JPWO2015189979A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JPWO2015189979A1
JPWO2015189979A1 JP2016527588A JP2016527588A JPWO2015189979A1 JP WO2015189979 A1 JPWO2015189979 A1 JP WO2015189979A1 JP 2016527588 A JP2016527588 A JP 2016527588A JP 2016527588 A JP2016527588 A JP 2016527588A JP WO2015189979 A1 JPWO2015189979 A1 JP WO2015189979A1
Authority
JP
Japan
Prior art keywords
air
mover
guide duct
heat radiating
air guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016527588A
Other languages
Japanese (ja)
Other versions
JP6386042B2 (en
Inventor
山田 修平
修平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Publication of JPWO2015189979A1 publication Critical patent/JPWO2015189979A1/en
Application granted granted Critical
Publication of JP6386042B2 publication Critical patent/JP6386042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Abstract

リニアモータの可動子12の放熱面12a側に放熱フィン21を配設すると共に、放熱フィン21の表面側に冷却ファン24を配設する。可動子12の移動方向の前後両側面に、それぞれ導風ダクト25を該可動子12の移動方向の前後両側面と放熱フィン21の両側面の両方を覆うように配設する。各導風ダクト25は、偏平な断面コ字状に形成され、その両端の開口をそれぞれ第1の空気吸込み口26と第2の空気吸込み口27とする。冷却ファン24の排気作用によって導風ダクト25の第1の空気吸込み口26から吸い込まれて可動子12の側面に沿って放熱フィン21側に流れる空気の流れと第2の空気吸込み口27から導風ダクト25内に吸い込まれた空気の流れとが該放熱フィン21の側面付近で衝突することで、該空気の流れ方向を該放熱フィン21の中央部に向かう方向に曲げる。A heat radiating fin 21 is disposed on the heat radiating surface 12 a side of the mover 12 of the linear motor, and a cooling fan 24 is disposed on the surface side of the heat radiating fin 21. The air guide ducts 25 are disposed on both front and rear side surfaces of the mover 12 in the moving direction so as to cover both the front and rear side surfaces of the mover 12 in the moving direction and both side surfaces of the radiation fins 21. Each air guide duct 25 is formed in a flat U-shaped cross section, and the openings at both ends thereof are defined as a first air suction port 26 and a second air suction port 27, respectively. The air is drawn from the first air suction port 26 of the air guide duct 25 by the exhaust action of the cooling fan 24 and flows from the second air suction port 27 along the side surface of the mover 12 toward the radiating fin 21. When the air flow sucked into the wind duct 25 collides with the vicinity of the side surface of the heat radiating fin 21, the air flow direction is bent in the direction toward the center of the heat radiating fin 21.

Description

本発明は、可動子を放熱させる放熱構造を改良したリニアモータに関する発明である。   The present invention relates to a linear motor having an improved heat dissipation structure that dissipates heat from a mover.

従来のリニアモータの放熱構造としては、例えば、特許文献1(特開2012−44867号公報)に記載されているように、リニアモータの可動子に放熱フィンを設けると共に、直線的に延びる固定子に沿って移動する可動子の放熱フィンの移動空間全体を覆うように導風ダクトを固定子に沿って設け、該導風ダクトの両端部にファンを設けて、該ファンの回転により該導風ダクト内に空気の流れを生じさせて可動子の放熱フィンの放熱を促進させるようにしたものがある。   As a conventional linear motor heat dissipation structure, for example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-44867), a linear motor movable element is provided with heat dissipation fins and a linearly extending stator. A wind guide duct is provided along the stator so as to cover the entire moving space of the radiating fin of the mover moving along the stator, and fans are provided at both ends of the wind guide duct. There is one in which a flow of air is generated in a duct to promote heat dissipation of a heat dissipating fin of the mover.

特開2012−44867号公報JP 2012-44867 A

上記特許文献1の放熱構造では、放熱フィンの移動空間全体を覆うように導風ダクトを固定子に沿って設けるため、導風ダクトが大型化してリニアモータの大型化につながるという欠点がある。しかも、放熱フィンのみが導風ダクト内に収容され、可動子が導風ダクトの外側に配置されているため、可動子は、専ら、放熱フィンを通して空気に放熱することでしか冷却されず、導風ダクトの内側を流れる空気を可動子に接触させて該可動子を空冷することはできず、その分、放熱性能向上の効果が低くならざるを得なかった。   The heat dissipation structure disclosed in Patent Document 1 has a drawback in that the air guide duct is provided along the stator so as to cover the entire movement space of the heat dissipating fins, so that the air guide duct is enlarged and the linear motor is increased in size. Moreover, since only the heat radiating fins are accommodated in the air guide duct and the mover is arranged outside the air guide duct, the mover is cooled only by radiating heat to the air through the heat radiating fins, The air flowing inside the wind duct cannot be brought into contact with the mover to air-cool the mover, and the effect of improving the heat dissipation performance has to be reduced accordingly.

