WO2006040913A1 - Linear motor cooling device - Google Patents

Linear motor cooling device Download PDF

Info

Publication number
WO2006040913A1
WO2006040913A1 PCT/JP2005/017366 JP2005017366W WO2006040913A1 WO 2006040913 A1 WO2006040913 A1 WO 2006040913A1 JP 2005017366 W JP2005017366 W JP 2005017366W WO 2006040913 A1 WO2006040913 A1 WO 2006040913A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
linear motor
duct
cooling device
coil
Prior art date
Application number
PCT/JP2005/017366
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Nagasaka
Jianming Ye
Takayoshi Kawai
Original Assignee
Fuji Machine Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Mfg. Co., Ltd. filed Critical Fuji Machine Mfg. Co., Ltd.
Priority to JP2006540862A priority Critical patent/JP4963966B2/en
Priority to CN2005800334618A priority patent/CN101036280B/en
Publication of WO2006040913A1 publication Critical patent/WO2006040913A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a linear motor cooling device, and more particularly to cooling of a linear motor having a movable part provided with a coil.
  • a force that generates a moving thrust force that moves a movable part based on current supply to the coil causes the coil to generate heat, and the temperature of the movable part rises.
  • the linear motor described in Patent Document 1 below is provided with fins and fans in the movable part so as to be cooled.
  • the movable part is formed of a coil and an electromagnetic steel plate formed in a rectangular parallelepiped shape by a resin mold, and a plurality of fins are provided in parallel to the moving direction of the movable part on the upper surface and the lower surface, respectively, and the fan is movable part.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-309963
  • the linear motor cooling device described in Patent Document 1 has a problem that cooling cannot be said to be sufficient. Since the fins are provided on the upper surface and the lower surface, which are the outer surfaces of the movable part, the heat of the coil is difficult to be transmitted and heat is not sufficiently dissipated.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to improve the cooling performance of an apparatus for cooling a linear motor having a movable part provided with a coil.
  • a linear motor cooling device including a linear fixed portion and a movable portion that includes a coil and is movable along the fixed portion is (A) a heat collecting unit close to the coil. And the heat collecting part to the outside of the movable part, and the heat collected by the heat collecting part is moved out of the movable part. It is solved by including a heat dissipating member having a heat dissipating part to be discharged, and (B) a fin provided in the heat dissipating part of the heat dissipating member extending in a direction parallel to the moving direction of the movable part. .
  • the above-described problem also includes a linear motor cooling device including a linear fixed portion and a movable portion that includes a coil and is movable along the fixed portion.
  • a duct that extends and covers a space in which the heat dissipating part moves as the movable part moves
  • a ventilation device that ventilates the air in the duct.
  • Outside of the movable part means not only outside the coil but also outside the coil protection member when the coil is covered with a coil protection member such as a resin mold.
  • the heat release part may extend along the outer surface of the movable part, or may be extended away from the movable part.
  • a member made of a material having a high thermal conductivity is used as the heat radiating member.
  • a member made of a metal material having a high thermal conductivity can be a heat pipe.
  • a linear motor cooling device including a heat radiating member and fins
  • most of the heat generated by supplying current to the coil is collected by a heat collecting part close to the coil and released to the outside of the movable part by the heat radiating part.
  • the heat transferred to the heat radiating part is also released from the fins, and the heat radiating area is large enough to radiate heat, effectively cooling the movable part.
  • the fin is provided in a state extending in a direction parallel to the moving direction of the movable part, and resistance to movement of the movable part is not given as in the case where the fin is provided in a direction intersecting with the moving direction of the movable part.
  • the fin force heat is effectively deprived by the air flow around the movable part generated by the movement of the movable part, so that the cooling is performed better.
  • the ventilation device may be an air pushing device for pushing air into the duct or an air suction device for sucking air in the duct, or both.
  • a compressor, a blower, or a fan can be used as an air pushing device.
  • a vacuum pump, an aspirator (which uses a liquid or a gas as a fluid), a blower, or the like can be used as an air suction device.
  • Fan can be used.
  • the movable part is sufficiently cooled by the heat collection and heat radiation action of the heat radiating member, and the air force around the heat radiating part warmed by heat radiation is diffused around the linear motor, Raising the temperature of the member is prevented by the duct.
  • the air inside the duct is ventilated by a ventilator, and air is also taken into the duct external force, and the air heated by heat radiation passes through the duct, outside the machine where the linear motor is installed, and the machine If the work environment is bad, such as where it is far away from the machine, the machine will not be affected, and hot air will be discharged. The thermal deformation etc. can be suppressed.
  • the ventilator the effect of cooling the heat radiating portion by the flow of air generated in the duct is also obtained.
  • the movable part can be lightened compared to the case where it is provided on the movable part, and the vibration during addition and deceleration of the movable part can be reduced. It is done.
  • the thrust for moving the movable part can be small, the current supplied to the coil can be reduced, and the power consumption and heat generation can be reduced. Combined with the small size of the linear motor due to improved cooling performance, the linear motor can be made smaller and cheaper.
  • the duct covers the space where the heat radiating part moves, but the part corresponding to the part between the part of the heat radiating part that moves inside the duct and the part that moves outside the duct is vacated, allowing the movement of the heat radiating part.
  • the duct has an opening that opens to the outside in the entire moving direction of the heat radiating portion, but this opening is not closed except when passing through the heat radiating portion.
  • a shielding member that can be opened and closed is provided outside the door, and when the heat dissipating part is passed, the opening is opened to allow the heat dissipating part to move. Hope to prevent leakage.
  • claimable invention is at least the invention described in the claims.
  • This invention includes “the present invention” or “the invention of the present application, but may include a subordinate concept invention of the present invention, a superordinate concept of the present invention, or an invention of another concept").
  • each aspect is divided into sections, each section is given a number, and the other sections are numbered as necessary. This is for the purpose of facilitating understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the claimable invention to those described in the following sections.
  • a linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion
  • a heat-dissipating member having a heat-collecting part adjacent to the coil and a heat-collecting part force extending to the outside of the movable part, and a heat-dissipating part that releases heat collected by the heat-collecting part to the outside of the movable part;
  • a fin provided on the heat dissipating part of the heat dissipating member extending in a direction parallel to the moving direction of the movable part;
  • the linear motor has a movable part in a cylindrical shape and is placed in a state surrounding the fixed part.
  • the movable part may be a flat plate type linear motor that moves along the fixed part and is arranged so as to face the fixed part.
  • a linear motor including a linear fixed part and a movable part having a coil and movable along the fixed part may be claimed as a linear synchronous motor, a linear induction motor, a linear stepping motor. It can be applied to various linear motor cooling devices such as linear DC motors. The same applies to the linear motor cooling device described in item (14).
  • the movable part includes a resin mold that covers the outside of the coil, the heat collecting part of the heat radiating member is disposed between the coil and the resin mold, and the heat radiating part is a resin resin.
  • the linear motor cooling device according to the item (1) which is extended to the outside through a part of the mold.
  • the coil is not filled even if the gap between the wires is filled with grease. It may be. In the former case, it is desirable that the heat collecting portion is disposed in close contact with the surface of the filled resin, and in the latter case, the heat collecting portion is disposed in close contact with the outer surface of the coil.
  • the linear motor is a coreless linear motor that does not hold the coil by the core and does not have a core, the heat collecting part is placed on the surface of the filled resin! The If the linear motor is a motor with a core in which the coil is held by the core and has a core, the heat collecting part cannot be brought into close contact with the surface of the filling resin or the outer surface of the coil. What is necessary is just to adhere
  • the coil is covered and protected by a resin mold, but the heat collecting part is directly in contact with the coil without going through the resin mold, or is directly in contact (in the gap between the wires). It can be dissipated from the heat-dissipating part by being sufficiently heated and disposed close to the coil through the core.
  • the heat collected by the heat radiating member is lower than that of the heat radiating member, so that the heat transferred to the resin mold is effectively released outside the movable part.
  • the coil may have a cylindrical shape, or a polygonal shape such as a rectangle having a cross section perpendicular to the center line, such as a rectangle or a square such as a square.
  • the heat collected from almost the entire coil is released to both sides of the coil, and the heat is uniformly and effectively discharged.
  • the “substantially symmetrical” includes a case where two positions are symmetric and a case where it can be said to be symmetric even if the position is slightly deviated from the symmetry.
  • Heat radiating member force A semi-cylindrical heat collecting part covering almost half of the cylindrical coil in the circumferential direction, and one end force of the heat collecting part. Cylindrical coil center line force.
  • the linear motor cooling device according to the item (4) including two heat radiating plates each having a heat radiating portion that is provided, the heat radiating portions extending in opposite directions.
  • the heat dissipating part can be extended along the outer side surface of the movable part.
  • the fins can be provided on both sides of the projecting part if the heat radiating part protrudes in a cantilevered manner from the outer side surface. Further, as described in the next section, if fins are provided in the portions other than the base end of the protrusion, the space in which the heat radiating portion and the fin move can be covered almost completely by the duct.
  • the fin is provided in a portion excluding the base end portion of the projecting portion, and the outside of the cover that covers the fin and the portion excluding the base end portion of the heat radiating portion extends along the fixed portion, and the movable portion As the heat sink moves, the heat dissipating part and the fins are provided stationary so as to cover the space in which they move.
  • the linear motor cooling device according to item (6).
  • the air heated by the released heat is diffused to the surroundings and the temperature of the peripheral members and equipment is prevented by the duct.
  • the duct is provided stationary so as to cover the space in which the heat dissipating part moves, and the effect of preventing the heated air from spreading over the entire moving area of the moving part can be obtained. Also, the relative movement between the fins and the surrounding air that occurs as the movable part moves is secured by the duct, so that the fins are reliably cooled.
  • the fins are cooled by the relative movement of the air generated by the movement of the movable part, and are also cooled by the wind that is forcibly generated by the fan, so that sufficient heat dissipation is achieved.
  • the fin includes a first fin and a second fin extending from an intermediate portion in the moving direction of the movable portion toward each of both ends, and the fan includes the first fin and the second fin.
  • the linear motor cooling device according to item (8) including a first fan and a second fan provided for each of the fins.
  • the cooling air can be generated in each of the first and second fins in a direction parallel to the moving direction of the movable part and in a forward or reverse direction. If the fin includes the first and second fins, a space is provided between the first fin and the second fin, which can be used as an air intake or exhaust port.
  • the cooling can be performed in various modes based on the air blowing.
  • the first fan and the second fan generate cooling air that flows toward the intermediate portion, and the cooling air that flows from the first fan side to the intermediate portion and the second air flow in the intermediate portion.
  • the cooling air flowing from the fan side to the middle part is designed to flow away from the moving part force.
  • the linear motor cooling device according to any one of (9) and (11), wherein an internal air guide member is provided.
  • the cooling air generated by the first and second fans is forced to flow toward the intermediate part in the moving direction of the movable part.
  • it is possible to avoid a decrease in the flow velocity in the vicinity of the intermediate portion due to collision in the intermediate portion.
  • (13) Includes a duct that covers the fin and extends in parallel with the moving direction of the movable part (1) No !, (6) and (8) No, or (12) The linear motor cooling device described.
  • the duct moves with the moving part, and the wind generated by the movement of the moving part flows along the fins to promote cooling.
  • cooling air is generated in the duct by the fan, and the fins are surely exposed to the cooling air so that cooling is performed efficiently.
  • a linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion
  • a heat-dissipating member comprising a heat-collecting part adjacent to the coil and its heat-collecting part force, extending to the outside of the movable part, and releasing the heat collected by the heat-collecting part to the outside of the movable part;
  • a duct that extends along the fixed part and covers a space in which the heat dissipating part moves as the movable part moves;
  • a ventilator that ventilates the air in the duct
  • the linear motor cooling device including fins provided in the heat radiating portion of the heat radiating member so as to extend in a direction parallel to a moving direction of the movable portion.
  • the heat generated in the coil is released from the heat radiating section, and the fin force is also released, so that the coil is cooled well.
  • blower For example, a fan or a blower is used as the blower.
  • the blower When a ventilation device is installed at one end in the longitudinal direction of the duct, the blower sends air to the duct. It is good also as an intake air blower which sucks air out of a duct as a feed air blower.
  • the blower When the blower is provided at both ends of the duct in the longitudinal direction, one is a feeding fan and the other is an intake fan, so that air in the duct is reliably ventilated.
  • the ventilation device includes a connection duct connected to one end of the duct as a main duct, and a blower provided at the tip of the connection duct. (14) or (15) Linear motor cooling device.
  • blower provided at the tip of the connection duct can be used as a feed fan. If an intake blower is used, it is sufficient to provide a connection duct only at one end of the main duct. Air can be easily prevented from leaking to the surroundings.
  • the blower provided at the tip of the connection duct can be provided in common for a plurality of heat generating parts. For example, in many cases, a single machine is provided with heat generating parts such as a plurality of electric motors (including linear motors). In that case, each machine is connected to the main dart provided on each of the heat generating parts. The ducts are connected and the connecting ducts are joined together, and a blower or other blower is provided downstream of the joining part. According to this aspect, it becomes easy to exhaust the warm air completely out of the machine.
  • connection duct may be further connected and joined to the junction of at least one connection duct in each of the plurality of machines constituting the work line, and a blower may be provided downstream of the junction.
  • connection duct may be connected to and merged with the most downstream connection duct junction of each line, and a blower may be provided on the downstream side of the junction.
  • FIG. 1 is a front sectional view showing a linear motor cooling device and a linear motor that are embodiments of the claimable invention.
  • FIG. 2 is a plan view schematically showing the linear motor cooling device and the linear motor except for a table and the like that are moved by the linear motor.
  • FIG. 3 is a side view (partial cross section) showing a shielding curtain covering the opening of the duct of the linear motor cooling device together with the heat radiating portion of the heat radiating plate.
  • FIG.4 An electronic circuit component mounting machine equipped with the above linear motor cooling device and linear motor. It is a top view shown roughly.
  • FIG. 5 is a front view showing a Y-axis moving device of the electronic circuit component mounting machine.
  • FIG. 7 is a plan view schematically showing the linear motor cooling device and the linear motor shown in FIG. 6 except for a table and the like.
  • FIG. 8 is a side view schematically showing fins, fans and ducts of the linear motor cooling device shown in FIG. 6.
  • FIG. 9 is a plan view schematically showing a linear motor cooling device according to still another embodiment, excluding a tape and the like showing the linear motor.
  • FIG. 10 is a side view schematically showing fins, fans, ducts, etc. of the linear motor cooling device shown in FIG.
  • FIG. 11 is a plan view schematically showing a linear motor cooling device according to still another embodiment, excluding a tape and the like showing the linear motor.
  • FIG. 12 is a side view schematically showing fins, fans, ducts and the like of the linear motor cooling device shown in FIG. 11.
  • FIG. 13 is a plan view schematically showing a linear motor cooling device according to still another embodiment.
  • FIG. 14 is a plan view schematically showing a linear motor cooling device according to still another embodiment.
  • Linear motor cooling device 12 Linear motor 14: Stator 16: Mover 32: Coil 40: Grease mold 64: Heat sink 66: Heat collector 68: Heat sink 74: Projection 76: Base end 78: Fin 86: Duct 100: Fan 110: Linear motor cooling device 112: Heat sink 114: Heat collector 116: Heat sink 120: Projection 122: Base end 130, 132: Fin 136, 138: Duct 140, 142: Fan 160: Linear motor cooling device 164: Air guide plate 166: Heat sink plate 172: Heat sink 200: Linear motor cooling device 202, 204: Fan 220: Linear motor cooling device 222: Main duct 224: Connection duct 226: Blower 228: Ventilator 238: Main duct 240: Connection duct 242: Ventilator 260: Connection duct 262: Blower BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a linear motor cooling device 10 and a linear motor 12 cooled by the linear motor cooling device 10 according to an embodiment of the claimable invention.
  • the linear motor cooling device 10 and the linear motor 12 of the present embodiment are provided in an electronic circuit component mounting machine.
  • the electronic circuit component mounting machine is a type of work machine, and is a type of anti-circuit board working machine that performs work on the circuit board, and mounts the electronic circuit component on the circuit board.
  • a circuit board is a type of component mounting board, and a printed board is an example.
  • the electronic circuit component mounting machine includes a component supply device 300 for supplying an electronic circuit component, a substrate holding device 302 for holding a circuit board, and a component supply device 300.
  • a mounting head 306 as a working head that receives electronic circuit components and mounts them on the circuit board 304, a relative movement device 308 that relatively moves the component supply device 300, the substrate holding device 302, and the mounting head 306, and at least the substrate.
  • the control device 310 is mainly composed of a computer, and the component supply device 300 and the like are provided on a bed 312 provided with a fixed position.
  • the bed 312 constitutes the main body of the electronic circuit component mounting machine.
  • the electronic circuit component mounting machine includes a mark imaging device that images a reference mark provided on the circuit board 304 and a component imaging device that images an electronic circuit component held by the mounting head 306.
  • the relative movement device 308 includes a mounting head 306 parallel to the component mounting surface of the circuit board 304 held by the board holding device 302.
  • a mounting head lifting / lowering device 318 that is a mounting head orthogonal direction moving device that moves in a vertical direction (Z-axis direction) that is a direction orthogonal to the two directions.
  • the relative movement device 308 is a component supply device in which the mounting head 306 is fixed in position. Then, the electronic circuit component is received from the component supply device 300 and moved to the substrate holding device 302, and the electronic circuit component is mounted on the circuit board 304 held by the substrate holding device 302.
  • the substrate holding device 302 is, for example, a device that supports the circuit board 304 carried by the substrate transfer device 320 with a downward force and clamps the edge portion.
  • the mounting head horizontal movement device 316 includes an X-axis movement device 322 that moves the mounting head 306 in the X-axis direction, and a Y-axis movement device 324 that moves the mounting head 306 in the Y-axis direction. It is used as a drive source for the axis moving device 322 and the Y axis moving device 324, and moves the X axis moving member 326 and the Y axis moving member 328 in the X axis direction and the Y axis direction, respectively.
  • the X-axis moving device 322 of the electronic circuit component mounting machine includes a pair of linear motors 12 as shown in FIG. 4, and these linear motors 12 are controlled in common by the control device 310 at the same time. Move.
  • a linear motor cooling device 10 is provided for each of the two linear motors 12 of the X-axis moving device 322 and the one linear motor 12 of the Y-axis moving device 324.
  • the electronic circuit component mounting machine also includes a head rotating device that rotates the electronic circuit components held by the component holder 330 by rotating the mounting head 306 about its axis.
  • the head rotating device and the mounting head lifting / lowering device 318 are configured in the same manner as the device described in, for example, Japanese Patent Laid-Open No. 4-372199.
  • Electronic circuit components are mounted on the circuit board 304 by mounting devices including the mounting head 306, the relative movement device 308, and the rotating device.
  • Each of the linear motor 12 and the linear motor cooling device 10 of the X-axis moving device 322 and the Y-axis moving device 324 has the same configuration, and hereinafter, a pair of the linear motor 12 and the linear motor of the X-axis moving device 322 respectively.
  • Each one of the cooling devices 10 will be taken out and will be described representatively with reference to FIGS.
  • the linear motor 12 is a cylindrical linear motor in this embodiment, and is a three-phase coreless linear motor.
  • the stator 14 as a fixed portion and the mover as a movable portion.
  • the table 18 as a moving member that is a driven member is moved along a preset route.
  • the table 18 is provided with the X-axis moving member 326.
  • the stator 14 includes a plurality of permanent magnets 22 and a rod 24 as a magnet holding member made of a magnetic material.
  • Rod 24 has a circular cross-sectional shape and is straight. Is made.
  • Each of the plurality of permanent magnets 22 has, for example, a ring shape, the outer peripheral side being an N pole, the inner peripheral side being an S pole, the outer peripheral side being an S pole, and the inner peripheral side being an N pole
  • a spacer (not shown) made of non-magnetic material is sandwiched between the adjacent permanent magnets 22 at the same pitch on the surface of the rod 24 so that the magnetic poles are alternately changed in the axial direction. It is provided in.
  • the stator 14 has a length necessary for the movement of the mover 16, and is horizontally disposed on the base 26 with both ends in the axial direction supported by support members 28 (see FIG. 2).
  • the base 26 is provided on the bed 312 and the stator 14 is provided such that the longitudinal direction thereof is parallel to the X-axis direction.
  • the mover 16 includes a plurality of coils 32 (only one is shown in FIG. 1). In these linear motors 12, these coils 32 are each wound into a cylindrical shape by winding the wire, and the gap 34 between the wires is filled with the resin 34, and the outer peripheral side is also covered with the resin. However, the ring-shaped spacers (not shown) made of a non-magnetic material are provided concentrically and integrally at equal intervals.
  • the mover 16 is fitted on the outside of the stator 14 with a gap 36 in the radial direction, and is movable along the axial direction of the stator 14. It is covered and fixed to the rear surface of the table 18 or the lower surface which is the surface of the base 26 or the stator 14 side.
  • the resin of the resin mold 40 is the same resin as the filled resin 34 in this embodiment.
  • the table 18 is guided on the base 26 by a linear guide 48 and is provided so as to be movable in a straight line in a direction parallel to the longitudinal direction of the stator 14.
  • the linear guide 48 is composed of a guide rail 50 as a pair of guide members provided on the base 26 and a pair of sliders 52 which are provided on the table 18 and fitted to the guide rail 50 so as to be relatively movable. And rolling elements (for example, balls, not shown) that are held by the slider 52 in a circulatory manner.
  • a linear encoder 54 is provided so that the position of the table 18 in the moving direction or the position of the X-axis moving member 326 can be detected.
  • the linear encoder 54 is a kind of position detection device.
  • the linear scale 56 is provided on the base 26 in parallel with the moving direction of the table 18, and the movement detection is provided on the table 18 and is moved along the linear scale 56. And 58.
  • the linear encoder 54 is provided for one of the two linear motors 12 in the X-axis moving device 322.
  • About two linear motors 12 Each of the linear scales 56 may be provided, and the two linear motors 12 may be controlled based on the position detection result by the linear scales 56, and the movement of the X-axis moving member 326 may be controlled.
  • the X-axis moving device may be a device including one linear motor and one linear motor cooling device.
  • the linear motor cooling device 10 will be described.
  • the heat generated in the coil 32 by supplying current is dissipated by at least one heat sink 64 in this embodiment.
  • Each of these heat sinks 64 is a kind of metal material having excellent heat conductivity in the present embodiment, and is made of a material having excellent heat dissipation characteristics per unit mass (heat dissipation Z mass), for example, an aluminum alloy.
  • the heat collecting part 66 that forms a semi-cylindrical shape and covers almost half of the plurality of cylindrical coils 32, and the one end force of the heat collecting part 66 and the center line force of the coil 32 extend in a direction away from each other. And a plate-like heat radiation portion 68.
  • Each heat collecting portion 66 of the two heat radiating plates 64 is covered with the resin mold 40 together with the plurality of coils 32 while being in close contact with the surface of the resin 34.
  • the heat collecting part 66 is disposed between the plurality of coils 32 and the resin mold 40, and is provided in the state of being close to the coil 32 and being in direct contact with the two heat collecting parts.
  • Portion 66 covers almost the entire outer periphery of coil 32. The filling of the resin 34 into the gap between the wires of the coil 32 and the molding of the coil 32 and the heat collecting part 66 by the resin may be performed simultaneously.
  • each of the heat radiating portions 68 of the two heat radiating plates 64 is two portions separated from each other in the diameter direction of the coil 32, and two positions symmetrical to the center line of the coil 32.
  • the direction perpendicular to the plate surface of the table 18 or the moving plane of the table 18 or in the vertical direction that is the direction in which the table 18 and the base 26 are separated from each other It extends in a direction parallel to the plate surface, horizontally and in a direction opposite to each other, and extends through the part of the resin mold 40 to the outside.
