囲にあることが好ましく、−40℃以上25℃以下の範囲にあることがより好ましく、−30℃以上20℃以下の範囲にあることがさらに好ましい。なお、極性基含有有機化合物(B)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Physical properties of polar group-containing organic compound (B)]
The melting point measured by the differential scanning calorimetry (DSC method) of the polar group-containing organic compound (B) is from −50 ° C. to 30 ° C. from the viewpoint of excellent formability, flexibility and mechanical strength of the three-dimensional structure. Preferably, it is in the range of −40 ° C. or more and 25 ° C. or less, more preferably in the range of −30 ° C. or more and 20 ° C. or less. In addition, a polar group containing organic compound (B) may be used individually by 1 type, and may be used in combination of 2 or more type.

極性基含有有機化合物(B)の含有量は、立体造形物の優れた柔軟性を得る観点からは、重合体(A)100質量部に対して、50質量部以上であることが好ましく、100質量部以上であることがより好ましく、150質量部以上であることがさらに好ましく、200質量部以上であることが特に好ましい。
また、極性基含有有機化合物(B)の含有量は、立体造形物の優れた機械的強度を得る観点からは、3,000質量部以下であることが好ましく、2,000質量部以下であることがより好ましく、1,500質量部以下であることがさらに好ましく、1,000質量部以下であることが特に好ましい。
The content of the polar group-containing organic compound (B) is preferably 50 parts by mass or more with respect to 100 parts by mass of the polymer (A) from the viewpoint of obtaining the excellent flexibility of the three-dimensional structure. More preferably, it is more than 150 mass parts, More preferably, it is 200 mass parts or more.
Further, the content of the polar group-containing organic compound (B) is preferably 3,000 parts by mass or less and 2,000 parts by mass or less from the viewpoint of obtaining the excellent mechanical strength of the three-dimensional model. More preferably, it is more preferably 1,500 parts by mass or less, and particularly preferably 1,000 parts by mass or less.

極性基含有有機化合物(B)の含有量は、立体造形物の優れた柔軟性を得る観点からは、立体造形物成形用組成物全体に対して、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。また、極性基含有有機化合物(B)の含有量は、立体造形物の優れた機械的強度を得る観点からは、99.5質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることがさらに好ましい。   The content of the polar group-containing organic compound (B) is preferably 20% by mass or more with respect to the entire three-dimensional structure molding composition from the viewpoint of obtaining excellent flexibility of the three-dimensional structure. The content is more preferably at least mass%, more preferably at least 60 mass%, particularly preferably at least 70 mass%. The content of the polar group-containing organic compound (B) is preferably 99.5% by mass or less and 97% by mass or less from the viewpoint of obtaining excellent mechanical strength of the three-dimensional model. More preferably, it is more preferably 95% by mass or less.

また、極性基含有有機化合物(B)としては、機械的強度のさらに優れた立体造形物を得る観点からは、示差走査熱量測定法(DSC法)により測定される融点が30℃よりも高いものを用いることもできる。   In addition, the polar group-containing organic compound (B) has a melting point higher than 30 ° C. measured by the differential scanning calorimetry (DSC method) from the viewpoint of obtaining a three-dimensional shaped article having further excellent mechanical strength. Can also be used.

融点が30℃よりも高い化合物としては、上述した脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、脂肪族アミン化合物、シリルエーテル化合物の中で融点が30℃よりも高い化合物を好適に用いることができる。なお、以下に例示される化合物の丸括弧内の数字は、示差走査熱量測定法(DSC法)により測定される融点を示す。   Examples of the compound having a melting point higher than 30 ° C. include the above-mentioned aliphatic carboxylic acid compounds, aliphatic carboxylic acid ester compounds, aliphatic ether compounds, aliphatic ketone compounds, aliphatic alcohol compounds, aliphatic amine compounds, silyl ether compounds. Among them, a compound having a melting point higher than 30 ° C. can be suitably used. In addition, the number in the parenthesis of the compound illustrated below shows melting | fusing point measured by the differential scanning calorimetry (DSC method).

脂肪族カルボン酸化合物としては、例えば、ドデカン酸(44℃)、テトラデカン酸(58℃)、ヘキサデカン酸(64℃)、オクタデカン酸(69℃)等のモノカルボン酸類、またはオクタン二酸(141〜144℃)、デカン二酸(131〜134.5℃)、ドデカン二酸(127〜129℃)、ヘプタン二酸(103〜105℃)、ヘキサン二酸(152℃)等のジカルボン酸化合物等が挙げられる。これらの化合物の中でも、機械的強度に特に優れた立体造形物を得る観点から、ジカルボン酸化合物を用いること好ましい。   Examples of the aliphatic carboxylic acid compound include monocarboxylic acids such as dodecanoic acid (44 ° C.), tetradecanoic acid (58 ° C.), hexadecanoic acid (64 ° C.), octadecanoic acid (69 ° C.), or octanedioic acid (141- 144 ° C), decanedioic acid (131 to 134.5 ° C), dodecanedioic acid (127 to 129 ° C), heptanedioic acid (103 to 105 ° C), hexanedioic acid (152 ° C), and the like. Can be mentioned. Among these compounds, it is preferable to use a dicarboxylic acid compound from the viewpoint of obtaining a three-dimensionally shaped product particularly excellent in mechanical strength.

