WO2015098888A1 - Glass laminate body, and method for manufacturing electronic device - Google Patents

Glass laminate body, and method for manufacturing electronic device Download PDF

Info

Publication number
WO2015098888A1
WO2015098888A1 PCT/JP2014/083997 JP2014083997W WO2015098888A1 WO 2015098888 A1 WO2015098888 A1 WO 2015098888A1 JP 2014083997 W JP2014083997 W JP 2014083997W WO 2015098888 A1 WO2015098888 A1 WO 2015098888A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
polyimide resin
glass substrate
glass
substrate
Prior art date
Application number
PCT/JP2014/083997
Other languages
French (fr)
Japanese (ja)
Inventor
純一 ▲角▼田
研一 江畑
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480071141.0A priority Critical patent/CN105848886B/en
Priority to JP2015554905A priority patent/JPWO2015098888A1/en
Priority to KR1020167015200A priority patent/KR20160102172A/en
Publication of WO2015098888A1 publication Critical patent/WO2015098888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a glass laminate, and more particularly, to a glass laminate laminated such that polyimide resin layers are in contact with each other. Moreover, this invention relates to the manufacturing method of an electronic device using this glass laminated body.
  • devices such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
  • PV solar cells
  • LCD liquid crystal panels
  • OLED organic EL panels
  • a method of forming a member for an electronic device for example, a thin film transistor
  • a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
  • this method for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials.
  • the reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner.
  • the reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
  • the glass laminate including the glass substrate described in Patent Document 1 higher heat resistance has recently been required. As the electronic device members formed on the glass substrate of the glass laminate become more functional and complex, the temperature at which the electronic device members are formed becomes even higher, and the time exposed to the high temperatures also increases. It often takes a long time.
  • the glass laminate described in Patent Document 1 can withstand treatment at 350 ° C. for 1 hour in the air. However, according to the study by the present inventors, when the glass laminate produced with reference to Patent Document 1 is treated at 400 ° C. for 1 hour, the glass substrate is peeled from the surface of the silicone resin layer.
  • the glass substrate is not peeled off from the surface of the silicone resin layer, and a part of the glass substrate is destroyed, or a part of the resin of the resin layer remains on the glass substrate, resulting in a decrease in productivity of the electronic device.
  • foaming and whitening due to decomposition of the silicone resin layer occur.
  • impurities may be mixed into the electronic device when the electronic device is manufactured on the glass substrate. As a result, the yield of the electronic device may be reduced.
  • the present invention has been made in view of the above problems, and is excellent in adhesion of a glass substrate before high-temperature heat treatment, and can easily peel off a glass substrate after high-temperature heat treatment, and a resin layer It aims at providing the glass laminated body by which decomposition
  • the support substrate with the resin layer and the glass substrate with the resin layer are laminated so that the two polyimide resin layers are in contact with each other, the surface of the first polyimide resin layer opposite to the support substrate side, and the first 2 A glass laminate in which the surface roughness Ra of the surface opposite to the glass substrate side of the polyimide resin layer is 2.0 nm or less.
  • the polyimide resin includes a repeating unit having a residue (X) of a tetracarboxylic acid and a residue (A) of a diamine represented by the formula (1) described below,
  • the residue (X) of the carboxylic acid contains at least one group selected from the group consisting of the groups represented by the formulas (X1) to (X4) described later, and the residue (A) of the diamine is a formula described later It preferably contains at least one group selected from the group consisting of groups represented by (A1) to (A8).
  • the residue (X) of the tetracarboxylic acid includes at least one of a group represented by the following formula (X1) and a group represented by the following formula (X4), and is a residue of a diamine. It is preferable that (A) includes at least one of a group represented by the formula (A1) described later and a group represented by the formula (A6) described later.
  • a support base material is a glass plate.
  • the 2nd aspect of this invention forms the member for electronic devices on the surface of the glass substrate in the glass laminated body of the said 1st aspect,
  • the member formation process which obtains the laminated body with a member for electronic devices,
  • a glass laminate that has excellent adhesion to a glass substrate before high-temperature heat treatment, can easily peel off the glass substrate after high-temperature heat treatment, and suppresses decomposition of the resin layer. Can be provided. Moreover, according to this invention, the manufacturing method of the electronic device using this glass laminated body can be provided.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention.
  • 2 (A) to 2 (E) are schematic cross-sectional views showing an embodiment of a method for manufacturing a glass laminate and an electronic device according to the present invention in the order of steps.
  • FIG. 3 is a schematic diagram of a peel strength measuring apparatus.
  • a polyimide resin layer having a surface with a predetermined surface roughness (hereinafter, also simply referred to as “resin layer”) is disposed on a support base and a glass substrate, The point which has laminated
  • resin layer a polyimide resin layer having a surface with a predetermined surface roughness
  • FIG. 1 is a schematic cross-sectional view of an example of a glass laminate according to the present invention.
  • the glass laminate 10 includes a support base 12 and a glass substrate 16, and a first polyimide resin layer 14 a (polyimide resin layer) and a second polyimide resin layer 14 b (polyimide) existing therebetween.
  • a resin layer A resin layer).
  • the first polyimide resin layer 14a has one surface in contact with the support base 12 and the other surface in contact with the second polyimide resin layer 14b.
  • the support base material 12 and the 1st polyimide resin layer 14a comprise the support base material 18 with a resin layer.
  • the second polyimide resin layer 14b has one surface in contact with the glass substrate 16 and the other surface in contact with the first polyimide resin layer 14a.
  • the glass substrate 16 and the 2nd polyimide resin layer 14b comprise the glass substrate 20 with a resin layer.
  • the two-layer portion composed of the support base 12 and the first polyimide resin layer 14a reinforces the glass substrate 20 with a resin layer in a member forming process for manufacturing a member for an electronic device such as a liquid crystal panel.
  • the glass laminate 10 is used until a member forming step described later. That is, the glass laminate 10 is used until a member for an electronic device such as a liquid crystal display device is formed on the surface of the second main surface 16b of the glass substrate 16. Thereafter, the glass laminate on which the electronic device member is formed is separated into the support substrate 18 with a resin layer and the electronic device 26, and the support substrate 18 with a resin layer does not become a part constituting the electronic device 26. A new glass substrate 20 with a resin layer is laminated on the support substrate 18 with a resin layer, and can be reused as a new glass laminate 10.
  • the 1st polyimide resin layer 14a is being fixed on the support base material 12, and the 1st polyimide resin layer 14a is laminated
  • peeling strength that is, stress required for peeling
  • fixing means that the peeling strength is larger than the adhesion. That is, the peel strength at the interface between the first polyimide resin layer 14a and the support base 12 is greater than the peel strength at the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b.
  • the peelable lamination means that the peelable layer can be peeled at the same time without causing peeling of the fixed surface. More specifically, the interface between the support substrate 12 and the first polyimide resin layer 14a has a peel strength (x), and the interface between the support substrate 12 and the first polyimide resin layer 14a exceeds the peel strength (x). When stress in the peeling direction is applied, the interface between the support base 12 and the first polyimide resin layer 14a is peeled off.
  • the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b has a peeling strength (y), and the peeling between the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b exceeds the peeling strength (y).
  • the peel strength (x) is greater than the peel strength (y).
  • the 2nd polyimide resin layer 14b is being fixed on the glass substrate 16, and the 2nd polyimide resin layer 14b is laminated
  • the peel strength (x) is preferably sufficiently higher than the peel strength (y). Increasing the peel strength (x) increases the adhesion of the first polyimide resin layer 14a to the support substrate 12, and has a relatively higher adhesion than the second polyimide resin layer 14b after the heat treatment. It can be maintained.
  • a method of forming the first polyimide resin layer 14a on the support substrate 12 preferably by thermosetting
  • This is performed by a method of forming a predetermined first polyimide resin layer 14a by curing a curable resin to be a polyimide resin containing a repeating unit represented by the formula (1) on the support substrate 12.
  • the first polyimide resin layer 14a bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of curing.
  • a method of increasing the adhesion of the second polyimide resin layer 14b to the glass substrate 16 for example, as described later, a method of forming the second polyimide resin layer 14b on the glass substrate 16 (preferably by thermosetting).
  • the bonding force of the cured first polyimide resin layer 14a to the second polyimide resin layer 14b is generally lower than the bonding force generated during the curing. Therefore, by manufacturing the support substrate 18 with a resin layer and the glass substrate 20 with a resin layer, and then laminating both so that the first polyimide resin layer 14a and the second polyimide resin layer 14b are in contact with each other, A glass laminate 10 that satisfies a desired peel strength relationship can be manufactured.
  • each layer (the support base material 12, the glass substrate 16, the 1st polyimide resin layer 14a, and the 2nd polyimide resin layer 14b) which comprises the glass laminated body 10 is explained in full detail first, Then, a glass laminated body and electronic A device manufacturing method will be described in detail.
  • the support substrate 12 supports and reinforces the glass substrate 16, and deformation and scratches of the glass substrate 16 are formed during the formation of the electronic device member in a member forming step (step of obtaining a laminated body with an electronic device member) described later. Prevent sticking and damage.
  • the support substrate 12 for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used.
  • the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and more preferably formed of the same material as the glass substrate 16.
  • the support base 12 is preferably a glass plate.
  • the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
  • the thickness of the support base 12 may be thicker or thinner than the glass substrate 16.
  • the thickness of the support base 12 is based on the thickness of the glass substrate 16, the thickness of the first polyimide resin layer 14a, the thickness of the second polyimide resin layer 14b, and the thickness of the glass laminate 10. Selected.
  • the current member forming process is designed to process a substrate having a thickness of 0.5 mm.
  • the thickness of the glass substrate 16, the thickness of the first polyimide resin layer 14a, and the thickness of the second polyimide resin layer 14b When the sum with the thickness is 0.1 mm, the thickness of the support base 12 is set to 0.4 mm.
  • the thickness of the support base 12 is preferably 0.2 to 0.5 mm, and is preferably thicker than the glass substrate 16.
  • the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
  • the difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 300 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is 200 ⁇ 10 ⁇ 7 / ° C. or less. If the difference is too large, the glass laminate 10 may be severely warped or the support substrate 12 and the glass substrate 16 may be peeled off during heating and cooling in the member forming process. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
  • the second polyimide resin layer 14b is disposed on the first main surface 16a, and the electronic device member is provided on the second main surface 16b opposite to the second polyimide resin layer 14b. That is, the glass substrate 16 is a substrate used for forming an electronic device described later.
  • the glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED.
  • the glass substrate 16 is excellent in chemical resistance and moisture permeability and has a low heat shrinkage rate.
  • As an index of the heat shrinkage rate a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used. The contents of JIS R 3102 (revised in 1995) are incorporated herein by reference.
  • the member forming process often involves heat treatment, and various inconveniences are likely to occur.
  • TFT thin film transistor
  • the glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape.
  • a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used.
  • the glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
  • the type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable.
  • oxide-based glass a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
  • glass suitable for the type of electronic device member and the manufacturing process thereof is employed.
  • a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included).
  • the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
  • the thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. It is. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up. Further, the thickness of the glass substrate 16 is preferably 0.01 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
  • the glass substrate 16 may be composed of two or more layers.
  • the material forming each layer may be the same material or a different material.
  • the thickness of the glass substrate 16 means the total thickness of all the layers.
  • the first polyimide resin layer 14a and the second polyimide resin layer 14b prevent misalignment of the glass substrate 16 until the operation of separating the glass substrate 16 and the supporting base material 12 is performed, and the glass substrate 16 and the like are separated. To prevent damage.
  • the first polyimide resin layer 14a and the second polyimide resin layer 14b are laminated (adhered) so as to be peelable. As described above, the first polyimide resin layer 14a and the second polyimide resin layer 14b are bonded with a weak bonding force, and the peel strength at the interface is between the first polyimide resin layer 14a and the support substrate 12.
  • the first polyimide resin layer 14a and the second polyimide resin layer 14b are bonded to each other with a certain bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off.
  • the glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16. In the present invention, this property of easily peeling off the surface is referred to as peelability.
  • the support base 12 and the first polyimide resin layer 14a, and the glass substrate 16 and the second polyimide resin layer 14b are bonded with a bonding force that is relatively difficult to peel.
  • the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are couple
  • the surface of the first polyimide resin layer 14a or the surface of the second polyimide resin layer 14b before lamination can be laminated by performing a treatment for weakening the bonding force between them.
  • the first polyimide resin layer 14a is bonded to the surface of the support base 12 with a strong bonding force such as an adhesive force or an adhesive force. Improvement of the adhesive force between the first polyimide resin layer 14a and the support substrate 12 is achieved by forming the first polyimide resin layer 14a on the support substrate 12. For example, as will be described later, a thermosetting polyimide resin is cured on the surface of the support base 12 by curing a curable resin that becomes a polyimide resin containing a repeating unit represented by the formula (1) by thermosetting, thereby supporting the support base material. It is possible to obtain a high bonding force by adhering to 12 surfaces.
  • a high bond strength can also be obtained by bringing a composition containing a polyimide resin into contact with the surface of the support substrate 12 and performing heat treatment as necessary to form the first polyimide resin layer 14a.
  • the process for example, process using a coupling agent which produces strong bond strength between the support base material 12 surface and the 1st polyimide resin layer 14a is given, and the support base material 12 surface and the 1st polyimide resin layer It is also possible to increase the binding force between the 14a.
  • the second polyimide resin layer 14b is also bonded to the surface of the glass substrate 16 with a strong bonding force such as an adhesive force or an adhesive force, like the first polyimide resin layer 14a.
  • the thickness of the first polyimide resin layer 14a and the thickness of the second polyimide resin layer 14b penetrates the blade between the first polyimide resin layer 14a and the second polyimide resin layer 14b at the time of peeling. Therefore, the thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 4 ⁇ m or more from the viewpoint of peelability.
  • the upper limit is not particularly limited, but is usually preferably 100 ⁇ m or less.
  • the other thickness is not particularly limited, and is preferably 0.1 to 100 ⁇ m, for example, More preferably, it is 5 to 50 ⁇ m, and further preferably 1 to 20 ⁇ m.
  • the thicknesses of the first polyimide resin layer 14a and the second polyimide resin layer 14b are within such a range, bubbles and foreign matters may be interposed between the first polyimide resin layer 14a and the second polyimide resin layer 14b. Even if it exists, generation
  • the said thickness intends average thickness, measures the thickness of the arbitrary 5 points
  • the surface roughness Ra of the surface 114a of the first polyimide resin layer 14a opposite to the support substrate 12 side and the surface 114b of the second polyimide resin layer 14b opposite to the glass substrate 16 side is 2.0 nm. It is below, and 1.5 nm or less is preferable and 1.0 nm or less is more preferable at the point which the adhesiveness of the support base material 18 with a resin layer and the glass substrate 20 with a resin layer is more excellent.
  • the lower limit is not particularly limited, but is preferably 0 nm. When the surface roughness Ra is more than 2.0 nm, the adhesion between the first polyimide resin layer 14a and the second polyimide resin layer 14b is poor.
  • the method of forming a polyimide resin into a layered form is a method of extrusion molding after producing a thermoplastic polyimide resin, or after applying a solution containing a curable resin that becomes a polyimide resin by thermosetting on a substrate. There is a method of curing on the substrate surface.
  • a resin layer having a surface roughness Ra in the above range is easily obtained by molding the resin layer by the latter method.
  • the surface roughness Ra is measured by an atomic force microscope (manufactured by Pacific Nanotechnology, Nano Scope IIIa; Scan Rate 1.0 Hz, Sample Lines 256, Off-line Modify Flatten order-2, Planefit order-2). (Measurement method of surface roughness of fine ceramic thin film by atomic force microscope JIS R 1683: 2007 compliant) Note that the contents of JIS R 1683: 2007 are incorporated herein by reference.
  • Ra to be increased are (1) intrinsic type (additives), (2) film surface roughness due to foaming, and (3) environmental factors (foreign substances).
  • a countermeasure of (1) it is preferable to use a glass substrate having a smooth surface as a precondition and not to use a lubricant or filler in the coating solution.
  • the application method is not particularly limited, but it is preferable to apply using, for example, a die coater. If the solvent is dried too quickly, foaming occurs, causing the problem (2).
  • a film having a smooth surface can be obtained by optimizing the drying temperature and time. In Examples described later, after preliminary drying on a hot plate at 80 ° C. for 30 minutes and 120 ° C. for 30 minutes, heating was performed at 350 ° C. for 1 hour in a hot air drying furnace. The heating conditions are not limited to the above process. Further, since foreign matter may cause surface roughness, manufacturing in a clean room is suitable as a countermeasure for (3).
  • the structure of the polyimide resin in the first polyimide resin layer 14a and the second polyimide resin layer 14b is not particularly limited, but the residue of tetracarboxylic acids (X) and the residue of diamines represented by the following formula (1) It is preferable that the repeating unit which has (A) is included.
  • a polyimide resin contains the repeating unit represented by Formula (1) as a main component (95 mol% or more is preferable with respect to all the repeating units), other repeating units other than that (for example, And a repeating unit represented by the formula (2-1) or (2-2) described later.
  • the tetracarboxylic acid residue (X) is a tetracarboxylic acid residue obtained by removing a carboxy group from a tetracarboxylic acid
  • the diamine residue (A) is a diamine obtained by removing an amino group from a diamine. Intended for residues.
  • X represents a tetracarboxylic acid residue obtained by removing a carboxy group from tetracarboxylic acids
  • A represents a diamine residue obtained by removing an amino group from diamines.
  • X represents a tetracarboxylic acid residue obtained by removing a carboxy group from tetracarboxylic acids, and at least one selected from the group consisting of groups represented by the following formulas (X1) to (X4) Preferably it contains a group.
  • the peelability between the first polyimide resin layer 14a and the second polyimide resin layer 14b, or the heat resistance of the first polyimide resin layer 14a and the second polyimide resin layer 14b is more excellent (hereinafter simply referred to as “the present invention”).
  • X1 to (X4) From the group consisting of groups represented by the following formulas (X1) to (X4): 50 mol% or more (preferably 80 to 100 mol%) of the total number of X More preferably, it comprises at least one selected group. More preferably, substantially all (100 mol%) of the total number of X is composed of at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4).
  • A represents a diamine residue obtained by removing an amino group from diamines, and preferably contains at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8).
  • 80 to 100 mol% of the total number of X comprises at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4).
  • 80 to 100 mol% of the total number of A is composed of at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8).
  • the total number (100 mol%) is composed of at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4), and substantially the total number of A (100 More preferably, the mol%) comprises at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8).
  • X is preferably a group represented by the formula (X1) and a group represented by the formula (X4), and more preferably a group represented by the formula (X1) in that the effect of the present invention is more excellent. preferable.
  • the group represented by the formula (A1) and the group represented by the formula (A6) are preferable, and the group represented by the formula (A1) is more preferable in that the effect of the present invention is more excellent. .
  • X represents a group represented by the formula (X1)
  • a polyimide resin 1 in which A is a group represented by the formula (A1), and a polyimide in which X is a group represented by the formula (X4) and A is a group represented by the formula (A6) Resin 2 is preferred.
  • the polyimide resin 1 it is more excellent in heat resistance.
  • the polyimide resin 2 it is preferable at the point of colorless transparency.
  • the number of repeating units (n) represented by the above formula (1) in the polyimide resin is not particularly limited, but is preferably an integer of 2 or more, and the first polyimide resin layer 14a and the second polyimide resin layer 14b. In view of the heat resistance of the coating film and the film formability of the coating film, it is preferably 10 to 10,000, more preferably 15 to 1,000.
  • the polyimide resin may contain at least one selected from the group consisting of the groups exemplified below as the residue (X) of the tetracarboxylic acids within a range that does not impair the heat resistance. Moreover, 2 or more types of groups illustrated below may be included.
  • the polyimide resin may contain one or more selected from the group consisting of the groups exemplified below as the residue (A) of the diamine, as long as the heat resistance is not impaired. Moreover, 2 or more types of groups illustrated below may be included.
  • the content of the polyimide resin in the first polyimide resin layer 14a and the second polyimide resin layer 14b is not particularly limited, but is 50 to 100% by mass with respect to the total mass of the resin layer in that the effect of the present invention is more excellent. Preferably, it is 75 to 100% by mass, more preferably 90 to 100% by mass.
  • fillers that do not impair heat resistance include fibrous fillers and non-fibrous fillers such as plate-like, scale-like, granular, indeterminate, and crushed products.
  • metal powder, metal flake, metal ribbon, and metal oxide metal species include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass
  • the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are layers of the polyimide resin formed by heat-processing to the layer of curable resin used as the polyimide resin by thermosetting, Furthermore, in the layer of the curable resin used as the polyimide resin containing the repeating unit which has the residue (X) of tetracarboxylic acids represented by the said Formula (1), and the residue (A) of diamines by thermosetting. More preferably, it is a polyimide resin layer formed by heat treatment. In addition, you may implement heat processing in steps, changing temperature. The method for producing the first polyimide resin layer 14a and the second polyimide resin layer 14b will be described in detail in the method for producing a glass laminate at the subsequent stage.
  • the 1st polyimide resin layer 14a is formed on the support base material 12 using the curable resin mentioned later, and glass is used using the curable resin mentioned later.
  • the second polyimide resin layer 14b is formed on the substrate 16, and then the support substrate 18 with the resin layer and the glass substrate with the resin layer so that the first polyimide resin layer 14a and the second polyimide resin layer 14b are in contact with each other. 20 is laminated
  • a step of forming the first polyimide resin layer 14a on the support base 12 using a curable resin described later is a first resin layer forming step, and a step of forming a second polyimide resin layer 14a on the glass substrate 16 using a curable resin layer described later.
  • the step of forming the polyimide resin layer 14b is referred to as a second resin layer forming step, and the step of obtaining the glass laminate 10 by laminating the support substrate 18 with a resin layer and the glass substrate 20 with a resin layer is referred to as a lamination step.
  • a lamination step Will be described in detail.
  • a predetermined polyimide resin is made to contact on the support base material 12 (or glass substrate 16), and it heats as needed. You may form the 1st polyimide resin layer 14a (or 2nd polyimide resin layer 14b) by giving a process.
  • a 1st resin layer formation process is a process of obtaining the layer of a polyimide resin by performing heat processing to the layer of curable resin which becomes a polyimide resin by thermosetting formed on the support base material.
  • the polyimide resin preferably includes a repeating unit represented by the formula (1) and having a tetracarboxylic acid residue (X) and a diamine residue (A).
  • the residue (X) of the carboxylic acid includes at least one group selected from the group consisting of the groups represented by the above formulas (X1) to (X4), and the residue (A) of the diamine is the above It preferably contains at least one group selected from the group consisting of groups represented by formulas (A1) to (A8).
  • the first polyimide resin layer 14a is formed on the surface of at least one side of the support base 12.
  • the resin layer forming step will be described by dividing it into the following two steps.
  • Step (1) Step (2) of applying a curable resin, which becomes a polyimide resin containing the repeating unit represented by the above formula (1), to the support substrate 12 by thermosetting to obtain a coating film:
  • the process which heat-processes a coating film and forms the 1st polyimide resin layer 14a
  • the procedure of each process is explained in full detail.
  • Step (1) is a step of obtaining a coating film by applying a curable resin, which becomes a polyimide resin having a repeating unit represented by the above formula (1), by thermosetting on the support substrate 12.
  • the curable resin preferably contains a polyamic acid obtained by reacting a tetracarboxylic dianhydride and a diamine, and at least a part of the tetracarboxylic dianhydride is represented by the following formulas (Y1) to (Y4).
  • the polyamic acid is usually represented as a structural formula containing a repeating unit represented by the following formula (2-1) and / or formula (2-2).
  • formulas (2-1) and (2-2) the definitions of X and A are as described above.
  • the reaction conditions of tetracarboxylic dianhydride and diamines are not particularly limited, and are preferably reacted at ⁇ 30 to 70 ° C. and reacted at ⁇ 20 to 40 ° C. from the viewpoint that polyamic acid can be efficiently synthesized. Is more preferable.
  • the mixing ratio of the tetracarboxylic dianhydride and the diamine is not particularly limited, but the tetracarboxylic dianhydride is preferably 0.66 to 1.5 mol, more preferably 0. 9 to 1.1 mol, more preferably 0.97 to 1.03 mol is reacted.
  • an organic solvent may be used as necessary.
  • organic solvent to be used is not particularly limited.
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide N-methylcaprolactam, hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, Dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone and the like can be used, and two or more kinds may be used in combination.
  • the curable resin used in this step is a tetracarboxylic dianhydride or diamine that can react with the polyamic acid. May also be included.
  • tetracarboxylic dianhydride or diamine is added in addition to polyamic acid, two or more polyamic acid molecules having a repeating unit represented by formula (2-1) or formula (2-2) are converted to tetracarboxylic acid diacid. It can be coupled via anhydrides or diamines.
  • tetracarboxylic dianhydride may be added, and added so that the carboxyl group is 0.9 to 1.1 mol with respect to 1 mol of the polyamic acid. It's okay.
  • a diamine may be added, and the amino group may be added in an amount of 0.9 to 1.1 mol with respect to 1 mol of the polyamic acid.
  • the acid terminal may be obtained by adding water or any alcohol to open the terminal acid anhydride group.
  • the tetracarboxylic dianhydride to be added later is more preferably a compound represented by the formulas (Y1) to (Y4).
  • the diamines to be added later are preferably diamines having an aromatic ring, and more preferably compounds represented by the formulas (B1) to (B8).
  • the polymerization degree (n) of the polyamic acid having a repeating unit represented by the formula (2-1) or the formula (2-2) is 1 to 20 Is preferred. When the polymerization degree (n) is within this range, the viscosity of the curable resin solution can be reduced even if the polyamic acid concentration in the curable resin solution is 30% by mass or more.
  • components other than the curable resin may be used.
  • a solvent may be used.
  • the curable resin may be dissolved in a solvent and used as a curable resin solution (curable resin solution).
  • an organic solvent is particularly preferable from the viewpoint of the solubility of the polyamic acid.
  • the organic solvent used the organic solvent used in the case of the reaction mentioned above is mentioned.
  • the content of the organic solvent is not particularly limited as long as the thickness of the coating film can be adjusted and the coating property can be improved. 5 to 95% by mass is preferable with respect to the total mass of the solution, and 10 to 90% by mass is more preferable.
  • a dehydrating agent or a dehydrating ring closure catalyst for promoting dehydration ring closure of the polyamic acid may be used together.
  • the dehydrating agent for example, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used.
  • a dehydration ring closure catalyst tertiary amines, such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example.
  • the method for applying the curable resin (or curable resin solution) on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
  • the thickness of the coating film obtained by the above treatment is not particularly limited, and is appropriately adjusted so that the first polyimide resin layer 14a having the desired thickness described above can be obtained.
  • Step (2) is a step of forming the first polyimide resin layer 14a by subjecting the coating film to heat treatment.
  • a ring closing reaction of polyamic acid contained in the curable resin proceeds, and a desired resin layer is formed.
  • the method for the heat treatment is not particularly limited, and a known method (for example, a method in which a support substrate with a coating film is left standing in a heating oven and heated) is appropriately used.
  • the heating temperature is not particularly limited, but is preferably 250 ° C. or higher and 500 ° C. or lower.
  • the residual solvent ratio is lowered, the imidization ratio is further increased, and the effect of the present invention is further improved. Is more preferable.
  • the heating time is not particularly limited, and an optimal time is appropriately selected depending on the structure of the curable resin to be used. However, the residual solvent ratio is lowered, the imidization ratio is further increased, and the effect of the present invention is further improved. In this respect, 15 to 120 minutes are preferable, and 30 to 60 minutes are more preferable.
  • the heating atmosphere is not particularly limited, and is performed, for example, in the air, under vacuum, or under an inert gas. Note that the heat treatment may be performed stepwise at different temperatures. In addition, you may implement the drying heat processing for removing the volatile component (solvent) in a coating film before the process at the said heating temperature as needed.
  • the temperature condition of the drying heat treatment is not particularly limited, but the heat treatment at 40 ° C. to 200 ° C.
  • the drying time is not particularly limited, and is preferably 15 to 120 minutes, more preferably 30 to 60 minutes, from the viewpoint that the effect of the present invention is more excellent.
  • the drying heat treatment may be performed stepwise at different temperatures. Therefore, as one preferred embodiment of this step (2), there is an embodiment in which after the drying heat treatment at the above temperature is carried out, the above heat treatment at 250 ° C. or more and 500 ° C. or less is further carried out.
  • the 1st polyimide resin layer 14a containing a polyimide resin is formed.
  • the imidation ratio of a polyimide resin is not particularly limited, it is preferably 99.0% or more and more preferably 99.5% or more in terms of more excellent effects of the present invention.
  • the method for measuring the imidization rate is as follows. When the curable resin is heated at 350 ° C.
  • the imidization rate is 100%, and the peak intensity that remains unchanged before and after the heat treatment in the IR spectrum of the curable resin (for example, a peak derived from a benzene ring: for about 1500 cm -1), a peak derived from the imide carbonyl group: obtaining the imidization ratio by the intensity ratio of a peak intensity of about 1780 cm -1.
  • the second resin layer forming step is a step of obtaining a second polyimide resin layer by performing heat treatment on the curable resin layer that is formed on the glass substrate and becomes a polyimide resin by thermosetting.
  • a polyimide resin contains the repeating unit which has the residue (X) of tetracarboxylic acids and the residue (A) of diamine represented by Formula (1).
  • the supporting substrate 18 with a resin layer obtained in the first resin layer forming step and the glass substrate 20 with a resin layer obtained in the second resin layer forming step are laminated to form a supporting substrate 12.
  • the glass laminate 10 including the first polyimide resin layer 14a, the second polyimide resin layer 14b, and the glass substrate 16 in this order is obtained. More specifically, as shown in FIG. 2C, the surface 114a of the first polyimide resin layer 14a opposite to the support base 12 side and the glass substrate 16 side of the second polyimide resin layer 14b are The first polyimide resin layer 14a and the second polyimide resin layer 14b are laminated using the opposite surface 114b as a lamination surface to obtain the glass laminate 10.
  • stacking the support base material 18 with a resin layer and the glass substrate 20 with a resin layer is not restrict
  • a well-known method is employable.
  • the method of superimposing the 2nd polyimide resin layer 14b in the glass substrate 20 with a resin layer on the surface of the 1st polyimide resin layer 14a in the support base material 18 with a resin layer under a normal pressure environment is mentioned.
  • the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are crimped
  • first polyimide resin layer 14a and the second polyimide resin layer 14b are pressure-bonded by a vacuum laminating method or a vacuum press method, it is more preferable because it is possible to suppress mixing of bubbles and ensure good adhesion.
  • press-bonding under vacuum even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate 16. Moreover, bubbles are less likely to remain by pressure bonding under vacuum heating.
  • the surface 114a of the first polyimide resin layer 14a and the surface 114b of the second polyimide resin layer 14b are sufficiently washed, It is preferable to laminate in a high environment. The higher the degree of cleanliness, the better the flatness of the glass substrate 16, which is preferable.
  • the pre-annealing process As needed.
  • the adhesion between the laminated support substrate 18 with a resin layer and the glass substrate 20 with a resin layer can be improved, and an appropriate peel strength can be obtained.
  • the position of the electronic device member is not easily displaced, and the productivity of the electronic device is improved.
  • the conditions for the pre-annealing treatment are appropriately selected according to the types of materials used for the first polyimide resin layer 14a and the second polyimide resin layer 14b, but are 200 ° C. or higher (preferably 200 to 400 ° C.). For 5 minutes or more (preferably 5 to 30 minutes).
  • the glass laminate 10 of the present invention can be used for various applications, for example, manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface, which will be described later. The use to do is mentioned.
  • the glass laminate 10 is often exposed to a high temperature condition (for example, 400 ° C. or more) (for example, 1 hour or more).
  • the display device panel includes LCD, OLED, electronic paper, plasma display panel, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
  • the glass substrate with a member (electronic device) containing a 2nd polyimide resin layer, a glass substrate, and the member for electronic devices is manufactured using the laminated body mentioned above.
  • the method for producing the electronic device is not particularly limited, but from the viewpoint of excellent productivity of the electronic device, an electronic device member is formed on the glass substrate in the glass laminate to produce a laminate with the electronic device member.
  • a method of separating the obtained laminate with a member for an electronic device into an electronic device and a supporting substrate with a resin layer by using the interface between the first polyimide resin layer and the second polyimide resin layer as a release surface is preferable.
  • the step of forming a member for an electronic device on the glass substrate in the glass laminate and manufacturing the laminate with the member for an electronic device is a member forming step
  • the laminate with the member for an electronic device is the first polyimide resin layer
  • a process of separating the electronic device and the support substrate with a resin layer using the interface with the second polyimide resin layer as a release surface is referred to as a separation process. The materials and procedures used in each process are described in detail below.
  • a member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 10 obtained in the said lamination process. More specifically, as shown in FIG. 2D, the electronic device member 22 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain a laminate 24 with the electronic device member. .
  • the electronic device member 22 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
  • the electronic device member 22 is a member that is formed on the glass substrate 16 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, as the electronic device member 22, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on its surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
  • a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
  • a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc.
  • various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
  • a circuit for an electronic component in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
  • the manufacturing method of the laminated body 24 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 16 of the glass laminated body 10 is used.
  • the electronic device member 22 is formed on the surface 16b.
  • the electronic device member 22 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all the members (hereinafter referred to as “parts”). May be referred to as a member.
  • a glass substrate with a partial member can also be used as a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps.
  • an electronic device can also be manufactured by assembling a laminate with all members, and then peeling the support substrate 18 with a resin layer from the laminate with all members. Further, an electronic device is assembled using two laminates with all members, and then the two support bases 18 with a resin layer are peeled off from the laminate with all members to obtain an electronic device having two glass substrates. It can also be manufactured.
  • a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, and a back electrode is formed.
  • Various layers are formed and processed, such as sealing with a sealing plate. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
  • a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 10 by a general film forming method such as a CVD method or a sputtering method.
  • a TFT forming step of forming a thin film transistor (TFT) by patterning the formed metal film, metal oxide film, etc., and patterning a resist solution on the second main surface 16b of the glass substrate 16 of another glass laminate 10 Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
  • the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
  • a cleaning method known dry cleaning or wet cleaning can be used.
  • the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation).
  • a sealant for example, an ultraviolet curable sealant for cell formation.
  • a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF.
  • the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
  • the interface 24 between the first polyimide resin layer 14a and the second polyimide resin layer 14b is peeled off from the laminate 24 with the electronic device member obtained in the member forming step.
  • the surface is separated into a glass substrate 20 with a resin layer (electronic device 26) on which the electronic device member 22 is laminated and a support base material 18 with a resin layer, and the second polyimide resin layer 14b, the glass substrate 16 and the electrons are separated.
  • a glass substrate with a member (electronic device 26) including the device member 22 is obtained.
  • the method of peeling the electronic device 26 and the support base material 18 with a resin layer is not specifically limited. Specifically, for example, a sharp blade-like object (claw) is inserted into the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b to give an opportunity for separation, and then water, compressed air, The mixed fluid can be sprayed or peeled off.
  • the electronic device member-attached laminate 24 is placed on the surface plate so that the support base material 12 is on the upper side and the electronic device member 22 side is on the lower side, and the electronic device member 22 side is vacuumed on the surface plate. In this state, the blade first enters the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b.
  • the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b, the air layer will spread over the interface whole surface, and the support substrate 18 with a resin layer can be peeled easily.
  • a support base material is laminated
  • the peeling aid intends a solvent such as water described above.
  • examples of the peeling aid used include water, an organic solvent (for example, ethanol), and a mixture thereof.
  • the second polyimide resin layer formed on the back surface of the peeled electronic device 26 can be removed by a treatment such as washing with water. When high light transmittance such as LCD is required, it is desirable to remove the second polyimide resin layer after peeling.
  • the fragments of the first polyimide resin layer 14a and the second polyimide resin layer 14b are removed by controlling the spraying and humidity with an ionizer. 26 can be further suppressed from being electrostatically adsorbed.
  • the above-described method for manufacturing the electronic device 26 is suitable for manufacturing a small display device used in a mobile terminal such as a mobile phone or a PDA.
  • the display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like.
  • the present invention can be applied to both passive drive type and active drive type display devices.
  • a display device panel having a glass substrate and a display device member, a solar cell having a glass substrate and a solar cell member, and a thin film having a glass substrate and a thin film secondary battery member.
  • Examples thereof include a secondary battery, an electronic component having a glass substrate and an electronic device member.
  • Examples of the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
  • the viscosity is measured by measuring the rotational viscosity at 20 ° C. using a DVL-BII type digital viscometer (B type viscometer) manufactured by Tokimec Co., Ltd.
  • X is a group represented by (X1)
  • A is represented by the formula (A1). It was a group.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (3.7 g), 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (41 0.4g), and potassium hydroxide siliconate is added to octamethylcyclotetrasiloxane (355.9g) in an amount of Si / K 20000/1 (molar ratio) and allowed to equilibrate at 150 ° C. for 6 hours in a nitrogen atmosphere. Then, 2 mol amount of ethylene chlorohydrin was added to K and neutralized at 120 ° C. for 2 hours. Then, the volatile content was cut by heating and bubbling at 160 ° C.
  • Organohydrogensiloxane A and alkenyl group-containing siloxane D were mixed so that the molar ratio (hydrogen atom / alkenyl group) of all alkenyl groups to all hydrogen atoms bonded to silicon atoms was 0.9.
  • a silicon compound having an acetylenically unsaturated group represented by the following formula (4) is mixed, and a platinum-based catalyst is added so that the platinum metal concentration becomes 100 ppm.
  • a supporting substrate having a thickness of 0.5 mm was cleaned with pure water, and further cleaned by UV cleaning.
  • N, N-dimethylacetamide was added to the polyamic acid solution (P1) to dilute the solid content concentration of the polyamic acid to 5% by mass to obtain a solution X.
  • the solution X was applied onto the first main surface of the supporting substrate with a spin coater (rotation speed: 2000 rpm, 15 seconds), and a coating film containing polyamic acid was provided on the supporting substrate (coating amount: 2. 0 g / m 2 ).
  • the coating amount intends the amount of polyamic acid remaining on the supporting substrate.
  • the polyamic acid is a resin obtained by reacting the compound represented by the formula (Y1) with the compound represented by the formula (B1).
  • a polyimide resin having a repeating unit represented by the following formula (X in formula (1) is a group represented by (X1), A is formula (A1) Consisting of the group represented).
  • the imidization ratio of the polyimide resin in the first polyimide resin layer was 99.7%. Further, the surface roughness Ra of the surface of the formed first polyimide resin layer was 0.8 nm. In addition, the measurement of imidation ratio and the measurement of surface roughness Ra were implemented by the above-mentioned method.
  • the glass substrate was cleaned with pure water, and further cleaned by UV cleaning.
  • the polyamic acid solution (P1) is applied onto the first main surface of the glass substrate with a spin coater (rotation speed: 2000 rpm, 15 seconds), and heated.
  • the treatment was performed to form a second polyimide resin layer (thickness: 5.0 ⁇ m, Ra: 1.0 ⁇ m).
  • the imidization ratio of the polyimide resin in the second polyimide resin layer was 99.7%.
  • the glass substrate with a layer was bonded together by roll bonding under atmospheric pressure at room temperature to obtain a glass laminate S1.
  • the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, no distortion defects, and good smoothness.
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer, and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
  • the glass substrate S1 is separated from the support base material and the glass substrate, or the first polyimide resin layer. No change in appearance such as foaming or whitening of the second polyimide resin layer was observed. Then, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the first polyimide resin layer and the second polyimide resin layer at one of the four corners of the glass laminate S1 to form a notch for peeling.
  • the vacuum suction pad is adsorbed on the non-peeling surfaces of the glass substrate and the supporting base material, and water is sprayed on the interface between the first polyimide resin layer and the second polyimide resin layer, while the glass substrate and the supporting base material are sprayed.
  • the glass substrate and the supporting base material were separated without damaging them by applying an external force in the direction of separating them from each other.
  • the cutter was inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the 1st polyimide resin layer was isolate
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface.
  • the glass laminate S ⁇ b> 1 includes a support base 12, a first polyimide resin layer 14 a, a second polyimide resin layer 14 b, and a glass substrate 16.
  • the glass laminate S1 is cut into a size of 50 mm in length ⁇ 50 mm in width, and polycarbonate 60 having a length of 50 mm ⁇ width of 50 mm ⁇ thickness of 5 mm is formed on the glass (support base material 12 and glass substrate 16) on both sides of the glass laminate S1. Were bonded together with an adhesive for epoxy two-component glass.
  • polycarbonates 70 each having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm were further vertically bonded to the surfaces of both the bonded polycarbonates 60.
  • the place where the polycarbonate 70 was bonded was the position of the end of the polycarbonate 60 in the vertical direction and the position parallel to the side of the polycarbonate 60 in the horizontal direction.
  • the glass laminate S1 bonded with the polycarbonates 60 and 70 was placed so that the support base 12 was on the lower side.
  • the polycarbonate 70 affixed to the glass substrate 16 side is fixed with a jig, and the polycarbonate 70 affixed to the support base material 12 side is pulled vertically downward at a speed of 300 mm / min. A force of 0.29 kg / cm 2 is obtained.
  • the first polyimide resin layer 14a and the second polyimide resin layer 14b were peeled off.
  • Example 2 When forming the first polyimide resin layer, the polyamic acid solution (P1) is used instead of the solution X, and the thickness of the first polyimide resin layer is changed from 0.1 ⁇ m to 5.0 ⁇ m. In the formation of the layer, the same as in Example 1 except that the solution X was used instead of the polyamic acid solution (P1) and the thickness of the second polyimide resin layer was changed from 5.0 ⁇ m to 0.1 ⁇ m. By the method, glass laminated body S2 was obtained. The imidization ratio of the polyimide resin in the first polyimide resin layer and the second polyimide resin layer was 99.5%.
  • surface roughness Ra of a 1st polyimide resin layer and a 2nd polyimide resin layer is shown in Table 1 mentioned later.
  • the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, there was no distortion defect, and the smoothness was good.
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer, and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
  • the support substrate of the glass laminate S2 and the glass substrate were separated, and the first polyimide resin layer and the second polyimide resin layer were foamed. No change in appearance such as whitening was observed.
  • the support base material and the glass substrate were isolate
  • the 1st polyimide resin layer was isolate
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface.
  • the above (measurement of peel strength) was carried out using the obtained glass laminate S2. The results are shown in Table 1.
  • Example 3 In the formation of the second polyimide resin layer, the glass laminate S3 was prepared in the same manner as in Example 1 except that the alicyclic polyimide resin solution (P2) was used instead of the polyamic acid solution (P1). Obtained.
  • X in the formula (1) is composed of a group represented by the above formula (X4)
  • A is a polyimide composed of a group represented by the above formula (A6). Resin was included.
  • the imidization ratio of the polyimide resin in the first polyimide resin layer and the second polyimide resin layer was 99.5%.
  • surface roughness Ra of a 1st polyimide resin layer and a 2nd polyimide resin layer is shown in Table 1 mentioned later.
  • the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, there were no distortion defects, and the smoothness was good.
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
  • glass substrate S3 was isolate
  • the 1st polyimide resin layer was isolate
  • the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface.
  • the above (measurement of peel strength) was carried out using the obtained glass laminate S3. The results are shown in Table 1.
  • Polyamic acid solution (P4) Snow Tech (DMAC-ST30, manufactured by Nissan Chemical Industries, average particle size of 80 nm) obtained by dispersing colloidal silica in dimethylacetamide in the polyamic acid solution (P1) obtained in Production Example 1 is a solution having a colloidal deer content. In addition, it added so that it might become 1 mass% with respect to the total mass, and the polyamic acid solution (P4) was obtained.
  • Example 4 an OLED is manufactured using the glass laminate S1 obtained in Example 1.
  • silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in the glass laminate S1 by plasma CVD.
  • low concentration boron is implanted into the amorphous silicon layer by an ion doping apparatus, and dehydrogenation treatment is performed in a nitrogen atmosphere.
  • the amorphous silicon layer is crystallized by a laser annealing apparatus.
  • low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas.
  • a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, then molybdenum is formed by a sputtering method, and etching is performed using a photolithography method.
  • a gate electrode is formed.
  • high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area.
  • an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography.
  • a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method.
  • an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography.
  • a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
  • panel A a glass laminate S1 having an organic EL structure on the glass substrate
  • panel A is an electron of the present invention. It is a laminated body with a member for devices.
  • a 0.1 mm thick stainless steel material is formed at the interface between the first polyimide resin layer and the second polyimide resin layer at the corner of the panel A.
  • a blade is inserted, and a trigger for peeling is given to the interface between the first polyimide resin layer and the second polyimide resin layer. And after adsorb
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while continuing to spray a static eliminating fluid from the ionizer toward the formed gap, and while water is inserted into the peeling front.
  • the glass substrate on which the organic EL structure is formed on the surface plate can be left, and the supporting substrate with the resin layer can be peeled off.
  • the separated glass substrate is cut using a laser cutter or a scribe-break method and divided into a plurality of cells, and then the glass substrate on which the organic EL structure is formed and the counter substrate are assembled to form a module.
  • the process is performed to produce an OLED.
  • the OLED obtained in this way does not have a problem in characteristics.
  • Example 5 an LCD is manufactured using the glass laminate S1 obtained in Example 1.
  • two glass laminates S1-1 and S1-2 are prepared, and silicon nitride, silicon oxide, and amorphous are formed on the second main surface of the glass substrate in one glass laminate S1-1 by plasma CVD. Films are formed in the order of silicon.
  • low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and heat treatment is performed in a nitrogen atmosphere to perform dehydrogenation treatment.
  • the amorphous silicon layer is crystallized by a laser annealing apparatus.
  • low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas.
  • a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method and a gate insulating film is formed, molybdenum is formed by a sputtering method, and the gate is etched by photolithography. An electrode is formed.
  • high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area.
  • an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography.
  • a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method.
  • an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography.
  • a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
  • the other glass laminate S1-2 is heat-treated in an air atmosphere.
  • a chromium film is formed on the second main surface of the glass substrate in the glass laminate S1-2 by a sputtering method, and a light-shielding layer is formed by etching using a photolithography method.
  • a color resist is applied to the second main surface side of the glass substrate by a die coating method, and a color filter layer is formed by a photolithography method and heat curing.
  • a film of indium tin oxide is formed by a sputtering method to form a counter electrode.
  • an ultraviolet curable resin liquid is applied to the second main surface side of the glass substrate by a die coating method, and columnar spacers are formed by a photolithography method and thermal curing.
  • a polyimide resin solution is applied by a roll coating method, an alignment layer is formed by thermosetting, and rubbing is performed.
  • a sealing resin liquid is drawn in a frame shape by the dispenser method, and after dropping the liquid crystal in the frame by the dispenser method, two glass sheets S1-1 on which the pixel electrodes are formed are used. The second main surface sides of the glass substrates of the glass laminate S1 are bonded together, and an LCD panel is obtained by ultraviolet curing and thermal curing.
  • the surface opposite to the first polyimide resin layer side of the supporting substrate of the glass laminate S1-1 is vacuum-adsorbed to a surface plate, and the first polyimide resin layer at the corner of the glass laminate S1-2
  • a stainless steel knife having a thickness of 0.1 mm is inserted into the interface with the second polyimide resin layer, and a trigger for peeling is applied to the interface between the first polyimide resin layer and the second polyimide resin layer.
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while water is being supplied to the separation front while spraying a static elimination fluid from the ionizer toward the formed gap.
  • the suction pad is raised after the second main surface of the supporting base material of the glass laminate S1-2 is sucked by the vacuum suction pad.
  • the suction pad is raised after the second main surface of the supporting base material of the glass laminate S1-2 is sucked by the vacuum suction pad.
  • the second main surface of the glass substrate on which the color filter is formed on the first main surface is vacuum-adsorbed on a surface plate, and the first polyimide resin layer and the second polyimide resin layer at the corner of the glass laminate S1-1
  • a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the first polyimide resin layer and the second polyimide resin layer.
  • water is sprayed between the glass substrate and the resin layer while adsorbing. Raise the pad.
  • only the LCD cell is left on the surface plate, and the supporting substrate with the resin layer can be peeled off.
  • a plurality of LCD cells composed of a glass substrate having a thickness of 0.1 mm are obtained.
  • an OLED is manufactured using the glass laminate S1 obtained in Example 1.
  • a film of molybdenum is formed on the second main surface of the glass substrate in the glass laminate S1 by a sputtering method, and a gate electrode is formed by etching using a photolithography method.
  • an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a gate insulating film, and subsequently an indium gallium zinc oxide film is formed by a sputtering method.
  • An oxide semiconductor layer is formed by etching.
  • an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a channel protective layer.
  • a molybdenum film is formed by a sputtering method, and etching is performed using a photolithography method.
  • a source electrode and a drain electrode are formed.
  • heat treatment is performed in the air.
  • an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a passivation layer.
  • indium tin oxide is formed by a sputtering method, and etching is performed using a photolithography method.
  • a pixel electrode is formed.
  • panel B a glass laminate S1 having an organic EL structure on the glass substrate
  • panel B is an electronic device according to the present invention. It is a laminated body with a member for devices (panel for display devices with a supporting substrate).
  • a 0.1 mm thick stainless steel is formed at the interface between the first polyimide resin layer and the second polyimide resin layer at the corner of the panel B.
  • a blade is inserted, and a trigger for peeling is given to the interface between the first polyimide resin layer and the second polyimide resin layer. And after adsorb
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while continuing to spray a static eliminating fluid from the ionizer toward the formed gap, and while water is inserted into the peeling front.
  • the glass substrate on which the organic EL structure is formed on the surface plate can be left, and the supporting substrate with the resin layer can be peeled off.
  • the separated glass substrate is cut using a laser cutter or a scribe-break method and divided into a plurality of cells, and then the glass substrate on which the organic EL structure is formed and the counter substrate are assembled to form a module.
  • the process is performed to produce an OLED.
  • the OLED obtained in this way does not have a problem in characteristics.