  • the projecting end of the heat dissipating part 68 is free, and the heat dissipating part 68 is projected from the outer surface of the resin mold 40 (in this embodiment, the outer surface of the resin). It extends to the outside of the child 16.
  • both end portions of the heat dissipating portion 68 separated in the moving direction of the mover 16 are each provided with a guide portion 72 that is made thinner toward the end side.
  • the tip of the guide 72 is rounded. The reason for providing the guide 72 will be explained later.
  • a plurality of fins 78 are provided on a portion excluding the base end portion 76 of the protruding portion 74 protruding outside from the coil 32 of the heat radiating portion 68.
  • the fin 78 is an aluminum alloy that is a kind of metal material having excellent heat transfer properties and a kind of metal material having excellent heat dissipation characteristics per unit mass, like the heat sink 64.
  • a thin plate made of metal is bent into an uneven shape, and fins are formed on the upper surface 80, which is the surface on the table 18 side, which is the first surface of the protrusion 74, and the lower surface 82, which is the surface on the base 26 side, which is the second surface.
  • a plurality of 78 are fixed in a state extending in a direction parallel to the moving direction of the mover 16!
  • the heat dissipating portions 68 of the two heat dissipating plates 64 have different vertical positions, and the fin 78 fixed to the upper surface 80 and the fin 78 fixed to the lower surface 82 are different.
  • the height (projection length from the heat radiation part 68) is different.
  • the fin 78 fixed to the upper surface 80 of the lower heat radiating part 68 and the fin 78 fixed to the lower surface 82 of the lower heat radiating part 68 have the same height in the vertical direction.
  • the fins 78 fixed to the lower surface 82 of the heat dissipating part 68 and the fins 78 fixed to the upper surface 80 of the lower heat dissipating part 68 have the same height, and the latter is higher than the former. Yes.
  • each of the two heat sinks 64 the distance from the tip of the fin 78 fixed to the upper surface 80 to the tip of the fin 78 fixed to the lower surface 82 is the same, and each upper surface 80 of the two heat sinks 64
  • the front end surface of the fixed fin 78 is positioned in the same horizontal plane, and the lower end surface 82 of the fixed fin 78 is positioned in the same horizontal plane.
  • the fins may be formed integrally with the heat radiating plate 64.
  • the base 26 is provided with a pair of ducts 86 along the stator 14 as shown in FIG.
  • Each of these ducts 86 is provided on both sides of the stator 14, and each of the two fins 64 has fins fixed to the portions excluding the base end portion 76 of the heat radiating portions 68 of the two heat radiating plates 64 and the upper surface 80 and the lower surface 82, respectively.
  • 78 and is provided stationary in a state of covering the space in which the heat dissipating portion 68 and the fin 78 move as the mover 16 moves.
  • the duct 86 is in the longitudinal direction, and both ends separated in the moving direction of the mover 16 are each formed in a tubular shape opened to the outside of the linear motor 12, as shown in FIGS. 1 and 3.
  • FIG. 2 is a diagram schematically showing the linear motor cooling device 10 and the linear motor 12, in which components such as the duct 86 are schematically illustrated. The upper wall of the duct 86 is omitted and the mover 16 is omitted. It is shown in a state where it can be seen.
  • the opening 88 is closed by a shielding curtain 90 as a shielding member provided in the duct 86.
  • the shielding curtain 90 is made of a flexible material, for example, a thin sheet made of synthetic resin, forms a belt-like shape, and has an opening 88 of the dust 86 on one side edge parallel to the longitudinal direction. It is fixed to the upper part of the opening and closes the entire opening 88. The other side edge of the shielding curtain 90 and its lower end are free, and the opening 88 can be opened.
  • a fan 100 as a blower which is a type of ventilation device, is provided in each longitudinal opening at both ends of the pair of ducts 86, respectively.
  • the duct 86 and the fan 100 are provided on the stator 14 side.
  • these fans 100 are provided so as to be rotatable about an axis parallel to the longitudinal direction of the duct 86 and parallel to the moving direction of the mover 16.
  • Each of the pair of ducts 86 is provided so as to cover the fixed fins 78 on the upper surface 80 and the lower surface 82 of the protrusion 74 of the heat sink 64, respectively, and the fan 100 is opposed to the fins 78 fixed to the upper surface 80.
  • the wind is also applied to the fin 78 fixed to the lower surface 80.
  • the Y-axis moving device 324 is provided on an X-axis moving member 326 as shown in FIG.
  • the linear motor 12 and the linear motor cooling device 10 are such that the plate surface or moving plane of the table 18 is vertical and is perpendicular to the component mounting surface of the circuit board 304 held by the board holding device 302.
  • the heat radiating portion 68 of the heat radiating plate 64 is provided in a state of extending in the vertical (vertical) direction of the heat collecting portion 66 force.
  • the Y-axis moving member 328 constitutes the table 18, or the Y-axis moving member 328 is provided on the table 18.
  • the X-axis moving member 326 constitutes the base 26, or the base 26 force S is provided on the X-axis moving member 326.
  • a pair of ducts 86 of the linear motor cooling device 10 that cools the linear motor 12 of the Y-axis moving device 324 are provided along the stator 14 provided in parallel in the Y-axis direction on the X-axis moving member 326. Yes.
  • the supply of the drive current to the coil 32 generates a moving magnetic field in the coil 32 and the field magnetic flux generated by the permanent magnet 22.
  • the fan 100 is rotated. At this time, as indicated by an arrow in FIG. 2, the fan 100 provided at one end portion in the longitudinal direction of the duct 86 is rotated so as to send air into the duct 86, and the fan provided at the other end portion. 100 is rotated so that the air in the duct 86 is sucked out, and a flow of air flowing in one direction in the longitudinal direction is generated in the duct 86.
  • the mover 16 is reciprocated along the stator 14, in this embodiment, the direction of the air flow generated by the fan 100 related to the moving direction of the mover 16 is constant.
  • Both ends of the duct 86 are opened to the outside of the linear motor 12, and air is sent into the duct 86 from the outside of the linear motor 12 by one fan 100, and the other fan 100 Air force in the duct 86
  • the air is exhausted outside the duct 86 and out of the linear motor 12, and the air in the duct 86 is forcibly ventilated.
  • the temperature of the air fed into the duct 86 is lower than the temperature of the fin 78.
  • the fin 78 provided in a state extending in a direction parallel to the moving direction of the mover 16 is cooled by the fan 100 in the duct 86. Cooled well by wind.
  • the heat dissipating section 68 and the fin 78 are covered with the duct 86, the heat dissipating section 68 and the fin 78 are surely positioned in the cooling air, and the cooling is surely performed.
  • the air is exhausted outside the linear motor 12 without increasing the temperature of the peripheral members and equipment of the linear motor 12.
  • the fins 78 are cooled by the relative movement of the air generated as the mover 16 moves, and are also cooled by the wind that is forcibly generated by the fan 100, so that the heat radiation is sufficiently performed.
  • the relative movement of the air accompanying the movement of the mover 16 is secured by the duct 86, and the fins 78 are reliably cooled.
  • both ends of the heat dissipating section 68 separated in the moving direction of the mover 16 are provided with a plan interior 72, and the shielding curtain 90 can be easily turned up by the guide section 72. .
  • the shielding curtain 90 After passing through the heat dissipating section 68, the shielding curtain 90 returns to the state in close contact with the duct 86 by the negative pressure generated by the air flow in the duct 86, and closes the opening 88.
  • the opening 88 is kept almost entirely closed, and the air in the duct 86 is well avoided from leaking partial forces other than the openings at both ends in the longitudinal direction, and ventilation by air inflow and intake air is prevented. Done well.
  • the heat generated from the coil 32 is radiated well, and the linear motor 12 is cooled well.
  • This linear motor 12 is a coreless linear motor. Compared to a linear motor with a core, the supply current required for obtaining the same torque is large and the heat generation is large, but it is cooled well.
  • the two heat sinks 64 and the plurality of fins 78 provided on them are made of an aluminum alloy and have a large amount of heat dissipation with respect to the mass. Heat dissipation can be obtained.
  • the linear motor 12 is used as a drive source, and the position of the table 18 is controlled based on the position detection of the linear encoder 54, so that high control accuracy can be obtained.
  • a rotary motor is used as a drive source, a movement mechanism including a screw shaft and nut is provided between the driven member and the moving member. Therefore, the moving amount of the moving member is strictly equal to the operating amount of the rotary motor. It does not correspond and includes an uncertain fluctuation component due to elastic deformation of the kinematics. Therefore, even if the position of the moving member is detected by the linear encoder and the operation of the rotary motor is controlled based on the detection result, it is inevitable that the position of the moving member is affected by the change in the fluctuation component.
  • the linear motor 12 is cooled well and thermal deformation of each part is reduced, and the position control of the moving member is performed by the combination of the linear motor 12 and the linear encoder 54.
  • Both the X-axis moving member 326 and the Y-axis moving member 328 are accurately moved to predetermined positions, and the mounting head 306 is moved from the component supply device 300, both by eliminating the influence of deformation.
  • the electronic circuit component is taken out and moved to a work position such as a component mounting position where the electronic circuit component is mounted on the circuit board 304 with high accuracy, and the mounting operation is performed with high accuracy.
  • the duct 86 and the fan 100 are provided with fixed positions, and the mass of the mover 16 is smaller than when the mover 16 is provided, and cooling is performed efficiently.
  • the current supplied to the coil 32 can be increased and the thrust required for driving the mover 16 can be obtained, while the linear motor 12 has a small capacity and can be made inexpensive. Since the coreless linear motor does not have a core, it is light and can suppress an increase in the mass of the mover 16.
  • the linear motor 12 may be used as a drive source for the mounting head lifting device 318, and the linear motor cooling device 10 may be provided for cooling.
  • the linear motor cooling device 110 of this embodiment a plurality of fans are supported by the mover and moved together with the mover to generate cooling air in the direction along the fins. Therefore, in this embodiment, the outer surface force of the mover 16 of the heat dissipating part 116 extended from the respective heat collecting parts 114 of the two heat dissipating plates 112 is protruded in a cantilevered manner. As shown schematically in FIG. 7 and FIG.
  • the intermediate portion in the moving direction of the mover 16 is notched and a notch 124 is provided, and the portion of the protrusion 120 excluding the base end 122 is
  • a plurality of fins 130 are parallel to the moving direction of the mover 16 on each of the upper surface 126 as the first surface and the lower surface 128 as the second surface on one side in the moving direction of the mover 16 with respect to the notch 124.
  • a plurality of fins 132 are provided on the upper surface 126 and the lower surface 128 on the other side of the cutout portion 124 of the protrusion 120.
  • Each of the fins 130 and 132 also has an intermediate force in the moving direction of the mover 16 extending toward each of both ends.
  • a space 134 is provided in the corresponding part.
  • the openings on the side opposite to the space 134 of the ducts 136 and 138 correspond to the fan 140 and 142 force fins 130 and 132, respectively, and the intermediate side in the moving direction of the mover 16 between the fin 130 and the fin 132 is It is provided so as to be rotatable around an axis parallel to the moving direction of the mover 16 in a state close to the opposite end.
  • the fans 140 and 142 are supported by the movable element 16 via the ducts 136 and 138 and the heat radiating plate 112, and move together with the movable element 16.
  • the heat generated in the coil 32 by the current supply is collected by the heat collecting unit 114 of the heat radiating plate 112 and transmitted to the heat radiating unit 116, and the heat radiating rod 16 and the fin 130. , 132 heat is dissipated.
  • the ducts 136 and 138 and the fans 140 and 142 are moved together with the mover 16. At this time, the fans 140 and 142 are rotated in the direction in which air is sucked out from the ducts 136 and 138 as indicated by arrows in FIGS. Therefore, the space between the two ducts 136 and 138 and the space 134 are sucked into the external air force S ducts 136 and 138, and the fins 130 and 132 are deprived of heat!
  • the opening force of the ducts 136 and 138 opposite to the space 134 side and opposite to each other is discharged.
  • fins 130, 132, ducts 136, 138 and fans 140, 142 force S is provided, and the force that is moved together with the mover 16 is removed from the space 134 between the fin 130 and the fin 132 by removing the heat from the fins 130 and 132.
  • the mover 16 is exhausted from the middle of the moving direction. It is.
  • an air guide plate 164 as an air guide member is provided in the space 134.
  • the air guide plate 164 is made of an aluminum alloy, which is a kind of metal material having high heat conductivity and excellent heat dissipation characteristics per unit mass, as in the case of the heat sink 166, as shown in FIG.
  • it is provided with guide portions or air guide portions 168 and 170 which are inclined upward (in a direction approaching the table 180) as they move away from the fins 130 and 132, and are fixed to the heat sink 166.
  • the heat sink 166 is provided with a notch 174 at the intermediate portion in the moving direction of the mover 16 of the heat sink 172, and a wind guide plate at the mounting portion 176 provided at the notch 174.
  • 164 is fixed.
  • the air guide plate 164 is opposed to the fins 130 and 132 fixed to the upper surface, which is the first surface of the heat radiating portion 172, and to the fins 130, 132 fixed to the lower surface, which is the second surface of the heat radiating portion 172. It is provided to do.
  • a portion corresponding to the air guide plate 164 of the table 180 is provided so as to penetrate the opening 182 force table 180 in the vertical direction which is the thickness direction.
  • This linear motor cooling P device 160 (This is a fan 140, 142 ⁇ , ducts 136, 138, and the opening force of the outer side, which is the opposite side to the intermediate side in the moving direction of the movable element 16, The air is rotated so as to send outside air into the ducts 136 and 138, and cooling air flowing toward the intermediate portion in the moving direction of the mover 16 is generated. The cooling air takes heat from the fins 130 and 132 while flowing in the ducts 136 and 138 toward the middle side in the moving direction of the mover 16, and at the same time, the air guide portion 168 of the air guide plate 164.
  • the air guide plate 164 is made of a metal having high heat conductivity, and also has a function of releasing heat transferred from the heat radiating portion 172.
  • fins 130 and 132, ducts 136 and 138, and an air guide plate 164 are provided as in the linear motor cooling device 160.
  • a force fan 202, 204 force fins 130, 132 that are provided and moved together with the mover 16 are provided close to the end on the intermediate side in the moving direction of the mover 16.
  • Fans 202 and 204 are provided in the openings of the ducts 136 and 138 on the middle side in the moving direction of the mover 16, and are positioned between the air guide plate 164 and the fins 130 and 132, respectively. . Further, as shown in FIG.
  • the fans 202 and 204 have their rotational axes moving in a vertical plane parallel to the moving direction of the moving element 16 (in a direction perpendicular to the plate surface of the table 180).
  • the direction is inclined in the direction toward the upper side (toward the side of the table 180), that is, in the exhaust direction, as the distance from the fins 130 and 132 increases.
  • the opening of the ducts 136, 138 on the side opposite to the intermediate portion side in the moving direction of the mover 16 is increased in cross-sectional area as the intermediate force is increased, and the tapered guide portion is increased.
  • introduction ⁇ 208 powers are provided. In FIG. 11, the illustration of the introduction rod 208 is omitted.
  • This linear motor cooling P device 200 [Koo! Fans 202, 204 ⁇ , ducts 136, 138, the opening force on the opposite side of the intermediate part in the moving direction of the movable element 16 is also the ducts 136, 138. Force that is rotated so as to suck in outside air. Because the axis of rotation is inclined, the air taken into the ducts 136 and 138 is cooled by the fins 130 and 132, and the duct The air is discharged obliquely upward from 13 6 and 138 to the table 18 side, and is smoothly discharged upward along the air guide portions 168 and 170 of the air guide plate 164. Further, the outside air is satisfactorily sucked into the ducts 136 and 138 by the guidance of the introduction parts 206 and 208, and the fins 130 and 132 are efficiently cooled.
  • the linear motor cooling device 220 of the present embodiment extends along the stator, covers the space where the heat radiating portion moves as the mover moves, and is fixed to the base.
  • the ventilator 228 includes a connecting duct 224 connected to one end of the main duct 222 and a blower 226 which is a type of blower provided at the tip of the connecting duct 224.
  • the linear motor cooling device 220 is provided in the electronic circuit component mounting machine, and cools the linear motor that is the drive source of the X-axis moving device.
  • the linear motor cooling device 220 is provided with two ducts that cover the heat radiation portions and fins of the two heat radiation plates, and each of these ducts constitutes a main duct 222, and each of the two main ducts 222 has an end portion.
  • Connection duct 224 is connected.
  • two main ducts 222 as main ducts and connection ducts 224 connected to them are collectively shown as one.
  • the blower 226 is common to other linear motor cooling devices 230 and motor cooling devices 232, 234, 236, for example.
  • the linear motor cooling device 230 is configured in the same manner as the linear motor cooling device 220, and the connecting duct 240 is connected to the main duct 238, and the force that forms the ventilation device 242 together with the blower 226.
  • This is a device that cools the linear motor that is the drive source of the Y-axis moving device provided on the X-axis moving member that moves in the X-axis direction of the mounting head moving device.
  • the connection duct 240 has flexibility.
  • the movement of the main duct 238 provided for the linear motor of the Y-axis moving device that moves with the X-axis moving member is assumed to follow.
  • the motor cooling devices 232, 234, 236 are motors other than the linear motor, and some of them are used for cooling the rotary motor, for example, a main duct 244 provided for the rotary motor, and a main data 244. And a connecting duct 246 connected to one end of the connecting duct.
  • the main duct 244 is provided in at least one of the inside and the outside of the rotary motor. When the main duct 244 is provided in the rotary motor, it is attached to the motor housing, and when it is provided outside, it is provided so as to surround the outer periphery of the motor housing.
  • the main duct 244 is installed in the rotary motor, use the motor housing as the main duct.
  • the connection duct 246 is flexible and follows the movement of the mounting head. Connect the connection duct 246 to the connection duct of the Y-axis moving device, A part may be shared.
  • another part of the motor cooling devices 232, 234, and 236 is, for example, a device that cools a motor that is a drive source of a substrate transfer device that transfers a circuit board.
  • connection ducts 224, 240, 246 of these motor cooling devices 220, 230 to 236 are joined together, and a blower 226 is provided downstream of the joining portion.
  • the blower 226 is shared by the motor cooling devices 220 and 230 to 236.
  • the blower 226 is located away from the electronic circuit component mounting machine, for example, at the corner of the factory where the electronic circuit component mounting machine is installed, etc. It is installed in a place where there is no problem even if the heat is discharged. At least during operation of the motor, the profiler 226 is rotated, and the air in each of the main ducts 222, 238, 244 of the plurality of motor cooling devices 220, etc.
  • connection ducts 224, 240, 246 are sucked through the connection ducts 224, 240, 246 to generate an air flow.
  • the heat dissipation part and fin force also take heat, take heat from the rotary motor, cool it, and discharge the heated warm air out of the electronic circuit component mounting machine.
  • the blower 226 functions as an intake air blower.
  • the linear motor cooling device is effective in preventing the temperature rise of members around the linear motor even if hot air is exhausted out of the linear motor through the duct as in the above embodiments. If the connection ducts 224 and 240 are provided as in the embodiment, the heat of the electronic circuit component mounting machine can be exhausted to the outside, and the temperature rise of components, devices, etc. of the electronic circuit component mounting machine is more effective. Is prevented. The same applies to the motor cooling devices 232 to 236.
  • the force shown in the example in which the connection ducts of the five motor cooling devices are joined and a blower is provided on the downstream side of the joining portion.
  • the motor cooling device Is not limited to five.
  • all of them may be linear motor cooling devices.
  • connection duct 260 is connected to the junction of at least one connection duct of each work machine, and all the work machines 25 0, 252 are connected downstream of the junction of the connection ducts 260.
  • 254, 256 may be provided with a common blower 262 so that the air in the duct is discharged out of the duct and the hot air is discharged out of the work line.
  • Main data provided for each work machine It can be considered that the connecting duct directly connected to the tato and the main duct constitutes the main duct, and the connecting duct 260 is connected to the main duct.
  • the blower 262 is provided, for example, in a place away from the work line and where there is no problem even if hot air is discharged, such as a corner of a factory where the work line is installed.
  • the work line is, for example, an electronic circuit assembly line or an electronic circuit production line
  • the plurality of work machines are, for example, an adhesive applicator for applying an adhesive to a circuit board, or screen printing for printing cream solder.
  • Machine and electronic circuit component mounting machine Adhesive applicators and screen printers are highly viscous fluid applicators.
  • a linear motor is used as a drive source of a head moving device that moves the adhesive applicator head, and the head is cooled by a linear motor cooling device having a ventilation device including a connection duct and a blower.
  • a linear motor is used as a drive source of a head moving device that moves a squeegee head, which is a print head, and is cooled by a linear motor cooling device.
  • a linear motor cooling device for inspecting the application state of a highly viscous fluid.
  • a linear motor can be used as a drive source for the head moving device that moves the motor, and a linear motor cooling device is provided.
  • These adhesive applicators and the like are anti-circuit board working machines, a board holding device, a working head for working on a circuit board, a relative movement device for relatively moving the board holding device and the working head, And a control device for controlling at least the substrate holding device, the work head, and the relative movement device.
  • the adhesive application head or the like is a work head.
  • the electronic circuit component mounting machine is not limited to a mounting machine in which the mounting head is moved in the X-axis and Y-axis directions, and is described in, for example, JP-A-6-342998 and JP-A-9237997. And at least one rotating body held rotatably around a vertical rotation axis, and a mounting head held by each of a plurality of head holding portions of the at least one rotating body, A mounting machine including a body rotation device may be used.
  • a relative movement device that relatively moves the mounting head, the substrate holding device, and the component supply device includes a substrate holding device moving device that moves the substrate holding device in the X-axis direction and the Y-axis direction, and Includes a component feeder moving device that moves the component feeder in the X-axis direction
  • a linear motor can be used as a drive source for these moving devices, and a linear motor cooling device is provided.
  • the electronic circuit component mounting machine may be a mounting machine that mounts an electronic circuit component on a glass substrate constituting a liquid crystal panel, a plasma display panel, or the like.
  • a glass substrate is a type of component mounting substrate, similar to a circuit substrate.
  • work lines that use work machines other than the circuit board work machine may be a work line other than the circuit board work line.
  • the linear motor cooling device according to the claimable invention can be used for cooling the motor.
  • the linear motor cooling device according to the claimable invention can be used for cooling.
  • This work machine includes, for example, a work head, a holding device that holds a work target member, a relative movement device that relatively moves the work head and the holding device, and a control device that controls the relative movement device and the like. Configured as follows.
  • the actuator is similar.
  • air outside the duct may be sucked and discharged through the duct by a fan or a blower.
  • a fan or a blower For example, when a linear motor and a linear motor cooling device are accommodated in the housing, one end of the duct is opened in the housing, the other end is opened outside the nosing, and a blower is provided in the opening to the outside. And rotate to suck out the air in the duct. As a result, the air inside the housing outside the duct is sucked into the duct, and the fins are discharged while being cooled.
  • the air in the duct is heated by the heat radiation from the fins, and the temperature of the duct rises, thereby heating the air around the duct.
  • the fins that are lower than the temperature of the air in the duct are cooled.
  • the air in the housing is ventilated by sucking and discharging the air in the housing, and the temperature rise around the duct is suppressed.
  • the fan and duct are supported by the movable part and moved together with the movable part, only one fan may be provided.
  • one fin is provided in the direction parallel to the moving direction of the movable part, and the fan is provided at one end of the duct to send air into the duct. It can be rotated in the direction of getting in or sucking out air from the duct.
  • the fins are covered with a duct in a direction parallel to the moving direction of the movable part, and fans are provided at both ends of the fin to move together with the movable part.
  • the two fans are rotated in the direction of sending air into the duct or sucking out air from the duct.
  • the direction of the cooling air generated by the rotation of the fan may or may not be changed according to the moving direction of the movable part.
  • the fan is rotated so as to generate an air flow directed from the downstream side to the upstream side in the movement direction of the movable part.
  • the direction of the wind generated by the fan may be changed according to the moving direction of the mover.
  • the heights of the heat radiating portions of the heat radiating plates may be the same.
  • the height of all fins is It may be the same.
  • the heat dissipating member, the fin and the air guide member may be made of a metal material having a high thermal conductivity, such as a copper alloy or steel, in addition to the aluminum alloy.
  • the air guide member when the air guide member is provided to guide the cooling air in the direction away from the movable part force, the air guide member is provided so as to guide the cooling air in the direction away from the movable part force at the side of the movable part or below.
  • the air guide member is provided so as to guide the cooling air in the direction away from the movable part force at the side of the movable part or below.
  • annular, for example, annular heat collecting member may be provided between the plurality of coils instead of the spacer.
  • the heat collecting member is made of a non-magnetic material having excellent heat conductivity, such as aluminum, for example, and is connected to the heat collecting portion of the heat radiating member so as to transmit heat so that the heat radiating member can also be radiated.
  • the heat generated by the coil is collected by the heat collection part of the heat release member, and is also collected by the heat collection member, so that heat collection, and hence heat dissipation and cooling are performed better.
  • the linear motor can also be a linear motor with a core whose coil is held by the core! / ⁇ .