脂肪族カルボン酸のエステル化合物としては、例えば、ラウリン酸メチル(44〜46℃)、ステアリン酸メチル(37〜41℃)等が挙げられる。   Examples of the aliphatic carboxylic acid ester compound include methyl laurate (44 to 46 ° C.) and methyl stearate (37 to 41 ° C.).

脂肪族エーテル化合物としては、テトラデシルエーテル(45℃)、ヘキサデシルエーテル(55℃)等が挙げられる。   Examples of the aliphatic ether compound include tetradecyl ether (45 ° C.) and hexadecyl ether (55 ° C.).

脂肪族ケトン化合物としては、2−ペンタデカノン(40℃)、3−ヘキサデカノン(43℃)、8−ペンタデカノン(43℃)、4,4−ビシクロヘキサノン(118℃)等が挙げられる。   Examples of the aliphatic ketone compound include 2-pentadecanone (40 ° C.), 3-hexadecanone (43 ° C.), 8-pentadecanone (43 ° C.), 4,4-bicyclohexanone (118 ° C.), and the like.

脂肪族アルコール化合物としては、1−テトラデカノール(39℃)、7−テトラデカノール(42℃)、1−オクタデカノール(59℃)、1−エイコサノール(65℃)、1,10−デカンジオール(73℃)等が挙げられる。   Examples of aliphatic alcohol compounds include 1-tetradecanol (39 ° C.), 7-tetradecanol (42 ° C.), 1-octadecanol (59 ° C.), 1-eicosanol (65 ° C.), 1,10-decane. Diol (73 degreeC) etc. are mentioned.

脂肪族アミン化合物としては、オクタデシルアミン(49〜56℃)等が挙げられる。   Examples of the aliphatic amine compound include octadecylamine (49 to 56 ° C.).

融点が30℃より高い極性基含有有機化合物(B)の含有量は、極性基含有有機化合物(B)全体の0.1質量%以上30質量%以下であることが好ましく、0.5質量%以上20質量%以下であることがより好ましく、1質量%以上15質量%以下であることがさらに好ましい。   The content of the polar group-containing organic compound (B) having a melting point higher than 30 ° C. is preferably 0.1% by mass or more and 30% by mass or less of the entire polar group-containing organic compound (B), and 0.5% by mass. It is more preferably 20% by mass or less, and further preferably 1% by mass or more and 15% by mass or less.

[その他の成分]
本発明の立体造形物成形用組成物は、用途に応じた機能を付与する目的で、本発明の効果を損なわない範囲で、着色剤、充填剤、可塑剤、安定剤、老化防止剤、酸化防止剤、帯電防止剤、耐候剤、紫外線吸収剤、ブロッキング防止剤、結晶核剤、難燃化剤、加硫剤、加硫助剤、防菌・防カビ剤、分散剤、着色防止剤、発泡剤、防錆剤などの添加剤を配合してもよい。
[Other ingredients]
The composition for molding a three-dimensional structure according to the present invention is a colorant, a filler, a plasticizer, a stabilizer, an anti-aging agent, an oxidation, in a range not impairing the effects of the present invention, for the purpose of imparting a function according to the use. Inhibitors, antistatic agents, weathering agents, ultraviolet absorbers, antiblocking agents, crystal nucleating agents, flame retardants, vulcanizing agents, vulcanizing aids, antibacterial / antifungal agents, dispersants, anti-coloring agents, You may mix | blend additives, such as a foaming agent and a rust preventive agent.

本発明の立体造形物成形用組成物を生体器官模型用に用いる場合には、立体造形物を生体器官模型と近似させるために、立体造形物成形用組成物が所望の色に着色剤で着色されていることが好ましい。   When the composition for molding a three-dimensional structure of the present invention is used for a living organ model, the composition for forming a three-dimensional structure is colored with a colorant in a desired color in order to approximate the three-dimensional structure to the living organ model. It is preferable that

添加剤の含有量は、目的の機能を付与するためにその種類により区々である。立体造形物成形用組成物による立体造形物の成形時における生産性を維持するという観点からは、添加剤の含有量は、立体造形物成形用組成物がエラストマーの融点以上において流動性を維持できる量であることが望ましい。   The content of the additive varies depending on the type in order to impart the desired function. From the viewpoint of maintaining the productivity at the time of molding of a three-dimensional molded article by the three-dimensional molded article molding composition, the content of the additive can maintain fluidity at a temperature equal to or higher than the melting point of the elastomer. The amount is desirable.