Abstract

 The present invention pertains to a glass laminated body that includes: a support substrate provided with a resin layer, the substrate having a support substrate and a polyimide resin layer (first polyimide resin layer) formed on the support substrate; and a glass substrate provided with a resin layer, said glass substrate having a glass substrate and a polyimide resin layer (second polyimide resin layer) formed on the glass substrate, the support substrate provided with a resin layer and the glass substrate provided with a resin layer being laminated so that the first polyimide resin layer in the support substrate provided with a resin layer, and the second polyimide resin layer in the glass substrate provided with a resin layer are brought into contact. The surface roughness (Ra) of each of the surface of the first polyimide resin layer on the side opposite the support substrate side and the surface of the second polyimide resin layer on the side opposite the glass substrate side is 2.0 nm or less.

Description

ガラス積層体、および電子デバイスの製造方法Glass laminate and method for manufacturing electronic device
 本発明は、ガラス積層体に係り、特に、ポリイミド樹脂層同士が接触するように積層されたガラス積層体に関する。
 また、本発明は、該ガラス積層体を用いた電子デバイスの製造方法に関する。
The present invention relates to a glass laminate, and more particularly, to a glass laminate laminated such that polyimide resin layers are in contact with each other.
Moreover, this invention relates to the manufacturing method of an electronic device using this glass laminated body.
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などのデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いるガラス基板の薄板化が進行している。薄板化によりガラス基板の強度が不足すると、デバイスの製造工程において、ガラス基板のハンドリング性が低下する。 In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
 そこで、従来から、最終厚さよりも厚いガラス基板上に電子デバイス用部材(例えば、薄膜トランジスタ)を形成した後、ガラス基板を化学エッチング処理により薄板化する方法が広く採用されている。
 しかしながら、この方法では、例えば、1枚のガラス基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々のガラス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。また、上記の化学エッチングによるガラス基板の薄板化方法においては、ガラス基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。
Therefore, conventionally, a method of forming a member for an electronic device (for example, a thin film transistor) on a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
However, in this method, for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials. In addition, in the method of thinning a glass substrate by the above chemical etching, if a fine scratch exists on the surface of the glass substrate, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
 最近では、上記の課題に対応するため、薄板ガラス基板と補強板とを積層したガラス積層体を用意し、ガラス積層体の薄板ガラス基板上に表示装置などの電子デバイス用部材を形成した後、薄板ガラス基板から補強板を分離する方法が提案されている。例えば、特許文献1においては、補強板は、支持板と該支持板上に固定されたシリコーン樹脂層とを有し、シリコーン樹脂層と薄板ガラス基板とが剥離可能に密着される。ガラス積層体のシリコーン樹脂層と薄板ガラス基板の界面が剥離され、薄板ガラス基板から分離された補強板は、新たな薄板ガラス基板と積層され、ガラス積層体として再利用することが可能である。 Recently, in order to cope with the above problems, after preparing a glass laminate in which a thin glass substrate and a reinforcing plate are laminated and forming a member for an electronic device such as a display device on the thin glass substrate of the glass laminate, A method for separating a reinforcing plate from a thin glass substrate has been proposed. For example, in Patent Document 1, the reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner. The reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
国際公開第2007/018028号International Publication No. 2007/018028
 特許文献1に記載のガラス基板を含むガラス積層体に関して、近年さらに高い耐熱性が要求されるようになってきた。ガラス積層体のガラス基板上に形成される電子デバイス用部材の高機能化や複雑化に伴い、電子デバイス用部材を形成する際の温度がさらに高温になると共に、その高温に曝される時間も長時間を要する場合が少なくない。
 特許文献1に記載のガラス積層体は大気中350℃、1時間の処理に耐えうる。しかし、本発明者らの検討によれば、特許文献1を参照して作製したガラス積層体に対して400℃、1時間の処理を行った場合、ガラス基板をシリコーン樹脂層表面から剥離する際に、ガラス基板がシリコーン樹脂層表面から剥がれずにその一部が破壊されたり、樹脂層の樹脂の一部がガラス基板上に残存したりして、結果として電子デバイスの生産性の低下を招く場合があった。
 また、上記加熱条件では、シリコーン樹脂層の分解による発泡や白化が生じてしまう。このような樹脂層の分解が生じると、ガラス基板上に電子デバイスを製造する際に、電子デバイス中に不純物が混入するおそれがあり、結果として電子デバイスの歩留りの低下を招くおそれがある。
With regard to the glass laminate including the glass substrate described in Patent Document 1, higher heat resistance has recently been required. As the electronic device members formed on the glass substrate of the glass laminate become more functional and complex, the temperature at which the electronic device members are formed becomes even higher, and the time exposed to the high temperatures also increases. It often takes a long time.
The glass laminate described in Patent Document 1 can withstand treatment at 350 ° C. for 1 hour in the air. However, according to the study by the present inventors, when the glass laminate produced with reference to Patent Document 1 is treated at 400 ° C. for 1 hour, the glass substrate is peeled from the surface of the silicone resin layer. In addition, the glass substrate is not peeled off from the surface of the silicone resin layer, and a part of the glass substrate is destroyed, or a part of the resin of the resin layer remains on the glass substrate, resulting in a decrease in productivity of the electronic device. There was a case.
Moreover, under the above heating conditions, foaming and whitening due to decomposition of the silicone resin layer occur. When such a resin layer is decomposed, impurities may be mixed into the electronic device when the electronic device is manufactured on the glass substrate. As a result, the yield of the electronic device may be reduced.
 本発明は、上記課題に鑑みてなされたものであって、高温加熱処理前においてはガラス基板の密着性に優れ、高温加熱処理後において容易にガラス基板を剥離することができ、かつ、樹脂層の分解が抑制されたガラス積層体を提供することを目的とする。
 また、本発明は、該ガラス積層体を用いた電子デバイスの製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and is excellent in adhesion of a glass substrate before high-temperature heat treatment, and can easily peel off a glass substrate after high-temperature heat treatment, and a resin layer It aims at providing the glass laminated body by which decomposition | disassembly of was suppressed.
Moreover, an object of this invention is to provide the manufacturing method of the electronic device using this glass laminated body.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成した。
 すなわち、本発明の第1の態様は、支持基材および支持基材上で形成されたポリイミド樹脂の層(第1ポリイミド樹脂層)を有する樹脂層付き支持基材、並びに、ガラス基板および前記ガラス基板上で形成されたポリイミド樹脂の層(第2ポリイミド樹脂層)を有する樹脂層付きガラス基板を含み、樹脂層付き支持基材中の第1ポリイミド樹脂層と、樹脂層付きガラス基板中の第2ポリイミド樹脂層とが接触するように、樹脂層付き支持基材と樹脂層付きガラス基板とが積層しており、第1ポリイミド樹脂層の支持基材側とは反対側の表面、および、第2ポリイミド樹脂層のガラス基板側とは反対側の表面のそれぞれの表面粗さRaが2.0nm以下である、ガラス積層体である。
 第1の態様において、ポリイミド樹脂が、後述する式(1)で表される、テトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含み、かつ、テトラカルボン酸類の残基(X)が後述する式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基を含み、ジアミン類の残基(A)が後述する式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基を含むことが好ましい。
 第1の態様において、テトラカルボン酸類の残基(X)が後述する式(X1)で表される基および後述する式(X4)で表される基の少なくとも一方を含み、ジアミン類の残基(A)が後述する式(A1)で表される基および後述する式(A6)で表される基の少なくとも一方を含むことが好ましい。
 第1の態様において、支持基材がガラス板であることが好ましい。
 本発明の第2の態様は、上記第1の態様のガラス積層体中のガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、
 電子デバイス用部材付き積層体から樹脂層付き支持基材を除去し、第2ポリイミド樹脂層とガラス基板と電子デバイス用部材とを有する電子デバイスを得る分離工程と、を備える、電子デバイスの製造方法である。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the first aspect of the present invention, there is provided a support substrate with a resin layer having a support substrate and a polyimide resin layer (first polyimide resin layer) formed on the support substrate, and a glass substrate and the glass. A glass substrate with a resin layer having a polyimide resin layer (second polyimide resin layer) formed on the substrate, the first polyimide resin layer in the support substrate with the resin layer, and the first in the glass substrate with the resin layer The support substrate with the resin layer and the glass substrate with the resin layer are laminated so that the two polyimide resin layers are in contact with each other, the surface of the first polyimide resin layer opposite to the support substrate side, and the first 2 A glass laminate in which the surface roughness Ra of the surface opposite to the glass substrate side of the polyimide resin layer is 2.0 nm or less.
In the first embodiment, the polyimide resin includes a repeating unit having a residue (X) of a tetracarboxylic acid and a residue (A) of a diamine represented by the formula (1) described below, The residue (X) of the carboxylic acid contains at least one group selected from the group consisting of the groups represented by the formulas (X1) to (X4) described later, and the residue (A) of the diamine is a formula described later It preferably contains at least one group selected from the group consisting of groups represented by (A1) to (A8).
In the first embodiment, the residue (X) of the tetracarboxylic acid includes at least one of a group represented by the following formula (X1) and a group represented by the following formula (X4), and is a residue of a diamine. It is preferable that (A) includes at least one of a group represented by the formula (A1) described later and a group represented by the formula (A6) described later.
1st aspect WHEREIN: It is preferable that a support base material is a glass plate.
The 2nd aspect of this invention forms the member for electronic devices on the surface of the glass substrate in the glass laminated body of the said 1st aspect, The member formation process which obtains the laminated body with a member for electronic devices,
A separation step of removing the supporting substrate with a resin layer from the laminate with the member for electronic devices and obtaining an electronic device having the second polyimide resin layer, the glass substrate, and the member for electronic devices, and a method for producing an electronic device It is.
 本発明によれば、高温加熱処理前においてはガラス基板の密着性に優れ、高温加熱処理後において容易にガラス基板を剥離することができ、かつ、樹脂層の分解が抑制されたガラス積層体を提供することができる。
 また、本発明によれば、該ガラス積層体を用いた電子デバイスの製造方法を提供することができる。
According to the present invention, there is provided a glass laminate that has excellent adhesion to a glass substrate before high-temperature heat treatment, can easily peel off the glass substrate after high-temperature heat treatment, and suppresses decomposition of the resin layer. Can be provided.
Moreover, according to this invention, the manufacturing method of the electronic device using this glass laminated body can be provided.
図1は、本発明に係るガラス積層体の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention. 図2(A)~(E)は、本発明に係るガラス積層体および電子デバイスの製造方法の一実施形態を工程順に示す模式的断面図である。2 (A) to 2 (E) are schematic cross-sectional views showing an embodiment of a method for manufacturing a glass laminate and an electronic device according to the present invention in the order of steps. 図3は、剥離強度の測定装置の概要図である。FIG. 3 is a schematic diagram of a peel strength measuring apparatus.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not deviated from the scope of the present invention. Various modifications and substitutions can be made.
 本発明のガラス積層体の特徴の一つとして、所定の表面粗さの表面を有するポリイミド樹脂の層(以後、単に「樹脂層」とも称する)を支持基材およびガラス基板上に配置して、樹脂層同士を積層している点が挙げられる。この樹脂層同士を積層すると、両者の密着性が優れる。さらに、このような樹脂層は加熱処理の際の耐熱性に優れると共に、加熱処理後においても樹脂層間の剥離強度の上昇などが起きにくく、ガラス基板の剥離を容易に実施することができる。 As one of the features of the glass laminate of the present invention, a polyimide resin layer having a surface with a predetermined surface roughness (hereinafter, also simply referred to as “resin layer”) is disposed on a support base and a glass substrate, The point which has laminated | stacked resin layers is mentioned. When these resin layers are laminated, the adhesion between them is excellent. Further, such a resin layer is excellent in heat resistance during heat treatment, and it is difficult for the peel strength between the resin layers to increase even after the heat treatment, and the glass substrate can be easily peeled off.
 図1は、本発明に係るガラス積層体の一例の模式的断面図である。
 図1に示すように、ガラス積層体10は、支持基材12およびガラス基板16、並びにそれらの間に存在する第1ポリイミド樹脂層14a(ポリイミド樹脂の層)および第2ポリイミド樹脂層14b(ポリイミド樹脂の層)を含む積層体である。第1ポリイミド樹脂層14aは、その一方の面が支持基材12に接すると共に、その他方の面が第2ポリイミド樹脂層14bに接している。なお、支持基材12と第1ポリイミド樹脂層14aとは、樹脂層付き支持基材18を構成する。また、第2ポリイミド樹脂層14bは、その一方の面がガラス基板16に接すると共に、その他方の面が第1ポリイミド樹脂層14aに接している。なお、ガラス基板16と第2ポリイミド樹脂層14bとは、樹脂層付きガラス基板20を構成する。
 支持基材12および第1ポリイミド樹脂層14aからなる2層部分は、液晶パネルなどの電子デバイス用部材を製造する部材形成工程において、樹脂層付きガラス基板20を補強する。
FIG. 1 is a schematic cross-sectional view of an example of a glass laminate according to the present invention.
As shown in FIG. 1, the glass laminate 10 includes a support base 12 and a glass substrate 16, and a first polyimide resin layer 14 a (polyimide resin layer) and a second polyimide resin layer 14 b (polyimide) existing therebetween. A resin layer). The first polyimide resin layer 14a has one surface in contact with the support base 12 and the other surface in contact with the second polyimide resin layer 14b. In addition, the support base material 12 and the 1st polyimide resin layer 14a comprise the support base material 18 with a resin layer. The second polyimide resin layer 14b has one surface in contact with the glass substrate 16 and the other surface in contact with the first polyimide resin layer 14a. In addition, the glass substrate 16 and the 2nd polyimide resin layer 14b comprise the glass substrate 20 with a resin layer.
The two-layer portion composed of the support base 12 and the first polyimide resin layer 14a reinforces the glass substrate 20 with a resin layer in a member forming process for manufacturing a member for an electronic device such as a liquid crystal panel.
 このガラス積層体10は、後述する部材形成工程まで使用される。即ち、このガラス積層体10は、そのガラス基板16の第2主面16b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、電子デバイス用部材が形成されたガラス積層体は、樹脂層付き支持基材18と電子デバイス26に分離され、樹脂層付き支持基材18は電子デバイス26を構成する部分とはならない。樹脂層付き支持基材18には新たな樹脂層付きガラス基板20が積層され、新たなガラス積層体10として再利用することができる。 The glass laminate 10 is used until a member forming step described later. That is, the glass laminate 10 is used until a member for an electronic device such as a liquid crystal display device is formed on the surface of the second main surface 16b of the glass substrate 16. Thereafter, the glass laminate on which the electronic device member is formed is separated into the support substrate 18 with a resin layer and the electronic device 26, and the support substrate 18 with a resin layer does not become a part constituting the electronic device 26. A new glass substrate 20 with a resin layer is laminated on the support substrate 18 with a resin layer, and can be reused as a new glass laminate 10.
 なお、第1ポリイミド樹脂層14aは支持基材12上に固定されており、第1ポリイミド樹脂層14aは第2ポリイミド樹脂層14bに剥離可能に積層(密着)する。本発明において、該固定と剥離可能な積層(密着)とでは剥離強度(すなわち、剥離に要する応力)に違いがあり、固定は密着に対し剥離強度が大きいことを意味する。つまり、第1ポリイミド樹脂層14aと支持基材12との界面の剥離強度が、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面の剥離強度よりも大きくなる。言い換えると、剥離可能な積層(密着)とは、剥離可能であると同時に、固定されている面の剥離を生じさせることなく剥離可能であることも意味する。
 より具体的には、支持基材12と第1ポリイミド樹脂層14aの界面は剥離強度(x)を有し、支持基材12と第1ポリイミド樹脂層14aの界面に剥離強度(x)を越える引き剥がし方向の応力が加えられると、支持基材12と第1ポリイミド樹脂層14aの界面が剥離する。第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bの界面は剥離強度(y)を有し、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bの界面に剥離強度(y)を越える引き剥がし方向の応力が加えられると、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bの界面が剥離する。上述したように、剥離強度(x)は、剥離強度(y)よりも大きい。
In addition, the 1st polyimide resin layer 14a is being fixed on the support base material 12, and the 1st polyimide resin layer 14a is laminated | stacked on the 2nd polyimide resin layer 14b so that peeling is possible (contact | adherence). In the present invention, there is a difference in peeling strength (that is, stress required for peeling) between the fixing and the peelable laminate (adhesion), and fixing means that the peeling strength is larger than the adhesion. That is, the peel strength at the interface between the first polyimide resin layer 14a and the support base 12 is greater than the peel strength at the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b. In other words, the peelable lamination (adhesion) means that the peelable layer can be peeled at the same time without causing peeling of the fixed surface.
More specifically, the interface between the support substrate 12 and the first polyimide resin layer 14a has a peel strength (x), and the interface between the support substrate 12 and the first polyimide resin layer 14a exceeds the peel strength (x). When stress in the peeling direction is applied, the interface between the support base 12 and the first polyimide resin layer 14a is peeled off. The interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b has a peeling strength (y), and the peeling between the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b exceeds the peeling strength (y). When a directional stress is applied, the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b peels off. As described above, the peel strength (x) is greater than the peel strength (y).
 また、第2ポリイミド樹脂層14bはガラス基板16上に固定されており、第2ポリイミド樹脂層14bは第1ポリイミド樹脂層14aに剥離可能に積層(密着)する。つまり、第2ポリイミド樹脂層14bとガラス基板16との界面の剥離強度が、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面の剥離強度よりも大きくなる。
 従って、ガラス積層体10に支持基材12とガラス基板16とを引き剥がす方向の応力が加えられると、ガラス積層体10は、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bの界面で剥離して、樹脂層付き支持基材18と樹脂層付きガラス基板20とに分離する。
Moreover, the 2nd polyimide resin layer 14b is being fixed on the glass substrate 16, and the 2nd polyimide resin layer 14b is laminated | stacked on the 1st polyimide resin layer 14a so that peeling is possible (contact | adherence). That is, the peel strength at the interface between the second polyimide resin layer 14b and the glass substrate 16 is greater than the peel strength at the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b.
Therefore, when a stress is applied to the glass laminate 10 in the direction of peeling the support substrate 12 and the glass substrate 16, the glass laminate 10 is peeled off at the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b. And it isolate | separates into the support base material 18 with a resin layer, and the glass substrate 20 with a resin layer.
 剥離強度(x)は、剥離強度(y)と比較して、充分高いことが好ましい。剥離強度(x)を高めることは、支持基材12に対する第1ポリイミド樹脂層14aの付着力を高め、かつ加熱処理後において第2ポリイミド樹脂層14bに対してよりも相対的に高い付着力を維持できることを意味する。
 支持基材12に対する第1ポリイミド樹脂層14aの付着力を高めるためには、例えば、後述するように、支持基材12上で第1ポリイミド樹脂層14aを形成する方法(好ましくは、熱硬化により式(1)で表される繰り返し単位を含むポリイミド樹脂となる硬化性樹脂を支持基材12上で硬化させて、所定の第1ポリイミド樹脂層14aを形成する方法)によりなされる。硬化の際の接着力で、支持基材12に対して高い結合力で結合した第1ポリイミド樹脂層14aを形成することができる。
 なお、ガラス基板16に対する第2ポリイミド樹脂層14bの付着力を高める方法としては、例えば、後述するように、ガラス基板16上で第2ポリイミド樹脂層14bを形成する方法(好ましくは、熱硬化により式(1)で表される繰り返し単位を含むポリイミド樹脂となる硬化性樹脂をガラス基板16上で硬化させて、所定の第2ポリイミド樹脂層14bを形成する方法)によりなされる。
 一方、硬化後の第1ポリイミド樹脂層14aの第2ポリイミド樹脂層14bに対する結合力は、上記硬化時に生じる結合力よりも低いのが通例である。したがって、樹脂層付き支持基材18と、樹脂層付きガラス基板20とを製造し、その後、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとが接触するように両者を積層することにより、所望の剥離強度関係を満たすガラス積層体10を製造することができる。
The peel strength (x) is preferably sufficiently higher than the peel strength (y). Increasing the peel strength (x) increases the adhesion of the first polyimide resin layer 14a to the support substrate 12, and has a relatively higher adhesion than the second polyimide resin layer 14b after the heat treatment. It can be maintained.
In order to increase the adhesion of the first polyimide resin layer 14a to the support substrate 12, for example, as described later, a method of forming the first polyimide resin layer 14a on the support substrate 12 (preferably by thermosetting) This is performed by a method of forming a predetermined first polyimide resin layer 14a by curing a curable resin to be a polyimide resin containing a repeating unit represented by the formula (1) on the support substrate 12. The first polyimide resin layer 14a bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of curing.
In addition, as a method of increasing the adhesion of the second polyimide resin layer 14b to the glass substrate 16, for example, as described later, a method of forming the second polyimide resin layer 14b on the glass substrate 16 (preferably by thermosetting). A method of curing a curable resin to be a polyimide resin containing a repeating unit represented by the formula (1) on the glass substrate 16 to form a predetermined second polyimide resin layer 14b).
On the other hand, the bonding force of the cured first polyimide resin layer 14a to the second polyimide resin layer 14b is generally lower than the bonding force generated during the curing. Therefore, by manufacturing the support substrate 18 with a resin layer and the glass substrate 20 with a resin layer, and then laminating both so that the first polyimide resin layer 14a and the second polyimide resin layer 14b are in contact with each other, A glass laminate 10 that satisfies a desired peel strength relationship can be manufactured.
 以下では、まず、ガラス積層体10を構成する各層(支持基材12、ガラス基板16、第1ポリイミド樹脂層14a、および第2ポリイミド樹脂層14b)について詳述し、その後、ガラス積層体および電子デバイスの製造方法について詳述する。 Below, each layer (the support base material 12, the glass substrate 16, the 1st polyimide resin layer 14a, and the 2nd polyimide resin layer 14b) which comprises the glass laminated body 10 is explained in full detail first, Then, a glass laminated body and electronic A device manufacturing method will be described in detail.
[支持基材]
 支持基材12は、ガラス基板16を支持して補強し、後述する部材形成工程(電子デバイス用部材付き積層体を得る工程)において電子デバイス用部材の形成の際にガラス基板16の変形、傷付き、破損などを防止する。
 支持基材12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。通常、部材形成工程が熱処理を伴うため、支持基材12はガラス基板16との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板16と同一材料で形成されることがより好ましい。すなわち、支持基材12はガラス板であることが好ましい。特に、支持基材12は、ガラス基板16と同じガラス材料からなるガラス板であることが好ましい。
[Supporting substrate]
The support substrate 12 supports and reinforces the glass substrate 16, and deformation and scratches of the glass substrate 16 are formed during the formation of the electronic device member in a member forming step (step of obtaining a laminated body with an electronic device member) described later. Prevent sticking and damage.
As the support substrate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. Usually, since the member forming process involves heat treatment, the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and more preferably formed of the same material as the glass substrate 16. preferable. That is, the support base 12 is preferably a glass plate. In particular, the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
 支持基材12の厚さは、ガラス基板16よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板16の厚さ、第1ポリイミド樹脂層14aの厚さ、第2ポリイミド樹脂層14bの厚さ、およびガラス積層体10の厚さに基づいて、支持基材12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板16の厚さと第1ポリイミド樹脂層14aの厚さと第2ポリイミド樹脂層14bの厚さとの和が0.1mmの場合、支持基材12の厚さを0.4mmとする。支持基材12の厚さは、通常の場合、0.2~0.5mmであることが好ましく、ガラス基板16よりも厚いことが好ましい。 The thickness of the support base 12 may be thicker or thinner than the glass substrate 16. Preferably, the thickness of the support base 12 is based on the thickness of the glass substrate 16, the thickness of the first polyimide resin layer 14a, the thickness of the second polyimide resin layer 14b, and the thickness of the glass laminate 10. Selected. For example, the current member forming process is designed to process a substrate having a thickness of 0.5 mm. The thickness of the glass substrate 16, the thickness of the first polyimide resin layer 14a, and the thickness of the second polyimide resin layer 14b When the sum with the thickness is 0.1 mm, the thickness of the support base 12 is set to 0.4 mm. In general, the thickness of the support base 12 is preferably 0.2 to 0.5 mm, and is preferably thicker than the glass substrate 16.
 支持基材12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support substrate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
 支持基材12とガラス基板16との25~300℃における平均線膨張係数の差は、好ましくは500×10-7/℃以下であり、より好ましくは300×10-7/℃以下であり、さらに好ましくは200×10-7/℃以下である。差が大き過ぎると、部材形成工程における加熱冷却時に、ガラス積層体10が激しく反ったり、支持基材12とガラス基板16とが剥離したりする可能性がある。支持基材12の材料がガラス基板16の材料と同じ場合、このような問題が生じるのを抑制することができる。 The difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 × 10 −7 / ° C. or less, more preferably 300 × 10 −7 / ° C. or less. More preferably, it is 200 × 10 −7 / ° C. or less. If the difference is too large, the glass laminate 10 may be severely warped or the support substrate 12 and the glass substrate 16 may be peeled off during heating and cooling in the member forming process. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
[ガラス基板]
 ガラス基板16は、第1主面16a上に第2ポリイミド樹脂層14bが配置され、第2ポリイミド樹脂層14b側とは反対側の第2主面16bに電子デバイス用部材が設けられる。つまり、ガラス基板16は、後述する電子デバイスを形成するために使用される基板である。
 ガラス基板16の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板16は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
 なお、JIS R 3102(1995年改正)の内容は、ここに参照として取り込まれる。
[Glass substrate]
In the glass substrate 16, the second polyimide resin layer 14b is disposed on the first main surface 16a, and the electronic device member is provided on the second main surface 16b opposite to the second polyimide resin layer 14b. That is, the glass substrate 16 is a substrate used for forming an electronic device described later.
The glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 16 is excellent in chemical resistance and moisture permeability and has a low heat shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
The contents of JIS R 3102 (revised in 1995) are incorporated herein by reference.
 ガラス基板16の線膨張係数が大きいと、部材形成工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、ガラス基板16上に薄膜トランジスタ(TFT)を形成する場合、加熱下でTFTが形成されたガラス基板16を冷却すると、ガラス基板16の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the glass substrate 16 is large, the member forming process often involves heat treatment, and various inconveniences are likely to occur. For example, when a thin film transistor (TFT) is formed on the glass substrate 16, if the glass substrate 16 on which the TFT is formed is cooled under heating, the TFT may be excessively misaligned due to thermal contraction of the glass substrate 16. .