そこで、本発明が解決しようとする課題は、可動子の放熱構造を小型化しつつ可動子の放熱性能を向上できるリニアモータを提供することである。   Accordingly, the problem to be solved by the present invention is to provide a linear motor that can improve the heat dissipation performance of the mover while reducing the size of the heat dissipation structure of the mover.

上記課題を解決するために、本発明は、直線的に延びる固定子に沿って可動子を直線駆動するリニアモータにおいて、前記可動子の放熱面側に放熱部材を配設すると共に、該放熱部材の表面に沿って空気を流して排気する冷却ファンを該放熱部材の表面側に配設し、前記可動子の側面に、前記冷却ファンの排気作用によって空気を吸い込んで該可動子の側面に沿って流して前記放熱部材へ導く導風ダクトを配設した構成としたものである。   In order to solve the above-described problems, the present invention provides a linear motor that linearly drives a mover along a linearly extending stator, and a heat dissipating member is disposed on the heat dissipating surface side of the mover, and the heat dissipating member A cooling fan that exhausts air by flowing along the surface of the heat dissipating member is disposed on the surface side of the heat dissipating member, and air is sucked into the side surface of the movable element by the exhaust action of the cooling fan along the side surface of the movable element. In this configuration, an air guide duct is provided to guide the air to the heat radiating member.

この構成では、冷却ファンによって導風ダクト内に吸い込んだ空気を可動子の側面に沿って流して放熱部材へ導くようにしているため、可動子の側面に沿って流れる空気によって可動子の側面を空冷することができ、この空冷作用と放熱部材による放熱作用とによって可動子を効率良く放熱させることができ、可動子の放熱性能を向上できる。しかも、導風ダクトを可動子の側面に沿って設けるだけで良いため、前記特許文献1のように放熱フィンの移動空間全体を覆うように導風ダクトを固定子に沿って設ける構造と比べて、導風ダクトのサイズを大幅に小さくできると共に、上述した放熱性能向上の効果によって放熱部材や冷却ファンの小型化も可能となり、可動子の放熱構造を全体的に小型化することができる。   In this configuration, since the air sucked into the air duct by the cooling fan flows along the side surface of the mover and is guided to the heat radiating member, the side surface of the mover is moved by the air flowing along the side surface of the mover. The air can be cooled, and the mover can be efficiently radiated by the air cooling action and the heat radiating action by the heat radiating member, and the heat radiating performance of the mover can be improved. In addition, since it is only necessary to provide the air guide duct along the side surface of the mover, as compared to the structure in which the air guide duct is provided along the stator so as to cover the entire movement space of the radiating fin as in Patent Document 1. The size of the air duct can be greatly reduced, and the heat dissipation member and the cooling fan can be downsized due to the above-described effect of improving the heat dissipation performance, and the heat dissipation structure of the mover can be downsized as a whole.

ところで、導風ダクト内を流れる空気は可動子の側面に沿って流れるため、導風ダクトによって空気を可動子の側面から放熱部材へ導いても、その空気が可動子の側面の延長方向である放熱部材の側面付近を流れやすくなり、放熱部材の中央部へ向かう空気の流れが少なくなってしまう可能性がある。   By the way, since the air flowing in the air guide duct flows along the side surface of the mover, even if the air is guided from the side surface of the mover to the heat radiating member by the air guide duct, the air is in the extending direction of the side surface of the mover. There is a possibility that the air flow near the side surface of the heat radiating member tends to flow, and the flow of air toward the center of the heat radiating member is reduced.

この対策として、導風ダクトを可動子の側面と放熱部材の側面の両方を覆うように配設し、該導風ダクトの両端の開口をそれぞれ第1の空気吸込み口と第2の空気吸込み口とし、前記冷却ファンの排気作用によって前記第1の空気吸込み口から吸い込まれて前記可動子の側面に沿って流れる空気の流れと前記第2の空気吸込み口から吸い込まれた空気の流れとが該放熱部材の側面付近で衝突することで、該空気の流れ方向が該放熱部材の中央部に向かう方向に曲がるように構成すると良い。このようにすれば、導風ダクトによって放熱部材の側面へ導いた空気の流れを放熱部材の中央部へ向かわせることができ、放熱部材全体を空気で効率良く冷却して放熱性能を向上させることができる。   As a countermeasure, the air guide duct is disposed so as to cover both the side surface of the mover and the side surface of the heat radiating member, and the openings at both ends of the air guide duct are respectively the first air inlet port and the second air inlet port. And the air flow sucked from the first air suction port by the exhaust action of the cooling fan and flowing along the side surface of the mover and the air flow sucked from the second air suction port are It is good to comprise so that the flow direction of this air may bend in the direction which goes to the center part of this heat radiating member by colliding near the side surface of a heat radiating member. In this way, the air flow guided to the side surface of the heat radiating member by the air duct can be directed to the center of the heat radiating member, and the entire heat radiating member is efficiently cooled with air to improve the heat radiating performance. Can do.