添加剤の含有量は、立体造形物成形用組成物100質量%に対して、0.01質量%以上50質量%以下であることが好ましく、0.1質量%以上40質量%以下であることが更に好ましく、1質量%以上30質量%以下であることが特に好ましい。立体造形物成形用組成物に対して目的の機能を付与する観点からは、添加剤の含有量は、1質量%以上であることが特に好ましく、立体造形物成形用組成物の流動性及び成形性を維持するという観点からは、30質量%以下であることが特に好ましい。   The content of the additive is preferably 0.01% by mass or more and 50% by mass or less, and 0.1% by mass or more and 40% by mass or less with respect to 100% by mass of the three-dimensional molded object molding composition. Is more preferable, and 1% by mass or more and 30% by mass or less is particularly preferable. From the viewpoint of imparting a desired function to the three-dimensional molded object molding composition, the content of the additive is particularly preferably 1% by mass or more, and the fluidity and molding of the three-dimensional molded article molding composition. From the viewpoint of maintaining the properties, it is particularly preferably 30% by mass or less.

[立体造形物成形用組成物の物性]
また、立体造形物成形用組成物は、25℃、1.01325×105Paにおいて固体状である性質を有する。ここで固体状とは、液体や気体と比較して、変形あるいは体積変化が小さい状態にあることをいい、ゲル状であることが特に好ましい。
立体造形物成形用組成物は、一般的な室内温度の基準としての25℃においては、少なくとも固形状である性質を有している。立体造形物成形用組成物が固形状である温度は、その組成によって異なり、所定の温度以下となる。また、立体造形物成形用組成物は、所定の温度よりも高い温度においては一定形状としての固形状が保たれなくなる。
[Physical properties of three-dimensional molded object molding composition]
Moreover, the composition for three-dimensional molded item shaping | molding has a property which is a solid state in 25 degreeC and 1.01325 * 10 < 5 > Pa. Here, the solid state means that the deformation or volume change is smaller than that of a liquid or gas, and a gel state is particularly preferable.
The composition for molding a three-dimensional structure has a property of being at least solid at 25 ° C. as a standard for general indoor temperature. The temperature at which the composition for molding a three-dimensional structure is solid depends on the composition and is equal to or lower than a predetermined temperature. Moreover, the solid shape as a fixed shape cannot be maintained at a temperature higher than a predetermined temperature.

また、立体造形物成形用組成物は、優れた成形性を得る観点から、熱可塑性であることが好ましい。具体的には、立体造形物成形用組成物の流動開始温度(流動点)は、30℃以上200℃以下であることが望ましい。流動開始温度は、立体造形物成形用組成物の固形状が保たれなくなる最低温度のことをいう。言い換えれば、立体造形物成形用組成物は、30℃以上において流動性を有し、固形状が保たれなくなる性質を有していてもよい。
流動開始温度は、JIS K7311の「10.流れ試験」に準拠して、例えば、試験機:CFT−500((株)島津製作所製)を用いて、昇温速度:3℃/分、開始温度:25℃、試験荷重:98N、使用ダイス:直径1mm及び長さ1mmの条件で測定することができる。立体造形物成形用組成物からなる試験サンプルに対して、ダイスによって試験荷重を負荷すると同時に昇温を開始し、ダイスから流出し始めた温度を立体造形物成形用組成物の流動開始温度(加工温度)とする。
Moreover, it is preferable that the composition for three-dimensional molded object shaping | molding is thermoplastic from a viewpoint of obtaining the outstanding moldability. Specifically, it is desirable that the flow start temperature (pour point) of the three-dimensional molded object molding composition is 30 ° C. or higher and 200 ° C. or lower. The flow start temperature refers to the lowest temperature at which the solid shape of the three-dimensional molded object molding composition is not maintained. In other words, the composition for molding a three-dimensional structure has fluidity at 30 ° C. or higher and may have a property that the solid state cannot be maintained.
The flow start temperature is in accordance with “10. Flow test” of JIS K7311. For example, using a tester: CFT-500 (manufactured by Shimadzu Corporation), the rate of temperature increase: 3 ° C./min, start temperature : 25 ° C., test load: 98 N, use die: can be measured under conditions of a diameter of 1 mm and a length of 1 mm. With respect to a test sample made of a three-dimensional object molding composition, a temperature is started at the same time as a test load is applied by a die, and the temperature at which flow begins to flow out of the die is determined as the flow start temperature of the three-dimensional object molding composition (processing) Temperature).

2.立体造形物の製造方法
上記立体造形物成形用組成物からなる立体造形物を製造する方法は、特に限定されるものではないが、立体造形物成形用組成物を加熱により流動化させた後、冷却して立体造形物を成形する工程を有することが好ましい。
例えば、立体造形物成形用組成物を加熱により流動化させて、目的とする立体造形物の形態に対応した内面形状を有する成形型内に注入した後、冷却して固化された立体造形物を成形し、その後、得られた立体造形物を成形型から取り外すことにより、所望の立体造形物を得ることができる。
2. Manufacturing method of three-dimensional modeled object Although the method of manufacturing the three-dimensional modeled object which consists of a composition for the above-mentioned three-dimensional modeled object is not limited in particular, after fluidizing the composition for three-dimensional modeled object by heating, It is preferable to have the process of cooling and shape | molding a three-dimensional molded item.
For example, after the composition for molding a three-dimensional model is fluidized by heating and injected into a mold having an inner surface shape corresponding to the shape of the target three-dimensional model, the three-dimensional model that is cooled and solidified is used. A desired three-dimensional model can be obtained by molding and then removing the obtained three-dimensional model from the mold.

