JP4742834B2 - Cleaner motor bearings - Google Patents

Cleaner motor bearings Download PDF

Info

Publication number
JP4742834B2
JP4742834B2 JP2005348670A JP2005348670A JP4742834B2 JP 4742834 B2 JP4742834 B2 JP 4742834B2 JP 2005348670 A JP2005348670 A JP 2005348670A JP 2005348670 A JP2005348670 A JP 2005348670A JP 4742834 B2 JP4742834 B2 JP 4742834B2
Authority
JP
Japan
Prior art keywords
sealing plate
bearing
air
pressure
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005348670A
Other languages
Japanese (ja)
Other versions
JP2007046767A (en
Inventor
聡 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005348670A priority Critical patent/JP4742834B2/en
Publication of JP2007046767A publication Critical patent/JP2007046767A/en
Application granted granted Critical
Publication of JP4742834B2 publication Critical patent/JP4742834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc

Description

本発明は、軸受に作用する空気圧により密封板と軌道輪との接触圧を調整し、軸受トルクを低減してモータの消費電流を低下させると共に、モータの回転効率を高めることで空気の吸い込み効率を向上させるクリーナモータ用軸受に関する。   The present invention adjusts the contact pressure between the sealing plate and the bearing ring by the air pressure acting on the bearing, reduces the bearing torque and lowers the motor current consumption, and increases the rotation efficiency of the motor to improve the air suction efficiency. The present invention relates to a bearing for a cleaner motor that improves the efficiency.

従来から、例えば自動車や家電機器などに設けられたクリーナモータには、モータ内に流す空気の吸い込み効率を向上させる要求がされており、これに応えるために、モータに使用される軸受内部への空気流を遮断する各種の技術が提案されている。その一例として例えば特許文献1の軸受には、接触タイプの密封板(接触シール)が適用されており、これにより空気の吸い込み効率の向上を図っている。   Conventionally, for example, cleaner motors provided in automobiles and home appliances have been required to improve the efficiency of sucking air flowing into the motor. Various techniques for blocking airflow have been proposed. As an example, for example, a contact-type sealing plate (contact seal) is applied to the bearing of Patent Document 1, thereby improving the air suction efficiency.

ところで、空気の吸い込み効率を向上させるべく軸受内部への空気流を遮断するためには、例えば特許文献1のように接触シールを適用すれば良いが、そのシール接触圧(接触シールが軌道輪に接触する圧力)は、比較的高めに設定する必要がある。しかしながら、シール接触圧を高くすると、軸受回転中において接触シールと軌道輪との間の摩擦抵抗が大きくなるため、軸受トルク(例えば、起動トルク、回転トルク)が増加し、その結果、モータの消費電流が増大するだけで無く、モータの回転効率が低下することで空気の吸い込み効率も低下してしまう。
特許第3538006号公報
By the way, in order to cut off the air flow into the bearing in order to improve the air suction efficiency, a contact seal may be applied as in, for example, Patent Document 1, but the seal contact pressure (the contact seal is applied to the bearing ring). The contact pressure must be set relatively high. However, when the seal contact pressure is increased, the frictional resistance between the contact seal and the race is increased during the rotation of the bearing, which increases the bearing torque (e.g., starting torque, rotational torque), resulting in motor consumption. Not only does the current increase, but the rotational efficiency of the motor decreases, so the air suction efficiency also decreases.
Japanese Patent No. 3533806

本発明は、このような問題を解決するためになされており、その目的は、軸受トルクを低減してモータの消費電流を低下させると共に、モータの回転効率を高めることで空気の吸い込み効率を向上させるクリーナモータ用軸受を提供することにある。   The present invention has been made to solve such problems, and its purpose is to reduce the bearing torque and reduce the current consumption of the motor, and improve the air suction efficiency by increasing the rotation efficiency of the motor. Another object is to provide a cleaner motor bearing.

かかる目的を達成するために、本発明は、空気吸込口及び空気排気口を有するケーシング内に設けられたモータと、モータの回転軸に取り付けられたファンと、回転軸を回転自在に支持する軸受とを具備し、ファンの回転により空気吸込口から吸い込んだ空気をケーシング内に流通させて空気排気口から排気するクリーナモータ用軸受であって、軸受は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組込まれた複数の転動体と、軌道輪の両側において当該軌道輪間に介在させた環状の密封板とを備え、双方の密封板は、その基端が一方の軌道輪に固定され、その先端が空気の作用方向とは反対向きの凸形状を成した状態で、かつ他方の軌道輪に対して所定の接触圧で接触した状態に位置決めされていると共に、ケーシング内を流通する空気の空気圧が密封板に作用した際に、密封板の先端が他方の軌道輪から離間する方向に移動することで、当該他方の軌道輪に対する密封板の接触圧を所定圧だけ減少させる。
In order to achieve this object, the present invention provides a motor provided in a casing having an air suction port and an air exhaust port, a fan attached to the rotation shaft of the motor, and a bearing that rotatably supports the rotation shaft. A bearing for a cleaner motor that circulates air sucked from an air suction port by rotation of a fan into the casing and exhausts it from the air exhaust port. When a plurality of rolling elements incorporated rollably between raceway, and a seal plate annular interposed between the bearing ring on both sides of the bearing ring, both sealing plate, its base end It is fixed to one of the race rings, and its tip is positioned in a convex shape opposite to the direction of air action and in contact with the other race ring at a predetermined contact pressure. ,casing When the air pressure of the air flowing through the seal plate acts on the sealing plate, the tip of the sealing plate moves away from the other race ring, thereby reducing the contact pressure of the seal plate with respect to the other race ring by a predetermined pressure. Let

このような発明において、他方の軌道輪には、密封板の先端が一部入り込んで接触する環状のシール溝が設けられており、密封板の先端は、当該密封板に対する空気の作用方向とは反対向きにシール溝に接触している。この場合、接触状態の一例として、軌道輪の両側に介在させた密封板のうち、反ファン側の密封板の先端は、ファン側の密封板の先端と同一向きでシール溝に接触している。
In such an invention, the other raceway ring is provided with an annular seal groove in which the tip of the sealing plate partially enters and contacts, and the tip of the sealing plate is the direction of the air acting on the sealing plate. It is in contact with the seal groove in the opposite direction. In this case, as an example of the contact state, of the sealing plates interposed on both sides of the bearing ring, the tip of the anti-fan side sealing plate is in contact with the sealing groove in the same direction as the tip of the fan side sealing plate. .

本発明のクリーナモータ用軸受によれば、軸受トルクを低減してモータの消費電流を低下させると共に、モータの回転効率を高めることで空気の吸い込み効率を向上させることができる。   According to the cleaner motor bearing of the present invention, it is possible to improve the air suction efficiency by reducing the bearing torque and reducing the current consumption of the motor and increasing the rotation efficiency of the motor.

以下、本発明の一実施の形態に係るクリーナモータ用軸受について、添付図面を参照して説明する。
図1(a)には、クリーナモータの全体構成が示されており、当該クリーナモータは、空気吸込口2及び空気排気口4を有するケーシング6a,6b内に設けられたモータと、モータの回転軸8に取り付けられたファン10と、回転軸8を回転自在に支持する複数の軸受12とを備えている。なお、ケーシング6a,6bは、ファン10を覆うファンケーシング6aと、モータを覆うモータケーシング6bとから構成されている。
Hereinafter, a cleaner motor bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 (a) shows the overall configuration of a cleaner motor. The cleaner motor includes a motor provided in casings 6a and 6b having an air suction port 2 and an air exhaust port 4, and rotation of the motor. A fan 10 attached to the shaft 8 and a plurality of bearings 12 that rotatably support the rotating shaft 8 are provided. The casings 6a and 6b are composed of a fan casing 6a that covers the fan 10 and a motor casing 6b that covers the motor.

モータは、回転軸8に固定された円筒状のロータ14と、ロータ14に対向して配置されたステータ16と、ロータ14に隣接して回転軸に装着されたコミュテータ(整流子)18と、コミュテータ18に接触するブラシ20とを備えている。この場合、例えばステータ(図示しないコイル)16に電流を流して当該ステータ16とロータ14との間に磁気的な相互作用を発生させることで、回転軸8を所定方向に所定速度で回転させることができる。なお、回転軸8の回転に伴ってコミュテータ18がブラシ20に接触しながら回転することで、ステータ(コイル)16に流れる電流の方向を切り換える転流制御が行われる。   The motor includes a cylindrical rotor 14 fixed to the rotating shaft 8, a stator 16 disposed facing the rotor 14, a commutator 18 mounted on the rotating shaft adjacent to the rotor 14, And a brush 20 in contact with the commutator 18. In this case, for example, a current is passed through the stator (coil not shown) 16 to generate a magnetic interaction between the stator 16 and the rotor 14, thereby rotating the rotating shaft 8 in a predetermined direction at a predetermined speed. Can do. The commutator 18 rotates while being in contact with the brush 20 as the rotary shaft 8 rotates, thereby performing commutation control for switching the direction of the current flowing through the stator (coil) 16.

このように回転軸8が回転すると、当該回転軸8に取り付けられたファン10が回転することにより、空気吸込口2からファンケーシング6a内に空気が吸い込まれる。そして更に、ファン10を回転させ続けることにより、ファンケーシング6a内の空気は、エアガイド22を経由してモータケーシング6b内を流通した後、空気排気口4から排気される。このとき、回転軸8を支持する複数の軸受12には、ケーシング6a,6b内を流通する空気の空気圧Fが作用する。   When the rotating shaft 8 rotates in this way, the fan 10 attached to the rotating shaft 8 rotates, so that air is sucked into the fan casing 6a from the air suction port 2. Further, by continuing to rotate the fan 10, the air in the fan casing 6 a flows through the motor casing 6 b via the air guide 22 and is then exhausted from the air exhaust port 4. At this time, the air pressure F of the air flowing through the casings 6a and 6b acts on the plurality of bearings 12 that support the rotating shaft 8.

図1(b)に示すように、軸受12は、相対回転可能に対向配置された軌道輪(内輪24、外輪26)と、内外輪24,26間に転動自在に組込まれた複数の転動体28と、内外輪24,26の両側において当該内外輪24,26間に介在させた環状の密封板30とを備えている。なお同図には、空気の作用方向上流側(ファン側)の密封板30のみを示したが、下流側(反ファン側)の密封板については、同様の密封板30を左右反転させて適用しても良いし、或いは、既存の密封板(例えば、シール、シールド)を適宜選択して適用しても良い。また、図面には、複数の転動体28を回転自在に保持する保持器32を示したが、当該保持器32は必ずしも必要ではない。   As shown in FIG. 1 (b), the bearing 12 includes a plurality of rolling wheels built between a raceway (inner ring 24, outer ring 26) opposed to each other so as to be relatively rotatable, and inner and outer rings 24, 26. A moving body 28 and an annular sealing plate 30 interposed between the inner and outer rings 24 and 26 on both sides of the inner and outer rings 24 and 26 are provided. In the figure, only the sealing plate 30 on the upstream side (fan side) of the air acting direction is shown, but the same sealing plate 30 is reversed and applied to the downstream (anti-fan side) sealing plate. Alternatively, an existing sealing plate (for example, a seal or a shield) may be appropriately selected and applied. Moreover, although the holder | retainer 32 which hold | maintains the some rolling element 28 rotatably is shown in drawing, the said holder | retainer 32 is not necessarily required.

本実施の形態に係る密封板30は、その基端(外径側)30eが一方の軌道輪(外輪26)に固定され、その先端(内径側)30tが他方の軌道輪(内輪24)に対して所定の接触圧で接触した状態に位置決めされている。この場合、ケーシング6a,6b内を流通する空気の空気圧Fが密封板30に作用した際に、密封板30の先端30tが内輪24から離間する方向に移動することで、内輪24に対する密封板30の先端30tの接触圧を所定圧だけ減少させることができるように構成されている。ここでは密封板30として、心金入りのゴム製の接触シールを適用する。   The sealing plate 30 according to the present embodiment has a base end (outer diameter side) 30e fixed to one of the race rings (outer ring 26), and a tip end (inner diameter side) 30t of the other race ring (inner ring 24). On the other hand, it is positioned so as to be in contact with a predetermined contact pressure. In this case, when the air pressure F of the air flowing through the casings 6 a and 6 b acts on the sealing plate 30, the tip 30 t of the sealing plate 30 moves in a direction away from the inner ring 24, so that the sealing plate 30 for the inner ring 24 is moved. It is comprised so that the contact pressure of the front-end | tip 30t can be reduced only by predetermined pressure. Here, a rubber contact seal with a mandrel is applied as the sealing plate 30.

具体的に説明すると、内輪24には、密封板30の先端30tが一部入り込んで接触する環状のシール溝24gが設けられており、密封板30の先端30tは、当該密封板30に対する空気(空気圧F)の作用方向とは反対向きにシール溝24gに接触している。この場合、密封板30の先端30tは、空気(空気圧F)の作用方向とは反対向きの凸形状を成すことが好ましい。つまり、先端30tを凸形状とすることで、当該先端30t部分にバネ性を持たせることができる。   More specifically, the inner ring 24 is provided with an annular seal groove 24g into which the tip 30t of the sealing plate 30 partially enters and contacts, and the tip 30t of the sealing plate 30 has air to the sealing plate 30 ( The seal groove 24g is in contact with the direction opposite to the direction of action of the air pressure F). In this case, it is preferable that the front end 30t of the sealing plate 30 has a convex shape opposite to the direction in which air (air pressure F) acts. That is, by making the tip 30t convex, the tip 30t portion can be made springy.

そして、かかる凸形状の先端30tをシール溝24gに接触させることにより、ケーシング6a,6b内を流通する空気の空気圧Fが密封板30に作用した際に、当該密封板30が軸受内方向に押されることで凸形状の先端30tが内輪24のシール溝24gから離間する方向に移動しても、最適なシール接触圧(凸形状の先端30tがシール溝24gに接触する圧力)を維持することができる。このとき、軸受内に流れ込む空気流量は、ゼロ或いは極微量であるため、ケーシング6a,6b内に流す空気の吸い込み効率を低下させることは無い。なお、空気圧Fが作用する方向は、図1における各々の軸受12において、密封板30とは反対側の図示しない密封板(下流側(反ファン側)の密封板)になることもモータの構造等によりあり得る。   Then, by bringing the convex tip 30t into contact with the sealing groove 24g, when the air pressure F of the air flowing through the casings 6a and 6b acts on the sealing plate 30, the sealing plate 30 is pushed in the bearing inward direction. As a result, even when the convex tip 30t moves away from the seal groove 24g of the inner ring 24, the optimum seal contact pressure (pressure at which the convex tip 30t contacts the seal groove 24g) can be maintained. it can. At this time, since the flow rate of air flowing into the bearing is zero or extremely small, the suction efficiency of air flowing into the casings 6a and 6b is not reduced. The direction in which the air pressure F acts may be a sealing plate (not shown) on the opposite side of the sealing plate 30 (downstream side (anti-fan side) sealing plate) in each bearing 12 in FIG. And so on.

次に、密封板30の耐圧性能について、本実施の形態の軸受12(実施品)と従来の軸受(従来品)とを比較して考察する。
ここでは、実施品として、内輪24のシール溝24gに対する密封板30の先端30tの接触圧が同等の3種類の軸受を用意する。この場合、実施品1(図1(b))におけるシール溝24gと先端30tとの接触面積をM1、実施品2(図1(c))におけるシール溝24gと先端30tとの接触面積をM2、実施品3(図1(d))におけるシール溝24gと先端30tとの接触面積をM3とすると、M1<M2<M3なる関係になっている。
Next, the pressure resistance performance of the sealing plate 30 will be considered by comparing the bearing 12 (implemented product) of the present embodiment with a conventional bearing (conventional product).
Here, three types of bearings having the same contact pressure at the tip 30t of the sealing plate 30 with respect to the seal groove 24g of the inner ring 24 are prepared as implemented products. In this case, the contact area between the seal groove 24g and the tip 30t in the implementation product 1 (FIG. 1B) is M1, and the contact area between the seal groove 24g and the tip 30t in the implementation product 2 (FIG. 1C) is M2. When the contact area between the seal groove 24g and the tip 30t in the product 3 (FIG. 1 (d)) is M3, the relationship is M1 <M2 <M3.

また、従来品の軸受として、シールド34を適用した従来品1(図2(a))、接触シール36を適用した従来品2(図2(b))、接触シール38を適用した従来品3(図2(c))の3種類を用意する。なお、従来品2の接触シール36は、先端36tが空気(空気圧F)の作用方向に向けてシール溝24gに接触しており、従来品3の接触シール38は、先端38tが空気(空気圧F)の作用方向とは反対向きにシール溝24gに接触しているが、その先端38の形状は凸形状では無く、平面状を成している。   Further, as a conventional bearing, the conventional product 1 to which the shield 34 is applied (FIG. 2A), the conventional product 2 to which the contact seal 36 is applied (FIG. 2B), and the conventional product 3 to which the contact seal 38 is applied. Three types (FIG. 2C) are prepared. In the contact seal 36 of the conventional product 2, the tip 36t is in contact with the seal groove 24g in the direction of the action of air (air pressure F), and in the contact seal 38 of the conventional product 3, the tip 38t is air (air pressure F). ) Is in contact with the seal groove 24g in the opposite direction, but the tip 38 is not convex but flat.

そして、これら実施品1,2,3と従来品1,2,3に対して空気圧(負荷圧力)を増加させながら作用させ、そのときのモータ消費電流と漏れ空気圧力(軸受内に空気が流入する圧力)とを測定した。図3には、測定結果が示されており、点線で示す各グラフは負荷圧力に対するモータ消費電流の特性を示し、実線で示す各グラフは負荷圧力に対する漏れ空気圧力の特性を示している。   The air pressure (load pressure) is applied to these products 1, 2, 3 and the conventional products 1, 2, 3 while increasing the air pressure (load pressure), and the motor current consumption and leakage air pressure (air flows into the bearing) Pressure). FIG. 3 shows the measurement results. Each graph shown by a dotted line shows the characteristic of the motor consumption current with respect to the load pressure, and each graph shown by a solid line shows the characteristic of the leakage air pressure with respect to the load pressure.

これによれば、従来品1は、非接触の密封板(シールド34)を適用しているため、モータ消費電流は低いが、漏れ空気圧力の特性が急峻に上昇することから耐圧性能が悪いことが分る。従来品2は、漏れ空気圧力の特性が一定であることから耐圧性能については従来品1よりも優れているが、接触シール36の先端36tが空気(空気圧F)の作用を直接受けてシール溝24gに強く圧接するため、軸受トルクが上昇しモータ消費電流を増加させてしまう。従来品3は、空気(空気圧F)の作用により接触シール38の先端38tがシール溝24gから離間するため、軸受トルクが低減してモータの消費電流を低下させることはできるが、先端38tとシール溝24gとの隙間が増大し、軸受内に大量の空気が流入してしまう。   According to this, since the conventional product 1 uses a non-contact sealing plate (shield 34), the motor current consumption is low, but the pressure resistance performance is poor because the characteristics of the leakage air pressure rise sharply. I understand. The conventional product 2 is superior to the conventional product 1 in terms of pressure resistance because the characteristics of the leaking air pressure are constant, but the tip 36t of the contact seal 36 is directly subjected to the action of air (air pressure F) to form a seal groove. Since it is strongly pressed against 24g, the bearing torque increases and the motor current consumption increases. In the conventional product 3, the tip 38t of the contact seal 38 is separated from the seal groove 24g by the action of air (air pressure F), so that the bearing torque can be reduced and the current consumption of the motor can be reduced. The gap with the groove 24g increases, and a large amount of air flows into the bearing.

これに対して、実施品1,2,3は、図3の特性から明らかなように、空気圧(負荷圧力)を増加させながら作用させても、そのときのモータ消費電流及び漏れ空気圧力を低く抑えることができる。この場合、漏れ空気圧力がゼロ以上になる負荷圧力について考察すると、実施品1の密封板30の耐圧性能は10kPa、実施品2の密封板30の耐圧性能は13kPa、実施品3の密封板30の耐圧性能は15kPaまで向上することが分る。なお、耐圧性能は、内輪24の外径と外輪26の内径との間の環状平面の平均面積をS、当該環状面積S全体に作用する空気圧(負荷圧力)をPとすると、“S÷P”の演算により算出される単位面積あたりの圧力値である。   On the other hand, as is apparent from the characteristics of FIG. 3, the products 1, 2, and 3 reduce the motor current consumption and the leakage air pressure at that time even when the air pressure (load pressure) is increased. Can be suppressed. In this case, considering the load pressure at which the leakage air pressure becomes zero or more, the pressure resistance performance of the sealing plate 30 of the implementation product 1 is 10 kPa, the pressure resistance performance of the sealing plate 30 of the implementation product 2 is 13 kPa, and the sealing plate 30 of the implementation product 3. It can be seen that the withstand pressure performance is improved to 15 kPa. The pressure resistance performance is “S ÷ P, where S is the average area of the annular plane between the outer diameter of the inner ring 24 and the inner diameter of the outer ring 26 and P is the air pressure (load pressure) acting on the entire annular area S. It is the pressure value per unit area calculated by the calculation of "".

また、実施品1,2,3について空気圧(負荷圧力)がゼロのときは、シール接触圧によりモータ消費電流は高いが、空気圧(負荷圧力)が作用することでシール接触圧が低下し、これにより軸受トルクが低減され、その結果、モータの消費電流を低下させることができると共に、モータの回転効率を高めることができるため、空気の吸い込み効率を向上させることができる。この場合、図3の特性から、負荷圧力が10〜15kPa、漏れ空気圧力が0.1kPa以下、モータ消費電流が0.4〜0.8Aの範囲で、シール接触圧(シール性能)と軸受トルクとのバランスが良好となることが分る。   When the pneumatic pressure (load pressure) is zero for the products 1, 2, and 3, the motor current consumption is high due to the seal contact pressure, but the seal contact pressure decreases due to the air pressure (load pressure) acting. As a result, the bearing torque is reduced, and as a result, the current consumption of the motor can be reduced, and the rotational efficiency of the motor can be increased, so that the air suction efficiency can be improved. In this case, from the characteristics shown in FIG. 3, the seal contact pressure (seal performance) and the bearing torque are within a range of load pressure of 10 to 15 kPa, leakage air pressure of 0.1 kPa or less, and motor current consumption of 0.4 to 0.8 A. It turns out that the balance with is good.

なお、上述した実施の形態では、空気の作用方向上流側(ファン側)の密封板30のみを例示して説明したが、下流側(反ファン側)の密封板については、軸受両側の密封板のシール接触圧のバランスを考慮して構成すれば良い。例えば、下流側(反ファン側)の密封板を非接触タイプにすることで、軸受トルクの低減を図ることができる。また、空気圧(負荷圧力)が作用した際の上流側(ファン側)の密封板30のシール接触圧を予め測定し、その測定値と略一致するように下流側(反ファン側)の密封板のシール接触圧を調節することにより、クリーナ運転時の両側の密封板のシール接触圧を同等にすることができるため、軸受トルクのバランスを良好に保つことができる。   In the embodiment described above, only the sealing plate 30 on the upstream side (fan side) of the air acting direction has been described as an example, but the sealing plate on the downstream side (anti-fan side) is the sealing plate on both sides of the bearing. What is necessary is just to consider the balance of the seal contact pressure. For example, the bearing torque can be reduced by making the downstream (non-fan side) sealing plate a non-contact type. Further, the seal contact pressure of the upstream (fan side) sealing plate 30 when air pressure (load pressure) is applied is measured in advance, and the downstream (anti-fan side) sealing plate is substantially coincident with the measured value. By adjusting the seal contact pressure, it is possible to equalize the seal contact pressures of the sealing plates on both sides during the cleaner operation, so that the bearing torque can be well balanced.

また、上述した実施の形態では、密封板30の基端30eを外輪26に固定する場合を想定して説明したが、シール溝を外輪26に形成すると共に、密封板30の基端30eを内輪24に固定する構成でも同様の効果を実現することができることは言うまでも無い。
また、軸受12としては、例えば図1(e)に示すような外輪肉厚タイプの軸受12にも上述した実施の形態の構成を施すことにより、同様の効果を得ることができる。なお、この場合、保持器32としては例えば樹脂製の冠形保持器を適用し、その閉塞側(各ポケットの開口とは反対側)をファン側に向けて内外輪間に配置することが好ましい。
In the above-described embodiment, the case where the base end 30e of the sealing plate 30 is fixed to the outer ring 26 has been described. However, the seal groove is formed in the outer ring 26 and the base end 30e of the sealing plate 30 is connected to the inner ring. It goes without saying that the same effect can be realized even in the configuration fixed to 24.
Further, as the bearing 12, for example, the same effect can be obtained by applying the configuration of the above-described embodiment to the outer ring thickness type bearing 12 as shown in FIG. In this case, for example, a resin crown-shaped cage is used as the cage 32, and it is preferably disposed between the inner and outer rings with the closed side (the side opposite to the opening of each pocket) facing the fan side. .

ここで、空気の作用方向下流側(反ファン側)の密封板40の構成例を加えたクリーナモータ用軸受12について、図4(a)を参照して説明する。
反ファン側の密封板40は、その基端(外径側)40eが一方の軌道輪(外輪26)に固定され、その先端(内径側)40tが他方の軌道輪(内輪24)に対して所定の接触圧で接触した状態に位置決めされている。なお、密封板40としては、心金入りのゴム製の接触シールを想定する。
Here, the cleaner motor bearing 12 to which a configuration example of the sealing plate 40 on the downstream side in the air acting direction (the anti-fan side) is added will be described with reference to FIG.
The non-fan side sealing plate 40 has a base end (outer diameter side) 40e fixed to one of the race rings (outer ring 26) and a tip end (inner diameter side) 40t of the other race ring (inner ring 24). It is positioned in a state of contact with a predetermined contact pressure. The sealing plate 40 is assumed to be a rubber contact seal with a mandrel.

具体的に説明すると、反ファン側の密封板40の先端40tが接触する内輪24には、当該先端40tが一部入り込んで接触する環状のシール溝24gが設けられており、密封板40の先端は、ファン側の密封板30の先端30tと同一向きでシール溝24gに接触している。即ち、反ファン側の密封板40の先端40tは、ファン側の密封板30に対する空気(空気圧F)の作用方向とは反対向きにシール溝24gに接触している。なお、先端40tの形状は、ここにバネ性を持たせることができれば、シール溝24gに対して面当たり或いは凸当たり、線当たりとなる形状を適用することが可能である。   More specifically, the inner ring 24 with which the tip 40t of the sealing plate 40 on the anti-fan side contacts is provided with an annular seal groove 24g with which the tip 40t partially enters and comes into contact. Is in contact with the seal groove 24g in the same direction as the tip 30t of the fan-side sealing plate 30. That is, the tip 40t of the non-fan side sealing plate 40 is in contact with the seal groove 24g in the direction opposite to the direction of the action of air (air pressure F) on the fan side sealing plate 30. In addition, if the shape of the tip 40t can be made to have a spring property, it is possible to apply a shape that comes into contact with a surface, a bump, or a line with respect to the seal groove 24g.

この場合、ファン10(図1(a))を回転させてケーシング6a,6b内に空気を流通させると、ファン側の密封板30には、空気の空気圧Fがダイレクトに作用し、その先端30tが内輪24(シール溝24g)から離間する方向に移動することで、内輪24(シール溝24g)に対する接触圧が所定圧だけ減少する。また、ファン側の密封板30に作用した空気は、そのまま軸受の反対側に回り込み反ファン側の密封板40付近を負圧fに引きながら流通する。このとき、反ファン側の密封板40には、空気の負圧fが作用し、これにより、その先端40tが内輪24(シール溝24g)から離間する方向に移動することで、内輪24(シール溝24g)に対する接触圧が所定圧だけ減少する。   In this case, when the fan 10 (FIG. 1 (a)) is rotated to allow air to flow through the casings 6a and 6b, the air pressure F of the air acts directly on the fan-side sealing plate 30, and its tip 30t. Moves in a direction away from the inner ring 24 (seal groove 24g), the contact pressure against the inner ring 24 (seal groove 24g) decreases by a predetermined pressure. Further, the air acting on the fan-side sealing plate 30 circulates as it is to the opposite side of the bearing, and flows while pulling the vicinity of the anti-fan-side sealing plate 40 to the negative pressure f. At this time, negative pressure f of air acts on the sealing plate 40 on the side opposite to the fan, whereby the tip 40t moves in a direction away from the inner ring 24 (seal groove 24g), and thereby the inner ring 24 (seal The contact pressure against the groove 24g) is reduced by a predetermined pressure.

このような軸受12によれば、クリーナモータの駆動中にケーシング6a,6b内に流通した空気の空気圧Fにより、ファン側及び反ファン側の密封板30,40の先端30t,40tを共に内輪24(シール溝24g)から離間する方向に移動させることができる。これにより、軸受回転中において密封板30,40の先端30t,40tと内輪24(シール溝24g)との間の摩擦抵抗が小さくなり、軸受トルク(例えば、起動トルク、回転トルク)を低減することができる。この結果、モータの消費電流を低下させることができると共に、モータの回転効率を向上させることができるため、空気の吸い込み効率を向上させることができる。   According to such a bearing 12, the tips 30 t and 40 t of the fan-side and anti-fan-side sealing plates 30 and 40 are both connected to the inner ring 24 by the air pressure F of the air flowing into the casings 6 a and 6 b while the cleaner motor is driven. It can be moved away from the (seal groove 24g). This reduces the frictional resistance between the tips 30t, 40t of the sealing plates 30, 40 and the inner ring 24 (seal groove 24g) during bearing rotation, and reduces bearing torque (eg, starting torque, rotational torque). Can do. As a result, the current consumption of the motor can be reduced and the rotation efficiency of the motor can be improved, so that the air suction efficiency can be improved.

この場合、双方の密封板30,40の先端30t,40tはバネ性を持たせて構成されているため、当該先端30t,40tがシール溝24gから離間する方向に移動しても、シール溝24gに対する最適なシール接触圧(先端30t,40tがシール溝24gに接触する圧力)を維持することができる。このとき、軸受12内に流れ込む空気流量は、ゼロ或いは極微量であるため、ケーシング6a,6b内に流す空気の吸い込み効率を低下させることは無い。   In this case, since the tips 30t and 40t of both the sealing plates 30 and 40 are configured to have spring properties, even if the tips 30t and 40t move away from the seal groove 24g, the seal groove 24g It is possible to maintain the optimum seal contact pressure (pressure at which the tip 30t, 40t contacts the seal groove 24g). At this time, since the flow rate of air flowing into the bearing 12 is zero or extremely small, the suction efficiency of the air flowing into the casings 6a and 6b is not reduced.

次に、密封板30,40の耐圧性能について、図4(a)の軸受12(実施品1)と従来の軸受(従来品)と比較して考察する。
ここでは、従来品の軸受として、軸受両側に同一のシールド42を適用した従来品1(図5(a))、軸受両側に同一の接触シール44を適用した従来品2(図5(b))、ファン側に接触シール46を適用し且つ反ファン側にシールド48を適用した従来品3(図5(c))の3種類を用意する。なお、従来品2の接触シール44は、先端44tがシール溝24gに対して外側向きに凸当たりしている。また、従来品3において、ファン側の接触シール46は、先端46tが空気(空気圧F)の作用方向とは反対向きにシール溝24gに面当たりしている。
Next, the pressure resistance performance of the sealing plates 30 and 40 will be considered in comparison with the bearing 12 (implemented product 1) in FIG. 4A and the conventional bearing (conventional product).
Here, as a conventional bearing, the conventional product 1 (FIG. 5A) in which the same shield 42 is applied on both sides of the bearing, and the conventional product 2 in which the same contact seal 44 is applied on both sides of the bearing (FIG. 5B). 3), the conventional product 3 (FIG. 5C) in which the contact seal 46 is applied to the fan side and the shield 48 is applied to the non-fan side is prepared. The contact seal 44 of the conventional product 2 has a tip 44t that protrudes outwardly with respect to the seal groove 24g. Further, in the conventional product 3, the fan-side contact seal 46 has a tip 46t that contacts the seal groove 24g in the direction opposite to the direction of action of air (air pressure F).

そして、実施品1と従来品1,2,3に対して空気圧(負荷圧力F)を増加させながら作用させ、そのときのモータ消費電流と漏れ空気圧力(軸受内に空気が流入する圧力)とを測定した。なお、かかる測定において、実施品1と従来品1,2,3の軸受内径を共に8mmに設定した。
図6には、測定結果が示されており、点線で示す各グラフは負荷圧力に対するモータ消費電流の特性を示し、実線で示す各グラフは負荷圧力に対する漏れ空気圧力の特性を示している。
The product 1 and the conventional products 1, 2, and 3 are operated while increasing the air pressure (load pressure F), and the motor current consumption and the leakage air pressure (pressure at which air flows into the bearing) at that time Was measured. In this measurement, the bearing inner diameters of the product 1 and the conventional products 1, 2, and 3 were both set to 8 mm.
FIG. 6 shows the measurement results. Each graph shown by a dotted line shows the characteristic of the motor consumption current with respect to the load pressure, and each graph shown by a solid line shows the characteristic of the leakage air pressure with respect to the load pressure.

これによれば、従来品1は、非接触の密封板(シールド42)を適用しているため、モータ消費電流は低いが、漏れ空気圧力の特性が急峻に上昇することから耐圧性能が悪いことが分る。従来品2は、漏れ空気圧力の特性が一定であることから耐圧性能については従来品1よりも優れているが、反ファン側の接触シール44の先端44tが空気(空気圧f)の作用を直接受けてシール溝24gに強く圧接するため、軸受トルクが上昇しモータ消費電流を増加させてしまう。従来品3は、空気(空気圧F)の作用によりファン側の接触シール46の先端46tがシール溝24gから離間するため、軸受トルクが低減してモータの消費電流を低下させることはできるが、耐圧性能は15kPa辺りが限界となっている。   According to this, since the conventional product 1 uses a non-contact sealing plate (shield 42), the motor current consumption is low, but the pressure resistance performance is poor because the characteristics of the leakage air pressure rise sharply. I understand. The conventional product 2 is superior in pressure resistance performance to the conventional product 1 because the characteristics of the leaked air pressure are constant, but the tip 44t of the contact seal 44 on the anti-fan side directly acts on the action of air (air pressure f). Since it is strongly pressed against the seal groove 24g, the bearing torque increases and the motor current consumption increases. In the conventional product 3, the tip 46t of the fan-side contact seal 46 is separated from the seal groove 24g by the action of air (air pressure F), so that the bearing torque can be reduced and the motor current consumption can be reduced. The performance is limited to around 15 kPa.