この場合、導風ダクトを断面コ字状に形成し、該導風ダクトと可動子の側面とによって断面四角形状の空気流路を形成するようにすると良い。このようにすれば、導風ダクト内において可動子の側面に沿って流れる空気の流れを該導風ダクトの幅方向に均一化することができ、可動子の側面全体を空気でほぼ均等に効率良く冷却することができる。   In this case, the air guide duct may be formed in a U-shaped cross section, and an air flow path having a square cross section may be formed by the air guide duct and the side surface of the mover. In this way, the flow of air flowing along the side surface of the mover in the air guide duct can be made uniform in the width direction of the wind guide duct, and the entire side surface of the mover can be made almost evenly efficient with air. It can cool well.

また、放熱部材は、どの様な形状のものを使用しても良いが、放熱プレートの表面側に複数のフィンを平行に形成した放熱フィンを使用する場合は、放熱プレートの裏面を可動子の放熱面に重ね合わせ、且つ、各フィン間の空隙の端を導風ダクト内の空気流路とつなげるように構成すると良い。このようにすれば、導風ダクトによって放熱フィンへ導いた空気を放熱フィンの各フィン間の空隙に沿ってスムーズに流すことができ、可動子から放熱フィンに伝達された熱を各フィンから空気に効率良く放散させることができる。   In addition, any shape of the heat radiating member may be used. However, when using heat radiating fins in which a plurality of fins are formed in parallel on the surface side of the heat radiating plate, the back surface of the heat radiating plate is attached to the mover. It is good to comprise so that it may overlap with a heat radiating surface, and the end of the space | gap between each fin may be connected with the air flow path in an air guide duct. In this way, the air guided to the heat radiating fins by the air guide duct can flow smoothly along the gaps between the fins of the heat radiating fins, and the heat transferred from the mover to the heat radiating fins is sent from each fin to the air. Can be efficiently diffused.

本発明は、可動子の1つの側面のみに導風ダクトを配設した構成としても良いが、前記可動子の移動方向の前後両側面に、それぞれ導風ダクトを該可動子の移動方向の前後両側面と放熱部材の両側面の両方を覆うように配設すると良い。このようにすれば、可動子の3面を効率良く冷却することができる。   The present invention may be configured such that an air guide duct is provided only on one side surface of the mover, but the air guide duct is provided on both front and rear side surfaces in the moving direction of the mover, respectively. It is good to arrange | position so that both the both sides | surfaces and both the side surfaces of a thermal radiation member may be covered. In this way, the three surfaces of the mover can be efficiently cooled.

図1は本発明の実施例1を示すリニアモータの可動子及びその放熱構造を示す斜視図である。FIG. 1 is a perspective view showing a mover of a linear motor and a heat dissipation structure thereof showing Embodiment 1 of the present invention. 図2は導風ダクトを取り外して示す可動子の斜視図である。FIG. 2 is a perspective view of the mover with the air duct removed. 図3は実施例1の放熱構造の空気の流れを説明する断面図である。FIG. 3 is a cross-sectional view illustrating the air flow of the heat dissipation structure of the first embodiment. 図4は実施例2の放熱構造の空気の流れを説明する断面図である。FIG. 4 is a cross-sectional view illustrating the flow of air in the heat dissipation structure of the second embodiment.

以下、本発明を実施するための形態を具体化した2つの実施例1,2を説明する。
本発明の実施例1を図1乃至図3に基づいて説明する。
Hereinafter, two Examples 1 and 2 which embody the form for implementing this invention are demonstrated.
A first embodiment of the present invention will be described with reference to FIGS.

図1及び図2に示すように、リニアモータは、直線的に延びる固定子11と、該固定子11に沿って直線駆動される可動子12とから構成されている。固定子11は、図示はしないが、直線的に延びるコアに複数の永久磁石を交互に異極となるようにリニアに等ピッチで配列して構成され、この固定子11の永久磁石の配列に沿って可動子12が移動するようになっている。可動子12には、駆動対象物(図示せず)が取り付けられ、該可動子12を直線駆動することで、該可動子12と一体的に駆動対象物が直線的に移動するようになっている。   As shown in FIGS. 1 and 2, the linear motor includes a stator 11 that extends linearly and a mover 12 that is linearly driven along the stator 11. Although not shown, the stator 11 is configured by linearly arranging a plurality of permanent magnets on a linearly extending core so as to have different polarities alternately at an equal pitch, and the stator 11 has an arrangement of permanent magnets. The mover 12 is adapted to move along. A movable object (not shown) is attached to the movable element 12, and the movable object 12 moves linearly integrally with the movable element 12 by linearly driving the movable element 12. Yes.