なお、成形型の材質は、特に限定されるものではなく、樹脂製、金属製のいずれであってもよい。また、成形型は、光造形法、粉末焼結法、インクジェット法、シート積層法、押出し法等のラピッドプロトタイピング技術を用いて造形することもできる。   The material of the mold is not particularly limited, and may be either resin or metal. The mold can also be shaped using rapid prototyping techniques such as stereolithography, powder sintering, ink jet, sheet lamination, and extrusion.

また、成形型を用いずに立体造形物成形用組成物から立体造形物を成形することもできる。例えば、加熱により流動化された立体造形物成形用組成物を、ディスペンスヘッドから成形ステージ上に吐出させるとともに、ディスペンスヘッドを成形パターンに従って3次元的に移動させて、所望形状の立体造形物を得ることもできる。
立体造形物の製造方法において用いる立体造形物成形用組成物は、フィラメント状、ペレット状のものとすることが好ましい。
Moreover, a three-dimensional molded item can also be shape | molded from the composition for three-dimensional molded item shaping | molding, without using a shaping | molding die. For example, the composition for molding a three-dimensional structure that has been fluidized by heating is discharged from the dispense head onto a forming stage, and the three-dimensional object having a desired shape is obtained by moving the dispense head three-dimensionally according to the forming pattern. You can also
The composition for molding a three-dimensional structure used in the method for manufacturing a three-dimensional structure is preferably a filament or a pellet.

3.立体造形物
得られる立体造形物としては、柔軟性及び機械的強度に優れ、医療シミュレーションに用いられる人間や動物の生体組織、マウス吸入パットや関節固定器具といった医療機器部品、さらには部屋や自動車の内装用の柔軟部品等として好適に用いることができる。生体組織としては、胃、小腸、大腸、肝臓、膵臓等の消化器官、心臓、血管等の循環器官、前立腺等の生殖器官、腎臓等の泌尿器官等の生体器官と、これらの生体器官を構成する生体組織が挙げられる。
3. Three-dimensional modeled object The three-dimensional modeled object has excellent flexibility and mechanical strength, and is used for medical simulations such as human and animal biological tissues, medical device parts such as mouse inhalation pads and joint fixing devices, and rooms and automobiles. It can be suitably used as a flexible part for interior. As biological tissues, digestive organs such as stomach, small intestine, large intestine, liver and pancreas, circulatory organs such as heart and blood vessels, reproductive organs such as prostate, and urinary organs such as kidneys, and these living organs A living tissue.

また、立体造形物は、機械的強度を高めたり、生体器官に近似させるなどの観点から、2種以上の立体造形物成形用組成物を積層した積層体としてもよい。また、立体造形物は、立体造形物成形用組成物と別の樹脂材料とを用いて、積層体とすることもできる。   The three-dimensional model may be a laminate in which two or more types of three-dimensional model molding compositions are stacked from the viewpoint of increasing mechanical strength or approximating a living organ. Moreover, a three-dimensional molded item can also be made into a laminated body using the composition for three-dimensional molded item shaping | molding, and another resin material.

なお、立体造形物の硬度は、特に限定されるものではなく、例えば、Duro−00による硬度で0以上80以下とすることができる。なお、この硬度は、下記の実施例に示す測定方法によって測定されるものである。   In addition, the hardness of a three-dimensional molded item is not specifically limited, For example, the hardness by Duro-00 can be 0 or more and 80 or less. This hardness is measured by the measuring method shown in the following examples.

また、立体造形物の破断強度は、特に限定されるものではなく、例えば、0.01MPa以上20.0MPa以下とすることができる。なお、この破断強度は、下記の実施例に示す測定方法によって測定されるものである。   In addition, the breaking strength of the three-dimensional structure is not particularly limited, and can be, for example, 0.01 MPa or more and 20.0 MPa or less. In addition, this breaking strength is measured by the measuring method shown in the following Example.

また、立体造形物の破断伸びは、特に限定されるものではなく、例えば、10%以上2,000%以下とすることができる。なお、この破断伸びは、下記の実施例に示す測定方法によって測定されるものである。   The elongation at break of the three-dimensional modeled object is not particularly limited, and can be, for example, 10% or more and 2,000% or less. In addition, this breaking elongation is measured by the measuring method shown in the following Example.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性の測定方法及び諸特性の評価方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. Moreover, the measurement method of various physical properties and the evaluation method of various properties are shown below.

