JPWO2015122099A1 - Ball bearing with seal - Google Patents

Ball bearing with seal Download PDF

Info

Publication number
JPWO2015122099A1
JPWO2015122099A1 JP2015562705A JP2015562705A JPWO2015122099A1 JP WO2015122099 A1 JPWO2015122099 A1 JP WO2015122099A1 JP 2015562705 A JP2015562705 A JP 2015562705A JP 2015562705 A JP2015562705 A JP 2015562705A JP WO2015122099 A1 JPWO2015122099 A1 JP WO2015122099A1
Authority
JP
Japan
Prior art keywords
seal
bearing
lip
seal member
ball bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015562705A
Other languages
Japanese (ja)
Other versions
JP6504060B2 (en
Inventor
渡邊 聡
聡 渡邊
信一 平賀
信一 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JPWO2015122099A1 publication Critical patent/JPWO2015122099A1/en
Application granted granted Critical
Publication of JP6504060B2 publication Critical patent/JP6504060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7846Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/782Details of the sealing or parts thereof, e.g. geometry, material of the sealing region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7853Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race
    • F16C33/7856Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race with a single sealing lip

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing Of Bearings (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

本発明に係るシール付き玉軸受は、内周面に外輪軌道面が形成された外輪と、内輪外周面に内輪軌道面が形成された内輪と、外輪軌道面と内輪軌道面との間に配置された玉と、外輪の内周面に固定されたシール部材と、を備える。シール部材は、円環形状の芯金と、芯金を被覆する円環形状の弾性部と、を備え、芯金の内径φDc及び弾性部の内径φDrが、1.0≦φDc/φDr≦1.1を満たし、芯金の内径φDc及び内輪30の外径φDBが、φDc/φDB<1.0を満たす。A ball bearing with a seal according to the present invention is disposed between an outer ring having an outer ring raceway surface formed on an inner peripheral surface, an inner ring having an inner ring raceway surface formed on an inner ring outer peripheral surface, and an outer ring raceway surface and an inner ring raceway surface. And a sealing member fixed to the inner peripheral surface of the outer ring. The seal member includes an annular cored bar and an annular elastic part covering the cored bar, and the inner diameter φDc of the cored bar and the inner diameter φDr of the elastic part are 1.0 ≦ φDc / φDr ≦ 1. 0.1, the inner diameter φDc of the core metal and the outer diameter φDB of the inner ring 30 satisfy φDc / φDB <1.0.

Description

本発明はシール付き玉軸受に関する。   The present invention relates to a ball bearing with a seal.

電気掃除機(以下、クリーナとも呼ぶ)のモータにおいては、近年、省エネルギー性が強く要求されており、吸込性能を向上させて消費電力を減少させるため種々の技術が提案されている(例えば、特許文献1、2参照)。   In recent years, there has been a strong demand for energy saving in motors of electric vacuum cleaners (hereinafter also referred to as cleaners), and various technologies have been proposed to improve suction performance and reduce power consumption (for example, patents). References 1 and 2).

特許文献1には、クリーナのモータに使用される軸受に、外輪と内輪の上下を覆う2つのシール板を設けることにより、軸受の内部を通過する空気を遮断して吸込性能を向上することが記載されている。この2つのシール板の一方は内輪と接触させる接触式のシール板、他方は非接触式のシール板とされている。   In Patent Document 1, it is possible to improve the suction performance by blocking the air passing through the inside of the bearing by providing two seal plates covering the upper and lower sides of the outer ring and the inner ring in the bearing used for the motor of the cleaner. Have been described. One of the two seal plates is a contact-type seal plate that contacts the inner ring, and the other is a non-contact type seal plate.

また、特許文献2では、軸受の軸方向両端側の内輪と外輪との軌道輪間に密封板を介在させることにより、クリーナの効率を向上することが記載されている。この密封板は、軌道輪に接触する方向が、軸受の両端側で同じ方向とされている。これら特許文献1、2では、シール板や密封板により軸受の機械的摩擦損失を小さくすることで、クリーナの吸込効率が向上し、これにより消費電流を減少できるとしている。   Patent Document 2 describes that the efficiency of the cleaner is improved by interposing a sealing plate between the bearing rings of the inner ring and the outer ring on both ends in the axial direction of the bearing. In this sealing plate, the direction in contact with the raceway is the same direction on both ends of the bearing. In these Patent Documents 1 and 2, it is stated that the suction efficiency of the cleaner is improved by reducing the mechanical friction loss of the bearing with a seal plate or a sealing plate, thereby reducing the current consumption.

このように、従来、クリーナのモータには、シール板や密封板を備えたシール付き玉軸受が利用されている。従来のシール付き玉軸受の構成(従来例1〜4)について、図16〜図19を参照してさらに説明する。   As described above, conventionally, a ball bearing with a seal provided with a seal plate or a seal plate is used for a motor of a cleaner. The configuration of conventional ball bearings with seals (conventional examples 1 to 4) will be further described with reference to FIGS.

図16に示す従来例1のシール付き玉軸受100は、軸方向の一端側において外輪120に固定されたシールド板140を備え、軸方向の他端側において外輪120に固定されたシール部材150を備える。シール部材150は、芯金151と、芯金151を覆う弾性部材153と、を有し、弾性部材153によりシールリップ156が形成されている。このシールリップ156は、内輪130のシール溝136内において、主に軸受外方に摺接することで、軸受内の空気の流れを遮断し、密封性を確保している。しかし、シールリップ156が内輪130に接触することで、シールリップ156とシール溝136間に摩擦力が発生し、軸受の回転トルクを上昇させる要因となっている。   A ball bearing 100 with a seal of Conventional Example 1 shown in FIG. 16 includes a shield plate 140 fixed to the outer ring 120 on one end side in the axial direction, and a seal member 150 fixed to the outer ring 120 on the other end side in the axial direction. Prepare. The seal member 150 includes a metal core 151 and an elastic member 153 that covers the metal core 151, and a seal lip 156 is formed by the elastic member 153. The seal lip 156 is in sliding contact with the outer side of the bearing mainly in the seal groove 136 of the inner ring 130, thereby blocking the air flow in the bearing and ensuring the sealing performance. However, when the seal lip 156 contacts the inner ring 130, a frictional force is generated between the seal lip 156 and the seal groove 136, which increases the rotational torque of the bearing.

図17に示す従来例2のシール付き玉軸受100Aは、軸方向の片側において外輪120に固定されたシール部材150Aを備える。シール部材150Aは、芯金151Aと、シールリップ156Aを形成する弾性部材153Aとを有している。このシールリップ156Aは、内輪130のシール溝136内において、主に軸受内方に摺接することで、軸受内の空気の流れを遮断し、密封性を確保している。   A ball bearing 100A with seal of Conventional Example 2 shown in FIG. 17 includes a seal member 150A fixed to the outer ring 120 on one side in the axial direction. The seal member 150A includes a metal core 151A and an elastic member 153A that forms a seal lip 156A. The seal lip 156A is slidably contacted mainly inside the bearing in the seal groove 136 of the inner ring 130, thereby blocking the air flow in the bearing and ensuring the sealing performance.

図18に示す従来例3のシール付き玉軸受100Bは、軸方向の一端側において外輪120に固定されたシールド板140を備え、軸方向の他端側において外輪120に固定されたシール部材150Bを備える。従来例3のシール部材150Bは、芯金151Bと、シールリップ156Bを形成する弾性部材153Bとを有する。しかし、従来例1、2とは異なり、シールリップ156Bが内輪130に接触しない非接触式のシール部材となっている。   18 includes a shield plate 140 fixed to the outer ring 120 on one end side in the axial direction, and a seal member 150B fixed to the outer ring 120 on the other end side in the axial direction. Prepare. The seal member 150B of Conventional Example 3 includes a cored bar 151B and an elastic member 153B that forms a seal lip 156B. However, unlike the conventional examples 1 and 2, the seal lip 156B is a non-contact type seal member that does not contact the inner ring 130.

図19に示す従来例4のシール付き玉軸受100Cは、軸方向の片側において外輪120に固定されたシール部材150Cを備えている。シール部材150Cは、芯金151Cと、シールリップ156Cを形成する弾性部材153Cとを有し、シールリップ156Cが内輪130に接触しない非接触式のシール部材となっている。また、このシール部材150Cのシールリップ156Cは、内輪130のシール溝136内に非接触状態で配置されているので、ラビリンス構造により密封性を向上することが可能である。   A ball bearing 100C with a seal of Conventional Example 4 shown in FIG. 19 includes a seal member 150C fixed to the outer ring 120 on one side in the axial direction. The seal member 150 </ b> C includes a core metal 151 </ b> C and an elastic member 153 </ b> C that forms a seal lip 156 </ b> C, and the seal lip 156 </ b> C is a non-contact type seal member that does not contact the inner ring 130. Further, since the seal lip 156C of the seal member 150C is disposed in a non-contact state in the seal groove 136 of the inner ring 130, the labyrinth structure can improve the sealing performance.

日本国特許第3538006号公報Japanese Patent No. 3538006 日本国特開2007−46767号公報Japanese Unexamined Patent Publication No. 2007-46767

従来例1、2で示したシール部材は、内輪と接触しているため密封性を確保することが可能である。しかし、シールリップが内輪のシール溝と接触することで、シール溝とシールリップとの間に摩擦抵抗が発生し、軸受の回転トルクを上昇させる機械的損失が生じてしまう。これにより、クリーナの吸込み効率が低下して、消費電力が増加してしまうおそれがある。   Since the sealing members shown in the conventional examples 1 and 2 are in contact with the inner ring, it is possible to ensure sealing performance. However, when the seal lip comes into contact with the seal groove of the inner ring, a frictional resistance is generated between the seal groove and the seal lip, resulting in a mechanical loss that increases the rotational torque of the bearing. Thereby, the suction efficiency of the cleaner may be reduced, and power consumption may increase.