図3に示すように、可動子12は、複数のティース13を所定間隔でリニアに配列すると共に、各ティース13にそれぞれコイル14を装着し、これら全体を固定枠15で連結固定して一体化した構成となっている。隣接するコイル14間には、該コイル14で発生した熱を後述する放熱フィン21に伝達するヒートパイプ等の高熱伝導部材16が挟み込まれ、可動子12の放熱面12a(図3参照)に高熱伝導部材16の先端が露出している。   As shown in FIG. 3, the mover 12 has a plurality of teeth 13 linearly arranged at predetermined intervals, and a coil 14 is attached to each tooth 13, and these are connected and fixed together by a fixed frame 15. It has become the composition. A high heat conductive member 16 such as a heat pipe that transfers heat generated in the coil 14 to a heat radiating fin 21 described later is sandwiched between the adjacent coils 14, and high heat is generated on the heat radiating surface 12 a (see FIG. 3) of the mover 12. The leading end of the conductive member 16 is exposed.

可動子12の放熱面12a側には、放熱部材である放熱フィン21が配設されている。放熱フィン21は、アルミニウム等の高熱伝導性材料により放熱プレート22の表面側に複数のフィン23(薄板)を平行に形成したものであり、該放熱プレート22の裏面が可動子12の放熱面12aに重ね合わされ、該放熱プレート22の裏面に高熱伝導部材16の先端が密着している。放熱フィン21の表面側には、該放熱フィン21の表面に沿って空気を流して排気する冷却ファン24が配設され、可動子12と放熱フィン21及び冷却ファン24が固定子11に沿って一体的に移動するようになっている。   On the heat radiating surface 12a side of the mover 12, heat radiating fins 21 as heat radiating members are disposed. The heat radiating fin 21 is formed by forming a plurality of fins 23 (thin plates) in parallel on the surface side of the heat radiating plate 22 with a high thermal conductive material such as aluminum, and the back surface of the heat radiating plate 22 is the heat radiating surface 12a of the mover 12. The tip of the high heat conductive member 16 is in close contact with the back surface of the heat radiating plate 22. On the surface side of the heat radiating fin 21, a cooling fan 24 that exhausts air by flowing along the surface of the heat radiating fin 21 is disposed, and the mover 12, the heat radiating fin 21, and the cooling fan 24 extend along the stator 11. It moves together.

可動子12の移動方向の前後両側面には、それぞれ導風ダクト25が該可動子12の移動方向の前後両側面と放熱フィン21の両側面の両方を覆うように配設されている。各導風ダクト25は、偏平な断面コ字状に形成され、その両端の開口をそれぞれ第1の空気吸込み口26(図3参照)と第2の空気吸込み口27としている。第1の空気吸込み口26は、可動子12の側面のうちの放熱フィン21とは反対側の端に位置し、第2の空気吸込み口27は、冷却ファン24の側面と放熱フィン21の側面との間の境目付近に位置している。尚、導風ダクト25を冷却ファン24側に延長して、該導風ダクト25が冷却ファン24の側面の一部又は前部を覆って第2の空気吸込み口27が冷却ファン24側に張り出した構成としても良い。   On both front and rear side surfaces in the moving direction of the mover 12, air guide ducts 25 are disposed so as to cover both the front and rear side surfaces in the moving direction of the mover 12 and both side surfaces of the radiation fins 21. Each of the air guide ducts 25 is formed in a flat U-shaped cross section, and the openings at both ends thereof serve as a first air suction port 26 (see FIG. 3) and a second air suction port 27, respectively. The first air suction port 26 is located at the end of the side surface of the movable element 12 opposite to the heat radiation fin 21, and the second air suction port 27 is formed on the side surface of the cooling fan 24 and the side surface of the heat radiation fin 21. It is located near the boundary between. The air guide duct 25 is extended to the cooling fan 24 side, the air guide duct 25 covers a part or front part of the side surface of the cooling fan 24, and the second air suction port 27 projects to the cooling fan 24 side. It is good also as a composition.