[合成例]水添共役ジエン共重合体の合成
内容積50Lの反応容器に、シクロヘキサン24000g、テトラヒドロフラン1.3g、1,3−ブタジエン570g、及びn−ブチルリチウム2.4gを投入し、重合開始温度70℃にて重合反応を開始させた。重合反応の完結後、重合反応による生成物を冷却して、この生成物にテトラヒドロフラン210gと1,3−ブタジエン3230gをさらに添加し、重合させた。その後、生成物にメチルジクロロシラン1.5gを添加して30分間反応させることによりブロック共重合体を調製した。
[Synthesis Example] Synthesis of hydrogenated conjugated diene copolymer Into a reaction vessel having an internal volume of 50 L, 24000 g of cyclohexane, 1.3 g of tetrahydrofuran, 570 g of 1,3-butadiene, and 2.4 g of n-butyllithium were charged to initiate polymerization. The polymerization reaction was started at a temperature of 70 ° C. After completion of the polymerization reaction, the product resulting from the polymerization reaction was cooled, and 210 g of tetrahydrofuran and 3230 g of 1,3-butadiene were further added to the product for polymerization. Thereafter, 1.5 g of methyldichlorosilane was added to the product and reacted for 30 minutes to prepare a block copolymer.

引き続き、ブロック共重合体にビス(シクロペンタジエニル)チタニウムフルフリルオキシクロライド2.5g、及びn−ブチルリチウム1.2gを加え、水素圧1.0MPaを保つように2時間反応させ、目的とする水添共役ジエン共重合体(オレフィン結晶−エチレン/ブチレン−オレフィン結晶ブロック(共)重合体(CEBC))を得た。水添共役ジエン共重合体の重量平均分子量は40万であり、水素添加率は98%であり、MFRは3.0g/10minであり、融点は90℃であった。   Subsequently, 2.5 g of bis (cyclopentadienyl) titanium furfuryloxychloride and 1.2 g of n-butyllithium were added to the block copolymer and reacted for 2 hours so as to maintain a hydrogen pressure of 1.0 MPa. A hydrogenated conjugated diene copolymer (olefin crystal-ethylene / butylene-olefin crystal block (co) polymer (CEBC)) was obtained. The weight average molecular weight of the hydrogenated conjugated diene copolymer was 400,000, the hydrogenation rate was 98%, the MFR was 3.0 g / 10 min, and the melting point was 90 ° C.

[実施例1]
重合体成分として上記合成例で得られた水添共役ジエン共重合体15質量部と、極性基含有有機化合物としての、オレイン酸80質量部(融点16℃)及びドテカン二酸5質量部を、ガラス製のフラスコ内にて100℃に加熱し、1時間混合後、室温まで冷却することによって熱可塑性の立体造形物成形用組成物を製造した。
そして、得られた立体造形物成形用組成物を、再度100℃に加熱して液状にし、直径90mmの円形シャーレの型に流し込んだ後、1時間冷却した。その後、型から固化した部分を取り外し、3mm厚のサンプル片(立体造形物)を作製した。
作製されたサンプル片の硬度(Duro−00)は18、破断強度は0.06MPa、破断伸びは350%で、長期保存安定性も合格(良好)であった。
[Example 1]
15 parts by mass of the hydrogenated conjugated diene copolymer obtained in the above synthesis example as a polymer component, 80 parts by mass of oleic acid (melting point: 16 ° C.) and 5 parts by mass of dotecandioic acid as a polar group-containing organic compound, A thermoplastic three-dimensional molded object molding composition was manufactured by heating to 100 ° C. in a glass flask, mixing for 1 hour, and cooling to room temperature.
And the obtained composition for three-dimensional molded object shaping | molding was again heated at 100 degreeC, made it liquid state, and after pouring into the type | mold of a 90-mm diameter circular petri dish, it cooled for 1 hour. Then, the solidified part was removed from the mold, and a 3 mm thick sample piece (three-dimensional model) was produced.
The prepared sample piece had a hardness (Duro-00) of 18, a breaking strength of 0.06 MPa, a breaking elongation of 350%, and long-term storage stability was also acceptable (good).

[実施例2、3]
実施例2、3においては、配分組成を表1に記載したとおりに実施例1から変更したこと以外は、実施例1と同様にして立体造形物成形用組成物及びサンプル片(立体造形物)を製造した。
[Examples 2 and 3]
In Examples 2 and 3, the three-dimensional object molding composition and the sample piece (three-dimensional object) are the same as Example 1 except that the distribution composition is changed from Example 1 as described in Table 1. Manufactured.

[実施例4〜7]
実施例4〜7においては、重合体として、上記合成例で得られた水添共役ジエン共重合体に加えて、低密度ポリエチレンとしての日本ポリケム(株)社製YF30(融点108℃)を用い、配分組成を表1に記載したとおりに実施例1から変更したこと以外は、実施例1と同様にして立体造形物成形用組成物及びサンプル片(立体造形物)を製造した。
[Examples 4 to 7]
In Examples 4 to 7, as a polymer, in addition to the hydrogenated conjugated diene copolymer obtained in the above synthesis example, YF30 (melting point: 108 ° C.) manufactured by Nippon Polychem Co., Ltd. as a low density polyethylene was used. A composition for forming a three-dimensional object and a sample piece (three-dimensional object) were manufactured in the same manner as in Example 1 except that the distribution composition was changed from Example 1 as described in Table 1.