Abstract

Cooling performance of a device for cooling a linear motor in which a movable section has a coil is improved. A circular tube-like coil (32) is covered with a heat collection section (66) of each of two heat radiation plates (64) and with a resin mold (40). Heat radiation sections (68) that are extended from the heat collection sections (66) in the direction departing away from the center line of the coil (32) are projected to the outside of the resin mold section (40). Fins (78) are arranged on both upper and lower surfaces (80, 82) of projection sections (74). A duct (86) is stationarily provided along a stator (14) so as to cover a movement space for the heat radiation sections (68) and the fins (78), and fans are arranged on both end sections of the duct (86). Heat generated in the coil (32) while a moving element (16) moves is collected by the heat collection sections (66) and radiated from the heat radiation sections (68) and the fins (78). Transmission of heat to peripheral members is prevented by the duct (86), the fins (78) are cooled by cooling wind produced in the duct (86) by the fans, and high-temperature air in the duct (86) is forcibly discharged. The moving element may have a duct and a fan.

Description

明 細 書  Specification
リニアモータ冷却装置  Linear motor cooling device
技術分野  Technical field
[0001] 本発明はリニアモータ冷却装置に関するものであり、特に、可動部がコイルを備え たリニアモータの冷却に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a linear motor cooling device, and more particularly to cooling of a linear motor having a movable part provided with a coil.
背景技術  Background art
[0002] リニアモータにおいては、コイルへの電流供給に基づいて可動部を移動させる移動 推力が生じさせられるのである力 それと共にコイルが発熱し、可動部の温度が上昇 する。そのため、下記の特許文献 1に記載のリニアモータは、可動部にフィンおよび ファンが設けられ、冷却が行われるようにされている。可動部は、コイルおよび電磁鋼 板が榭脂モールドにより直方体状に形成されて成り、その上面と下面とにそれぞれ、 複数のフィンが可動部の移動方向に平行に設けられるとともに、ファンが可動部の移 動方向に直角な軸線まわりに回転可能に設けられて可動部に送風するようにされて いる。それにより、コイルに発生した熱は榭脂モールドからフィンに伝達され、放熱さ れて可動部が冷却される。また、ファンの送風により可動部が冷却される。  In a linear motor, a force that generates a moving thrust force that moves a movable part based on current supply to the coil causes the coil to generate heat, and the temperature of the movable part rises. For this reason, the linear motor described in Patent Document 1 below is provided with fins and fans in the movable part so as to be cooled. The movable part is formed of a coil and an electromagnetic steel plate formed in a rectangular parallelepiped shape by a resin mold, and a plurality of fins are provided in parallel to the moving direction of the movable part on the upper surface and the lower surface, respectively, and the fan is movable part. It is provided so as to be rotatable about an axis perpendicular to the moving direction of the air and blows air to the movable part. As a result, the heat generated in the coil is transmitted from the resin mold to the fins, dissipated, and the movable part is cooled. Moreover, a movable part is cooled by the ventilation of a fan.
特許文献 1:特開 2003 - 309963号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-309963
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、特許文献 1に記載のリニアモータ冷却装置においては、未だ冷却が 十分であるとは言えない問題があった。フィンは可動部の外面である上面および下 面に設けられるため、コイル力も熱が伝わり難ぐ十分に放熱が為されないのである。 本発明は、上記の事情を背景として為されたものであり、可動部がコイルを備えたリ ニァモータを冷却する装置の冷却性能の向上を課題とする。 [0003] However, the linear motor cooling device described in Patent Document 1 has a problem that cooling cannot be said to be sufficient. Since the fins are provided on the upper surface and the lower surface, which are the outer surfaces of the movable part, the heat of the coil is difficult to be transmitted and heat is not sufficiently dissipated. The present invention has been made against the background of the above circumstances, and an object of the present invention is to improve the cooling performance of an apparatus for cooling a linear motor having a movable part provided with a coil.
課題を解決するための手段  Means for solving the problem
[0004] 上記の課題は、直線的な固定部と、コイルを備えて固定部に沿って移動可能な可 動部とを含むリニアモータの冷却装置を、(A)前記コイルに近接した集熱部とその集 熱部から前記可動部の外部まで延び出し、集熱部により集熱された熱を可動部外へ 放出する放熱部とを備えた放熱部材と、(B)その放熱部材の前記放熱部に前記可動 部の移動方向と平行な方向に延びる状態で設けられたフィンとを含むものとすること により解決される。 [0004] The problem described above is that a linear motor cooling device including a linear fixed portion and a movable portion that includes a coil and is movable along the fixed portion is (A) a heat collecting unit close to the coil. And the heat collecting part to the outside of the movable part, and the heat collected by the heat collecting part is moved out of the movable part. It is solved by including a heat dissipating member having a heat dissipating part to be discharged, and (B) a fin provided in the heat dissipating part of the heat dissipating member extending in a direction parallel to the moving direction of the movable part. .
[0005] 上記課題はまた、直線的な固定部と、コイルを備えて固定部に沿って移動可能な 可動部とを含むリニアモータの冷却装置を、(a)前記コイルに近接した集熱部とその 集熱部から前記可動部の外部まで延び出し、集熱部により集熱された熱を可動部外 へ放出する放熱部とを備えた放熱部材と、(b)前記固定部に沿って延び、前記可動 部の移動に伴って前記放熱部が移動する空間を覆うダクトと、(c)そのダクト内の空気 を換気する換気装置とを含むものとすることによつても解決される。  [0005] The above-described problem also includes a linear motor cooling device including a linear fixed portion and a movable portion that includes a coil and is movable along the fixed portion. (A) A heat collecting portion adjacent to the coil And a heat dissipating member that extends from the heat collecting part to the outside of the movable part and releases the heat collected by the heat collecting part to the outside of the movable part, and (b) along the fixed part It is also solved by including a duct that extends and covers a space in which the heat dissipating part moves as the movable part moves, and (c) a ventilation device that ventilates the air in the duct.
発明の効果  The invention's effect
[0006] 「可動部の外部」とは、コイルの外であることは勿論、コイルがカバーゃ榭脂モール ド等のコイル保護部材により覆われている場合には、コイル保護部材の外であり、放 熱部は、例えば、可動部の外側面に沿って延び出させてもよぐ可動部から離れる状 態で延び出させてもよい。  [0006] "Outside of the movable part" means not only outside the coil but also outside the coil protection member when the coil is covered with a coil protection member such as a resin mold. For example, the heat release part may extend along the outer surface of the movable part, or may be extended away from the movable part.
放熱部材として、例えば、熱伝導率の高い材料製の部材が用いられ、例えば、熱 伝導率の高い金属材料製の部材ゃヒートパイプを使用することができる。  As the heat radiating member, for example, a member made of a material having a high thermal conductivity is used. For example, a member made of a metal material having a high thermal conductivity can be a heat pipe.
放熱部材およびフィンを含むリニアモータ冷却装置においては、コイルへの電流供 給により発生した熱は、その多くがコイルに近接した集熱部により集められるとともに 、放熱部によって可動部の外部へ放出される。放熱部に伝達された熱はまた、フィン からも放出され、放熱面積が大きぐ放熱が十分に為され、可動部が効果的に冷却さ れる。フィンは可動部の移動方向と平行な方向に延びる状態で設けられており、フィ ンを可動部の移動方向と交差する方向に設ける場合のように、可動部の移動に抵抗 を与えることがなぐし力も、可動部の移動に伴って生じる可動部周辺の空気の流れ によってフィン力 熱が効果的に奪われ、より良好に冷却が為される。  In a linear motor cooling device including a heat radiating member and fins, most of the heat generated by supplying current to the coil is collected by a heat collecting part close to the coil and released to the outside of the movable part by the heat radiating part. The The heat transferred to the heat radiating part is also released from the fins, and the heat radiating area is large enough to radiate heat, effectively cooling the movable part. The fin is provided in a state extending in a direction parallel to the moving direction of the movable part, and resistance to movement of the movable part is not given as in the case where the fin is provided in a direction intersecting with the moving direction of the movable part. As for the combing force, the fin force heat is effectively deprived by the air flow around the movable part generated by the movement of the movable part, so that the cooling is performed better.
また、冷却が十分に為されるため、可動部の温度上昇を抑えつつコイルへの供給 電流を増大させ、推力を増大させることができ、リニアモータにより駆動される部材の 熱膨張による歪の発生を抑え、制御精度を確保しつつ、リニアモータを必要な推力 が得られ、容積力 、さぐ安価なものとすることができる。 放熱部材,ダクトおよび換気装置を含むリニアモータ冷却装置において換気装置 は、ダクト内に空気を押し込む空気押込装置でもよぐダクト内の空気を吸い出す空 気吸引装置でもよぐその両方でもよい。ただし、ダクト内の温められた空気がダクト 壁の隙間から外部に漏れることを回避する観点力 すれば、少なくとも空気吸引装置 を設けることが望ましい。空気押込装置として、例えば、コンプレッサ,ブロア,ファン を使用することができ、空気吸引装置として、例えば、バキュームポンプ,ァスピレー タ(流体として液体を使用するものでも気体を使用するものでもよい),ブロア,ファン を使用することができる。 In addition, since the cooling is sufficiently performed, the supply current to the coil can be increased while suppressing the temperature rise of the moving part, the thrust can be increased, and the distortion caused by the thermal expansion of the member driven by the linear motor The necessary thrust can be obtained for the linear motor while suppressing control and ensuring the control accuracy, and the volume force can be reduced. In a linear motor cooling device including a heat radiating member, a duct and a ventilation device, the ventilation device may be an air pushing device for pushing air into the duct or an air suction device for sucking air in the duct, or both. However, it is desirable to install at least an air suction device from the viewpoint of avoiding the warm air in the duct from leaking outside through the gap in the duct wall. For example, a compressor, a blower, or a fan can be used as an air pushing device. For example, a vacuum pump, an aspirator (which uses a liquid or a gas as a fluid), a blower, or the like can be used as an air suction device. , Fan can be used.
本リニアモータ冷却装置においては、放熱部材の集熱および放熱作用によって可 動部の冷却が十分に為されるとともに、放熱によって温められた放熱部周辺の空気 力 Sリニアモータ周辺に拡散し、周辺部材の温度を上昇させることがダクトにより防止さ れる。また、ダクト内の空気は換気装置により換気され、ダクト内にダクト外力も空気が 取り入れられるとともに、放熱により温められた空気がダクトを通って、リニアモータが 設けられた機械の外や、その機械から離れた場所等、機械に影響を与えず、熱気が 排出されても支障のない場所へ強制的に排気され、作業環境の悪ィ匕ゃリニアモータ 周辺部材,装置の温度上昇およびそれによる機械的熱変形等を抑制することができ る。さらに、ダクト内の空気が換気装置によって換気される際にダクト内に生じさせら れる空気の流れによって放熱部が冷却される効果も得られる。  In this linear motor cooling device, the movable part is sufficiently cooled by the heat collection and heat radiation action of the heat radiating member, and the air force around the heat radiating part warmed by heat radiation is diffused around the linear motor, Raising the temperature of the member is prevented by the duct. Also, the air inside the duct is ventilated by a ventilator, and air is also taken into the duct external force, and the air heated by heat radiation passes through the duct, outside the machine where the linear motor is installed, and the machine If the work environment is bad, such as where it is far away from the machine, the machine will not be affected, and hot air will be discharged. The thermal deformation etc. can be suppressed. Furthermore, when the air in the duct is ventilated by the ventilator, the effect of cooling the heat radiating portion by the flow of air generated in the duct is also obtained.
さらにまた、ダクトおよび換気装置が固定部側に設けられており、可動部に設けられ る場合に比較して可動部を軽くすることができ、可動部の加,減速時の振動が低減さ せられる。また、可動部を移動させる推力が小さくて済み、コイルへの供給電流を減 少させ、消費電力量および発熱量を低減させることができる。冷却性能の向上による リニアモータの小形ィ匕と合わせて、リニアモータを更に容積が小さぐ安価なものとす ることちでさる。  Furthermore, since the duct and the ventilation device are provided on the fixed part side, the movable part can be lightened compared to the case where it is provided on the movable part, and the vibration during addition and deceleration of the movable part can be reduced. It is done. In addition, the thrust for moving the movable part can be small, the current supplied to the coil can be reduced, and the power consumption and heat generation can be reduced. Combined with the small size of the linear motor due to improved cooling performance, the linear motor can be made smaller and cheaper.
なお、ダクトは放熱部が移動する空間を覆うが、放熱部のダクト内を移動する部分と 、ダクト外を移動する部分との間の部分に対応する部分は空けられ、放熱部の移動 を許容するようにされる。ダクトは、放熱部の移動方向の全体にわたって外に開かれ る開口部を有することとなるのであるが、この開口部は放熱部の通過時以外は閉じら れていることが望ましぐ例えば、ダ外に開閉可能な遮蔽部材を設け、放熱部の通 過時には開口部を開いて放熱部の移動を許容し、通過後は閉じてダクト内からの空 気の漏れを防止するようにすることが望ま 、。 Note that the duct covers the space where the heat radiating part moves, but the part corresponding to the part between the part of the heat radiating part that moves inside the duct and the part that moves outside the duct is vacated, allowing the movement of the heat radiating part. To be done. The duct has an opening that opens to the outside in the entire moving direction of the heat radiating portion, but this opening is not closed except when passing through the heat radiating portion. For example, a shielding member that can be opened and closed is provided outside the door, and when the heat dissipating part is passed, the opening is opened to allow the heat dissipating part to move. Hope to prevent leakage.
発明の態様  Aspects of the Invention
[0008] 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発 明」という場合がある。請求可能発明は、少なくとも、請求の範囲に記載された発明で ある「本発明」ないし「本願発明」を含むが、本願発明の下位概念発明や、本願発明 の上位概念あるいは別概念の発明を含むこともある。)の態様をいくつか例示し、そ れらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、 必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可 能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み 合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可 能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり 、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も 、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得 るのである。  [0008] In the following, the invention recognized as being claimable in the present application (hereinafter referred to as “claimable invention”. The claimable invention is at least the invention described in the claims. This invention includes "the present invention" or "the invention of the present application, but may include a subordinate concept invention of the present invention, a superordinate concept of the present invention, or an invention of another concept"). To do. Like the claims, each aspect is divided into sections, each section is given a number, and the other sections are numbered as necessary. This is for the purpose of facilitating understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of examples, etc., and as long as the interpretation is followed, other components are added to the mode of each section. Aspects and aspects in which constituent elements are deleted from the aspects of each section can also be an aspect of the claimable invention.
[0009] なお、以下の各項において、(1)項が請求項 1に相当し、(2)項が請求項 2に、(3)項 が請求項 3に、(6)項が請求項 4に、(7)項が請求項 5に、(8)項と (9)項とを合わせた項 が請求項 6に、(12)項が請求項 7に、(14)項が請求項 8に、(16)項が請求項 9に、 (17) 項が請求項 10にそれぞれ相当する。  [0009] In each of the following paragraphs, (1) corresponds to claim 1, (2) corresponds to claim 2, (3) claims to claim 3, and (6) claims. In claim 4, claim (7) is claimed in claim 5, claim (8) and (9) are combined in claim 6, claim (12) is claimed in claim 7, claim (14) is claimed In claim 8, (16) corresponds to claim 9, and (17) corresponds to claim 10.
[0010] (1)直線的な固定部と、コイルを備えて固定部に沿って移動可能な可動部とを含むリ ニァモータの冷却装置であって、 [0010] (1) A linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion,
前記コイルに近接した集熱部とその集熱部力 前記可動部の外部まで延び出し、 集熱部により集熱された熱を可動部外へ放出する放熱部とを備えた放熱部材と、 その放熱部材の前記放熱部に前記可動部の移動方向と平行な方向に延びる状態 で設けられたフィンと  A heat-dissipating member having a heat-collecting part adjacent to the coil and a heat-collecting part force extending to the outside of the movable part, and a heat-dissipating part that releases heat collected by the heat-collecting part to the outside of the movable part; A fin provided on the heat dissipating part of the heat dissipating member extending in a direction parallel to the moving direction of the movable part;
を含むリニアモータ冷却装置。  Including linear motor cooling device.
リニアモータは、可動部が筒状を成し、固定部を囲む状態で配置されて固定部に 沿って移動する筒形リニアモータでもよぐ可動部が概して平板状を成し、固定部と 対向して配置されて固定部に沿って移動する平板形リニアモータでもよい。また、直 線的な固定部と、コイルを備えて固定部に沿って移動可能な可動部とを含むリニア モータであればよぐ請求可能発明は、リニア同期モータ,リニア誘導モータ,リニア ステッピングモータ,リニア直流モータ等、種々のリニアモータの冷却装置に適用可 能である。(14)項に記載のリニアモータ冷却装置についても同様である。 The linear motor has a movable part in a cylindrical shape and is placed in a state surrounding the fixed part. The movable part may be a flat plate type linear motor that moves along the fixed part and is arranged so as to face the fixed part. In addition, a linear motor including a linear fixed part and a movable part having a coil and movable along the fixed part may be claimed as a linear synchronous motor, a linear induction motor, a linear stepping motor. It can be applied to various linear motor cooling devices such as linear DC motors. The same applies to the linear motor cooling device described in item (14).
(2)前記可動部が前記コイルの外側を覆う榭脂モールドを備え、前記放熱部材の前 記集熱部が、それらコイルと榭脂モールドとの間に配設され、前記放熱部が榭脂モ 一ルドの一部を貫通して外部に延びさせられた (1)項に記載のリニアモータ冷却装置 コイルは線材同士の隙間に榭脂が充填されたものであっても、充填されていないも のであってもよい。前者の場合には集熱部が充填樹脂の表面に密着し、後者の場合 には集熱部がコイルの外側面に密着する状態で配設されることが望まし ヽ。コイルの 線材同士の隙間に榭脂が充填される場合、榭脂は空気に比較して熱伝導率が高い ため、コイル内周部から外周部への熱伝達が促進される。リニアモータがコイルがコ ァにより保持されず、コアを有さないコアレスリニアモータである場合には、集熱部は 充填樹脂の表面ある!、はコイルの外側面に密着する状態で配設される。リニアモー タがコイルがコアにより保持されるコア付きモータであり、コアを有する場合、集熱部 を充填樹脂の表面あるいはコイルの外側面に密着させることができな 、のであれば、 集熱部を直接コアに密着させればよい。  (2) The movable part includes a resin mold that covers the outside of the coil, the heat collecting part of the heat radiating member is disposed between the coil and the resin mold, and the heat radiating part is a resin resin. The linear motor cooling device according to the item (1), which is extended to the outside through a part of the mold. The coil is not filled even if the gap between the wires is filled with grease. It may be. In the former case, it is desirable that the heat collecting portion is disposed in close contact with the surface of the filled resin, and in the latter case, the heat collecting portion is disposed in close contact with the outer surface of the coil. When the resin is filled in the gaps between the coil wires, heat transfer from the inner periphery to the outer periphery of the coil is promoted because the heat conductivity is higher than that of air. If the linear motor is a coreless linear motor that does not hold the coil by the core and does not have a core, the heat collecting part is placed on the surface of the filled resin! The If the linear motor is a motor with a core in which the coil is held by the core and has a core, the heat collecting part cannot be brought into close contact with the surface of the filling resin or the outer surface of the coil. What is necessary is just to adhere | attach to a core directly.
コイルは榭脂モールドにより覆われて、保護されているが、集熱部は榭脂モールド を介することなぐコイルに直接接触させられ、あるいは直接接触させられているに等 しく(線材同士の隙間に榭脂が充填される場合)、あるいはコアを介してではあるがコ ィルに極く近接して配設され、十分に熱^^めて放熱部カゝら放熱することができる。 榭脂モールドは放熱部材より熱伝導率が低ぐ集められた熱が榭脂モールドに伝達 されることは少なぐ可動部の外において放熱部力 効果的に放出される。  The coil is covered and protected by a resin mold, but the heat collecting part is directly in contact with the coil without going through the resin mold, or is directly in contact (in the gap between the wires). It can be dissipated from the heat-dissipating part by being sufficiently heated and disposed close to the coil through the core. In the case of the resin mold, the heat collected by the heat radiating member is lower than that of the heat radiating member, so that the heat transferred to the resin mold is effectively released outside the movable part.
(3)前記コイルが筒状を成し、前記集熱部がその筒状コイルの外周の 80%以上を覆 う状態で配設された (1)項または (2)項に記載のリニアモータ冷却装置。 放熱部材はコイルのほぼ全体力も熱を集めて外部に放出することができる。コイル が筒状を成し、その内周側に固定子が配設されて磁界が形成される場合、磁気回路 を遮断することなくコイルの外周全体を集熱部によって覆うことができ、集熱を効果的 に行うことができる。 (3) The linear motor according to (1) or (2), wherein the coil has a cylindrical shape and the heat collecting portion is disposed in a state of covering 80% or more of the outer periphery of the cylindrical coil. Cooling system. The heat dissipating member can collect almost the entire force of the coil and release it to the outside. When the coil has a cylindrical shape and a stator is arranged on the inner circumference side to form a magnetic field, the entire outer circumference of the coil can be covered by the heat collecting part without interrupting the magnetic circuit, and the heat collecting part can be covered. Can be carried out effectively.
コイルは、例えば、円筒状を成すものでもよぐ中心線に直角な断面形状が長方形 ,正方形等の四角形等、多角形状を成すものでもよい。  For example, the coil may have a cylindrical shape, or a polygonal shape such as a rectangle having a cross section perpendicular to the center line, such as a rectangle or a square such as a square.
(4)前記放熱部が、前記筒状コイルの中心線に対してほぼ対称の 2つの位置力 互 いに逆向きに延び出させられた (3)項に記載のリニアモータ冷却装置。  (4) The linear motor cooling device according to (3), wherein the heat radiating portion extends in opposite directions with respect to two position forces that are substantially symmetrical with respect to the center line of the cylindrical coil.
コイルのほぼ全体から集められた熱がコイルの両側にぉ ヽてそれぞれ放出され、放 熱が均等にかつ効果的に行われる。  The heat collected from almost the entire coil is released to both sides of the coil, and the heat is uniformly and effectively discharged.
「ほぼ対称」とは、 2つの位置が対称である場合および対称からやや外れた位置で あっても、対称と言い得る場合を含む。  The “substantially symmetrical” includes a case where two positions are symmetric and a case where it can be said to be symmetric even if the position is slightly deviated from the symmetry.
