JPWO2015174216A1 - COMPOSITE, LAMINATE, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THEM - Google Patents

COMPOSITE, LAMINATE, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JPWO2015174216A1
JPWO2015174216A1 JP2016519181A JP2016519181A JPWO2015174216A1 JP WO2015174216 A1 JPWO2015174216 A1 JP WO2015174216A1 JP 2016519181 A JP2016519181 A JP 2016519181A JP 2016519181 A JP2016519181 A JP 2016519181A JP WO2015174216 A1 JPWO2015174216 A1 JP WO2015174216A1
Authority
JP
Japan
Prior art keywords
glass sheet
composite
resin layer
sacrificial
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016519181A
Other languages
Japanese (ja)
Other versions
JP6515925B2 (en
Inventor
純一 ▲角▼田
純一 ▲角▼田
翔子 鈴木
翔子 鈴木
研一 江畑
研一 江畑
祥孝 松山
祥孝 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2015174216A1 publication Critical patent/JPWO2015174216A1/en
Application granted granted Critical
Publication of JP6515925B2 publication Critical patent/JP6515925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明は、曲げ変形や端部の切断等を行った際にガラスシートの有効領域に割れが伝播することを抑制できる複合体等を提供することを目的とする。本発明はガラスシートと、特定の樹脂層とを備えた複合体であって、前記樹脂層は、厚さが1〜100μmであり、特定の領域におけるヤング率が100MPa以上であり、かつ、前記ガラスシートに対する180°ピール剥離強度が1N/25mm以上であり、さらに、前記ガラスシートは、特定の犠牲溝を有することを特徴とする複合体に関する。An object of this invention is to provide the composite body etc. which can suppress that a crack propagates to the effective area | region of a glass sheet, when bending deformation, an edge part cutting | disconnection, etc. are performed. The present invention is a composite comprising a glass sheet and a specific resin layer, wherein the resin layer has a thickness of 1 to 100 μm, a Young's modulus in a specific region is 100 MPa or more, and The 180 degree peel strength with respect to a glass sheet is 1 N / 25 mm or more, Furthermore, the said glass sheet is related with the composite_body | complex characterized by having a specific sacrifice groove | channel.

Description

本発明は、ガラスシートの上に樹脂層を有する複合体、この複合体の樹脂層に第2ガラスシートを積層してなる積層体、ならびに、複合体もしくは積層体のガラスシートに素子を形成してなる電子デバイスの技術分野に関する。   The present invention comprises a composite having a resin layer on a glass sheet, a laminate formed by laminating a second glass sheet on the resin layer of the composite, and an element formed on the composite or laminate glass sheet. It relates to the technical field of electronic devices.

近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などの電子デバイス(電子機器)の薄型化、軽量化が進行している。この電子デバイスの薄型化や軽量化を図る方法の1つとして、電子デバイスに用いる基板の薄板化が進行している。
また、薄板のガラス基板(ガラスシート)を用いることにより、フレキシブル性を有する電子デバイスの実用化も期待される。
In recent years, electronic devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) are becoming thinner and lighter. As one method for reducing the thickness and weight of an electronic device, a substrate used for the electronic device has been made thinner.
In addition, by using a thin glass substrate (glass sheet), practical use of an electronic device having flexibility is expected.

しかしながら、ガラスシートでは、強度が不十分で、曲げ変形された際に、割れ(クラック)が生じる場合も有る。
これに対して、例えば特許文献1には、ガラスシートに樹脂層を接着してなる複合体が提案されている。このような複合体であれば、複合体が曲げ変形されて、樹脂層と接着されるガラスシートの表面に引張応力が生じても、引張応力が樹脂層によって軽減され、ガラスシートの割れを抑制できる。
However, the glass sheet has insufficient strength and may be cracked when bent.
On the other hand, for example, Patent Document 1 proposes a composite formed by adhering a resin layer to a glass sheet. With such a composite, even if the composite is bent and deformed and a tensile stress is generated on the surface of the glass sheet to be bonded to the resin layer, the tensile stress is reduced by the resin layer and the crack of the glass sheet is suppressed. it can.

国際公開第2012/166343号International Publication No. 2012/166343

ところが、本発明者らの検討によれば、複合体であっても、ガラスシートの端部やその近傍では、十分な強度の向上効果を得られない場合が有る。   However, according to the study by the present inventors, even if it is a composite, there is a case where a sufficient strength improvement effect cannot be obtained at the end of the glass sheet or in the vicinity thereof.

ガラスシートに樹脂層を接着してなる複合体は、ガラスシートの面内の強度を向上できる。しかしながら、樹脂層はガラスシート主面の端部には形成されず、該端部は剥き出しである。そのため、複合体であっても、ガラスシートの端部やその近傍の強度は、十分に向上できない。また、ガラスシートの端部は剥き出しであるので、ハンドリング等の際に、割れの起点となるチッピング等が生じ易い。また、加工方法(切断方法)にも大きく左右されるものの、ガラスシートは面内よりも端部やその近傍の方が強度が低いのが一般的である。   A composite formed by adhering a resin layer to a glass sheet can improve the in-plane strength of the glass sheet. However, the resin layer is not formed on the end portion of the main surface of the glass sheet, and the end portion is bare. Therefore, even if it is a composite, the intensity | strength of the edge part of a glass sheet or its vicinity cannot fully improve. Further, since the end portion of the glass sheet is exposed, chipping or the like that is the starting point of cracking is likely to occur during handling. Further, although greatly influenced by the processing method (cutting method), the glass sheet generally has a lower strength at the end portion and in the vicinity thereof than in the surface.

そのため、複合体が曲げ変形されると、ガラスシートの端部やその近傍で割れが発生し易い。端部やその近傍で割れが発生すると、掛けられた応力に応じて割れがガラスシートの内部に伝播する。この割れが、ガラスシート面内の有効領域まで伝播すると、欠陥となってしまう。   Therefore, when the composite is bent and deformed, cracks are likely to occur at the end of the glass sheet or in the vicinity thereof. When a crack occurs at the end or in the vicinity thereof, the crack propagates into the glass sheet according to the applied stress. If this crack propagates to the effective area in the glass sheet surface, it becomes a defect.

このような端部やその近傍の割れを防止するために面取りが行われているものの、面取りを行っても、端部やその近傍の割れを十分に防止することは、困難である。
しかも、ガラスシートが薄い場合には、面取りを行うこと自体、困難である。
Although chamfering is performed in order to prevent such a crack at the end portion and the vicinity thereof, it is difficult to sufficiently prevent the crack at the end portion and the vicinity thereof even if the chamfering is performed.
Moreover, when the glass sheet is thin, it is difficult to chamfer itself.

本発明の目的は、このような従来技術の課題を解決することにある。すなわち、ガラスシートに樹脂層を接着した複合体、および、この複合体をガラスシートに接着した積層体であって、曲げ変形や端部の切断等を行って、ガラスシートの端部やその近傍に割れが生じても、割れがガラス面内の有効領域まで伝播するのを抑制できる複合体および積層体、ならびに、この複合体あるいは積層体を利用する電子デバイスを提供することにある。   An object of the present invention is to solve such problems of the prior art. That is, a composite in which a resin layer is bonded to a glass sheet, and a laminate in which the composite is bonded to the glass sheet, and the end of the glass sheet or the vicinity thereof is subjected to bending deformation or cutting of the end. An object of the present invention is to provide a composite and a laminate that can prevent the crack from propagating to an effective region within the glass surface, and an electronic device that uses this composite or laminate.

このような目的を達成するために、本発明の要旨は以下の<1>〜<9>に関する。
<1>ガラスシートと、前記ガラスシートの一方の面に接着された樹脂層とを備えた複合体であって、
前記樹脂層は、厚さが1〜100μmであり、前記ガラスシートとの界面からその法線方向に0〜0.5μmの領域におけるヤング率が100MPa以上であり、かつ、前記ガラスシートに対する180°ピール剥離強度が1N/25mm以上であり、さらに、
前記ガラスシートは、少なくとも前記樹脂層との接着面に、前記ガラスシートの端部に沿って延在する犠牲溝を有することを特徴とする複合体。
In order to achieve such an object, the gist of the present invention relates to the following <1> to <9>.
<1> A composite comprising a glass sheet and a resin layer bonded to one surface of the glass sheet,
The resin layer has a thickness of 1 to 100 μm, a Young's modulus in a region of 0 to 0.5 μm in the normal direction from the interface with the glass sheet is 100 MPa or more, and 180 ° with respect to the glass sheet. The peel peel strength is 1 N / 25 mm or more, and
The said glass sheet has a sacrifice groove | channel extended along the edge part of the said glass sheet at least in the adhesive surface with the said resin layer, The composite_body | complex characterized by the above-mentioned.

<2>前記ガラスシートは、同方向に延在する2本の前記犠牲溝、および、前記2本の犠牲溝の間の有効領域を有し、
さらに、前記有効領域の内側の第2有効領域、および、前記有効領域の内側かつ前記第2有効領域の外側の、前記第2有効領域の端部に沿って延在する第2犠牲溝を有する前記<1>に記載の複合体。
<3>前記犠牲溝として、前記ガラスシートを貫通しない溝を有する前記<1>または<2>に記載の複合体。
<4>前記犠牲溝として、前記ガラスシートを貫通する貫通溝を有する前記<1>〜<3>のいずれか1に記載の複合体。
<2> The glass sheet has two sacrificial grooves extending in the same direction, and an effective area between the two sacrificial grooves,
And a second sacrificial groove extending along an end of the second effective region inside the effective region and outside the second effective region. The complex according to <1> above.
<3> The composite according to <1> or <2>, wherein the sacrificial groove has a groove that does not penetrate the glass sheet.
<4> The composite according to any one of <1> to <3>, wherein the sacrificial groove has a through groove penetrating the glass sheet.

<5>前記<1>〜<4>のいずれか1に記載の複合体の樹脂層に、第2ガラスシートを接着した積層体。 <5> A laminate in which a second glass sheet is bonded to the resin layer of the composite according to any one of <1> to <4>.

<6>前記<1>〜<4>のいずれか1に記載の複合体のガラスシート、または、前記<5>に記載の積層体のガラスシートの表面に、素子を有する電子デバイス。 <6> An electronic device having an element on the surface of the glass sheet of the composite according to any one of <1> to <4> or the glass sheet of the laminate according to <5>.

<7>ガラスシートの端部に沿って延在する犠牲溝を形成し、
前記ガラスシートの犠牲溝を形成した面に、前記ガラスシートとの界面からその法線方向の距離が0〜0.5μmの領域のヤング率が100MPa以上で、厚さが1〜100μmの樹脂層を、180°ピール剥離強度で1N/25mm以上の接着力で形成することを特徴とする複合体の製造方法。
<7> forming a sacrificial groove extending along the edge of the glass sheet;
A resin layer having a Young's modulus of 100 MPa or more and a thickness of 1 to 100 μm in a region where the distance in the normal direction from the interface with the glass sheet is 0 to 0.5 μm on the surface on which the sacrificial grooves of the glass sheet are formed Is formed with an adhesive strength of 1 N / 25 mm or more at 180 ° peel peel strength.

<8>前記<7>に記載の製造方法で得られた複合体の樹脂層に、第2ガラスシートを積層して接着する積層体の製造方法。 <8> A method for producing a laminate in which a second glass sheet is laminated and bonded to the resin layer of the composite obtained by the production method according to <7>.

<9>前記<7>に記載の製造方法で得られた複合体のガラスシート、または、前記<8>に記載の製造方法で得られた積層体のガラスシートに、素子を形成する電子デバイスの製造方法。 <9> Electronic device for forming an element on a glass sheet of a composite obtained by the production method according to <7> or a glass sheet of a laminate obtained by the production method according to <8> Manufacturing method.

本発明によれば、ガラスシートに樹脂層が接着された複合体、および、この複合体にガラスシートを積層した積層体において、ガラスシートが樹脂層及び特定の犠牲溝を有することによって、曲げ変形や端部の切断等を行ってガラスシートの端部やその近傍に割れが生じても、少なくとも樹脂層との接合面においては、ガラスシート内部の有効領域まで割れが伝播することを抑制できる。
従って、本発明によれば、ガラスシートの割れという欠陥を有さない、適正な複合体および積層体、ならびに、この複合体あるいは積層体に素子を形成する電子デバイスを得ることができる。
According to the present invention, in a composite in which a resin layer is bonded to a glass sheet, and a laminate in which a glass sheet is laminated on the composite, the glass sheet has a resin layer and a specific sacrificial groove, whereby bending deformation occurs. Even if the end portion of the glass sheet or its vicinity is cracked by cutting the end portion or the like, it is possible to suppress the propagation of the crack to the effective region inside the glass sheet at least on the joint surface with the resin layer.
Therefore, according to the present invention, it is possible to obtain an appropriate composite and laminate, and an electronic device for forming an element in the composite or laminate, which do not have a defect of glass sheet cracking.

図1(A)および(B)は、本発明の複合体の一例を概念的に示す図であって、図1(A)は側面図、図1(B)は平面図である。1A and 1B are diagrams conceptually illustrating an example of the composite of the present invention, in which FIG. 1A is a side view and FIG. 1B is a plan view. 図2(A)〜(C)は、本発明の複合体の別の例を概念的に示す側面図である。FIGS. 2A to 2C are side views conceptually showing another example of the composite of the present invention. 図3(A)および(B)は、本発明の複合体の別の例を説明するための概念図である。3A and 3B are conceptual diagrams for explaining another example of the composite of the present invention. 図4は、本発明の積層体の一例を概念的に示す側面図である。FIG. 4 is a side view conceptually showing an example of the laminate of the present invention. 図5は、本発明の複合体の別の例を概念的に示す平面図である。FIG. 5 is a plan view conceptually showing another example of the composite of the present invention.

以下、本発明の複合体、積層体および電子デバイス、ならびに、それらの製造方法について、添付の図面に示される好適例を基に、詳細に説明する。なお、本明細書において“重量%”と“質量%”、“重量部”と“質量部”とは、それぞれ同義である。   Hereinafter, the composite, laminate and electronic device of the present invention, and methods for producing them will be described in detail based on preferred examples shown in the accompanying drawings. In the present specification, “wt%” and “mass%” and “part by weight” and “part by mass” have the same meaning.