図3に示すように、冷却ファン24の排気作用によって導風ダクト25の第1の空気吸込み口26から吸い込まれて可動子12の側面に沿って放熱フィン21側(図3の上向き)に流れる空気の流れと第2の空気吸込み口27から導風ダクト25内に図3の下向きに吸い込まれた空気の流れとが該放熱フィン21の側面付近で衝突することで、該空気の流れ方向が該放熱フィン21の中央部に向かう方向に曲がるように構成されている。そして、放熱フィン21の各フィン23間の空隙の両端が両導風ダクト25内の空気流路とつながるように該放熱フィン21が配置されている。   As shown in FIG. 3, the air is sucked from the first air suction port 26 of the air guide duct 25 by the exhausting action of the cooling fan 24, and flows toward the radiation fin 21 (upward in FIG. 3) along the side surface of the mover 12. The air flow and the air flow sucked downward in FIG. 3 into the air guide duct 25 from the second air suction port 27 collide in the vicinity of the side surface of the heat radiating fin 21, so that the air flow direction is changed. The radiating fin 21 is configured to bend in a direction toward the center. The heat radiating fins 21 are arranged so that both ends of the gaps between the fins 23 of the heat radiating fins 21 are connected to the air flow paths in the air guide ducts 25.

以上のように構成したリニアモータにおいては、固定子11に沿って可動子12を駆動する際に可動子12のコイル14に通電するため、コイル14が発熱する。このコイル14で発生した熱は、高熱伝導部材16を伝導して放熱フィン21に伝達される。可動子12の駆動時等、可動子12の冷却が必要な期間には、冷却ファン24を駆動して放熱フィン21側から空気を吸い込んで外部に排出する。この冷却ファン24の排気作用によって導風ダクト25の第1の空気吸込み口26から吸い込まれて可動子12の側面に沿って放熱フィン21側(図3の上向き)に流れる空気の流れと第2の空気吸込み口27から導風ダクト25内に図3の下向きに吸い込まれた空気の流れとが該放熱フィン21の側面付近で衝突することで、該空気の流れ方向が該放熱フィン21の中央部に向かう方向に曲がる。これにより、導風ダクト25によって放熱フィン21へ導いた空気を放熱フィン21の各フィン23間の空隙に沿ってスムーズに流すことができ、可動子12から高熱伝導部材16を介して放熱フィン21に伝達された熱を各フィン23から空気に効率良く放散させることができる。   In the linear motor configured as described above, when the mover 12 is driven along the stator 11, the coil 14 of the mover 12 is energized, and thus the coil 14 generates heat. The heat generated in the coil 14 is conducted to the heat radiating fins 21 through the high heat conducting member 16. During a period in which the mover 12 needs to be cooled, such as when the mover 12 is driven, the cooling fan 24 is driven to suck air from the radiating fin 21 and discharge it to the outside. Due to the exhaust action of the cooling fan 24, the second air flow and the second air that is sucked from the first air suction port 26 of the air guide duct 25 and flows toward the heat radiation fin 21 (upward in FIG. 3) along the side surface of the mover 12. The air flow sucked downward in FIG. 3 from the air suction port 27 into the air guide duct 25 collides in the vicinity of the side surface of the radiating fin 21, so that the air flow direction is the center of the radiating fin 21. Turn in the direction toward the club. As a result, the air guided to the radiation fins 21 by the air guide duct 25 can flow smoothly along the gaps between the fins 23 of the radiation fins 21, and the radiation fins 21 from the mover 12 through the high heat conduction member 16. Can be efficiently dissipated from the fins 23 to the air.

しかも、冷却ファン24によって可動子12の側面に沿って流した空気を放熱フィン21へ導くようにしているため、導風ダクト25内を流れる空気によって可動子12の側面を冷却(空冷)することができ、この空冷作用と放熱フィン21による放熱作用とによって可動子12を効率良く放熱させることができ、可動子12の放熱性能を向上できる。しかも、導風ダクト25を可動子12の側面に沿って設けるだけで良いため、前記特許文献1のように放熱フィンの移動空間全体を覆うように導風ダクトを固定子に沿って設ける構造と比べて、導風ダクト25のサイズを大幅に小さくできると共に、上述した放熱性能向上の効果によって放熱フィン21や冷却ファン24の小型化も可能となり、可動子12の放熱構造を全体的に小型化できる。   In addition, since the air flowing along the side surface of the movable element 12 is guided to the heat radiating fins 21 by the cooling fan 24, the side surface of the movable element 12 is cooled (air-cooled) by the air flowing through the air guide duct 25. The movable element 12 can be efficiently radiated by the air cooling action and the radiating action of the radiating fins 21, and the heat radiating performance of the movable element 12 can be improved. In addition, since it is only necessary to provide the air guide duct 25 along the side surface of the mover 12, a structure in which the air guide duct is provided along the stator so as to cover the entire movement space of the heat dissipating fin as in Patent Document 1. In comparison, the size of the air guide duct 25 can be significantly reduced, and the heat dissipation fin 21 and the cooling fan 24 can be downsized due to the above-described effect of improving the heat dissipation performance. it can.