 ガラス基板16は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板16は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. The glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板16のガラスの種類は特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板16のガラスとしては、電子デバイス用部材の種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板16のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 16, glass suitable for the type of electronic device member and the manufacturing process thereof is employed. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
 ガラス基板16の厚さは、ガラス基板16の薄型化および/または軽量化の観点から、0.3mm以下であることが好ましく、より好ましくは0.15mm以下であり、さらに好ましくは0.10mm以下である。0.3mm以下の場合、ガラス基板16に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板16をロール状に巻き取ることが可能である。
 また、ガラス基板16の厚さは、ガラス基板16の製造が容易であること、ガラス基板16の取り扱いが容易であることなどの理由から、0.01mm以上であることが好ましい。
The thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. It is. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up.
Further, the thickness of the glass substrate 16 is preferably 0.01 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
 なお、ガラス基板16は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板16の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 16 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate 16” means the total thickness of all the layers.
[樹脂層(第1ポリイミド樹脂層および第2ポリイミド樹脂層)]
 第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bは、ガラス基板16と支持基材12とを分離する操作が行われるまでガラス基板16の位置ずれを防止すると共に、ガラス基板16などが分離操作によって破損するのを防止する。第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとは、剥離可能に積層(密着)する。上述したように、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとは弱い結合力で結合しており、その界面の剥離強度は、第1ポリイミド樹脂層14aと支持基材12との間の界面の剥離強度、および、第2ポリイミド樹脂層14bとガラス基板16との間の界面の剥離強度よりも低い。
 すなわち、ガラス基板16と支持基材12とを分離する際には、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面で剥離し、支持基材12と第1ポリイミド樹脂層14aとの界面、および、ガラス基板16と第2ポリイミド樹脂層14bとの界面では剥離し難い。このため、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとは密着するが、容易に剥離することができる表面特性を有する。すなわち、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとは、ある程度の結合力で結合してガラス基板16の位置ずれなどを防止していると同時に、ガラス基板16を剥離する際には、ガラス基板16を破壊することなく、容易に剥離できる程度の結合力で結合している。本発明では、この表面の容易に剥離できる性質を剥離性という。一方、支持基材12と第1ポリイミド樹脂層14a、および、ガラス基板16と第2ポリイミド樹脂層14bとは相対的に剥離しがたい結合力で結合している。
[Resin layer (first polyimide resin layer and second polyimide resin layer)]
The first polyimide resin layer 14a and the second polyimide resin layer 14b prevent misalignment of the glass substrate 16 until the operation of separating the glass substrate 16 and the supporting base material 12 is performed, and the glass substrate 16 and the like are separated. To prevent damage. The first polyimide resin layer 14a and the second polyimide resin layer 14b are laminated (adhered) so as to be peelable. As described above, the first polyimide resin layer 14a and the second polyimide resin layer 14b are bonded with a weak bonding force, and the peel strength at the interface is between the first polyimide resin layer 14a and the support substrate 12. Lower than the peel strength at the interface and the peel strength at the interface between the second polyimide resin layer 14 b and the glass substrate 16.
That is, when separating the glass substrate 16 and the support base material 12, the glass substrate 16 is peeled off at the interface between the first polyimide resin layer 14 a and the second polyimide resin layer 14 b, and the support base material 12 and the first polyimide resin layer 14 a are separated. And at the interface between the glass substrate 16 and the second polyimide resin layer 14b. For this reason, although the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b contact | adhere, it has the surface characteristic which can be peeled easily. That is, the first polyimide resin layer 14a and the second polyimide resin layer 14b are bonded to each other with a certain bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off. The glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16. In the present invention, this property of easily peeling off the surface is referred to as peelability. On the other hand, the support base 12 and the first polyimide resin layer 14a, and the glass substrate 16 and the second polyimide resin layer 14b are bonded with a bonding force that is relatively difficult to peel.
 第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとは、弱い接着力やファンデルワールス力に起因する結合力で結合していると考えられる。
 場合により、積層前の第1ポリイミド樹脂層14aの表面や第2ポリイミド樹脂層14bの表面に両者間の結合力を弱める処理を行って積層することもできる。
It is thought that the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are couple | bonded by the bond strength resulting from weak adhesive force or van der Waals force.
In some cases, the surface of the first polyimide resin layer 14a or the surface of the second polyimide resin layer 14b before lamination can be laminated by performing a treatment for weakening the bonding force between them.
 また、第1ポリイミド樹脂層14aは、接着力や粘着力などの強い結合力で支持基材12表面に結合されている。第1ポリイミド樹脂層14aと支持基材12との付着力の向上は、支持基材12上で第1ポリイミド樹脂層14aを形成することにより達成される。例えば、後述するように、熱硬化により式(1)で表される繰り返し単位を含むポリイミド樹脂となる硬化性樹脂を支持基材12表面で硬化させることにより、加熱硬化したポリイミド樹脂を支持基材12表面に接着して、高い結合力を得ることができる。また、ポリイミド樹脂を含む組成物を支持基材12表面上に接触させ、必要に応じて、加熱処理を施し、第1ポリイミド樹脂層14aを形成することで、高い結合力を得ることもできる。また、支持基材12表面と第1ポリイミド樹脂層14aとの間に強い結合力を生じさせる処理(例えば、カップリング剤を使用した処理)を施して支持基材12表面と第1ポリイミド樹脂層14aとの間の結合力を高めることもできる。
 なお、第2ポリイミド樹脂層14bも、第1ポリイミド樹脂層14aと同じように、ガラス基板16表面に接着力や粘着力などの強い結合力にて結合されている。
The first polyimide resin layer 14a is bonded to the surface of the support base 12 with a strong bonding force such as an adhesive force or an adhesive force. Improvement of the adhesive force between the first polyimide resin layer 14a and the support substrate 12 is achieved by forming the first polyimide resin layer 14a on the support substrate 12. For example, as will be described later, a thermosetting polyimide resin is cured on the surface of the support base 12 by curing a curable resin that becomes a polyimide resin containing a repeating unit represented by the formula (1) by thermosetting, thereby supporting the support base material. It is possible to obtain a high bonding force by adhering to 12 surfaces. Moreover, a high bond strength can also be obtained by bringing a composition containing a polyimide resin into contact with the surface of the support substrate 12 and performing heat treatment as necessary to form the first polyimide resin layer 14a. Moreover, the process (for example, process using a coupling agent) which produces strong bond strength between the support base material 12 surface and the 1st polyimide resin layer 14a is given, and the support base material 12 surface and the 1st polyimide resin layer It is also possible to increase the binding force between the 14a.
The second polyimide resin layer 14b is also bonded to the surface of the glass substrate 16 with a strong bonding force such as an adhesive force or an adhesive force, like the first polyimide resin layer 14a.
 第1ポリイミド樹脂層14aの厚さ、および、第2ポリイミド樹脂層14bの厚さの少なくとも一方は、剥離の際に第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの間に刃物を侵入させて剥離起点を生じさせやすい点から、1μm以上であることが好ましく、剥離性の点から、2μm以上がより好ましく、4μm以上がさらに好ましい。なお、上限は特に制限されないが、通常、100μm以下が好ましい。
 なお、第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bのうち一方の厚みが上記範囲である場合、他方の厚みは特に制限されず、例えば、0.1~100μmであることが好ましく、0.5~50μmであることがより好ましく、1~20μmであることがさらに好ましい。第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの厚さがこのような範囲であると、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの間に気泡や異物が介在することがあっても、ガラス基板16のゆがみ欠陥の発生を抑制することができる。
 なお、上記厚みは、平均厚みを意図し、第1ポリイミド樹脂層14a(または、第2ポリイミド樹脂層14b)の任意の5点の厚みを測定して、それらを算術平均したものである。
At least one of the thickness of the first polyimide resin layer 14a and the thickness of the second polyimide resin layer 14b penetrates the blade between the first polyimide resin layer 14a and the second polyimide resin layer 14b at the time of peeling. Therefore, the thickness is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 4 μm or more from the viewpoint of peelability. The upper limit is not particularly limited, but is usually preferably 100 μm or less.
When the thickness of one of the first polyimide resin layer 14a and the second polyimide resin layer 14b is in the above range, the other thickness is not particularly limited, and is preferably 0.1 to 100 μm, for example, More preferably, it is 5 to 50 μm, and further preferably 1 to 20 μm. When the thicknesses of the first polyimide resin layer 14a and the second polyimide resin layer 14b are within such a range, bubbles and foreign matters may be interposed between the first polyimide resin layer 14a and the second polyimide resin layer 14b. Even if it exists, generation | occurrence | production of the distortion defect of the glass substrate 16 can be suppressed.
In addition, the said thickness intends average thickness, measures the thickness of the arbitrary 5 points | pieces of the 1st polyimide resin layer 14a (or 2nd polyimide resin layer 14b), and arithmetically averages them.
 第1ポリイミド樹脂層14aの支持基材12側とは反対側の表面114a、および、第2ポリイミド樹脂層14bのガラス基板16側とは反対側の表面114bの表面粗さRaは、2.0nm以下であり、樹脂層付き支持基材18と樹脂層付きガラス基板20との密着性がより優れる点で、1.5nm以下が好ましく、1.0nm以下がより好ましい。下限は特に制限されないが、0nmであることが好ましい。
 表面粗さRaが2.0nm超の場合、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの密着性に劣る。
 一般にポリイミド樹脂を層状に成形する方法には、熱可塑性のポリイミド樹脂を製造した後に押し出し成型する方法や、熱硬化によりポリイミド樹脂となる硬化性樹脂を含んだ溶液を基材上に塗工した後に基板表面で硬化させる方法がある。本発明においては後者の方法で樹脂層を成形することで、表面粗さRaが上記範囲の樹脂層が得られやすい。
 ここで、表面粗さRaは、原子間力顕微鏡(Pacific Nanotechnology社製、Nano Scope IIIa;Scan Rate 1.0Hz,Sample Lines256,Off-line Modify Flatten order-2,Planefit order-2)により測定する。(原子間力顕微鏡によるファインセラミック薄膜の表面粗さ測定方法 JIS R 1683:2007準拠)
 なお、JIS R 1683:2007の内容は、ここに参照として取り込まれる。
The surface roughness Ra of the surface 114a of the first polyimide resin layer 14a opposite to the support substrate 12 side and the surface 114b of the second polyimide resin layer 14b opposite to the glass substrate 16 side is 2.0 nm. It is below, and 1.5 nm or less is preferable and 1.0 nm or less is more preferable at the point which the adhesiveness of the support base material 18 with a resin layer and the glass substrate 20 with a resin layer is more excellent. The lower limit is not particularly limited, but is preferably 0 nm.
When the surface roughness Ra is more than 2.0 nm, the adhesion between the first polyimide resin layer 14a and the second polyimide resin layer 14b is poor.
In general, the method of forming a polyimide resin into a layered form is a method of extrusion molding after producing a thermoplastic polyimide resin, or after applying a solution containing a curable resin that becomes a polyimide resin by thermosetting on a substrate. There is a method of curing on the substrate surface. In the present invention, a resin layer having a surface roughness Ra in the above range is easily obtained by molding the resin layer by the latter method.
Here, the surface roughness Ra is measured by an atomic force microscope (manufactured by Pacific Nanotechnology, Nano Scope IIIa; Scan Rate 1.0 Hz, Sample Lines 256, Off-line Modify Flatten order-2, Planefit order-2). (Measurement method of surface roughness of fine ceramic thin film by atomic force microscope JIS R 1683: 2007 compliant)
Note that the contents of JIS R 1683: 2007 are incorporated herein by reference.
 Raが大きくなる理由としては、(1)内在型起因(添加物)、(2)発泡による膜面荒れ、(3)環境要因(異物)が考えられる。(1)の対策としては、前提条件として平滑な表面を持つガラス基板を使用し、塗布液には滑剤やフィラーを使用しないことが好ましい。塗布方法は特に限定されないが、例えばダイコーターを用いて塗布することが好ましい。溶剤乾燥が急速すぎると発泡が発生するため、(2)の問題が生じる。その対策として、乾燥温度と時間を最適化することで表面平滑な膜が得られる。後述する実施例では、ホットプレート上で80℃30分、120℃30分の予備乾燥を行った後、熱風乾燥炉にて350℃で1時間加熱した。なお、加熱条件は上記プロセスに限定されない。また、異物が表面粗さの原因となる場合もあるため、(3)の対策としては、クリーンルームでの製造が適している。 Reasons for Ra to be increased are (1) intrinsic type (additives), (2) film surface roughness due to foaming, and (3) environmental factors (foreign substances). As a countermeasure of (1), it is preferable to use a glass substrate having a smooth surface as a precondition and not to use a lubricant or filler in the coating solution. The application method is not particularly limited, but it is preferable to apply using, for example, a die coater. If the solvent is dried too quickly, foaming occurs, causing the problem (2). As a countermeasure, a film having a smooth surface can be obtained by optimizing the drying temperature and time. In Examples described later, after preliminary drying on a hot plate at 80 ° C. for 30 minutes and 120 ° C. for 30 minutes, heating was performed at 350 ° C. for 1 hour in a hot air drying furnace. The heating conditions are not limited to the above process. Further, since foreign matter may cause surface roughness, manufacturing in a clean room is suitable as a countermeasure for (3).
 第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14b中のポリイミド樹脂の構造は特に制限されないが、下記式(1)で表される、テトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含むことが好ましい。なお、ポリイミド樹脂は、式(1)で表される繰り返し単位を主成分(全繰り返し単位に対して95モル%以上が好ましい)として含有することが好ましいが、それ以外の他の繰り返し単位(例えば、後述する式(2-1)または(2-2)で表される繰り返し単位)を含んでいてもよい。
 なお、テトラカルボン酸類の残基(X)とはテトラカルボン酸類からカルボキシ基を除いたテトラカルボン酸残基を意図し、ジアミン類の残基(A)とはジアミン類からアミノ基を除いたジアミン残基を意図する。
The structure of the polyimide resin in the first polyimide resin layer 14a and the second polyimide resin layer 14b is not particularly limited, but the residue of tetracarboxylic acids (X) and the residue of diamines represented by the following formula (1) It is preferable that the repeating unit which has (A) is included. In addition, although it is preferable that a polyimide resin contains the repeating unit represented by Formula (1) as a main component (95 mol% or more is preferable with respect to all the repeating units), other repeating units other than that (for example, And a repeating unit represented by the formula (2-1) or (2-2) described later.
The tetracarboxylic acid residue (X) is a tetracarboxylic acid residue obtained by removing a carboxy group from a tetracarboxylic acid, and the diamine residue (A) is a diamine obtained by removing an amino group from a diamine. Intended for residues.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Xはテトラカルボン酸類からカルボキシ基を除いたテトラカルボン酸残基を、Aはジアミン類からアミノ基を除いたジアミン残基を表す。 In formula (1), X represents a tetracarboxylic acid residue obtained by removing a carboxy group from tetracarboxylic acids, and A represents a diamine residue obtained by removing an amino group from diamines.
 式(1)中、Xはテトラカルボン酸類からカルボキシ基を除いたテトラカルボン酸残基を表し、以下の式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基を含むことが好ましい。なかでも、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの剥離性、または、第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの耐熱性がより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、Xの総数の50モル%以上(好ましくは、80~100モル%)が以下の式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基からなることがより好ましい。Xの総数の実質的に全数(100モル%)が以下の式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基からなることがさらに好ましい。
 また、Aはジアミン類からアミノ基を除いたジアミン残基を表し、以下の式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基を含むことが好ましい。なかでも、本発明の効果がより優れる点で、Aの総数の50モル%以上(好ましくは、80~100モル%)が以下の式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基からなることがより好ましい。Aの総数の実質的に全数(100モル%)が以下の式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基からなることがさらに好ましい。
In the formula (1), X represents a tetracarboxylic acid residue obtained by removing a carboxy group from tetracarboxylic acids, and at least one selected from the group consisting of groups represented by the following formulas (X1) to (X4) Preferably it contains a group. Among them, the peelability between the first polyimide resin layer 14a and the second polyimide resin layer 14b, or the heat resistance of the first polyimide resin layer 14a and the second polyimide resin layer 14b is more excellent (hereinafter simply referred to as “the present invention”). From the group consisting of groups represented by the following formulas (X1) to (X4): 50 mol% or more (preferably 80 to 100 mol%) of the total number of X More preferably, it comprises at least one selected group. More preferably, substantially all (100 mol%) of the total number of X is composed of at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4).
A represents a diamine residue obtained by removing an amino group from diamines, and preferably contains at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8). Among them, the group consisting of groups represented by the following formulas (A1) to (A8) in which 50 mol% or more (preferably 80 to 100 mol%) of the total number of A is more excellent in the effect of the present invention. More preferably, it comprises at least one group selected from: It is more preferable that substantially all (100 mol%) of the total number of A is composed of at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8).
 なお、本発明の効果がより優れる点で、Xの総数の80~100モル%が以下の式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基からなり、かつ、Aの総数の80~100モル%が以下の式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基からなることが好ましく、Xの総数の実質的に全数(100モル%)が以下の式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基からなり、かつ、Aの総数の実質的に全数(100モル%)が以下の式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基からなることがより好ましい。 From the standpoint of more excellent effects of the present invention, 80 to 100 mol% of the total number of X comprises at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4). In addition, it is preferable that 80 to 100 mol% of the total number of A is composed of at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8). In particular, the total number (100 mol%) is composed of at least one group selected from the group consisting of groups represented by the following formulas (X1) to (X4), and substantially the total number of A (100 More preferably, the mol%) comprises at least one group selected from the group consisting of groups represented by the following formulas (A1) to (A8).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 なかでも、本発明の効果がより優れる点で、Xとしては、式(X1)で表される基および式(X4)で表される基が好ましく、式(X1)で表される基がより好ましい。
 また、本発明の効果がより優れる点で、Aとしては、式(A1)で表される基および式(A6)で表される基が好ましく、式(A1)で表される基がより好ましい。
Among these, X is preferably a group represented by the formula (X1) and a group represented by the formula (X4), and more preferably a group represented by the formula (X1) in that the effect of the present invention is more excellent. preferable.
Further, as A, the group represented by the formula (A1) and the group represented by the formula (A6) are preferable, and the group represented by the formula (A1) is more preferable in that the effect of the present invention is more excellent. .
 式(X1)~(X4)で表される基と式(A1)~(A8)で表される基との好適な組み合わせからなるポリイミド樹脂としては、Xが式(X1)で表される基であり、Aが式(A1)で表される基であるポリイミド樹脂1、および、Xが式(X4)で表される基であり、Aが式(A6)で表される基であるポリイミド樹脂2が好ましく挙げられる。ポリイミド樹脂1の場合、耐熱性により優れる。また、ポリイミド樹脂2の場合、無色透明性の点で好ましい。 As a polyimide resin comprising a suitable combination of the groups represented by the formulas (X1) to (X4) and the groups represented by the formulas (A1) to (A8), X represents a group represented by the formula (X1) A polyimide resin 1 in which A is a group represented by the formula (A1), and a polyimide in which X is a group represented by the formula (X4) and A is a group represented by the formula (A6) Resin 2 is preferred. In the case of the polyimide resin 1, it is more excellent in heat resistance. Moreover, in the case of the polyimide resin 2, it is preferable at the point of colorless transparency.
 ポリイミド樹脂中における上記式(1)で表される繰り返し単位の繰り返し数(n)は特に制限されないが、2以上の整数であることが好ましく、第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの耐熱性および塗膜の成膜性の点で、10~10000が好ましく、15~1000がより好ましい。 The number of repeating units (n) represented by the above formula (1) in the polyimide resin is not particularly limited, but is preferably an integer of 2 or more, and the first polyimide resin layer 14a and the second polyimide resin layer 14b. In view of the heat resistance of the coating film and the film formability of the coating film, it is preferably 10 to 10,000, more preferably 15 to 1,000.
 上記ポリイミド樹脂は、耐熱性を損なわない範囲で、テトラカルボン酸類の残基(X)として、下記に例示される基からなる群から選ばれる1種以上を含んでいてもよい。また、下記に例示される基を2種以上含んでいてもよい。 The polyimide resin may contain at least one selected from the group consisting of the groups exemplified below as the residue (X) of the tetracarboxylic acids within a range that does not impair the heat resistance. Moreover, 2 or more types of groups illustrated below may be included.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、上記ポリイミド樹脂は、耐熱性を損なわない範囲で、ジアミン類の残基(A)として、下記に例示される基からなる群から選ばれる1種以上を含んでいてもよい。また、下記に例示される基を2種以上含んでいてもよい。 In addition, the polyimide resin may contain one or more selected from the group consisting of the groups exemplified below as the residue (A) of the diamine, as long as the heat resistance is not impaired. Moreover, 2 or more types of groups illustrated below may be included.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14b中におけるポリイミド樹脂の含有量は特に制限されないが、本発明の効果がより優れる点で、樹脂層全質量に対して、50~100質量%が好ましく、75~100質量%がより好ましく、90~100質量%がさらに好ましい。 The content of the polyimide resin in the first polyimide resin layer 14a and the second polyimide resin layer 14b is not particularly limited, but is 50 to 100% by mass with respect to the total mass of the resin layer in that the effect of the present invention is more excellent. Preferably, it is 75 to 100% by mass, more preferably 90 to 100% by mass.
 第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14b中には、必要に応じて、上記ポリイミド樹脂以外の他の成分(例えば、耐熱性を阻害しないフィラーなど)が含まれていてもよい。
 耐熱性を阻害しないフィラーとしては、繊維状の充填剤、ならびに、板状、鱗片状、粒状、不定形状、および破砕品など非繊維状の充填剤が挙げられ、具体的には例えば、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ほう酸アルミニウムウィスカー、窒化ケイ素ウィスカー、マイカ、タルク、カオリン、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、ワラステナイト、酸化チタン、酸化亜鉛、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、およびカーボンナノチューブなどが挙げられる。金属粉、金属フレーク、金属リボンおよび金属酸化物の金属種の具体例としては、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、および錫などが例示できる。
In the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b, other components (for example, the filler etc. which do not inhibit heat resistance) other than the said polyimide resin may be contained as needed.
Examples of fillers that do not impair heat resistance include fibrous fillers and non-fibrous fillers such as plate-like, scale-like, granular, indeterminate, and crushed products. Specifically, for example, glass fiber , PAN and pitch carbon fibers, stainless steel fibers, metal fibers such as aluminum fibers and brass fibers, gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, locks Wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, mica, talc, kaolin, silica, calcium carbonate, glass beads, glass flake, glass microballoon, clay, molybdenum disulfide, wollastonite, Titanium oxide, zinc oxide, polyri Calcium acid, graphite, metal powders, metal flakes, metal ribbons, metal oxides, carbon powder, graphite, carbon flake, scaly carbon, and and carbon nanotubes. Specific examples of the metal powder, metal flake, metal ribbon, and metal oxide metal species include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
 なお、第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bは、熱硬化によりポリイミド樹脂となる硬化性樹脂の層に、加熱処理を施すことにより形成されたポリイミド樹脂の層であることが好ましく、さらには、熱硬化により上記式(1)で表されるテトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含むポリイミド樹脂となる硬化性樹脂の層に、加熱処理を施すことにより形成されたポリイミド樹脂の層であることがより好ましい。なお、加熱処理は、温度を変えて、段階的に実施してもよい。
 第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの製造方法に関しては、後段のガラス積層体の製造方法において詳述する。
In addition, it is preferable that the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are layers of the polyimide resin formed by heat-processing to the layer of curable resin used as the polyimide resin by thermosetting, Furthermore, in the layer of the curable resin used as the polyimide resin containing the repeating unit which has the residue (X) of tetracarboxylic acids represented by the said Formula (1), and the residue (A) of diamines by thermosetting. More preferably, it is a polyimide resin layer formed by heat treatment. In addition, you may implement heat processing in steps, changing temperature.
The method for producing the first polyimide resin layer 14a and the second polyimide resin layer 14b will be described in detail in the method for producing a glass laminate at the subsequent stage.
[ガラス積層体の製造方法]
 本発明のガラス積層体10の製造方法としては、例えば、後述する硬化性樹脂を用いて支持基材12上に第1ポリイミド樹脂層14aを形成し、かつ、後述する硬化性樹脂を用いてガラス基板16上に第2ポリイミド樹脂層14bを形成し、その後、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとが接触するように、樹脂層付き支持基材18と、樹脂層付きガラス基板20とを積層して、ガラス積層体10を製造する。
 硬化性樹脂を支持基材12表面で硬化させると、硬化反応時の支持基材12表面との相互作用により第1ポリイミド樹脂層14aと支持基材12とが接着し、第1ポリイミド樹脂層14aと支持基材12表面との剥離強度は高くなると考えられる。また、硬化性樹脂をガラス基板16表面で硬化させる場合も同様である。
 以下、後述する硬化性樹脂を用いて支持基材12上に第1ポリイミド樹脂層14aを形成する工程を第1樹脂層形成工程、後述する硬化性樹脂層を用いてガラス基板16上に第2ポリイミド樹脂層14bを形成する工程を第2樹脂層形成工程、樹脂層付き支持基材18と樹脂層付きガラス基板20とを積層してガラス積層体10を得る工程を積層工程といい、各工程の手順について詳述する。
 なお、以下では、硬化性樹脂を用いた態様について詳述するが、これに限定されず、所定のポリイミド樹脂を支持基材12(またはガラス基板16)上に接触させ、必要に応じて、加熱処理を施すことにより、第1ポリイミド樹脂層14a(または第2ポリイミド樹脂層14b)を形成してもよい。特に、ポリイミド樹脂を溶媒に溶解させた溶液を使用する場合は、溶媒を揮発させるために、加熱処理を実施することが好ましい。該処理によって得られた樹脂層付き支持基材と樹脂層付きガラス基板とを用いて、後述する積層工程を実施してもよい。
[Method for producing glass laminate]
As a manufacturing method of the glass laminated body 10 of this invention, for example, the 1st polyimide resin layer 14a is formed on the support base material 12 using the curable resin mentioned later, and glass is used using the curable resin mentioned later. The second polyimide resin layer 14b is formed on the substrate 16, and then the support substrate 18 with the resin layer and the glass substrate with the resin layer so that the first polyimide resin layer 14a and the second polyimide resin layer 14b are in contact with each other. 20 is laminated | stacked and the glass laminated body 10 is manufactured.
When the curable resin is cured on the surface of the support substrate 12, the first polyimide resin layer 14a and the support substrate 12 are bonded to each other by the interaction with the surface of the support substrate 12 during the curing reaction, and the first polyimide resin layer 14a. It is thought that the peel strength between the support substrate 12 and the surface of the support substrate 12 increases. The same applies to the case where the curable resin is cured on the surface of the glass substrate 16.