[比較例1]
比較例1は、重合体を用いず、極性基含有有機化合物としての、オレイン酸95質量部(融点16℃)及びドテカン二酸5質量部のみの組成物とした。この場合は、室温(25℃)で液体であるため、サンプル片(立体造形物)を作製することができなかった。
[Comparative Example 1]
In Comparative Example 1, no polymer was used, and a composition containing only 95 parts by mass of oleic acid (melting point: 16 ° C.) and 5 parts by mass of dotecanic acid as a polar group-containing organic compound was used. In this case, since it was liquid at room temperature (25 ° C.), a sample piece (three-dimensional model) could not be produced.

[比較例2]
比較例2においては、極性基含有有機化合物の代わりに、非極性有機化合物としてのテトラデカン(融点20℃)を用いた以外は、実施例1と同様にして立体造形物成形用組成物及びサンプル片(立体造形物)を製造した。
[Comparative Example 2]
In Comparative Example 2, the composition for molding a three-dimensional structure and the sample piece were the same as Example 1 except that tetradecane (melting point: 20 ° C.) as a nonpolar organic compound was used instead of the polar group-containing organic compound. (3D object) was manufactured.

作製されたサンプル片の硬度(Duro−00)は15と充分に柔らかいが、その破断強度は測定できないほど低く、また破断伸びは80%と小さく、さらには、長期保存安定性も不合格であった。   The hardness (Duro-00) of the prepared sample piece was sufficiently soft as 15, but its breaking strength was so low that it could not be measured, its breaking elongation was as small as 80%, and furthermore, long-term storage stability was also unacceptable. It was.

なお、得られた立体造形物の評価は下記の通り行った。
(硬度測定)
ASTM D 2240規格に準拠し、成形したサンプル片(立体造形物)をテクロック社製デュロメータ(Duro−00タイプ)で測定した。

(強度測定・弾性率測定)
JIS K625規格に準拠し、成形した立体造形物のサンプル片をダンベル形状(6号サイズ)に打ち抜いた後、島津製作所製材料強度試験機(EZ Graph)を用いて引張強度試験を実施した。
(長期保存安定性)
成形したサンプル片を、1週間以上室温で放置し、上記の強度変化に5%以上の低下がなく、カビ等細菌の増殖や異臭等の変化がないものを「合格」とし、上記の強度変化に5%以上の低下があったもの、カビ等細菌の増殖や異臭等の変化があったものについては「不合格」とした。
In addition, evaluation of the obtained three-dimensional molded item was performed as follows.
(Hardness measurement)
In accordance with the ASTM D 2240 standard, the molded sample piece (three-dimensional model) was measured with a durometer (Duro-00 type) manufactured by Teclock.

(Strength measurement / elastic modulus measurement)
In accordance with the JIS K625 standard, a sample piece of a molded three-dimensional model was punched into a dumbbell shape (No. 6 size), and then a tensile strength test was performed using a Shimadzu Material Strength Tester (EZ Graph).
(Long-term storage stability)
The molded sample piece is allowed to stand at room temperature for 1 week or longer. The above strength change does not decrease by 5% or more, and there is no change in the growth of bacteria such as mold or strange odor. In cases where there was a decrease of 5% or more, and there were changes in the growth of bacteria such as mold and changes in off-flavor, etc., it was judged as “failed”.

Figure 2015194378
Figure 2015194378

実施例と比較例の結果から、本発明の立体造形物成形用組成物によれば、非常に柔軟性が高く、また破断強度及び破断伸びの機械的強度も高くて長期保存での性能低下が少ない立体造形物が得られることが分かった。さらに、本発明の立体造形物成形用組成物は熱可塑性である。そのため、立体造形物成形用組成物によれば、加温及び冷却の簡便な工程により立体造形物を成形できるほか、立体造形物を繰り返し成形することも可能である。   From the results of Examples and Comparative Examples, according to the composition for molding a three-dimensional structure according to the present invention, the flexibility is very high, and the mechanical strength of the breaking strength and elongation at break is also high, resulting in a decrease in performance in long-term storage. It turned out that few three-dimensional molded objects are obtained. Furthermore, the composition for three-dimensional structure molding of the present invention is thermoplastic. Therefore, according to the composition for molding a three-dimensional object, it is possible to form the three-dimensional object by simple steps of heating and cooling, and it is also possible to repeatedly form the three-dimensional object.