(5)前記放熱部材力 前記筒状コイルの周方向においてほぼ半分の部分を覆う半筒 状を成す集熱部とその集熱部の一端力 筒状コイル中心線力 遠ざ力る向きに延び 出す放熱部とを備えた放熱板を 2枚含み、放熱部が互いに反対向きに延び出す状 態で配設された (4)項に記載のリニアモータ冷却装置。  (5) Heat radiating member force A semi-cylindrical heat collecting part covering almost half of the cylindrical coil in the circumferential direction, and one end force of the heat collecting part. Cylindrical coil center line force. The linear motor cooling device according to the item (4), including two heat radiating plates each having a heat radiating portion that is provided, the heat radiating portions extending in opposite directions.
集熱部および放熱部を有する放熱部材の板材からの成形、および筒状コイルへの 装着が容易になる。  It becomes easy to form a heat radiating member having a heat collecting part and a heat radiating part from a plate material and attach it to a cylindrical coil.
(6)前記放熱部が前記可動部の外側面から片持ち状に突出させられ、その突出部 に前記フィンが設けられた (1)項な 、し (5)項の 、ずれかに記載のリニアモータ冷却装 置。  (6) The heat dissipating part is projected in a cantilevered manner from the outer surface of the movable part, and the fin is provided on the projecting part. (1) None (5) Linear motor cooling device.
放熱部は可動部の外側面に沿って延びるようにすることも可能である力 外側面か ら片持ち状に突出する状態とすればフィンを突出部の両面に設けることが可能となる 。また、次項に記載のとおり、突出部の基端部を除く部分にフィンを設ければ、放熱 部およびフィンが移動する空間をダクトによりほぼ完全に覆うことが可能となる。 The heat dissipating part can be extended along the outer side surface of the movable part. The fins can be provided on both sides of the projecting part if the heat radiating part protrudes in a cantilevered manner from the outer side surface. Further, as described in the next section, if fins are provided in the portions other than the base end of the protrusion, the space in which the heat radiating portion and the fin move can be covered almost completely by the duct.
(7)前記突出部の基端部を除く部分に前記フィンが設けられ、そのフィンと放熱部の 基端部を除く部分とを覆うダ外が、前記固定部に沿って延び、前記可動部の移動に 伴って前記放熱部および前記フィンが移動する空間を覆う状態で静止して設けられ た (6)項に記載のリニアモータ冷却装置。 (7) The fin is provided in a portion excluding the base end portion of the projecting portion, and the outside of the cover that covers the fin and the portion excluding the base end portion of the heat radiating portion extends along the fixed portion, and the movable portion As the heat sink moves, the heat dissipating part and the fins are provided stationary so as to cover the space in which they move. The linear motor cooling device according to item (6).
フィン力 放出された熱により温められた空気が周辺に拡散し、周辺部材,装置の 温度を上昇させることがダクトにより防止される。ダクトは、放熱部が移動する空間を 覆う状態で静止して設けられており、可動部の移動領域全体にわたって加熱空気拡 散防止効果が得られる。また、可動部の移動に伴って生じるフィンと周辺の空気との 相対移動がダクトにより確保され、フィンが確実に冷却される。  Fin force The air heated by the released heat is diffused to the surroundings and the temperature of the peripheral members and equipment is prevented by the duct. The duct is provided stationary so as to cover the space in which the heat dissipating part moves, and the effect of preventing the heated air from spreading over the entire moving area of the moving part can be obtained. Also, the relative movement between the fins and the surrounding air that occurs as the movable part moves is secured by the duct, so that the fins are reliably cooled.
(8)前記可動部に支持されて可動部と一緒に移動し、前記フィンに沿った方向の冷 却風を生じさせるファンを含む(1)項な 、し (6)項の 、ずれかに記載のリニアモータ冷 却装置。  (8) Includes a fan that is supported by the movable part and moves together with the movable part to generate cooling air in the direction along the fins. (1) None (6) The linear motor cooling device described.
フィンは、可動部の移動により生ずる空気の相対移動によって冷却される上、ファン によって強制的に生じさせられる風によっても冷却され、放熱が十分に為される。 The fins are cooled by the relative movement of the air generated by the movement of the movable part, and are also cooled by the wind that is forcibly generated by the fan, so that sufficient heat dissipation is achieved.
(9)前記フィンが、前記可動部の移動方向における中間部から両端の各々に向かつ て延びて!/、る第一フィンと第二フィンとを含み、前記ファンがそれら第一フィンと第二 フィンとの各々に対して設けられた第一ファンと第二ファンとを含む (8)項に記載のリニ ァモータ冷却装置。 (9) The fin includes a first fin and a second fin extending from an intermediate portion in the moving direction of the movable portion toward each of both ends, and the fan includes the first fin and the second fin. (2) The linear motor cooling device according to item (8), including a first fan and a second fan provided for each of the fins.
第一,第二ファンにより、第一,第二フィンのそれぞれについて、可動部の移動方 向に平行な方向にぉ 、て正逆 、ずれかの方向に冷却風を生じさせることができる。 フィンを第一,第二フィンを含むものとすれば、第一フィンと第二フィンとの間にスぺ ースが設けられ、風の取り入れ口あるいは排出口として利用することができ、ファンに よる送風に基づいて種々の態様で冷却を行うことができる。  With the first and second fans, the cooling air can be generated in each of the first and second fins in a direction parallel to the moving direction of the movable part and in a forward or reverse direction. If the fin includes the first and second fins, a space is provided between the first fin and the second fin, which can be used as an air intake or exhaust port. The cooling can be performed in various modes based on the air blowing.
(10)前記第一ファンと前記第二ファンとが前記第一フィンと前記第二フィンとの前記 中間部側の端に近接して設けられた (9)項に記載のリニアモータ冷却装置。  (10) The linear motor cooling device according to (9), wherein the first fan and the second fan are provided in proximity to an end of the first fin and the second fin on the intermediate portion side.
(11)前記第一ファンと前記第二ファンとが前記第一フィンと前記第二フィンとの前記 中間部側とは反対側の端に近接して設けられた (9)項に記載のリニアモータ冷却装置  (11) The linear fan according to (9), wherein the first fan and the second fan are provided close to an end of the first fin and the second fin opposite to the intermediate portion side. Motor cooling device
( 12)前記第一ファンと前記第二ファンとが前記中間部に向かって流れる冷却風を生 じさせるものであり、前記中間部に、第一ファン側から中間部に流れる冷却風と第二 ファン側から中間部に流れる冷却風とを前記可動部力 離れる向きに流れるように案 内する導風部材が設けられた (9)項な 、し (11)項の 、ずれかに記載のリニアモータ冷 却装置。 (12) The first fan and the second fan generate cooling air that flows toward the intermediate portion, and the cooling air that flows from the first fan side to the intermediate portion and the second air flow in the intermediate portion. The cooling air flowing from the fan side to the middle part is designed to flow away from the moving part force. The linear motor cooling device according to any one of (9) and (11), wherein an internal air guide member is provided.
第一,第二ファンにより生じさせられた冷却風は、いずれも可動部の移動方向にお ける中間部に向力つて流れる力 導風部材の案内により可動部力も離れる向きに流 れさせられるため、上記中間部においてぶつ力り合って中間部近傍における流速が 低下することが回避される。  The cooling air generated by the first and second fans is forced to flow toward the intermediate part in the moving direction of the movable part. Thus, it is possible to avoid a decrease in the flow velocity in the vicinity of the intermediate portion due to collision in the intermediate portion.
(13)前記フィンを覆って前記可動部の移動方向に平行に延びるダクトを含む (1)項 な!、し (6)項および (8)項な 、し (12)項の 、ずれかに記載のリニアモータ冷却装置。 ダクトは可動部と共に移動し、可動部の移動に伴って生じる風をフィンに沿って流 れさせ、冷却を促進する。  (13) Includes a duct that covers the fin and extends in parallel with the moving direction of the movable part (1) No !, (6) and (8) No, or (12) The linear motor cooling device described. The duct moves with the moving part, and the wind generated by the movement of the moving part flows along the fins to promote cooling.
また、ファンを備えたリニアモータ冷却装置においては、ファンによりダクト内に冷却 風が生じさせられ、フィンが確実に冷却風に晒されて冷却が効率良く行われる。 Further, in a linear motor cooling device equipped with a fan, cooling air is generated in the duct by the fan, and the fins are surely exposed to the cooling air so that cooling is performed efficiently.
(14)直線的な固定部と、コイルを備えて固定部に沿って移動可能な可動部とを含む リニアモータの冷却装置であって、 (14) A linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion,
前記コイルに近接した集熱部とその集熱部力 前記可動部の外部まで延び出し、 集熱部により集熱された熱を可動部外へ放出する放熱部とを備えた放熱部材と、 前記固定部に沿って延び、前記可動部の移動に伴って前記放熱部が移動する空 間を覆うダクトと、  A heat-dissipating member comprising a heat-collecting part adjacent to the coil and its heat-collecting part force, extending to the outside of the movable part, and releasing the heat collected by the heat-collecting part to the outside of the movable part; A duct that extends along the fixed part and covers a space in which the heat dissipating part moves as the movable part moves;
そのダクト内の空気を換気する換気装置と  A ventilator that ventilates the air in the duct;
を含むリニアモータ冷却装置。 Including linear motor cooling device.
(15)前記放熱部材の前記放熱部に前記可動部の移動方向と平行な方向に延びる 状態で設けられたフィンを含む (14)項に記載のリニアモータ冷却装置。  (15) The linear motor cooling device according to (14), including fins provided in the heat radiating portion of the heat radiating member so as to extend in a direction parallel to a moving direction of the movable portion.
コイルに発生した熱は放熱部から放出されるとともに、フィン力もも放出され、コイル が良好に冷却される。  The heat generated in the coil is released from the heat radiating section, and the fin force is also released, so that the coil is cooled well.
(16)前記換気装置が、前記ダクトの長手方向の少なくとも一端部に設けられた送風 機を含む (14)項または (15)項に記載のリニアモータ冷却装置。  (16) The linear motor cooling device according to (14) or (15), wherein the ventilation device includes a blower provided at least at one end in the longitudinal direction of the duct.
送風機として、例えば、ファン,ブロアが使用される。  For example, a fan or a blower is used as the blower.
換気装置をダクトの長手方向の一端部に設ける場合、送風機はダクトに空気を送り 込む送り込み送風機としてもよぐダクトから空気を吸い出す吸気送風機としてもよい 。送風機をダクトの長手方向の両端部に設ける場合、一方が送り込み送風機、他方 が吸気送風機とされ、ダクト内の空気が確実に換気される。 When a ventilation device is installed at one end in the longitudinal direction of the duct, the blower sends air to the duct. It is good also as an intake air blower which sucks air out of a duct as a feed air blower. When the blower is provided at both ends of the duct in the longitudinal direction, one is a feeding fan and the other is an intake fan, so that air in the duct is reliably ventilated.
(17)前記換気装置が、主ダクトとしての前記ダクトの一端部に接続された接続ダクト と、その接続ダクトの先端部に設けられた送風機とを含む (14)項または (15)項に記載 のリニアモータ冷却装置。  (17) The ventilation device includes a connection duct connected to one end of the duct as a main duct, and a blower provided at the tip of the connection duct. (14) or (15) Linear motor cooling device.
接続ダクトの先端部に設けられる送風機を送り込み送風機とすることも可能である 力 吸気送風機とすれば、主ダクトの一端にのみ接続ダクトを設ければよぐまた、ダ タト壁の隙間等力も温かい空気が周辺へ漏れることを容易に防止し得る。接続ダクト の先端部に設けられる送風機は、複数の発熱部に対して共通に設けることも可能で ある。例えば、 1台の機械に複数の電動モータ(リニアモータを含む)のような発熱部 が設けられることが多ぐその場合に、それら複数の発熱部の各々に設けられた主ダ タトにそれぞれ接続ダクトを接続するとともにそれら接続ダクトを合流させ、合流部の 下流側にブロア等の送風機を設けるのである。この態様にすれば、暖かい空気を完 全に機械外へ排出することが容易となる。  It is possible to use a blower provided at the tip of the connection duct as a feed fan. If an intake blower is used, it is sufficient to provide a connection duct only at one end of the main duct. Air can be easily prevented from leaking to the surroundings. The blower provided at the tip of the connection duct can be provided in common for a plurality of heat generating parts. For example, in many cases, a single machine is provided with heat generating parts such as a plurality of electric motors (including linear motors). In that case, each machine is connected to the main dart provided on each of the heat generating parts. The ducts are connected and the connecting ducts are joined together, and a blower or other blower is provided downstream of the joining part. According to this aspect, it becomes easy to exhaust the warm air completely out of the machine.
作業ラインを構成する複数の機械の各々における少なくとも 1つの接続ダクトの合 流部に更に接続ダクトを接続するとともに合流させ、その合流部の下流側に送風機を 設けてもよい。  A connection duct may be further connected and joined to the junction of at least one connection duct in each of the plurality of machines constituting the work line, and a blower may be provided downstream of the junction.
さらに、複数の作業ラインについて、各ラインの最下流の接続ダクト合流部に接続 ダクトを接続するとともに合流させ、その合流部の下流側に送風機を設けてもよい。 図面の簡単な説明  Further, for a plurality of work lines, a connection duct may be connected to and merged with the most downstream connection duct junction of each line, and a blower may be provided on the downstream side of the junction. Brief Description of Drawings
[図 1]請求可能発明の実施例であるリニアモータ冷却装置およびリニアモータを示す 正面断面図である。 FIG. 1 is a front sectional view showing a linear motor cooling device and a linear motor that are embodiments of the claimable invention.
[図 2]上記リニアモータ冷却装置およびリニアモータを、リニアモータにより移動させら れるテーブル等を除いて概略的に示す平面図である。  FIG. 2 is a plan view schematically showing the linear motor cooling device and the linear motor except for a table and the like that are moved by the linear motor.
[図 3]上記リニアモータ冷却装置のダクトの開口を覆う遮蔽幕を放熱板の放熱部と共 に示す側面図(一部断面)である。  FIG. 3 is a side view (partial cross section) showing a shielding curtain covering the opening of the duct of the linear motor cooling device together with the heat radiating portion of the heat radiating plate.
[図 4]上記リニアモータ冷却装置およびリニアモータを備えた電子回路部品装着機を 概略的に示す平面図である。 [Fig.4] An electronic circuit component mounting machine equipped with the above linear motor cooling device and linear motor. It is a top view shown roughly.
圆 5]上記電子回路部品装着機の Y軸移動装置を示す正面図である。 [5] FIG. 5 is a front view showing a Y-axis moving device of the electronic circuit component mounting machine.
圆 6]別の実施例であるリニアモータ冷却装置およびリニアモータを示す正面断面図 である。 6] A front sectional view showing a linear motor cooling device and a linear motor as another embodiment.
[図 7]図 6に示すリニアモータ冷却装置およびリニアモータをテーブル等を除いて概 略的に示す平面図である。  7 is a plan view schematically showing the linear motor cooling device and the linear motor shown in FIG. 6 except for a table and the like.
[図 8]図 6に示すリニアモータ冷却装置のフィン,ファンおよびダクトを概略的に示す 側面図である。  FIG. 8 is a side view schematically showing fins, fans and ducts of the linear motor cooling device shown in FIG. 6.
[図 9]更に別の実施例であるリニアモータ冷却装置およびリニアモータを示すテープ ル等を除いて概略的に示す平面図である。  FIG. 9 is a plan view schematically showing a linear motor cooling device according to still another embodiment, excluding a tape and the like showing the linear motor.
[図 10]図 9に示すリニアモータ冷却装置のフィン,ファンおよびダクト等を概略的に示 す側面図である。  FIG. 10 is a side view schematically showing fins, fans, ducts, etc. of the linear motor cooling device shown in FIG.
[図 11]更に別の実施例であるリニアモータ冷却装置およびリニアモータを示すテープ ル等を除いて概略的に示す平面図である。  FIG. 11 is a plan view schematically showing a linear motor cooling device according to still another embodiment, excluding a tape and the like showing the linear motor.
[図 12]図 11に示すリニアモータ冷却装置のフィン,ファンおよびダクト等を概略的に 示す側面図である。  FIG. 12 is a side view schematically showing fins, fans, ducts and the like of the linear motor cooling device shown in FIG. 11.
圆 13]更に別の実施例であるリニアモータ冷却装置を概略的に示す平面図である。 圆 14]更に別の実施例であるリニアモータ冷却装置を概略的に示す平面図である。 符号の説明 13] FIG. 13 is a plan view schematically showing a linear motor cooling device according to still another embodiment. 14] FIG. 14 is a plan view schematically showing a linear motor cooling device according to still another embodiment. Explanation of symbols
10:リニアモータ冷却装置 12:リニアモータ 14:固定子 16:可動子 32: コイル 40:榭脂モールド 64:放熱板 66:集熱部 68:放熱部 74:突出 部 76:基端部 78:フィン 86:ダクト 100:ファン 110:リニアモータ冷却 装置 112:放熱板 114:集熱部 116:放熱部 120:突出部 122:基端 部 130, 132:フィン 136, 138:ダクト 140, 142:ファン 160:リニアモー タ冷却装置 164:導風板 166:放熱板 172:放熱部 200:リニアモータ冷 却装置 202, 204:ファン 220:リニアモータ冷却装置 222:主ダクト 224 :接続ダクト 226:ブロア 228:換気装置 238:主ダクト 240:接続ダクト 242:換気装置 260:接続ダクト 262:ブロア 発明を実施するための最良の形態 10: Linear motor cooling device 12: Linear motor 14: Stator 16: Mover 32: Coil 40: Grease mold 64: Heat sink 66: Heat collector 68: Heat sink 74: Projection 76: Base end 78: Fin 86: Duct 100: Fan 110: Linear motor cooling device 112: Heat sink 114: Heat collector 116: Heat sink 120: Projection 122: Base end 130, 132: Fin 136, 138: Duct 140, 142: Fan 160: Linear motor cooling device 164: Air guide plate 166: Heat sink plate 172: Heat sink 200: Linear motor cooling device 202, 204: Fan 220: Linear motor cooling device 222: Main duct 224: Connection duct 226: Blower 228: Ventilator 238: Main duct 240: Connection duct 242: Ventilator 260: Connection duct 262: Blower BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、請求可能発明のいくつかの実施例を、図を参照しつつ詳しく説明する。なお 、請求可能発明は、下記実施例の他、上記〔発明の態様〕の項に記載された態様を 始めとして、当業者の知識に基づいて種々の変更を施した態様で実施することがで きる。  [0013] Hereinafter, some embodiments of the claimable invention will be described in detail with reference to the drawings. In addition to the following examples, the claimable invention can be implemented in various modifications based on the knowledge of those skilled in the art, including the aspects described in the above [Aspect of the Invention] section. wear.
[0014] 図 1に、請求可能発明の一実施例であるリニアモータ冷却装置 10およびそれにより 冷却されるリニアモータ 12が図示されている。本実施例のリニアモータ冷却装置 10 およびリニアモータ 12は、電子回路部品装着機に設けられている。電子回路部品装 着機は、作業機の一種であって、回路基板に作業を施す対回路基板作業機の一種 であり、回路基板に電子回路部品を装着する。回路基板は部品装着基板の一種で あり、プリント基板はその一例である。電子回路部品装着機は、例えば、図 4および図 5に概略的に示すように、電子回路部品を供給する部品供給装置 300と、回路基板 を保持する基板保持装置 302と、部品供給装置 300から電子回路部品を受け取つ て回路基板 304に装着する作業ヘッドとしての装着ヘッド 306と、部品供給装置 300 と基板保持装置 302と装着ヘッド 306とを相対移動させる相対移動装置 308と、少な くとも基板保持装置 302,装着ヘッド 306および相対移動装置 308を制御する制御 装置 310とを含むように構成される。制御装置 310はコンピュータを主体として構成さ れ、部品供給装置 300等は、位置を固定して設けられたベッド 312上に設けられて いる。ベッド 312は電子回路部品装着機の本体を構成する。本電子回路部品装着機 は、他に、回路基板 304に設けられた基準マークを撮像するマーク撮像装置および 装着ヘッド 306に保持された電子回路部品を撮像する部品撮像装置を含む。  FIG. 1 shows a linear motor cooling device 10 and a linear motor 12 cooled by the linear motor cooling device 10 according to an embodiment of the claimable invention. The linear motor cooling device 10 and the linear motor 12 of the present embodiment are provided in an electronic circuit component mounting machine. The electronic circuit component mounting machine is a type of work machine, and is a type of anti-circuit board working machine that performs work on the circuit board, and mounts the electronic circuit component on the circuit board. A circuit board is a type of component mounting board, and a printed board is an example. For example, as schematically shown in FIGS. 4 and 5, the electronic circuit component mounting machine includes a component supply device 300 for supplying an electronic circuit component, a substrate holding device 302 for holding a circuit board, and a component supply device 300. A mounting head 306 as a working head that receives electronic circuit components and mounts them on the circuit board 304, a relative movement device 308 that relatively moves the component supply device 300, the substrate holding device 302, and the mounting head 306, and at least the substrate. A holding device 302, a mounting head 306, and a control device 310 that controls the relative movement device 308. The control device 310 is mainly composed of a computer, and the component supply device 300 and the like are provided on a bed 312 provided with a fixed position. The bed 312 constitutes the main body of the electronic circuit component mounting machine. In addition, the electronic circuit component mounting machine includes a mark imaging device that images a reference mark provided on the circuit board 304 and a component imaging device that images an electronic circuit component held by the mounting head 306.
[0015] 相対移動装置 308は、例えば、特開平 6— 291490号公報に記載されているように 、装着ヘッド 306を、基板保持装置 302により保持された回路基板 304の部品装着 面に平行な一平面たる水平面内にぉ 、て互 ヽに直交する 2方向である X軸方向およ ひ Ύ軸方向に移動させる装着ヘッド平行方向移動装置たる装着ヘッド水平方向移動 装置 316と、装着ヘッド 306を、上記 2方向と直交する方向である鉛直方向(Z軸方向 )に移動させる装着ヘッド直交方向移動装置たる装着ヘッド昇降装置 318とを含む。 相対移動装置 308は、装着ヘッド 306を、位置を固定して設けられた部品供給装置 300へ移動させて部品供給装置 300から電子回路部品を受け取らせ、基板保持装 置 302へ移動させて、基板保持装置 302に保持された回路基板 304に電子回路部 品を装着させる。 For example, as described in Japanese Patent Application Laid-Open No. 6-291490, the relative movement device 308 includes a mounting head 306 parallel to the component mounting surface of the circuit board 304 held by the board holding device 302. A mounting head horizontal movement device 316 and a mounting head 306, which are mounting head parallel movement devices that move in the X axis direction and the horizontal axis direction, which are two directions orthogonal to each other in a horizontal plane as a plane, A mounting head lifting / lowering device 318 that is a mounting head orthogonal direction moving device that moves in a vertical direction (Z-axis direction) that is a direction orthogonal to the two directions. The relative movement device 308 is a component supply device in which the mounting head 306 is fixed in position. Then, the electronic circuit component is received from the component supply device 300 and moved to the substrate holding device 302, and the electronic circuit component is mounted on the circuit board 304 held by the substrate holding device 302.