Hereinafter, a step of forming the first polyimide resin layer 14a on the support base 12 using a curable resin described later is a first resin layer forming step, and a step of forming a second polyimide resin layer 14a on the glass substrate 16 using a curable resin layer described later. The step of forming the polyimide resin layer 14b is referred to as a second resin layer forming step, and the step of obtaining the glass laminate 10 by laminating the support substrate 18 with a resin layer and the glass substrate 20 with a resin layer is referred to as a lamination step. Will be described in detail.
In addition, below, although the aspect using curable resin is explained in full detail, it is not limited to this, A predetermined polyimide resin is made to contact on the support base material 12 (or glass substrate 16), and it heats as needed. You may form the 1st polyimide resin layer 14a (or 2nd polyimide resin layer 14b) by giving a process. In particular, when a solution in which a polyimide resin is dissolved in a solvent is used, it is preferable to perform heat treatment in order to volatilize the solvent. You may implement the lamination process mentioned later using the support base material with a resin layer and glass substrate with a resin layer which were obtained by this process.
(第1樹脂層形成工程)
 第1樹脂層形成工程は、支持基材上に形成された、熱硬化によりポリイミド樹脂となる硬化性樹脂の層に、加熱処理を施すことにより、ポリイミド樹脂の層を得る工程である。なお、上述したように、ポリイミド樹脂が、式(1)で表される、テトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含むことが好ましく、テトラカルボン酸類の残基(X)が上記式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基を含むことが好ましく、ジアミン類の残基(A)が上記式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基を含むことが好ましい。図2(A)に示すように、該工程では支持基材12の少なくとも片面の表面上に第1ポリイミド樹脂層14aが形成される。
 以下、樹脂層形成工程を、以下の2つの工程に分けて説明する。
工程(1):熱硬化により、上記式(1)で表される繰り返し単位を含むポリイミド樹脂となる硬化性樹脂を支持基材12上に塗布して、塗膜を得る工程
工程(2):塗膜に加熱処理を施し、第1ポリイミド樹脂層14aを形成する工程
 以下、それぞれの工程の手順について詳述する。
(First resin layer forming step)
A 1st resin layer formation process is a process of obtaining the layer of a polyimide resin by performing heat processing to the layer of curable resin which becomes a polyimide resin by thermosetting formed on the support base material. As described above, the polyimide resin preferably includes a repeating unit represented by the formula (1) and having a tetracarboxylic acid residue (X) and a diamine residue (A). It is preferable that the residue (X) of the carboxylic acid includes at least one group selected from the group consisting of the groups represented by the above formulas (X1) to (X4), and the residue (A) of the diamine is the above It preferably contains at least one group selected from the group consisting of groups represented by formulas (A1) to (A8). As shown in FIG. 2A, in this step, the first polyimide resin layer 14a is formed on the surface of at least one side of the support base 12.
Hereinafter, the resin layer forming step will be described by dividing it into the following two steps.
Step (1): Step (2) of applying a curable resin, which becomes a polyimide resin containing the repeating unit represented by the above formula (1), to the support substrate 12 by thermosetting to obtain a coating film: The process which heat-processes a coating film and forms the 1st polyimide resin layer 14a Hereinafter, the procedure of each process is explained in full detail.
(工程(1):塗膜形成工程)
 工程(1)は、熱硬化により上記式(1)で表される繰り返し単位を有するポリイミド樹脂となる硬化性樹脂を支持基材12上に塗布して、塗膜を得る工程である。
 なお、硬化性樹脂は、テトラカルボン酸二無水物とジアミン類とを反応させて得られるポリアミック酸を含むことが好ましく、テトラカルボン酸二無水物の少なくとも一部が下記式(Y1)~(Y4)で表される化合物からなる群から選択される少なくとも1種のテトラカルボン酸二無水物であることが好ましく、ジアミン類の少なくとも一部が下記式(B1)~(B8)で表される化合物からなる群から選択される少なくとも1種のジアミン類であることが好ましい。
(Process (1): Coating film forming process)
Step (1) is a step of obtaining a coating film by applying a curable resin, which becomes a polyimide resin having a repeating unit represented by the above formula (1), by thermosetting on the support substrate 12.
The curable resin preferably contains a polyamic acid obtained by reacting a tetracarboxylic dianhydride and a diamine, and at least a part of the tetracarboxylic dianhydride is represented by the following formulas (Y1) to (Y4). ) Is preferably at least one tetracarboxylic dianhydride selected from the group consisting of compounds represented by the following formulas, wherein at least part of the diamines is represented by the following formulas (B1) to (B8): It is preferably at least one diamine selected from the group consisting of
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なお、ポリアミック酸は、通常、以下式(2-1)および/または式(2-2)で表される繰り返し単位を含む構造式として表される。なお、式(2-1)および式(2-2)中、XおよびAの定義は、上述の通りである。 The polyamic acid is usually represented as a structural formula containing a repeating unit represented by the following formula (2-1) and / or formula (2-2). In the formulas (2-1) and (2-2), the definitions of X and A are as described above.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 テトラカルボン酸二無水物とジアミン類との反応条件は特に制限されず、ポリアミック酸を効率よく合成できる点で、-30~70℃で反応させることが好ましく、-20~40℃で反応させることがより好ましい。
 テトラカルボン酸二無水物とジアミン類との混合比率は特に制限されないが、ジアミン類1モルに対して、テトラカルボン酸二無水物を好ましくは0.66~1.5モル、より好ましくは0.9~1.1モル、さらに好ましくは0.97~1.03モル反応させる。
 テトラカルボン酸二無水物とジアミン類との反応の際には、必要に応じて、有機溶媒を使用してもよい。使用される有機溶媒の種類は特に制限されないが、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾ-ル、フェノ-ル、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノンなどが使用可能であり、2種以上を併用してもよい。
The reaction conditions of tetracarboxylic dianhydride and diamines are not particularly limited, and are preferably reacted at −30 to 70 ° C. and reacted at −20 to 40 ° C. from the viewpoint that polyamic acid can be efficiently synthesized. Is more preferable.
The mixing ratio of the tetracarboxylic dianhydride and the diamine is not particularly limited, but the tetracarboxylic dianhydride is preferably 0.66 to 1.5 mol, more preferably 0. 9 to 1.1 mol, more preferably 0.97 to 1.03 mol is reacted.
In the reaction of tetracarboxylic dianhydride and diamines, an organic solvent may be used as necessary. The type of organic solvent to be used is not particularly limited. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide N-methylcaprolactam, hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, Dioxane, γ-butyrolactone, dioxolane, cyclohexanone, cyclopentanone and the like can be used, and two or more kinds may be used in combination.
 上記反応の際には、必要に応じて、上記式(Y1)~(Y4)で表される化合物からなる群から選択されるテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物を併せて使用してもよい。
 また、上記反応の際には、必要に応じて、上記式(B1)~(B8)で表される化合物からなる群から選択されるジアミン類以外の他のジアミン類を併せて使用してもよい。
In the reaction, if necessary, other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride selected from the group consisting of the compounds represented by the above formulas (Y1) to (Y4) are added. You may use together.
In the above reaction, if necessary, other diamines other than diamines selected from the group consisting of the compounds represented by the above formulas (B1) to (B8) may be used together. Good.
 また、本工程において使用される硬化性樹脂は、上記テトラカルボン酸二無水物とジアミン類とを反応させて得られるポリアミック酸の他に、ポリアミック酸と反応し得るテトラカルボン酸二無水物またはジアミン類を含んでいてもよい。ポリアミック酸の他に、テトラカルボン酸二無水物またはジアミン類を添加すると、式(2-1)または式(2-2)で表わされる繰り返し単位を有する2以上のポリアミック酸分子をテトラカルボン酸二無水物またはジアミン類を介して結合させることができる。
 ポリアミック酸の末端にアミノ基を有する場合は、テトラカルボン酸二無水物を添加してよく、ポリアミック酸の1モルに対して、カルボキシル基が0.9~1.1モルとなるように添加してよい。ポリアミック酸の末端にカルボキシル基を有する場合は、ジアミン類を添加してよく、ポリアミック酸の1モルに対し、アミノ基が0.9~1.1モルとなるように添加してよい。なお、ポリアミック酸の末端にカルボキシル基を有する場合、酸末端は水または任意のアルコールを加えて末端の酸無水物基を開環させたものを用いてもよい。
 後から添加するテトラカルボン酸二無水物は、式(Y1)~(Y4)で表される化合物であることがより好ましい。後から添加するジアミン類は芳香環を有するジアミン類が好ましく、式(B1)~(B8)で表される化合物であることがより好ましい。
 テトラカルボン酸二無水物類またはジアミン類を後から添加する場合、式(2-1)または式(2-2)で表される繰り返し単位を有するポリアミック酸の重合度(n)は1~20が好ましい。重合度(n)がこの範囲であると、硬化性樹脂の溶液中のポリアミック酸濃度を30質量%以上としても硬化性樹脂の溶液を低粘度にできる。
In addition to the polyamic acid obtained by reacting the tetracarboxylic dianhydride and diamine, the curable resin used in this step is a tetracarboxylic dianhydride or diamine that can react with the polyamic acid. May also be included. When tetracarboxylic dianhydride or diamine is added in addition to polyamic acid, two or more polyamic acid molecules having a repeating unit represented by formula (2-1) or formula (2-2) are converted to tetracarboxylic acid diacid. It can be coupled via anhydrides or diamines.
In the case of having an amino group at the terminal of the polyamic acid, tetracarboxylic dianhydride may be added, and added so that the carboxyl group is 0.9 to 1.1 mol with respect to 1 mol of the polyamic acid. It's okay. In the case of having a carboxyl group at the terminal of the polyamic acid, a diamine may be added, and the amino group may be added in an amount of 0.9 to 1.1 mol with respect to 1 mol of the polyamic acid. In addition, when it has a carboxyl group at the terminal of polyamic acid, the acid terminal may be obtained by adding water or any alcohol to open the terminal acid anhydride group.
The tetracarboxylic dianhydride to be added later is more preferably a compound represented by the formulas (Y1) to (Y4). The diamines to be added later are preferably diamines having an aromatic ring, and more preferably compounds represented by the formulas (B1) to (B8).
When tetracarboxylic dianhydrides or diamines are added later, the polymerization degree (n) of the polyamic acid having a repeating unit represented by the formula (2-1) or the formula (2-2) is 1 to 20 Is preferred. When the polymerization degree (n) is within this range, the viscosity of the curable resin solution can be reduced even if the polyamic acid concentration in the curable resin solution is 30% by mass or more.
 本工程では、硬化性樹脂以外の成分を使用してもよい。
 例えば、溶媒を用いてもよい。より具体的には、硬化性樹脂を溶媒に溶解させ、硬化性樹脂の溶液(硬化性樹脂溶液)として用いてもよい。溶媒としては、特にポリアミック酸の溶解性の点から、有機溶媒が好ましい。使用される有機溶媒としては、上述した反応の際に使用される有機溶媒が挙げられる。
 なお、硬化性樹脂溶液中に有機溶媒が含まれる場合、塗膜の厚みの調整、塗布性が良好にできる量であれば、有機溶媒の含有量は特に制限されないが、一般的に硬化性樹脂溶液全質量に対して、5~95質量%が好ましく、10~90質量%がより好ましい。
 また、必要に応じて、ポリアミック酸の脱水閉環を促進するための脱水剤または脱水閉環触媒を合わせて使用してもよい。脱水剤としては、例えば、無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。また、脱水閉環触媒としては、例えば、ピリジン、コリジン、ルチジン、トリエチルアミンなどの3級アミンを用いることができる。
 また、上述の耐熱性を阻害しないフィラーを含ませてもよい。
In this step, components other than the curable resin may be used.
For example, a solvent may be used. More specifically, the curable resin may be dissolved in a solvent and used as a curable resin solution (curable resin solution). As the solvent, an organic solvent is particularly preferable from the viewpoint of the solubility of the polyamic acid. As an organic solvent used, the organic solvent used in the case of the reaction mentioned above is mentioned.
In addition, when the organic solvent is contained in the curable resin solution, the content of the organic solvent is not particularly limited as long as the thickness of the coating film can be adjusted and the coating property can be improved. 5 to 95% by mass is preferable with respect to the total mass of the solution, and 10 to 90% by mass is more preferable.
Further, if necessary, a dehydrating agent or a dehydrating ring closure catalyst for promoting dehydration ring closure of the polyamic acid may be used together. As the dehydrating agent, for example, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used. Moreover, as a dehydration ring closure catalyst, tertiary amines, such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example.
Moreover, you may include the filler which does not inhibit the above-mentioned heat resistance.
 支持基材12表面上に硬化性樹脂(または硬化性樹脂溶液)を塗布する方法は特に限定されず、公知の方法を使用することができる。例えば、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法などが挙げられる。
 上記処理により得られる塗膜の厚みは特に制限されず、上述した所望の厚みの第1ポリイミド樹脂層14aが得られるように適宜調整される。
The method for applying the curable resin (or curable resin solution) on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
The thickness of the coating film obtained by the above treatment is not particularly limited, and is appropriately adjusted so that the first polyimide resin layer 14a having the desired thickness described above can be obtained.
(工程(2):加熱処理工程)
 工程(2)は、塗膜に加熱処理を施し、第1ポリイミド樹脂層14aを形成する工程である。本工程を実施することにより、例えば、硬化性樹脂に含まれるポリアミック酸の閉環反応が進行し、所望の樹脂層が形成される。
 加熱処理の方法は特に制限されず、公知の方法(例えば、塗膜付き支持基材を加熱オーブン中に静置して加熱する方法)が適宜使用される。
 加熱温度は特に制限されないが、250℃以上500℃以下であることが好ましく、残留溶媒率が低くなると共に、イミド化率がより上昇し、本発明の効果がより優れる点で、300~450℃がより好ましい。
 加熱時間は特に制限されず、使用される硬化性樹脂の構造により適宜最適な時間が選択されるが、残留溶媒率が低くなると共に、イミド化率がより上昇し、本発明の効果がより優れる点で、15~120分が好ましく、30~60分がより好ましい。
 加熱の雰囲気は特に制限されず、例えば、大気中下、真空下または不活性ガス下にて実施される。
 なお、加熱処理は、異なる温度で段階的に実施してもよい。
 なお、上記加熱温度での処理の前に、必要に応じて、塗膜中の揮発成分(溶媒)を除去するための乾燥加熱処理を実施してもよい。乾燥加熱処理の温度条件は特に制限されないが、本発明の効果がより優れる点で、40℃~200℃での加熱処理が好ましい。また、乾燥時間は特に制限されず、本発明の効果がより優れる点で、15~120分が好ましく、30~60分がより好ましい。なお、乾燥加熱処理は、異なる温度で段階的に実施してもよい。
 よって、本工程(2)の好適態様の一つとしては、上記温度での乾燥加熱処理を実施した後、上記250℃以上500℃以下での加熱処理をさらに実施する態様が挙げられる。
(Process (2): Heat treatment process)
Step (2) is a step of forming the first polyimide resin layer 14a by subjecting the coating film to heat treatment. By carrying out this step, for example, a ring closing reaction of polyamic acid contained in the curable resin proceeds, and a desired resin layer is formed.
The method for the heat treatment is not particularly limited, and a known method (for example, a method in which a support substrate with a coating film is left standing in a heating oven and heated) is appropriately used.
The heating temperature is not particularly limited, but is preferably 250 ° C. or higher and 500 ° C. or lower. The residual solvent ratio is lowered, the imidization ratio is further increased, and the effect of the present invention is further improved. Is more preferable.
The heating time is not particularly limited, and an optimal time is appropriately selected depending on the structure of the curable resin to be used. However, the residual solvent ratio is lowered, the imidization ratio is further increased, and the effect of the present invention is further improved. In this respect, 15 to 120 minutes are preferable, and 30 to 60 minutes are more preferable.
The heating atmosphere is not particularly limited, and is performed, for example, in the air, under vacuum, or under an inert gas.
Note that the heat treatment may be performed stepwise at different temperatures.
In addition, you may implement the drying heat processing for removing the volatile component (solvent) in a coating film before the process at the said heating temperature as needed. The temperature condition of the drying heat treatment is not particularly limited, but the heat treatment at 40 ° C. to 200 ° C. is preferable in that the effect of the present invention is more excellent. Further, the drying time is not particularly limited, and is preferably 15 to 120 minutes, more preferably 30 to 60 minutes, from the viewpoint that the effect of the present invention is more excellent. Note that the drying heat treatment may be performed stepwise at different temperatures.
Therefore, as one preferred embodiment of this step (2), there is an embodiment in which after the drying heat treatment at the above temperature is carried out, the above heat treatment at 250 ° C. or more and 500 ° C. or less is further carried out.
 上記工程(2)を経ることにより、ポリイミド樹脂を含む第1ポリイミド樹脂層14aが形成される。
 ポリイミド樹脂のイミド化率は特に制限されないが、本発明の効果がより優れる点で、99.0%以上が好ましく、99.5%以上がより好ましい。
 イミド化率の測定方法は、以下の通りである。硬化性樹脂を窒素雰囲気下で350℃において2時間加熱した場合を100%のイミド化率として、硬化性樹脂のIRによるスペクトルにおいて加熱処理前後で不変のピーク強度(例えば、ベンゼン環由来のピーク:約1500cm-1)に対する、イミドカルボニル基由来のピーク:約1780cm-1のピーク強度の強度比によりイミド化率を求める。
By passing through the said process (2), the 1st polyimide resin layer 14a containing a polyimide resin is formed.
Although the imidation ratio of a polyimide resin is not particularly limited, it is preferably 99.0% or more and more preferably 99.5% or more in terms of more excellent effects of the present invention.
The method for measuring the imidization rate is as follows. When the curable resin is heated at 350 ° C. for 2 hours in a nitrogen atmosphere, the imidization rate is 100%, and the peak intensity that remains unchanged before and after the heat treatment in the IR spectrum of the curable resin (for example, a peak derived from a benzene ring: for about 1500 cm -1), a peak derived from the imide carbonyl group: obtaining the imidization ratio by the intensity ratio of a peak intensity of about 1780 cm -1.
(第2樹脂層形成工程)
 第2樹脂層形成工程は、ガラス基板上に形成された、熱硬化によりポリイミド樹脂となる硬化性樹脂の層に、加熱処理を施すことにより、第2ポリイミド樹脂の層を得る工程である。なお、上述したように、ポリイミド樹脂が、式(1)で表される、テトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含むことが好ましい。本工程においては、上述した第1樹脂層形成工程と同様の手順(塗膜形成工程および加熱処理工程)を実施することにより、図2(B)に示すように、ガラス基板16の少なくとも片面上に第2ポリイミド樹脂層14bが形成される。
(Second resin layer forming step)
The second resin layer forming step is a step of obtaining a second polyimide resin layer by performing heat treatment on the curable resin layer that is formed on the glass substrate and becomes a polyimide resin by thermosetting. In addition, as above-mentioned, it is preferable that a polyimide resin contains the repeating unit which has the residue (X) of tetracarboxylic acids and the residue (A) of diamine represented by Formula (1). In this step, by performing the same procedure as the first resin layer forming step described above (the coating film forming step and the heat treatment step), as shown in FIG. 2B, at least on one side of the glass substrate 16 The second polyimide resin layer 14b is formed.
(積層工程)
 積層工程は、上記の第1樹脂層形成工程で得られた樹脂層付き支持基材18と、第2樹脂層形成工程で得られた樹脂層付きガラス基板20とを積層し、支持基材12、第1ポリイミド樹脂層14a、第2ポリイミド樹脂層14b、およびガラス基板16をこの順で備えるガラス積層体10を得る工程である。より具体的には、図2(C)に示すように、第1ポリイミド樹脂層14aの支持基材12側とは反対側の表面114aと、第2ポリイミド樹脂層14bのガラス基板16側とは反対側の表面114bとを積層面として、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとを積層し、ガラス積層体10を得る。
(Lamination process)
In the laminating step, the supporting substrate 18 with a resin layer obtained in the first resin layer forming step and the glass substrate 20 with a resin layer obtained in the second resin layer forming step are laminated to form a supporting substrate 12. In this step, the glass laminate 10 including the first polyimide resin layer 14a, the second polyimide resin layer 14b, and the glass substrate 16 in this order is obtained. More specifically, as shown in FIG. 2C, the surface 114a of the first polyimide resin layer 14a opposite to the support base 12 side and the glass substrate 16 side of the second polyimide resin layer 14b are The first polyimide resin layer 14a and the second polyimide resin layer 14b are laminated using the opposite surface 114b as a lamination surface to obtain the glass laminate 10.
 樹脂層付き支持基材18と樹脂層付きガラス基板20とを積層する方法は特に制限されず、公知の方法を採用することができる。
 例えば、常圧環境下で樹脂層付き支持基材18中の第1ポリイミド樹脂層14aの表面上に、樹脂層付きガラス基板20中の第2ポリイミド樹脂層14bを重ねる方法が挙げられる。なお、必要に応じて、樹脂層付き支持基材18と樹脂層付きガラス基板20とを重ねた後、ロールやプレスを用いて第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとを圧着させてもよい。ロールまたはプレスによる圧着により、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの間に混入している気泡が比較的容易に除去されるので好ましい。
The method in particular of laminating | stacking the support base material 18 with a resin layer and the glass substrate 20 with a resin layer is not restrict | limited, A well-known method is employable.
For example, the method of superimposing the 2nd polyimide resin layer 14b in the glass substrate 20 with a resin layer on the surface of the 1st polyimide resin layer 14a in the support base material 18 with a resin layer under a normal pressure environment is mentioned. In addition, after overlapping the support base material 18 with a resin layer, and the glass substrate 20 with a resin layer as needed, the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b are crimped | bonded using a roll or a press. May be. It is preferable because air bubbles mixed between the first polyimide resin layer 14a and the second polyimide resin layer 14b are relatively easily removed by pressure bonding using a roll or a press.
 真空ラミネート法や真空プレス法により第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとを圧着すると、気泡の混入の抑制や良好な密着の確保が行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ガラス基板16のゆがみ欠陥につながりにくいという利点もある。また、真空加熱下で圧着することで、より気泡が残存しにくい。 When the first polyimide resin layer 14a and the second polyimide resin layer 14b are pressure-bonded by a vacuum laminating method or a vacuum press method, it is more preferable because it is possible to suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate 16. Moreover, bubbles are less likely to remain by pressure bonding under vacuum heating.
 樹脂層付き支持基材18と樹脂層付きガラス基板20とを積層する際には、第1ポリイミド樹脂層14aの表面114aおよび第2ポリイミド樹脂層14bの表面114bを十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほど、ガラス基板16の平坦性は良好となるので好ましい。 When laminating the support substrate 18 with a resin layer and the glass substrate 20 with a resin layer, the surface 114a of the first polyimide resin layer 14a and the surface 114b of the second polyimide resin layer 14b are sufficiently washed, It is preferable to laminate in a high environment. The higher the degree of cleanliness, the better the flatness of the glass substrate 16, which is preferable.
 なお、樹脂層付き支持基材18と樹脂層付きガラス基板20とを積層した後、必要に応じて、プレアニール処理(加熱処理)を行ってもよい。該プレアニール処理を行うことにより、積層された樹脂層付き支持基材18と樹脂層付きガラス基板20との密着性が向上し、適切な剥離強度とすることができ、後述する部材形成工程の際に電子デバイス用部材の位置ずれなどが生じにくくなり、電子デバイスの生産性が向上する。
 プレアニール処理の条件は使用される第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの材料の種類に応じて適宜最適な条件が選択されるが、200℃以上(好ましくは、200~400℃)で5分間以上(好ましくは、5~30分間)加熱処理を行うことが好ましい。
In addition, after laminating | stacking the support base material 18 with a resin layer, and the glass substrate 20 with a resin layer, you may perform a pre-annealing process (heating process) as needed. By performing the pre-annealing treatment, the adhesion between the laminated support substrate 18 with a resin layer and the glass substrate 20 with a resin layer can be improved, and an appropriate peel strength can be obtained. In addition, the position of the electronic device member is not easily displaced, and the productivity of the electronic device is improved.
The conditions for the pre-annealing treatment are appropriately selected according to the types of materials used for the first polyimide resin layer 14a and the second polyimide resin layer 14b, but are 200 ° C. or higher (preferably 200 to 400 ° C.). For 5 minutes or more (preferably 5 to 30 minutes).
(ガラス積層体)
 本発明のガラス積層体10は、種々の用途に使用することができ、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、ガラス積層体10が高温条件(例えば、400℃以上)に曝される(例えば、1時間以上)場合が多い。
 ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、プラズマディスプレイパネル、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(Micro Electro Mechanical Systems)シャッターパネル等が含まれる。
(Glass laminate)
The glass laminate 10 of the present invention can be used for various applications, for example, manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface, which will be described later. The use to do is mentioned. In this application, the glass laminate 10 is often exposed to a high temperature condition (for example, 400 ° C. or more) (for example, 1 hour or more).
Here, the display device panel includes LCD, OLED, electronic paper, plasma display panel, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
[電子デバイスおよびその製造方法]
 本発明においては、上述した積層体を用いて、第2ポリイミド樹脂層とガラス基板と電子デバイス用部材とを含む部材付きガラス基板(電子デバイス)が製造される。
 該電子デバイスの製造方法は特に限定されないが、電子デバイスの生産性に優れる点から、上記ガラス積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造し、得られた電子デバイス用部材付き積層体を、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面を剥離面として、電子デバイスと樹脂層付き支持基材とに分離する方法が好ましい。
 以下、上記ガラス積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造する工程を部材形成工程、電子デバイス用部材付き積層体を第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面を剥離面として電子デバイスと樹脂層付き支持基材とに分離する工程を分離工程という。
 以下に、各工程で使用される材料および手順について詳述する。
[Electronic device and manufacturing method thereof]
In this invention, the glass substrate with a member (electronic device) containing a 2nd polyimide resin layer, a glass substrate, and the member for electronic devices is manufactured using the laminated body mentioned above.
The method for producing the electronic device is not particularly limited, but from the viewpoint of excellent productivity of the electronic device, an electronic device member is formed on the glass substrate in the glass laminate to produce a laminate with the electronic device member. A method of separating the obtained laminate with a member for an electronic device into an electronic device and a supporting substrate with a resin layer by using the interface between the first polyimide resin layer and the second polyimide resin layer as a release surface is preferable.
Hereinafter, the step of forming a member for an electronic device on the glass substrate in the glass laminate and manufacturing the laminate with the member for an electronic device is a member forming step, and the laminate with the member for an electronic device is the first polyimide resin layer A process of separating the electronic device and the support substrate with a resin layer using the interface with the second polyimide resin layer as a release surface is referred to as a separation process.
The materials and procedures used in each process are described in detail below.
(部材形成工程)
 部材形成工程は、上記積層工程において得られたガラス積層体10中のガラス基板16上に電子デバイス用部材を形成する工程である。より具体的には、図2(D)に示すように、ガラス基板16の第2主面16b(露出表面)上に電子デバイス用部材22を形成し、電子デバイス用部材付き積層体24を得る。
 まず、本工程で使用される電子デバイス用部材22について詳述し、その後工程の手順について詳述する。
(Member formation process)
A member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 10 obtained in the said lamination process. More specifically, as shown in FIG. 2D, the electronic device member 22 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain a laminate 24 with the electronic device member. .