図1(A)及び(B)に、本発明の製造方法で製造した本発明の複合体の一例を概念的に示す。なお、図1(A)は側面図(主面の面方向から見た図)で、図1(B)は平面図(主面と直交する方向から見た図)である。また、図1(B)は、複合体10を図1(A)における上側(樹脂層14側)から見た図である。
図1(A)及び(B)に示すように、複合体10は、ガラスシート12と、ガラスシート12の一面(一方の主面(表面))に形成される樹脂層14とを有する。また、ガラスシート12の樹脂層14と対面する面には、ガラスシート12の端部に沿って延在する4本の犠牲溝16が形成される。
1A and 1B conceptually show an example of the composite of the present invention produced by the production method of the present invention. 1A is a side view (a view seen from the surface direction of the main surface), and FIG. 1B is a plan view (a view seen from the direction orthogonal to the main surface). FIG. 1B is a view of the composite 10 as viewed from the upper side (resin layer 14 side) in FIG.
As shown in FIGS. 1A and 1B, the composite 10 includes a glass sheet 12 and a resin layer 14 formed on one surface (one main surface (front surface)) of the glass sheet 12. Further, four sacrificial grooves 16 extending along the end of the glass sheet 12 are formed on the surface of the glass sheet 12 facing the resin layer 14.

複合体10の基板(基材)となるガラスシート12のガラスは、公知の各種のガラスが利用可能である。具体的には、ソーダライムガラスや無アルカリガラス等が例示される。また、ガラスシート12は、フロート法、フュージョン法、リドロー法等の公知の方法で製造されたものが利用可能である。   As the glass of the glass sheet 12 that becomes the substrate (base material) of the composite 10, various known glasses can be used. Specific examples include soda lime glass and alkali-free glass. Moreover, the glass sheet 12 can use what was manufactured by well-known methods, such as a float glass process, a fusion method, and a redraw method.

ガラスシート12の厚さは、複合体10(積層体50)の用途に応じた厚さでよい。
ここで、本発明の複合体10は、一例として、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)等の電子デバイスの製造に利用される。これらの電子デバイスには、薄型化や軽量化を図ることが要求されている。電子デバイスの薄型化や軽量化を図るためには、ガラスシート12は、薄い方が有利である。
また、後述するが、本発明の複合体10は、ガラスシート12が薄い場合であっても、曲げ変形された場合等に端部やその近傍に生じた割れが、面内の有効領域に伝播することを抑制できる。すなわち、本発明の複合体10は、フレキシブル性を要求されるOLEDの基板など、フレキシブル性を要求される用途に、好適に利用される。
以上の点を考慮すると、ガラスシート12の厚さは、100μm以下が好ましく、75μm以下がより好ましく、50μm以下が特に好ましい。
The thickness of the glass sheet 12 may be a thickness according to the application of the composite 10 (laminated body 50).
Here, the composite 10 of the present invention is used for manufacturing electronic devices such as a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED) as an example. These electronic devices are required to be thinner and lighter. In order to reduce the thickness and weight of the electronic device, it is advantageous that the glass sheet 12 is thinner.
In addition, as will be described later, in the composite 10 of the present invention, even when the glass sheet 12 is thin, cracks generated at the end portion and in the vicinity thereof are propagated to the in-plane effective region even when being bent and deformed. Can be suppressed. That is, the composite 10 of the present invention is suitably used for applications that require flexibility, such as OLED substrates that require flexibility.
Considering the above points, the thickness of the glass sheet 12 is preferably 100 μm or less, more preferably 75 μm or less, and particularly preferably 50 μm or less.

また、ガラスシート12の厚さは、複合体10の用途に応じて、必要な強度を確保できる厚さ以上であればよい。
具体的には、ガラスシート12の厚さは、1μm以上が好ましく、10μm以上がより好ましい。
Moreover, the thickness of the glass sheet 12 should just be more than the thickness which can ensure required intensity | strength according to the use of the composite_body | complex 10. FIG.
Specifically, the thickness of the glass sheet 12 is preferably 1 μm or more, and more preferably 10 μm or more.

ガラスシート12は、樹脂層14の接着力の向上等を目的として、樹脂層14の形成に先立ち、樹脂層14の形成面に表面処理が施されたものでもよい。
表面処理としては、プライマー処理、オゾン処理、プラズマエッチング処理等が例示される。プライマーとしては、シランカップリング剤が例示される。シランカップリング剤としては、アミノシラン類、エポキシシラン類、アルコキシシラン類、シラザン類等が例示される。
Prior to the formation of the resin layer 14, the glass sheet 12 may be subjected to a surface treatment for the purpose of improving the adhesive strength of the resin layer 14.
Examples of the surface treatment include primer treatment, ozone treatment, and plasma etching treatment. Examples of the primer include a silane coupling agent. Examples of the silane coupling agent include amino silanes, epoxy silanes, alkoxy silanes, silazanes and the like.

本発明の複合体10において、ガラスシート12の樹脂層14との対向面(樹脂層14を接着した面)には、矩形のガラスシート12の4つの辺の近傍に、各辺と同方向に延在して、すなわち、ガラスシート12の端部に沿って、4本の犠牲溝16が形成される。従って、図1(A)では、図示される2本の犠牲溝16は紙面に垂直方向に延在しており、図示されない残り2本の犠牲溝は紙面の横方向に延在している。
犠牲溝16は、複合体10の用途に応じて適宜設定されたガラスシート12の有効領域の外側に形成される溝である。すなわち、図1(B)において、ガラスシート12の4本の犠牲溝16の外側は、非有効領域で、4本の犠牲溝16で囲まれた領域の内側に、有効領域が設定されている。
有効領域とは、例えば、複合体10をマザーボードとして用いる電子デバイスの製造における、素子(デバイス)の形成領域である。従って、有効領域の中には、1個の電子デバイスに対応する素子が、複数個、互いに独立して形成される。
In the composite 10 of the present invention, on the surface facing the resin layer 14 of the glass sheet 12 (the surface to which the resin layer 14 is bonded), in the vicinity of the four sides of the rectangular glass sheet 12, in the same direction as each side. Four sacrificial grooves 16 are formed extending, that is, along the edge of the glass sheet 12. Accordingly, in FIG. 1A, the two sacrificial grooves 16 shown in the drawing extend in the direction perpendicular to the paper surface, and the remaining two sacrificial grooves not shown in the drawing extend in the lateral direction of the paper surface.
The sacrificial groove 16 is a groove formed outside the effective area of the glass sheet 12 that is appropriately set according to the application of the composite 10. That is, in FIG. 1B, the outside of the four sacrificial grooves 16 of the glass sheet 12 is an ineffective area, and the effective area is set inside the area surrounded by the four sacrificial grooves 16. .
The effective area is, for example, an element (device) formation area in manufacturing an electronic device using the composite 10 as a mother board. Therefore, a plurality of elements corresponding to one electronic device are formed independently of each other in the effective region.

本発明の複合体10は、ガラスシート12と、ガラスシート12に形成された犠牲溝16と、ガラスシート12の少なくとも前記犠牲溝16が形成された表面に、180°ピール剥離強度で1N/25mm以上の接着力で形成された、厚さが1〜100μm、ガラスシート12との界面からその法線方向の距離が0〜0.5μmの領域におけるヤング率が100MPa以上である樹脂層14とを有する。
本発明の複合体10は、犠牲溝16と、このような樹脂層14とを有することにより、曲げ変形された場合や、切断された場合などに、ガラスシート12の端部やその近傍に割れ(クラック)が生じても、この割れの伝播(進展)を犠牲溝16で抑制できる。そのため、複合体10は、端部やその近傍に割れが生じても、ガラスシート12の有効領域に割れが伝播して、欠陥となることを抑制できる。
The composite 10 of the present invention has a glass sheet 12, a sacrificial groove 16 formed on the glass sheet 12, and a surface of the glass sheet 12 on which at least the sacrificial groove 16 is formed, with a peel peel strength of 1 N / 25 mm. A resin layer 14 having a thickness of 1 to 100 μm and a Young's modulus of 100 MPa or more in a region where the distance in the normal direction from the interface with the glass sheet 12 is 0 to 0.5 μm, formed with the above adhesive force. Have.
The composite 10 of the present invention has the sacrificial groove 16 and such a resin layer 14, so that it is cracked at the end of the glass sheet 12 or in the vicinity thereof when bent or deformed. Even if (cracks) occur, the propagation (progress) of the cracks can be suppressed by the sacrificial grooves 16. Therefore, even if the composite body 10 is cracked at the end portion or in the vicinity thereof, it is possible to suppress the crack from being propagated to the effective region of the glass sheet 12 and becoming a defect.

前述のように、ガラスシート12の表面に樹脂層14を形成してなる複合体によれば、複合体の曲げ変形等によってガラスシート12に割れが生じることを防止できる。
しかしながら、樹脂層14は、ガラスシート12主面上の端部近傍には形成されない場合があり、また、ガラスシート12は面内に比して、端部やその近傍の強度が低い。
そのため、複合体が曲げ変形されたり、端部の切断が行われると、端部やその近傍で割れが発生し易い。端部やその近傍で割れが発生すると、掛けられた応力に応じて割れがガラスシートの内部に伝播する。この割れが、ガラスシート面内の有効領域まで伝播すると、欠陥となってしまう。
As described above, according to the composite formed by forming the resin layer 14 on the surface of the glass sheet 12, it is possible to prevent the glass sheet 12 from being cracked due to bending deformation or the like of the composite.
However, the resin layer 14 may not be formed in the vicinity of the end portion on the main surface of the glass sheet 12, and the strength of the end portion and the vicinity thereof is lower than that of the glass sheet 12 in the plane.
Therefore, when the composite is bent and deformed, or when the end portion is cut, cracks are likely to occur at the end portion and in the vicinity thereof. When a crack occurs at the end or in the vicinity thereof, the crack propagates into the glass sheet according to the applied stress. If this crack propagates to the effective area in the glass sheet surface, it becomes a defect.

これに対し、本発明の複合体10は、樹脂層14を、所定の剛性および厚さを有するものとし、かつ、所定の接着力でガラスシート12主面上に形成すると共に、ガラスシート12の樹脂層14と対向する面(樹脂層14を接着する面)かつ有効領域の外側に、犠牲溝16を有する。
そのため、樹脂層14側が凸になるように複合体10が曲げ変形された場合等に、端部やその近傍に割れが生じて、この割れが内面側に伝播しても、犠牲溝16による割れの伝播の抑制作用、および、樹脂層14による割れの広がりの抑制作用によって、割れの伝播を犠牲溝16の位置で抑制できる(犠牲溝16によって割れの伝播を縁切りできる)。従って、本発明の複合体10は、端部やその近傍の割れがガラスシート12の有効領域にまで伝播して、欠陥となることを抑制できる。
In contrast, in the composite 10 of the present invention, the resin layer 14 has a predetermined rigidity and thickness, and is formed on the main surface of the glass sheet 12 with a predetermined adhesive force. A sacrificial groove 16 is provided on the surface facing the resin layer 14 (surface on which the resin layer 14 is bonded) and outside the effective region.
Therefore, even when the composite 10 is bent and deformed so that the resin layer 14 side is convex, cracks are generated at the end portions and the vicinity thereof, and even if this crack propagates to the inner surface side, the cracks caused by the sacrificial grooves 16 The propagation of cracks and the crack spreading effect of the resin layer 14 can suppress the propagation of cracks at the position of the sacrificial grooves 16 (the propagation of cracks can be cut off by the sacrificial grooves 16). Therefore, the composite 10 of the present invention can suppress the cracks at the ends and the vicinity thereof from propagating to the effective region of the glass sheet 12 and becoming defects.

前述のように、犠牲溝16は、ガラスシート12の有効領域の外側に形成される。
なお、図1(A)及び(B)に示す複合体10は、ガラスシート12の4辺に対応する全ての犠牲溝16が、ガラスシート12の全域に延在して形成(格子状に形成)されるが、これ以外にも、各種の構成が利用可能である。例えば、有効領域を囲む矩形状に犠牲溝を形成してもよい。あるいは、ガラスシート12の全域に延在する犠牲溝と、他の犠牲溝と交差した位置が端部となる犠牲溝とが、混在してもよい。
また、有効領域をより広く設定できる等の点で、犠牲溝16の形成位置は、ガラスシート12の端部に近い方が好ましい。
As described above, the sacrificial groove 16 is formed outside the effective area of the glass sheet 12.
1A and 1B, all the sacrificial grooves 16 corresponding to the four sides of the glass sheet 12 are formed so as to extend over the entire area of the glass sheet 12 (formed in a lattice pattern). However, various other configurations can be used. For example, the sacrificial groove may be formed in a rectangular shape surrounding the effective area. Alternatively, a sacrificial groove that extends over the entire area of the glass sheet 12 and a sacrificial groove that ends at a position that intersects with another sacrificial groove may be mixed.
The sacrificial groove 16 is preferably formed at a position closer to the end of the glass sheet 12 in that the effective area can be set wider.

犠牲溝16の幅は、ガラスシート12の厚さ、主面の大きさ、形成材料等に応じて、割れの伝播を抑制できる幅を、適宜、設定すればよい。
本発明者らの検討によれば、犠牲溝16の幅は、100μm以下が好ましく、10μm以下がより好ましい。また、犠牲溝16は、原子レベル以上の幅(開口)を有すれば、十分な効果が得られる。具体的には、犠牲溝16の幅は、1nm以上であればよい。
犠牲溝16の幅を、上記範囲にすることにより、ガラスシート12の割れの伝播を好適に抑制できる、犠牲溝16を起点とするガラスシート12の割れを好適に防止できる等の点で好ましい。
What is necessary is just to set the width | variety of the sacrificial groove | channel 16 suitably the width | variety which can suppress propagation of a crack according to the thickness of the glass sheet 12, the magnitude | size of a main surface, a forming material, etc.
According to the study by the present inventors, the width of the sacrificial groove 16 is preferably 100 μm or less, and more preferably 10 μm or less. Further, if the sacrificial groove 16 has a width (opening) equal to or larger than the atomic level, a sufficient effect can be obtained. Specifically, the width of the sacrificial groove 16 may be 1 nm or more.
By making the width of the sacrificial groove 16 in the above range, it is preferable in that the propagation of the crack of the glass sheet 12 can be suitably suppressed, and the crack of the glass sheet 12 starting from the sacrificial groove 16 can be suitably prevented.