[0016] 基板保持装置 302は、例えば、基板搬送装置 320により搬入された回路基板 304 を下方力 支持するとともに、縁部をクランプする装置とされる。装着ヘッド水平方向 移動装置 316は、装着ヘッド 306を X軸方向に移動させる X軸移動装置 322と、 Y軸 方向に移動させる Y軸移動装置 324とを含み、リニアモータ 12は、例えば、それら X 軸移動装置 322および Y軸移動装置 324の各駆動源として用いられ、 X軸移動部材 326および Y軸移動部材 328をそれぞれ X軸方向および Y軸方向に移動させる。本 電子回路部品装着機の X軸移動装置 322は、図 4に示すようにリニアモータ 12を一 対備え、これらリニアモータ 12は制御装置 310により同時に共通して制御され、 X軸 移動部材 326を移動させる。これら X軸移動装置 322の 2つのリニアモータ 12および Y軸移動装置 324の 1つのリニアモータ 12についてそれぞれ、リニアモータ冷却装 置 10が設けられている。電子回路部品装着機はまた、装着ヘッド 306をその軸線ま わりに回転させて部品保持具 330に保持された電子回路部品を回転させるヘッド回 転装置等を含む。ヘッド回転装置および前記装着ヘッド昇降装置 318は、例えば、 特開平 4— 372199号公報に記載の装置と同様に構成される。これら装着ヘッド 306 ,相対移動装置 308および回転装置を含む装着装置により電子回路部品が回路基 板 304に装着される。 X軸移動装置 322および Y軸移動装置 324の各々のリニアモ ータ 12およびリニアモータ冷却装置 10は同様に構成されており、以下、 X軸移動装 置 322の一対ずつのリニアモータ 12およびリニアモータ冷却装置 10の各一方を取り 出し、図 1ないし図 3に基づいて代表的に説明する。  The substrate holding device 302 is, for example, a device that supports the circuit board 304 carried by the substrate transfer device 320 with a downward force and clamps the edge portion. The mounting head horizontal movement device 316 includes an X-axis movement device 322 that moves the mounting head 306 in the X-axis direction, and a Y-axis movement device 324 that moves the mounting head 306 in the Y-axis direction. It is used as a drive source for the axis moving device 322 and the Y axis moving device 324, and moves the X axis moving member 326 and the Y axis moving member 328 in the X axis direction and the Y axis direction, respectively. The X-axis moving device 322 of the electronic circuit component mounting machine includes a pair of linear motors 12 as shown in FIG. 4, and these linear motors 12 are controlled in common by the control device 310 at the same time. Move. A linear motor cooling device 10 is provided for each of the two linear motors 12 of the X-axis moving device 322 and the one linear motor 12 of the Y-axis moving device 324. The electronic circuit component mounting machine also includes a head rotating device that rotates the electronic circuit components held by the component holder 330 by rotating the mounting head 306 about its axis. The head rotating device and the mounting head lifting / lowering device 318 are configured in the same manner as the device described in, for example, Japanese Patent Laid-Open No. 4-372199. Electronic circuit components are mounted on the circuit board 304 by mounting devices including the mounting head 306, the relative movement device 308, and the rotating device. Each of the linear motor 12 and the linear motor cooling device 10 of the X-axis moving device 322 and the Y-axis moving device 324 has the same configuration, and hereinafter, a pair of the linear motor 12 and the linear motor of the X-axis moving device 322 respectively. Each one of the cooling devices 10 will be taken out and will be described representatively with reference to FIGS.
[0017] リニアモータ 12は、本実施例では円筒形のリニアモータであって、三相のコアレスリ ユアモータであり、図 1に示すように、固定部としての固定子 14および可動部としての 可動子 16を含み、被駆動部材たる移動部材としてのテーブル 18を予め設定された 経路に沿って移動させる。このテーブル 18に上記 X軸移動部材 326が設けられてい る。固定子 14は、本実施例においては、複数の永久磁石 22および磁性材製の磁石 保持部材としてのロッド 24を含む。ロッド 24は、横断面形状が円形を成し、一直線状 を成す。複数の永久磁石 22はそれぞれ、例えば、リング状を成し、その外周側が N 極とされ、内周側が S極とされたものと、外周側が S極とされ、内周側が N極とされたも のとがあり、ロッド 24の表面に、軸方向において磁極が交互に変わるように等ピッチ で、かつ隣接する永久磁石 22との間に非磁性材製のスぺーサ(図示省略)を挟んで 設けられている。固定子 14は、可動子 16の移動に必要な長さを備え、ベース 26に、 支持部材 28 (図 2参照)により軸方向の両端部を支持されて水平に配設されている。 ベース 26は、前記ベッド 312上に設けられ、固定子 14は、その長手方向が X軸方向 に平行に設けられている。 [0017] The linear motor 12 is a cylindrical linear motor in this embodiment, and is a three-phase coreless linear motor. As shown in FIG. 1, the stator 14 as a fixed portion and the mover as a movable portion. The table 18 as a moving member that is a driven member is moved along a preset route. The table 18 is provided with the X-axis moving member 326. In this embodiment, the stator 14 includes a plurality of permanent magnets 22 and a rod 24 as a magnet holding member made of a magnetic material. Rod 24 has a circular cross-sectional shape and is straight. Is made. Each of the plurality of permanent magnets 22 has, for example, a ring shape, the outer peripheral side being an N pole, the inner peripheral side being an S pole, the outer peripheral side being an S pole, and the inner peripheral side being an N pole A spacer (not shown) made of non-magnetic material is sandwiched between the adjacent permanent magnets 22 at the same pitch on the surface of the rod 24 so that the magnetic poles are alternately changed in the axial direction. It is provided in. The stator 14 has a length necessary for the movement of the mover 16, and is horizontally disposed on the base 26 with both ends in the axial direction supported by support members 28 (see FIG. 2). The base 26 is provided on the bed 312 and the stator 14 is provided such that the longitudinal direction thereof is parallel to the X-axis direction.
[0018] 可動子 16は、複数のコイル 32 (図 1には 1つのみ図示されている)を含む。これらコ ィル 32はそれぞれ、本リニアモータ 12では、線材が卷回されて円筒状を成すととも に、線材同士の隙間に榭脂 34が充填され、その外周側も榭脂によって覆われており 、非磁性材製のリング状のスぺーサ(図示省略)を間に挟んで同心状に一体的に、か つ等間隔に設けられている。可動子 16は、固定子 14の外側に半径方向の隙間 36 を有して嵌合されており、固定子 14の軸方向に沿って移動可能であり、コイル 32の 外側を榭脂モールド 40により覆われて前記テーブル 18の裏面ないしベース 26ある いは固定子 14側の面である下面に固定されている。榭脂モールド 40の榭脂は、本 実施例では、上記充填された榭脂 34と同じ榭脂とされている。  [0018] The mover 16 includes a plurality of coils 32 (only one is shown in FIG. 1). In these linear motors 12, these coils 32 are each wound into a cylindrical shape by winding the wire, and the gap 34 between the wires is filled with the resin 34, and the outer peripheral side is also covered with the resin. However, the ring-shaped spacers (not shown) made of a non-magnetic material are provided concentrically and integrally at equal intervals. The mover 16 is fitted on the outside of the stator 14 with a gap 36 in the radial direction, and is movable along the axial direction of the stator 14. It is covered and fixed to the rear surface of the table 18 or the lower surface which is the surface of the base 26 or the stator 14 side. The resin of the resin mold 40 is the same resin as the filled resin 34 in this embodiment.
[0019] テーブル 18は、ベース 26上にリニアガイド 48により案内されて、固定子 14の長手 方向に平行な方向に一直線状に移動可能に設けられている。リニアガイド 48は、ベ ース 26上に設けられた 1対の案内部材としてのガイドレール 50と、テーブル 18に設 けられてガイドレール 50に相対移動可能に嵌合された 1対のスライダ 52と、スライダ 5 2に循環可能に保持された転動体 (例えば、ボール。図示省略)とを含む。また、リニ ァエンコーダ 54が設けられ、テーブル 18の移動方向の位置ないし X軸移動部材 32 6の位置が検出されるようにされて!、る。リニアエンコーダ 54は位置検出装置の一種 であり、ベース 26に、テーブル 18の移動方向に平行に設けられたリニアスケール 56 と、テーブル 18に設けられ、リニアスケール 56に沿って移動させられる移動検出へッ ド 58とを含む。なお、リニアエンコーダ 54は、本 X軸移動装置 322においては、 2つ のリニアモータ 12のうちの一方について設けられる。 2つのリニアモータ 12について それぞれリニアスケール 56を設け、それらリニアスケール 56による位置検出結果に 基づいて 2つのリニアモータ 12が制御され、 X軸移動部材 326の移動が制御されて もよい。 X軸移動装置は、リニアモータおよびリニアモータ冷却装置を 1つずつ含む 装置としてもよい。 The table 18 is guided on the base 26 by a linear guide 48 and is provided so as to be movable in a straight line in a direction parallel to the longitudinal direction of the stator 14. The linear guide 48 is composed of a guide rail 50 as a pair of guide members provided on the base 26 and a pair of sliders 52 which are provided on the table 18 and fitted to the guide rail 50 so as to be relatively movable. And rolling elements (for example, balls, not shown) that are held by the slider 52 in a circulatory manner. Further, a linear encoder 54 is provided so that the position of the table 18 in the moving direction or the position of the X-axis moving member 326 can be detected. The linear encoder 54 is a kind of position detection device.The linear scale 56 is provided on the base 26 in parallel with the moving direction of the table 18, and the movement detection is provided on the table 18 and is moved along the linear scale 56. And 58. The linear encoder 54 is provided for one of the two linear motors 12 in the X-axis moving device 322. About two linear motors 12 Each of the linear scales 56 may be provided, and the two linear motors 12 may be controlled based on the position detection result by the linear scales 56, and the movement of the X-axis moving member 326 may be controlled. The X-axis moving device may be a device including one linear motor and one linear motor cooling device.
[0020] リニアモータ冷却装置 10を説明する。電流供給により前記コイル 32に発生する熱 は、少なくとも 1枚、本実施例では 2枚の放熱板 64により放熱される。これら放熱板 64 は、本実施例においてはそれぞれ、伝熱性に優れた金属材料の一種であり、かつ単 位質量あたりの放熱特性 (放熱量 Z質量)に優れた材料、例えば、アルミニウム合金 により作られ、半円筒状を成し、複数の円筒状のコイル 32全部について、そのほぼ 半周を覆う集熱部 66と、その集熱部 66の一端力もコイル 32の中心線力も遠ざかる向 きに延び出す板状の放熱部 68とを備えている。 2枚の放熱板 64の各集熱部 66は、 榭脂 34の表面に密着させられた状態で複数のコイル 32と共に榭脂モールド 40によ つて覆われている。集熱部 66は、複数のコイル 32と榭脂モールド 40との間に配設さ れ、コイル 32に近接し、直接接触させられたに等しい状態で設けられているのであり 、 2つの集熱部 66はコイル 32の外周のほぼ全体を覆っている。なお、コイル 32の線 材同士の隙間への榭脂 34の充填と、コイル 32および集熱部 66の榭脂によるモール ドとは、同時に行ってもよい。  [0020] The linear motor cooling device 10 will be described. The heat generated in the coil 32 by supplying current is dissipated by at least one heat sink 64 in this embodiment. Each of these heat sinks 64 is a kind of metal material having excellent heat conductivity in the present embodiment, and is made of a material having excellent heat dissipation characteristics per unit mass (heat dissipation Z mass), for example, an aluminum alloy. The heat collecting part 66 that forms a semi-cylindrical shape and covers almost half of the plurality of cylindrical coils 32, and the one end force of the heat collecting part 66 and the center line force of the coil 32 extend in a direction away from each other. And a plate-like heat radiation portion 68. Each heat collecting portion 66 of the two heat radiating plates 64 is covered with the resin mold 40 together with the plurality of coils 32 while being in close contact with the surface of the resin 34. The heat collecting part 66 is disposed between the plurality of coils 32 and the resin mold 40, and is provided in the state of being close to the coil 32 and being in direct contact with the two heat collecting parts. Portion 66 covers almost the entire outer periphery of coil 32. The filling of the resin 34 into the gap between the wires of the coil 32 and the molding of the coil 32 and the heat collecting part 66 by the resin may be performed simultaneously.
[0021] 2枚の放熱板 64の各放熱部 68は、図 1に示すように、コイル 32のほぼ直径方向に 隔たった 2部分であり、コイル 32の中心線に対して対称の 2つの位置であって、テー ブル 18の板面ないしテーブル 18の移動平面に直角な方向ないしテーブル 18とべ ース 26とが隔たった方向である上下方向にずれた位置において集熱部 66からテー ブル 18の板面に平行な方向であって水平に、かつ互いに逆向きに真っ直ぐに延び 出させられ、榭脂モールド 40の一部を貫通して外部に延び出させられている。放熱 部 68の突出端部は自由であり、放熱部 68は榭脂モールド 40の外側面 (本実施例で は榭脂の外表面)力 片持ち状に突出させられ、集熱部 66から可動子 16の外部ま で延び出させられている。なお、図 3に示すように、放熱部 68の、可動子 16の移動方 向に隔たった両端部はそれぞれ、端側ほど厚さが薄くされて案内部 72が設けられて いる。案内部 72の先端は丸くされている。案内部 72を設ける理由は、後に説明する [0022] 放熱部 68のコイル 32から外部へ突出させられた突出部 74には、その基端部 76を 除く部分に複数のフィン 78が設けられている。フィン 78は、本リニアモータ冷却装置 10では、放熱板 64と同様に、伝熱性に優れた金属材料の一種であり、かつ単位質 量あたりの放熱特性に優れた金属材料の一種であるアルミニウム合金製の薄い板材 が凹凸状に曲げられることにより形成され、突出部 74の第 1面たるテーブル 18側の 面である上面 80と第 2面たるベース 26側の面である下面 82とにそれぞれフィン 78が 複数ずつ、可動子 16の移動方向と平行な方向に延びる状態で固定されて!/、る。 [0021] As shown in Fig. 1, each of the heat radiating portions 68 of the two heat radiating plates 64 is two portions separated from each other in the diameter direction of the coil 32, and two positions symmetrical to the center line of the coil 32. In the direction perpendicular to the plate surface of the table 18 or the moving plane of the table 18 or in the vertical direction that is the direction in which the table 18 and the base 26 are separated from each other, It extends in a direction parallel to the plate surface, horizontally and in a direction opposite to each other, and extends through the part of the resin mold 40 to the outside. The projecting end of the heat dissipating part 68 is free, and the heat dissipating part 68 is projected from the outer surface of the resin mold 40 (in this embodiment, the outer surface of the resin). It extends to the outside of the child 16. As shown in FIG. 3, both end portions of the heat dissipating portion 68 separated in the moving direction of the mover 16 are each provided with a guide portion 72 that is made thinner toward the end side. The tip of the guide 72 is rounded. The reason for providing the guide 72 will be explained later. A plurality of fins 78 are provided on a portion excluding the base end portion 76 of the protruding portion 74 protruding outside from the coil 32 of the heat radiating portion 68. In the present linear motor cooling device 10, the fin 78 is an aluminum alloy that is a kind of metal material having excellent heat transfer properties and a kind of metal material having excellent heat dissipation characteristics per unit mass, like the heat sink 64. A thin plate made of metal is bent into an uneven shape, and fins are formed on the upper surface 80, which is the surface on the table 18 side, which is the first surface of the protrusion 74, and the lower surface 82, which is the surface on the base 26 side, which is the second surface. A plurality of 78 are fixed in a state extending in a direction parallel to the moving direction of the mover 16!
[0023] 前述のように、 2枚の放熱板 64の各放熱部 68は上下方向の位置が異ならされてお り、上面 80に固定されたフィン 78と下面 82に固定されたフィン 78とは高さ(放熱部 6 8からの突出長さ)が異ならされて 、る。上下方向の位置が高 、方の放熱部 68の上 面 80に固定のフィン 78と、低い方の放熱部 68の下面 82に固定のフィン 78とは高さ が同じにされており、高い方の放熱部 68の下面 82に固定のフィン 78と、低い方の放 熱部 68の上面 80に固定のフィン 78とは高さが同じにされており、後者の方が前者よ り高くされている。したがって、 2枚の放熱板 64の各々について、上面 80に固定のフ イン 78の先端から下面 82に固定のフィン 78の先端までの距離は同じであり、 2枚の 放熱板 64の各上面 80に固定のフィン 78の先端面は水平な同一平面内に位置させ られ、各下面 82に固定のフィン 78の先端面も水平な同一平面内に位置させられて いる。なお、フィンは、放熱板 64と一体に形成してもよい。  [0023] As described above, the heat dissipating portions 68 of the two heat dissipating plates 64 have different vertical positions, and the fin 78 fixed to the upper surface 80 and the fin 78 fixed to the lower surface 82 are different. The height (projection length from the heat radiation part 68) is different. The fin 78 fixed to the upper surface 80 of the lower heat radiating part 68 and the fin 78 fixed to the lower surface 82 of the lower heat radiating part 68 have the same height in the vertical direction. The fins 78 fixed to the lower surface 82 of the heat dissipating part 68 and the fins 78 fixed to the upper surface 80 of the lower heat dissipating part 68 have the same height, and the latter is higher than the former. Yes. Therefore, for each of the two heat sinks 64, the distance from the tip of the fin 78 fixed to the upper surface 80 to the tip of the fin 78 fixed to the lower surface 82 is the same, and each upper surface 80 of the two heat sinks 64 The front end surface of the fixed fin 78 is positioned in the same horizontal plane, and the lower end surface 82 of the fixed fin 78 is positioned in the same horizontal plane. The fins may be formed integrally with the heat radiating plate 64.
[0024] 前記ベース 26には、図 1に示すように、固定子 14に沿って 1対のダクト 86が設けら れている。これらダクト 86はそれぞれ、固定子 14の両側に設けられ、それぞれ、 2枚 の放熱板 64の各放熱部 68の基端部 76を除く部分と、上面 80および下面 82にそれ ぞれ固定のフィン 78とを覆うとともに、可動子 16の移動に伴って放熱部 68およびフィ ン 78が移動する空間を覆う状態で静止して設けられている。ダクト 86は、その長手方 向であって、可動子 16の移動方向に隔たった両端部がそれぞれ、リニアモータ 12の 外に開口させられた管状を成し、図 1および図 3に示すように、その固定子 14側の側 壁には、突出部 74の基端部 76に隣接する部分であって、フィン 78が設けられてい ない部分の移動経路に対応する部分に開口 88が固定子 14に沿って設けられ、放熱 部 68の基端部 76を除く部分およびフィン 78がダクト 86により覆われた状態で可動子 16の移動に伴ってダクト 86内を移動することを許容するようにされている。なお、図 2 はリニアモータ冷却装置 10およびリニアモータ 12を概略的に示す図であり、ダクト 86 等、構成部材は概略的に図示されており、ダクト 86は上壁が略されて可動子 16が見 える状態で図示されて 、る。 The base 26 is provided with a pair of ducts 86 along the stator 14 as shown in FIG. Each of these ducts 86 is provided on both sides of the stator 14, and each of the two fins 64 has fins fixed to the portions excluding the base end portion 76 of the heat radiating portions 68 of the two heat radiating plates 64 and the upper surface 80 and the lower surface 82, respectively. 78, and is provided stationary in a state of covering the space in which the heat dissipating portion 68 and the fin 78 move as the mover 16 moves. The duct 86 is in the longitudinal direction, and both ends separated in the moving direction of the mover 16 are each formed in a tubular shape opened to the outside of the linear motor 12, as shown in FIGS. 1 and 3. On the side wall of the stator 14, an opening 88 is formed in a portion adjacent to the base end portion 76 of the projecting portion 74 and corresponding to the movement path of the portion where the fin 78 is not provided. Provided along the heat dissipation A portion excluding the base end portion 76 of the portion 68 and the fin 78 are allowed to move in the duct 86 in accordance with the movement of the mover 16 in a state where the fin 78 is covered with the duct 86. FIG. 2 is a diagram schematically showing the linear motor cooling device 10 and the linear motor 12, in which components such as the duct 86 are schematically illustrated. The upper wall of the duct 86 is omitted and the mover 16 is omitted. It is shown in a state where it can be seen.
[0025] 上記開口 88は、図 3に示すように、ダクト 86に設けられた遮蔽部材としての遮蔽幕 90により塞がれている。遮蔽幕 90は、可撓性を有する材料、例えば、合成樹脂製の 薄 、シートにより作られて帯状を成し、長手方向に平行な一方の側縁部にぉ 、てダ タト 86の開口 88の上側の部分に固定され、開口 88全体を塞いでいる。遮蔽幕 90の 他方の側縁部であって下端部は自由であり、開口 88を開放することができる。  As shown in FIG. 3, the opening 88 is closed by a shielding curtain 90 as a shielding member provided in the duct 86. The shielding curtain 90 is made of a flexible material, for example, a thin sheet made of synthetic resin, forms a belt-like shape, and has an opening 88 of the dust 86 on one side edge parallel to the longitudinal direction. It is fixed to the upper part of the opening and closes the entire opening 88. The other side edge of the shielding curtain 90 and its lower end are free, and the opening 88 can be opened.
[0026] 上記 1対のダクト 86の各長手方向の両端開口部にはそれぞれ、図 2に示すように、 換気装置の一種である送風機としてのファン 100が設けられて 、る。本リニアモータ 冷却装置 10においては、ダクト 86およびファン 100は、固定子 14側に設けられてい るのである。これらファン 100は、図 2に示すように、ダクト 86の長手方向に平行であ つて、可動子 16の移動方向に平行な軸線まわりに回転可能に設けられている。 1対 のダクト 86はそれぞれ、放熱板 64の突出部 74の上面 80と下面 82とにそれぞれ固 定のフィン 78を覆うように設けられており、ファン 100は上面 80に固定のフィン 78に 対しても下面 80に固定のフィン 78に対しても風を作用させる。  [0026] As shown in FIG. 2, a fan 100 as a blower, which is a type of ventilation device, is provided in each longitudinal opening at both ends of the pair of ducts 86, respectively. In the present linear motor cooling device 10, the duct 86 and the fan 100 are provided on the stator 14 side. As shown in FIG. 2, these fans 100 are provided so as to be rotatable about an axis parallel to the longitudinal direction of the duct 86 and parallel to the moving direction of the mover 16. Each of the pair of ducts 86 is provided so as to cover the fixed fins 78 on the upper surface 80 and the lower surface 82 of the protrusion 74 of the heat sink 64, respectively, and the fan 100 is opposed to the fins 78 fixed to the upper surface 80. However, the wind is also applied to the fin 78 fixed to the lower surface 80.
[0027] なお、前記 Y軸移動装置 324は、図 5に示すように、 X軸移動部材 326上に設けら れている。 Y軸移動装置 324においてリニアモータ 12およびリニアモータ冷却装置 1 0は、テーブル 18の板面ないし移動平面が鉛直であって、基板保持装置 302に保持 された回路基板 304の部品装着面に直角となり、放熱板 64の放熱部 68が集熱部 66 力 鉛直 (上下)方向に延び出す状態で設けられる。 Y軸移動装置 324にお 、ては Y 軸移動部材 328がテーブル 18を構成し、あるいはテーブル 18上に Y軸移動部材 32 8が設けられる。また、 X軸移動部材 326がベース 26を構成し、あるいは X軸移動部 材 326上にベース 26力 S設けられる。 Y軸移動装置 324のリニアモータ 12を冷却する リニアモータ冷却装置 10の一対のダクト 86は、 X軸移動部材 326上に Y軸方向に平 行に設けられた固定子 14に沿って設けられている。 [0028] 以上のように構成されたリニアモータ 12においては、コイル 32への駆動電流の供 給により、コイル 32に移動磁界が発生させられるとともに、永久磁石 22が発生させて いる界磁磁束との相互作用により軸方向の移動推力が発生させられ、可動子 16が 固定子 14の軸線に平行な方向に移動させられ、テーブル 18がリニアガイド 48により 案内されつつ移動させられる。この際、コイル 32が発熱するが、その熱は、放熱板 64 のコイル 32を覆う集熱部 66により集熱され、放熱部 68およびフィン 78から放熱され 、可動子 16外へ放出される。 Note that the Y-axis moving device 324 is provided on an X-axis moving member 326 as shown in FIG. In the Y-axis moving device 324, the linear motor 12 and the linear motor cooling device 10 are such that the plate surface or moving plane of the table 18 is vertical and is perpendicular to the component mounting surface of the circuit board 304 held by the board holding device 302. The heat radiating portion 68 of the heat radiating plate 64 is provided in a state of extending in the vertical (vertical) direction of the heat collecting portion 66 force. In the Y-axis moving device 324, the Y-axis moving member 328 constitutes the table 18, or the Y-axis moving member 328 is provided on the table 18. Further, the X-axis moving member 326 constitutes the base 26, or the base 26 force S is provided on the X-axis moving member 326. A pair of ducts 86 of the linear motor cooling device 10 that cools the linear motor 12 of the Y-axis moving device 324 are provided along the stator 14 provided in parallel in the Y-axis direction on the X-axis moving member 326. Yes. In the linear motor 12 configured as described above, the supply of the drive current to the coil 32 generates a moving magnetic field in the coil 32 and the field magnetic flux generated by the permanent magnet 22. Due to this interaction, axial movement thrust is generated, the mover 16 is moved in a direction parallel to the axis of the stator 14, and the table 18 is moved while being guided by the linear guide 48. At this time, the coil 32 generates heat, but the heat is collected by the heat collecting part 66 covering the coil 32 of the heat radiating plate 64, radiated from the heat radiating part 68 and the fin 78, and released to the outside of the mover 16.
[0029] また、少なくとも可動子 16の移動時にはファン 100が回転させられる。この際、図 2 に矢印で示すように、ダクト 86の長手方向の一端部に設けられたファン 100は、ダク ト 86内に空気を送り込むように回転させられ、他端部に設けられたファン 100は、ダク ト 86内の空気を外へ吸い出すように回転させられ、ダクト 86内にはその長手方向に おいて一方向に流れる空気の流れが生じさせられる。可動子 16は、固定子 14に沿 つて往復移動させられるが、本実施例では、可動子 16の移動方向に関係なぐファ ン 100により生じさせられる空気の流れの方向は一定である。  [0029] At least when the mover 16 is moved, the fan 100 is rotated. At this time, as indicated by an arrow in FIG. 2, the fan 100 provided at one end portion in the longitudinal direction of the duct 86 is rotated so as to send air into the duct 86, and the fan provided at the other end portion. 100 is rotated so that the air in the duct 86 is sucked out, and a flow of air flowing in one direction in the longitudinal direction is generated in the duct 86. Although the mover 16 is reciprocated along the stator 14, in this embodiment, the direction of the air flow generated by the fan 100 related to the moving direction of the mover 16 is constant.