本発明の立体造形物成形用組成物は、キャスト成型や積層造形といった立体造形物の成形に適用される。得られる立体造形物としては、柔軟性及び機械的強度に優れ、肝臓、腎臓といった人間や動物の生体器官模型として医療シミュレーションへの利用や、マウス吸入パットや関節固定器具といった医療機器部品の製造、さらには部屋や自動車の内装用の柔軟部品の製造等、種々の分野での利用が期待できる。   The composition for molding a three-dimensional structure of the present invention is applied to the formation of a three-dimensional structure such as cast molding or additive manufacturing. The resulting three-dimensional model is excellent in flexibility and mechanical strength, used for medical simulation as a living organ model of humans and animals such as liver and kidney, and manufacturing medical equipment parts such as mouse inhalation pads and joint fixing devices, Furthermore, it can be expected to be used in various fields such as the production of flexible parts for interiors of rooms and automobiles.

Claims (12)

重合体と、分子量が1,000以下である極性基含有有機化合物を含有し、少なくとも25℃において固体状である、立体造形物成形用組成物。   A composition for molding a three-dimensional structure, which contains a polymer and a polar group-containing organic compound having a molecular weight of 1,000 or less and is solid at least at 25 ° C. 前記極性基含有有機化合物が、脂肪族カルボン酸化合物、脂肪族カルボン酸のエステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、脂肪族アルコール化合物、脂肪族アミン化合物、シリルエーテル化合物からなる群より選ばれる少なくとも一種を含む、請求項1に記載の立体造形物成形用組成物。   The polar group-containing organic compound is selected from the group consisting of aliphatic carboxylic acid compounds, aliphatic carboxylic acid ester compounds, aliphatic ether compounds, aliphatic ketone compounds, aliphatic alcohol compounds, aliphatic amine compounds, and silyl ether compounds. The composition for three-dimensional molded item shaping | molding of Claim 1 containing at least 1 type which is said. 前記極性基含有有機化合物が、示差走査熱量測定法(DSC法)により測定される融点が−50〜30℃の範囲にある化合物を含む、請求項1または2に記載の立体造形物成形用組成物。   The composition for molding a three-dimensional structure according to claim 1 or 2, wherein the polar group-containing organic compound comprises a compound having a melting point measured by differential scanning calorimetry (DSC method) in the range of -50 to 30 ° C. object. 前記重合体が、エラストマーを含む、請求項1〜3のいずれか一項に記載の立体造形物成形用組成物。   The composition for three-dimensional molded item shaping | molding as described in any one of Claims 1-3 in which the said polymer contains an elastomer. 前記エラストマーが、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマーから選ばれる少なくとも一種を含む、請求項4に記載の立体造形物成形用組成物。   The elastomer is at least selected from conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, olefin elastomers, vinyl chloride elastomers, urethane elastomers, ester elastomers, and amide elastomers. The composition for three-dimensional molded item shaping | molding of Claim 4 containing 1 type. 前記エラストマーが、共役ジエン系エラストマー(水添共役ジエン系エラストマーを除く)、水添共役ジエン系エラストマー、オレフィン系エラストマーから選ばれる少なくとも一種を含む、請求項4に記載の立体造形物成形用組成物。   The three-dimensional structure molding composition according to claim 4, wherein the elastomer includes at least one selected from conjugated diene elastomers (excluding hydrogenated conjugated diene elastomers), hydrogenated conjugated diene elastomers, and olefin elastomers. . 前記エラストマーが、結晶性ポリオレフィンを含む、請求項4に記載の立体造形物成形用組成物。   The composition for three-dimensional molded item shaping | molding of Claim 4 in which the said elastomer contains crystalline polyolefin. 前記重合体と前記極性基含有有機化合物の含有比率が、前記重合体100質量部に対して、100質量部以上2,000質量部以下である、請求項1〜7のいずれか一項に記載の立体造形物成形用組成物。   The content ratio of the polymer and the polar group-containing organic compound is 100 parts by mass or more and 2,000 parts by mass or less with respect to 100 parts by mass of the polymer. Three-dimensional molded object molding composition. 立体造形物が、生体器官模型である、請求項1〜8のいずれか一項に記載の立体造形物成形用組成物。   The composition for three-dimensional molded object shaping | molding as described in any one of Claims 1-8 whose three-dimensional molded article is a biological organ model. 請求項1〜9のいずれか一項に記載の立体造形物成形用組成物から成形されてなる、立体造形物。   The three-dimensional molded item formed from the composition for three-dimensional molded item shaping | molding as described in any one of Claims 1-9. 請求項1〜9のいずれか一項に記載の立体造形物成形用組成物を用いて立体造形物を成形する工程を有する、立体造形物の製造方法。   The manufacturing method of a three-dimensional molded item which has the process of shape | molding a three-dimensional molded item using the composition for three-dimensional molded item shaping | molding as described in any one of Claims 1-9. 請求項11に記載の立体造形物の製造方法において、立体造形物を成形する工程が、立体造形物成形用組成物を加熱により流動化させた後、冷却して固化させて立体造形物を成形する工程を有する、立体造形物の製造方法。   The manufacturing method of the three-dimensional modeled object according to claim 11, wherein the step of molding the three-dimensional modeled object is made by fluidizing the three-dimensional modeled molding composition by heating, and then cooling and solidifying to mold the three-dimensional modeled article. The manufacturing method of the three-dimensional molded item which has the process to do.
JP2016529227A 2014-06-16 2015-06-03 Three-dimensional structure molding composition, method for producing three-dimensional structure using the same, and three-dimensional structure Active JP6477698B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014123531 2014-06-16
JP2014123531 2014-06-16
PCT/JP2015/066060 WO2015194378A1 (en) 2014-06-16 2015-06-03 Composition for forming three-dimensional molded object, production method for three-dimensional molded object using same, and three-dimensional molded object