犠牲溝16の深さも、ガラスシート12の厚さ、形成材料、必要な強度等に応じて、割れの伝播を抑制できる幅を、適宜、設定すればよい。
本発明者らの検討によれば、犠牲溝16の深さは、5μm以上が好ましく、10μm以上が、より好ましい。
犠牲溝16の深さを5μm以上とすることにより、ガラスシート12の割れの伝播を好適に抑制できる等の点で好ましい。
The depth of the sacrificial groove 16 may be set as appropriate in accordance with the thickness of the glass sheet 12, the forming material, the required strength, and the like so that the propagation of cracks can be suppressed.
According to the study by the present inventors, the depth of the sacrificial groove 16 is preferably 5 μm or more, and more preferably 10 μm or more.
Setting the depth of the sacrificial groove 16 to 5 μm or more is preferable in that the propagation of cracks in the glass sheet 12 can be suitably suppressed.

なお、犠牲溝の深さには、上限は無い。すなわち、図2(A)に概念的に示す複合体10aの犠牲溝20のように、犠牲溝は、ガラスシート12を貫通する貫通溝であってもよい。
一般的に、電子デバイスを構成する素子は、ガラスシート12の表面に形成される。そのため、図1(A)に示す犠牲溝16のように、ガラスシート12を貫通しない犠牲溝16によれば、電子デバイスを構成する素子に対して、ガラスシート12によるガスバリア効果を得ることができる。
他方、図2(A)に示す犠牲溝20のように、ガラスシート12を貫通して形成される犠牲溝は、樹脂層14側が凸になるように複合体10aが曲げ変形された場合のみならず、樹脂層14側が凹になるように複合体10aが曲げ変形されて、端部やその近傍に割れが生じて、この割れが内面側に伝播しても、割れの伝播を犠牲溝20の位置で抑制できる。
There is no upper limit to the depth of the sacrificial groove. That is, like the sacrificial groove 20 of the composite body 10 a conceptually shown in FIG. 2A, the sacrificial groove may be a through groove that penetrates the glass sheet 12.
In general, the elements constituting the electronic device are formed on the surface of the glass sheet 12. Therefore, according to the sacrificial groove 16 that does not penetrate the glass sheet 12 like the sacrificial groove 16 shown in FIG. 1A, the gas barrier effect of the glass sheet 12 can be obtained for the elements constituting the electronic device. .
On the other hand, the sacrificial groove formed through the glass sheet 12 like the sacrificial groove 20 shown in FIG. 2A is only when the composite 10a is bent and deformed so that the resin layer 14 side is convex. However, even if the composite 10a is bent and deformed so that the resin layer 14 side is concave, cracks are generated at the ends and in the vicinity thereof, and even if this crack propagates to the inner surface side, the propagation of the cracks is prevented in the sacrificial groove 20. Can be suppressed by position.

また、犠牲溝は、これ以外も、各種の構成が利用可能である。
図2(B)及び(C)に示す形態は、何れもガラスシート12の両面に、ガラスシート12を貫通しない深さの犠牲溝を形成した形態である。
図2(B)は、犠牲溝24aをガラスシート12の一方の面に形成し、犠牲溝24bをガラスシート12の他方の面に形成するとともに、深さ方向に伸びた犠牲溝が互いにつながらないように、犠牲溝の位置を少しずらした形態を示す。
図2(C)は、犠牲溝26aをガラスシート12の一方の面に形成し、犠牲溝26bをガラスシート12の他方の面に形成するとともに、ガラスシート12を平面視した際に、犠牲溝26aと犠牲溝26bとが同じ位置となるようにした形態を示す。ただし、犠牲溝26aと犠牲溝26bがつながらないように、各溝の深さは浅いものにしている。
さらに、犠牲溝として、ガラスシート12を貫通しない溝と、貫通溝とが混在してもよい。
なお、犠牲溝を有しても、犠牲溝を有さなくても、樹脂層14をガラスシート12の一方の面のみに形成する場合、ガラスシート12の樹脂層14が形成されない側の面は、本発明の電子デバイスにおける素子の形成面であり、電子デバイスとなった状態では、通常、層間絶縁膜や保護膜等で覆われる。
In addition to the sacrificial grooves, various configurations can be used.
Each of the forms shown in FIGS. 2B and 2C is a form in which sacrificial grooves having a depth that does not penetrate the glass sheet 12 are formed on both surfaces of the glass sheet 12.
In FIG. 2B, the sacrificial groove 24a is formed on one surface of the glass sheet 12, the sacrificial groove 24b is formed on the other surface of the glass sheet 12, and the sacrificial grooves extending in the depth direction are not connected to each other. Shows a form in which the position of the sacrificial groove is slightly shifted.
FIG. 2C shows that the sacrificial groove 26a is formed on one surface of the glass sheet 12, the sacrificial groove 26b is formed on the other surface of the glass sheet 12, and the sacrificial groove when the glass sheet 12 is viewed in plan view. 26A and 26B, the sacrifice groove 26b is in the same position. However, the depth of each groove is made shallow so that the sacrifice groove 26a and the sacrifice groove 26b are not connected.
Furthermore, as the sacrificial groove, a groove that does not penetrate the glass sheet 12 and a through groove may be mixed.
In addition, when the resin layer 14 is formed only on one surface of the glass sheet 12 with or without the sacrificial groove, the surface of the glass sheet 12 on which the resin layer 14 is not formed is The element formation surface of the electronic device of the present invention is usually covered with an interlayer insulating film, a protective film, or the like in a state of being an electronic device.

図1(A)及び(B)に示す複合体10は、矩形のガラスシート12の4辺の全てに対応して、犠牲溝16が形成される。
しかしながら、本発明の複合体においては、犠牲溝は、少なくともガラスシート12の1辺に対応して、該辺(端部)に沿って、該辺と同方向に延在して形成されればよい。すなわち、本発明の複合体(積層体)は、ガラスシートの端部に沿って延在する、1本以上の犠牲溝を有すればよい。ガラスシートの端部に沿って延在する犠牲溝が1本以上有れば、端部やその近傍から生じた割れが、この犠牲溝よりも内側(割れが生じた端部と逆側)に伝播することを防止できる。
また、犠牲溝は、必ずしも、ガラスシートの端部(辺)と平行である必要はない。
本発明の複合体において、犠牲溝は、好ましくは、少なくともガラスシート12の対向する2辺(対向する一対の辺)に対応して、該辺と同方向に延在して形成される。
例えば、複合体10が、長手方向(図1(B)の上下方向)のみに湾曲(短手方向に頂点を延在して湾曲)される用途に利用される場合には、図1(B)中の上下方向(図1(A)では、紙面と直交方向)に延在する2本の犠牲溝16のみを有するものでもよい。逆に、複合体10が、短手方向(図1の横方向)のみに湾曲される用途に利用される場合には、図1(B)中の横方向に延在する2本の犠牲溝16のみを有するものでもよい。
In the composite 10 shown in FIGS. 1A and 1B, sacrificial grooves 16 are formed corresponding to all four sides of the rectangular glass sheet 12.
However, in the composite of the present invention, the sacrificial groove should correspond to at least one side of the glass sheet 12 and extend along the side (end) in the same direction as the side. Good. That is, the composite (laminate) of the present invention only needs to have one or more sacrificial grooves extending along the edge of the glass sheet. If there is at least one sacrificial groove extending along the edge of the glass sheet, the crack generated from the end and the vicinity thereof is on the inner side (opposite to the end where the crack occurred). Propagation can be prevented.
The sacrificial groove does not necessarily need to be parallel to the end (side) of the glass sheet.
In the composite of the present invention, the sacrificial groove is preferably formed to extend in the same direction as at least two opposite sides (a pair of opposite sides) of the glass sheet 12.
For example, when the composite 10 is used for an application in which the composite 10 is curved only in the longitudinal direction (up and down direction in FIG. 1B) (curved by extending the apex in the short direction), FIG. ) May be provided with only two sacrificial grooves 16 extending in the vertical direction (in FIG. 1A, the direction orthogonal to the paper surface). Conversely, when the composite 10 is used for an application in which it is curved only in the short direction (lateral direction in FIG. 1), two sacrificial grooves extending in the lateral direction in FIG. 1 (B). It may have only 16.

また、本発明の複合体は、いわゆるロール・トゥ・ロール(以下、RtoRと言う)を利用する電子デバイスの製造等にも利用可能である。
RtoRとは、長尺な被処理基材をロール状に巻回して、このロールから被処理基材を送り出して、長手方向に搬送しつつ、所定の処理を行ない、処理済の基材をロール状に巻回する製造方法である。例えば、図3(A)に概念的に示すように、長尺な被処理基材30をロール状に巻回してなる被処理基材ロール30Rから被処理基材30を送り出して、長手方向(図3(A)中矢印の方向)に搬送しつつ、レジスト層形成装置32によって、レジスト液の塗布および乾燥(あるいはさらに熱処理)を連続的に行ってレジスト層を形成し、レジスト層を形成した処理済基材34をロール状に巻回して、処理済基材ロール34Rとする。
The composite of the present invention can also be used for manufacturing electronic devices using so-called roll-to-roll (hereinafter referred to as RtoR).
RtoR is a roll of a long substrate to be processed, rolled out, and the substrate to be processed is sent out from the roll and conveyed in the longitudinal direction to perform a predetermined process. It is a manufacturing method wound in a shape. For example, as conceptually shown in FIG. 3 (A), the substrate 30 to be processed is fed from a substrate roll 30R formed by winding a long substrate 30 into a roll shape, and the longitudinal direction ( While being conveyed in the direction of the arrow in FIG. 3A, the resist layer forming apparatus 32 continuously applied the resist solution and dried (or further heat treated) to form a resist layer, thereby forming the resist layer. The processed base material 34 is wound into a roll shape to obtain a processed base material roll 34R.

このようなRtoRに対応する、長尺な本発明の複合体33は、図3(B)に概念的に示すように、ガラスシート35の樹脂層36との対向面の、幅方向(長手方向と直交する方向)における有効領域の両外側に、長手方向に延在する犠牲溝38を有する。
RtoRでは、巻回された複合体には、長手方向に引っ張る応力が掛かっている。しかしながら、有効領域の幅方向の両外側に、長手方向に延在する犠牲溝38を有することにより、この応力によってガラスシートの端部やその近傍に割れが生じて、内面方向に伝播しても、犠牲溝38において伝播を抑制できるので、犠牲溝38の内側に存在する有効領域に割れが至ることを抑制できる。
The long composite 33 of the present invention corresponding to such RtoR has a width direction (longitudinal direction) of the surface facing the resin layer 36 of the glass sheet 35 as conceptually shown in FIG. Sacrificial grooves 38 extending in the longitudinal direction are provided on both outer sides of the effective area in the direction orthogonal to the longitudinal direction.
In RtoR, the wound composite is subjected to stress that is pulled in the longitudinal direction. However, by having the sacrificial grooves 38 extending in the longitudinal direction on both outer sides in the width direction of the effective region, the stress can cause cracks at the end of the glass sheet and in the vicinity thereof and propagate in the inner surface direction. Since propagation can be suppressed in the sacrificial groove 38, it is possible to suppress cracks from reaching the effective region existing inside the sacrificial groove 38.

なお、本発明の複合体をRtoRによる製造に利用する場合において、長手方向における個々の有効領域が判明している場合には、幅方向両側の犠牲溝38に加え、個々の有効領域に対応して、幅方向に延在する犠牲溝を長手方向に間隔を開けて形成して、個々の有効領域を囲むように犠牲溝を形成してもよい。   When the composite of the present invention is used for the production by RtoR, when individual effective regions in the longitudinal direction are known, in addition to the sacrificial grooves 38 on both sides in the width direction, it corresponds to each effective region. Thus, sacrificial grooves extending in the width direction may be formed at intervals in the longitudinal direction, and the sacrificial grooves may be formed so as to surround individual effective regions.

本発明の複合体10において、犠牲溝の形成方法は、シート状のガラスに溝を形成する公知の方法が、各種、利用可能である。
犠牲溝の形成方法としては、一例として、ホイールカッタなどのガラスカッタを用いるスクライブ線の形成方法、レーザビームによるスクライブ線の形成方法など、ガラスを切断するためのスクライブ線の形成方法が、各種、利用可能である。
In the composite 10 of the present invention, various known methods for forming the grooves in the sheet-like glass can be used as the method for forming the sacrificial grooves.
As a method for forming the sacrificial groove, for example, there are various scribe line forming methods for cutting glass, such as a scribe line forming method using a glass cutter such as a wheel cutter, a scribe line forming method using a laser beam, and the like. Is available.

ここで、犠牲溝による割れの伝播停止の効果は、犠牲溝(犠牲溝の壁)の強度が高い程、良好に得られる。すなわち、犠牲溝のチッピングやマイクロクラック等が少ない程、犠牲溝による割れの伝播抑制の効果は高くなる。
従って、犠牲溝は、チッピングやマイクロクラック等が少ない、強度が高い犠牲溝が得られる方法で形成するのが好ましい。
一例として、国際公開第2003/013816号に記載される方法が例示される。この犠牲溝の形成方法は、形成する犠牲溝に沿ってガラスシート12の軟化点以下のレーザビームスポットを形成するようにレーザビームを連続的に照射しつつ、レーザビームスポットに追従して形成する犠牲溝に沿って冷却すると共に、レーザビームスポットの冷却位置に近い側を最大エネルギ強度にして、犠牲溝を形成する。
他の方法として、パルス幅が短い超短パスルのレーザビームで犠牲溝を形成する方法、レーザビームによってガラスシートを溶融するように犠牲溝を形成する方法等が例示される。
Here, the effect of stopping the propagation of cracks by the sacrificial groove is better obtained as the strength of the sacrificial groove (sacrificial groove wall) is higher. That is, the smaller the chipping of the sacrificial grooves, the micro cracks, etc., the higher the effect of suppressing the propagation of cracks by the sacrificial grooves.
Therefore, it is preferable to form the sacrificial groove by a method capable of obtaining a sacrificial groove with high strength and less chipping and microcracks.
As an example, the method described in WO2003 / 013816 is exemplified. In this sacrificial groove forming method, the laser beam is continuously irradiated so as to form a laser beam spot below the softening point of the glass sheet 12 along the sacrificial groove to be formed while following the laser beam spot. While cooling along the sacrificial groove, the sacrificial groove is formed by setting the side near the cooling position of the laser beam spot to the maximum energy intensity.
Examples of other methods include a method of forming a sacrificial groove with a laser beam having an ultrashort pulse with a short pulse width, a method of forming a sacrificial groove so as to melt a glass sheet with a laser beam, and the like.