[0030] ダクト 86は、その両端部がリニアモータ 12の外に開口させられており、一方のファ ン 100により、リニアモータ 12の外からダクト 86内に空気が送り込まれ、他方のファン 100によってダクト 86内の空気力 ダクト 86の外であってリニアモータ 12の外へ排出 されて、ダクト 86内の空気が強制的に換気される。ダクト 86内に送り込まれる空気の 温度はフィン 78の温度より低ぐ可動子 16の移動方向と平行な方向に延びる状態で 設けられたフィン 78は、ファン 100によりダクト 86内に生じさせられた冷却風によって 良好に冷却される。放熱部 68およびフィン 78はダクト 86により覆われているため、確 実に冷却風の中に位置することとなり、冷却が確実に為されるとともに、熱を奪って温 度の上昇した空気はダクト 86内を流れ、リニアモータ 12の周辺部材,装置の温度を 上昇させることなぐリニアモータ 12外へ排気される。フィン 78は、可動子 16の移動 に伴って生ずる空気の相対移動により冷却される上、ファン 100によって強制的に生 じさせられる風によっても冷却され、放熱が十分に為される。可動子 16の移動に伴う 空気の相対移動はダクト 86により確保され、フィン 78が確実に冷却される。  Both ends of the duct 86 are opened to the outside of the linear motor 12, and air is sent into the duct 86 from the outside of the linear motor 12 by one fan 100, and the other fan 100 Air force in the duct 86 The air is exhausted outside the duct 86 and out of the linear motor 12, and the air in the duct 86 is forcibly ventilated. The temperature of the air fed into the duct 86 is lower than the temperature of the fin 78. The fin 78 provided in a state extending in a direction parallel to the moving direction of the mover 16 is cooled by the fan 100 in the duct 86. Cooled well by wind. Since the heat dissipating section 68 and the fin 78 are covered with the duct 86, the heat dissipating section 68 and the fin 78 are surely positioned in the cooling air, and the cooling is surely performed. The air is exhausted outside the linear motor 12 without increasing the temperature of the peripheral members and equipment of the linear motor 12. The fins 78 are cooled by the relative movement of the air generated as the mover 16 moves, and are also cooled by the wind that is forcibly generated by the fan 100, so that the heat radiation is sufficiently performed. The relative movement of the air accompanying the movement of the mover 16 is secured by the duct 86, and the fins 78 are reliably cooled.
[0031] 可動子 16が移動するとき、放熱部 68は遮蔽幕 90をめくり上げつつ移動する。前述 のように、放熱部 68の、可動子 16の移動方向に隔たった両端部にはそれぞれ、案 内部 72が設けられており、この案内部 72によって遮蔽幕 90を容易にめくり上げるこ とができる。遮蔽幕 90は、放熱部 68の通過後、ダクト 86内の空気の流れにより生ず る負圧によってダクト 86に密着した状態に戻り、開口 88を塞ぐ。そのため、開口 88は ほぼ全体が閉じられた状態に保たれ、ダクト 86内の空気がその長手方向両端の開 口以外の部分力 漏れることが良好に回避され、空気の送り込みと吸気とによる換気 が良好に為される。 When the mover 16 moves, the heat dissipating unit 68 moves while turning up the shielding curtain 90. Above As shown in the figure, both ends of the heat dissipating section 68 separated in the moving direction of the mover 16 are provided with a plan interior 72, and the shielding curtain 90 can be easily turned up by the guide section 72. . After passing through the heat dissipating section 68, the shielding curtain 90 returns to the state in close contact with the duct 86 by the negative pressure generated by the air flow in the duct 86, and closes the opening 88. As a result, the opening 88 is kept almost entirely closed, and the air in the duct 86 is well avoided from leaking partial forces other than the openings at both ends in the longitudinal direction, and ventilation by air inflow and intake air is prevented. Done well.
[0032] このようにコイル 32から発せられる熱が良好に放熱され、リニアモータ 12が良好に 冷却される。本リニアモータ 12はコアレスのリニアモータであり、コア付きのリニアモー タに比較して、同一のトルクを得るために必要な供給電流量が多ぐ発熱量が多いが 、良好に冷却される。 2枚の放熱板 64およびそれらに設けられた複数のフィン 78は アルミニウム合金により作られており、質量に対する放熱量が大きいため、放熱板 64 等を設けることによる質量の増大を抑えつつ、優れた放熱性を得ることができる。  [0032] Thus, the heat generated from the coil 32 is radiated well, and the linear motor 12 is cooled well. This linear motor 12 is a coreless linear motor. Compared to a linear motor with a core, the supply current required for obtaining the same torque is large and the heat generation is large, but it is cooled well. The two heat sinks 64 and the plurality of fins 78 provided on them are made of an aluminum alloy and have a large amount of heat dissipation with respect to the mass. Heat dissipation can be obtained.
[0033] リニアモータ 12の冷却が良好に為されることにより、テーブル 18やベース 26への 熱の伝達が抑制されてそれらの熱変形が低減させられ、リニアエンコーダ 54の変形 も低減させられてテーブル 18の位置検出が精度良く行われ、テーブル 18が精度良 く所定の位置へ移動させられる。  [0033] By properly cooling the linear motor 12, heat transfer to the table 18 and the base 26 is suppressed, the thermal deformation thereof is reduced, and the deformation of the linear encoder 54 is also reduced. The position of the table 18 is detected with high accuracy, and the table 18 is moved to a predetermined position with high accuracy.
また、リニアモータ 12が駆動源とされ、リニアエンコーダ 54の位置検出に基づいて テーブル 18の位置が制御されることにより、高い制御精度が得られる。回転モータが 駆動源とされる場合、被駆動部材である移動部材との間にねじ軸およびナットを含む 運動変 構が設けられるため、移動部材の移動量は回転モータの作動量と厳密 には対応せず、運動変 構の弾性変形に起因する不確定な変動成分を含むこと となる。そのため、たとえ移動部材の位置がリニアエンコーダにより検出され、その検 出結果に基づいて回転モータの作動が制御されても、移動部材の位置が上記変動 成分の変化の影響を受けることを避け得ず、位置決め精度の向上に限界がある。そ れに対し、リニアモータの場合、ねじ軸を介することなぐ移動部材が直接駆動される ため、リニアエンコーダによる位置の検出結果に基づいてリニアモータが制御されれ ば、上記弾性変形に起因する不確定な変動成分が排除され、移動部材の位置が精 度良く制御されるのである。 Further, the linear motor 12 is used as a drive source, and the position of the table 18 is controlled based on the position detection of the linear encoder 54, so that high control accuracy can be obtained. When a rotary motor is used as a drive source, a movement mechanism including a screw shaft and nut is provided between the driven member and the moving member. Therefore, the moving amount of the moving member is strictly equal to the operating amount of the rotary motor. It does not correspond and includes an uncertain fluctuation component due to elastic deformation of the kinematics. Therefore, even if the position of the moving member is detected by the linear encoder and the operation of the rotary motor is controlled based on the detection result, it is inevitable that the position of the moving member is affected by the change in the fluctuation component. There is a limit to the improvement of positioning accuracy. On the other hand, in the case of a linear motor, the moving member that passes through the screw shaft is directly driven. Therefore, if the linear motor is controlled based on the position detection result by the linear encoder, there is a problem caused by the elastic deformation. The definite fluctuation component is eliminated, and the position of the moving member is It is controlled well.
このように、リニアモータ 12が良好に冷却されて各部の熱変形が低減させられること と、移動部材の位置制御がリニアモータ 12とリニアエンコーダ 54との組合わせにより 運動変 構の不確定な弾性変形の影響が排除されて行われることとの両方によつ て、 X軸移動部材 326および Y軸移動部材 328が精度良く所定の位置へ移動させら れ、装着ヘッド 306が部品供給装置 300から電子回路部品を取り出す部品取出位 置や回路基板 304に電子回路部品を装着する部品装着位置等の作業位置へ精度 良く移動させられて、装着作業等が精度良く行われる。  In this way, the linear motor 12 is cooled well and thermal deformation of each part is reduced, and the position control of the moving member is performed by the combination of the linear motor 12 and the linear encoder 54. Both the X-axis moving member 326 and the Y-axis moving member 328 are accurately moved to predetermined positions, and the mounting head 306 is moved from the component supply device 300, both by eliminating the influence of deformation. The electronic circuit component is taken out and moved to a work position such as a component mounting position where the electronic circuit component is mounted on the circuit board 304 with high accuracy, and the mounting operation is performed with high accuracy.
[0034] また、ダクト 86およびファン 100が位置を固定して設けられており、それらを可動子 16に設ける場合に比較して可動子 16の質量が小さぐまた、冷却が効率良く行われ ることから、コイル 32への供給電流を増大させ、可動子 16の駆動に必要な推力を得 つつ、リニアモータ 12を容量が小さぐ安価なものとすることができる。コアレスのリニ ァモータはコアを有さない分、軽いことからも、可動子 16の質量の増大を抑えること ができる。なお、装着ヘッド昇降装置 318の駆動源としてリニアモータ 12を使用し、そ の冷却のためにリニアモータ冷却装置 10を設けてもよい。  In addition, the duct 86 and the fan 100 are provided with fixed positions, and the mass of the mover 16 is smaller than when the mover 16 is provided, and cooling is performed efficiently. As a result, the current supplied to the coil 32 can be increased and the thrust required for driving the mover 16 can be obtained, while the linear motor 12 has a small capacity and can be made inexpensive. Since the coreless linear motor does not have a core, it is light and can suppress an increase in the mass of the mover 16. Note that the linear motor 12 may be used as a drive source for the mounting head lifting device 318, and the linear motor cooling device 10 may be provided for cooling.
[0035] 別の実施例を図 6な 、し図 8に基づ 、て説明する。  Another embodiment will be described based on FIG. 6 and FIG.
本実施例のリニアモータ冷却装置 110においては、複数のファンが可動子に支持 されて可動子と一緒に移動し、フィンに沿った方向の冷却風を生じさせるようにされて いる。そのため、本実施例では、 2枚の放熱板 112の各集熱部 114からそれぞれ延 び出させられた放熱部 116の可動子 16の外側面力 片持ち状に突出させられた突 出部 120は、図 7および図 8に概略的に示すように、可動子 16の移動方向における 中間部が切り欠かれて切欠部 124が設けられ、突出部 120の基端部 122を除く部分 には、切欠部 124に対して可動子 16の移動方向における一方の側の第 1面たる上 面 126と第 2面たる下面 128とにそれぞれ、フィン 130が複数ずつ、可動子 16の移動 方向と平行な方向に延びる状態で設けられて!/、る。突出部 120の切欠部 124の他方 の側についても同様に、上面 126と下面 128とにそれぞれ、フィン 132が複数ずっ設 けられている。フィン 130, 132はそれぞれ、可動子 16の移動方向における中間部 力も両端の各々に向かって延びているのであり、それらの間であって、切欠部 124に 対応する部分にスペース 134が設けられている。 In the linear motor cooling device 110 of this embodiment, a plurality of fans are supported by the mover and moved together with the mover to generate cooling air in the direction along the fins. Therefore, in this embodiment, the outer surface force of the mover 16 of the heat dissipating part 116 extended from the respective heat collecting parts 114 of the two heat dissipating plates 112 is protruded in a cantilevered manner. As shown schematically in FIG. 7 and FIG. 8, the intermediate portion in the moving direction of the mover 16 is notched and a notch 124 is provided, and the portion of the protrusion 120 excluding the base end 122 is A plurality of fins 130 are parallel to the moving direction of the mover 16 on each of the upper surface 126 as the first surface and the lower surface 128 as the second surface on one side in the moving direction of the mover 16 with respect to the notch 124. Provided in a state that extends in the direction! / Similarly, a plurality of fins 132 are provided on the upper surface 126 and the lower surface 128 on the other side of the cutout portion 124 of the protrusion 120. Each of the fins 130 and 132 also has an intermediate force in the moving direction of the mover 16 extending toward each of both ends. A space 134 is provided in the corresponding part.
[0036] 上記フィン 130, 132ίまそれぞれ、ダクト 136, 138【こよって覆われて!/ヽる。ダクト 13 6ίま、図 6【こ示す Jう【こ、放熱咅 16の上下両面 126, 128【こそれぞれ固定のフィン 1 30を覆って、可動子 16の移動方向に平行に延びる状態で放熱板 112に固定されて ヽる。ダク卜 138ίま、放熱咅 の上下両面 126, 128【こそれぞれ固定のフィン 132 を覆って放熱板 112に固定されており、これらダクト 136, 138はそれぞれ、前記スぺ ース 134と、スペース 134とは反対側であって、フィン 132, 130より外側とに開口さ せられている。ダクト 136, 138のスペース 134とは反対側の開口部にはそれぞれ、 ファン 140, 142力フィン 130, 132に対応し、フィン 130とフィン 132との可動子 16 の移動方向における中間部側とは反対側の端に近接する状態で、可動子 16の移動 方向に平行な軸線まわりに回転可能に設けられている。ファン 140, 142は、ダクト 1 36, 138および放熱板 112を介して可動子 16により支持され、可動子 16と一緒に移 動する。 [0036] The above-mentioned fins 130 and 132ί are covered with ducts 136 and 138, respectively. Duct 13 6 ί, Fig. 6 [Showing J], Heat sink 16 Upper and lower surfaces 126, 128 [Heat radiating plate covering the fixed fins 1 30 and extending parallel to the moving direction of the mover 16 Fixed to 112. The upper and lower surfaces of the heat sink 126, 128 are covered with the fixed fins 132 and fixed to the heat sink 112. These ducts 136, 138 are respectively connected to the space 134 and the space 134. It is on the opposite side from the fins 132 and 130 and is open outside. The openings on the side opposite to the space 134 of the ducts 136 and 138 correspond to the fan 140 and 142 force fins 130 and 132, respectively, and the intermediate side in the moving direction of the mover 16 between the fin 130 and the fin 132 is It is provided so as to be rotatable around an axis parallel to the moving direction of the mover 16 in a state close to the opposite end. The fans 140 and 142 are supported by the movable element 16 via the ducts 136 and 138 and the heat radiating plate 112, and move together with the movable element 16.
[0037] 本リニアモータ冷却装置 110においては、電流供給によりコイル 32に発生させられ た熱は、放熱板 112の集熱部 114により集められるとともに放熱部 116に伝達され、 放熱咅 16およびフィン 130, 132力ら放熱される。可動子 16と共にダクト 136, 138 およびファン 140, 142が移動させられる。この際、ファン 140, 142は、図 7および図 8に矢印で示すように、いずれもダクト 136, 138から空気を外へ吸い出す方向に回 転させられる。そのため、 2つのダクト 136, 138の間の空間およびスペース 134から 外気力 Sダクト 136, 138内に吸!ヽ込まれ、フィン 130, 132の熱を奪!ヽ取り、冷去 Ρしつ つ、ダクト 136, 138のスペース 134側とは反対側であって、互いに逆向きの外側の 開口力 排出される。  In this linear motor cooling device 110, the heat generated in the coil 32 by the current supply is collected by the heat collecting unit 114 of the heat radiating plate 112 and transmitted to the heat radiating unit 116, and the heat radiating rod 16 and the fin 130. , 132 heat is dissipated. The ducts 136 and 138 and the fans 140 and 142 are moved together with the mover 16. At this time, the fans 140 and 142 are rotated in the direction in which air is sucked out from the ducts 136 and 138 as indicated by arrows in FIGS. Therefore, the space between the two ducts 136 and 138 and the space 134 are sucked into the external air force S ducts 136 and 138, and the fins 130 and 132 are deprived of heat! The opening force of the ducts 136 and 138 opposite to the space 134 side and opposite to each other is discharged.
[0038] 更に別の実施例を図 9および図 10に基づいて説明する。  Another embodiment will be described with reference to FIGS. 9 and 10.
本実施例のリニアモータ冷却装置 160においては、図 9および図 10に概略的に示 すように、上記リニアモータ冷去口装置 110と同様にフィン 130, 132,ダクト 136, 138 およびファン 140, 142力 S設けられ、可動子 16と共に移動させられる力 フィン 130, 132から熱を奪った空気力 フィン 130とフィン 132との間のスペース 134から排出さ れるようにされている。可動子 16の移動方向の中間部から排気されるようにされてい るのである。 In the linear motor cooling device 160 of the present embodiment, as schematically shown in FIGS. 9 and 10, fins 130, 132, ducts 136, 138 and fans 140, 142 force S is provided, and the force that is moved together with the mover 16 is removed from the space 134 between the fin 130 and the fin 132 by removing the heat from the fins 130 and 132. The mover 16 is exhausted from the middle of the moving direction. It is.
[0039] そのため、スペース 134内に導風部材としての導風板 164が設けられている。導風 板 164は、本実施例では、放熱板 166と同様に伝熱性が高ぐかつ単位質量あたり の放熱特性に優れた金属材料の一種であるアルミニウム合金により作られ、図 10に 示すように、フィン 130, 132からそれぞれ遠ざかるほど上方へ(テーブル 180に接近 する方向へ)傾斜させられた案内部ないし導風部 168, 170を備え、放熱板 166に固 定されている。放熱板 166は、前記放熱板 112と同様に、放熱部 172の可動子 16の 移動方向の中間部に切欠部 174が設けられるとともに、その切欠部 174に設けられ た取付部 176に導風板 164が固定されている。導風板 164は、放熱部 172の第 1面 たる上面に固定されたフィン 130, 132に対しても、放熱部 172の第 2面たる下面に 固定されたフィン 130, 132に対しても対向するように設けられている。また、テープ ル 180の導風板 164に対応する部分には、図 10に示すように、開口 182力 テープ ル 180を厚さ方向である上下方向に貫通して設けられて 、る。  Therefore, an air guide plate 164 as an air guide member is provided in the space 134. In this embodiment, the air guide plate 164 is made of an aluminum alloy, which is a kind of metal material having high heat conductivity and excellent heat dissipation characteristics per unit mass, as in the case of the heat sink 166, as shown in FIG. In addition, it is provided with guide portions or air guide portions 168 and 170 which are inclined upward (in a direction approaching the table 180) as they move away from the fins 130 and 132, and are fixed to the heat sink 166. Similarly to the heat sink 112, the heat sink 166 is provided with a notch 174 at the intermediate portion in the moving direction of the mover 16 of the heat sink 172, and a wind guide plate at the mounting portion 176 provided at the notch 174. 164 is fixed. The air guide plate 164 is opposed to the fins 130 and 132 fixed to the upper surface, which is the first surface of the heat radiating portion 172, and to the fins 130, 132 fixed to the lower surface, which is the second surface of the heat radiating portion 172. It is provided to do. Further, as shown in FIG. 10, a portion corresponding to the air guide plate 164 of the table 180 is provided so as to penetrate the opening 182 force table 180 in the vertical direction which is the thickness direction.
[0040] 本リニアモータ冷去 P装置 160【こお!ヽてファン 140, 142ίま、ダクト 136, 138の、可 動子 16の移動方向における中間部側とは反対側である外側の開口力もダクト 136, 138内に外気を送り込むように回転させられ、可動子 16の移動方向における中間部 に向かって流れる冷却風が生じさせられる。この冷却風は、フィン 130, 132の熱を 奪いつつ、ダクト 136, 138内においてそれぞれ、可動子 16の移動方向における中 間部側へ向力つて流れるとともに、導風板 164の導風部 168, 170に当たって上方 へ導かれ、可動子 16から離れてテーブル 180の開口 182を通り、上方ないし外へ排 出される。導風板 164は伝熱性の高い金属により作られており、放熱部 172から伝達 された熱を放出する作用も成す。  [0040] This linear motor cooling P device 160 [This is a fan 140, 142ί, ducts 136, 138, and the opening force of the outer side, which is the opposite side to the intermediate side in the moving direction of the movable element 16, The air is rotated so as to send outside air into the ducts 136 and 138, and cooling air flowing toward the intermediate portion in the moving direction of the mover 16 is generated. The cooling air takes heat from the fins 130 and 132 while flowing in the ducts 136 and 138 toward the middle side in the moving direction of the mover 16, and at the same time, the air guide portion 168 of the air guide plate 164. , 170 is guided upward, leaves the mover 16, passes through the opening 182 of the table 180, and is discharged upward or outward. The air guide plate 164 is made of a metal having high heat conductivity, and also has a function of releasing heat transferred from the heat radiating portion 172.
[0041] 図 6ないし図 8に示すリニアモータ冷却装置 110におけるように、ダクト 136, 138内 に外気を、可動子 16の移動方向における中間部側の開口力も取り込み、外側の開 ロカも排出する場合、可動子 16の移動方向において下流側に開口するダクトにつ いては、可動子 16の移動により生じる風が向かい風となってダクト内の空気のダクト 外への排出を妨げ易い。それに対し、図 9,図 10に示すリニアモータ冷却装置 160 におけるように、ダクト 136, 138内に外気を、外側の開口から吸い込み、可動子 16 の移動方向における中間部側の開口力 排出するようにすれば、可動子 16の移動 方向に関係なぐダクト 136, 138内に容易に空気を取り込み、排出することができ、 フィン 130, 132等力も熱を奪って温度の上昇した空気を確実にダクト 136, 138外 へ排出することができる。 [0041] As in the linear motor cooling device 110 shown in FIGS. 6 to 8, outside air is taken into the ducts 136 and 138, and the opening force on the intermediate side in the moving direction of the mover 16 is taken in, and the outer opening rocker is also discharged. In this case, with respect to the duct that opens downstream in the moving direction of the mover 16, the wind generated by the movement of the mover 16 becomes a counterwind and the discharge of the air in the duct to the outside of the duct tends to be hindered. On the other hand, as in the linear motor cooling device 160 shown in FIGS. 9 and 10, outside air is sucked into the ducts 136 and 138 from the outer opening, and the mover 16 If the opening force on the intermediate side in the moving direction is discharged, air can be easily taken in and discharged into the ducts 136 and 138 regardless of the moving direction of the mover 16, and the fins 130 and 132 are also forced. The air whose temperature has risen due to heat removal can be reliably discharged out of the ducts 136 and 138.
[0042] 更に別の実施例を図 11および図 12に基づいて説明する。 Still another embodiment will be described with reference to FIGS. 11 and 12.
本実施例のリニアモータ冷却装置 200においては、図 11および図 12に概略的に 示すように、前記リニアモータ冷却装置 160と同様にフィン 130, 132,ダクト 136, 1 38および導風板 164が設けられ、可動子 16と共に移動させられる力 ファン 202, 2 04力 フィン 130, 132の、可動子 16の移動方向における中間部側の端に近接して 設けられている。ファン 202, 204は、ダクト 136, 138の、可動子 16の移動方向の中 間部側の開口に設けられ、それぞれ、導風板 164とフィン 130, 132との間に位置さ せられている。また、ファン 202, 204は、図 12に示すように、その回転軸線が、可動 子 16の移動方向に平行な鉛直面内(テーブル 180の板面に直角な方向)において 、可動子 16の移動方向に対して、フィン 130, 132から遠ざかるほど上方へ(テープ ル 180側へ)向かう向きに、すなわち排気方向に傾斜させられている。さらに、ダクト 1 36, 138の、可動子 16の移動方向において中間部側とは反対側の開口部はそれぞ れ、中間部力 遠ざ力るほど横断面積が大きくされ、テーパ状の案内部ないし導入 咅 208力設けられている。図 11においては、導入咅 208の図示は省略 されている。  In the linear motor cooling device 200 of the present embodiment, as schematically shown in FIGS. 11 and 12, fins 130 and 132, ducts 136 and 138, and an air guide plate 164 are provided as in the linear motor cooling device 160. A force fan 202, 204 force fins 130, 132 that are provided and moved together with the mover 16 are provided close to the end on the intermediate side in the moving direction of the mover 16. Fans 202 and 204 are provided in the openings of the ducts 136 and 138 on the middle side in the moving direction of the mover 16, and are positioned between the air guide plate 164 and the fins 130 and 132, respectively. . Further, as shown in FIG. 12, the fans 202 and 204 have their rotational axes moving in a vertical plane parallel to the moving direction of the moving element 16 (in a direction perpendicular to the plate surface of the table 180). The direction is inclined in the direction toward the upper side (toward the side of the table 180), that is, in the exhaust direction, as the distance from the fins 130 and 132 increases. Furthermore, the opening of the ducts 136, 138 on the side opposite to the intermediate portion side in the moving direction of the mover 16 is increased in cross-sectional area as the intermediate force is increased, and the tapered guide portion is increased. Or introduction 咅 208 powers are provided. In FIG. 11, the illustration of the introduction rod 208 is omitted.