一方、従来例3で示した非接触式のシール部材では、機械的損失を低減させることが可能である。しかし、軸受内部を通過する空気圧によってシールリップが変形するため、軸受の密封性が安定せず、クリーナの吸込み効率のバラツキが大きくなるおそれがある。また、従来例4で示した非接触式のシール部材では、軸受内部を通過する空気圧を受けることで変形したシールリップが、シール溝に接触することにより摩擦抵抗が発生し、軸受の機械的損失が生じてクリーナの吸込み効率の低下を招くおそれがある。   On the other hand, the non-contact type sealing member shown in Conventional Example 3 can reduce mechanical loss. However, since the seal lip is deformed by the air pressure passing through the inside of the bearing, the sealing performance of the bearing is not stable, and there is a possibility that the suction efficiency of the cleaner will vary. Further, in the non-contact type seal member shown in the conventional example 4, the seal lip deformed by receiving the air pressure passing through the inside of the bearing is brought into contact with the seal groove, so that frictional resistance is generated and mechanical loss of the bearing is caused. May occur, leading to a reduction in cleaner suction efficiency.

また、シール付き玉軸受には、軸受が受ける空気圧の圧力負荷方向に応じて、シールリップと内輪との接触圧が最適となるシール部材を取り付けるタイプもある。その場合、シールリップと内輪との接触方向が異なる2種類のシール部材からいずれかを選択し、この選択したシール部材を軸受に取り付けることになる。したがって、シール部材を選択的に軸受に取り付ける工程が必要となるばかりか、複数種のシール部材を予め用意しなければならず、軸受の製造工程が煩雑になる。   In addition, there is a type in which a seal member in which the contact pressure between the seal lip and the inner ring is optimal is attached to the ball bearing with seal in accordance with the pressure load direction of the air pressure received by the bearing. In that case, one of two types of seal members having different contact directions between the seal lip and the inner ring is selected, and the selected seal member is attached to the bearing. Therefore, not only a process of selectively attaching the seal member to the bearing is required, but also a plurality of types of seal members must be prepared in advance, and the manufacturing process of the bearing becomes complicated.

本発明は上記事情に鑑みてなされたものであり、軸受の密封性の確保と、シール部材と内輪との間における機械的損失の低減とを両立することが可能なシール付き玉軸受を提供することを第1の目的とし、更に軸受の製造工程を煩雑にすることがないシール付き玉軸受を提供することを第2の目的としている。   The present invention has been made in view of the above circumstances, and provides a sealed ball bearing capable of ensuring both the sealing performance of the bearing and the reduction of mechanical loss between the seal member and the inner ring. The second object is to provide a ball bearing with a seal that does not complicate the manufacturing process of the bearing.

本発明は、下記の構成からなる。
(1) 内周面に外輪軌道面が形成された外輪と、外周面に内輪軌道面が形成された内輪と、前記外輪軌道面と前記内輪軌道面との間に転動自在に周方向に複数配置された玉と、前記外輪の内周面に固定されたシール部材と、を備えるシール付き玉軸受であって、
前記シール部材が、円環形状の芯金と、前記芯金を被覆する円環形状の弾性部と、を備え、
前記シール部材の前記芯金の内径φDc及び前記弾性部の内径φDrが、1.0≦φDc/φDr≦1.1を満たし、
前記シール部材の前記芯金の内径φDc及び前記内輪の外径φDBが、φDc/φDB<1.0を満たすことを特徴とするシール付き玉軸受。
(2) 前記弾性部の内周側縁部が、前記内輪の前記外周面に形成されたシール溝内に位置しており、
前記弾性部の前記内周側縁部と前記シール溝との間の軸方向の距離Δdが、アキシアル内部すきまの半分の寸法であることを特徴とする(1)に記載のシール付き玉軸受。
(3) 前記弾性部が、前記内輪の前記外周面に形成されたシール溝内に位置しており、
前記シール部材が、前記シール溝とは常時非接触状態で前記外輪に固定されていることを特徴とする(1)に記載のシール付き玉軸受。
(4) 前記シール部材が、前記シール溝と接触可能に前記外輪に固定されていることを特徴とする(2)に記載のシール付き玉軸受。
(5)前記シール溝に接触する前記弾性部の前記内周側縁部が、軸方向断面において円弧形断面を有して形成されていることを特徴とする(4)に記載のシール付き玉軸受。
(6) 前記弾性部は、前記内輪の前記外周面に形成されたシール溝内に配置される、軸受内方の内側リップと軸受外方の外側リップとを有し、前記内側リップと前記外側リップが、それぞれ軸方向断面において円弧形断面を有して形成されたことを特徴とする(1)に記載のシール付き玉軸受。
(7) 前記内側リップと前記シール溝の軸受内方の内側壁部との間の軸方向距離、前記外側リップと前記シール溝の軸受外方の外側壁部との間の軸方向距離、の少なくともいずれか一方が、予圧付与前の状態でアキシアル内部すきまの半分の長さであることを特徴とする(6)に記載のシール付き玉軸受。
(8) 前記シール溝における軸受内方の内側壁部と軸受外方の外側壁部は、前記内輪の径方向に対する傾斜角がそれぞれ等しいことを特徴とする(6)又は(7)に記載のシール付き玉軸受。
The present invention has the following configuration.
(1) An outer ring having an outer ring raceway surface formed on an inner peripheral surface, an inner ring having an outer ring raceway surface formed on an outer peripheral surface, and a circumferentially movable manner between the outer ring raceway surface and the inner ring raceway surface. A ball bearing with a seal comprising a plurality of balls, and a seal member fixed to the inner peripheral surface of the outer ring,
The seal member comprises an annular cored bar and an annular elastic part that covers the cored bar,
The inner diameter φDc of the core metal of the seal member and the inner diameter φDr of the elastic portion satisfy 1.0 ≦ φDc / φDr ≦ 1.1,
A sealed ball bearing, wherein an inner diameter φDc of the cored bar of the seal member and an outer diameter φDB of the inner ring satisfy φDc / φDB <1.0.
(2) The inner peripheral edge of the elastic part is located in a seal groove formed on the outer peripheral surface of the inner ring,
The sealed ball bearing according to (1), wherein an axial distance Δd between the inner peripheral edge of the elastic portion and the seal groove is half the axial internal clearance.
(3) The elastic portion is located in a seal groove formed on the outer peripheral surface of the inner ring,
The sealed ball bearing according to (1), wherein the seal member is fixed to the outer ring in a non-contact state at all times with the seal groove.
(4) The sealed ball bearing according to (2), wherein the seal member is fixed to the outer ring so as to be in contact with the seal groove.
(5) The seal according to (4), wherein the inner peripheral side edge portion of the elastic portion that contacts the seal groove has an arc-shaped cross section in an axial cross section. Ball bearing.
(6) The elastic portion includes an inner lip on the inner side of the bearing and an outer lip on the outer side of the bearing, which are disposed in a seal groove formed on the outer peripheral surface of the inner ring, and the inner lip and the outer side. (1) The ball bearing with seal according to (1), wherein each of the lips has an arcuate cross section in an axial cross section.
(7) An axial distance between the inner lip and the inner wall of the seal groove inside the bearing, and an axial distance between the outer lip and the outer wall of the seal groove outside the bearing, At least one of the ball bearings with a seal according to (6), wherein the length is half the axial internal clearance before the preload is applied.
(8) The inner wall portion inside the bearing and the outer wall portion outside the bearing in the seal groove have the same inclination angle with respect to the radial direction of the inner ring, respectively (6) or (7) Sealed ball bearing.

本発明によれば、軸受の密封性の確保と、シール部材と内輪との間における機械的損失の低減とを両立できる。また、軸受の製造工程を煩雑にすることがない構成にできる。   According to the present invention, it is possible to ensure both the sealing performance of the bearing and the reduction of mechanical loss between the seal member and the inner ring. Moreover, it can be set as the structure which does not make the manufacturing process of a bearing complicated.

第1実施形態に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning a 1st embodiment. 芯金内径とシールリップ内径との比と漏れ圧力との関係を示すグラフである。It is a graph which shows the relationship between the ratio of a metal core inner diameter and a seal lip inner diameter, and leakage pressure. 第2実施形態に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning 2nd Embodiment. 第2実施形態の変形例に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning the modification of 2nd Embodiment. 第3実施形態に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning 3rd Embodiment. シールリップの一部拡大断面図である。It is a partially expanded sectional view of a seal lip. 予圧付与前の状態の図5の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 5 of the state before preload provision. 予圧付与後の状態の図5の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 5 of the state after preload provision. 予圧付与後で空気圧を負荷した状態の図5の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 5 of the state which loaded the air pressure after preload provision. 第4実施形態に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning 4th Embodiment. 第5実施形態に係るシール付き玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing with a seal concerning a 5th embodiment. 図9の要部拡大図である。It is a principal part enlarged view of FIG. シールリップの一部拡大断面図である。It is a partially expanded sectional view of a seal lip. 図10に示すシール付き玉軸受に予圧と空気圧を負荷した場合のシール部材の状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state of the sealing member at the time of applying a preload and an air pressure to the ball bearing with a seal shown in FIG. 図12Aに示すシール付き玉軸受のシール部材を反対側の軸受端部に設け、予圧と空気圧を負荷した場合のシール部材の状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state of the seal member when the seal member of the ball bearing with seal shown in FIG. 12A is provided at the opposite bearing end and preload and air pressure are applied. 他のシール溝形状を示す図9の要部拡大図である。FIG. 10 is an enlarged view of a main part of FIG. 9 showing another seal groove shape. 実施例1〜4と従来例1〜4について、負荷圧力とモータ消費電流との関係、及び負荷圧力と漏れ空気圧力との関係を示したグラフである。It is the graph which showed the relationship between load pressure and motor consumption current, and the relationship between load pressure and leak air pressure about Examples 1-4 and the prior art examples 1-4. 実施例5と従来例1〜3について、負荷圧力とモータ消費電流との関係、及び負荷圧力と漏れ空気圧力との関係を示したグラフである。It is the graph which showed the relationship between load pressure and motor consumption current, and the relationship between load pressure and leak air pressure about Example 5 and Conventional Examples 1-3. 従来例1のシール付き玉軸受の断面図である。It is sectional drawing of the ball bearing with a seal | sticker of the prior art example 1. 従来例2のシール付き玉軸受の断面図である。It is sectional drawing of the ball bearing with a seal | sticker of the prior art example 2. 従来例3のシール付き玉軸受の断面図である。It is sectional drawing of the ball bearing with a seal | sticker of the prior art example 3. 従来例4のシール付き玉軸受の断面図である。It is sectional drawing of the ball bearing with a seal | sticker of the prior art example 4.