しかも、本実施例1では、導風ダクト25を偏平な断面コ字状に形成し、該導風ダクト25と可動子12の側面とによって断面四角形状の空気流路を形成するようにしたので、導風ダクト25内において可動子12の側面に沿って流れる空気の流れを該導風ダクト25の幅方向に均一化することができ、可動子12の側面全体を空気でほぼ均等に効率良く冷却することができる。但し、導風ダクト25の形状は、断面コ字状に限定されず、例えば、断面アーチ状等であっても良い。   Moreover, in the first embodiment, the air guide duct 25 is formed in a flat U-shaped cross section, and the air flow path having a square cross section is formed by the air guide duct 25 and the side surface of the movable element 12. The flow of air flowing along the side surface of the mover 12 in the air guide duct 25 can be made uniform in the width direction of the wind guide duct 25, and the entire side surface of the mover 12 is almost uniformly and efficiently made of air. Can be cooled. However, the shape of the air guide duct 25 is not limited to a U-shaped cross section, and may be, for example, an arcuate cross section.

一方、図4に示す本発明の実施例2では、導風ダクト25の両端のうち、放熱フィン21側の端(上記実施例1の第2の空気吸込み口27)を閉鎖し、放熱フィン21とは反対側の端に位置する第1の空気吸込み口26のみを設けた構成としている。その他の構成は上記実施例1と同じである。   On the other hand, in the second embodiment of the present invention shown in FIG. 4, among the both ends of the air guide duct 25, the end on the side of the radiating fin 21 (the second air suction port 27 of the first embodiment) is closed, and the radiating fin 21. Only the first air suction port 26 located at the end opposite to the side is provided. Other configurations are the same as those of the first embodiment.

本実施例2でも、冷却ファン24の排気作用によって導風ダクト25の第1の空気吸込み口26から吸い込まれた空気が可動子12の側面に沿って放熱フィン21側(図4の上向き)に流れるが、前記実施例1とは異なり、導風ダクト25の放熱フィン21側の端に第2の空気吸込み口27が設けられていないため、導風ダクト25によって可動子12の側面から放熱フィン21へ導いた空気がそのまま可動子12の側面の延長方向である放熱フィン21の側面付近を流れやすくなり、放熱フィン21の中央部へ向かう空気の流れが少なくなってしまう可能性がある。   Also in the second embodiment, the air sucked from the first air suction port 26 of the air guide duct 25 by the exhaust action of the cooling fan 24 moves along the side surface of the mover 12 toward the radiation fin 21 (upward in FIG. 4). However, unlike the first embodiment, the second air suction port 27 is not provided at the end of the air guide duct 25 on the side of the heat dissipating fin 21, so that the air guide duct 25 causes the heat dissipating fin from the side surface of the mover 12. There is a possibility that the air led to 21 tends to flow in the vicinity of the side surface of the radiating fin 21 that is the extending direction of the side surface of the mover 12 as it is, and the flow of air toward the center of the radiating fin 21 may be reduced.

その点、前記実施例1では、導風ダクト25の放熱フィン21側の端に第2の空気吸込み口27が設けられているため、第1の空気吸込み口26から吸い込まれて可動子12の側面に沿って流れる空気の流れと第2の空気吸込み口27から吸い込まれた空気の流れとを放放熱フィン21の側面付近で衝突させて該空気の流れ方向を該放熱フィン21の中央部に向かう方向に曲げることができる。これにより、導風ダクト25によって放熱フィン21の側面へ導いた空気の流れを放熱フィン21の中央部へ向かわせることができ、放熱フィン21全体を空気で効率良く冷却して放熱性能を向上させることができる。   In that respect, in the first embodiment, since the second air suction port 27 is provided at the end of the air guide duct 25 on the side of the heat dissipating fin 21, the air is sucked from the first air suction port 26 and the movable element 12. A flow of air flowing along the side surface and a flow of air sucked from the second air suction port 27 are caused to collide with each other near the side surface of the heat radiating fin 21, and the air flow direction is set at the center of the radiating fin 21. It can be bent in the direction it heads. As a result, the air flow guided to the side surface of the heat radiating fin 21 by the air guide duct 25 can be directed to the central portion of the heat radiating fin 21, and the entire heat radiating fin 21 is efficiently cooled with air to improve the heat radiating performance. be able to.