[0043] 本リニアモータ冷去 P装置 200【こお!ヽてファン 202, 204ίま、ダクト 136, 138の、可 動子 16の移動方向における中間部とは反対側の開口力もダクト 136, 138内に外気 を吸い込むように回転させられる力 その回転軸線が傾斜させられているため、ダクト 136, 138内に取り人れられた空気は、フィン 130, 132を冷去口するととちに、ダクト 13 6, 138から斜めに上方ないしテーブル 18側へ排出させられ、導風板 164の導風部 168, 170に沿って上方へスムーズに排出される。また、導入部 206, 208の案内に より、ダクト 136, 138内には良好に外気が吸い込まれ、フィン 130, 132の冷却が効 率良く行われる。  [0043] This linear motor cooling P device 200 [Koo! Fans 202, 204ί, ducts 136, 138, the opening force on the opposite side of the intermediate part in the moving direction of the movable element 16 is also the ducts 136, 138. Force that is rotated so as to suck in outside air. Because the axis of rotation is inclined, the air taken into the ducts 136 and 138 is cooled by the fins 130 and 132, and the duct The air is discharged obliquely upward from 13 6 and 138 to the table 18 side, and is smoothly discharged upward along the air guide portions 168 and 170 of the air guide plate 164. Further, the outside air is satisfactorily sucked into the ducts 136 and 138 by the guidance of the introduction parts 206 and 208, and the fins 130 and 132 are efficiently cooled.
[0044] 更に別の実施例を図 13に基づいて説明する。 本実施例のリニアモータ冷却装置 220は、図 13に概略的に示すように、固定子に 沿って延び、可動子の移動に伴って放熱部が移動する空間を覆い、ベースに固定し て設けられた主ダクト 222の一端部に接続された接続ダクト 224と、その接続ダクト 22 4の先端部に設けられた送風機の一種であるブロア 226とを含む換気装置 228を有 する。リニアモータ冷却装置 220は、例えば、前記リニアモータ冷却装置 10と同様に 、電子回路部品装着機に設けられ、 X軸移動装置の駆動源であるリニアモータを冷 却する。リニアモータ冷却装置 220は、 2枚の放熱板の各放熱部およびフィンを覆う 2 つのダクトを備え、それらダクトがそれぞれ主ダクト 222を構成し、それら 2つの主ダク ト 222の各一端部にそれぞれ接続ダクト 224が接続される。なお、図 13においては、 主ダクトとしての 2つの主ダクト 222とそれらに接続された接続ダクト 224とがそれぞれ 、 1つにまとめて図示されている。 Still another embodiment will be described with reference to FIG. As schematically shown in FIG. 13, the linear motor cooling device 220 of the present embodiment extends along the stator, covers the space where the heat radiating portion moves as the mover moves, and is fixed to the base. The ventilator 228 includes a connecting duct 224 connected to one end of the main duct 222 and a blower 226 which is a type of blower provided at the tip of the connecting duct 224. For example, similar to the linear motor cooling device 10, the linear motor cooling device 220 is provided in the electronic circuit component mounting machine, and cools the linear motor that is the drive source of the X-axis moving device. The linear motor cooling device 220 is provided with two ducts that cover the heat radiation portions and fins of the two heat radiation plates, and each of these ducts constitutes a main duct 222, and each of the two main ducts 222 has an end portion. Connection duct 224 is connected. In FIG. 13, two main ducts 222 as main ducts and connection ducts 224 connected to them are collectively shown as one.
ブロア 226は、リニアモータ冷却装置 220の他、例えば、別のリニアモータ冷却装 置 230およびモータ冷却装置 232, 234, 236について共通である。リニアモータ冷 却装置 230はリニアモータ冷却装置 220と同様に構成され、主ダクト 238に接続ダク ト 240が接続され、ブロア 226と共に換気装置 242を構成している力 例えば、電子 回路部品装着機において、装着ヘッド移動装置の X軸方向に移動する X軸移動部 材上に設けられた Y軸移動装置の駆動源であるリニアモータを冷却する装置であり、 接続ダクト 240は可撓性を有し、 X軸移動部材と共に移動する Y軸移動装置のリニア モータについて設けられた主ダクト 238の移動に追従するものとされる。また、モータ 冷却装置 232, 234, 236は、リニアモータ以外のモータであって、一部は、例えば、 回転モータの冷却に用いられ、回転モータについて設けられた主ダクト 244と、主ダ タト 244の一端部に接続された接続ダクト 246とを含む。主ダクト 244は、回転モータ の中と外との少なくとも一方にっ 、て設けられる。主ダクト 244を回転モータの中に設 ける場合には、モータハウジングに取り付け、外に設ける場合にはモータハウジング の外周を囲むように設ける。回転モータの中に主ダクト 244を設ける場合、モータハ ウジングを主ダクトとしてもょ 、。回転モータが装着ヘッドを回転させるヘッド回転装 置の駆動源である場合、接続ダクト 246は可撓性を有するものとされ、装着ヘッドの 移動に追従するようにされる。接続ダクト 246を Y軸移動装置の接続ダクトに接続し、 一部を共有するようにしてもよい。また、モータ冷却装置 232, 234, 236の別の一部 は、例えば、回路基板を搬送する基板搬送装置の駆動源であるモータを冷却する装 置とされる。 In addition to the linear motor cooling device 220, the blower 226 is common to other linear motor cooling devices 230 and motor cooling devices 232, 234, 236, for example. The linear motor cooling device 230 is configured in the same manner as the linear motor cooling device 220, and the connecting duct 240 is connected to the main duct 238, and the force that forms the ventilation device 242 together with the blower 226. For example, in the electronic circuit component mounting machine This is a device that cools the linear motor that is the drive source of the Y-axis moving device provided on the X-axis moving member that moves in the X-axis direction of the mounting head moving device. The connection duct 240 has flexibility. The movement of the main duct 238 provided for the linear motor of the Y-axis moving device that moves with the X-axis moving member is assumed to follow. Further, the motor cooling devices 232, 234, 236 are motors other than the linear motor, and some of them are used for cooling the rotary motor, for example, a main duct 244 provided for the rotary motor, and a main data 244. And a connecting duct 246 connected to one end of the connecting duct. The main duct 244 is provided in at least one of the inside and the outside of the rotary motor. When the main duct 244 is provided in the rotary motor, it is attached to the motor housing, and when it is provided outside, it is provided so as to surround the outer periphery of the motor housing. If the main duct 244 is installed in the rotary motor, use the motor housing as the main duct. When the rotary motor is a drive source for a head rotating device that rotates the mounting head, the connection duct 246 is flexible and follows the movement of the mounting head. Connect the connection duct 246 to the connection duct of the Y-axis moving device, A part may be shared. In addition, another part of the motor cooling devices 232, 234, and 236 is, for example, a device that cools a motor that is a drive source of a substrate transfer device that transfers a circuit board.
[0046] これらモータ冷却装置 220, 230〜236の各接続ダクト 224, 240, 246は一つに 合流させられ、合流部の下流側にブロア 226が設けられている。ブロア 226はモータ 冷却装置 220, 230〜236に共用であり、ブロア 226は、例えば、電子回路部品装 着機から離れた場所であって、電子回路部品装着機が設置された工場の隅等、熱 気を排出しても支障のない場所に設けられている。少なくともモータの作動時にプロ ァ 226が回転させられ、複数のモータ冷却装置 220等の各主ダクト 222, 238, 244 内の空気を接続ダクト 224, 240, 246を介して吸引して空気流を生じさせ、放熱部 およびフィン力も熱を奪うとともに、回転モータから熱を奪い、冷却させるとともに、加 熱された温かい空気を電子回路部品装着機の外へ排出する。ブロア 226は、吸気送 風機として機能するのである。リニアモータ冷却装置は、上記各実施例におけるよう に、ダクトによりリニアモータの外へ熱気を排出するようにしても、リニアモータの周辺 の部材ゃ装置の温度上昇の防止に効果があるが、本実施例におけるように接続ダク ト 224, 240を設ければ、熱気を電子回路部品装着機全体力も外へ排出することが でき、電子回路部品装着機の構成部材ゃ装置等の温度上昇がより有効に防止され る。モータ冷却装置 232〜236についても同様である。  [0046] The connection ducts 224, 240, 246 of these motor cooling devices 220, 230 to 236 are joined together, and a blower 226 is provided downstream of the joining portion. The blower 226 is shared by the motor cooling devices 220 and 230 to 236. The blower 226 is located away from the electronic circuit component mounting machine, for example, at the corner of the factory where the electronic circuit component mounting machine is installed, etc. It is installed in a place where there is no problem even if the heat is discharged. At least during operation of the motor, the profiler 226 is rotated, and the air in each of the main ducts 222, 238, 244 of the plurality of motor cooling devices 220, etc. is sucked through the connection ducts 224, 240, 246 to generate an air flow. The heat dissipation part and fin force also take heat, take heat from the rotary motor, cool it, and discharge the heated warm air out of the electronic circuit component mounting machine. The blower 226 functions as an intake air blower. The linear motor cooling device is effective in preventing the temperature rise of members around the linear motor even if hot air is exhausted out of the linear motor through the duct as in the above embodiments. If the connection ducts 224 and 240 are provided as in the embodiment, the heat of the electronic circuit component mounting machine can be exhausted to the outside, and the temperature rise of components, devices, etc. of the electronic circuit component mounting machine is more effective. Is prevented. The same applies to the motor cooling devices 232 to 236.
[0047] 図 13に示す実施例では、 5つのモータ冷却装置の各接続ダクトが合流させられ、 合流部の下流側にブロアを設ける例を示した力 これは例示であって、モータ冷却装 置は、 5つに限らない。モータ冷却装置が複数設けられる場合、全部がリニアモータ 冷却装置である場合もある。  In the embodiment shown in FIG. 13, the force shown in the example in which the connection ducts of the five motor cooling devices are joined and a blower is provided on the downstream side of the joining portion. This is an example, and the motor cooling device Is not limited to five. When a plurality of motor cooling devices are provided, all of them may be linear motor cooling devices.
[0048] 図 14に概略的に示すように、複数の作業機 250, 252, 254, 256によって作業ラ インが構成される場合、各作業機毎に加熱された空気を主ダ外および接続ダクト〖こ より集め、各作業機の少なくとも一つの接続ダクトの合流部に更に別の接続ダクト 26 0を接続するとともに、それら接続ダクト 260の合流部の下流側に、全部の作業機 25 0, 252, 254, 256に共通のブロア 262を設け、ダクト内の空気をダクト外へ 出さ せ、熱気を作業ラインの外へ排出させるようにしてもよい。作業機毎に設けられる主ダ タトおよび主ダクトに直接接続される接続ダクトが主ダクトを構成し、その主ダクトに接 続ダクト 260が接続されると考えることもできる。ブロア 262は、例えば、作業ラインか ら離れた場所であって、作業ラインが設置された工場の隅等、熱気を排出しても支障 のない場所に設けられる。 [0048] As schematically shown in FIG. 14, when a work line is constituted by a plurality of work machines 250, 252, 254, 256, the air heated for each work machine is transferred to the outside of the main unit and the connection duct. A further connection duct 260 is connected to the junction of at least one connection duct of each work machine, and all the work machines 25 0, 252 are connected downstream of the junction of the connection ducts 260. , 254, 256 may be provided with a common blower 262 so that the air in the duct is discharged out of the duct and the hot air is discharged out of the work line. Main data provided for each work machine It can be considered that the connecting duct directly connected to the tato and the main duct constitutes the main duct, and the connecting duct 260 is connected to the main duct. The blower 262 is provided, for example, in a place away from the work line and where there is no problem even if hot air is discharged, such as a corner of a factory where the work line is installed.
[0049] 作業ラインは、例えば、電子回路組立ラインや電子回路生産ラインとされ、複数の 作業機は、例えば、回路基板に接着剤を塗布する接着剤塗布機,クリーム状はんだ を印刷するスクリーン印刷機,電子回路部品装着機とされる。接着剤塗布機およびス クリーン印刷機は高粘性流体塗布機である。接着剤塗布機においては、例えば、接 着剤塗布ヘッドを移動させるヘッド移動装置の駆動源としてリニアモータが用いられ 、接続ダクトおよび送風機を含む換気装置を有するリニアモータ冷却装置により冷却 される。スクリーン印刷機においては、例えば、印刷ヘッドであるスキージヘッドを移 動させるヘッド移動装置の駆動源としてリニアモータが用いられ、リニアモータ冷却装 置により冷却される。これら以外の作業機として、例えば、電子回路部品の回路基板 への装着状態を検査する装着検査機や高粘性流体の塗布状態を検査する塗布検 查機があり、それらにおいては、例えば、検査ヘッドを移動させるヘッド移動装置の 駆動源としてリニアモータを用いることができ、リニアモータ冷却装置が設けられる。こ れら接着剤塗布機等は、対回路基板作業機であり、基板保持装置と、回路基板に作 業を施す作業ヘッドと、基板保持装置と作業ヘッドとを相対移動させる相対移動装置 と、少なくとも基板保持装置,作業ヘッドおよび相対移動装置を制御する制御装置と を含む。上記接着剤塗布ヘッド等は、作業ヘッドである。 [0049] The work line is, for example, an electronic circuit assembly line or an electronic circuit production line, and the plurality of work machines are, for example, an adhesive applicator for applying an adhesive to a circuit board, or screen printing for printing cream solder. Machine and electronic circuit component mounting machine. Adhesive applicators and screen printers are highly viscous fluid applicators. In the adhesive applicator, for example, a linear motor is used as a drive source of a head moving device that moves the adhesive applicator head, and the head is cooled by a linear motor cooling device having a ventilation device including a connection duct and a blower. In a screen printing machine, for example, a linear motor is used as a drive source of a head moving device that moves a squeegee head, which is a print head, and is cooled by a linear motor cooling device. As other working machines, for example, there are a mounting inspection machine for inspecting the mounting state of electronic circuit components on a circuit board and a coating inspection machine for inspecting the application state of a highly viscous fluid. A linear motor can be used as a drive source for the head moving device that moves the motor, and a linear motor cooling device is provided. These adhesive applicators and the like are anti-circuit board working machines, a board holding device, a working head for working on a circuit board, a relative movement device for relatively moving the board holding device and the working head, And a control device for controlling at least the substrate holding device, the work head, and the relative movement device. The adhesive application head or the like is a work head.
[0050] 電子回路部品装着機としては、装着ヘッドが X軸, Y軸方向に移動させられる装着 機に限らず、例えば、特開平 6— 342998号公報および特開平 9 237997号公報 に記載されて 、るように、鉛直な回転軸線のまわりに回転可能に保持された少なくと も 1つの回転体と、その少なくとも 1つの回転体の複数のヘッド保持部の各々に保持 された装着ヘッドと、回転体回転装置とを含む装着機でもよい。この装着機において は、例えば、装着ヘッドと基板保持装置と部品供給装置とを相対移動させる相対移 動装置が、基板保持装置を X軸方向および Y軸方向に移動させる基板保持装置移 動装置および部品供給装置を X軸方向に移動させる部品供給装置移動装置を含み 、それら移動装置の駆動源としてリニアモータを用いることができ、リニアモータ冷却 装置が設けられる。 [0050] The electronic circuit component mounting machine is not limited to a mounting machine in which the mounting head is moved in the X-axis and Y-axis directions, and is described in, for example, JP-A-6-342998 and JP-A-9237997. And at least one rotating body held rotatably around a vertical rotation axis, and a mounting head held by each of a plurality of head holding portions of the at least one rotating body, A mounting machine including a body rotation device may be used. In this mounting machine, for example, a relative movement device that relatively moves the mounting head, the substrate holding device, and the component supply device includes a substrate holding device moving device that moves the substrate holding device in the X-axis direction and the Y-axis direction, and Includes a component feeder moving device that moves the component feeder in the X-axis direction A linear motor can be used as a drive source for these moving devices, and a linear motor cooling device is provided.
電子回路部品装着機は、液晶パネルやプラズマ表示パネル等を構成するガラス基 板に電子回路部品を装着する装着機でもよい。ガラス基板は、回路基板と同様に部 品装着基板の一種である。  The electronic circuit component mounting machine may be a mounting machine that mounts an electronic circuit component on a glass substrate constituting a liquid crystal panel, a plasma display panel, or the like. A glass substrate is a type of component mounting substrate, similar to a circuit substrate.
[0051] また、作業機は対回路基板作業機以外の作業機でもよぐ作業ラインは対回路基 板作業ライン以外の作業ラインでもよぐそれら作業機や作業ラインの作業機に設け られたリニアモータの冷却に請求可能発明に係るリニアモータ冷却装置を用いること 力できる。対回路基板作業機以外の作業機や作動装置にお!ヽて移動部材を直線移 動させる移動装置の駆動源としてリニアモータを用いる場合にも、その冷却に請求可 能発明に係るリニアモータ冷却装置を用いることができる。この作業機は、例えば、 作業ヘッドと、作業対象部材を保持する保持装置と、それら作業ヘッドと保持装置と を相対移動させる相対移動装置と、それら相対移動装置等を制御する制御装置とを 含むように構成される。作動装置も同様である。  [0051] In addition, work lines that use work machines other than the circuit board work machine may be a work line other than the circuit board work line. The linear motor cooling device according to the claimable invention can be used for cooling the motor. For work machines and actuators other than circuit board work machines! Even when a linear motor is used as a drive source of a moving device that linearly moves the moving member, the linear motor cooling device according to the claimable invention can be used for cooling. This work machine includes, for example, a work head, a holding device that holds a work target member, a relative movement device that relatively moves the work head and the holding device, and a control device that controls the relative movement device and the like. Configured as follows. The actuator is similar.
[0052] なお、ダクトが固定子に沿って設けられる場合、ファンあるいはブロアにより、ダクト 外の空気をダクトを経て吸い込んで放出するようにしてもよい。例えば、リニアモータ およびリニアモータ冷却装置がハウジングに収容されて 、る場合、ダクトの一端部を ハウジング内に開口させるとともに、他端部をノヽウジング外に開口させ、その外部へ の開口部にブロアを設け、ダクト内の空気を外へ吸い出すように回転させる。それに より、ダクト外であってハウジング内の空気がダクト内に吸い込まれ、フィンを冷却しつ つハウジング外へ排出される。ダクト内の空気がフィンからの放熱によって加熱される ことによりダクトの温度が上昇し、それによりダクト周辺の空気も温められる力 ダクト 内の空気の温度よりは低ぐフィンを冷却するのであり、このハウジング内の空気の吸 引,排出により、ハウジング内の空気も換気され、ダクト周辺の温度上昇が抑制される  [0052] When the duct is provided along the stator, air outside the duct may be sucked and discharged through the duct by a fan or a blower. For example, when a linear motor and a linear motor cooling device are accommodated in the housing, one end of the duct is opened in the housing, the other end is opened outside the nosing, and a blower is provided in the opening to the outside. And rotate to suck out the air in the duct. As a result, the air inside the housing outside the duct is sucked into the duct, and the fins are discharged while being cooled. The air in the duct is heated by the heat radiation from the fins, and the temperature of the duct rises, thereby heating the air around the duct.The fins that are lower than the temperature of the air in the duct are cooled. The air in the housing is ventilated by sucking and discharging the air in the housing, and the temperature rise around the duct is suppressed.
[0053] また、ファンおよびダクトを可動部に支持させ、可動部と一緒に移動させる場合、フ アンは 1つ設けるのみでもよい。この場合、フィンは可動部の移動方向に平行な方向 において一つのものとされ、ファンはダクトの一端部に設けられ、ダクト内に空気を送 り込む方向あるいはダクトから空気を吸い出す方向に回転させられる。 可動部の移動方向に平行な方向にぉ 、て一つであるフィンをダクトにより覆 、、そ の両端部にそれぞれファンを設けて可動部と一緒に移動させてもよぐその場合にも[0053] When the fan and duct are supported by the movable part and moved together with the movable part, only one fan may be provided. In this case, one fin is provided in the direction parallel to the moving direction of the movable part, and the fan is provided at one end of the duct to send air into the duct. It can be rotated in the direction of getting in or sucking out air from the duct. Even in such a case, the fins are covered with a duct in a direction parallel to the moving direction of the movable part, and fans are provided at both ends of the fin to move together with the movable part.
、 2つのファンは、ダクト内に空気を送り込む方向あるいはダクトから空気を吸い出す 方向に回転させる。 The two fans are rotated in the direction of sending air into the duct or sucking out air from the duct.
これらの場合、ファンの回転により生じさせる冷却風の方向は、可動部の移動方向 に応じて変えてもよぐ変えなくてもよい。例えば、可動部の一方向において連続して 移動する時間が長い場合、可動部の移動方向の下流側から上流側に向力う空気の 流れを生じさせるようにファンを回転させる。  In these cases, the direction of the cooling air generated by the rotation of the fan may or may not be changed according to the moving direction of the movable part. For example, when the time required for continuous movement in one direction of the movable part is long, the fan is rotated so as to generate an air flow directed from the downstream side to the upstream side in the movement direction of the movable part.
[0054] ダクトが固定子に沿って設けられる場合にも、ファンにより生じさせられる風の方向 は、可動子の移動方向に応じて変えてもよい。 [0054] Even when the duct is provided along the stator, the direction of the wind generated by the fan may be changed according to the moving direction of the mover.
さらに、放熱部材が 2枚の放熱板を含む場合、それら放熱板の各放熱部の高さ (テ 一ブルの板面に直角な方向の位置)は同じにしてもよい。また、 2枚の放熱板の各放 熱部の上面 (第 1面)と下面 (第 2面)とにそれぞれフィンを設ける場合、全部のフィン の高さ (放熱部力もの突出長さ)は同じにしてもよい。  Furthermore, when the heat radiating member includes two heat radiating plates, the heights of the heat radiating portions of the heat radiating plates (positions perpendicular to the plate surface of the table) may be the same. Also, when fins are provided on the upper surface (first surface) and the lower surface (second surface) of each heat radiation part of the two heat sinks, the height of all fins (projection length of the heat radiation part force) is It may be the same.
さらに、放熱部材,フィンおよび導風部材は、アルミニウム合金の他、熱伝導率の高 い金属材料、例えば、銅合金や鋼により作ってもよい。  Furthermore, the heat dissipating member, the fin and the air guide member may be made of a metal material having a high thermal conductivity, such as a copper alloy or steel, in addition to the aluminum alloy.
また、導風部材を設けて冷却風を可動部力 離れる向きに案内させる場合、冷却 風を可動部の側方において、あるいは下方において可動部力 離れる向きに案内す るように導風部材を設けてもょ 、。  In addition, when the air guide member is provided to guide the cooling air in the direction away from the movable part force, the air guide member is provided so as to guide the cooling air in the direction away from the movable part force at the side of the movable part or below. Well, ...
[0055] さらに、コアレスのリニアモータにおいて、複数のコイルの間に、スぺーサに替えて 環状、例えば、円環状の集熱部材を設けてもよい。集熱部材は、例えば、アルミニゥ ム等、伝熱性に優れた非磁性材料製とし、放熱部材の集熱部に接続して熱を伝えさ せ、放熱部材カも放熱されるようにする。このようにすれば、コイルが発する熱は、放 熱部材の集熱部によって集熱されるとともに、集熱部材によっても集熱され、集熱、 延いては放熱および冷却がより良好に為される。 [0055] Further, in the coreless linear motor, an annular, for example, annular heat collecting member may be provided between the plurality of coils instead of the spacer. The heat collecting member is made of a non-magnetic material having excellent heat conductivity, such as aluminum, for example, and is connected to the heat collecting portion of the heat radiating member so as to transmit heat so that the heat radiating member can also be radiated. In this way, the heat generated by the coil is collected by the heat collection part of the heat release member, and is also collected by the heat collection member, so that heat collection, and hence heat dissipation and cooling are performed better. .
スぺーサ,集熱部材は省略してもよい。また、リニアモータは、コイルがコアにより保 持されたコア付きのリニアモータでもよ!/ヽ。  Spacers and heat collecting members may be omitted. The linear motor can also be a linear motor with a core whose coil is held by the core! / ヽ.