ガラスシート12の表面(主面)には、樹脂層14が形成される。
前述のように、犠牲溝は、少なくとも、ガラスシート12の樹脂層14との対向面に形成される。言い換えれば、少なくとも、ガラスシート12の犠牲溝の形成面に、樹脂層14が形成される。
なお、図1(A)および(B)等に示す複合体は、樹脂層14をガラスシート12の片面のみに設けているが、本発明の複合体では、樹脂層14をガラスシート12の両面に設けてもよい。この場合には、ガラスシート12の両面に、犠牲溝を形成する。
A resin layer 14 is formed on the surface (main surface) of the glass sheet 12.
As described above, the sacrificial groove is formed at least on the surface of the glass sheet 12 facing the resin layer 14. In other words, the resin layer 14 is formed at least on the formation surface of the sacrificial groove of the glass sheet 12.
1A and 1B, the resin layer 14 is provided only on one side of the glass sheet 12, but in the composite of the present invention, the resin layer 14 is provided on both sides of the glass sheet 12. May be provided. In this case, sacrificial grooves are formed on both surfaces of the glass sheet 12.

樹脂層14は、各種の樹脂材料からなる層(膜)である。なお、図1(A)及び(B)等に示される複合体は、樹脂層14は1層で形成されているが、合計の厚さが1〜100μmであれば、樹脂層14は複数層で形成されてもよい。また、複数層で樹脂層14を形成する際には、全ての層を同じ材料で形成してもよく、異なる材料からなる層が混在してもよい。さらに、複数層で樹脂層14を形成する際には、各層の厚さは、同じでも異なってもよい。
なお、図1(A)及び(B)等に示される複合体は、ガラスシート12の表面全面に樹脂層14を形成しているが、製造する複合体のサイズや形状に対応する十分な面積を有するものであれば、樹脂層14は、ガラスシート12の表面全面に形成されなくてもよい。
しかしながら、本発明の複合体においては、樹脂層14がガラスシート12の表面全面を覆わない場合でも、樹脂層14は必ず犠牲溝を覆うように形成され、有効領域に割れが伝播して欠陥となることを抑制できる。
The resin layer 14 is a layer (film) made of various resin materials. In the composite shown in FIGS. 1A and 1B, etc., the resin layer 14 is formed of one layer. However, if the total thickness is 1 to 100 μm, the resin layer 14 has a plurality of layers. May be formed. Moreover, when forming the resin layer 14 by multiple layers, all the layers may be formed with the same material and the layer which consists of a different material may be mixed. Furthermore, when forming the resin layer 14 with multiple layers, the thickness of each layer may be the same or different.
In addition, although the composite shown by FIG. 1 (A) and (B) etc. has formed the resin layer 14 on the whole surface of the glass sheet 12, sufficient area corresponding to the size and shape of the composite to manufacture. If it has, the resin layer 14 does not need to be formed in the whole surface of the glass sheet 12. FIG.
However, in the composite of the present invention, even when the resin layer 14 does not cover the entire surface of the glass sheet 12, the resin layer 14 is always formed so as to cover the sacrificial groove, and cracks propagate to the effective region and cause defects. Can be suppressed.

ここで、本発明の複合体10において、樹脂層14は、厚さが1〜100μmで、ガラスシート12との界面からその法線方向の距離が0〜0.5μmの領域におけるヤング率が100MPa以上である。また、樹脂層14は、180°ピール剥離強度が1N/25mm以上の接着力で、ガラスシート12の表面に接着される。
前述のように、本発明の複合体10は、ガラスシート12に犠牲溝を形成し、かつ、このような樹脂層14を有することにより、複合体10を樹脂層14側を凸にして曲げ変形した際などに、ガラスシート12の端部やその近傍に割れが生じて、この割れが内面側に伝播しても、樹脂層14が割れの広がりを抑制するので、さらに、犠牲溝16を有することによって割れの伝播を抑制できる。
Here, in the composite 10 of the present invention, the resin layer 14 has a thickness of 1 to 100 μm, and a Young's modulus in a region where the distance in the normal direction from the interface with the glass sheet 12 is 0 to 0.5 μm is 100 MPa. That's it. Further, the resin layer 14 is adhered to the surface of the glass sheet 12 with an adhesive strength of 180 N peel peel strength of 1 N / 25 mm or more.
As described above, the composite 10 of the present invention has a sacrificial groove formed in the glass sheet 12 and has such a resin layer 14 so that the composite 10 is bent and deformed with the resin layer 14 side convex. In such a case, a crack is generated at the end of the glass sheet 12 or in the vicinity thereof, and even if this crack propagates to the inner surface side, the resin layer 14 suppresses the spread of the crack. This can suppress the propagation of cracks.

樹脂層14の厚さが1μm未満では、樹脂層14を有することの効果を得ることができず、ガラスシート12の端部やその近傍に生じた割れが犠牲溝を超えて内面まで伝播したり、端部やその近傍からの割れの進行と同時に樹脂層14も裂けて分離してしまう等の不都合を生じる。
また、樹脂層14の厚さが100μmを超えると、良好なフレキシブル性を有する複合体10を得ることができなかったり、薄膜化や軽量化に対応することが困難になる等の不都合を生じる。
If the thickness of the resin layer 14 is less than 1 μm, the effect of having the resin layer 14 cannot be obtained, and cracks generated at the edge of the glass sheet 12 or in the vicinity thereof propagate beyond the sacrificial groove to the inner surface. As a result, the resin layer 14 is also torn and separated simultaneously with the progress of cracks from the end portion and the vicinity thereof.
On the other hand, when the thickness of the resin layer 14 exceeds 100 μm, it is impossible to obtain the composite 10 having good flexibility, and it is difficult to cope with the reduction in thickness and weight.

また、犠牲溝による割れの伝播停止効果がより好適に得られる、良好なフレキシブル性を有する複合体10を得ることができる等の点で、樹脂層14の厚さは、10〜50μmが好ましい。   Further, the thickness of the resin layer 14 is preferably 10 to 50 μm in that the effect of stopping the propagation of cracks by the sacrificial grooves can be obtained more suitably, and the composite 10 having good flexibility can be obtained.

樹脂層14は、ガラスシート12との界面からその法線方向(界面と直交する方向)の距離が0〜0.5μmの領域(すなわち、ガラスシート12側の厚さ0.5μm以下の領域)のヤング率(以下、単に『樹脂層14のヤング率』とも言う)が100MPa以上である。
樹脂層14のヤング率が100MPa未満では、ガラスシート12の端部やその近傍に生じた割れが犠牲溝を超えて内面まで伝播したり、端部やその近傍からの割れの進行と同時に樹脂層14も裂けて分離してしまう等の不都合が生じる。
The resin layer 14 is a region whose distance in the normal direction (direction perpendicular to the interface) from the interface with the glass sheet 12 is 0 to 0.5 μm (that is, a region having a thickness of 0.5 μm or less on the glass sheet 12 side). The Young's modulus (hereinafter, also simply referred to as “Young's modulus of the resin layer 14”) is 100 MPa or more.
If the Young's modulus of the resin layer 14 is less than 100 MPa, the cracks generated at the end of the glass sheet 12 and the vicinity thereof propagate to the inner surface beyond the sacrificial groove, or simultaneously with the progress of the cracks from the end and the vicinity. 14 also tears and separates.

犠牲溝による割れの伝播抑制効果がより好適に得られる等の点で、樹脂層14のヤング率は、1000MPa以上が好ましい。   The Young's modulus of the resin layer 14 is preferably 1000 MPa or more in that the effect of suppressing the propagation of cracks by the sacrificial grooves can be more suitably obtained.

樹脂層14のヤング率の上限には、限定は無い。ここで、フレキシブル性を低下させない(曲げ剛性の向上させない)こと等を考慮すると、樹脂層14のヤング率は、50000MPa以下が好ましく、10000MPa以下がより好ましい。   There is no limitation on the upper limit of the Young's modulus of the resin layer 14. Here, in consideration of not lowering flexibility (not improving bending rigidity), the Young's modulus of the resin layer 14 is preferably 50000 MPa or less, and more preferably 10000 MPa or less.

樹脂層14のヤング率は、JIS K 7127(1999)に準拠した方法で測定すればよい。
また、樹脂層14(そのガラスシート12側の厚さ0.5μm以下の領域)が複数(n個)の層で構成される場合、樹脂層14のヤング率E(ヤング率E)は、下記式(1)で計算すればよい。
E=Σ(E×I)/I・・・(1)
; k番目の層の材料のヤング率
; k番目の層の断面2次モーメント
k; 1〜nの整数
I; 樹脂層14におけるガラスシート12側の厚さ0〜0.5μmの領域の断面2次モーメント
式(1)から明らかなように、樹脂層14を接着剤によってガラスシート12に接着する場合で、かつ、接着剤が樹脂層14よりも柔らかい場合でも、接着剤層の厚さみが十分に薄ければ(例えば100nm以下であれば)、樹脂層14のヤング率は100MPa以上となる。
The Young's modulus of the resin layer 14 may be measured by a method based on JIS K 7127 (1999).
In addition, when the resin layer 14 (region having a thickness of 0.5 μm or less on the glass sheet 12 side) is composed of a plurality (n) of layers, the Young's modulus E (Young's modulus E) of the resin layer 14 is as follows. What is necessary is just to calculate by Formula (1).
E = Σ (E k × I k ) / I (1)
E k ; Young's modulus of k-th layer material I k ; k-th layer cross-sectional second moment k; integer of 1 to n I; thickness of resin layer 14 on glass sheet 12 side 0 to 0.5 μm As is apparent from the sectional second moment of the region (1), even when the resin layer 14 is bonded to the glass sheet 12 with an adhesive, and the adhesive is softer than the resin layer 14, the adhesive layer If the thickness is sufficiently thin (for example, 100 nm or less), the Young's modulus of the resin layer 14 is 100 MPa or more.

本発明の製造方法において、樹脂層14は、180°ピール剥離強度で1N/25mm以上の接着力(以下、単に『樹脂層14の接着力』とも言う)で、ガラスシート12に接着される。
樹脂層14の接着力が1N/25mm未満では、ガラスシート12の端部やその近傍に生じた割れが犠牲溝を超えて内面まで伝播したり、犠牲溝の周辺で樹脂層14の剥離が生じてしまう等の不都合が生じる。
In the production method of the present invention, the resin layer 14 is bonded to the glass sheet 12 with an adhesive strength of 1 N / 25 mm or more with 180 ° peel peel strength (hereinafter also simply referred to as “adhesive strength of the resin layer 14”).
When the adhesive strength of the resin layer 14 is less than 1 N / 25 mm, cracks generated at the edge of the glass sheet 12 or in the vicinity thereof propagate to the inner surface beyond the sacrifice groove, or the resin layer 14 peels around the sacrifice groove. Inconvenience occurs.

犠牲溝による割れの伝播効果をより好適に得られる等の点で、樹脂層14の接着力は、3N/25mm以上が好ましく、5N/25mm以上がより好ましい。   The adhesive strength of the resin layer 14 is preferably 3 N / 25 mm or more, and more preferably 5 N / 25 mm or more in that the effect of propagation of cracks by the sacrificial grooves can be more suitably obtained.

また、樹脂層14の接着力の上限には、限定は無い。   Moreover, there is no limitation in the upper limit of the adhesive force of the resin layer 14.

なお、樹脂層14の接着力(180°ピール剥離強度)は、JIS K 6854(1999)に準拠して測定すればよい。   In addition, what is necessary is just to measure the adhesive force (180 degree peel peel strength) of the resin layer 14 based on JISK6854 (1999).

樹脂層14は、公知の各種の樹脂材料(高分子材料)で形成可能である。例えば、熱可塑性樹脂および熱硬化性樹脂のいずれでもよい。
熱硬化性樹脂としては、ポリイミド(PI)、エポキシ(EP)等が例示される。
熱可塑性樹脂としては、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリベンズイミダゾール(PBI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、環状ポリオレフィン(COP)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、アクリル(PMMA)、ウレタン(PU)等が例示される。
また、樹脂層14は、光硬化性樹脂で形成されてもよく、共重合体や混合物であってもよい。
The resin layer 14 can be formed of various known resin materials (polymer materials). For example, any of a thermoplastic resin and a thermosetting resin may be used.
Examples of the thermosetting resin include polyimide (PI) and epoxy (EP).
Examples of the thermoplastic resin include polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone ( Examples thereof include PES), cyclic polyolefin (COP), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), acrylic (PMMA), and urethane (PU).
The resin layer 14 may be formed of a photocurable resin, and may be a copolymer or a mixture.

複合体10(積層体50)が利用される電子デバイスの製造工程は、加熱処理を伴う工程を含むことがある。そのため樹脂層14を形成する樹脂材料の耐熱温度(連続使用可能温度)は、好ましくは、100℃以上である。
耐熱温度が100℃以上の樹脂としては、ポリイミド(PI)、エポキシ(EP)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリベンズイミダゾール(PBI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、環状ポリオレフィン(COP)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、アクリル(PMMA)、ウレタン(PU)等が例示される。
An electronic device manufacturing process in which the composite 10 (laminated body 50) is used may include a process involving heat treatment. Therefore, the heat resistant temperature (continuous usable temperature) of the resin material forming the resin layer 14 is preferably 100 ° C. or higher.
Examples of the resin having a heat resistant temperature of 100 ° C. or higher include polyimide (PI), epoxy (EP), polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), polyethylene terephthalate ( PET, polyethylene naphthalate (PEN), polyethersulfone (PES), cyclic polyolefin (COP), polycarbonate (PC), polyvinyl chloride (PVC), acrylic (PMMA), urethane (PU), etc. .

樹脂層14は、樹脂材料のみで形成されても良く、あるいは、フィラー等を含有してもよい。
フィラーとしては、繊維状もしくは、板状、鱗片状、粒状、不定形状、破砕品など非繊維状の充填剤が例示される。
具体的には、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ほう酸アルミニウムウィスカー、窒化ケイ素ウィスカー、マイカ、タルク、カオリン、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、ワラステナイト、酸化チタン、酸化亜鉛、ポリリン酸カルシウム、金属粉、金属フレーク、金属リボン、金属酸化物、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、カーボンナノチューブ等が例示される。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。ガラス繊維あるいは炭素繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、樹脂層14は、樹脂を含浸した織布、不織布などで構成されてもよい。
The resin layer 14 may be formed of only a resin material, or may contain a filler or the like.
Examples of the filler include fibrous or non-fibrous fillers such as plates, scales, granules, irregular shapes, and crushed products.
Specifically, glass fibers, PAN-based and pitch-based carbon fibers, stainless steel fibers, metal fibers such as aluminum fibers and brass fibers, organic fibers such as aromatic polyamide fibers, gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers , Alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, mica, talc, kaolin, silica, calcium carbonate, glass beads, Glass flake, glass microballoon, clay, molybdenum disulfide, wollastonite, titanium oxide, zinc oxide, calcium polyphosphate, metal powder, metal flake, metal ribbon, metal oxide, carbon powder, graphite, carbon flake, scaly Bon, such as carbon nanotubes is exemplified. Specific examples of metal species of metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin. The type of glass fiber or carbon fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from long fiber type, short fiber type chopped strand, milled fiber, and the like. Moreover, the resin layer 14 may be comprised with the woven fabric and nonwoven fabric which were impregnated with resin.