これに対して実施品1(図4(a))は、図6の特性から明らかなように、空気圧(負荷圧力F)を増加させながら作用させても、そのときのモータ消費電流及び漏れ空気圧力を低く抑えることができる。この場合、漏れ空気圧力がゼロ以上になる負荷圧力について考察すると、耐圧性能が20kPaまで向上することが分る。また、実施品1(図4(a))について空気圧(負荷圧力)がゼロのときは、シール接触圧によりモータ消費電流は高いが、空気圧(負荷圧力F)が作用することでシール接触圧が低下し、これにより軸受トルクが低減され、その結果、モータの消費電流を低下させることができると共に、モータの回転効率を高めることができるため、空気の吸い込み効率を向上させることができる。   On the other hand, as is apparent from the characteristics of FIG. 6, the product 1 (FIG. 4 (a)) can be operated while increasing the air pressure (load pressure F). The pressure can be kept low. In this case, considering the load pressure at which the leakage air pressure becomes zero or more, it can be seen that the pressure resistance performance is improved to 20 kPa. In addition, when the air pressure (load pressure) is zero for the product 1 (Fig. 4 (a)), the motor current consumption is high due to the seal contact pressure, but the seal contact pressure is increased by the action of air pressure (load pressure F). As a result, the bearing torque is reduced. As a result, the current consumption of the motor can be reduced, and the rotational efficiency of the motor can be increased, so that the air suction efficiency can be improved.

また、上述した実施品1(図4(a))の構成に代えて、例えば図4(b)に示すような実施品2に係る軸受12としても実施品1と同様の効果(図6参照)を実現することができる。
図4(b)に示すように、実施品2の軸受12には、ファン側の密封板31としてシールドが適用されており、反ファン側の密封板40として心金入りのゴム製の接触シールが適用されている。この場合、ファン側の密封板31は、その基端(外径側)31eが一方の軌道輪(外輪26)に固定され、その先端(内径側)31tが他方の軌道輪(内輪24)に対して非接触状態(ラビリンスシールを形成した状態)で位置決めされている。なお、反ファン側の密封板40は実施品1(図4(a))と同様の構成であるため、その説明は省略する。
Further, instead of the configuration of the above-described embodiment product 1 (FIG. 4A), for example, the bearing 12 according to the embodiment product 2 as shown in FIG. ) Can be realized.
As shown in FIG. 4B, a shield is applied as a fan-side sealing plate 31 to the bearing 12 of the embodiment product 2, and a rubber contact seal with a mandrel is used as the anti-fan-side sealing plate 40. Has been applied. In this case, the fan-side sealing plate 31 has a base end (outer diameter side) 31e fixed to one of the race rings (outer ring 26) and a tip end (inner diameter side) 31t of the other race ring (inner ring 24). On the other hand, it is positioned in a non-contact state (a state in which a labyrinth seal is formed). Since the sealing plate 40 on the side opposite to the fan has the same configuration as that of the product 1 (FIG. 4A), the description thereof is omitted.

また、実施品2の軸受12には、保持器32として複数の転動体28を1つずつ回転自在に保持する複数のポケット32pが形成された樹脂製の冠型保持器32が設けられている。冠型保持器32の片面側には、各ポケット32pに転動体28を挿入するための複数の開口32aが形成されており、当該保持器32は、複数の開口32aが形成された片面側を反ファン側の密封板40に向けて配置されている。この場合、軸受12内には、当該軸受12の回転性能や潤滑性能を一定に維持するための潤滑剤(例えば、油、グリース)が封入されるが、当該潤滑剤の封入方向としては、保持器32の片面側(開口32a側)であって且つ反ファン側の密封板40と軌道輪(内外輪24,26)間との間で囲まれた領域12pに封入することが好ましい。   Further, the bearing 12 of the embodiment product 2 is provided with a resin crown-shaped cage 32 in which a plurality of pockets 32p for rotatably holding a plurality of rolling elements 28 one by one are formed as a cage 32. . A plurality of openings 32a for inserting the rolling elements 28 are formed in the respective pockets 32p on one side of the crown-shaped cage 32, and the cage 32 is arranged on one side where the plurality of openings 32a are formed. It is arranged toward the sealing plate 40 on the side opposite to the fan. In this case, the bearing 12 is filled with a lubricant (for example, oil, grease) for maintaining the rotational performance and lubrication performance of the bearing 12 at a constant level. It is preferable to enclose in a region 12p that is surrounded on one side (opening 32a side) of the vessel 32 and between the sealing plate 40 on the opposite fan side and between the race rings (inner and outer rings 24, 26).