Claims

請求の範囲 The scope of the claims
[1] 直線的な固定部と、コイルを備えて固定部に沿って移動可能な可動部とを含むリニ ァモータの冷却装置であって、  [1] A linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion,
前記コイルに近接した集熱部とその集熱部力 前記可動部の外部まで延び出し、 集熱部により集熱された熱を可動部外へ放出する放熱部とを備えた放熱部材と、 その放熱部材の前記放熱部に前記可動部の移動方向と平行な方向に延びる状態 で設けられたフィンと  A heat-dissipating member having a heat-collecting part adjacent to the coil and a heat-collecting part force extending to the outside of the movable part, and a heat-dissipating part that releases heat collected by the heat-collecting part to the outside of the movable part; A fin provided on the heat dissipating part of the heat dissipating member extending in a direction parallel to the moving direction of the movable part;
を含むリニアモータ冷却装置。  Including linear motor cooling device.
[2] 前記可動部が前記コイルの外側を覆う榭脂モールドを備え、放熱部材の前記集熱 部が、それらコイルと榭脂モールドとの間に配設され、前記放熱部が榭脂モールドの 一部を貫通して外部に延びさせられた請求の範囲第 1項に記載のリニアモータ冷却 装置。  [2] The movable part includes a resin mold that covers the outside of the coil, the heat collecting part of the heat radiating member is disposed between the coil and the resin mold, and the heat radiating part is a resin mold. 2. The linear motor cooling device according to claim 1, wherein the linear motor cooling device extends through the portion to the outside.
[3] 前記コイルが筒状を成し、前記集熱部がその筒状コイルの外周の 80%以上を覆う 状態で配設された請求の範囲第 1または 2項に記載のリニアモータ冷却装置。  [3] The linear motor cooling device according to claim 1 or 2, wherein the coil has a cylindrical shape, and the heat collecting portion is arranged in a state of covering 80% or more of an outer periphery of the cylindrical coil. .
[4] 前記放熱部が前記可動部の外側面力 片持ち状に突出させられ、その突出部に 前記フィンが設けられた請求の範囲第 1〜3項のいずれかに記載のリニアモータ冷却 装置。  [4] The linear motor cooling device according to any one of claims 1 to 3, wherein the heat dissipating part is projected in a cantilever manner on an outer surface force of the movable part, and the fin is provided on the projecting part. .
[5] 前記突出部の基端部を除く部分に前記フィンが設けられ、そのフィンと放熱部の基 端部を除く部分とを覆うダ外が、前記固定部に沿って延び、前記可動部の移動に伴 つて前記放熱部および前記フィンが移動する空間を覆う状態で静止して設けられた 請求の範囲第 4項に記載のリニアモータ冷却装置。  [5] The fin is provided in a portion excluding the base end portion of the projecting portion, and the outside of the cover that covers the fin and the portion excluding the base end portion of the heat radiating portion extends along the fixed portion, and the movable portion 5. The linear motor cooling device according to claim 4, wherein the linear motor cooling device is provided so as to cover the space in which the heat dissipating part and the fin move as the air moves.
[6] 前記フィンが、前記可動部の移動方向における中間部から両端の各々に向かって 延びて 、る第一フィンと第二フィンとを含み、それら第一フィンと第二フィンとの各々 に対して設けられ、前記可動部に支持されて可動部と一緒に移動し、第一フィンと第 二フィンとにそれぞれ沿った方向の冷却風を生じさせる第一ファンと第二ファンとを含 む請求の範囲第 1〜4項のいずれかに記載のリニアモータ冷却装置。  [6] The fin includes a first fin and a second fin extending from an intermediate portion in the moving direction of the movable portion toward both ends, and each of the first fin and the second fin. And a first fan and a second fan that are supported by the movable part and move together with the movable part to generate cooling air in a direction along the first fin and the second fin, respectively. The linear motor cooling device according to any one of claims 1 to 4.
[7] 前記第一ファンと前記第二ファンとが前記中間部に向かって流れる冷却風を生じさ せるものであり、前記中間部に、第一ファン側から中間部に流れる冷却風と第二ファ ン側から中間部に流れる冷却風とを前記可動部から離れる向きに流れるように案内 する導風部材が設けられた請求の範囲第 6項に記載のリニアモータ冷却装置。 [7] The first fan and the second fan generate cooling air that flows toward the intermediate portion, and the cooling air that flows from the first fan side to the intermediate portion and the second air flow in the intermediate portion. Fah 7. The linear motor cooling device according to claim 6, further comprising an air guide member that guides the cooling air flowing from the inner side to the intermediate portion so as to flow away from the movable portion.
[8] 直線的な固定部と、コイルを備えて固定部に沿って移動可能な可動部とを含むリニ ァモータの冷却装置であって、 [8] A linear motor cooling device including a linear fixed portion and a movable portion including a coil and movable along the fixed portion,
前記コイルに近接した集熱部とその集熱部力 前記可動部の外部まで延び出し、 集熱部により集熱された熱を可動部外へ放出する放熱部とを備えた放熱部材と、 前記固定部に沿って延び、前記可動部の移動に伴って前記放熱部が移動する空 間を覆うダクトと、  A heat-dissipating member comprising a heat-collecting part adjacent to the coil and its heat-collecting part force, extending to the outside of the movable part, and releasing the heat collected by the heat-collecting part to the outside of the movable part; A duct that extends along the fixed part and covers a space in which the heat dissipating part moves as the movable part moves;
そのダクト内の空気を換気する換気装置と  A ventilator that ventilates the air in the duct;
を含むリニアモータ冷却装置。  Including linear motor cooling device.
[9] 前記換気装置が、前記ダクトの長手方向の少なくとも一端部に設けられた送風機を 含む請求の範囲第 8項に記載のリニアモータ冷却装置。 9. The linear motor cooling device according to claim 8, wherein the ventilation device includes a blower provided at least at one end in the longitudinal direction of the duct.
[10] 前記換気装置が、主ダクトとしての前記ダクトの一端部に接続された接続ダクトと、 その接続ダクトの先端部に設けられた送風機とを含む請求の範囲第 8項に記載のリ ニァモータ冷却装置。 10. The linear motor according to claim 8, wherein the ventilation device includes a connection duct connected to one end of the duct as a main duct, and a blower provided at the tip of the connection duct. Cooling system.
PCT/JP2005/017366 2004-10-14 2005-09-21 Linear motor cooling device WO2006040913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006540862A JP4963966B2 (en) 2004-10-14 2005-09-21 Linear motor cooling device
CN2005800334618A CN101036280B (en) 2004-10-14 2005-09-21 Linear motor cooling device and linear moving device installed with the cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-300027 2004-10-14
JP2004300027 2004-10-14

Publications (1)

Publication Number Publication Date
WO2006040913A1 true WO2006040913A1 (en) 2006-04-20

Family

ID=36148212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017366 WO2006040913A1 (en) 2004-10-14 2005-09-21 Linear motor cooling device

Country Status (3)

Country Link
JP (2) JP4963966B2 (en)
CN (1) CN101036280B (en)
WO (1) WO2006040913A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061458A (en) * 2006-09-01 2008-03-13 Fuji Mach Mfg Co Ltd Cylindrical linear motor
WO2013105213A1 (en) * 2012-01-10 2013-07-18 富士機械製造株式会社 Linear motor
WO2013190613A1 (en) * 2012-06-18 2013-12-27 ヤマハ発動機株式会社 Component mounting device
JP2014096889A (en) * 2012-11-08 2014-05-22 Fuji Mach Mfg Co Ltd Linear motor and device for cooling the same
JP2014192508A (en) * 2013-03-28 2014-10-06 Samsung Techwin Co Ltd Component mounting machine
US9397538B2 (en) 2012-01-10 2016-07-19 Fuji Machine Mfg. Co., Ltd. Linear motor
JPWO2015189979A1 (en) * 2014-06-13 2017-04-20 富士機械製造株式会社 Linear motor
CN108853843A (en) * 2018-05-31 2018-11-23 海宁鼎合工程技术开发有限公司 A kind of charging pile for electric vehicle fire prevention tote box
TWI720828B (en) * 2019-10-04 2021-03-01 台達電子工業股份有限公司 Linear actuator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921995B2 (en) * 2012-09-12 2016-05-24 株式会社酉島製作所 mechanical seal
TWI487250B (en) * 2013-04-08 2015-06-01 Delta Electronics Inc Shaft linear motor
JP2019171688A (en) * 2018-03-28 2019-10-10 住友重機械工業株式会社 Injection molding machine
CN114683693B (en) * 2020-12-25 2024-03-15 精工爱普生株式会社 Liquid ejecting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183258A (en) * 1990-11-14 1992-06-30 Daifuku Co Ltd Linear motor
JP2001008430A (en) * 1999-06-16 2001-01-12 Nikon Corp Motor device, stage device, and aligner
JP2003309963A (en) * 2002-04-11 2003-10-31 Yaskawa Electric Corp Cooling apparatus for linear slider
JP2004072910A (en) * 2001-08-29 2004-03-04 Tsunehiko Yamazaki Linear motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825580B2 (en) * 2000-04-07 2004-11-30 Mirae Corporation Apparatus and method for controlling cooling of gantry having linear motor
JP2001327152A (en) * 2000-05-12 2001-11-22 Yaskawa Electric Corp Linear motor
DE60239312D1 (en) * 2001-08-29 2011-04-14 Yamazaki Mazak Corp Air-cooled linear motor
JP4542305B2 (en) * 2001-09-28 2010-09-15 Thk株式会社 Drive guide device
EP1780877A4 (en) * 2004-07-25 2012-12-26 Mizutani Electric Ind Co Ltd Linear or curved mobile motor and its radiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183258A (en) * 1990-11-14 1992-06-30 Daifuku Co Ltd Linear motor
JP2001008430A (en) * 1999-06-16 2001-01-12 Nikon Corp Motor device, stage device, and aligner
JP2004072910A (en) * 2001-08-29 2004-03-04 Tsunehiko Yamazaki Linear motor
JP2003309963A (en) * 2002-04-11 2003-10-31 Yaskawa Electric Corp Cooling apparatus for linear slider

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061458A (en) * 2006-09-01 2008-03-13 Fuji Mach Mfg Co Ltd Cylindrical linear motor
WO2013105213A1 (en) * 2012-01-10 2013-07-18 富士機械製造株式会社 Linear motor
JPWO2013105213A1 (en) * 2012-01-10 2015-05-11 富士機械製造株式会社 Linear motor
US9397538B2 (en) 2012-01-10 2016-07-19 Fuji Machine Mfg. Co., Ltd. Linear motor
WO2013190613A1 (en) * 2012-06-18 2013-12-27 ヤマハ発動機株式会社 Component mounting device
JP2014096889A (en) * 2012-11-08 2014-05-22 Fuji Mach Mfg Co Ltd Linear motor and device for cooling the same
JP2014192508A (en) * 2013-03-28 2014-10-06 Samsung Techwin Co Ltd Component mounting machine
KR101828541B1 (en) * 2013-03-28 2018-02-12 한화테크윈 주식회사 Apparatus for mounting a device
JPWO2015189979A1 (en) * 2014-06-13 2017-04-20 富士機械製造株式会社 Linear motor
CN108853843A (en) * 2018-05-31 2018-11-23 海宁鼎合工程技术开发有限公司 A kind of charging pile for electric vehicle fire prevention tote box
TWI720828B (en) * 2019-10-04 2021-03-01 台達電子工業股份有限公司 Linear actuator

Also Published As

Publication number Publication date
CN101036280B (en) 2011-04-20
JP5401532B2 (en) 2014-01-29
JP4963966B2 (en) 2012-06-27
JP2012044867A (en) 2012-03-01
CN101036280A (en) 2007-09-12
JPWO2006040913A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5401532B2 (en) Linear movement device
US20180266438A1 (en) Blower and vacuum cleaner
JP2014180164A (en) DC brushless motor
EP2985889B1 (en) Side-standing magnetic field motor and cooling fan using same
US20180263446A1 (en) Blower and vacuum cleaner
JP5355105B2 (en) Linear drive device and electronic circuit component mounting machine
JP2017158272A (en) Blower motor unit for air conditioning
US20090195088A1 (en) Apparatus for generating amplified cooling air flows
JP4260439B2 (en) Electric blower and vacuum cleaner
JP4399124B2 (en) Mounting head of electronic component mounting machine
JP4381866B2 (en) Electronic component mounting head
WO2019198466A1 (en) Fan motor
JP5975851B2 (en) Linear motor and its cooling device
CN113443156B (en) Cloud platform load heat abstractor, cloud platform subassembly and unmanned aerial vehicle
WO2019035181A1 (en) Linear motor, linear motor driven device, and method for cooling linear motor
JP6199415B2 (en) Linear motor
JPH11153099A (en) Cooling system
JP2006003928A (en) Cooling device for personal computer
JP6849814B2 (en) Working equipment
US20230328347A1 (en) Image capturing apparatus capable of cooling image sensor
JP2008255865A (en) Centrifugal fan device and electronic apparatus provided with same
JP4737067B2 (en) Electronics
JP2022124742A (en) Component mounting unit
CN214674664U (en) Closed-loop stepping motor
TWM394688U (en) Improved motor heat dispersing structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033461.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006540862

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase