JPWO2015155868A1 - 粒子線照射装置 - Google Patents

粒子線照射装置 Download PDF

Info

Publication number
JPWO2015155868A1
JPWO2015155868A1 JP2016512539A JP2016512539A JPWO2015155868A1 JP WO2015155868 A1 JPWO2015155868 A1 JP WO2015155868A1 JP 2016512539 A JP2016512539 A JP 2016512539A JP 2016512539 A JP2016512539 A JP 2016512539A JP WO2015155868 A1 JPWO2015155868 A1 JP WO2015155868A1
Authority
JP
Japan
Prior art keywords
dose
irradiation
particle beam
value
irradiation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016512539A
Other languages
English (en)
Other versions
JP6257751B2 (ja
Inventor
裕介 坂本
裕介 坂本
越虎 蒲
越虎 蒲
原田 久
久 原田
泰三 本田
泰三 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015155868A1 publication Critical patent/JPWO2015155868A1/ja
Application granted granted Critical
Publication of JP6257751B2 publication Critical patent/JP6257751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • A61N5/1044Scanning the radiation beam, e.g. spot scanning or raster scanning with multiple repetitions of the scanning pattern
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

粒子線照射装置(50)は、一つの照射位置(12)につき複数回、粒子線(10)を照射する。記憶部(3)は、各回に照射されるべき線量(分割目標線量)を記憶する。線量モニタ(5)は照射位置(12)に照射される粒子線(10)の線量を測定する。1回目の照射では、線量モニタ(5)によって測定される線量が分割目標線量に達すると、制御部(4)は遮断信号(15)を発する。線量モニタ(5)は、遮断信号(15)後、実際に粒子線(10)が遮断されるまでの間に照射される線量(過剰線量)(14)を測定する。そして、補正線量値=分割目標線量−過剰線量と置く。代わりに、補正線量値=分割目標線量−過剰線量予測値と置いてもよい。2回目の照射では、線量モニタ(5)によって測定される線量が補正線量値に達すると、制御部(4)は遮断信号(15)を発する。この補正により、スポットスキャニング法において、計画された線量を超えて照射される線量が減少される。

Description

本発明は、粒子線を腫瘍など患部に照射して治療を行う粒子線治療装置であって、粒子線を患部の3次元形状に合わせて所定の線量を照射するために用いる粒子線照射装置に関する。
粒子線治療は、加速器等の機器を用いて陽子または炭素イオンなどの荷電粒子を数百メガ電子ボルト程度まで加速し、患者に照射することで体内の腫瘍に線量を付与し、がんを治療する方法である。このとき腫瘍に対して、医師により指示される線量分布、すなわち目標分布にできるだけ近い線量分布を形成することが重要である。多くの場合、目標分布は、腫瘍内において線量が均一であり、かつ腫瘍外において腫瘍内よりも線量ができるだけ低くなるような分布である。
一般的に、加速器で加速された粒子線を物体(人体含む)に照射した場合、物体内での三次元線量分布はある一点で線量最大ピークを持つという特性がある。この線量最大ピークをブラッグピークと呼ぶ。また、三次元空間において一点で線量最大ピークを持つ場合、そのピーク位置をその粒子線の「照射位置」として定義する。以上のようなピーク構造を持つ粒子線を用いて、三次元的に目標分布を形成するためには何らかの工夫が必要である。
目標分布を形成する方法のひとつに、スキャニング照射法がある。この方法を使用するためにはまず、電磁石等を用いて、粒子線を、粒子線の進行方向であるZ方向に対して垂直な二方向、すなわちXおよびY方向に任意に偏向する機構を用いる。さらに、粒子エネルギーの調整により、ブラッグピークが形成される位置をZ方向に任意に調整する機能が必要である。一般的に、粒子線の輸送及び遮断を行う粒子線発生輸送装置は、粒子線を加速する加速器を備え、この加速器はエネルギー調整機能も備えている。そして腫瘍内に複数の照射位置(スポットとも呼ぶ)を設定し、上記二つの機構を用いて、それぞれの照射位置に対して粒子線を順に照射していく。各照射位置にそれぞれ付与する線量のバランスをあらかじめ調整し決めておき、各照射位置に付与したそれぞれの線量分布を合算することで、結果的に目標分布を形成する。
一般的に、粒子線の照射方向をXY方向に偏向させて、ある照射位置から次の照射位置へ移動させるのにかかる時間は1ms以下であり、エネルギー変更によりブラッグピーク位置をZ方向に動かすのにかかる時間は100ms程度である。このため、各照射位置に照射する順序としては、まず一つのエネルギーでXY方向に粒子線を走査してそのエネルギーに対応する全ての照射位置にビームを照射した後、次のエネルギーに切り替える、というのが一般的である。
エネルギー変更により照射位置をZ方向に動かすときは必ず粒子線の照射を停止、すなわち遮断しなければならない。スキャニング照射法は、XY方向の走査方法によりさらに次の各手法に細分化される。
ある照射位置から次の照射位置への移動中に粒子線を遮断する方法をスポットスキャニング法、またはディスクリートスポットスキャニング法という(例えば特許文献1、特許文献2)。例えば、各照射位置に照射した線量を測定する機構を備えておいて、その照射位置に照射すべきあらかじめ定められた線量値に達した時点で粒子線を遮断し、粒子線を次の照射位置へ移動することによって実現する。
ある照射位置から次の照射位置への移動中に粒子線を遮断しない場合は、さらに二つの方法に細分化される。一つの方法は、各照射位置に照射した線量を測定する機構を備えておいて、線量がある一定の値に達した時点で、ビームを遮断せずに次の照射位置へ走査するという方法であり、これをラスタースキャニング法と呼ぶ。粒子線を走査している間にも照射がされているため、走査していない照射位置滞在中に付与される線量分布と、走査中に付与される線量分布との合計が、目標分布になるよう調節する。
ある照射位置から次の照射位置への走査中に粒子線を遮断しない場合のもう一つの方法がラインスキャニング法である。この方法は、常に走査を続け、各照射位置で粒子線を滞在させずに照射対象に粒子線を照射する方法である。単位時間に付与される線量であるビーム強度を一定に保つ機能と、走査速度を任意に変更できる機能とを持たせておき、線量を多く付与すべき照射位置付近では粒子線を低速で走査し、線量を少なく付与すべき照射位置付近では粒子線を高速で走査する。このように、各照射位置に対して付与すべき線量に反比例するように走査速度を調整しながら粒子線を走査することにより、最終的な合計線量分布が目標分布になるように調節する。
以上の各スキャニング照射法において、実際の照射においては様々な不確定要素があるため、計算上は目標分布を得られるはずでも、実際に得られる線量分布は目標分布にならない可能性がある。不確定要素としては、例えば、粒子線強度や位置の不安定性、患者固定位置の誤差、患者CTデータの誤差、制御機器の信号遅れやノイズ等がある。これらの影響により、実際の線量分布が計算値と異なってしまう可能性が考えられる。また、特に肝臓や肺などの呼吸性臓器に腫瘍がある場合、患者の呼吸により腫瘍位置や腫瘍周辺の状況などが時間により変化してしまうため、患部に計画通りの線量を付与することは難しい。
上記問題を解決するための方法としてリスキャン、あるいはリペイントとも呼ばれている方法がある(例えば特許文献1、特許文献2参照)。この方法は、各照射位置に対する粒子線の照射を複数回に分割して行う方法である。この方法は、複数回の線量分布を合計することで誤差を平均化し、誤差を小さくするという考え方に基づく。この分割回数をリスキャン回数と呼ぶ。照射する順序としては、まずあるエネルギーでXY方向に粒子線を走査し、そのエネルギーに対応した全ての照射位置に1回ずつ照射する。その後、エネルギーを変更せずに再度各照射位置に照射を行う。これをリスキャン回数繰り返し、リスキャン回数照射した後、次のエネルギーに変更する。リスキャン回数はエネルギーごとに異なっても構わないし、全エネルギーに対して同じでも構わない。一般的にはリスキャン回数を増やすほど上記誤差の影響は平均化されて小さくなる。
特許第3874766号公報(図1、図7) 特許第3737098号公報(図1、図7)
リスキャンは、スポットスキャニング法、ラスタースキャニング法、ラインスキャニング法のいずれに対しても適用可能である。いずれの場合も、リスキャン回数を増やすとそれに応じて、各照射位置に対して1回あたりに照射すべき線量値は小さくしなければならない。
スポットスキャニング法において、各照射位置に対して1回あたりに照射すべき線量値を付与した後にビーム遮断を行うが、照射すべき線量値を付与したことを装置が判断してから、実際にビームが遮断されるまでの間には必ずゼロでない時間差が存在し(概ね数十〜数百μ秒程度)、その時間帯に照射された線量は過剰線量(計画外線量)として患者に付与されてしまう。
また、リスキャン回数を多くするほど、前記過剰線量の値も多くなってしまうという課題がある。
そこで、本発明は、スポットスキャニング法において、ビーム遮断の遅れに起因する複数回の過剰線量の総量を顕著に減少することを目的とする。
本発明の粒子線照射装置は、加速させた粒子線の輸送及び遮断を行う粒子線発生輸送装置と、粒子線発生輸送装置から輸送された粒子線を進行方向に対して垂直な2方向に偏向させて照射対象に照射する照射位置を移動させる走査装置と、粒子線発生輸送装置及び走査装置を制御する制御部と、粒子線の線量を測定する線量モニタを備え、照射位置ごとに粒子線を複数回照射し、照射位置の移動の際に粒子線を遮断する粒子線照射装置である。本発明の粒子線照射装置は、さらに、照射位置の位置情報と、照射位置に対して1回に照射する線量である分割目標線量を記憶する記憶部を有し、線量モニタは、測定した線量が分割目標線量の値に到達した場合に、この到達時から粒子線の照射が遮断されるまでの間に照射された過剰線量を測定する。本発明の粒子線照射装置の制御部は、照射位置に対する1回目の照射の際に、線量モニタにより測定された一の照射位置に対する測定線量が分割目標線量の値に到達した場合に、粒子線発生輸送装置に粒子線の照射を遮断させ、走査装置に次の照射位置に対応した偏向制御をさせた後に、粒子線発生輸送装置に再び粒子線の照射を開始することを、照射対象の同一深さにおける最後の照射位置まで繰り返すように、粒子線発生輸送装置及び走査装置を制御し、照射位置に対する2回目以降の照射の際に、線量モニタにより測定された一の照射位置に対する測定線量が、分割目標線量の値から当該照射位置における前回の過剰線量の値を引いた補正線量値に到達した場合に、粒子線発生輸送装置に粒子線の照射を遮断させ、走査装置に次の照射位置に対応した偏向制御をさせた後に、粒子線発生輸送装置に再び粒子線の照射を開始することを、照射対象の同一深さにおける全ての照射位置に対してあらかじめ指定された回数だけ繰り返すように、粒子線発生輸送装置及び走査装置を制御することを特徴とする。
本発明の粒子線照射装置によれば、2回目以降の照射の際に、分割目標線量の値から当該照射位置における前回の過剰線量の値を引いた補正線量値に基づいて粒子線を遮断するので、スポットスキャニング法におけるビーム遮断の遅れに起因する複数回の過剰線量の総量を顕著に減少することができる。
本発明の実施の形態1による粒子線照射装置の概略構成図である。 図1の粒子線照射装置の動作を示すフロー図である。 ビーム遮断の際の過剰線量を説明する図である。 図1の記憶部に記憶される情報例を説明する概略図である。 図1の記憶部に記憶される照射途中の情報例を説明する概略図である。 本発明の実施の形態2による記憶部に記憶される情報例を説明する概略図である。 本発明の実施の形態2による記憶部に記憶される照射途中の情報例を説明する概略図である。 本発明の実施の形態3による記憶部に記憶される情報例を説明する概略図である。 本発明の実施の形態3による記憶部に記憶される照射途中の情報例を説明する概略図である。 本発明の実施の形態4による粒子線照射装置の概略構成図である。 本発明の実施の形態5による粒子線照射装置の動作を示すフロー図である。 本発明の実施の形態5による記憶部に記憶される情報例を説明する概略図である。 本発明の実施の形態5による記憶部に記憶される他の情報例を説明する概略図である。
実施の形態1.
図1は本発明の実施の形態1による粒子線照射装置の概略構成図である。本発明の実施の形態1による粒子線照射装置50は、荷電粒子を必要なエネルギーまで加速して、加速された荷電粒子を粒子線10として発生させ、走査装置2に輸送する粒子線発生輸送装置1と、粒子線発生輸送装置1により発生された粒子線10を粒子線の進行方向であるZ方向に対して垂直な二方向、すなわちXおよびY方向に偏向させて、患者腫瘍内、すなわち照射対象11の任意の位置に走査させる走査装置2を備えている。通常、粒子線発生輸送装置1は、荷電粒子を加速する加速器と加速器から走査装置2まで粒子線10を輸送するための輸送系を備えている。走査装置2は、粒子線10をX方向に偏向させるX方向走査装置21と、粒子線10をY方向に偏向させるY方向走査装置22を備えている。
さらに、粒子線照射装置50は、照射対象11における各照射位置12の位置情報、各照射位置12に照射すべき粒子線10の線量値、走査装置2の走査速度情報などを記憶する記憶部3と、粒子線発生輸送装置1による粒子線10の出射開始および遮断と、走査装置2による粒子線10の走査とを制御する制御部4と、走査装置2で走査された粒子線10が照射対象11の各照射位置12に照射される線量値を測定する線量モニタ5を備えている。なお、記憶部3に記憶する各照射位置12の位置情報としては、例えば照射位置番号、各照射位置12のXY座標系における位置情報、および粒子線10を各照射位置12のX位置及びY位置に偏向させるための走査装置2の走査電磁石の励磁電流値、および各照射位置12のZ位置に対応するエネルギーなどがある。
粒子線10のエネルギーをあるエネルギーに設定して、以上のような照射方法で、粒子線10をXY方向に移動させながら照射することにより、患部のある深さ、すなわちあるZ位置のXY二次元の患部領域に粒子線10を照射できる。本発明では、一つのエネルギーの粒子線10により、同じZ位置のXY二次元の患部領域を複数回照射する、すなわちリスキャンを行う。
本発明の粒子線照射装置50によるリスキャンの動作を、図2を用いて説明する。図2は、図1の粒子線照射装置の動作を示すフロー図である。ステップF01にて照射動作を開始する。まず、粒子線発生輸送装置1のパラメータを、粒子線10のエネルギーが、照射する最初のエネルギーになるよう設定する(ステップF02)。また、走査装置2のパラメータを、粒子線10の照射位置12が最初のエネルギーに対応する最初の照射位置12となるよう設定する(ステップF03)。その後、粒子線10を発生させて照射を開始し、それと同時に線量モニタ5による線量測定を開始する(ステップF04)。ステップF05にて、測定線量の値が、記憶部3に記憶された判定値に到達したかどうかを判定する。
ある照射位置12に対する1回目の照射である場合は、測定線量の値(測定線量値)が、記憶部3に記憶された1回当たりの目標線量の値(目標線量値)である分割目標線量の値(分割目標線量値)に到達したら(ステップF05)、制御部4は粒子線発生輸送装置1に対し遮断の指示を出し、粒子線発生輸送装置1は粒子線10を遮断する(ステップF06)。1回目の照射における粒子線10の遮断の判定を行う判定値は、各照射位置12に対応した分割目標線量値である。このとき、ステップF06にて、当該照射位置12における測定線量値が1回の目標線量値に到達してから、実際に粒子線10が遮断されるまでの間には、図3に示すようなタイムラグが存在するので、このタイムラグの間に照射される線量値、すなわち過剰線量14の値を線量モニタ5により測定する(ステップF06)。このタイムラグは、一般的には1msecよりも短い。
図3は、ビーム遮断の際の過剰線量を説明する図である。横軸は時間であり、縦軸は時間に照射される線量である。図3には、粒子線10の遮断を指示する遮断信号15も示した。時刻t0にて遮断信号15が立ち上がることで粒子線10の遮断が指示され、線量分布13はタイムラグ時間経過後である時刻t1においてゼロになる。図3において、時刻t0から時刻t1までの合計線量の値が、過剰線量14の値である。
ステップF07にて、当該照射位置12が同エネルギー内の最終照射位置かどうかを確認し、当該照射位置12が同エネルギー内の最終照射位置ではない場合は、ステップF08に移動する。ステップF08にて、制御部4は次の照射位置12への移動を命令する。次の照射位置12への移動が完了したら、ステップF05、ステップF06を実行する。
ステップF07にて、当該照射位置12が同エネルギー内の最終照射位置かどうかを確認し、あるエネルギーに対応する全ての照射位置12に対して1回ずつ照射を終えていた場合はステップF09に移動する。ステップF09にて、所定のリスキャン回数の照射を行ったかどうかを判断し、所定のリスキャン回数の照射が終わっていない場合はステップF03に戻り、同じエネルギーの各照射位置12に対して2回目、3回目からn回目(最後)の照射を行う。ステップF09にて、所定のリスキャン回数(n回)の照射が終わっている場合はステップF10に移動する。
ステップF05にて、ある照射位置12に対する2回目以降の照射である場合は、測定線量値が、記憶部3に記憶された1回当たりの目標線量値(分割目標線量値)よりも、同じ照射位置12に対して前回照射したときに測定された過剰線量の値(前回のステップF06)のぶんだけ少ない値(補正線量値)に到達したら、ステップF06にて、制御部4は粒子線発生輸送装置1に対し遮断の指示を出し、粒子線発生輸送装置1は粒子線10を遮断する。このときも、1回目の照射のときと同様に、実際に粒子線10が遮断されるまでの間に照射される過剰線量を測定しておく。2回目の照射における粒子線10の遮断の判定を行う判定値は、各照射位置12に対応した補正線量値である。例えば、照射位置番号iの照射位置12に対する遮断を行う補正線量値は、d(i)−e(i)で表される。ここで、d(i)は、照射位置番号iの照射位置12における分割目標線量値である。e(i)は、照射位置番号iの照射位置12における1回目すなわち前回に測定された過剰線量の値(過剰線量値)である。その後同様にステップF03からステップF09を繰り返し、同エネルギーの全ての照射位置12に対しての照射を行う。
ステップF09にて、そのエネルギーに対応する全ての照射位置12に対して所定のリスキャン回数であるn回の照射を終えたら、ステップF10に移動する。ステップF10にて、エネルギーが最後のエネルギーであったかどうかを判断し、最後のエネルギーではない場合はステップF11に移動する。ステップF11にて、粒子線発生輸送装置1のパラメータを、粒子線10のエネルギーが次のエネルギーとなるよう変更する。ステップF10にて、最後のエネルギーであったと判断されるまで、ステップF03からステップF11を繰り返し、同様の照射を繰り返すことで、1回の治療は終了する(ステップF12)。
リスキャンの2回目以降において、ある照射位置12に対する測定線量値が、記憶部3に記憶された1回当たりの目標線量値(分割目標線量値)よりも、同じ照射位置12に対して前回照射したときに測定された過剰線量値のぶんだけ少ない値に到達したかどうかを、制御部4が判断するためには、ある照射位置12に対する過剰線量を測定してから次に同じ照射位置12への照射を行うまでの間、何らかの形で過剰線量に関する情報を保持しておく必要がある。
そのための記憶部3の構成の一例を図4、図5に示す。図4は図1の記憶部に記憶される情報例を説明する概略図であり、図5は図1の記憶部に記憶される照射途中の情報例を説明する概略図である。記憶部3は、各照射位置12に対し、照射位置番号と、リスキャン1回当たりの目標線量(分割目標線量)と、過剰線量を記憶するためのメモリ領域が確保されている。初期状態のメモリ情報33では図4に示すように、照射開始前の過剰線量には0(ゼロ)が記憶されているものとする。図4、図5では、照射位置番号が1からmまでの例を示した。記憶部3の分割目標線量、過剰線量には、それぞれ照射位置番号に対応したm個のデータが記憶される。m個の分割目標線量が記憶されるメモリ領域は分割目標線量記憶領域であり、m個の過剰線量が記憶されるメモリ領域は過剰線量記憶領域である。なお、実際には、記憶部3に、照射位置番号、分割目標線量、過剰線量の他にも、エネルギー情報や、照射位置12の座標情報や、その位置に対応する走査装置2の電磁石の励磁電流値等の情報が記憶されているが、ここでは割愛する。
各照射位置12に対する1回目の照射において、照射線量値が目標線量値に到達してから実際に粒子線10が遮断されるまでの間に過剰線量が測定されると、メモリ情報34のように、当該照射位置12に対応する過剰線量値が上書きされる。図5では、過剰線量が測定される度に、当該照射位置12に対応する過剰線量値が上書きされ、照射位置番号が1からi−1までの範囲44aに測定された過剰線量値e(1)からe(i−1)が記録されている。照射位置番号がiからmまでの範囲44bでは、過剰線量値が0のままである。全ての照射位置12に対して1回ずつ照射を終えた状態では、全ての照射位置12に対する過剰線量の値が一つずつ記録されていることになる。
そして、ある照射位置12に対する2回目の照射の際、制御部4は当該照射位置12に対する1回当たりの目標線量値(分割目標線量値)と過剰線量値をそれぞれ記憶部3から読み取り、その差分である補正線量値を計算し、照射線量値がその補正線量値に到達した時点で粒子線10を遮断し、次の照射位置12へ移動するという制御を行う。例えば、照射位置番号iの照射位置12に対する遮断を行う判定値は、d(i)−e(i)で表される補正線量値である。このように、実施の形態1の粒子線照射装置50は、ある照射位置12に対するk−1回目の照射において測定された過剰線量値を記憶しておき、同じ照射位置12に対するk回目の照射のときに、照射線量値が目標線量値(分割目標線量値)とk−1回目の過剰線量値との差分である補正線量値に到達した時点で、粒子線10を遮断し、次の照射位置12へ移動するということを繰り返しながら粒子線10の照射を行う。
以上のように、実施の形態1の粒子線照射装置50は、図4、図5のような構成の記憶部3を備えることで、k−1回目に照射された過剰線量値をk回目の照射で打ち消すことができる。従来は、リスキャンの毎回で過剰線量が発生するので、1回の過剰線量値をEとするとn回のリスキャンの最後ではE×nの過剰線量値が照査されている。これに対して、実施の形態1の粒子線照射装置50は、従来のリスキャン毎に発生する過剰線量値を、リスキャンの最後の1回だけのEに抑えることができ、トータルで過剰線量値を従来の1/nに減少することが可能となる。実施の形態1の粒子線照射装置50は、過剰線量の増加というリスク無しにリスキャン回数を増やすことができるため、従来に比べてより高い照射線量精度の照射を行うことができる。
なお、各照射位置12に照射する全線量を全リスキャン回数で等分することを前提としたが、原理的には、各照射位置12に対するそれぞれの線量合計値が同じであれば、リスキャンの各回でどのような比率で分割したとしても、最終的に照射対象11において得られる線量分布は同じである。したがってある照射位置12に対する1回当たりの目標線量の値が、リスキャンの各回において毎回同じであることは、必要条件ではない。しかし、リスキャンの本質的な目的は、照射対象11である患者の呼吸や咳などに伴う動き等の予測困難な照射誤差が、線量分布に対して与える影響を、分割することで平均化することである。したがって、特別な理由が無ければ、ある照射位置12に対する1回当たりの目標線量の値はリスキャンの各回において毎回同じであることが好ましいと考えられる。そして1回当たりの目標線量がリスキャンの各回において毎回同じであることを前提とするならば、図4、図5のような記憶部3の構成にすることにより、使用するメモリ容量を少なくできる。
以上のように、実施の形態1の粒子線照射装置50は、加速させた粒子線10の輸送及び遮断を行う粒子線発生輸送装置1と、粒子線発生輸送装置1から輸送された粒子線10を進行方向に対して垂直な2方向に偏向させて照射対象11に照射する照射位置12を移動させる走査装置2と、粒子線発生輸送装置1及び走査装置2を制御する制御部4と、粒子線10の線量を測定する線量モニタ5を備え、照射位置12ごとに粒子線10を複数回照射し、照射位置12の移動の際に粒子線10を遮断する粒子線照射装置である。本発明の粒子線照射装置50は、さらに、照射位置12の位置情報と、照射位置12に対して1回に照射する線量である分割目標線量を記憶する記憶部3を有し、線量モニタ5は、測定した線量が分割目標線量の値に到達した場合に、この到達時から粒子線10の照射が遮断されるまでの間に照射された過剰線量14を測定する。本発明の粒子線照射装置50の制御部4は、照射位置12に対する1回目の照射の際に、線量モニタ5により測定された一の照射位置12に対する測定線量が分割目標線量の値に到達した場合に、粒子線発生輸送装置1に粒子線10の照射を遮断させ、走査装置2に次の照射位置12に対応した偏向制御をさせた後に、粒子線発生輸送装置1に再び粒子線10の照射を開始することを、照射対象11の同一深さにおける最後の照射位置12まで繰り返すように、粒子線発生輸送装置1及び走査装置2を制御し、照射位置12に対する2回目以降の照射の際に、線量モニタ5により測定された一の照射位置12に対する測定線量が、分割目標線量の値から当該照射位置における前回の過剰線量14の値を引いた補正線量値に到達した場合に、粒子線発生輸送装置1に粒子線10の照射を遮断させ、走査装置2に次の照射位置12に対応した偏向制御をさせた後に、粒子線発生輸送装置1に再び粒子線10の照射を開始することを、照射対象11の同一深さにおける全ての照射位置12に対してあらかじめ指定された回数だけ繰り返すように、粒子線発生輸送装置1及び走査装置2を制御することを特徴とするので、2回目以降の照射の際に、分割目標線量の値から当該照射位置における前回の過剰線量14の値を引いた補正線量値に基づいて粒子線10を遮断することにより、スポットスキャニング法において、ビーム遮断の遅れに起因する複数回の過剰線量14の総量を従来に比べて顕著に減少することができる。
実施の形態2.
実施の形態1では、各照射位置12に照射する全線量を全リスキャン回数で等分することを前提とした記憶部3の構成例を説明した。しかし、1回の目標線量の値である分割目標線量値をリスキャンの各回において毎回異なる値にしたい場合は、図4、図5のような記憶部3の構成では不可能である。実施の形態2では、分割目標線量値をリスキャンの各回において毎回異なる値にできる記憶部3の構成例を説明する。
図6は本発明の実施の形態2による記憶部に記憶される情報例を説明する概略図であり、図7は本発明の実施の形態2による記憶部に記憶される照射途中の情報例を説明する概略図である。実施の形態2の記憶部3は、初期状態において、各照射位置12に対し、照射位置番号と、全n回のリスキャンの各回における分割目標線量値を全て記憶しているものとする。図6、図7では、照射位置番号が1からmまでの例を示した。記憶部3には、全n回の分割目標線量値が、それぞれ照射位置番号に対応したm個のデータが記憶される。初期状態のメモリ情報35のように、照射位置番号が1からmまでの1回目の分割目標線量値は、それぞれd1(1)からd1(m)である。照射位置番号が1からmまでのk回目の分割目標線量値は、それぞれdk(1)からdk(m)である。m×k個の分割目標線量が記憶されるメモリ領域は分割目標線量記憶領域である。分割目標線量値をリスキャンの各回において毎回異なる値にする場合は、1回目の分割目標線量値d1(i)からn回目の分割目標線量値dn(i)を異なるようにするが、各回の分割目標線量値は自由に設定できる。実施の形態1と同様に、各照射位置12に照射する全線量を全リスキャン回数で等分することを前提とする場合は、ある照射位置12に対する1回当たりの分割目標線量値はリスキャン何回目でも同じ値になる。
実施の形態2の粒子線照射装置50の動作を説明する。各照射位置12に対する1回目の照射において、照射線量値が分割目標線量値に到達してから実際に粒子線10が遮断されるまでの間の過剰線量が測定されると、メモリ情報36のように、当該照射位置12に対するリスキャン2回目の分割目標線量を、元の値よりもこの過剰線量の値のぶんだけ少ない値に書き換える。図7では、過剰線量が測定される度に、当該照射位置12に対応する次回の分割目標線量値が上書きされ、照射位置番号が1からi−1までの範囲46aに次回の分割目標線量値である補正線量値dd2(1)からdd2(i−1)が記録されている。ここで、補正線量値dd2(1)は、元の分割目標線量値d2(1)から測定された過剰線量値e(1)を引いたものである。補正線量値dd2(i−1)は、元の分割目標線量値d2(i−1)から測定された過剰線量値e(i−1)を引いたものである。照射位置番号がiからmまでにおける2回目の分割目標線量値は、元の分割目標線量値d2(i)から分割目標線量値d2(m)のままである。
全ての照射位置12に対して1回ずつ照射を終えた状態では、全ての照射位置12に対するリスキャン2回目の分割目標線量の値が書き換えられた状態となる。そして、2回目の照射の際、書き換えられた分割目標線量値である補正線量値dd2(1)からdd2(m)を読み取り、照射線量値がその補正線量値に達した時点で粒子線10を遮断し、次の照射位置12へ移動するという制御を行う。このように、実施の形態2の粒子線照射装置50は、ある照射位置12に対するk−1回目の照射において測定された過剰線量値を、同じ照射位置12に対するk回目の分割目標線量値から引いた補正線量値に書き換え、同じ照射位置12に対するk回目の照射のときに、照射線量値が書き換えられた補正線量値に到達した時点で粒子線10を遮断し、次の照射位置12へ移動するということを繰り返しながら粒子線10の照射を行う。
実施の形態2の粒子線照射装置50は、実施の形態1と同様に、従来のリスキャン毎に発生する過剰線量値を、リスキャンの最後の1回だけのEに抑えることができ、トータルで過剰線量値を従来の1/nに減少することが可能となり、スポットスキャニング法において、ビーム遮断の遅れに起因する複数回の過剰線量の総量を従来に比べて顕著に減少することができる。実施の形態2の粒子線照射装置50は、過剰線量の増加というリスク無しにリスキャン回数を増やすことができるため、従来に比べてより高い照射線量精度の照射を行うことができる。また、実施の形態2の粒子線照射装置50は、分割目標線量の値をリスキャンの各回において毎回異なる値にでき、分割目標線量の微調整がやり易くなる。
実施の形態3.
記憶部3の構成は、実施の形態1や実施の形態2以外の構成でも構わない。図8は本発明の実施の形態3による記憶部に記憶される情報例を説明する概略図であり、図9は本発明の実施の形態3による記憶部に記憶される照射途中の情報例を説明する概略図である。実施の形態3の記憶部3は、各照射位置12に対し、照射位置番号と、リスキャン1回当たりの目標線量(分割目標線量)と、修正された目標線量である補正線量を記憶するためのメモリ領域が確保されており、照射開始前の初期状態において補正線量の値にはリスキャン1回当たりの目標線量(分割目標線量)の値と同じ値が記憶されているものとする。図8、図9では、照射位置番号が1からmまでの例を示した。初期状態のメモリ情報37のように、記憶部3には、分割目標線量、補正線量も、それぞれ照射位置番号に対応したm個のデータが記憶される。m個の分割目標線量が記憶されるメモリ領域は分割目標線量記憶領域であり、m個の補正線量が記憶されたメモリ領域は判定値記憶領域である。
実施の形態3の粒子線照射装置50の動作を説明する。各照射位置12に対する1回目の照射において、制御部4は補正線量の値(補正線量値)を読み取り、照射線量の値が補正線量値に到達したら粒子線10を遮断し、次の照射位置12へ移動する。このとき照射線量の値が補正線量値に到達してから実際に粒子線10が遮断されるまでの間の過剰線量が測定されると、メモリ情報38のように、当該照射位置12に対する補正線量の値を、分割目標線量値よりもこの過剰線量値のぶんだけ少ない値に書き換える。図9では、過剰線量が測定される度に、当該照射位置12に対応する補正線量の値が上書きされ、照射位置番号が1からi−1までの範囲48aに補正線量値dd(1)からdd(i−1)が記録されている。補正線量値dd(1)は、補正線量の初期値d(1)から測定された過剰線量値e(1)を引いたものである。補正線量値dd(i−1)は、補正線量の初期値d(i−1)から測定された過剰線量値e(i−1)を引いたものである。照射位置番号がiからmまでの範囲48bでは、補正線量値が初期のd(i)からd(m)のままである。全ての照射位置12に対して1回ずつ照射を終えた状態では、全ての照射位置12に対する補正線量の値が、実測された過剰線量値に基づいて修正されていることになる。
このように、実施の形態3の粒子線照射装置50は、ある照射位置12に対するk−1回目の照射において測定された過剰線量値を1回当たりの分割照射線量値から減算した値、すなわち同じ照射位置12に対する補正線量の値に書き換え、同じ照射位置12に対するk回目の照射のときに、照射線量の値が補正線量値に到達した時点で粒子線10を遮断し、次の照射位置12へ移動するということを繰り返しながら粒子線10の照射を行う。なお、1回目の補正線量値は分割目標線量値と同じ値なので、実施の形態3の粒子線照射装置50は、図2のフロー図と同じ動作で照射を行うことになる。
実施の形態3の粒子線照射装置50は、実施の形態1と同様に、従来のリスキャン毎に発生する過剰線量値を、リスキャンの最後の1回だけのEに抑えることができ、トータルで過剰線量値を従来の1/nに減少することが可能となり、スポットスキャニング法において、ビーム遮断の遅れに起因する複数回の過剰線量の総量を従来に比べて顕著に減少することができる。実施の形態3の粒子線照射装置50は、過剰線量の増加というリスク無しにリスキャン回数を増やすことができるため、従来に比べてより高い照射線量精度の照射を行うことができる。実施の形態3の粒子線照射装置50は、実施の形態1の粒子線照射装置50と同様に、実施の形態2の粒子線照射装置50に比べて、使用するメモリ容量を少なくできる。
実施の形態4.
実施の形態1から3では、線量モニタ5は線量を測定するモニタ部が1つである例で説明したが、図10のように線量モニタ5が第1のモニタ部6と第2のモニタ部7の2つのモニタ部を備えていてもよい。図10は、本発明の実施の形態4による粒子線照射装置の概略構成図である。1つのモニタ部における線量測定制御切り替え時のデッドタイム等が気になる場合がある。第1のモニタ部6により、ある照射位置12に対して、照射線量値が目標線量値に到達するまでの線量測定を行い、到達してから実際にビームが遮断されるまでの間の過剰線量値を第2のモニタ部7により測定するようにすれば、高精度で過剰線量を測定することができる。実施の形態4の粒子線照射装置50は、実施の形態1から3の粒子線照射装置50よりも高精度で過剰線量を測定することができ、より高い照射線量精度の照射を行うことができる。
実施の形態5.
実施の形態1から4では、粒子線10の遮断するときの過剰線量値を測定しておき、次回にその分だけ少な目に照射する方法であったが、粒子線発生輸送装置1の加速器の仕様次第では、図3に示すような時間と付与線量との関係(付与線量特性)の再現性が高く、粒子線10を遮断するときの過剰線量値をあらかじめ予測できる場合がある。例えば、高周波ノックアウト法と呼ばれる手法では、付与線量特性の再現性が高いことが知られている。付与線量特性の再現性が高いことは、Taku Inaniwa, et al.“Optimization for Fast-Scanning Irradiation in Particle Therapy”, Med. Phys. 34, 3302-3311(2007)に、記載されている。付与線量特性の再現性が高い場合、あらかじめ予測しておいた過剰線量値を用いて、過剰線量値を測定しなくても、過剰線量の増加というリスク無しにリスキャン回数を増やすことができる。実施の形態5では、付与線量特性の再現性が高い場合における照射方法を説明する。
図11は本発明の実施の形態5による粒子線照射装置の動作を示すフロー図であり、図12は本発明の実施の形態5による記憶部に記憶される情報例を説明する概略図である。図11のフロー図は、図2のフロー図のステップF05及ぶステップF06が、ステップF15及びステップF16に変更されたものである。図12の情報例39は、図4の情報例33の過剰線量が過剰線量予測値に変更されたものである。図12では、照射位置番号が1からmまでの例を示した。記憶部3の過剰線量予測値には、それぞれ照射位置番号に対応したm個のデータが記憶される。例えば、射位置番号がiには、過剰線量予測値ee(i)が記憶される。m個の過剰線量予測値が記憶されるメモリ領域は過剰線量予測値記憶領域である。
実施の形態5による粒子線照射装置の動作を、図2のフローと異なる部分を説明する。ステップF15にて、ある照射位置12に対する1回目の照射である場合は、図2と同様に、測定線量の値(測定線量値)が、記憶部3に記憶された1回当たりの目標線量の値(目標線量値)である分割目標線量の値(分割目標線量値)に到達したら、ステップF16に移動する。ステップF16にて、制御部4は粒子線発生輸送装置1に対し遮断の指示を出し、粒子線発生輸送装置1は粒子線10を遮断する。
ステップF15にて、ある照射位置12に対する2回目以降の照射である場合は、測定線量値が、記憶部3に記憶された1回当たりの目標線量値(分割目標線量値)よりも、過剰線量予測値の分だけ少ない値(補正線量値)に到達したら、ステップF16にて、制御部4は粒子線発生輸送装置1に対し遮断の指示を出し、粒子線発生輸送装置1は粒子線10を遮断する。
実施の形態5の粒子線照射装置50は、ある照射位置12に対する2回目以降の照射である場合に、分割目標線量値から過剰線量予測値を引いた値である補正線量値を照射線量の判定値とするので、過剰線量値を測定しなくても、スポットスキャニング法におけるビーム遮断の遅れに起因する複数回の過剰線量の総量を顕著に減少することができる。また、実施の形態5の粒子線照射装置50は、過剰線量値を測定しなくても、過剰線量の増加というリスク無しにリスキャン回数を増やすことができ、従来に比べてより高い照射線量精度の照射を行うことができる。
なお、記憶部3に記録される情報例は、図13のような他の情報例40でもよい。図13は、本発明の実施の形態5による記憶部に記憶される他の情報例を説明する概略図である。図13の情報例40は、分割目標線量d(i)と過剰線量予測値ee(i)を別箇に記憶せずに、あらかじめ分割目標線量d(i)から過剰線量予測値ee(i)を引いた補正線量値dd(i)を記憶したものである。m個の補正量値が記憶されるメモリ領域は補正量記憶領域である。
なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1…粒子線発生輸送装置、2…走査装置、3…記憶部、
4…制御部、5…線量モニタ、6…第1のモニタ部、
7…第2のモニタ部、10…粒子線、11…照射対象、
12…照射位置、14…過剰線量、50…粒子線照射装置。

Claims (8)

  1. 加速させた粒子線の輸送及び遮断を行う粒子線発生輸送装置と、前記粒子線発生輸送装置から輸送された前記粒子線を進行方向に対して垂直な2方向に偏向させて照射対象に照射する照射位置を移動させる走査装置と、前記粒子線発生輸送装置及び前記走査装置を制御する制御部と、前記粒子線の線量を測定する線量モニタを備え、前記照射位置ごとに前記粒子線を複数回照射し、前記照射位置の移動の際に前記粒子線を遮断する粒子線照射装置であって、
    前記照射位置の位置情報と、前記照射位置に対して1回に照射する線量である分割目標線量を記憶する記憶部を有し、
    前記線量モニタは、測定した線量が前記分割目標線量の値に到達した場合に、この到達時から前記粒子線の照射が遮断されるまでの間に照射された過剰線量を測定し、
    前記制御部は、
    前記照射位置に対する1回目の照射の際に、前記線量モニタにより測定された一の前記照射位置に対する測定線量が前記分割目標線量の値に到達した場合に、前記粒子線発生輸送装置に前記粒子線の照射を遮断させ、前記走査装置に次の前記照射位置に対応した偏向制御をさせた後に、前記粒子線発生輸送装置に再び前記粒子線の照射を開始することを、前記照射対象の同一深さにおける最後の前記照射位置まで繰り返すように、前記粒子線発生輸送装置及び前記走査装置を制御し、
    前記照射位置に対する2回目以降の照射の際に、前記線量モニタにより測定された一の前記照射位置に対する測定線量が、前記分割目標線量の値から当該照射位置における前回の前記過剰線量の値を引いた補正線量値に到達した場合に、前記粒子線発生輸送装置に前記粒子線の照射を遮断させ、前記走査装置に次の前記照射位置に対応した偏向制御をさせた後に、前記粒子線発生輸送装置に再び前記粒子線の照射を開始することを、前記照射対象の同一深さにおける全ての前記照射位置に対してあらかじめ指定された回数だけ繰り返すように、前記粒子線発生輸送装置及び前記走査装置を制御することを特徴とする粒子線照射装置。
  2. 前記記憶部は、
    前記照射位置に対応した照射位置番号ごとに、前記分割目標線量の値が記憶された分割目標線量記憶領域と、前記過剰線量の値を記憶する過剰線量記憶領域を有し、
    前記照射位置番号ごとの前記過剰線量記憶領域は、前記過剰線量が測定される度に該当する前記照射位置番号に対応する当該過剰線量の値が記憶され、
    前記補正線量値は、該当する前記照射位置番号における前記分割目標線量記憶領域に記憶された値から、該当する前記照射位置番号における前記過剰線量記憶領域に記憶された値を引いた値であることを特徴とする請求項1記載の粒子線照射装置。
  3. 前記記憶部は、
    前記照射位置に対応した照射位置番号及び照射順番ごとに、前記分割目標線量の値が記憶された分割目標線量記憶領域を有し、
    前記過剰線量が測定される度に、当該過剰線量が測定された前記照射位置番号における次回の前記分割目標線量記憶領域は、そこに記憶されていた前記分割目標線量の値から当該過剰線量の値を引いた値が前記補正線量値として記憶され、
    前記制御部は、
    前記照射位置に対する2回目以降の照射の際に、該当する照射位置番号及び照射順番に対応した前記分割目標線量記憶領域に記憶された前記補正線量値を、前記過剰線量の測定を開始する判定値とすることを特徴とする請求項1記載の粒子線照射装置。
  4. 前記記憶部は、
    前記照射位置に対応した照射位置番号ごとに、前記分割目標線量の値が記憶された分割目標線量記憶領域と、次回の前記過剰線量の測定を開始する判定値を記憶する判定値記憶領域を有し、
    前記照射位置番号ごとの前記判定値記憶領域は、前記過剰線量が測定される度に、該当する前記照射位置番号に対応する前記分割目標線量の値から当該過剰線量の値を引いた値が前記補正線量値として記憶され、
    前記制御部は、
    前記照射位置に対する2回目以降の照射の際に、該当する照射位置番号に対応した前記判定値記憶領域に記憶された前記補正線量値を、前記過剰線量の測定を開始する判定値とすることを特徴とする請求項1記載の粒子線照射装置。
  5. 前記線量モニタは、第1のモニタ部と第2のモニタ部を備え、
    前記第1のモニタ部は、前記過剰線量の測定を開始する判定値に達するまでの線量を測定し、
    前記第2のモニタ部は、前記第1のモニタ部により測定された線量が前記判定値に到達した後の線量を測定することを特徴とする請求項1から4のいずれか1項に記載の粒子線照射装置。
  6. 加速させた粒子線の輸送及び遮断を行う粒子線発生輸送装置と、前記粒子線発生輸送装置から輸送された前記粒子線を進行方向に対して垂直な2方向に偏向させて照射対象に照射する照射位置を移動させる走査装置と、前記粒子線発生輸送装置及び前記走査装置を制御する制御部と、前記粒子線の線量を測定する線量モニタを備え、前記照射位置ごとに前記粒子線を複数回照射し、前記照射位置の移動の際に前記粒子線を遮断する粒子線照射装置であって、
    前記照射位置の位置情報と、前記照射位置に対して1回に照射する線量である分割目標線量と、前記照射位置に対して照射を遮断する命令が出てから実際に照射が遮断されるまでの間に照射される線量を予測した過剰線量予測値を記憶する記憶部を有し、
    前記制御部は、
    前記照射位置に対する1回目の照射の際に、前記線量モニタにより測定された一の前記照射位置に対する測定線量が前記分割目標線量の値に到達した場合に、前記粒子線発生輸送装置に前記粒子線の照射を遮断させ、前記走査装置に次の前記照射位置に対応した偏向制御をさせた後に、前記粒子線発生輸送装置に再び前記粒子線の照射を開始することを、前記照射対象の同一深さにおける最後の前記照射位置まで繰り返すように、前記粒子線発生輸送装置及び前記走査装置を制御し、
    前記照射位置に対する2回目以降の照射の際に、前記線量モニタにより測定された一の前記照射位置に対する測定線量が、前記分割目標線量の値から当該照射位置における過剰線量予測値を引いた補正線量値に到達した場合に、前記粒子線発生輸送装置に前記粒子線の照射を遮断させ、前記走査装置に次の前記照射位置に対応した偏向制御をさせた後に、前記粒子線発生輸送装置に再び前記粒子線の照射を開始することを、前記照射対象の同一深さにおける全ての前記照射位置に対してあらかじめ指定された回数だけ繰り返すように、前記粒子線発生輸送装置及び前記走査装置を制御することを特徴とする粒子線照射装置。
  7. 前記記憶部は、
    前記照射位置に対応した照射位置番号ごとに、前記分割目標線量の値が記憶された分割目標線量記憶領域と、前記過剰線量予測値を記憶する過剰線量予測値記憶領域を有することを特徴とする請求項6記載の粒子線照射装置。
  8. 前記記憶部は、
    前記照射位置に対応した照射位置番号ごとに、前記分割目標線量の値が記憶された分割目標線量記憶領域と、前記補正線量値を記憶する補正線量記憶領域を有することを特徴とする請求項6記載の粒子線照射装置。
JP2016512539A 2014-04-10 2014-04-10 粒子線照射装置 Active JP6257751B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060395 WO2015155868A1 (ja) 2014-04-10 2014-04-10 粒子線照射装置

Publications (2)

Publication Number Publication Date
JPWO2015155868A1 true JPWO2015155868A1 (ja) 2017-04-13
JP6257751B2 JP6257751B2 (ja) 2018-01-10

Family

ID=54287469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016512539A Active JP6257751B2 (ja) 2014-04-10 2014-04-10 粒子線照射装置

Country Status (6)

Country Link
US (1) US9889319B2 (ja)
EP (1) EP3130374B1 (ja)
JP (1) JP6257751B2 (ja)
CN (1) CN106163616B (ja)
TW (1) TWI561278B (ja)
WO (1) WO2015155868A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444532B2 (ja) * 2015-11-11 2018-12-26 株式会社日立製作所 粒子線治療装置及び治療計画補正方法
WO2017145259A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 重粒子線治療装置
JP6745644B2 (ja) * 2016-05-24 2020-08-26 キヤノン株式会社 制御装置、その動作方法およびプログラム
CN108883304B (zh) * 2018-06-22 2020-08-07 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器控制方法、装置及存储介质
CN113877081B (zh) * 2020-07-03 2024-04-19 中硼(厦门)医疗器械有限公司 中子捕获治疗设备及其监测系统运行步骤
JP7406470B2 (ja) * 2020-08-11 2023-12-27 株式会社日立製作所 粒子線照射システム及びその制御方法並びに粒子線照射システムの制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358237A (ja) * 2003-05-13 2004-12-24 Hitachi Ltd 粒子線出射装置、これに用いる治療計画装置、及び粒子線出射方法
JP2006087649A (ja) * 2004-09-24 2006-04-06 Natl Inst Of Radiological Sciences 放射線照射方法
JP2007311125A (ja) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム
JP2009045229A (ja) * 2007-08-20 2009-03-05 Natl Inst Of Radiological Sciences スキャニング照射方法およびスキャニング照射装置
JP2010220975A (ja) * 2009-03-25 2010-10-07 Natl Inst Of Radiological Sciences 粒子線照射装置
JP2011000378A (ja) * 2009-06-22 2011-01-06 Hitachi Ltd 荷電粒子ビーム照射システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
US7991800B2 (en) * 2006-07-28 2011-08-02 Aprimo Incorporated Object oriented system and method for optimizing the execution of marketing segmentations
DE102009033297A1 (de) * 2009-07-15 2011-01-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Bestrahlung bzw. Bestrahlungsplanung für ein Rescanning-Verfahren mit einem Partikelstrahl
EP3093045A4 (en) * 2014-01-10 2017-11-01 Mitsubishi Electric Corporation Particle beam irradiation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358237A (ja) * 2003-05-13 2004-12-24 Hitachi Ltd 粒子線出射装置、これに用いる治療計画装置、及び粒子線出射方法
JP2006087649A (ja) * 2004-09-24 2006-04-06 Natl Inst Of Radiological Sciences 放射線照射方法
JP2007311125A (ja) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム
JP2009045229A (ja) * 2007-08-20 2009-03-05 Natl Inst Of Radiological Sciences スキャニング照射方法およびスキャニング照射装置
JP2010220975A (ja) * 2009-03-25 2010-10-07 Natl Inst Of Radiological Sciences 粒子線照射装置
JP2011000378A (ja) * 2009-06-22 2011-01-06 Hitachi Ltd 荷電粒子ビーム照射システム

Also Published As

Publication number Publication date
WO2015155868A1 (ja) 2015-10-15
US9889319B2 (en) 2018-02-13
CN106163616B (zh) 2019-02-26
TW201538201A (zh) 2015-10-16
EP3130374B1 (en) 2019-06-19
EP3130374A1 (en) 2017-02-15
TWI561278B (en) 2016-12-11
CN106163616A (zh) 2016-11-23
JP6257751B2 (ja) 2018-01-10
EP3130374A4 (en) 2018-01-17
US20170021197A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6257751B2 (ja) 粒子線照射装置
JP4532606B1 (ja) 粒子線治療装置
JP4646069B2 (ja) 粒子線照射システム
US9302121B2 (en) Particle therapy system
JP6634299B2 (ja) 治療計画装置、治療計画方法、制御装置および粒子線治療システム
JP2009243891A (ja) 荷電粒子線照射装置
JP6109702B2 (ja) 荷電粒子線照射装置
JP4499185B1 (ja) 粒子線照射装置及び粒子線治療装置
JP2009039219A (ja) 荷電粒子ビーム照射システム及び荷電粒子ビーム照射方法
US9937361B2 (en) Particle beam irradiation apparatus
JP5390476B2 (ja) 粒子線治療装置
WO2017081826A1 (ja) 粒子線治療システム
TWI537023B (zh) 粒子線治療裝置
JP6494808B2 (ja) 粒子線治療装置
JP2019180738A (ja) 粒子線治療システム、及び粒子線治療システムの照射位置制御方法
JP6839987B2 (ja) 治療計画装置および粒子線治療システム
JP6358948B2 (ja) 粒子線照射装置および粒子線照射装置の制御方法
JP2011045702A (ja) 粒子線照射装置及び粒子線治療装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R151 Written notification of patent or utility model registration

Ref document number: 6257751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350