なお、樹脂層14を形成する樹脂は、犠牲溝に侵入して犠牲溝を完全に埋めてもよく、あるいは、犠牲溝に侵入して犠牲溝の一部を埋めても良く、あるいは、全く犠牲溝に侵入しなくてもよい。   The resin forming the resin layer 14 may enter the sacrificial groove and completely fill the sacrificial groove, or may penetrate into the sacrificial groove and partially fill the sacrificial groove, or may be completely sacrificed. It is not necessary to enter the groove.

樹脂層14は、樹脂層14の形成材料に応じた公知の方法で形成すればよい。
例えば、樹脂層14は、ガラスシート12の犠牲溝を形成した面に、樹脂層14となる成分を含む液状の組成物(塗料)を塗布して、硬化させて、形成すればよい。
あるいは、樹脂層14は、ガラスシート12の犠牲溝を形成した面に、樹脂層14となる樹脂フィルム(樹脂シート)を貼り付けて形成してもよい。ガラスシート12への樹脂層14となる樹脂フィルムの接着は、圧着、加熱圧着、減圧加熱圧着等、樹脂層14の形成材料に応じた公知の方法で行えばよい。
なお、ガラスシート12に樹脂フィルムを貼り付けて樹脂層14を形成する場合には、必要に応じて、接着剤を用いて、ガラスシート12に樹脂フィルムを接着してもよい。なお、この場合は、接着剤層も樹脂層14の一部と見なし、接着剤層も含めた複数層からなる樹脂層14として、ヤング率等の条件を満たす必要が有る。
また、樹脂層14は、ガラスシート12の表面に、樹脂層14となる樹脂材料の前駆体からなる層(膜)を形成し、この前駆体からなる層に、熱処理、電子線照射、紫外線照射等の処理を施すことで、目的とする樹脂材料からなる樹脂層14としたものでもよい。なお、この樹脂層14の形成方法において、前駆体からなる層は、ガラスシート12の表面に液状の組成物の塗布、乾燥(あるいはさらに硬化)して形成してもよく、あるいは、ガラスシート12の表面に、フィルム状物を貼り付けて形成してもよい(必要に応じて接着剤を用いてもよい)。
The resin layer 14 may be formed by a known method corresponding to the material for forming the resin layer 14.
For example, the resin layer 14 may be formed by applying a liquid composition (coating material) containing a component that becomes the resin layer 14 to the surface of the glass sheet 12 on which the sacrificial grooves are formed, and curing it.
Alternatively, the resin layer 14 may be formed by attaching a resin film (resin sheet) to be the resin layer 14 to the surface of the glass sheet 12 on which the sacrificial grooves are formed. Adhesion of the resin film to be the resin layer 14 to the glass sheet 12 may be performed by a known method according to the forming material of the resin layer 14 such as pressure bonding, thermocompression bonding, and reduced pressure thermocompression bonding.
In addition, when sticking a resin film on the glass sheet 12 and forming the resin layer 14, you may adhere | attach a resin film on the glass sheet 12 using an adhesive agent as needed. In this case, the adhesive layer is also regarded as a part of the resin layer 14, and the resin layer 14 including a plurality of layers including the adhesive layer needs to satisfy conditions such as Young's modulus.
Moreover, the resin layer 14 forms a layer (film) made of a precursor of a resin material to be the resin layer 14 on the surface of the glass sheet 12, and the layer made of this precursor is subjected to heat treatment, electron beam irradiation, ultraviolet irradiation. The resin layer 14 made of a target resin material may be obtained by performing the above-described process. In this method of forming the resin layer 14, the precursor layer may be formed by applying a liquid composition on the surface of the glass sheet 12 and drying (or further curing), or the glass sheet 12. It may be formed by attaching a film-like material to the surface (adhesive may be used if necessary).

図4に、本発明の積層体の一例を概念的に示す。
図4に示す本発明の積層体50は、前述のガラスシート12と樹脂層14とからなる複合体10の樹脂層14に、第2ガラスシート52を積層して、接着したものである。すなわち、積層体50は、複合体10の積層体である。
In FIG. 4, an example of the laminated body of this invention is shown notionally.
A laminated body 50 of the present invention shown in FIG. 4 is obtained by laminating and bonding a second glass sheet 52 to the resin layer 14 of the composite body 10 composed of the glass sheet 12 and the resin layer 14 described above. That is, the laminate 50 is a laminate of the composite 10.

積層体50において、第2ガラスシート52のガラスは、前述のガラスシート12と同様、公知の各種のガラスが利用可能であり、さらに、公知の方法で製造されたものが利用可能である。
なお、製造した積層体50が、熱処理等の加熱を伴う工程を行う用途に利用される場合には、第2ガラスシート52は、ガラスシート12と線膨張係数の差の小さい材料で形成されることが好ましく、ガラスシート12と同一材料で形成されることがより好ましい。
In the laminated body 50, the glass of the 2nd glass sheet 52 can utilize well-known various glass like the above-mentioned glass sheet 12, Furthermore, what was manufactured by the well-known method can be utilized.
In addition, when the manufactured laminated body 50 is utilized for the use which performs the process accompanied by heating, such as heat processing, the 2nd glass sheet 52 is formed with the material with a small difference of a linear expansion coefficient with the glass sheet 12. It is preferable that the glass sheet 12 is formed of the same material.

第2ガラスシート52の厚さは、製造する積層体50の用途に応じた厚さでよい。従って、第2ガラスシート52の厚さは、ガラスシート12と同じでも、ガラスシート12より厚くても薄くてもよい。
一例として、積層体50は、複合体10(ガラスシート12)を基板(素子が形成される基板(素子基板))とするPV、LCD、OLED等の電子デバイスの製造に、利用される。この際には、第2ガラスシート52は、ガラスシート12に素子を形成される複合体10を支持し、適正なハンドリングを可能にする支持基材(キャリア基板)として作用する。従って、この際には、第2ガラスシート52の厚さは、0.2〜1mmが好ましく、0.4〜0.7mmがより好ましい。
The thickness of the second glass sheet 52 may be a thickness according to the use of the laminate 50 to be manufactured. Therefore, the thickness of the second glass sheet 52 may be the same as that of the glass sheet 12, or may be thicker or thinner than the glass sheet 12.
As an example, the laminated body 50 is used for manufacturing electronic devices such as PV, LCD, and OLED using the composite 10 (glass sheet 12) as a substrate (substrate on which elements are formed (element substrate)). In this case, the second glass sheet 52 functions as a support base (carrier substrate) that supports the composite 10 in which elements are formed on the glass sheet 12 and enables proper handling. Therefore, in this case, the thickness of the second glass sheet 52 is preferably 0.2 to 1 mm, and more preferably 0.4 to 0.7 mm.

積層体50において、複合体10の樹脂層14に第2ガラスシート52を接着する方法は、樹脂層14の形成材料に応じた、公知の各種の方法が利用可能である。
一例として、接着剤を用いる方法、圧着による方法、加熱圧着による方法、減圧加熱圧着による方法等が例示される。
なお、第2ガラスシート52は、接着力の向上等を目的として、樹脂層14への積層に先立ち、表面に表面処理が施されたものでもよい。第2ガラスシート52の表面処理としては、先にガラスシート12の説明で例示した各種の表面処理が例示される。
As the method for adhering the second glass sheet 52 to the resin layer 14 of the composite 10 in the laminate 50, various known methods corresponding to the material for forming the resin layer 14 can be used.
As an example, a method using an adhesive, a method using pressure bonding, a method using thermocompression bonding, a method using reduced pressure thermocompression bonding, and the like are exemplified.
In addition, the 2nd glass sheet 52 may be surface-treated before the lamination | stacking to the resin layer 14 for the purpose of the improvement of the adhesive force, etc. Examples of the surface treatment of the second glass sheet 52 include various surface treatments exemplified above in the description of the glass sheet 12.

なお、積層体50をOLED等の製造に使用する際に、第2ガラスシート52を支持基材とする場合には、第2ガラスシート52は、最終的には、樹脂層14から剥離される。
従って、この場合には、樹脂層14と第2ガラスシート52とは、十分な接着力を確保しつつも、必要に応じて、樹脂層14と第2ガラスシート52とが剥離できるように、接着してもよい。
In addition, when using the laminated body 50 for manufacture of OLED etc., when using the 2nd glass sheet 52 as a support base material, the 2nd glass sheet 52 is peeled from the resin layer 14 finally. .
Therefore, in this case, the resin layer 14 and the second glass sheet 52 can be peeled off from the resin layer 14 and the second glass sheet 52 as necessary while securing a sufficient adhesive force. It may be glued.

図1(A)及び(B)に示す複合体10(図4に示す積層体50)は、ガラスシート12の内面に設定される有効領域に応じて、有効領域の外側に犠牲溝16を形成している。
本発明の複合体は、ガラスシート12の内面に設定される有効領域の中に、さらに、個々の電子デバイス(その素子)の形成領域に対応する、複数又は単数の第2有効領域を設定して、この第2有効領域の少なくとも1つに対応して、犠牲溝16を形成した面に第2犠牲溝を形成してもよい。
図5に、その一例の平面図を示す。
The composite 10 (laminated body 50 shown in FIG. 4) shown in FIGS. 1A and 1B forms a sacrificial groove 16 outside the effective area according to the effective area set on the inner surface of the glass sheet 12. doing.
In the composite of the present invention, a plurality or a single second effective region corresponding to the formation region of each electronic device (its element) is further set in the effective region set on the inner surface of the glass sheet 12. Thus, a second sacrificial groove may be formed on the surface on which the sacrificial groove 16 is formed, corresponding to at least one of the second effective regions.
FIG. 5 shows a plan view of an example thereof.

図5に示す複合体40は、複合体10と同様、ガラスシート12に、樹脂層14を積層してなるものである。また、ガラスシート12の樹脂層14との対向面には、複合体10と同様に、有効領域の外側に犠牲溝16が形成される。
複合体40においては、犠牲溝16に囲まれた有効領域の中に、一点鎖線で示すa〜fの6つの第2有効領域が設定されている。
第2有効領域は、1個の電子デバイスに対応する領域である。すなわち、電子デバイスの製造では、この第2有効領域に、1個の電子デバイスとなる素子が形成される。従って、複合体40は、第2有効領域a〜fに素子が形成された後に、例えば二点鎖線で示す切断線で切断される。
Similar to the composite 10, the composite 40 shown in FIG. 5 is formed by laminating a resin layer 14 on a glass sheet 12. Further, a sacrificial groove 16 is formed on the outer surface of the effective region on the surface of the glass sheet 12 facing the resin layer 14, as in the composite 10.
In the composite 40, six second effective regions a to f indicated by alternate long and short dash lines are set in the effective region surrounded by the sacrificial groove 16.
The second effective area is an area corresponding to one electronic device. That is, in the manufacture of an electronic device, an element that becomes one electronic device is formed in the second effective region. Therefore, after the element is formed in the second effective regions a to f, the complex 40 is cut along a cutting line indicated by a two-dot chain line, for example.

複合体40には、さらに、ガラスシート12の樹脂層14との対向面に、各第2有効領域a〜fに対応して、その外側に、第2有効領域を囲む第2犠牲溝42a〜42fが形成される。なお、第2犠牲溝42a〜42fは、切断線と第2有効領域との間に形成される。
第2犠牲溝42a〜42fは、有効領域の中に設定された第2有効領域に対応する以外は、基本的に、犠牲溝16と同様である。
すなわち、本発明における複合体は、同方向に延在する2本の犠牲溝、および、前記2本の犠牲溝の間の有効領域を有し、さらに、前記有効領域の内側の第2有効領域、および、前記有効領域の内側かつ前記第2有効領域の外側の、前記第2有効領域の端部に沿って延在する第2犠牲溝を有することが好ましい。
The composite 40 further has a second sacrificial groove 42a to surround the second effective region on the outer side of the glass sheet 12 facing the resin layer 14 in correspondence with the second effective regions a to f. 42f is formed. The second sacrificial grooves 42a to 42f are formed between the cutting line and the second effective region.
The second sacrificial grooves 42a to 42f are basically the same as the sacrificial groove 16 except that they correspond to the second effective area set in the effective area.
That is, the composite according to the present invention has two sacrificial grooves extending in the same direction, and an effective area between the two sacrificial grooves, and further, a second effective area inside the effective area. And a second sacrificial groove extending along the end of the second effective region inside the effective region and outside the second effective region.

前述のように、樹脂層14は、所定の剛性および厚さを有し、かつ、所定の接着力でガラスシート12に接着されている。また、複合体40を切断線で切断した状態では、元の第2有効領域が、切断された個々の複合体における有効領域となる。さらに、第2有効領域の外側には、第2有効領域の端部に沿って延在する第2犠牲溝が形成される。
従って、切断線(二点鎖線)において複合体40が切断されて、個々の電子デバイスとされた状態でも、この電子デバイスの基板(素子基板)となる、切断されたガラスシート12と樹脂層14とからなる複合体は、有効領域の外側に、犠牲溝を形成してなる、本発明の複合体となる。
そのため、切断時、切断以降の工程、電子デバイスの使用における樹脂層14を凸にしての曲げ変形等に起因して、ガラスシート12の端部やその近傍に割れが生じて、割れが内面方向に伝播しても、犠牲溝(元の第2犠牲溝)において、割れの伝播が抑制され、有効領域(元の第2有効領域)に割れが至ることを抑制できる。
As described above, the resin layer 14 has a predetermined rigidity and thickness, and is bonded to the glass sheet 12 with a predetermined adhesive force. In addition, in a state where the complex 40 is cut along a cutting line, the original second effective region becomes an effective region in each cut complex. Further, a second sacrificial groove extending along the end of the second effective region is formed outside the second effective region.
Therefore, the cut glass sheet 12 and the resin layer 14 that become a substrate (element substrate) of the electronic device even when the composite 40 is cut at the cutting line (two-dot chain line) to form individual electronic devices. Is a composite of the present invention in which a sacrificial groove is formed outside the effective region.
Therefore, at the time of cutting, due to bending deformation with the resin layer 14 protruding in the process after cutting and use of the electronic device, cracking occurs at the end of the glass sheet 12 and the vicinity thereof, and the crack is directed toward the inner surface. Propagation of cracks in the sacrificial grooves (original second sacrificial grooves) is suppressed, and cracks can be prevented from reaching the effective area (original second effective area).