First, the electronic device member 22 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(電子デバイス用部材(機能性素子))
 電子デバイス用部材22は、ガラス積層体10中のガラス基板16上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材22としては、表示装置用パネル、太陽電池、薄膜2次電池、または、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材(例えば、表示装置用部材、太陽電池用部材、薄膜2次電池用部材、電子部品用回路)が挙げられる。
(Electronic device components (functional elements))
The electronic device member 22 is a member that is formed on the glass substrate 16 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, as the electronic device member 22, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on its surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
 例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用回路としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a circuit for an electronic component, in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(工程の手順)
 上述した電子デバイス用部材付き積層体24の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス積層体10のガラス基板16の第2主面16b上に、電子デバイス用部材22を形成する。
 なお、電子デバイス用部材22は、ガラス基板16の第2主面16bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。なお、部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。
 また、全部材付き積層体を組み立て、その後、全部材付き積層体から樹脂層付き支持基材18を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて電子デバイスを組み立て、その後、全部材付き積層体から2枚の樹脂層付き支持基材18を剥離して、2枚のガラス基板を有する電子デバイスを製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 24 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 16 of the glass laminated body 10 is used. The electronic device member 22 is formed on the surface 16b.
The electronic device member 22 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all the members (hereinafter referred to as “parts”). May be referred to as a member. In addition, a glass substrate with a partial member can also be used as a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps.
Moreover, an electronic device can also be manufactured by assembling a laminate with all members, and then peeling the support substrate 18 with a resin layer from the laminate with all members. Further, an electronic device is assembled using two laminates with all members, and then the two support bases 18 with a resin layer are peeled off from the laminate with all members to obtain an electronic device having two glass substrates. It can also be manufactured.
 例えば、OLEDを製造する場合を例にとると、ガラス積層体10のガラス基板16の第2ポリイミド樹脂層14b側とは反対側の表面上(ガラス基板16の第2主面16bに該当)に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, taking the case of manufacturing an OLED as an example, on the surface of the glass laminate 10 opposite to the second polyimide resin layer 14b side of the glass substrate 16 (corresponding to the second main surface 16b of the glass substrate 16). In order to form an organic EL structure, a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, and a back electrode is formed. Various layers are formed and processed, such as sealing with a sealing plate. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
 また、例えば、TFT-LCDを製造する場合は、ガラス積層体10のガラス基板16の第2主面16b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体10のガラス基板16の第2主面16b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT形成工程で得られたTFT付き積層体とCF形成工程で得られたCF付き積層体とを積層する貼合わせ工程等の各種工程を有する。 Further, for example, when manufacturing a TFT-LCD, a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 10 by a general film forming method such as a CVD method or a sputtering method. A TFT forming step of forming a thin film transistor (TFT) by patterning the formed metal film, metal oxide film, etc., and patterning a resist solution on the second main surface 16b of the glass substrate 16 of another glass laminate 10 Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板16の第2主面16bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
 なお、TFTやCFを形成する前に、必要に応じて、ガラス基板16の第2主面16bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 16b of the glass substrate 16 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
 貼合わせ工程では、TFT付き積層体の薄膜トランジスタ形成面と、CF付き積層体のカラーフィルタ形成面とを対向させて、シール剤(例えば、セル形成用紫外線硬化型シール剤)を用いて貼り合わせる。その後、TFT付き積層体とCF付き積層体とで形成されたセル内に、液晶材を注入する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the laminating step, the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation). Thereafter, a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
(分離工程)
 分離工程は、図2(E)に示すように、上記部材形成工程で得られた電子デバイス用部材付き積層体24を、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面を剥離面として、電子デバイス用部材22が積層された樹脂層付きガラス基板20(電子デバイス26)と、樹脂層付き支持基材18とに分離して、第2ポリイミド樹脂層14b、ガラス基板16および電子デバイス用部材22を含む部材付きガラス基板(電子デバイス26)を得る工程である。
 剥離時のガラス基板16上の電子デバイス用部材22が必要な全構成部材の一部である場合には、分離後、残りの構成部材をガラス基板16上に形成することもできる。
(Separation process)
In the separation step, as shown in FIG. 2E, the interface 24 between the first polyimide resin layer 14a and the second polyimide resin layer 14b is peeled off from the laminate 24 with the electronic device member obtained in the member forming step. The surface is separated into a glass substrate 20 with a resin layer (electronic device 26) on which the electronic device member 22 is laminated and a support base material 18 with a resin layer, and the second polyimide resin layer 14b, the glass substrate 16 and the electrons are separated. In this step, a glass substrate with a member (electronic device 26) including the device member 22 is obtained.
When the electronic device member 22 on the glass substrate 16 at the time of peeling is a part of all necessary constituent members, the remaining constituent members can be formed on the glass substrate 16 after separation.
 電子デバイス26と樹脂層付き支持基材18とを剥離する方法は、特に限定されない。具体的には、例えば、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面に鋭利な刃物状のもの(つめ)を差し込み、剥離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。好ましくは、電子デバイス用部材付き積層体24の支持基材12が上側、電子デバイス用部材22側が下側となるように定盤上に設置し、電子デバイス用部材22側を定盤上に真空吸着し、この状態でまず刃物を第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面に侵入させる。そして、その後に支持基材12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面へ空気層が形成され、その空気層が界面全面に広がり、樹脂層付き支持基材18を容易に剥離することができる。なお、両面に支持基材が積層されている場合は順次剥離を行う。
 また、樹脂層付き支持基材18は、新たなガラス基板と積層して、本発明のガラス積層体10を製造することができる。
 なお、電子デバイス26と樹脂層付き支持基材18とを剥離する際には、第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとの界面に剥離助剤を吹き付けながら剥離することが好ましい。剥離助剤とは、上述した水などの溶媒を意図する。使用される剥離助剤としては、水や有機溶媒(例えば、エタノール)などまたはそれらの混合物などが挙げられる。また、剥離された電子デバイス26裏面に形成された第2ポリイミド樹脂層は、水洗などの処理により除去することが可能である。LCD等高い光線透過率が必要な場合には、剥離後に第2ポリイミド樹脂層を除去することが望ましい。
The method of peeling the electronic device 26 and the support base material 18 with a resin layer is not specifically limited. Specifically, for example, a sharp blade-like object (claw) is inserted into the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b to give an opportunity for separation, and then water, compressed air, The mixed fluid can be sprayed or peeled off. Preferably, the electronic device member-attached laminate 24 is placed on the surface plate so that the support base material 12 is on the upper side and the electronic device member 22 side is on the lower side, and the electronic device member 22 side is vacuumed on the surface plate. In this state, the blade first enters the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of the 1st polyimide resin layer 14a and the 2nd polyimide resin layer 14b, the air layer will spread over the interface whole surface, and the support substrate 18 with a resin layer can be peeled easily. In addition, when a support base material is laminated | stacked on both surfaces, it peels one by one.
Moreover, the support base material 18 with a resin layer can be laminated | stacked with a new glass substrate, and the glass laminated body 10 of this invention can be manufactured.
In addition, when peeling the electronic device 26 and the support base material 18 with a resin layer, it is preferable to peel while spraying a peeling aid on the interface between the first polyimide resin layer 14a and the second polyimide resin layer 14b. The peeling aid intends a solvent such as water described above. Examples of the peeling aid used include water, an organic solvent (for example, ethanol), and a mixture thereof. Further, the second polyimide resin layer formed on the back surface of the peeled electronic device 26 can be removed by a treatment such as washing with water. When high light transmittance such as LCD is required, it is desirable to remove the second polyimide resin layer after peeling.
 なお、電子デバイス用部材付き積層体24から電子デバイス26を分離する際においては、イオナイザによる吹き付けや湿度を制御することにより、第1ポリイミド樹脂層14aおよび第2ポリイミド樹脂層14bの欠片が電子デバイス26に静電吸着することをより抑制することができる。 When the electronic device 26 is separated from the electronic device member-attached laminate 24, the fragments of the first polyimide resin layer 14a and the second polyimide resin layer 14b are removed by controlling the spraying and humidity with an ionizer. 26 can be further suppressed from being electrostatically adsorbed.
 上述した電子デバイス26の製造方法は、携帯電話やPDAのようなモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用することができる。 The above-described method for manufacturing the electronic device 26 is suitable for manufacturing a small display device used in a mobile terminal such as a mobile phone or a PDA. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, the present invention can be applied to both passive drive type and active drive type display devices.
 上記方法で製造された電子デバイス26としては、ガラス基板と表示装置用部材を有する表示装置用パネル、ガラス基板と太陽電池用部材を有する太陽電池、ガラス基板と薄膜2次電池用部材を有する薄膜2次電池、ガラス基板と電子デバイス用部材を有する電子部品などが挙げられる。表示装置用パネルとしては、液晶パネル、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネルなどを含む。 As the electronic device 26 manufactured by the above method, a display device panel having a glass substrate and a display device member, a solar cell having a glass substrate and a solar cell member, and a thin film having a glass substrate and a thin film secondary battery member. Examples thereof include a secondary battery, an electronic component having a glass substrate and an electronic device member. Examples of the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
 以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 以下の実施例および比較例では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(縦200mm、横200mm、板厚0.1mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。また、支持基材としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(縦200mm、横200mm、板厚0.5mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In the following Examples and Comparative Examples, a glass plate made of non-alkali borosilicate glass (length 200 mm, width 200 mm, plate thickness 0.1 mm, linear expansion coefficient 38 × 10 −7 / ° C., manufactured by Asahi Glass Co., Ltd.) The name “AN100”) was used. Further, as a supporting base material, a glass plate made of an alkali-free borosilicate glass (length 200 mm, width 200 mm, plate thickness 0.5 mm, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd. )It was used.
<製造例1>
 パラフェニレンジアミン(10.8g,0.1モル)をN,N-ジメチルアセトアミド(198.6g)に溶解させ、室温下で攪拌した。これに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)(29.4g,0.1ミリモル)を1分間かけて加え、室温下2時間攪拌し、上記式(2-1)および/または式(2-2)で表される繰り返し単位を有するポリアミック酸を含む固形分濃度20質量%のポリアミック酸溶液(P1)を得た。この溶液の粘度を測定したところ、20℃で3000ポイズであった。
 粘度は、(株)トキメック社製、DVL-BII型デジタル粘度計(B型粘度計)を用い、20℃における回転粘度を測定したものである。
 なお、ポリアミック酸中に含まれる式(2-1)および/または式(2-2)で表される繰り返し単位中のXは(X1)で表される基、Aは式(A1)で表される基であった。
<Production Example 1>
Paraphenylenediamine (10.8 g, 0.1 mol) was dissolved in N, N-dimethylacetamide (198.6 g) and stirred at room temperature. To this, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) (29.4 g, 0.1 mmol) was added over 1 minute, and the mixture was stirred at room temperature for 2 hours. -1) and / or a polyamic acid solution (P1) having a solid content concentration of 20% by mass containing a polyamic acid having a repeating unit represented by the formula (2-2) was obtained. When the viscosity of this solution was measured, it was 3000 poise at 20 ° C.
The viscosity is measured by measuring the rotational viscosity at 20 ° C. using a DVL-BII type digital viscometer (B type viscometer) manufactured by Tokimec Co., Ltd.
In the repeating unit represented by the formula (2-1) and / or formula (2-2) contained in the polyamic acid, X is a group represented by (X1), and A is represented by the formula (A1). It was a group.
<製造例2>
 9,9-ビス(4-アミノフェニル)フルオレン(35g,0.1モル)、溶剤としてγ-ブチロラクトン(69.3g)、および、N,N-ジメチルアセトアミド(140g)を混合して溶解させ、室温下で撹拌した。これに、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(22.5g,0.1モル)を1分間かけて加え、室温下2時間攪拌し、固形分濃度20質量%のポリアミック酸溶液Yを得た。この溶液の粘度を測定したところ、20℃で3300ポイズであった。
 なお、ポリアミック酸中に含まれる式(2-1)および/または式(2-2)で表される繰り返し単位中のXは式(X4)で表される基、Aは式(A6)で表される基であった。
<Production Example 2>
9,9-bis (4-aminophenyl) fluorene (35 g, 0.1 mol), γ-butyrolactone (69.3 g) as a solvent, and N, N-dimethylacetamide (140 g) were mixed and dissolved. Stir at room temperature. To this was added 1,2,4,5-cyclohexanetetracarboxylic dianhydride (22.5 g, 0.1 mol) over 1 minute, and the mixture was stirred at room temperature for 2 hours to give a polyamic acid having a solid content of 20% by mass. An acid solution Y was obtained. When the viscosity of this solution was measured, it was 3300 poise at 20 ° C.
X in the repeating unit represented by the formula (2-1) and / or formula (2-2) contained in the polyamic acid is a group represented by the formula (X4), and A is a formula (A6). The group represented.
 次に、ポリアミック酸溶液Yに、イミド化触媒として卜リエチルアミン(0.51g,0.005モル)を一括で添加した。滴下終了後、180℃に昇温し、随時留出液を留去させながら5時間還流を行い反応終了とし、内温が120℃になるまで空冷した後、希釈溶剤としてN,N-ジメチルアセ卜アミド(130.7g)を加え、撹梓しながら冷却し、固形分濃度20質量%の脂環式ポリイミド樹脂溶液(P2)を得た。 Next, triethylamine (0.51 g, 0.005 mol) was added to the polyamic acid solution Y as an imidization catalyst all at once. After completion of the dropwise addition, the temperature was raised to 180 ° C., refluxed for 5 hours while distilling off the distillate as needed. Amide (130.7 g) was added and cooled with stirring to obtain an alicyclic polyimide resin solution (P2) having a solid concentration of 20% by mass.
<製造例3:シリコーン溶液(P3)の製造>
 1,1,3,3-テトラメチルジシロキサン(5.4g)、テトラメチルシクロテトラシロキサン(96.2g)、オクタメチルシクロテトラシロキサン(118.6g)の混合物を5℃に冷却し、撹拌しながら濃硫酸(11.0g)をゆっくり加えた後、さらに水(3.3g)を1時間かけて滴下した。温度を10~20℃に保ちながら8時間撹拌した後トルエンを加え、シロキサン層が中性になるまで水洗および廃酸分離を行った。中性になったシロキサン層を減圧加熱濃縮してトルエン等の低沸点留分を除去し、下記式(3)において、k=40、l=40のオルガノハイドロジェンシロキサンAを得た。
<Production Example 3: Production of silicone solution (P3)>
A mixture of 1,1,3,3-tetramethyldisiloxane (5.4 g), tetramethylcyclotetrasiloxane (96.2 g) and octamethylcyclotetrasiloxane (118.6 g) was cooled to 5 ° C. and stirred. Concentrated sulfuric acid (11.0 g) was slowly added while adding water (3.3 g) dropwise over 1 hour. After stirring for 8 hours while maintaining the temperature at 10 to 20 ° C., toluene was added, and water washing and waste acid separation were performed until the siloxane layer became neutral. The neutralized siloxane layer was heated and concentrated under reduced pressure to remove low-boiling fractions such as toluene, and organohydrogensiloxane A with k = 40 and l = 40 in the following formula (3) was obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン(3.7g)、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン(41.4g)、オクタメチルシクロテトラシロキサン(355.9g)に水酸化カリウムのシリコネートをSi/K=20000/1(モル比)量加え、窒素雰囲気化で150℃、6時間平衡化反応させた後、エチレンクロロヒドリンをKに対して2モル量添加し、120℃、2時間中和した。その後、160℃、666Paで6時間加熱バブリング処理して揮発分をカットして、100gあたりのアルケニル当量数La=0.9、Mw:26,000のアルケニル基含有シロキサンDを得た。
 オルガノハイドロジェンシロキサンAとアルケニル基含有シロキサンDを、全アルケニル基とケイ素原子に結合した全水素原子とのモル比(水素原子/アルケニル基)が0.9となるように混合した。このシロキサン混合物100質量部に、下記式(4)で示されるアセチレン系不飽和基を有するケイ素化合物1質量部を混合し、白金金属濃度が100ppmとなるように白金系触媒を加えて、樹脂分100質量部に対し5質量部のヘプタンを添加して、架橋性オルガノポリシロキサンを含むシリコーン溶液(P3)を得た。
 HC≡C-C(CH32-O-Si(CH33   式(4)
1,3-divinyl-1,1,3,3-tetramethyldisiloxane (3.7 g), 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (41 0.4g), and potassium hydroxide siliconate is added to octamethylcyclotetrasiloxane (355.9g) in an amount of Si / K = 20000/1 (molar ratio) and allowed to equilibrate at 150 ° C. for 6 hours in a nitrogen atmosphere. Then, 2 mol amount of ethylene chlorohydrin was added to K and neutralized at 120 ° C. for 2 hours. Then, the volatile content was cut by heating and bubbling at 160 ° C. and 666 Pa for 6 hours to obtain an alkenyl group-containing siloxane D having an alkenyl equivalent number La per 0.9 g of La = 0.9 and Mw: 26,000.
Organohydrogensiloxane A and alkenyl group-containing siloxane D were mixed so that the molar ratio (hydrogen atom / alkenyl group) of all alkenyl groups to all hydrogen atoms bonded to silicon atoms was 0.9. To 100 parts by mass of this siloxane mixture, 1 part by mass of a silicon compound having an acetylenically unsaturated group represented by the following formula (4) is mixed, and a platinum-based catalyst is added so that the platinum metal concentration becomes 100 ppm. 5 parts by mass of heptane was added to 100 parts by mass to obtain a silicone solution (P3) containing a crosslinkable organopolysiloxane.
HC≡C—C (CH 3 ) 2 —O—Si (CH 3 ) 3 Formula (4)
<実施例1>
 初めに、板厚0.5mmの支持基材を純水洗浄した後、さらにUV洗浄して清浄化した。
 次に、ポリアミック酸溶液(P1)にN,N-ジメチルアセトアミドを加えて、ポリアミック酸の固形分濃度を5質量%に希釈し、溶液Xを得た。溶液Xをスピンコーター(回転数:2000rpm、15秒)にて支持基材の第1主面上に塗布して、ポリアミック酸を含む塗膜を支持基材上に設けた(塗工量2.0g/m2)。なお、塗工量とは、支持基材上に残存するポリアミック酸量を意図する。
 なお、上記ポリアミック酸は、上記式(Y1)で表される化合物と、式(B1)で表される化合物とを反応させて得られる樹脂である。
<Example 1>
First, a supporting substrate having a thickness of 0.5 mm was cleaned with pure water, and further cleaned by UV cleaning.
Next, N, N-dimethylacetamide was added to the polyamic acid solution (P1) to dilute the solid content concentration of the polyamic acid to 5% by mass to obtain a solution X. The solution X was applied onto the first main surface of the supporting substrate with a spin coater (rotation speed: 2000 rpm, 15 seconds), and a coating film containing polyamic acid was provided on the supporting substrate (coating amount: 2. 0 g / m 2 ). The coating amount intends the amount of polyamic acid remaining on the supporting substrate.
The polyamic acid is a resin obtained by reacting the compound represented by the formula (Y1) with the compound represented by the formula (B1).
 次に、大気中、60℃で30分間、次いで120℃で30分間塗膜を加熱した後、さらに350℃で60分間塗膜を加熱して、第1ポリイミド樹脂層(厚み:0.1μm)を形成した。形成された第1ポリイミド樹脂層中には、以下の式で表される繰り返し単位を有するポリイミド樹脂(式(1)中のXが(X1)で表される基、Aが式(A1)で表される基からなる)が含まれていた。 Next, after heating the coating film in the atmosphere at 60 ° C. for 30 minutes and then at 120 ° C. for 30 minutes, the coating film is further heated at 350 ° C. for 60 minutes to obtain a first polyimide resin layer (thickness: 0.1 μm). Formed. In the formed first polyimide resin layer, a polyimide resin having a repeating unit represented by the following formula (X in formula (1) is a group represented by (X1), A is formula (A1) Consisting of the group represented).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 なお、第1ポリイミド樹脂層中のポリイミド樹脂のイミド化率は、99.7%であった。また、形成された第1ポリイミド樹脂層表面の表面粗さRaは、0.8nmであった。
 なお、イミド化率の測定、および、表面粗さRaの測定は、上述の方法で実施した。
The imidization ratio of the polyimide resin in the first polyimide resin layer was 99.7%. Further, the surface roughness Ra of the surface of the formed first polyimide resin layer was 0.8 nm.
In addition, the measurement of imidation ratio and the measurement of surface roughness Ra were implemented by the above-mentioned method.
 次に、ガラス基板を純水洗浄した後、さらにUV洗浄して清浄化した。
 その後、第1ポリイミド樹脂層の形成方法と同様の手順に従って、ポリアミック酸溶液(P1)をスピンコーター(回転数:2000rpm、15秒)にてガラス基板の第1主面上に塗布して、加熱処理を施し、第2ポリイミド樹脂層(厚み:5.0μm、Ra:1.0μm)を形成した。
 なお、第2ポリイミド樹脂層中のポリイミド樹脂のイミド化率は、99.7%であった。
Next, the glass substrate was cleaned with pure water, and further cleaned by UV cleaning.
Then, following the same procedure as the method for forming the first polyimide resin layer, the polyamic acid solution (P1) is applied onto the first main surface of the glass substrate with a spin coater (rotation speed: 2000 rpm, 15 seconds), and heated. The treatment was performed to form a second polyimide resin layer (thickness: 5.0 μm, Ra: 1.0 μm).
The imidization ratio of the polyimide resin in the second polyimide resin layer was 99.7%.
 その後、第1ポリイミド樹脂層と第2ポリイミド樹脂層とが接触するように、支持基材および第1ポリイミド樹脂層を含む樹脂層付き支持基材と、ガラス基板および第2ポリイミド樹脂層を含む樹脂層付きガラス基板とを、室温下で大気圧下ロール貼り合せにより貼り合わせ、ガラス積層体S1を得た。
 得られたガラス積層体S1においては、第1ポリイミド樹脂層と第2ポリイミド樹脂層とは、気泡を発生することなく密着しており、ゆがみ欠陥もなく、平滑性も良好であった。なお、ガラス積層体S1において、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さかった。
Then, the support substrate with a resin layer including the support substrate and the first polyimide resin layer, and the resin including the glass substrate and the second polyimide resin layer so that the first polyimide resin layer and the second polyimide resin layer are in contact with each other. The glass substrate with a layer was bonded together by roll bonding under atmospheric pressure at room temperature to obtain a glass laminate S1.
In the obtained glass laminate S1, the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, no distortion defects, and good smoothness. In the glass laminate S1, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer, and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
 次に、ガラス積層体S1に対して大気下にて400℃で60分間加熱処理を行い、室温まで冷却したところ、ガラス積層体S1の支持基材とガラス基板の分離や、第1ポリイミド樹脂層および第2ポリイミド樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体S1の4箇所のコーナー部のうち1箇所における第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に厚さ0.1mmのステンレス製刃物を挿入させて剥離の切欠部を形成しながら、ガラス基板と支持基材それぞれの剥離面でない面に真空吸着パッドを吸着させ、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に水を吹き付けながら、ガラス基板と支持基材が互いに分離する方向に外力を加えて、ガラス基板と支持基材を破損すること無く分離した。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行った。
 なお、第1ポリイミド樹脂層は支持基材と共に、第2ポリイミド樹脂層はガラス基板と共に分離された。上記結果からも、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さいことが確認された。
Next, when the glass laminate S1 is heat-treated at 400 ° C. for 60 minutes in the atmosphere and cooled to room temperature, the glass substrate S1 is separated from the support base material and the glass substrate, or the first polyimide resin layer. No change in appearance such as foaming or whitening of the second polyimide resin layer was observed.
Then, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the first polyimide resin layer and the second polyimide resin layer at one of the four corners of the glass laminate S1 to form a notch for peeling. While forming, the vacuum suction pad is adsorbed on the non-peeling surfaces of the glass substrate and the supporting base material, and water is sprayed on the interface between the first polyimide resin layer and the second polyimide resin layer, while the glass substrate and the supporting base material are sprayed. The glass substrate and the supporting base material were separated without damaging them by applying an external force in the direction of separating them from each other. Here, the cutter was inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
In addition, the 1st polyimide resin layer was isolate | separated with the support base material, and the 2nd polyimide resin layer with the glass substrate. Also from the above results, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface.
(剥離強度の測定)
 日本国特許第5200538号公報の段落0050に記載の治具を用いて、剥離試験を行った。使用した治具を図3に示す。図3中、ガラス積層体S1は、支持基材12、第1ポリイミド樹脂層14a、第2ポリイミド樹脂層14b、およびガラス基板16を有する。
 ガラス積層体S1を縦50mm×横50mmの大きさに切断し、ガラス積層体S1の両側のガラス(支持基材12およびガラス基板16)表面に、縦50mm×横50mm×厚さ5mmのポリカーボネート60をエポキシ2液ガラス用接着剤で各々貼り合わせた。さらに、両方の貼り合わせたポリカーボネート60の表面に、縦50mm×横50mm×厚さ5mmのポリカーボネート70をそれぞれさらに垂直に貼り合わせた。ポリカーボネート70を貼り合わせた場所は、図3のとおり、縦方向はポリカーボネート60の最も端の位置、横方向はポリカーボネート60の辺と平行な位置とした。
 ポリカーボネート60および70を貼り合わせたガラス積層体S1を支持基材12が下側になるように設置した。ガラス基板16側に貼り付けたポリカーボネート70を治具で固定し、支持基材12側に貼り付けたポリカーボネート70を垂直下方に300mm/minの速度で引き離したところ、0.29kg/cmの力がかかったときに第1ポリイミド樹脂層14aと第2ポリイミド樹脂層14bとがはがれた。
(Measurement of peel strength)
A peel test was performed using the jig described in paragraph 0050 of Japanese Patent No. 5200538. The jig used is shown in FIG. In FIG. 3, the glass laminate S <b> 1 includes a support base 12, a first polyimide resin layer 14 a, a second polyimide resin layer 14 b, and a glass substrate 16.
The glass laminate S1 is cut into a size of 50 mm in length × 50 mm in width, and polycarbonate 60 having a length of 50 mm × width of 50 mm × thickness of 5 mm is formed on the glass (support base material 12 and glass substrate 16) on both sides of the glass laminate S1. Were bonded together with an adhesive for epoxy two-component glass. Further, polycarbonates 70 each having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm were further vertically bonded to the surfaces of both the bonded polycarbonates 60. As shown in FIG. 3, the place where the polycarbonate 70 was bonded was the position of the end of the polycarbonate 60 in the vertical direction and the position parallel to the side of the polycarbonate 60 in the horizontal direction.
The glass laminate S1 bonded with the polycarbonates 60 and 70 was placed so that the support base 12 was on the lower side. The polycarbonate 70 affixed to the glass substrate 16 side is fixed with a jig, and the polycarbonate 70 affixed to the support base material 12 side is pulled vertically downward at a speed of 300 mm / min. A force of 0.29 kg / cm 2 is obtained. The first polyimide resin layer 14a and the second polyimide resin layer 14b were peeled off.
<実施例2>
 第1ポリイミド樹脂層の形成の際に、溶液Xの代わりにポリアミック酸溶液(P1)を使用して、第1ポリイミド樹脂層の厚みを0.1μmから5.0μmに変更し、第2ポリイミド樹脂層の形成の際に、ポリアミック酸溶液(P1)の代わりに溶液Xを使用して、第2ポリイミド樹脂層の厚みを5.0μmから0.1μmに変更した以外は、実施例1と同様の方法で、ガラス積層体S2を得た。
 なお、第1ポリイミド樹脂層および第2ポリイミド樹脂層中のポリイミド樹脂のイミド化率は、共に99.5%であった。また、第1ポリイミド樹脂層および第2ポリイミド樹脂層の表面粗さRaは、後述する表1に示す。
 得られたガラス積層体S2においては、第1ポリイミド樹脂層および第2ポリイミド樹脂層は気泡を発生することなく密着しており、ゆがみ欠陥もなく、平滑性も良好であった。なお、ガラス積層体S2において、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さかった。
 次に、ガラス積層体S2を実施例1と同様の加熱処理を行ったところ、ガラス積層体S2の支持基材とガラス基板の分離や、第1ポリイミド樹脂層および第2ポリイミド樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体S2について、実施例1と同様の方法で支持基材とガラス基板との分離を行ったところ、ガラス基板と支持基材とが破損すること無く分離した。