尚、上記実施例1,2では、可動子12の移動方向の前後両側面に、それぞれ導風ダクト25を配設して、2つの導風ダクト25と放熱フィン21によって可動子12の3面を効率良く冷却できるように構成したが、可動子12の1つの側面のみに導風ダクト25を設けた構成としても良く、或は、可動子12の3つ以上の面(但し固定子11と対向する面及び駆動対象物を取り付ける面を除く)に導風ダクト25を配設した構成としても良い。   In the first and second embodiments, the air guide ducts 25 are provided on both front and rear side surfaces in the moving direction of the mover 12, and the three surfaces of the mover 12 are formed by the two air guide ducts 25 and the heat radiation fins 21. However, the air guide duct 25 may be provided on only one side surface of the mover 12, or three or more surfaces of the mover 12 (provided that the stator 11 and It is good also as a structure which arrange | positioned the wind guide duct 25 in the surface which remove | excludes the surface which mounts an opposing surface and a drive target object.

また、放熱フィン21は、放熱プレート22の表面側に複数のフィン23(薄板)を平行に形成したものに限定されず、放熱プレートの表面側に複数の棒状の突起を格子状に形成したものを用いても良く、或は、板状又はブロック状のヒートシンクを放熱部材として用いても良い。   Further, the heat radiation fin 21 is not limited to a structure in which a plurality of fins 23 (thin plates) are formed in parallel on the surface side of the heat radiation plate 22, and a plurality of rod-shaped protrusions formed in a lattice shape on the surface side of the heat radiation plate. Alternatively, a plate-shaped or block-shaped heat sink may be used as the heat dissipation member.

11…固定子、12…可動子、12a…放熱面、14…コイル、16…高熱伝導部材、21…放熱フィン(放熱部材)、22…放熱プレート、23…フィン、24…冷却ファン、25…導風ダクト、26…第1の空気吸込み口、27…第2の空気吸込み口   DESCRIPTION OF SYMBOLS 11 ... Stator, 12 ... Movable element, 12a ... Radiation surface, 14 ... Coil, 16 ... High heat conduction member, 21 ... Radiation fin (heat radiation member), 22 ... Radiation plate, 23 ... Fin, 24 ... Cooling fan, 25 ... Air guide duct, 26 ... first air inlet, 27 ... second air inlet

Claims (5)

直線的に延びる固定子に沿って可動子を直線駆動するリニアモータにおいて、
前記可動子の放熱面側に放熱部材を配設すると共に、該放熱部材の表面に沿って空気を流して排気する冷却ファンを該放熱部材の表面側に配設し、
前記可動子の側面に、前記冷却ファンの排気作用によって空気を吸い込んで該可動子の側面に沿って流して前記放熱部材へ導く導風ダクトを配設したことを特徴とするリニアモータ。
In a linear motor that linearly drives a mover along a linearly extending stator,
A heat dissipating member is disposed on the heat dissipating surface side of the mover, and a cooling fan that exhausts air by flowing along the surface of the heat dissipating member is disposed on the surface side of the heat dissipating member.
A linear motor, characterized in that an air guide duct is provided on a side surface of the mover to suck air by an exhaust action of the cooling fan and flow along the side surface of the mover to guide the heat radiating member.
前記導風ダクトは、前記可動子の側面と前記放熱部材の側面の両方を覆うように配設され、該導風ダクトの両端の開口をそれぞれ第1の空気吸込み口と第2の空気吸込み口とし、前記冷却ファンの排気作用によって前記第1の空気吸込み口から吸い込まれて前記可動子の側面に沿って流れる空気の流れと前記第2の空気吸込み口から吸い込まれた空気の流れとが該放熱部材の側面付近で衝突することで、該空気の流れ方向が該放熱部材の中央部に向かう方向に曲がるように構成されていることを特徴とする請求項1に記載のリニアモータ。   The air guide duct is disposed so as to cover both the side surface of the movable element and the side surface of the heat radiating member, and the openings at both ends of the air guide duct are respectively formed as a first air inlet port and a second air inlet port. And the air flow sucked from the first air suction port by the exhaust action of the cooling fan and flowing along the side surface of the mover and the air flow sucked from the second air suction port are 2. The linear motor according to claim 1, wherein the linear motor is configured to bend in a direction toward a central portion of the heat radiating member by colliding near a side surface of the heat radiating member. 前記導風ダクトは、断面コ字状に形成され、該導風ダクトと前記可動子の側面とによって断面四角形状の空気流路が形成されていることを特徴とする請求項1又は2に記載のリニアモータ。   The air guide duct is formed in a U-shaped cross section, and an air flow path having a quadrangular cross section is formed by the air guide duct and a side surface of the mover. Linear motor. 前記放熱部材は、放熱プレートの表面側に複数のフィンを平行に形成した放熱フィンであり、該放熱プレートの裏面が前記可動子の放熱面と重ね合わされ、且つ、各フィン間の空隙の端が前記導風ダクト内の空気流路とつながるように構成されていることを特徴とする請求項1乃至3のいずれかに記載のリニアモータ。   The heat dissipating member is a heat dissipating fin in which a plurality of fins are formed in parallel on the surface side of the heat dissipating plate, the back surface of the heat dissipating plate is overlapped with the heat dissipating surface of the mover, and the end of the gap between the fins is The linear motor according to claim 1, wherein the linear motor is configured to be connected to an air flow path in the air guide duct. 前記導風ダクトは、前記可動子の移動方向の前後両側面にそれぞれ該可動子の移動方向の前後両側面と前記放熱部材の両側面の両方を覆うように配設されていることを特徴とする請求項1乃至4のいずれかに記載のリニアモータ。   The air guide duct is disposed on both front and rear side surfaces in the moving direction of the mover so as to cover both front and rear side surfaces in the moving direction of the mover and both side surfaces of the heat radiating member, respectively. The linear motor according to any one of claims 1 to 4.
JP2016527588A 2014-06-13 2014-06-13 Linear motor Active JP6386042B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065724 WO2015189979A1 (en) 2014-06-13 2014-06-13 Linear motor