Publications (2)

Publication Number Publication Date
JPWO2015194378A1 true JPWO2015194378A1 (en) 2017-04-20
JP6477698B2 JP6477698B2 (en) 2019-03-06

Family

ID=54935368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529227A Active JP6477698B2 (en) 2014-06-16 2015-06-03 Three-dimensional structure molding composition, method for producing three-dimensional structure using the same, and three-dimensional structure

Country Status (2)

Country Link
JP (1) JP6477698B2 (en)
WO (1) WO2015194378A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030145A1 (en) * 2015-08-19 2017-02-23 デンカ株式会社 Resin composition for organ models
JP7137228B2 (en) * 2019-04-26 2022-09-14 株式会社micro-AMS Resin molding method
US20220168968A1 (en) * 2019-04-26 2022-06-02 Micro-Ams Inc. Resin molding method
JP7137229B2 (en) * 2019-04-26 2022-09-14 株式会社micro-AMS Resin molding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194535A (en) * 1982-05-10 1983-11-12 キヨ−ラク株式会社 Elastic shape
JPH03133623A (en) * 1989-10-20 1991-06-06 Seiko Epson Corp Manufacture of plastic film
JPH08164588A (en) * 1994-12-14 1996-06-25 Mitsubishi Chem Corp Composite plastic molding
WO2004111132A1 (en) * 2003-06-13 2004-12-23 Jsr Corporation Transparent flexible composition
JP2005246882A (en) * 2004-03-05 2005-09-15 Jsr Corp Laminated body and method for manufacturing it
JP2009149836A (en) * 2007-11-29 2009-07-09 Kaneka Corp Expansion molding product and shock-absorbing body comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194535A (en) * 1982-05-10 1983-11-12 キヨ−ラク株式会社 Elastic shape
JPH03133623A (en) * 1989-10-20 1991-06-06 Seiko Epson Corp Manufacture of plastic film
JPH08164588A (en) * 1994-12-14 1996-06-25 Mitsubishi Chem Corp Composite plastic molding
WO2004111132A1 (en) * 2003-06-13 2004-12-23 Jsr Corporation Transparent flexible composition
JP2005246882A (en) * 2004-03-05 2005-09-15 Jsr Corp Laminated body and method for manufacturing it
JP2009149836A (en) * 2007-11-29 2009-07-09 Kaneka Corp Expansion molding product and shock-absorbing body comprising the same

Also Published As

Publication number Publication date
JP6477698B2 (en) 2019-03-06
WO2015194378A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6477698B2 (en) Three-dimensional structure molding composition, method for producing three-dimensional structure using the same, and three-dimensional structure
US20080161438A1 (en) Composition comprising copolyetherester elastomer
KR102234678B1 (en) Thermoplastic elastomer composition
DE602004009912D1 (en) SCRATCH POLYPROPYLENE COMPOSITION
US20040220323A1 (en) Injection-moldable transparent thermoplastic elastomer
CN1412237A (en) Thermoplastic elastic body composition, forming body using it, and compound forming body
US20090105365A1 (en) Elastomer Composition
EP3260491B1 (en) Thermoplastic elastomer compounds exhibiting shape memory via thermo-mechanical action
CN103505849B (en) Golf composition
JP4287084B2 (en) Mushroom packaging film
EP3722367B1 (en) Compositions having reduced tack and articles made thereof
JP6852482B2 (en) Thermoplastic elastomer composition for non-foam molding and its molded product
JP7044557B2 (en) Butene-based resin composition and molded product
JP6735531B2 (en) Modified polyethylene composition for three-dimensional network structure and three-dimensional network structure
JPWO2016171049A1 (en) Poly-1-butene resin composition and molded product obtained therefrom
JP2019131769A (en) Styrenic thermoplastic elastomer composition and application thereof
JP2005068300A (en) Resin composition and fuel-based resin molded article
WO2020219804A1 (en) Thermoplastic elastomer gel
EP2714799A2 (en) Thermoplastic elastomers moldable under low shear conditions
JP2017222844A (en) Resin composition for heat seal and film using the same
US11566121B2 (en) Thermoplastic elastomer composition for weather strip material and weather strip
JP2009291731A (en) Method for coating molded article
JP2021152130A (en) Molded sheet of heat-plasticized starch/olefin resin composition and method for producing the same
JP2021121650A (en) 4-methyl-1-pentene-based resin composition and application of the same
JP3742409B2 (en) Thermoplastic elastomer composition and slush molded skin using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250