図5に示す複合体40は、各第2有効領域を矩形の犠牲溝で囲んでいる。
しかしながら、本発明の複合体においては、第2有効領域に対応する第2犠牲溝も、少なくとも第2有効領域の1辺に対応して、該辺(端部)に沿って、該辺と同方向に延在して形成されればよい。すなわち、第2犠牲溝は、第2有効領域の端部に沿って延在して、1本以上、有ればよい。第2有効領域の端部に沿って延在する第2犠牲溝が1本以上有れば、切断された複合体の端部やその近傍から生じた割れが、この第2犠牲溝よりも内側に伝播することを防止できる。
また、第2犠牲溝は、必ずしも、第2有効領域の端部(辺)と平行である必要はない。
本発明の複合体においては、第2有効領域に対応する第2犠牲溝も、好ましくは、少なくとも第2有効領域の対向する2辺(対向する一対の辺)に対応して形成する。
例えば、第2有効領域aに形成される素子が、図5中上下方向にのみ曲げ変形される用途に利用される場合には、第2有効領域aに対応して形成される第2犠牲溝42aは、図5中上下方向に延在する、図5中横方向に第2有効領域aを挟んで形成される2本のみとしてもよい。
また、第2有効領域cに形成される素子が、図5中横方向にのみ曲げ変形される用途に利用される場合には、第2有効領域cに対応して形成される第2犠牲溝42cは、図5中横方向に延在する、図5中上下方向に第2有効領域cを挟んで形成される2本のみとしてもよい。
In the composite 40 shown in FIG. 5, each second effective region is surrounded by a rectangular sacrificial groove.
However, in the composite of the present invention, the second sacrificial groove corresponding to the second effective region also corresponds to at least one side of the second effective region along the side (end). It may be formed extending in the direction. That is, the second sacrificial groove only needs to have one or more extending along the end of the second effective region. If there is at least one second sacrificial groove extending along the end of the second effective region, cracks generated from the end of the cut composite or the vicinity thereof are inside the second sacrificial groove. Propagation can be prevented.
Further, the second sacrificial groove is not necessarily parallel to the end (side) of the second effective region.
In the composite of the present invention, the second sacrificial groove corresponding to the second effective region is also preferably formed corresponding to at least two opposing sides (a pair of opposing sides) of the second effective region.
For example, when the element formed in the second effective region a is used for an application in which bending deformation is performed only in the vertical direction in FIG. 5, the second sacrificial groove formed corresponding to the second effective region a. The number 42a may be only two that extend in the vertical direction in FIG. 5 and that are formed across the second effective region a in the horizontal direction in FIG.
Further, when the element formed in the second effective region c is used for an application in which bending deformation is performed only in the lateral direction in FIG. 5, the second sacrificial groove formed corresponding to the second effective region c. The number 42c may be only two that extend in the horizontal direction in FIG. 5 and are formed with the second effective region c sandwiched in the vertical direction in FIG.

本発明の複合体において、第2有効領域が設定され、第2有効領域に対応して第2犠牲溝を形成する場合には、図5に示すように、全ての第2有効領域を矩形の犠牲溝で囲んでもよい。あるいは、全ての第2有効領域で、1つの対向する2辺のみに第2犠牲溝を形成してもよい。あるいは、矩形の第2犠牲溝で囲まれる第2有効領域と、1つの対向する2辺のみに第2犠牲溝を形成された第2有効領域とが、混在してもよい。   In the composite of the present invention, when the second effective area is set and the second sacrificial groove is formed corresponding to the second effective area, all the second effective areas are rectangular as shown in FIG. It may be surrounded by a sacrificial groove. Alternatively, the second sacrificial groove may be formed only on one opposing two sides in all the second effective regions. Alternatively, the second effective region surrounded by the rectangular second sacrificial groove and the second effective region in which the second sacrificial groove is formed only on one opposing two sides may be mixed.

また、本発明の複合体において、第2有効領域が設定された場合には、全ての第2有効領域に対応して第2犠牲溝を形成するのが好ましい。
しかしながら、本発明の複合体は、第2有効領域が設定された場合でも、全く第2犠牲溝を形成しなくてもよく、あるいは、第2犠牲溝が形成された第2有効領域と、第2犠牲溝が形成されない第2有効領域とが、混在してもよい。
In the composite of the present invention, when the second effective region is set, it is preferable to form the second sacrificial grooves corresponding to all the second effective regions.
However, even if the second effective region is set, the composite of the present invention may not form the second sacrificial groove at all, or may include the second effective region in which the second sacrificial groove is formed, The second effective region where the two sacrificial grooves are not formed may be mixed.

さらに、図5に示す例のように、各第2犠牲溝を延長しても、第2犠牲溝が第2有効領域に入らない場合には、犠牲溝16と同様に、第2犠牲溝をガラスシート12の全域に延在して形成してもよい。
すなわち、第2犠牲溝も、犠牲溝16と同様に格子状に形成してもよい。この際には、1本の第2犠牲溝が、複数の第2有効領域に対応する。
Further, as in the example shown in FIG. 5, if the second sacrificial groove does not enter the second effective region even if each second sacrificial groove is extended, the second sacrificial groove is formed similarly to the sacrificial groove 16. The glass sheet 12 may be formed so as to extend over the entire area.
That is, the second sacrificial groove may also be formed in a lattice shape like the sacrificial groove 16. In this case, one second sacrificial groove corresponds to a plurality of second effective regions.

図5に示す、第2犠牲溝を有する複合体40も、樹脂層14に第2ガラスシートを積層、接着して、本発明の積層体としてもよい。
この際には、通常、積層体の状態でガラスシート12の表面に素子を形成する。その後、複合体40(樹脂層14)から第2ガラスシートを剥離する。この剥離の際に、複合体40は、樹脂層14を凸に曲げ変形される。しかしながら、複合体40は、樹脂層14が、所定の剛性および厚さを有し、かつ、所定の接着力でガラスシート12に接着されており、かつ、有効領域の外側に犠牲溝16が形成されるので、ガラスシート12の端部やその近傍に割れが生じて、内面方向に伝播しても、犠牲溝16で割れの伝播が抑制され、有効領域に割れが至ることを抑制できる。なお、この作用効果に関しては、図4に示す積層体50も同様である。
複合体40から第2ガラスシート52を剥離した後、切断線(二点鎖線)で切断され、個々の電子デバイスとされる。ここで、個々の電子デバイスとなった状態でも、前述のように、この電子デバイスの基板は本発明の複合体である。従って、電子デバイスの使用時等に、樹脂層14を凸にして曲げ変形されて、ガラスシート12の端部やその近傍に割れが生じて、割れが内面方向に伝播しても、犠牲溝において、割れの伝播が抑制され、有効領域に割れが至ることを抑制できる。
The composite body 40 having the second sacrificial groove shown in FIG. 5 may also be formed by laminating and bonding a second glass sheet to the resin layer 14.
At this time, the element is usually formed on the surface of the glass sheet 12 in the state of a laminate. Thereafter, the second glass sheet is peeled from the composite 40 (resin layer 14). During the peeling, the composite 40 is deformed by bending the resin layer 14 into a convex shape. However, in the composite 40, the resin layer 14 has a predetermined rigidity and thickness, is bonded to the glass sheet 12 with a predetermined adhesive force, and the sacrificial groove 16 is formed outside the effective region. Therefore, even if a crack occurs in the end portion of the glass sheet 12 or in the vicinity thereof and propagates in the inner surface direction, the propagation of the crack is suppressed by the sacrificial groove 16, and the crack can be suppressed from reaching the effective region. In addition, regarding this effect, the laminated body 50 shown in FIG. 4 is also the same.
After peeling the 2nd glass sheet 52 from the composite 40, it is cut | disconnected by a cutting line (two-dot chain line), and it is set as each electronic device. Here, even in the state of individual electronic devices, as described above, the substrate of this electronic device is the composite of the present invention. Therefore, when the electronic device is used, even if the resin layer 14 is bent and deformed to cause a crack at the end of the glass sheet 12 or in the vicinity thereof, even if the crack propagates toward the inner surface, The propagation of cracks can be suppressed, and cracks in the effective area can be suppressed.

本発明の電子デバイスは、このような本発明の複合体や積層体のガラスシート12に、素子を形成したものである。
本発明の電子デバイスとしては、LCD、OLED、PV、薄膜二次電池、電子ペーパ等が例示される。
The electronic device of the present invention is obtained by forming an element on the glass sheet 12 of the composite or laminate of the present invention.
Examples of the electronic device of the present invention include LCD, OLED, PV, thin film secondary battery, and electronic paper.

以下の電子デバイスは、複合体10を例に説明するが、複合体40や積層体50でも、同様である。
なお、複合体40では、各第2有効領域a〜fに、以下に示す素子が形成される。また、前述のように、複合体10および積層体50でも、通常、これをマザーボードとして、電子デバイスとなる素子が、有効領域内に、複数又は単数、互いに独立して形成される。
The following electronic device will be described by taking the composite 10 as an example, but the same applies to the composite 40 and the laminate 50.
In the composite 40, the following elements are formed in the second effective regions a to f. Further, as described above, in the composite 10 and the laminated body 50 as well, usually, using this as a mother board, a plurality of or a single element that is an electronic device is formed independently of each other in the effective region.

以下の電子デバイスにおいて、各素子(素子を構成する各層(各膜)など)は、公知の方法で形成すればよい。   In the following electronic device, each element (each layer (each film) constituting the element) may be formed by a known method.

本発明の電子デバイスとしてのLCD(液晶ディスプレイ)は、TFT基板、CF基板および液晶層などを有して構成される。
TFT基板は、複合体10のガラスシート12に、TFT素子(薄膜トランジスタ素子)等をパターン形成したものである。CF基板は、別の複合体10のガラスシート12に、カラーフィルター素子をパターン形成したものである。液晶層は、TFT基板とCF基板との間に形成される。
An LCD (liquid crystal display) as an electronic device of the present invention includes a TFT substrate, a CF substrate, a liquid crystal layer, and the like.
The TFT substrate is obtained by patterning TFT elements (thin film transistor elements) on the glass sheet 12 of the composite 10. The CF substrate is obtained by patterning color filter elements on a glass sheet 12 of another composite 10. The liquid crystal layer is formed between the TFT substrate and the CF substrate.

本発明の電子デバイスとしてのOLED(有機ELパネル)は、一例として、複合体10、透明電極、有機層、反射電極および封止板などで構成される。
複合体10のガラスシート12に透明電極が形成され、その上に有機層が形成され、その上に反射電極が形成され、その上に、反射電極が形成されて、ボトムエミッション型の有機EL素子が構成される。有機層は、少なくとも発光層を含み、必要に応じて正孔注入層、正孔輸送層、電子輸送層、電子注入層を含む。例えば、有機層は、陽極側から、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層を、この順で含む。なお、有機EL素子は、トップエミッション型でもよい。
An OLED (organic EL panel) as an electronic device of the present invention includes, as an example, a composite 10, a transparent electrode, an organic layer, a reflective electrode, a sealing plate, and the like.
A transparent electrode is formed on the glass sheet 12 of the composite 10, an organic layer is formed thereon, a reflective electrode is formed thereon, a reflective electrode is formed thereon, and a bottom emission type organic EL element Is configured. The organic layer includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer as necessary. For example, the organic layer includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side. The organic EL element may be a top emission type.

本発明の電子デバイスとしてのPV(太陽電池)は、一例として、複合体10、透明電極、シリコン層、反射電極、および封止板などで構成される。
複合体10のガラスシート12に透明電極が形成され、その上にシリコン層が形成され、その上に反射電極が形成されて、シリコン型の太陽電池素子が構成され、反射電極の上に封止板が配置される。シリコン層は、例えば、陽極側から、p層(p型にドーピングされた層)、i層(光吸収層)、n層(n型にドーピングされた層)などで構成される。
なお、PVは、化合物型、色素増感型、量子ドット型などでもよい。
As an example, the PV (solar cell) as the electronic device of the present invention includes the composite 10, a transparent electrode, a silicon layer, a reflective electrode, a sealing plate, and the like.
A transparent electrode is formed on the glass sheet 12 of the composite 10, a silicon layer is formed thereon, a reflective electrode is formed thereon, and a silicon-type solar cell element is formed and sealed on the reflective electrode A board is placed. The silicon layer includes, for example, a p layer (p-type doped layer), an i layer (light absorption layer), an n layer (n-type doped layer), and the like from the anode side.
The PV may be a compound type, a dye sensitized type, a quantum dot type, or the like.

本発明の電子デバイスとしての薄膜二次電池は、一例として、複合体10、透明電極、電解質層、集電層、封止層、および封止板などで構成される。
複合体10のガラスシート12に透明電極が形成され、その上に電解質層が形成され、その上に集電層が形成され、その上に封止層が形成されて、薄膜2次電池素子が構成され、封止層の上に封止板が配置される。
なお、この薄膜二次電池素子は、リチウムイオン型であるが、ニッケル水素型、ポリマー型、セラミックス電解質型などでもよい。
As an example, the thin film secondary battery as the electronic device of the present invention includes the composite 10, a transparent electrode, an electrolyte layer, a current collecting layer, a sealing layer, a sealing plate, and the like.
A transparent electrode is formed on the glass sheet 12 of the composite 10, an electrolyte layer is formed thereon, a current collecting layer is formed thereon, a sealing layer is formed thereon, and a thin film secondary battery element is formed It is comprised and a sealing board is arrange | positioned on a sealing layer.
The thin film secondary battery element is a lithium ion type, but may be a nickel hydrogen type, a polymer type, a ceramic electrolyte type, or the like.