以下、本発明のシール付き玉軸受について、図面を参照して詳細に説明する。
(第1実施形態)
図1に、第1実施形態に係るシール付き玉軸受10の断面図を示す。
本実施形態のシール付き玉軸受10は、内周面に外輪軌道面22を有する外輪20と、内輪外周面31に内輪軌道面32を有する内輪30と、外輪軌道面22と内輪軌道面32との間で転動自在に周方向に複数設けられた玉15と、外輪20と内輪30との間を塞ぐように軸方向一端側に配置されたシールド板40と、軸方向の他端側に同様に配置されたシール部材50と、を備える。
Hereinafter, the ball bearing with seal of the present invention will be described in detail with reference to the drawings.
(First embodiment)
In FIG. 1, sectional drawing of the ball bearing 10 with a seal | sticker which concerns on 1st Embodiment is shown.
The sealed ball bearing 10 of the present embodiment includes an outer ring 20 having an outer ring raceway surface 22 on an inner circumferential surface, an inner ring 30 having an inner ring raceway surface 32 on an inner ring outer circumferential surface 31, an outer ring raceway surface 22 and an inner ring raceway surface 32. A plurality of balls 15 provided in the circumferential direction so as to be freely rollable between them, a shield plate 40 disposed on one end side in the axial direction so as to close the space between the outer ring 20 and the inner ring 30, and on the other end side in the axial direction. And a sealing member 50 arranged in the same manner.

シールド板40は、例えば、金属薄板を円環状に形成したものであり、その外周部42は、外輪20の内周面の軸方向一端側に設けられた溝24に圧入されて、溝24に固定されている。シールド板40の内周部44は、軸方向に沿って軸受内方へ折り曲げられ、内輪30の外周面における軸方向の一端部に設けられた溝34とラビリンスすきまを有する程度に近接して配置されている。   The shield plate 40 is formed, for example, by forming a thin metal plate into an annular shape, and an outer peripheral portion 42 of the shield plate 40 is press-fitted into a groove 24 provided on one end side in the axial direction of the inner peripheral surface of the outer ring 20. It is fixed. The inner peripheral portion 44 of the shield plate 40 is bent inward of the bearing along the axial direction, and is disposed close enough to have a labyrinth clearance and a groove 34 provided at one end portion in the axial direction on the outer peripheral surface of the inner ring 30. Has been.

シール部材50は、金属薄板を円環状に形成した芯金51と、芯金51を被覆する合成樹脂等の弾性材料で形成した弾性部53と、を有する。シール部材50(弾性部53)の外周部52は、外輪20の内周面の軸方向他端側に設けられた溝26に圧入・固定されている。シール部材50(弾性部53)の内周側縁部となるシールリップ56は、内輪30の外周面における軸方向の他端側に設けられたシール溝36の中に配置されている。このように、シール部材50は、シールリップ56が内輪30(シール溝36)に接触しない非接触式のシール部材となっている。   The seal member 50 includes a cored bar 51 in which a thin metal plate is formed in an annular shape, and an elastic part 53 formed of an elastic material such as a synthetic resin that covers the cored bar 51. The outer peripheral portion 52 of the seal member 50 (elastic portion 53) is press-fitted and fixed in the groove 26 provided on the other axial end side of the inner peripheral surface of the outer ring 20. A seal lip 56 serving as an inner peripheral side edge of the seal member 50 (elastic portion 53) is disposed in a seal groove 36 provided on the other end side in the axial direction on the outer peripheral surface of the inner ring 30. Thus, the seal member 50 is a non-contact type seal member in which the seal lip 56 does not contact the inner ring 30 (the seal groove 36).

本構成のシール部材50は、シール溝36とは非接触状態で外輪20に固定され、軸受回転時においてもシール溝36との非接触状態が維持される。つまり、シール部材50は、シール溝36と常時非接触状態で外輪20に固定されている。これにより、シールリップ56と内輪30との間で接触抵抗が発生せず、軸受回転時の機械的損失を低減できる。   The seal member 50 of this configuration is fixed to the outer ring 20 in a non-contact state with the seal groove 36, and the non-contact state with the seal groove 36 is maintained even when the bearing rotates. That is, the seal member 50 is fixed to the outer ring 20 in a non-contact state with the seal groove 36 at all times. Thereby, contact resistance does not generate | occur | produce between the seal lip 56 and the inner ring | wheel 30, and the mechanical loss at the time of bearing rotation can be reduced.

ここで、シール部材50の芯金51の内径寸法(芯金51の内周側縁部54の内径寸法)φDcと、シール部材50のシールリップ56の内径寸法φDrとの関係は、1.0≦φDc/φDr≦1.1を満たす。   Here, the relationship between the inner diameter dimension of the core metal 51 of the seal member 50 (the inner diameter dimension of the inner peripheral edge 54 of the core metal 51) φDc and the inner diameter dimension φDr of the seal lip 56 of the seal member 50 is 1.0. ≦ φDc / φDr ≦ 1.1 is satisfied.

図2は、軸受に負荷された圧力(空気圧)が10kPaである場合の、シール部材50の芯金51の内径寸法φDcとシール部材50のシールリップ56の内径寸法φDrとの比(φDc/φDr)と、漏れ圧力との関係を示すグラフである。φDc/φDrの比が1.0未満となると、シール内径より芯金内径が大きくなって芯金が露出してしまう。すると、内周側にシールリップを設けることができなくなる。また、φDc/φDrの比が1.1を超えると、シールリップ56の剛性が低下し、軸受が空気圧を受けた際にシールリップ56が変形してしまう。その場合、空気の漏れ量が増加することになる。   FIG. 2 shows the ratio (φDc / φDr) between the inner diameter dimension φDc of the core metal 51 of the seal member 50 and the inner diameter dimension φDr of the seal lip 56 of the seal member 50 when the pressure (air pressure) applied to the bearing is 10 kPa. ) And the leakage pressure. When the ratio of φDc / φDr is less than 1.0, the inner diameter of the core metal becomes larger than the inner diameter of the seal, and the core metal is exposed. Then, a seal lip cannot be provided on the inner peripheral side. When the ratio of φDc / φDr exceeds 1.1, the rigidity of the seal lip 56 is lowered, and the seal lip 56 is deformed when the bearing receives air pressure. In that case, the amount of air leakage increases.

このように、シール部材50の芯金51の内径寸法φDcとシール部材50のシールリップ56の内径寸法φDrとの比が、1.0以上1.1以下を満たしているとき、シールリップ56の剛性が増し、これにより空気の漏れ量を低減でき、軸受の密封性を確保できる。上記事項が図2からわかる。   Thus, when the ratio of the inner diameter dimension φDc of the core metal 51 of the seal member 50 and the inner diameter dimension φDr of the seal lip 56 of the seal member 50 satisfies 1.0 or more and 1.1 or less, Rigidity increases, thereby reducing the amount of air leakage and ensuring the sealability of the bearing. The above items can be seen from FIG.

また、シール部材50の芯金51の内径寸法φDcと、内輪30の内輪外周面31の外径寸法φDBとの関係は、φDc/φDB<1.0を満たす。芯金内径と内輪外径の比(φDc/φDB)を1.0未満とすると、シール部材50の反対側から軸受内部を通過する空気の流れを、剛性の高い芯金51で受けることになる。そのため、シールリップ56の変形を防止できる。   Further, the relationship between the inner diameter dimension φDc of the core metal 51 of the seal member 50 and the outer diameter dimension φDB of the inner ring outer peripheral surface 31 of the inner ring 30 satisfies φDc / φDB <1.0. When the ratio between the inner diameter of the core metal and the outer diameter of the inner ring (φDc / φDB) is less than 1.0, the flow of air passing through the bearing from the opposite side of the seal member 50 is received by the highly rigid core metal 51. . Therefore, deformation of the seal lip 56 can be prevented.

したがって、本構成によれば、シールリップ56とシール溝36との接触が防止できるので、軸受回転時における機械的損失を低減できる。また、シールリップ56の変形を防止することにより、シールリップ56とシール溝36との間のすきまを適正な寸法に維持でき、軸受の密封性を安定させることが可能となる。また、軸受内部に封入されているグリース等の潤滑剤の外部への漏出も防止できる。   Therefore, according to this configuration, the contact between the seal lip 56 and the seal groove 36 can be prevented, so that mechanical loss during rotation of the bearing can be reduced. Further, by preventing the seal lip 56 from being deformed, the clearance between the seal lip 56 and the seal groove 36 can be maintained at an appropriate size, and the sealability of the bearing can be stabilized. In addition, leakage of a lubricant such as grease enclosed in the bearing can be prevented.

このように、本実施形態のシール付き玉軸受10によれば、軸受の密封性の確保と、シール部材のシールリップと内輪との間における機械的損失の低減と、を両立することが可能である。これにより、シール付き玉軸受10をクリーナに適用した場合に、クリーナの吸込み仕事率のバラツキを防止して、省エネルギー性を確保できる。   As described above, according to the ball bearing 10 with a seal of the present embodiment, it is possible to achieve both of ensuring the sealability of the bearing and reducing mechanical loss between the seal lip of the seal member and the inner ring. is there. Thereby, when the ball bearing 10 with a seal | sticker is applied to a cleaner, variation in the suction | inhalation work rate of a cleaner can be prevented and energy saving property can be ensured.

(第2実施形態)
次に、第2実施形態に係るシール付き玉軸受10Aについて、図3を用いて説明する。第1実施形態と同様の構成を有する部分については同様の符号を付し、その説明を省略する。
(Second Embodiment)
Next, a ball bearing with seal 10A according to a second embodiment will be described with reference to FIG. Parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態において、シール部材50Aは、シール溝36内に位置している内周側縁部のシールリップ56Aに加え、軸方向に沿って軸受内方へ突出する内側リップ57を有している。このシール部材50Aは、第1実施形態と同様に非接触式のシール部材であり、シールリップ56Aと内輪30との間で接触抵抗が発生しないため、機械的損失を低減できる。このような形状のシール部材50Aによっても、シールリップ56Aの剛性を向上でき、軸受の密封性を確保できる。   In the present embodiment, the seal member 50A has an inner lip 57 that protrudes inward in the bearing along the axial direction in addition to the seal lip 56A at the inner peripheral edge located in the seal groove 36. . The seal member 50A is a non-contact type seal member as in the first embodiment, and no contact resistance is generated between the seal lip 56A and the inner ring 30, so that mechanical loss can be reduced. Also with the seal member 50A having such a shape, the rigidity of the seal lip 56A can be improved, and the sealability of the bearing can be secured.

(第2実施形態の変形例)
第2実施形態の変形例に係るシール付き玉軸受10A1について、図4を用いて説明する。第2実施形態と同様の構成を有する部分については同様の符号を付し、その説明を省略する。
(Modification of the second embodiment)
A sealed ball bearing 10A1 according to a modification of the second embodiment will be described with reference to FIG. Parts having the same configuration as in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.

本変形例においては、シール部材50A1のシールリップ56A1が、シール溝36内において二つに分岐している。すなわち、シールリップ56A1は、軸方向に沿った軸受内方で軸受回転軸に向かって延びる内側リップ56a1と、内側リップ56a1より軸受外方で、内側リップ56a1と並列に軸受回転軸に向かって延びる外側リップ56a2とを有する。このシール部材50A1は、第1実施形態と同様に非接触式のシール部材であり、シールリップ56A1と内輪30との間で接触抵抗が発生しないため、機械的損失を低減できる。   In the present modification, the seal lip 56A1 of the seal member 50A1 is branched into two in the seal groove 36. That is, the seal lip 56A1 extends toward the bearing rotation axis inward of the bearing along the axial direction, and extends toward the bearing rotation axis in parallel with the inner lip 56a1 outside the bearing from the inner lip 56a1. And an outer lip 56a2. The seal member 50A1 is a non-contact type seal member as in the first embodiment, and no contact resistance is generated between the seal lip 56A1 and the inner ring 30, so that mechanical loss can be reduced.

また、シール部材50A1が、例えば軸受内方から空気圧を受けた場合、外側リップ56a2は、空気圧の影響を受けて変形する。しかし、内側リップ56a1は、受ける空気圧が低くなるので変形せず、耐圧性能を維持できる。このような形状のシール部材50A1によっても、シールリップ56A1(内側リップ56a1及び外側リップ56a2)の剛性を向上でき、軸受の密封性を確保できる。   Further, when the seal member 50A1 receives air pressure from the inside of the bearing, for example, the outer lip 56a2 is deformed by the influence of the air pressure. However, the inner lip 56a1 is not deformed because the received air pressure is lowered, and the pressure resistance performance can be maintained. Also with the seal member 50A1 having such a shape, the rigidity of the seal lip 56A1 (the inner lip 56a1 and the outer lip 56a2) can be improved, and the sealability of the bearing can be ensured.

(第3実施形態)
次に、第3実施形態に係るシール付き玉軸受10Bについて、図5、図6、図7A〜7Cを用いて説明する。第1実施形態と同様の構成を有する部分については同様の符号を付し、その説明を省略する。
(Third embodiment)
Next, a ball bearing 10B with a seal according to a third embodiment will be described with reference to FIGS. 5, 6, and 7A to 7C. Parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5に示す本実施形態のシール付き玉軸受10Bにおいては、軸受のモータ組込み時の接触圧を考慮して、シールリップ56Bのシール溝36に対する接触圧が決められている。また、本構成のシール部材50Bは、ノミナル状態において、シールリップ56Bが内輪30の外周面に形成されたシール溝36内に位置しており、シールリップ56Bがシール溝36と接触可能に外輪20に固定されている。   In the ball bearing 10B with a seal according to this embodiment shown in FIG. 5, the contact pressure with respect to the seal groove 36 of the seal lip 56B is determined in consideration of the contact pressure when the bearing is built in the motor. Further, in the seal member 50B of this configuration, in the nominal state, the seal lip 56B is positioned in the seal groove 36 formed on the outer peripheral surface of the inner ring 30, and the seal lip 56B can come into contact with the seal groove 36. It is fixed to.

図6にシールリップ56Bの一部拡大断面図を示す。シールリップ56Bの内周側縁部56aの内側リップ56a1は、軸受の軸方向断面において半径R1の円弧形断面を有して形成されている。   FIG. 6 shows a partially enlarged sectional view of the seal lip 56B. The inner lip 56a1 of the inner peripheral edge 56a of the seal lip 56B has an arcuate cross section with a radius R1 in the axial cross section of the bearing.

図7Aは、図5に示すシール付き玉軸受10Bにおける予圧付与前のシール部材50A1の状態を示す要部拡大断面図、図7Bは、同シール付き玉軸受10Bにおける予圧付与後のシール部材50A1の状態を示す要部拡大断面図、図7Cは、同シール付き玉軸受10Bの予圧付与後で空気圧を負荷した状態を示す要部拡大断面図である。   FIG. 7A is an enlarged cross-sectional view of a main part showing a state of the seal member 50A1 before applying preload in the ball bearing 10B with seal shown in FIG. 5, and FIG. 7B shows the seal member 50A1 after applying preload in the ball bearing 10B with seal. FIG. 7C is a principal part enlarged sectional view showing a state in which air pressure is applied after the preload is applied to the ball bearing 10B with the seal.

図7Aに示すように、軸受への予圧付与前では、シールリップ56Bとシール溝36とが軸方向及び径方向に離間している。シールリップ56Bとシール溝36の軸受内方の内側壁部38との間の距離Δdは、シール付き玉軸受10Bのアキシアル内部すきま(ノミナル値)の半分の寸法とされている。   As shown in FIG. 7A, before the preload is applied to the bearing, the seal lip 56B and the seal groove 36 are separated in the axial direction and the radial direction. The distance Δd between the seal lip 56B and the inner wall portion 38 inside the bearing of the seal groove 36 is half the axial internal clearance (nominal value) of the sealed ball bearing 10B.

上記構成によれば、図7Bに示すように、軸受に図中F1方向の予圧が付与されると、内輪30が軸受外方にずれてシールリップ56Bとシール溝36とが接触して距離Δdが0となる。この状態で、図7Cに示すように、空気圧が図中F2方向に負荷されると、シールリップ56Bが軸受外方に撓み、シールリップ56Bとシール溝36とが、低い接触圧力で接触する軽接触状態になる。つまり、シールリップ56Bとシール溝36との接触圧力が軽減され、軸受回転時の摩擦抵抗が軽減される。   According to the above configuration, as shown in FIG. 7B, when a preload in the direction F1 in the figure is applied to the bearing, the inner ring 30 is displaced outwardly from the bearing, and the seal lip 56B and the seal groove 36 come into contact with each other and the distance Δd. Becomes 0. In this state, as shown in FIG. 7C, when air pressure is applied in the direction F2 in the figure, the seal lip 56B bends outward from the bearing, and the seal lip 56B and the seal groove 36 are in contact with each other with a low contact pressure. Get in contact. That is, the contact pressure between the seal lip 56B and the seal groove 36 is reduced, and the frictional resistance during the rotation of the bearing is reduced.

よって、本実施形態のシール部材50Bは、シールリップ56Bがシール溝36の内側壁部38と軽接触状態となる接触式のシール部材になる。その結果、軸受の密封性を確保できる。しかも、シール付き玉軸受10Bをモータに組込んだ予圧負荷状態で、シールリップ56Bとシール溝36との接触圧を非常に小さい値に維持でき、軸受回転時の機械的損失を抑制できる。   Therefore, the seal member 50B of the present embodiment is a contact-type seal member in which the seal lip 56B is in a light contact state with the inner wall portion 38 of the seal groove 36. As a result, the sealability of the bearing can be ensured. In addition, the contact pressure between the seal lip 56B and the seal groove 36 can be maintained at a very small value in a preload state in which the ball bearing 10B with seal is incorporated in the motor, and mechanical loss during rotation of the bearing can be suppressed.

また、シール溝36に接触するシールリップ56Bの内周側縁部が円弧形断面を有するため、軽接触状態であってもシールリップ56Bとシール溝36とが全周にわたって確実に接触し、安定した密封性が得られる。   Further, since the inner peripheral side edge of the seal lip 56B that contacts the seal groove 36 has an arc-shaped cross section, the seal lip 56B and the seal groove 36 reliably contact over the entire circumference even in a light contact state. Stable sealing performance is obtained.

(第4実施形態)
次に、第4実施形態に係るシール付き玉軸受10Cについて、図8を用いて説明する。第3実施形態と同様の構成を有する部分については同様の符号を付し、その説明を省略する。
(Fourth embodiment)
Next, a sealed ball bearing 10C according to a fourth embodiment will be described with reference to FIG. Parts having the same configuration as in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の場合も同様に、軸受への予圧付与前では、シールリップ56Cとシール溝36とが軸方向及び径方向に離間している。シールリップ56Cとシール溝36の軸受内方の外側壁部39との間の距離は、シール付き玉軸受10Cのアキシアル内部すきま(ノミナル値)の半分の寸法とされている。   Similarly, in the case of the present embodiment, the seal lip 56C and the seal groove 36 are separated in the axial direction and the radial direction before the preload is applied to the bearing. The distance between the seal lip 56C and the outer wall 39 inside the bearing of the seal groove 36 is set to a half of the axial internal clearance (nominal value) of the sealed ball bearing 10C.

この状態で軸受に予圧が付与されると、内輪30が軸受外方(図中F1方向)にずれて、外側壁部39とシールリップ56Cとの接触圧が低くなる。さらに、空気圧が軸受外方から内方(図中F2方向)に負荷されると、シールリップ56CがF2方向に撓み、シールリップ56Cとシール溝36の外側壁部39とが、より低い接触圧力で接触する軽接触状態となる。   When preload is applied to the bearing in this state, the inner ring 30 is displaced outward (F1 direction in the figure), and the contact pressure between the outer wall portion 39 and the seal lip 56C decreases. Further, when the air pressure is applied from the outside of the bearing to the inside (F2 direction in the figure), the seal lip 56C is deflected in the F2 direction, and the seal lip 56C and the outer wall portion 39 of the seal groove 36 have a lower contact pressure. It will be in the light contact state which contacts with.

本実施形態のシール付き玉軸受10Cによれば、シールリップ56Cとシール溝36との接触圧が、予圧と空気圧の負荷との相乗効果によって軽減されるため、軸受回転時の機械的損失をより一層抑制できる。   According to the sealed ball bearing 10C of the present embodiment, the contact pressure between the seal lip 56C and the seal groove 36 is reduced by the synergistic effect of the preload and the pneumatic load. It can be further suppressed.

(第5実施形態)
次に、第5実施形態に係るシール付き玉軸受10Dについて、図9を用いて説明する。第1実施形態と同様の構成を有する部分については同様の符号を付し、その説明を省略する。
(Fifth embodiment)
Next, a ball bearing 10D with a seal according to a fifth embodiment will be described with reference to FIG. Parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態のシール付き玉軸受10Dは、第1実施形態と同様に、外輪20と、内輪30と、玉15と、シールド板40と、シール部材50Dと、を備える。   Similar to the first embodiment, the ball bearing with seal 10D of the present embodiment includes an outer ring 20, an inner ring 30, a ball 15, a shield plate 40, and a seal member 50D.

シール部材50Dは、金属薄板を円環形状に形成した芯金51と、芯金51を被覆する合成樹脂等の弾性材料で形成した円環形状の弾性部53と、を有する。   The seal member 50 </ b> D includes a cored bar 51 in which a thin metal plate is formed in an annular shape, and an annular shaped elastic part 53 formed of an elastic material such as a synthetic resin that covers the cored bar 51.

シールリップ56Dは、ノミナル状態において、内輪30の外周面に形成されたシール溝36内に位置している。また、シールリップ56Dは、ノミナル状態においては、シールリップ56Dが内輪30(シール溝36)に接触しないが、予圧付与後の軸受未回転状態及び空気圧を受けた際の軸受回転状態の両方において、弾性変形によってシール溝36と接触可能に外輪20に固定されている。   The seal lip 56D is positioned in a seal groove 36 formed on the outer peripheral surface of the inner ring 30 in the nominal state. Further, the seal lip 56D does not contact the inner ring 30 (seal groove 36) in the nominal state, but in both the bearing non-rotation state after applying preload and the bearing rotation state when receiving air pressure, It is fixed to the outer ring 20 so as to be in contact with the seal groove 36 by elastic deformation.

ここで、シール部材50Dの芯金51の内径寸法(芯金51の内周側縁部54の内径寸法)φDcと、シール部材50Dのシールリップ56Dの内径寸法φDrとの関係は、1.0≦φDc/φDr≦1.1を満たす。   Here, the relationship between the inner diameter dimension φDc of the cored bar 51 of the seal member 50D (the inner diameter dimension of the inner peripheral side edge 54 of the cored bar 51) and the inner diameter dimension φDr of the seal lip 56D of the seal member 50D is 1.0. ≦ φDc / φDr ≦ 1.1 is satisfied.

シール部材50Dの芯金51の内径寸法φDcとシール部材50Dのシールリップ56Dの内径寸法φDrとの比が1.0以上1.1以下を満たしているとき、前述したように、シールリップ56Dの剛性が増し、これにより空気の漏れ量を低減でき、軸受の密封性を確保できる。   When the ratio of the inner diameter dimension φDc of the core metal 51 of the seal member 50D and the inner diameter dimension φDr of the seal lip 56D of the seal member 50D satisfies 1.0 or more and 1.1 or less, as described above, Rigidity increases, thereby reducing the amount of air leakage and ensuring the sealability of the bearing.

また、シール部材50Dの芯金51の内径寸法φDcと、内輪30の内輪外周面31の外径寸法φDBとの関係は、φDc/φDB<1.0を満たす。芯金内径と内輪外径の比(φDc/φDB)を1.0未満とすると、前述したように、シール部材50Dの反対側から軸受内部を通過する空気の流れを、剛性の高い芯金51で受けるため、シールリップ56Dの変形を抑制できる。また、φDc/φDBの比が1.0以上であると、シール部材50Dが受ける空気圧によってシールリップ56Dが変形しやすくなり、空気の漏れ量が増大する。   In addition, the relationship between the inner diameter dimension φDc of the core metal 51 of the seal member 50D and the outer diameter dimension φDB of the inner ring outer peripheral surface 31 of the inner ring 30 satisfies φDc / φDB <1.0. Assuming that the ratio of the inner diameter of the core metal to the outer diameter of the inner ring (φDc / φDB) is less than 1.0, as described above, the flow of air passing through the bearing from the opposite side of the seal member 50D Therefore, deformation of the seal lip 56D can be suppressed. If the ratio of φDc / φDB is 1.0 or more, the seal lip 56D is easily deformed by the air pressure received by the seal member 50D, and the amount of air leakage increases.

本実施形態のシール部材50Dにおいても、軸受のモータ組込み時の接触圧を考慮して、シールリップ56Dのシール溝36に対する接触圧が決められている。   Also in the seal member 50D of the present embodiment, the contact pressure with respect to the seal groove 36 of the seal lip 56D is determined in consideration of the contact pressure when the bearing motor is incorporated.

図10に図9の要部拡大図を示す。シール部材50Dのシールリップ56Dは、内輪30の内輪外周面31に形成されたシール溝36内に配置され、シール溝36とは軸方向及び径方向に離間している。   FIG. 10 shows an enlarged view of the main part of FIG. The seal lip 56D of the seal member 50D is disposed in a seal groove 36 formed on the inner ring outer peripheral surface 31 of the inner ring 30, and is separated from the seal groove 36 in the axial direction and the radial direction.

図11にシールリップ56Dの一部拡大断面図を示す。シールリップ56Dは、内周側縁部56aの軸受内方(軸受幅の中心に向かう方向)の端部である内側リップ56a1、軸受外方(軸方向に沿って軸受外側に向かう方向)の端部である外側リップ56a2を有する。内側リップ56a1、外側リップ56a2は、少なくともいずれかが、軸受の軸方向断面において円弧形断面を有して形成されている。図示例では、内側リップ56a1を半径R1の円弧形断面とし、外側リップ56a2を半径R2の円弧形断面として示している。   FIG. 11 is a partially enlarged sectional view of the seal lip 56D. The seal lip 56D has an inner lip 56a1 that is an end of the inner peripheral edge 56a on the bearing inner side (direction toward the center of the bearing width), and an end on the outer side of the bearing (direction toward the bearing outer side along the axial direction). The outer lip 56a2 is a part. At least one of the inner lip 56a1 and the outer lip 56a2 has an arcuate cross section in the axial cross section of the bearing. In the illustrated example, the inner lip 56a1 has an arcuate cross section with a radius R1, and the outer lip 56a2 has an arcuate cross section with a radius R2.

ここで、図10に示すように、シールリップ56Dの内側リップ56a1と、シール溝36の軸受内方の内側壁部38との間の軸方向距離をΔdinとする。また、シールリップ56Dの外側リップ56a2と、シール溝36の軸受外方の外側壁部39との間の軸方向距離をΔdoutとする。   Here, as shown in FIG. 10, the axial distance between the inner lip 56a1 of the seal lip 56D and the inner wall portion 38 inside the bearing of the seal groove 36 is defined as Δdin. Further, the axial distance between the outer lip 56a2 of the seal lip 56D and the outer wall portion 39 outside the bearing of the seal groove 36 is represented by Δdout.

予圧を付与する前の状態であるノミナル状態において、シール部材50Dを軸受の軸方向両端のどちらかに取り付けることによって、シール部材50Dがシール溝36と接触する側の軸方向距離Δdin又はΔdout、或いは双方の軸方向距離は、シール付き玉軸受10Dのアキシアル内部すきまの半分の長さに設定されている。   In the nominal state, which is a state before applying preload, by attaching the seal member 50D to either of the axial ends of the bearing, the axial distance Δdin or Δdout on the side where the seal member 50D contacts the seal groove 36, or Both axial distances are set to half the axial internal clearance of the sealed ball bearing 10D.

例えば、図12Aに示すように取り付ける場合、Δdinは、アキシアル内部すきまの半分の長さに設定される。図12Bに示すように取り付ける場合、Δdoutはアキシアル内部すきまの半分の長さに設定される。   For example, in the case of mounting as shown in FIG. 12A, Δdin is set to half the length of the axial internal clearance. In the case of mounting as shown in FIG. 12B, Δdout is set to half the axial internal clearance.

次に、上記構成のシール付き玉軸受10Dをクリーナ等の軸受装置に組み込んだ状態におけるシール部材50Dの作用を説明する。   Next, the operation of the seal member 50D in a state where the sealed ball bearing 10D with the above configuration is incorporated in a bearing device such as a cleaner will be described.

図12Aは、図10に示すシール付き玉軸受10Dに予圧と空気圧を負荷した場合のシール部材50Dの状態を示す要部拡大断面図、図12Bは、図12Aに示すシール付き玉軸受10Dのシール部材50Dを反対側の軸受端部に設け、予圧と空気圧を負荷した場合のシール部材50Dの状態を示す要部拡大断面図である。   12A is an enlarged cross-sectional view of a main part showing a state of the seal member 50D when preload and air pressure are applied to the sealed ball bearing 10D shown in FIG. 10, and FIG. 12B is a seal of the sealed ball bearing 10D shown in FIG. 12A. It is a principal part expanded sectional view which shows the state of the sealing member 50D at the time of providing a member 50D in the bearing end part of an other side, and loading a preload and an air pressure.

図12Aに示すように、軸受の内輪30に図中Fa方向(図中の軸受左端から軸受外方に向かう方向)へ予圧が負荷されると、内輪30がFa方向に変位する。すると、シール部材50Dは、シール溝36との非接触状態から、シール部材50Dの内側リップ56a1がシール溝36の内側壁部38に低い接触圧力で接触する軽接触状態となる。この軽接触状態において、空気圧が図中Fb方向に軸受に負荷されると、シール部材50Dは空気圧を受けて接触状態が維持されながら、軸受外方に向けて押圧される。これにより、シール部材50Dはシール溝36との接触圧力がさらに軽減された状態となる。   As shown in FIG. 12A, when a preload is applied to the inner ring 30 of the bearing in the direction Fa (the direction from the left end of the bearing toward the outside of the bearing in the figure), the inner ring 30 is displaced in the Fa direction. Then, the seal member 50 </ b> D enters a light contact state in which the inner lip 56 a 1 of the seal member 50 </ b> D contacts the inner wall portion 38 of the seal groove 36 with a low contact pressure from a non-contact state with the seal groove 36. In this light contact state, when air pressure is applied to the bearing in the Fb direction in the figure, the seal member 50D is pressed toward the outside of the bearing while receiving the air pressure and maintaining the contact state. Thereby, the seal member 50D is in a state in which the contact pressure with the seal groove 36 is further reduced.

つまり、本構成のシール付き玉軸受10Dは、予圧を負荷する前の状態で、図10に示すシール部材50Dとシール溝36との間に距離Δdinのすきまを有している。このため、予圧の負荷によって内輪30が変位しても、内輪30の変位量が距離Δdinに達するまではシール部材50Dに接触しないので、シール部材50Dが撓むことがない。したがって、内輪30に予圧が負荷されても、その予圧の全てがシール部材50Dの変形に供されることがない。その結果、予圧負荷後のシール部材50Dは、シール溝36と接触した後、僅かに撓む程度にまで変形が軽減され、シール部材50Dとシール溝36との接触圧力が低くなる。   That is, the ball bearing 10D with a seal of this configuration has a clearance of a distance Δdin between the seal member 50D and the seal groove 36 shown in FIG. 10 before the preload is applied. For this reason, even if the inner ring 30 is displaced due to the preload, the seal member 50D does not bend because it does not contact the seal member 50D until the displacement amount of the inner ring 30 reaches the distance Δdin. Therefore, even if a preload is applied to the inner ring 30, not all of the preload is applied to the deformation of the seal member 50D. As a result, after the preload is applied, the seal member 50D is reduced in deformation to such an extent that it is slightly bent after coming into contact with the seal groove 36, and the contact pressure between the seal member 50D and the seal groove 36 is lowered.

そして、軸受に空気圧が負荷されると、シール部材50Dが軸受外方に向けて押圧され、シール部材50Dとシール溝36との接触圧力が減少する。その結果、シール部材50Dとシール溝36との摩擦抵抗が相乗的に軽減されて、軸受の動摩擦損失が低減される。   When air pressure is applied to the bearing, the seal member 50D is pressed toward the outside of the bearing, and the contact pressure between the seal member 50D and the seal groove 36 decreases. As a result, the frictional resistance between the seal member 50D and the seal groove 36 is synergistically reduced, and the dynamic friction loss of the bearing is reduced.

また、図12Bに示すように、シール部材50Dを軸受の反対側の軸受端面に設ける場合でも、上記同様に軸受の動摩擦損失が低減される。即ち、軸受の内輪30にFa方向の予圧が負荷されると、シール部材50Dは、図10に示す軸方向距離Δdoutのすきまが存在することにより、接触圧力が軽減された状態で外側リップ56a2がシール溝36に接触する。この軽接触状態でFb方向に空気圧が負荷されると、シール部材50Dが軸受内方に向けて押圧されるため、シール部材50Dとシール溝36との接触圧力が相乗的に軽減される。   Further, as shown in FIG. 12B, even when the seal member 50D is provided on the bearing end surface on the opposite side of the bearing, the dynamic friction loss of the bearing is reduced as described above. That is, when a preload in the Fa direction is applied to the inner ring 30 of the bearing, the seal member 50D has the clearance of the axial distance Δdout shown in FIG. It contacts the seal groove 36. When air pressure is applied in the Fb direction in this light contact state, the seal member 50D is pressed toward the inside of the bearing, so that the contact pressure between the seal member 50D and the seal groove 36 is synergistically reduced.

したがって、本構成のシール付き玉軸受10Dによれば、シール部材50Dが軸受の両端面のうち、いずれの側の軸受端面に取り付けられていても、予圧と空気圧の負荷によってシール部材50Dとシール溝36との摩擦抵抗が軽減され、軸受の動摩擦損失を低減できる。   Therefore, according to the sealed ball bearing 10D of this configuration, even if the seal member 50D is attached to any one of the bearing end surfaces of the bearing, the seal member 50D and the seal groove are caused by preload and air pressure load. The frictional resistance with 36 is reduced, and the dynamic friction loss of the bearing can be reduced.

また、シール溝36に接触する内側リップ56a1、外側リップ56a2は、軸方向断面において円弧形断面を有している。このため、シール部材50Dとシール溝36とは、円弧形状の先端における狭い接触面積で接触するため、摩擦抵抗の更なる低減が実現でき、軸受の動摩擦損失を一層軽減できる。また、上記のような軽接触状態であってもシールリップ56Dとシール溝36とが全周にわたって確実に接触し、安定した密封性が得られる。その結果、軸受内外の空気の流れを遮断でき、軸受内部に封入されているグリース等の潤滑剤の軸受外部への漏出を確実に防止できる。   Further, the inner lip 56a1 and the outer lip 56a2 that are in contact with the seal groove 36 have an arcuate cross section in the axial cross section. For this reason, since the seal member 50D and the seal groove 36 are in contact with each other with a narrow contact area at the arc-shaped tip, the frictional resistance can be further reduced, and the dynamic friction loss of the bearing can be further reduced. Further, even in the light contact state as described above, the seal lip 56D and the seal groove 36 are in reliable contact over the entire circumference, and a stable sealing performance is obtained. As a result, the flow of air inside and outside the bearing can be blocked, and leakage of lubricant such as grease enclosed in the bearing to the outside of the bearing can be reliably prevented.

シール溝36は、上記構成に限らず他の溝形状にすることもできる。図13に、シール溝36の形状を軸受内方の内側壁部38と軸受外方の外側壁部39とを等しい傾斜角にした軸受の要部拡大断面図を示す。   The seal groove 36 is not limited to the above-described configuration, and may have another groove shape. FIG. 13 shows an enlarged cross-sectional view of the main part of the bearing in which the shape of the seal groove 36 is such that the inner wall portion 38 inside the bearing and the outer wall portion 39 outside the bearing have the same inclination angle.

即ち、図13に示す軸受においては、内輪30の径方向に対する軸受内方の内側壁部38の傾斜角をφ1、内輪30の径方向に対する軸受外方の外側壁部39の傾斜角をφ2とするとき、傾斜角φ1と傾斜角φ2とが等しくなっている。   That is, in the bearing shown in FIG. 13, the inclination angle of the inner wall 38 on the inner side of the bearing with respect to the radial direction of the inner ring 30 is φ1, and the inclination angle of the outer wall 39 on the outer side of the bearing with respect to the radial direction of the inner ring 30 is φ2. In this case, the inclination angle φ1 and the inclination angle φ2 are equal.

その場合、シール溝36のシール部材50Dに対する対称性が向上し、シール部材50Dを軸方向距離ΔdinとΔdoutとが等しくなる位置に簡単かつ正確に配置できる。さらに、シール部材50Dを軸受の軸方向両端のいずれに取り付けても、シール溝とシールリップ56Dとの間の軸方向距離が変化しない。そのため、シール部材50Dの互換性を一層向上できる。また、これにより上記した軸受性能がより安定して得られるようになる。   In this case, the symmetry of the seal groove 36 with respect to the seal member 50D is improved, and the seal member 50D can be easily and accurately disposed at a position where the axial distances Δdin and Δdout are equal. Further, the axial distance between the seal groove and the seal lip 56D does not change even if the seal member 50D is attached to either end of the bearing in the axial direction. Therefore, the compatibility of the seal member 50D can be further improved. This also makes it possible to obtain the above-described bearing performance more stably.

以上説明した各実施形態のシール付き玉軸受10,10A,10A1,10B,10C,10Dによれば、軸受の密封性の確保と、シール部材のシールリップと内輪との間における機械的損失の低減とを両立できる。また、シール部材の配置位置によらずに、シール部材とシール溝との接触圧を低く抑えることができる。さらに、圧力負荷方向に応じて異なるシール部材を選択的に軸受に付ける必要がなく、軸受の製造工程が簡単化され、低コスト化にも寄与できる。   According to the sealed ball bearings 10, 10 </ b> A, 10 </ b> A <b> 1, 10 </ b> B, 10 </ b> C, 10 </ b> D of each embodiment described above, ensuring the sealability of the bearing and reducing mechanical loss between the seal lip of the seal member and the inner ring. And both. Further, the contact pressure between the seal member and the seal groove can be kept low regardless of the arrangement position of the seal member. Furthermore, it is not necessary to selectively attach different seal members to the bearing according to the pressure load direction, the bearing manufacturing process is simplified, and the cost can be reduced.

本シール付き玉軸受を例えばクリーナ等の機器に適用した場合には、軸受の機械的損失が小さいためにモータの効率が向上し、また、軸受内の密封性が高いためにクリーナの吸込み効率が向上する。その結果、クリーナの吸込み仕事率のバラツキが防止され、省エネルギー性も確保できる。   When this sealed ball bearing is applied to equipment such as a cleaner, the efficiency of the motor is improved because the mechanical loss of the bearing is small, and the suction efficiency of the cleaner is improved due to the high sealing performance inside the bearing. improves. As a result, variation in the suction work rate of the cleaner can be prevented, and energy saving can be secured.

本発明の効果を確認するために、評価対象の軸受を組込んだモータを回転させながら、その評価対象の軸受に空気圧を与えることができる試験装置を使用して実験を行なった。ここで、図1、図3に示した第1実施形態、第2実施形態に係るシール付き玉軸受をそれぞれ実施例1、2とする。また、図5、図8に示した第3実施形態、第4実施形態に係るシール付き玉軸受をそれぞれ実施例3、4とする。また、図9に示した第5実施形態に係るシール付き玉軸受を実施例5とする。   In order to confirm the effect of the present invention, an experiment was conducted using a test apparatus capable of applying air pressure to a bearing to be evaluated while rotating a motor incorporating the bearing to be evaluated. Here, the ball bearings with seals according to the first embodiment and the second embodiment shown in FIGS. 1 and 3 are referred to as Examples 1 and 2, respectively. Further, the ball bearings with seals according to the third embodiment and the fourth embodiment shown in FIGS. 5 and 8 are referred to as Examples 3 and 4, respectively. Further, the ball bearing with seal according to the fifth embodiment shown in FIG.

これら実施例1〜5のシール付き玉軸受と、図16〜図19に示した従来例1〜3のシール付き玉軸受について、その密封性能と、モータの消費電力すなわち軸受の動摩擦損失を評価した。図14、図15はその結果を示す。   Regarding the sealed ball bearings of Examples 1 to 5 and the sealed ball bearings of Conventional Examples 1 to 3 shown in FIGS. 16 to 19, the sealing performance and the power consumption of the motor, that is, the dynamic friction loss of the bearing were evaluated. . 14 and 15 show the results.

図14に示す結果は、実施例1〜4及び従来例1〜3について、5回の測定結果の平均値で比較したグラフである。従来例1及び2のシール部材は接触式のシール部材であるため、負荷空気圧(負荷圧力)が低い状態では、接触部分での摩擦損失により、モータ消費電流値が高くなっている。また、負荷空気圧の上昇により軸受内部を通過する空気の流れが生じることに伴い、内輪に対するシールリップの接触圧力が徐々に低下し、摩擦損失が低下し、モータ消費電流値が低下している。しかしながら、これと同時に空気が軸受内部を通過して空気圧付加側とは反対側へ漏れ出しており、軸受の密封性能は低下している。   The result shown in FIG. 14 is a graph comparing Examples 1 to 4 and Conventional Examples 1 to 3 with an average value of five measurement results. Since the seal members of the conventional examples 1 and 2 are contact-type seal members, the motor current consumption value is high due to friction loss at the contact portion when the load air pressure (load pressure) is low. In addition, as the load air pressure increases, the flow of air passing through the inside of the bearing is generated, so that the contact pressure of the seal lip with the inner ring gradually decreases, the friction loss decreases, and the motor current consumption value decreases. However, at the same time, air passes through the inside of the bearing and leaks to the side opposite to the air pressure application side, and the sealing performance of the bearing is reduced.

従来例3のシール部材は非接触式であるため、軸受の動摩擦損失は安定的に低く、モータ消費電流値が安定している。しかしながら、空気圧を負荷した直後より、空気が軸受内部を通過して空気圧付加側とは反対側へ漏れ出しており、負荷空気圧の上昇とともに空気の漏れ量も増加している。   Since the seal member of Conventional Example 3 is a non-contact type, the dynamic friction loss of the bearing is stably low, and the motor current consumption value is stable. However, immediately after the air pressure is applied, the air passes through the bearing and leaks to the side opposite to the air pressure application side, and the amount of air leakage increases as the load air pressure increases.

これに対し、実施例1、2のシール部材は非接触式のシール部材であることから、軸受の動摩擦損失は安定的に低く抑えられ、モータ消費電流値が安定している。さらに、シールリップの剛性を向上したことにより、軸受内部を通過する空気の流れに対抗する力が増え、負荷空気圧の上昇による空気の漏れ量の増加が抑制されている。   On the other hand, since the seal members of Examples 1 and 2 are non-contact type seal members, the dynamic friction loss of the bearing is stably suppressed to a low value, and the motor current consumption value is stable. Furthermore, by improving the rigidity of the seal lip, the force against the flow of air passing through the inside of the bearing is increased, and an increase in the amount of air leakage due to an increase in load air pressure is suppressed.

このように、実施例1、2のシール付き玉軸受は、従来例1、2のシール付き玉軸受と比較して負荷空気圧が低い状態では空気の漏れが発生しているが、負荷空気圧の上昇に伴う空気の漏れ量の増加は緩やかである。このことから、実施例1,2のシール付き玉軸受は、クリーナのモータに使用された場合に、負荷空気圧の変動に対する漏れ圧力の変動を抑制でき、クリーナの吸込み性能のバラツキを防止できる。また、実施例1、2のシール付き玉軸受では、モータ消費電力は負荷空気圧に関わらず安定して低い。したがって、本構成のシール付き玉軸受によれば、軸受回転時における機械的損失の低減と軸受の密封性の確保との両方を実現できることがわかる。   Thus, in the sealed ball bearings of Examples 1 and 2, air leakage occurred in a state where the load air pressure was lower than that of the sealed ball bearings of Conventional Examples 1 and 2, but the load air pressure increased. The increase in the amount of air leakage accompanying this is moderate. From this, when the ball bearing with seal of Examples 1 and 2 is used in a cleaner motor, it is possible to suppress fluctuations in leakage pressure with respect to fluctuations in load air pressure, and to prevent variations in cleaner suction performance. In the ball bearings with seals of Examples 1 and 2, the motor power consumption is stably low regardless of the load air pressure. Therefore, according to the sealed ball bearing of this configuration, it can be seen that both reduction of mechanical loss during rotation of the bearing and securing of the sealability of the bearing can be realized.

また、実施例3、4のシール部材は接触式であることから、負荷空気圧が低い状態では、従来例3の非接触式のシール部材と比較して、軸受動摩擦損失を表すモータ消費電流値が若干高くなっている。しかしながら、実施例3、4では、シールリップの接触圧力を微小量としたことで、従来例1、2の接触式のシール部材と比較して動摩擦損失を低減できることがわかる。さらに、実施例3、4では、シールリップの剛性が向上しているので、軸受内部を通過する空気の流れに対抗する力が増えており、負荷圧力の上昇による空気の漏れ量の増加を抑制可能であることがわかる。   In addition, since the seal members of Examples 3 and 4 are contact type, the motor consumption current value representing the bearing dynamic friction loss is lower than that of the non-contact type seal member of Conventional Example 3 when the load air pressure is low. Slightly higher. However, in Examples 3 and 4, it can be seen that the dynamic friction loss can be reduced by setting the contact pressure of the seal lip to a minute amount as compared with the contact-type seal members of Conventional Examples 1 and 2. Further, in Examples 3 and 4, since the rigidity of the seal lip is improved, the force against the flow of air passing through the inside of the bearing is increased, and an increase in the amount of air leakage due to an increase in load pressure is suppressed. It turns out that it is possible.

このように、実施例3、4のシール付き玉軸受は、従来例1、2のシール付き玉軸受と比較して、負荷空気圧が低い状態では、モータ消費電流、つまりモータ消費電力が低いという効果を確認できた。また、実施例3、4におけるシール部材は、従来例3で示す非接触式のシール部材と比較して、軸受の密封性が向上しているという効果を確認できた。したがって、各実施例のシール付き玉軸受によれば、機械的損失の低減と軸受の密封性との両方を実現できることがわかる。   Thus, the sealed ball bearings of Examples 3 and 4 have the effect that the motor current consumption, that is, the motor power consumption is low when the load air pressure is low, as compared with the sealed ball bearings of Conventional Examples 1 and 2. Was confirmed. Moreover, the sealing member in Examples 3 and 4 has confirmed the effect that the sealing performance of the bearing is improved as compared with the non-contact type sealing member shown in Conventional Example 3. Therefore, according to the ball bearing with seal of each example, it can be understood that both reduction of mechanical loss and sealing performance of the bearing can be realized.

図15に示す結果は、実施例5及び従来例1〜3について、5回の測定結果の平均値で比較したグラフである。   The result shown in FIG. 15 is a graph comparing Example 5 and Conventional Examples 1 to 3 with an average value of five measurement results.

前述した従来例3と比較すると、実施例5のシール部材は、接触式のシール部材であるが、軸受の動摩擦損失は安定的に低く抑えられ、モータ消費電流値が安定している。さらに、シールリップの剛性を向上したことにより、軸受内部を通過する空気の流れに対抗する力が増え、負荷空気圧の上昇による空気の漏れ量の増加が抑制されている。   Compared to the above-described Conventional Example 3, the seal member of Example 5 is a contact-type seal member, but the dynamic friction loss of the bearing is stably kept low, and the motor current consumption value is stable. Furthermore, by improving the rigidity of the seal lip, the force against the flow of air passing through the inside of the bearing is increased, and an increase in the amount of air leakage due to an increase in load air pressure is suppressed.

このように、実施例5のシール付き玉軸受は、従来例1、2のシール付き玉軸受と比較して、負荷空気圧が低い状態では空気の漏れが殆ど発生せず、負荷空気圧の上昇に伴う空気の漏れ量の増加は緩やかである。このことから、シール付き玉軸受10がクリーナのモータに使用された場合に、負荷空気圧の変動に対する漏れ圧力の変動を抑制できるので、クリーナの吸込み性能のバラツキを防止できる。また、実施例5のシール付き玉軸受では、モータ消費電力は負荷空気圧に関わらず安定して低い。したがって、本構成のシール付き玉軸受によれば、軸受の回転時における機械的損失の低減と、軸受の密封性との両方を実現できることがわかる。   As described above, the sealed ball bearing of Example 5 hardly causes air leakage when the load air pressure is low as compared with the sealed ball bearings of Conventional Examples 1 and 2, and the load air pressure increases. The increase in air leakage is gradual. From this, when the ball bearing 10 with a seal is used for the motor of the cleaner, the fluctuation of the leakage pressure with respect to the fluctuation of the load air pressure can be suppressed, so that the variation in the suction performance of the cleaner can be prevented. In the ball bearing with seal of Example 5, the motor power consumption is stably low regardless of the load air pressure. Therefore, according to the sealed ball bearing of this configuration, it can be seen that both reduction of mechanical loss during rotation of the bearing and sealing performance of the bearing can be realized.

本発明は、前述した各実施形態に限定されるものではなく、適宜変更、改良等が可能である。例えば、上記した各実施形態に係るシール付き玉軸受においては、シールド板40を金属薄板により形成していたが、シールド板40は、金属製の芯材をゴム、合成樹脂等の弾性材で被覆して、全体が円環状となるように形成してもよい。また、シール部材の弾性部は、ゴム等により形成してもよい。さらに、本発明のシール付き玉軸受は、アンギュラ玉軸受に限定されず、円筒ころ軸受などの他の転がり軸受であってもよい。   The present invention is not limited to the above-described embodiments, and appropriate modifications and improvements can be made. For example, in the ball bearing with seal according to each of the above-described embodiments, the shield plate 40 is formed of a thin metal plate. However, the shield plate 40 is formed by coating a metal core with an elastic material such as rubber or synthetic resin. And you may form so that the whole may become an annular | circular shape. Further, the elastic part of the seal member may be formed of rubber or the like. Furthermore, the ball bearing with seal of the present invention is not limited to an angular ball bearing, and may be another rolling bearing such as a cylindrical roller bearing.

本発明は、例えばクリーナのモータで用いられる軸受等に適用可能である。   The present invention is applicable to, for example, a bearing used in a cleaner motor.

本出願は2014年2月17日出願の日本国特許出願(特願2014−27740)、及び2014年3月24日出願の日本国特許出願(特願2014−59995)に基づくものであり、その内容はここに参照として取り込まれる。   This application is based on a Japanese patent application filed on Feb. 17, 2014 (Japanese Patent Application No. 2014-27740) and a Japanese patent application filed on March 24, 2014 (Japanese Patent Application No. 2014-59995). The contents are incorporated herein by reference.

10,10A,10A1,10B,10C,10D シール付き玉軸受
15 玉
20 外輪
22 外輪軌道面
30 内輪
31 内輪外周面
32 内輪軌道面
36 シール溝
50,50A,50A1,50B,50C,50D シール部材
51 芯金
56,56A,56A1,56B,56C,56D シールリップ
56a 内周側縁部
56a1 内側リップ
56a2 外側リップ
10, 10A, 10A1, 10B, 10C, 10D Sealed ball bearing 15 Ball 20 Outer ring 22 Outer ring raceway surface 30 Inner ring 31 Inner ring outer peripheral surface 32 Inner ring raceway surface 36 Seal grooves 50, 50A, 50A1, 50B, 50C, 50D Seal member 51 Core metal 56, 56A, 56A1, 56B, 56C, 56D Seal lip 56a Inner peripheral edge 56a1 Inner lip 56a2 Outer lip

Claims (8)

内周面に外輪軌道面が形成された外輪と、外周面に内輪軌道面が形成された内輪と、前記外輪軌道面と前記内輪軌道面との間に転動自在に周方向に複数配置された玉と、前記外輪の内周面に固定されたシール部材と、を備えるシール付き玉軸受であって、
前記シール部材が、円環形状の芯金と、前記芯金を被覆する円環形状の弾性部と、を備え、
前記シール部材の前記芯金の内径φDc及び前記弾性部の内径φDrが、1.0≦φDc/φDr≦1.1を満たし、
前記シール部材の前記芯金の内径φDc及び前記内輪の外径φDBが、φDc/φDB<1.0を満たすことを特徴とするシール付き玉軸受。
A plurality of outer rings having an outer ring raceway surface formed on an inner peripheral surface, an inner ring having an outer ring raceway surface formed on an outer peripheral surface, and a plurality of rollers arranged in a circumferential direction so as to be freely rollable between the outer ring raceway surface and the inner ring raceway surface. A ball bearing with a seal comprising a ball and a seal member fixed to the inner peripheral surface of the outer ring,
The seal member comprises an annular cored bar and an annular elastic part that covers the cored bar,
The inner diameter φDc of the core metal of the seal member and the inner diameter φDr of the elastic portion satisfy 1.0 ≦ φDc / φDr ≦ 1.1,
A sealed ball bearing, wherein an inner diameter φDc of the cored bar of the seal member and an outer diameter φDB of the inner ring satisfy φDc / φDB <1.0.
前記弾性部の内周側縁部が、前記内輪の前記外周面に形成されたシール溝内に位置しており、
前記弾性部の前記内周側縁部と前記シール溝との間の軸方向の距離Δdが、アキシアル内部すきまの半分の寸法であることを特徴とする請求項1に記載のシール付き玉軸受。
The inner peripheral edge of the elastic part is located in a seal groove formed on the outer peripheral surface of the inner ring,
2. The ball bearing with seal according to claim 1, wherein an axial distance Δd between the inner peripheral edge of the elastic portion and the seal groove is half the axial internal clearance.
前記弾性部が、前記内輪の前記外周面に形成されたシール溝内に位置しており、
前記シール部材が、前記シール溝とは常時非接触状態で前記外輪に固定されていることを特徴とする請求項1に記載のシール付き玉軸受。
The elastic portion is located in a seal groove formed on the outer peripheral surface of the inner ring;
2. The ball bearing with seal according to claim 1, wherein the seal member is fixed to the outer ring in a non-contact state with the seal groove at all times.
前記シール部材が、前記シール溝と接触可能に前記外輪に固定されていることを特徴とする請求項2に記載のシール付き玉軸受。   The ball bearing with seal according to claim 2, wherein the seal member is fixed to the outer ring so as to be in contact with the seal groove. 前記シール溝に接触する前記弾性部の前記内周側縁部が、軸方向断面において円弧形断面を有して形成されていることを特徴とする請求項4に記載のシール付き玉軸受。   The ball bearing with seal according to claim 4, wherein the inner peripheral edge of the elastic portion contacting the seal groove has an arc-shaped cross section in an axial cross section. 前記弾性部は、前記内輪の前記外周面に形成されたシール溝内に配置される、軸受内方の内側リップと軸受外方の外側リップとを有し、前記内側リップと前記外側リップが、それぞれ軸方向断面において円弧形断面を有して形成されたことを特徴とする請求項1に記載のシール付き玉軸受。   The elastic portion has a bearing inner inner lip and a bearing outer outer lip disposed in a seal groove formed in the outer peripheral surface of the inner ring, and the inner lip and the outer lip are 2. The ball bearing with seal according to claim 1, wherein each of the ball bearings has an arcuate cross section in an axial cross section. 前記内側リップと前記シール溝の軸受内方の内側壁部との間の軸方向距離、前記外側リップと前記シール溝の軸受外方の外側壁部との間の軸方向距離、の少なくともいずれか一方が、予圧付与前の状態でアキシアル内部すきまの半分の長さであることを特徴とする請求項6に記載のシール付き玉軸受。   At least one of an axial distance between the inner lip and the inner wall of the seal groove inside the bearing, and an axial distance between the outer lip and the outer wall of the seal groove outside the bearing. 7. One of the ball bearings with a seal according to claim 6, wherein one is half the axial internal clearance before the preload is applied. 前記シール溝における軸受内方の内側壁部と軸受外方の外側壁部は、前記内輪の径方向に対する傾斜角がそれぞれ等しいことを特徴とする請求項6又は請求項7に記載のシール付き玉軸受。   The ball with a seal according to claim 6 or 7, wherein the inner wall portion inside the bearing and the outer wall portion outside the bearing in the seal groove have the same inclination angle with respect to the radial direction of the inner ring. bearing.
JP2015562705A 2014-02-17 2014-12-17 Cleaner single row ball bearing Active JP6504060B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014027740 2014-02-17
JP2014027740 2014-02-17
JP2014059995 2014-03-24
JP2014059995 2014-03-24
PCT/JP2014/083470 WO2015122099A1 (en) 2014-02-17 2014-12-17 Ball bearing with seal

Publications (2)

Publication Number Publication Date
JPWO2015122099A1 true JPWO2015122099A1 (en) 2017-03-30
JP6504060B2 JP6504060B2 (en) 2019-04-24

Family

ID=53799854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562705A Active JP6504060B2 (en) 2014-02-17 2014-12-17 Cleaner single row ball bearing

Country Status (4)

Country Link
JP (1) JP6504060B2 (en)
KR (1) KR20160097280A (en)
CN (1) CN106030135A (en)
WO (1) WO2015122099A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884877A (en) * 2017-04-10 2017-06-23 无锡市海峰海林精工机械制造有限公司 A kind of automobile engine anti-gas-leak bearing seal structure
JP2020085128A (en) * 2018-11-26 2020-06-04 Ntn株式会社 Rolling bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007983A1 (en) * 2002-07-12 2004-01-22 Nsk Ltd. Pulley support double row ball bearing
JP2004144252A (en) * 2002-10-28 2004-05-20 Nsk Ltd Pulley device with built-in one-way clutch
JP2007255682A (en) * 2006-03-27 2007-10-04 Nakanishi Metal Works Co Ltd Bearing seal and bearing
JP2010002017A (en) * 2008-06-23 2010-01-07 Jtekt Corp Rolling bearing
JP2013133853A (en) * 2011-12-26 2013-07-08 Minebea Co Ltd Rolling bearing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563010A (en) * 1978-11-07 1980-05-12 Nippon Seiko Kk Sealing device for ball-and-roller bearing
JPH0419423A (en) * 1990-05-14 1992-01-23 Ntn Corp Seal device for rolling bearing
JPH0538006A (en) 1991-07-24 1993-02-12 Fuji Electric Co Ltd Cable draw-out bushing
JP2005147307A (en) * 2003-11-18 2005-06-09 Koyo Seiko Co Ltd Rolling bearing
JP2006250201A (en) * 2005-03-09 2006-09-21 Nsk Ltd Roller bearing
JP4742834B2 (en) 2005-05-13 2011-08-10 日本精工株式会社 Cleaner motor bearings
JP4743176B2 (en) * 2006-09-13 2011-08-10 日本精工株式会社 Combination ball bearings and double row ball bearings
CN201293046Y (en) * 2008-11-13 2009-08-19 浙江新昌皮尔轴承有限公司 Bearing seal structure
JP5493667B2 (en) * 2009-10-05 2014-05-14 日本精工株式会社 Rolling bearing with seal ring
CN203214638U (en) * 2013-03-04 2013-09-25 嵊州市鼎沃五金机械厂 Bearing sealing ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007983A1 (en) * 2002-07-12 2004-01-22 Nsk Ltd. Pulley support double row ball bearing
JP2004144252A (en) * 2002-10-28 2004-05-20 Nsk Ltd Pulley device with built-in one-way clutch
JP2007255682A (en) * 2006-03-27 2007-10-04 Nakanishi Metal Works Co Ltd Bearing seal and bearing
JP2010002017A (en) * 2008-06-23 2010-01-07 Jtekt Corp Rolling bearing
JP2013133853A (en) * 2011-12-26 2013-07-08 Minebea Co Ltd Rolling bearing

Also Published As

Publication number Publication date
KR20160097280A (en) 2016-08-17
CN106030135A (en) 2016-10-12
WO2015122099A1 (en) 2015-08-20
JP6504060B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US20100066030A1 (en) Hermetic sealing device
WO2015129096A1 (en) Rolling bearing with seal
JP2016044810A (en) Low frictional dynamic seal
JP6457087B2 (en) Sealing device
KR20210021603A (en) Hermetic seal device
JP5839509B2 (en) Sealing device and sealing structure
WO2015122099A1 (en) Ball bearing with seal
JP6231072B2 (en) Radial shaft seal with static and hydrodynamic sealing function
US20160238114A1 (en) Seal for Ball Screw Device
JP2018119681A (en) Seal structure of rotary machine, rotary machine, and seal member
JP2013152017A (en) Cleaner motor bearing
JP2009074589A (en) Sealing device
JP2017089801A (en) Sealing device for differential side
JP2014177954A (en) Sealing device and rolling bearing unit equipped therewith
JP2019157884A (en) Oil seal and bearing with seal
JP2014109297A (en) Sealing device and rolling bearing unit equipped therewith
JP2019060441A (en) Ball bearing with seal
JP2014081077A (en) Creep prevention device for ring of rolling bearing and bearing equipped therewith
JP2009299873A (en) Sealing device
JP2010090986A (en) Sealed rolling bearing
JP2004183686A (en) Rolling bearing, and sealing device
JP2016080017A (en) Sealing device for wheel support bearing
JP2006022867A (en) Rolling bearing with sealing plate
JP6116877B2 (en) Sealing device
US20080240637A1 (en) Rolling bearing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6504060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150