 なお、第1ポリイミド樹脂層は支持基材と共に、第2ポリイミド樹脂層はガラス基板と共に分離された。上記結果からも、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さいことが確認された。なお、得られたガラス積層体S2を用いて、上記(剥離強度の測定)を実施した。その結果を表1に示す。
<Example 2>
When forming the first polyimide resin layer, the polyamic acid solution (P1) is used instead of the solution X, and the thickness of the first polyimide resin layer is changed from 0.1 μm to 5.0 μm. In the formation of the layer, the same as in Example 1 except that the solution X was used instead of the polyamic acid solution (P1) and the thickness of the second polyimide resin layer was changed from 5.0 μm to 0.1 μm. By the method, glass laminated body S2 was obtained.
The imidization ratio of the polyimide resin in the first polyimide resin layer and the second polyimide resin layer was 99.5%. Moreover, surface roughness Ra of a 1st polyimide resin layer and a 2nd polyimide resin layer is shown in Table 1 mentioned later.
In the obtained glass laminate S2, the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, there was no distortion defect, and the smoothness was good. In the glass laminate S2, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer, and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
Next, when the glass laminate S2 was subjected to the same heat treatment as in Example 1, the support substrate of the glass laminate S2 and the glass substrate were separated, and the first polyimide resin layer and the second polyimide resin layer were foamed. No change in appearance such as whitening was observed.
And about glass laminated body S2, when the support base material and the glass substrate were isolate | separated by the method similar to Example 1, it isolate | separated, without damaging a glass substrate and a support base material.
In addition, the 1st polyimide resin layer was isolate | separated with the support base material, and the 2nd polyimide resin layer with the glass substrate. Also from the above results, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface. The above (measurement of peel strength) was carried out using the obtained glass laminate S2. The results are shown in Table 1.
<実施例3>
 第2ポリイミド樹脂層の形成の際に、ポリアミック酸溶液(P1)の代わりに、脂環式ポリイミド樹脂溶液(P2)を使用した以外は、実施例1と同様の方法で、ガラス積層体S3を得た。
 なお、形成された第2ポリイミド樹脂層中には、式(1)中のXが上記式(X4)で表される基からなり、Aが上記式(A6)で表される基からなるポリイミド樹脂が含まれていた。
 なお、第1ポリイミド樹脂層および第2ポリイミド樹脂層中のポリイミド樹脂のイミド化率は、共に99.5%であった。また、第1ポリイミド樹脂層および第2ポリイミド樹脂層の表面粗さRaは、後述する表1に示す。
 得られたガラス積層体S3においては、第1ポリイミド樹脂層および第2ポリイミド樹脂層は気泡を発生することなく密着しており、ゆがみ欠陥もなく、平滑性も良好であった。なお、ガラス積層体S3において、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さかった。
 次に、ガラス積層体S3を実施例1と同様の加熱処理を行ったところ、ガラス積層体S3の支持基材とガラス基板の分離や、第1ポリイミド樹脂層および第2ポリイミド樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体S3を実施例1と同様の方法で支持基材とガラス基板との分離を行ったところ、ガラス基板と支持基材とが破損すること無く分離した。
 なお、第1ポリイミド樹脂層は支持基材と共に、第2ポリイミド樹脂層はガラス基板と共に分離された。上記結果からも、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面の剥離強度は、支持基材と第1ポリイミド樹脂層との界面の剥離強度およびガラス基板と第2ポリイミド樹脂層との界面の剥離強度よりも小さいことが確認された。なお、得られたガラス積層体S3を用いて、上記(剥離強度の測定)を実施した。その結果を表1に示す。
<Example 3>
In the formation of the second polyimide resin layer, the glass laminate S3 was prepared in the same manner as in Example 1 except that the alicyclic polyimide resin solution (P2) was used instead of the polyamic acid solution (P1). Obtained.
In the formed second polyimide resin layer, X in the formula (1) is composed of a group represented by the above formula (X4), and A is a polyimide composed of a group represented by the above formula (A6). Resin was included.
The imidization ratio of the polyimide resin in the first polyimide resin layer and the second polyimide resin layer was 99.5%. Moreover, surface roughness Ra of a 1st polyimide resin layer and a 2nd polyimide resin layer is shown in Table 1 mentioned later.
In the obtained glass laminate S3, the first polyimide resin layer and the second polyimide resin layer were in close contact with each other without generating bubbles, there were no distortion defects, and the smoothness was good. In the glass laminate S3, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and the glass substrate and the second polyimide resin. It was smaller than the peel strength at the interface with the layer.
Next, when the glass laminate S3 was subjected to the same heat treatment as in Example 1, the support substrate of the glass laminate S3 and the glass substrate were separated, and the first polyimide resin layer and the second polyimide resin layer were foamed. No change in appearance such as whitening was observed.
And when glass substrate S3 was isolate | separated from the support base material and the glass substrate by the method similar to Example 1, it isolate | separated, without damaging a glass substrate and a support base material.
In addition, the 1st polyimide resin layer was isolate | separated with the support base material, and the 2nd polyimide resin layer with the glass substrate. Also from the above results, the peel strength at the interface between the first polyimide resin layer and the second polyimide resin layer is the peel strength at the interface between the support substrate and the first polyimide resin layer and between the glass substrate and the second polyimide resin layer. It was confirmed that it was smaller than the peel strength at the interface. The above (measurement of peel strength) was carried out using the obtained glass laminate S3. The results are shown in Table 1.
<比較例1>
 第1ポリイミド樹脂層の形成の際に、溶液Xの代わりに、以下のポリアミック酸溶液(P4)を使用し、第1ポリイミド樹脂層の厚みを0.1μmから5.0μmに変更し、第2ポリイミド樹脂層の形成の際に、ポリアミック酸溶液(P1)の代わりに溶液Xを使用して、第2ポリイミド樹脂層の厚みを5.0μmから0.1μmに変更した以外は、実施例1と同様の方法で、ガラス積層体C1の製造を試みた。
 得られた第1ポリイミド樹脂層の表面粗さRaは10.2nmであった。
 なお、上記表面粗さRaを調整する方法として、以下の処理を実施した。
 しかし、大気圧下ロール貼り合せにより貼り合わせを行った際に、第1ポリイミド樹脂層と第2ポリイミド樹脂層との密着性が劣り、所望のガラス積層体C1を得られなかった。
<Comparative Example 1>
When forming the first polyimide resin layer, the following polyamic acid solution (P4) is used instead of the solution X, and the thickness of the first polyimide resin layer is changed from 0.1 μm to 5.0 μm, When the polyimide resin layer was formed, the solution X was used instead of the polyamic acid solution (P1), and the thickness of the second polyimide resin layer was changed from 5.0 μm to 0.1 μm. In the same manner, an attempt was made to produce the glass laminate C1.
The surface roughness Ra of the obtained first polyimide resin layer was 10.2 nm.
In addition, the following process was implemented as a method of adjusting the said surface roughness Ra.
However, when bonding was performed by roll bonding under atmospheric pressure, the adhesion between the first polyimide resin layer and the second polyimide resin layer was poor, and the desired glass laminate C1 could not be obtained.
(ポリアミック酸溶液(P4))
 製造例1で得られたポリアミック酸溶液(P1)に、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテック(DMAC-ST30、日産化学工業製、平均粒子径80nm)をコロイダルシカの含有量が溶液全質量に対して1質量%となるように加えて、ポリアミック酸溶液(P4)を得た。
(Polyamic acid solution (P4))
Snow Tech (DMAC-ST30, manufactured by Nissan Chemical Industries, average particle size of 80 nm) obtained by dispersing colloidal silica in dimethylacetamide in the polyamic acid solution (P1) obtained in Production Example 1 is a solution having a colloidal deer content. In addition, it added so that it might become 1 mass% with respect to the total mass, and the polyamic acid solution (P4) was obtained.
<比較例2>
 第2ポリイミド樹脂層を形成することなく、実施例2と同様の手順に従って第1ポリイミド樹脂層とガラス基板とを積層して、支持基材、第1ポリイミド樹脂層、およびガラス基板をこの順で有するガラス積層体C2を製造した。
 得られたガラス積層体C2に対して実施例1と同様の方法で支持基材とガラス基板との分離を行ったところ、第1ポリイミド樹脂層とガラス基板とが剥離しづらかった。なお、得られたガラス積層体C2を用いて、上記(剥離強度の測定)を実施した。その結果を表1に示す。
<Comparative example 2>
Without forming the second polyimide resin layer, the first polyimide resin layer and the glass substrate are laminated according to the same procedure as in Example 2, and the support base, the first polyimide resin layer, and the glass substrate are laminated in this order. A glass laminate C2 was produced.
When the support base material and the glass substrate were separated from the obtained glass laminate C2 in the same manner as in Example 1, it was difficult for the first polyimide resin layer and the glass substrate to be separated. In addition, the above (measurement of peel strength) was carried out using the obtained glass laminate C2. The results are shown in Table 1.
<比較例3>
 第1ポリイミド樹脂層を形成することなく、実施例1と同様の手順に従って支持基材と第2ポリイミド樹脂層とを積層して、支持基材、第2ポリイミド樹脂層、およびガラス基板をこの順で有するガラス積層体C3を製造した。
 得られたガラス積層体C3に対して実施例1と同様の方法で支持基材とガラス基板との分離を行ったところ、第2ポリイミド樹脂層と支持基材とが剥離しづらかった。なお、得られたガラス積層体C3を用いて、上記(剥離強度の測定)を実施した。その結果を表1に示す。
<Comparative Example 3>
Without forming the first polyimide resin layer, the support base material and the second polyimide resin layer are laminated according to the same procedure as in Example 1, and the support base material, the second polyimide resin layer, and the glass substrate are arranged in this order. To produce a glass laminate C3.
When the support base material and the glass substrate were separated from the obtained glass laminate C3 in the same manner as in Example 1, it was difficult for the second polyimide resin layer and the support base material to peel off. The above (measurement of peel strength) was carried out using the obtained glass laminate C3. The results are shown in Table 1.
<比較例4>
 第1ポリイミド樹脂層の形成の際に、ポリアミック酸溶液(P1)の代わりに、シリコーン溶液(P3)を使用し、第2ポリイミド樹脂層を形成しなかった以外は、実施例1と同様の方法で、支持基材、シリコーン樹脂層およびガラス基板をこの順で有するガラス積層体C4を得た。なお、本態様は、特許文献1に示すような樹脂層としてシリコーン樹脂層を使用した態様に該当する。
 得られたガラス積層体C4について、実施例1と同様の方法で支持基材とガラス基板との分離を行ったところ、シリコーン樹脂層とガラス基板とが剥離しづらく、シリコーン樹脂層が凝集破壊してガラス基板上に付着すると共に、ガラス基板が割れてしまった。なお、得られたガラス積層体C4を用いて、上記(剥離強度の測定)を実施した。その結果を表1に示す。
 また、ガラス積層体C4を大気下にて400℃で60分間加熱処理したところ、シリコーン樹脂層の発泡や白化がみられた。
<Comparative example 4>
In the formation of the first polyimide resin layer, the same method as in Example 1 except that the silicone solution (P3) was used instead of the polyamic acid solution (P1) and the second polyimide resin layer was not formed. And the glass laminated body C4 which has a support base material, a silicone resin layer, and a glass substrate in this order was obtained. In addition, this aspect corresponds to an aspect in which a silicone resin layer is used as the resin layer as shown in Patent Document 1.
About the obtained glass laminated body C4, when the support base material and the glass substrate were separated by the same method as in Example 1, the silicone resin layer and the glass substrate were difficult to peel off, and the silicone resin layer was cohesively broken. In addition to adhering to the glass substrate, the glass substrate was broken. In addition, said (measurement of peeling strength) was implemented using the obtained glass laminated body C4. The results are shown in Table 1.
Moreover, when the glass laminated body C4 was heat-processed at 400 degreeC for 60 minute (s) under air | atmosphere, foaming and whitening of the silicone resin layer were seen.
 上記実施例1~3、および、比較例1~4の結果を、以下の表1にまとめて示す。
 なお、表1中の「樹脂種」欄において、P1は製造例1の溶液P1より得られる樹脂を、P2は製造例2の溶液P2より得られる樹脂を意図する。
The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1 below.
In the “resin type” column in Table 1, P1 means a resin obtained from the solution P1 of Production Example 1, and P2 means a resin obtained from the solution P2 of Production Example 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1に示すように、所定の樹脂層を使用した実施例1~3においては、積層時の密着性に優れると共に、400℃、1時間の加熱処理後にいても、樹脂層の分解がみられず、ガラス基板の剥離も容易に進行した。
 一方、特許文献1に記載のシリコーン樹脂層を使用した比較例4では、所望の効果が得られなかった。
As shown in Table 1, in Examples 1 to 3 using a predetermined resin layer, the adhesion at the time of lamination was excellent, and the resin layer was decomposed even after heat treatment at 400 ° C. for 1 hour. In addition, the peeling of the glass substrate proceeded easily.
On the other hand, in Comparative Example 4 using the silicone resin layer described in Patent Document 1, a desired effect was not obtained.
<実施例4>
 本例では、実施例1で得たガラス積層体S1を用いてOLEDを製造する。
 まず、ガラス積層体S1におけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下にて脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜してゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下にて水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq3)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有するガラス積層体S1(以下、パネルAという。)が、本発明の電子デバイス用部材付き積層体である。
 続いて、パネルAの封止体側を定盤に真空吸着させたうえで、パネルAのコーナー部の第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に剥離のきっかけを与える。そして、パネルAの支持基材表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら、かつ、水を剥離前線に差しながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、樹脂層付き支持基材を剥離することができる。
 続いて、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板とを組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 4>
In this example, an OLED is manufactured using the glass laminate S1 obtained in Example 1.
First, silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in the glass laminate S1 by plasma CVD. Next, low concentration boron is implanted into the amorphous silicon layer by an ion doping apparatus, and dehydrogenation treatment is performed in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, then molybdenum is formed by a sputtering method, and etching is performed using a photolithography method. A gate electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after performing a hydrogenation treatment in a hydrogen atmosphere, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by a sputtering method. Next, another glass substrate is pasted on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. According to the above procedure, an organic EL structure is formed on a glass substrate, and a glass laminate S1 having an organic EL structure on the glass substrate (hereinafter referred to as panel A) is an electron of the present invention. It is a laminated body with a member for devices.
Subsequently, after the panel A sealing body side is vacuum-adsorbed to the surface plate, a 0.1 mm thick stainless steel material is formed at the interface between the first polyimide resin layer and the second polyimide resin layer at the corner of the panel A. A blade is inserted, and a trigger for peeling is given to the interface between the first polyimide resin layer and the second polyimide resin layer. And after adsorb | sucking the support base material surface of the panel A with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while continuing to spray a static eliminating fluid from the ionizer toward the formed gap, and while water is inserted into the peeling front. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate can be left, and the supporting substrate with the resin layer can be peeled off.
Subsequently, the separated glass substrate is cut using a laser cutter or a scribe-break method and divided into a plurality of cells, and then the glass substrate on which the organic EL structure is formed and the counter substrate are assembled to form a module. The process is performed to produce an OLED. The OLED obtained in this way does not have a problem in characteristics.
<実施例5>
 本例では、実施例1で得たガラス積層体S1を用いてLCDを製造する。
 まず、2枚のガラス積層体S1-1およびS1-2を準備して、片方のガラス積層体S1-1におけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下にて加熱処理し脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜しゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下にて加熱処理し水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 次に、もう片方のガラス積層体S1-2を大気雰囲気下にて加熱処理する。次に、ガラス積層体S1-2におけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成する。次に、ガラス基板の第2主面側に、ダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、対向電極を形成する。次に、ガラス基板の第2主面側に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成する。次に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングをおこなう。
 次に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上記で画素電極が形成されたガラス積層体S1-1を用いて、2枚のガラス積層体S1のガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを得る。
<Example 5>
In this example, an LCD is manufactured using the glass laminate S1 obtained in Example 1.
First, two glass laminates S1-1 and S1-2 are prepared, and silicon nitride, silicon oxide, and amorphous are formed on the second main surface of the glass substrate in one glass laminate S1-1 by plasma CVD. Films are formed in the order of silicon. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and heat treatment is performed in a nitrogen atmosphere to perform dehydrogenation treatment. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, after a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method and a gate insulating film is formed, molybdenum is formed by a sputtering method, and the gate is etched by photolithography. An electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after performing a heat treatment in a hydrogen atmosphere and performing a hydrogenation treatment, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Next, the other glass laminate S1-2 is heat-treated in an air atmosphere. Next, a chromium film is formed on the second main surface of the glass substrate in the glass laminate S1-2 by a sputtering method, and a light-shielding layer is formed by etching using a photolithography method. Next, a color resist is applied to the second main surface side of the glass substrate by a die coating method, and a color filter layer is formed by a photolithography method and heat curing. Next, a film of indium tin oxide is formed by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid is applied to the second main surface side of the glass substrate by a die coating method, and columnar spacers are formed by a photolithography method and thermal curing. Next, a polyimide resin solution is applied by a roll coating method, an alignment layer is formed by thermosetting, and rubbing is performed.
Next, a sealing resin liquid is drawn in a frame shape by the dispenser method, and after dropping the liquid crystal in the frame by the dispenser method, two glass sheets S1-1 on which the pixel electrodes are formed are used. The second main surface sides of the glass substrates of the glass laminate S1 are bonded together, and an LCD panel is obtained by ultraviolet curing and thermal curing.
 続いて、ガラス積層体S1-1の支持基材の第1ポリイミド樹脂層側とは反対側の表面を定盤に真空吸着させ、ガラス積層体S1-2のコーナー部の第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に剥離のきっかけを与える。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら、水を剥離前線に差しながら真空吸着パッドを引き上げる。そして、ガラス積層体S1-2の支持基材の第2主面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。その結果、定盤上に、ガラス積層体S1-1の支持基材が付いたLCDの空セルのみを残し、樹脂層付き支持基材を剥離することができる。 Subsequently, the surface opposite to the first polyimide resin layer side of the supporting substrate of the glass laminate S1-1 is vacuum-adsorbed to a surface plate, and the first polyimide resin layer at the corner of the glass laminate S1-2 A stainless steel knife having a thickness of 0.1 mm is inserted into the interface with the second polyimide resin layer, and a trigger for peeling is applied to the interface between the first polyimide resin layer and the second polyimide resin layer. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while water is being supplied to the separation front while spraying a static elimination fluid from the ionizer toward the formed gap. Then, the suction pad is raised after the second main surface of the supporting base material of the glass laminate S1-2 is sucked by the vacuum suction pad. As a result, only the empty cell of the LCD with the support substrate of the glass laminate S1-1 is left on the surface plate, and the support substrate with the resin layer can be peeled off.
 次に、第1主面にカラーフィルタが形成されたガラス基板の第2主面を定盤に真空吸着させ、ガラス積層体S1-1のコーナー部の第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に剥離のきっかけを与える。そして、ガラス積層体S1-1の支持基材の第1ポリイミド樹脂層側とは反対側の表面を真空吸着パッドで吸着した上で、ガラス基板と樹脂層との間に水を吹き付けながら、吸着パッドを上昇させる。その結果、定盤上にLCDセルのみを残し、樹脂層付き支持基材を剥離することができる。こうして、厚さ0.1mmのガラス基板で構成される複数のLCDのセルが得られる。 Next, the second main surface of the glass substrate on which the color filter is formed on the first main surface is vacuum-adsorbed on a surface plate, and the first polyimide resin layer and the second polyimide resin layer at the corner of the glass laminate S1-1 A stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the first polyimide resin layer and the second polyimide resin layer. Then, after adsorbing the surface opposite to the first polyimide resin layer side of the support substrate of the glass laminate S1-1 with a vacuum adsorption pad, water is sprayed between the glass substrate and the resin layer while adsorbing. Raise the pad. As a result, only the LCD cell is left on the surface plate, and the supporting substrate with the resin layer can be peeled off. Thus, a plurality of LCD cells composed of a glass substrate having a thickness of 0.1 mm are obtained.
 続いて、切断する工程により、複数のLCDのセルに分断する。完成された各々のLCDセルに偏光板を貼付する工程を実施し、続いてモジュール形成工程を実施してLCDを得る。こうして得られるLCDは、特性上問題は生じない。 Subsequently, it is divided into a plurality of LCD cells by a cutting process. A step of attaching a polarizing plate to each completed LCD cell is performed, and then a module forming step is performed to obtain an LCD. The LCD obtained in this way does not have a problem in characteristics.
<実施例6>
 本例では、実施例1で得たガラス積層体S1を用いてOLEDを製造する。
 まず、ガラス積層体S1におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、スパッタリング法により、ガラス基板の第2主面側にさらに酸化アルミニウムを成膜してゲート絶縁膜を形成し、続いてスパッタリング法により酸化インジウムガリウム亜鉛を成膜してフォトリソグラフィ法を用いたエッチングにより酸化物半導体層を形成する。次に、スパッタリング法により、ガラス基板の第2主面側にさらに酸化アルミニウムを成膜してチャネル保護層を形成し、続いてスパッタリング法によりモリブデンを成膜してフォトリソグラフィ法を用いたエッチングによりソース電極およびドレイン電極を形成する。
 次に、大気中で、加熱処理を行う。次に、ガラス基板の第2主面側にさらにスパッタリング法により酸化アルミニウムを成膜してパッシベーション層を形成し、続いてスパッタリング法により酸化インジウム錫を成膜してフォトリソグラフィ法を用いたエッチングにより、画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq3)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有するガラス積層体S1(以下、パネルBという。)が、本発明の電子デバイス用部材付き積層体(支持基材付き表示装置用パネル)である。
 続いて、パネルBの封止体側を定盤に真空吸着させたうえで、パネルBのコーナー部の第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、第1ポリイミド樹脂層と第2ポリイミド樹脂層との界面に剥離のきっかけを与える。そして、パネルBの支持基材表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら、かつ、水を剥離前線に差しながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、樹脂層付き支持基材を剥離することができる。
 続いて、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板とを組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 6>
In this example, an OLED is manufactured using the glass laminate S1 obtained in Example 1.
First, a film of molybdenum is formed on the second main surface of the glass substrate in the glass laminate S1 by a sputtering method, and a gate electrode is formed by etching using a photolithography method. Next, an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a gate insulating film, and subsequently an indium gallium zinc oxide film is formed by a sputtering method. An oxide semiconductor layer is formed by etching. Next, an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a channel protective layer. Subsequently, a molybdenum film is formed by a sputtering method, and etching is performed using a photolithography method. A source electrode and a drain electrode are formed.
Next, heat treatment is performed in the air. Next, an aluminum oxide film is further formed on the second main surface side of the glass substrate by a sputtering method to form a passivation layer. Subsequently, indium tin oxide is formed by a sputtering method, and etching is performed using a photolithography method. A pixel electrode is formed.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by a sputtering method. Next, another glass substrate is pasted on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. According to the above procedure, an organic EL structure is formed on a glass substrate, and a glass laminate S1 having an organic EL structure on the glass substrate (hereinafter referred to as panel B) is an electronic device according to the present invention. It is a laminated body with a member for devices (panel for display devices with a supporting substrate).
Subsequently, after the panel B sealing body side is vacuum-adsorbed to the surface plate, a 0.1 mm thick stainless steel is formed at the interface between the first polyimide resin layer and the second polyimide resin layer at the corner of the panel B. A blade is inserted, and a trigger for peeling is given to the interface between the first polyimide resin layer and the second polyimide resin layer. And after adsorb | sucking the support base material surface of the panel B with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while continuing to spray a static eliminating fluid from the ionizer toward the formed gap, and while water is inserted into the peeling front. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate can be left, and the supporting substrate with the resin layer can be peeled off.
Subsequently, the separated glass substrate is cut using a laser cutter or a scribe-break method and divided into a plurality of cells, and then the glass substrate on which the organic EL structure is formed and the counter substrate are assembled to form a module. The process is performed to produce an OLED. The OLED obtained in this way does not have a problem in characteristics.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年12月26日出願の日本特許出願2013-269304に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-269304 filed on Dec. 26, 2013, the contents of which are incorporated herein by reference.
 10  ガラス積層体
 12  支持基材
 14a 第1ポリイミド樹脂層
 14b 第2ポリイミド樹脂層
 16  ガラス基板
 18  樹脂層付き支持基材
 20  樹脂層付きガラス基板
 22  電子デバイス用部材
 24  電子デバイス用部材付き積層体
 26  電子デバイス
DESCRIPTION OF SYMBOLS 10 Glass laminated body 12 Support base material 14a 1st polyimide resin layer 14b 2nd polyimide resin layer 16 Glass substrate 18 Support base material with a resin layer 20 Glass substrate with a resin layer 22 Member for electronic devices 24 Laminated body with members for electronic devices 26 Electronic devices