本発明の電子デバイスとしての電子ペーパは、一例として、複合体10、TFT層、電気工学媒体(例えばマイクロカプセル)を含む層、透明電極、および前面板などで構成される。
複合体10のガラスシート12にTFT層が形成され、その上に電気工学媒体を含む層が形成され、その上に、透明電極が形成されて電子ペーパ素子が構成され、透明電極の上に前面板が配置される。
電子ペーパ素子は、マイクロカプセル型、インプレーン型、ツイストボール型、粒子移動型、電子噴流型、ポリマーネットワーク型のいずれでもよい。
The electronic paper as the electronic device of the present invention includes, as an example, the composite 10, the TFT layer, a layer containing an electrical engineering medium (for example, microcapsule), a transparent electrode, a front plate, and the like.
A TFT layer is formed on the glass sheet 12 of the composite 10, a layer containing an electrical engineering medium is formed thereon, a transparent electrode is formed thereon, and an electronic paper element is formed. A face plate is arranged.
The electronic paper element may be any of a microcapsule type, an in-plane type, a twist ball type, a particle movement type, an electronic jet type, and a polymer network type.

以上、本発明の複合体、積層体および電子デバイス、ならびに、その製造方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行っても良いのは、もちろんである。   As mentioned above, although the composite_body | complex, laminated body, electronic device, and its manufacturing method of this invention were demonstrated in detail, this invention is not limited to the above-mentioned example, In the range which does not deviate from the summary of this invention, various Of course, improvements and changes may be made.

以下、本発明の具体的実施例を示し、本発明を、より詳細に説明する。   Hereinafter, specific examples of the present invention will be shown, and the present invention will be described in more detail.

[実施例1]
ガラスシートとして、厚さ100μm、150×100mmの無アルカリガラス板(旭硝子社製 AN100)を用意した。
まず、前処理として、ガラスシートを純水洗浄およびUV洗浄で清浄化した後、接着力を向上させるため、イソプロピルアルコールを溶媒とするアミノプロピルトリメトキシシラン(KBM903)0.1重量%溶液をスピンコート(2000rpmで10秒)により塗布し、80℃で10分間乾燥させて、ガラスシートのシランカップリング処理を行った。
前処理を行ったガラスシートの一面の、長辺の内側5mmの位置に、幅1μm、深さ10μmの長辺に平行な犠牲溝を形成した。なお、犠牲溝は、CO2レーザによって形成した。
[Example 1]
As the glass sheet, a non-alkali glass plate (AN100 manufactured by Asahi Glass Co., Ltd.) having a thickness of 100 μm and 150 × 100 mm was prepared.
First, as a pretreatment, a glass sheet is cleaned with pure water cleaning and UV cleaning, and then a 0.1 wt% solution of aminopropyltrimethoxysilane (KBM903) in isopropyl alcohol as a solvent is spun in order to improve the adhesive strength. The glass sheet was applied by coating (10 seconds at 2000 rpm) and dried at 80 ° C. for 10 minutes to perform silane coupling treatment of the glass sheet.
A sacrificial groove parallel to the long side having a width of 1 μm and a depth of 10 μm was formed at a position 5 mm inside the long side of one surface of the pretreated glass sheet. The sacrificial groove was formed by a CO 2 laser.

他方、以下の方法で、塗布用のポリアミック酸溶液を調製した。
パラフェニレンジアミン(10.8g、0.1mol)をN,N−ジメチルアセトアミド(198.6g)に溶解させ、室温下で攪拌した。これに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)(29.4g、0.1mol)を1分間で加え、室温下で2時間攪拌し、下記式(2−1)および/または式(2−2)で表される繰り返し単位を有するポリアミック酸を含む固形分濃度20質量%のポリアミック酸溶液を得た。
On the other hand, a polyamic acid solution for coating was prepared by the following method.
Paraphenylenediamine (10.8 g, 0.1 mol) was dissolved in N, N-dimethylacetamide (198.6 g) and stirred at room temperature. 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) (29.4 g, 0.1 mol) was added to this over 1 minute, and the mixture was stirred at room temperature for 2 hours. A polyamic acid solution having a solid content concentration of 20% by mass containing a polyamic acid having a repeating unit represented by 1) and / or formula (2-2) was obtained.

Figure 2015174216
Figure 2015174216

このポリアミック酸溶液を、スピンコート法(2000rpm)によって、ガラスシートの犠牲溝の形成面に塗布して、塗膜を形成した。その後、60℃で10分、大気中で加熱し、さらに、120℃で10分、大気中で加熱することで、塗膜を乾燥し、ガラスシートの表面に、ポリアミック酸の膜を形成した。
さらに、350℃で1時間、大気中で加熱することにより、ポリアミック酸をイミド化して、犠牲溝を形成したガラスシートの表面に、ポリイミドからなる厚さ25μmの樹脂層を有する、複合体を作製した。
This polyamic acid solution was applied to the formation surface of the sacrificial groove of the glass sheet by a spin coating method (2000 rpm) to form a coating film. Then, the coating film was dried by heating in the air at 60 ° C. for 10 minutes and further in the air at 120 ° C. for 10 minutes, and a polyamic acid film was formed on the surface of the glass sheet.
Further, by heating in the atmosphere at 350 ° C. for 1 hour, a composite having a 25 μm thick resin layer made of polyimide is produced on the surface of the glass sheet on which the polyamic acid is imidized to form the sacrificial grooves. did.

作製した複合体について、万能試験機(島津製作所製)によって樹脂層の接着力(180°ピール剥離強度)を測定した。その結果、樹脂層の接着力は12N/25mmであった。
また、JIS K 7127(1999)に準拠して樹脂層のヤング率(ガラスシートとの界面からその法線方向の距離が0〜0.5μmの領域のヤング率)を測定した。その結果、樹脂層14のヤング率は5GPaであった。なお、ヤング率は、作製した複合体から樹脂層を引き剥がして測定した。複合体から樹脂層を引き剥がせない場合には、フッ酸によってガラスシートを溶かして、測定用の樹脂層を得た。
About the produced composite_body | complex, the adhesive force (180 degree peel peel strength) of the resin layer was measured with the universal testing machine (made by Shimadzu Corporation). As a result, the adhesive strength of the resin layer was 12 N / 25 mm.
Further, the Young's modulus of the resin layer (Young's modulus in a region where the distance in the normal direction from the interface with the glass sheet is 0 to 0.5 μm) was measured according to JIS K 7127 (1999). As a result, the Young's modulus of the resin layer 14 was 5 GPa. The Young's modulus was measured by peeling off the resin layer from the produced composite. When the resin layer could not be peeled from the composite, the glass sheet was melted with hydrofluoric acid to obtain a measurement resin layer.

このようにして作製した複合体の端面をサンドペーパで研磨した後、ガラスシートの端部に割れが生じるまで、樹脂層側を凸にして犠牲溝の法線方向に複合体を2点曲げした。
割れが生じた後、犠牲溝よりも内側に5mm以上伝播した割れを確認した。その結果、犠牲溝よりも内面側に5mm以上伝播した割れは、認められなかった(破損無し)。
After polishing the end face of the composite thus produced with sand paper, the composite was bent at two points in the normal direction of the sacrificial groove with the resin layer side convex until the end of the glass sheet was cracked.
After the crack was generated, a crack that propagated 5 mm or more inward from the sacrificial groove was confirmed. As a result, the crack which propagated 5 mm or more to the inner surface side from the sacrificial groove was not recognized (no damage).

[実施例2]
樹脂層を、PES(ポリエーテルスルホン酸)からなる厚さ20μmのものに変えた以外は、実施例1と同様にして、複合体を製造した。
PESからなる樹脂層の形成は、以下のように行った。まず、PES(住友化学社製、5003P)を20質量%でN−メチルピロリドンに溶解させて、PES溶液を作製した。このPES溶液をスピンコート法(2000rpm)によって、ガラスシートに塗布して、塗膜を形成した。その後、130℃で1時間、大気中で加熱することで、塗膜を乾燥して、PESの膜を形成した。なお、本例では、ガラスシートのシランカップリング処理は行わなかった。
複合体を作製した時点で、実施例1と同様に樹脂層の接着力およびヤング率を測定した。その結果、接着力は5.4N/25mm、ヤング率は2.4GPaであった。
実施例1と同様に複合体を2点曲げして、割れを確認したところ、犠牲溝から5mm以上伝播した割れは、認められなかった(破損無し)。
[Example 2]
A composite was produced in the same manner as in Example 1 except that the resin layer was changed to PES (polyether sulfonic acid) and having a thickness of 20 μm.
The resin layer made of PES was formed as follows. First, PES (Sumitomo Chemical Co., Ltd., 5003P) was dissolved in N-methylpyrrolidone at 20% by mass to prepare a PES solution. This PES solution was applied to a glass sheet by a spin coating method (2000 rpm) to form a coating film. Then, the coating film was dried by heating in the air at 130 ° C. for 1 hour to form a PES film. In this example, the glass sheet was not subjected to silane coupling treatment.
When the composite was produced, the adhesive strength and Young's modulus of the resin layer were measured in the same manner as in Example 1. As a result, the adhesive strength was 5.4 N / 25 mm, and the Young's modulus was 2.4 GPa.
When the composite was bent at two points in the same manner as in Example 1 and cracks were confirmed, no cracks propagated 5 mm or more from the sacrificial grooves were found (no damage).

[比較例1]
ポリアミック酸溶液の固形分濃度を10質量%として、樹脂層の厚さを0.5μmとした以外は、実施例1と同様にして、複合体を製造した。
複合体を作製した時点で、実施例1と同様に樹脂層の接着力およびヤング率を測定した。その結果、接着力は10N/25mm以上を示したが、樹脂層が裂けてしまったため、正確な値は測定できなかった。また、ヤング率は5GPaであった。
実施例1と同様に複合体を2点曲げして、割れを確認したところ、犠牲溝から5mm以上伝播した割れが認められた(破損有り)。
[Comparative Example 1]
A composite was manufactured in the same manner as in Example 1 except that the solid content concentration of the polyamic acid solution was 10% by mass and the thickness of the resin layer was 0.5 μm.
When the composite was produced, the adhesive strength and Young's modulus of the resin layer were measured in the same manner as in Example 1. As a result, the adhesive strength was 10 N / 25 mm or more. However, since the resin layer was torn, an accurate value could not be measured. The Young's modulus was 5 GPa.
When the composite was bent at two points in the same manner as in Example 1 and cracks were confirmed, cracks propagated 5 mm or more from the sacrificial grooves were observed (damaged).

[比較例2]
樹脂層を、シリコーン樹脂からなる厚さ16μmのものに変えた以外は、実施例1と同様にして、複合体を製造した。
シリコーン樹脂からなる樹脂層の形成は、以下のように行った。無溶剤付加反応型剥離紙用シリコーン(信越シリコーン社製、KNS−320A。オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンとの混合物)100質量部と白金系触媒(信越シリコーン株式会社製 CAT−PL−56)2質量部との混合物を、スピンコート法(2000rpm)によって、ガラスシートに塗布して、塗膜を形成した。その後、180℃で30分、大気中で加熱することで、塗膜を乾燥して、シリコーン樹脂の膜を形成した。なお、本例では、ガラスシートのシランカップリング処理は行わなかった。
複合体を作製した時点で、実施例1と同様に樹脂層の接着力およびヤング率を測定した。その結果、接着力は2.7N/25mm、ヤング率は0.003GPaであった。
実施例1と同様に複合体を2点曲げして、割れを確認したところ、犠牲溝から5mm以上伝播した割れが認められた(破損有り)。また、樹脂層の伸びも生じた。
[Comparative Example 2]
A composite was produced in the same manner as in Example 1 except that the resin layer was changed to a silicone resin having a thickness of 16 μm.
Formation of the resin layer made of silicone resin was performed as follows. Solvent-free addition reaction type silicone for release paper (Shin-Etsu Silicone, KNS-320A. Mixture of organoalkenylpolysiloxane and organohydrogenpolysiloxane) 100 parts by mass and platinum-based catalyst (Shin-Etsu Silicone CAT-PL- 56) A mixture with 2 parts by mass was applied to a glass sheet by a spin coating method (2000 rpm) to form a coating film. Thereafter, the coating film was dried by heating in the atmosphere at 180 ° C. for 30 minutes to form a silicone resin film. In this example, the glass sheet was not subjected to silane coupling treatment.
When the composite was produced, the adhesive strength and Young's modulus of the resin layer were measured in the same manner as in Example 1. As a result, the adhesive strength was 2.7 N / 25 mm, and the Young's modulus was 0.003 GPa.
When the composite was bent at two points in the same manner as in Example 1 and cracks were confirmed, cracks propagated 5 mm or more from the sacrificial grooves were observed (damaged). Moreover, the elongation of the resin layer also occurred.

[比較例3]
ガラスシートのシランカップリング処理は行わなかった以外は、実施例1と同様にして、複合体を製造した。
複合体を作製した時点で、実施例1と同様に樹脂層の接着力およびヤング率を測定した。その結果、接着力は0.1N/25mm、ヤング率は5MPaであった。
実施例1と同様に複合体を2点曲げして、割れを確認したところ、犠牲溝から5mm以上伝播した割れが認められた(破損有り)。また、樹脂層の浮きも生じた。
[Comparative Example 3]
A composite was produced in the same manner as in Example 1 except that the glass sheet was not subjected to silane coupling treatment.
When the composite was produced, the adhesive strength and Young's modulus of the resin layer were measured in the same manner as in Example 1. As a result, the adhesive strength was 0.1 N / 25 mm, and the Young's modulus was 5 MPa.
When the composite was bent at two points in the same manner as in Example 1 and cracks were confirmed, cracks propagated 5 mm or more from the sacrificial grooves were observed (damaged). In addition, the resin layer also floated.

[比較例4]
樹脂層を形成しないガラスシートを実施例1と同様に2点曲げして、割れを確認した。
その結果、犠牲溝から5mm以上伝播した割れが認められた(破損有り)。また、ガラス破片の飛散も生じた。
[Comparative Example 4]
A glass sheet on which no resin layer was formed was bent at two points in the same manner as in Example 1 to confirm cracking.
As a result, a crack propagated 5 mm or more from the sacrificial groove was observed (with damage). Moreover, scattering of glass fragments also occurred.

[比較例5]
ガラスシートに犠牲溝を形成しない以外は、実施例1と同様にして、複合体を製造した。従って、樹脂層の接着力は12N/25mm、ヤング率は5MPaである。
実施例1と同様に複合体を2点曲げして、割れを確認したところ、ガラスシートの端部から発生し、もう一方の端部まで伝播した割れが認められた。
以上の結果を、下記の表にまとめて示す。
[Comparative Example 5]
A composite was produced in the same manner as in Example 1 except that no sacrificial groove was formed on the glass sheet. Therefore, the adhesive strength of the resin layer is 12 N / 25 mm, and the Young's modulus is 5 MPa.
When the composite was bent at two points in the same manner as in Example 1 and cracks were confirmed, cracks that occurred from the end of the glass sheet and propagated to the other end were observed.
The above results are summarized in the following table.