Publications (2)

Publication Number Publication Date
JPWO2015189979A1 true JPWO2015189979A1 (en) 2017-04-20
JP6386042B2 JP6386042B2 (en) 2018-09-05

Family

ID=54833107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016527588A Active JP6386042B2 (en) 2014-06-13 2014-06-13 Linear motor

Country Status (2)

Country Link
JP (1) JP6386042B2 (en)
WO (1) WO2015189979A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206099A (en) * 1997-12-29 1999-07-30 Minolta Co Ltd Shaft-type linear motor
JP2002238238A (en) * 2001-02-06 2002-08-23 Yaskawa Electric Corp Cooler for linear motor
JP2003309963A (en) * 2002-04-11 2003-10-31 Yaskawa Electric Corp Cooling apparatus for linear slider
WO2006040913A1 (en) * 2004-10-14 2006-04-20 Fuji Machine Mfg. Co., Ltd. Linear motor cooling device
JP2010172071A (en) * 2009-01-20 2010-08-05 Fuji Mach Mfg Co Ltd Linear driving device and electronic circuit component mounter
WO2013145086A1 (en) * 2012-03-26 2013-10-03 富士機械製造株式会社 Linear motor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206099A (en) * 1997-12-29 1999-07-30 Minolta Co Ltd Shaft-type linear motor
JP2002238238A (en) * 2001-02-06 2002-08-23 Yaskawa Electric Corp Cooler for linear motor
JP2003309963A (en) * 2002-04-11 2003-10-31 Yaskawa Electric Corp Cooling apparatus for linear slider
WO2006040913A1 (en) * 2004-10-14 2006-04-20 Fuji Machine Mfg. Co., Ltd. Linear motor cooling device
JP2010172071A (en) * 2009-01-20 2010-08-05 Fuji Mach Mfg Co Ltd Linear driving device and electronic circuit component mounter
WO2013145086A1 (en) * 2012-03-26 2013-10-03 富士機械製造株式会社 Linear motor device

Also Published As

Publication number Publication date
WO2015189979A1 (en) 2015-12-17
JP6386042B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
KR101831196B1 (en) Heat-generating element cooling apparatus for inverter
JP2017172876A (en) Cooling device and projection display device
JP6632061B2 (en) Inverter
US20150369257A1 (en) Motor fan
US11604035B2 (en) Support plateheat dissipation apparatus
WO2016112648A1 (en) Heat dissipation device
JP2014093519A (en) Heat dissipation device and heat dissipation fins thereof
TW201622315A (en) Linear motor
JP6386042B2 (en) Linear motor
JP5135984B2 (en) Linear motor
JP2012004454A (en) Air cooling heat dissipation device
US8974193B2 (en) Synthetic jet equipment
JP6315081B2 (en) Power converter
US9409264B2 (en) Interleaved heat sink and fan assembly
JP2020027946A (en) Outer frame device of iron core of stationary motor having radiating wing and/or radiating hole extending outward
JP5797034B2 (en) Linear motor
JP2019129699A (en) Motor and heat dissipation device
CN211019756U (en) Heat sink device
JP2017112190A (en) Cooler and power converter
JP2005137151A (en) Linear motor
JP2010219085A (en) Heat sink for natural air cooling
TWI581545B (en) Linear motor
CN110411263A (en) Air-conditioning equipment and radiator structure
JP2007197094A (en) Heat radiator for elevator control part
JP5400690B2 (en) heatsink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6386042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250