Claims (5)

  1.  支持基材および前記支持基材上で形成されたポリイミド樹脂の層(第1ポリイミド樹脂層)を有する樹脂層付き支持基材、並びに、ガラス基板および前記ガラス基板上で形成されたポリイミド樹脂の層(第2ポリイミド樹脂層)を有する樹脂層付きガラス基板を含み、
     前記樹脂層付き支持基材中の前記第1ポリイミド樹脂層と、前記樹脂層付きガラス基板中の前記第2ポリイミド樹脂層とが接触するように、前記樹脂層付き支持基材と前記樹脂層付きガラス基板とが積層しており、
     前記第1ポリイミド樹脂層の前記支持基材側とは反対側の表面、および、前記第2ポリイミド樹脂層の前記ガラス基板側とは反対側の表面のそれぞれの表面粗さRaが2.0nm以下である、ガラス積層体。
    A support substrate with a resin layer having a support substrate and a polyimide resin layer (first polyimide resin layer) formed on the support substrate, and a glass substrate and a polyimide resin layer formed on the glass substrate Including a glass substrate with a resin layer having (second polyimide resin layer),
    With the support substrate with the resin layer and the resin layer, the first polyimide resin layer in the support substrate with the resin layer and the second polyimide resin layer in the glass substrate with the resin layer are in contact with each other. The glass substrate is laminated,
    The surface roughness Ra of the surface of the first polyimide resin layer opposite to the support base and the surface of the second polyimide resin layer opposite to the glass substrate are 2.0 nm or less. A glass laminate.
  2.  前記ポリイミド樹脂が、下記式(1)で表される、テトラカルボン酸類の残基(X)とジアミン類の残基(A)とを有する繰り返し単位を含み、かつ、前記テトラカルボン酸類の残基(X)が下記式(X1)~(X4)で表される基からなる群から選ばれる少なくとも1種の基を含み、前記ジアミン類の残基(A)が下記式(A1)~(A8)で表される基からなる群から選ばれる少なくとも1種の基を含む、請求項1に記載のガラス積層体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xはテトラカルボン酸類からカルボキシ基を除いたテトラカルボン酸残基を、Aはジアミン類からアミノ基を除いたジアミン残基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    The polyimide resin comprises a repeating unit having a tetracarboxylic acid residue (X) and a diamine residue (A) represented by the following formula (1), and the tetracarboxylic acid residue: (X) includes at least one group selected from the group consisting of the groups represented by the following formulas (X1) to (X4), and the residue (A) of the diamine is represented by the following formulas (A1) to (A8): The glass laminated body of Claim 1 containing the at least 1 sort (s) of group chosen from the group which consists of group represented by this.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), X represents a tetracarboxylic acid residue obtained by removing a carboxy group from tetracarboxylic acids, and A represents a diamine residue obtained by removing an amino group from diamines.)
    Figure JPOXMLDOC01-appb-C000002
  3.  前記テトラカルボン酸類の残基(X)が式(X1)で表される基および式(X4)で表される基の少なくとも一方を含み、前記ジアミン類の残基(A)が式(A1)で表される基および式(A6)で表される基の少なくとも一方を含む、請求項2に記載のガラス積層体。 The residue (X) of the tetracarboxylic acid includes at least one of a group represented by the formula (X1) and a group represented by the formula (X4), and the residue (A) of the diamine is represented by the formula (A1) The glass laminated body of Claim 2 containing at least one of group represented by general formula and the group represented by Formula (A6).
  4.  前記支持基材がガラス板である、請求項1~3のいずれか1項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 3, wherein the supporting substrate is a glass plate.
  5.  請求項1~4のいずれか1項に記載のガラス積層体中の前記ガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、
     前記電子デバイス用部材付き積層体から前記樹脂層付き支持基材を除去し、前記第2ポリイミド樹脂層と前記ガラス基板と前記電子デバイス用部材とを有する電子デバイスを得る分離工程と、を備える、電子デバイスの製造方法。
    Forming a member for an electronic device on the surface of the glass substrate in the glass laminate according to any one of claims 1 to 4 to obtain a laminate with the member for an electronic device;
    A step of removing the support substrate with the resin layer from the laminate with the electronic device member, and obtaining an electronic device having the second polyimide resin layer, the glass substrate, and the electronic device member. Electronic device manufacturing method.
PCT/JP2014/083997 2013-12-26 2014-12-22 Glass laminate body, and method for manufacturing electronic device WO2015098888A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480071141.0A CN105848886B (en) 2013-12-26 2014-12-22 The manufacture method of glass laminate and electronic device
JP2015554905A JPWO2015098888A1 (en) 2013-12-26 2014-12-22 Glass laminate and method for manufacturing electronic device
KR1020167015200A KR20160102172A (en) 2013-12-26 2014-12-22 Glass laminate body, and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013269304 2013-12-26
JP2013-269304 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098888A1 true WO2015098888A1 (en) 2015-07-02