Figure 2015174216
Figure 2015174216

上記実施例に示されるように、犠牲溝を有し、さらに、樹脂層の厚さが1〜100μmで、接着力(180°ピール剥離強度)が1N/25mm以上、ヤング率が100MPa以上である複合体によれば、2点曲げによってガラスシートの端部に割れが生じても、この割れので伝播を犠牲溝で抑制(縁切り)できるので、犠牲溝の内側に5mm以上伝播する割れが無い、高品質な複合体を製造できた。
これに対して、樹脂層が薄い比較例1、樹脂層のヤング率が低い比較例2、樹脂層の接着力が低い比較例3、および、樹脂層を有さない比較例4では、2点曲げによって生じた割れが伝播して、犠牲溝の内側に5mm以上の割れが生じた。また、犠牲溝を有さない比較例5では、割れが生じると、割れの進展が止まることは無く、ガラスシートの一方の端部から他方の端部まで伝播する割れが生じた。さらに、樹脂層が薄い比較例1では、樹脂層が裂け、樹脂層のヤング率が低い比較例2では、樹脂層が伸び、樹脂層の接着力が低い比較例3では、樹脂層が浮き、樹脂層を有さない比較例4では、ガラスの破片が飛散した。
以上の結果より、本発明の効果は明らかである。
As shown in the above examples, it has a sacrificial groove, has a resin layer thickness of 1 to 100 μm, an adhesive strength (180 ° peel strength) of 1 N / 25 mm or more, and a Young's modulus of 100 MPa or more. According to the composite, even if a crack occurs at the end of the glass sheet by two-point bending, since this crack can suppress propagation (edge cutting) in the sacrificial groove, there is no crack propagating 5 mm or more inside the sacrificial groove. A high quality composite could be produced.
In contrast, Comparative Example 1 in which the resin layer is thin, Comparative Example 2 in which the Young's modulus of the resin layer is low, Comparative Example 3 in which the adhesive strength of the resin layer is low, and Comparative Example 4 having no resin layer are two points. Cracks generated by bending propagated and cracks of 5 mm or more were generated inside the sacrificial grooves. Moreover, in the comparative example 5 which does not have a sacrificial groove | channel, when a crack generate | occur | produces, the progress of a crack did not stop and the crack which propagated from one edge part of the glass sheet to the other edge part occurred. Furthermore, in Comparative Example 1 in which the resin layer is thin, the resin layer is torn, in Comparative Example 2 in which the Young's modulus of the resin layer is low, the resin layer is stretched, and in Comparative Example 3 in which the adhesive strength of the resin layer is low, the resin layer is floated, In Comparative Example 4 having no resin layer, glass fragments were scattered.
From the above results, the effects of the present invention are clear.

本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は2014年5月14日出願の日本特許出願(特願2014−100711)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on May 14, 2014 (Japanese Patent Application No. 2014-1000071), the contents of which are incorporated herein by reference.

各種の電子デバイスの製造等に好適に利用可能である。   The present invention can be suitably used for manufacturing various electronic devices.

10,10a,10b,10c,33,40 複合体
12,35 ガラスシート
14,36 樹脂層
16,20,24a,24b,26a,26b,38 犠牲溝
30 被処理基材
30R 被処理基材ロール
32 レジスト層形成装置
34 処理済基材
34R 処理済基材ロール
50 積層体
52 第2ガラスシート
42a,42b,42c,42d,42e,42f 第2犠牲溝
A 端部
10, 10a, 10b, 10c, 33, 40 Composite 12, 35 Glass sheet 14, 36 Resin layer 16, 20, 24a, 24b, 26a, 26b, 38 Sacrificial groove 30 Substrate 30R Substrate roll 32 Resist layer forming apparatus 34 treated substrate 34R treated substrate roll 50 laminated body 52 second glass sheet 42a, 42b, 42c, 42d, 42e, 42f second sacrificial groove A end

Claims (9)

ガラスシートと、前記ガラスシートの一方の面に接着された樹脂層とを備えた複合体であって、
前記樹脂層は、厚さが1〜100μmであり、前記ガラスシートとの界面からその法線方向に0〜0.5μmの領域におけるヤング率が100MPa以上であり、かつ、前記ガラスシートに対する180°ピール剥離強度が1N/25mm以上であり、さらに、
前記ガラスシートは、少なくとも前記樹脂層との接着面に、前記ガラスシートの端部に沿って延在する犠牲溝を有することを特徴とする複合体。
A composite comprising a glass sheet and a resin layer bonded to one surface of the glass sheet,
The resin layer has a thickness of 1 to 100 μm, a Young's modulus in a region of 0 to 0.5 μm in the normal direction from the interface with the glass sheet is 100 MPa or more, and 180 ° with respect to the glass sheet. The peel peel strength is 1 N / 25 mm or more, and
The said glass sheet has a sacrifice groove | channel extended along the edge part of the said glass sheet at least in the adhesive surface with the said resin layer, The composite_body | complex characterized by the above-mentioned.
前記ガラスシートは、同方向に延在する2本の前記犠牲溝、および、前記2本の犠牲溝の間の有効領域を有し、
さらに、前記有効領域の内側の第2有効領域、および、前記有効領域の内側かつ前記第2有効領域の外側の、前記第2有効領域の端部に沿って延在する第2犠牲溝を有する請求項1に記載の複合体。
The glass sheet has two sacrificial grooves extending in the same direction, and an effective area between the two sacrificial grooves,
And a second sacrificial groove extending along an end of the second effective region inside the effective region and outside the second effective region. The composite according to claim 1.
前記犠牲溝として、前記ガラスシートを貫通しない溝を有する請求項1または2に記載の複合体。   The composite according to claim 1, wherein the sacrificial groove has a groove that does not penetrate the glass sheet. 前記犠牲溝として、前記ガラスシートを貫通する貫通溝を有する請求項1〜3のいずれか1項に記載の複合体。   The composite according to any one of claims 1 to 3, wherein the sacrificial groove has a through groove that penetrates the glass sheet. 請求項1〜4のいずれか1項に記載の複合体の樹脂層に、第2ガラスシートを接着した積層体。   The laminated body which adhere | attached the 2nd glass sheet on the resin layer of the composite_body | complex of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の複合体のガラスシート、または、請求項5に記載の積層体のガラスシートの表面に、素子を有する電子デバイス。   The electronic device which has an element on the surface of the glass sheet of the composite_body | complex of any one of Claims 1-4, or the glass sheet of the laminated body of Claim 5. ガラスシートの端部に沿って延在する犠牲溝を形成し、
前記ガラスシートの犠牲溝を形成した面に、前記ガラスシートとの界面からその法線方向の距離が0〜0.5μmの領域のヤング率が100MPa以上で、厚さが1〜100μmの樹脂層を、180°ピール剥離強度で1N/25mm以上の接着力で形成することを特徴とする複合体の製造方法。
Forming a sacrificial groove extending along the edge of the glass sheet;
A resin layer having a Young's modulus of 100 MPa or more and a thickness of 1 to 100 μm in a region where the distance in the normal direction from the interface with the glass sheet is 0 to 0.5 μm on the surface on which the sacrificial grooves of the glass sheet are formed Is formed with an adhesive strength of 1 N / 25 mm or more at 180 ° peel peel strength.
請求項7に記載の製造方法で得られた複合体の樹脂層に、第2ガラスシートを積層して接着する積層体の製造方法。   The manufacturing method of the laminated body which laminate | stacks and adhere | attaches a 2nd glass sheet on the resin layer of the composite_body | complex obtained with the manufacturing method of Claim 7. 請求項7に記載の製造方法で得られた複合体のガラスシート、または、請求項8に記載の製造方法で得られた積層体のガラスシートに、素子を形成する電子デバイスの製造方法。   The manufacturing method of the electronic device which forms an element in the glass sheet of the composite_body | complex obtained by the manufacturing method of Claim 7, or the laminated glass sheet obtained by the manufacturing method of Claim 8.
JP2016519181A 2014-05-14 2015-04-17 Composite, laminate, electronic device, and method for manufacturing them Active JP6515925B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014100711 2014-05-14
JP2014100711 2014-05-14
PCT/JP2015/061916 WO2015174216A1 (en) 2014-05-14 2015-04-17 Composite, laminate, electronic device, and manufacturing methods therefor

Publications (2)

Publication Number Publication Date
JPWO2015174216A1 true JPWO2015174216A1 (en) 2017-04-20
JP6515925B2 JP6515925B2 (en) 2019-05-22

Family

ID=54479760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016519181A Active JP6515925B2 (en) 2014-05-14 2015-04-17 Composite, laminate, electronic device, and method for manufacturing them

Country Status (5)

Country Link
JP (1) JP6515925B2 (en)
KR (1) KR20170008743A (en)
CN (1) CN106457776B (en)
TW (1) TWI663051B (en)
WO (1) WO2015174216A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591040B (en) 2012-10-22 2017-07-11 康寧公司 Glass webs and methods of splicing
JP6218038B2 (en) * 2014-05-26 2017-10-25 日本電気硝子株式会社 Laminate including glass film, method for producing laminate including glass film, and method for producing glass article
JP6597361B2 (en) * 2016-02-12 2019-10-30 三菱ケミカル株式会社 Manufacturing method of substrate for electronic device
KR102345069B1 (en) 2016-10-26 2021-12-29 닛토덴코 가부시키가이샤 Glass roll with resin film
JPWO2018079545A1 (en) 2016-10-26 2019-09-19 日東電工株式会社 Glass film-resin composite
JP6958476B2 (en) * 2018-05-11 2021-11-02 日本電気硝子株式会社 Manufacturing method of glass laminate and manufacturing method of electronic device
KR102140979B1 (en) * 2018-09-20 2020-08-05 (주)유티아이 Improved Sheet Like Process for rectangular shape processing and cell-cutted sheet glass for rectangular shape processing thereby
JP2023025534A (en) * 2021-08-10 2023-02-22 日東電工株式会社 Method for manufacturing laminate with segmentalized glass member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816857Y2 (en) * 1978-02-14 1983-04-05 日本板硝子株式会社 transparent composite board
JPS6370332U (en) * 1986-10-27 1988-05-11
US4774143A (en) * 1985-12-31 1988-09-27 General Electric Company Impact resistant glass
JP2000062093A (en) * 1998-07-15 2000-02-29 Agfa Gevaert Nv Laminate including glass layer having crack line
JP2007277043A (en) * 2006-04-07 2007-10-25 Asahi Techno Glass Corp Cutting method of glass substrate and optical filter
JP2009280447A (en) * 2008-05-23 2009-12-03 Mitsuboshi Diamond Industrial Co Ltd Method for cutting stacked body
WO2012166343A2 (en) * 2011-05-27 2012-12-06 Corning Incorporated Glass-plastic laminate device, processing line and methods therefor
JP5117629B1 (en) * 2012-06-28 2013-01-16 古河電気工業株式会社 Adhesive tape for wafer processing
JP2014065633A (en) * 2012-09-26 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd Method for dividing laminated ceramic substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166169A (en) * 2008-01-15 2009-07-30 Mitsuboshi Diamond Industrial Co Ltd Cutter device
TWI551560B (en) * 2010-11-30 2016-10-01 康寧公司 Glass ribbons, methods of splicing glass ribbons, and methods of preparing coated glass ribbons for splicing
JP5944155B2 (en) * 2011-12-12 2016-07-05 日東電工株式会社 LAMINATED SHEET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING LAMINATED SHEET
JP6090325B2 (en) * 2012-08-21 2017-03-08 旭硝子株式会社 Composite sheet cutting method, glass sheet cutting method, composite sheet cutting piece

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816857Y2 (en) * 1978-02-14 1983-04-05 日本板硝子株式会社 transparent composite board
US4774143A (en) * 1985-12-31 1988-09-27 General Electric Company Impact resistant glass
JPS6370332U (en) * 1986-10-27 1988-05-11
JP2000062093A (en) * 1998-07-15 2000-02-29 Agfa Gevaert Nv Laminate including glass layer having crack line
JP2002520205A (en) * 1998-07-15 2002-07-09 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Sectioned glass laminate
JP2007277043A (en) * 2006-04-07 2007-10-25 Asahi Techno Glass Corp Cutting method of glass substrate and optical filter
JP2009280447A (en) * 2008-05-23 2009-12-03 Mitsuboshi Diamond Industrial Co Ltd Method for cutting stacked body
WO2012166343A2 (en) * 2011-05-27 2012-12-06 Corning Incorporated Glass-plastic laminate device, processing line and methods therefor
JP5117629B1 (en) * 2012-06-28 2013-01-16 古河電気工業株式会社 Adhesive tape for wafer processing
JP2014065633A (en) * 2012-09-26 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd Method for dividing laminated ceramic substrate

Also Published As

Publication number Publication date
JP6515925B2 (en) 2019-05-22
TWI663051B (en) 2019-06-21
KR20170008743A (en) 2017-01-24
CN106457776B (en) 2018-09-28
CN106457776A (en) 2017-02-22
WO2015174216A1 (en) 2015-11-19
TW201601901A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP6515925B2 (en) Composite, laminate, electronic device, and method for manufacturing them
JP6299405B2 (en) Method for producing composite and method for producing laminate
TWI807441B (en) Laminated body, method of manufacturing electronic device, method of manufacturing laminated body
JP2012051186A (en) Glass-resin laminate, glass roll wound with the laminate and method of manufacturing glass roll
TW201527088A (en) Manufacturing method of glass laminated body and manufacturing method of electronic device
TWI695820B (en) Method for manufacturing carrier substrate, laminate and electronic device
JP2016035832A (en) Method of manufacturing electronic device, method of manufacturing glass laminate
JP6520939B2 (en) Complex
WO2015098888A1 (en) Glass laminate body, and method for manufacturing electronic device
WO2014192560A1 (en) Resin-layer-equipped support substrate and method for producing same, glass laminate and method for producing same, and method for producing electronic device
JP2013014135A (en) Manufacturing method of laminate, laminate, and electronic device
WO2018092688A1 (en) Laminated substrate and method for manufacturing electronic device
TW201330123A (en) Method for manufacturing electronic device with adherent resin layer
US10246374B2 (en) Method for manufacturing glass film laminate, glass film laminate, and method for manufacturing electronic device
WO2015166880A1 (en) Glass laminate, glass substrate with resin layer, support base material with resin layer
JP2014205327A (en) Composite sheet and electronic device
TW201704020A (en) Glass lamination body and manufacturing method of electronic device easily stripping the glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6515925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250