Family

ID=53478741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083997 WO2015098888A1 (en) 2013-12-26 2014-12-22 Glass laminate body, and method for manufacturing electronic device

Country Status (5)

Country Link
JP (1) JPWO2015098888A1 (en)
KR (1) KR20160102172A (en)
CN (1) CN105848886B (en)
TW (1) TWI655092B (en)
WO (1) WO2015098888A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060129A (en) * 2014-09-18 2016-04-25 三菱樹脂株式会社 Glass laminate
JP2016182793A (en) * 2015-03-26 2016-10-20 三菱樹脂株式会社 Glass laminate, substrate for electronic device, and organic electronic device
WO2017191822A1 (en) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 Polyimide resin
JP2018099802A (en) * 2016-12-20 2018-06-28 東洋紡株式会社 Laminate, manufacturing method of laminate, and manufacturing method of flexible device
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753868B (en) * 2016-08-05 2022-02-01 日商半導體能源研究所股份有限公司 Peeling method, display device, display module and electronic device
JP2021518819A (en) 2018-04-16 2021-08-05 ボレアリス エージー Manufacturing method of multi-layer laminate
JP7115511B2 (en) * 2019-06-06 2022-08-09 Agc株式会社 LAMINATED SUBSTRATE, ELECTRONIC DEVICE MANUFACTURING METHOD, AND LAMINATED SUBSTRATE MANUFACTURING METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011455A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Laminate and method for manufacturing the same
JP2011216535A (en) * 2010-03-31 2011-10-27 Shiima Electronics Inc Composite glass epoxy substrate and metal multilayer substrate using the same
JP2013163304A (en) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Chemical Co Ltd Transparent flexible laminate and laminate roll

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018028A1 (en) 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
CN101007898A (en) * 2006-01-27 2007-08-01 财团法人工业技术研究院 Thermoplastic polyimide composition and double-surface flexible copper foil substrate
JP2011020393A (en) * 2009-07-17 2011-02-03 Toyobo Co Ltd Method for manufacturing peelable polyimide film laminate
CN102596565B (en) * 2009-08-27 2014-09-10 旭硝子株式会社 Multilayer structure with flexible base material and support, panel for use in electronic device provided with support and production method for panel for use in electronic device
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011455A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Laminate and method for manufacturing the same
JP2011216535A (en) * 2010-03-31 2011-10-27 Shiima Electronics Inc Composite glass epoxy substrate and metal multilayer substrate using the same
JP2013163304A (en) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Chemical Co Ltd Transparent flexible laminate and laminate roll

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060129A (en) * 2014-09-18 2016-04-25 三菱樹脂株式会社 Glass laminate
JP2016182793A (en) * 2015-03-26 2016-10-20 三菱樹脂株式会社 Glass laminate, substrate for electronic device, and organic electronic device
WO2017191822A1 (en) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 Polyimide resin
KR20190005851A (en) * 2016-05-06 2019-01-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
JPWO2017191822A1 (en) * 2016-05-06 2019-04-11 三菱瓦斯化学株式会社 Polyimide resin
KR102374271B1 (en) 2016-05-06 2022-03-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 polyimide resin
JP2018099802A (en) * 2016-12-20 2018-06-28 東洋紡株式会社 Laminate, manufacturing method of laminate, and manufacturing method of flexible device
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate

Also Published As

Publication number Publication date
TWI655092B (en) 2019-04-01
KR20160102172A (en) 2016-08-29
JPWO2015098888A1 (en) 2017-03-23
TW201532823A (en) 2015-09-01
CN105848886B (en) 2017-11-03
CN105848886A (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6350523B2 (en) Flexible substrate and method for producing the same, glass laminate and method for producing the same, and method for producing electronic device
WO2015098888A1 (en) Glass laminate body, and method for manufacturing electronic device
WO2014192560A1 (en) Resin-layer-equipped support substrate and method for producing same, glass laminate and method for producing same, and method for producing electronic device
JP5924344B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
TWI765882B (en) Manufacturing method of flexible substrate
TWI655089B (en) Method for manufacturing electronic device, method for manufacturing glass laminate
TWI695820B (en) Method for manufacturing carrier substrate, laminate and electronic device
KR102526047B1 (en) Glass laminate and method for producing same
KR102475698B1 (en) Manufacturing method of laminated board and electronic device
KR20170059395A (en) Cutting method for glass laminate
WO2015146920A1 (en) Glass laminate
TW201806761A (en) Glass laminate and manufacturing method therefor
WO2015166880A1 (en) Glass laminate, glass substrate with resin layer, support base material with resin layer
WO2015016113A1 (en) Electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554905

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167015200

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873832

Country of ref document: EP

Kind code of ref document: A1