このような実施品2の軸受12によれば、ケーシング6a,6b内を流通する空気の空気圧Fがファン側の密封板31に作用した際に、軸受12内の潤滑剤(領域12pに封入された潤滑剤)が反ファン側の密封板40を押圧fpし、その先端40tを内輪24のシール溝24gから離間する方向に移動させる。この場合、反ファン側の密封板40の先端40tは、当該密封板40に対する潤滑剤の押圧fp方向とは反対向きにシール溝24gに接触しているため、潤滑剤により密封板40が押圧fpされると、その先端40tは内輪24(シール溝24g)から離間する方向に移動する。また、ファン側の密封板30に作用した空気は、そのまま軸受の反対側に回り込み反ファン側の密封板40付近を負圧fに引きながら流通する。このとき、反ファン側の密封板40には、空気の負圧fが作用し、これにより、その先端40tが内輪24(シール溝24g)から離間する方向に移動する。   According to the bearing 12 of the embodiment 2 as described above, when the air pressure F of the air flowing through the casings 6a and 6b acts on the fan-side sealing plate 31, the lubricant in the bearing 12 (enclosed in the region 12p). The lubricant) presses the sealing plate 40 on the anti-fan side and moves the tip 40t away from the seal groove 24g of the inner ring 24. In this case, since the tip 40t of the sealing plate 40 on the anti-fan side is in contact with the seal groove 24g in the direction opposite to the pressing fp direction of the lubricant against the sealing plate 40, the sealing plate 40 is pressed fp by the lubricant. Then, the tip 40t moves in a direction away from the inner ring 24 (seal groove 24g). Further, the air acting on the fan-side sealing plate 30 circulates as it is to the opposite side of the bearing, and flows while pulling the vicinity of the anti-fan-side sealing plate 40 to the negative pressure f. At this time, the negative pressure f of air acts on the sealing plate 40 on the anti-fan side, whereby the tip 40t moves in a direction away from the inner ring 24 (seal groove 24g).

このとき、内輪24(シール溝24g)に対する密封板40の先端40tの接触圧が所定圧だけ減少するため、軸受回転中における密封板40の先端40tと内輪24(シール溝24g)との間の摩擦抵抗が小さくなる。この場合、ファン側の密封板31は内輪24に対して非接触となっており、内輪24との間の摩擦抵抗は生じない。また、ファン側の密封板31の先端31tと内輪24との間には、ラビリンスシールが形成されているため、漏れ空気圧力の上昇(耐圧性能の低下)を生じることは無い。   At this time, the contact pressure of the tip 40t of the sealing plate 40 with respect to the inner ring 24 (seal groove 24g) decreases by a predetermined pressure, and therefore, between the tip 40t of the seal plate 40 and the inner ring 24 (seal groove 24g) during bearing rotation. Frictional resistance is reduced. In this case, the fan-side sealing plate 31 is not in contact with the inner ring 24, and no frictional resistance with the inner ring 24 occurs. Further, since a labyrinth seal is formed between the tip 31t of the fan-side sealing plate 31 and the inner ring 24, there is no increase in leakage air pressure (decrease in pressure resistance).

これにより、実施品2の軸受12においても実施品1と同様に、軸受トルク(例えば、起動トルク、回転トルク)を低減することができる。この結果、モータの消費電流を低下させることができると共に、モータの回転効率を向上させることができるため、空気の吸い込み効率を向上させることができる。
ここで、実施品2の軸受12の耐圧性能について、上述した従来品1,2,3(図5)と比較して考察すると、実施品2(図4(b))は、図6の特性から明らかなように、空気圧(負荷圧力F)を増加させながら作用させても、そのときのモータ消費電流及び漏れ空気圧力を低く抑えることができる。この場合、漏れ空気圧力がゼロ以上になる負荷圧力について考察すると、10kPa〜15kPa程度の耐圧性能を維持できることが分る。なお、その他の効果は、実施品1(図4(a))と同様であるため、その説明は省略する。
Thereby, also in the bearing 12 of the implementation product 2, similarly to the implementation product 1, the bearing torque (for example, the starting torque and the rotation torque) can be reduced. As a result, the current consumption of the motor can be reduced and the rotation efficiency of the motor can be improved, so that the air suction efficiency can be improved.
Here, considering the pressure resistance performance of the bearing 12 of the embodiment product 2 in comparison with the above-described conventional products 1, 2, 3 (FIG. 5), the embodiment product 2 (FIG. 4B) has the characteristics shown in FIG. As can be seen from the above, even when the air pressure (load pressure F) is increased, the motor consumption current and the leakage air pressure at that time can be kept low. In this case, when considering the load pressure at which the leakage air pressure becomes zero or more, it is understood that the pressure resistance performance of about 10 kPa to 15 kPa can be maintained. The other effects are the same as those of the implementation product 1 (FIG. 4A), and the description thereof is omitted.

なお、実施品2の軸受12では、ファン側の密封板31の基端31eを外輪26に固定する場合を想定して説明したが、これとは逆に、基端31eを内輪24に固定し、先端31tを外輪26に対して非接触状態(ラビリンスシールを形成した状態)で位置決めするように構成しても同様の効果を実現することができる。また、実施品1及び実施品2の軸受12において(図4)、図面上では反ファン側の密封板40の基端40eを外輪26に固定した構成例を示したが、シール溝24gを外輪26に形成すると共に、当該密封板40の基端40eを内輪24に固定する構成でも同様の効果を実現することができる。更に、実施品1及び実施品2の軸受12において(図4)、ファン側の密封板30,31及び反ファン側の密封板40の基端30e,31e,40eを共に外輪26に固定する代わりに、いずれか一方側の密封板(例えば、ファン側の密封板30,31)の基端30e,31eを外輪に固定し、他方側(即ち、反ファン側の密封板40)の基端40eを内輪24に固定する構成でも同様の効果を実現することができる。   The bearing 12 of the embodiment 2 has been described assuming that the base end 31e of the fan-side sealing plate 31 is fixed to the outer ring 26. On the contrary, the base end 31e is fixed to the inner ring 24. Even if the tip 31t is positioned in a non-contact state (a state where a labyrinth seal is formed) with respect to the outer ring 26, the same effect can be realized. In the bearings 12 of the product 1 and the product 2 (FIG. 4), the configuration example in which the base end 40e of the sealing plate 40 on the anti-fan side is fixed to the outer ring 26 is shown in the drawing. The same effect can be achieved by a configuration in which the base end 40e of the sealing plate 40 is fixed to the inner ring 24. Further, in the bearing 12 of the working product 1 and the working product 2 (FIG. 4), instead of fixing the base ends 30e, 31e, 40e of the fan-side sealing plates 30, 31 and the non-fan-side sealing plate 40 to the outer ring 26 together. The base end 30e, 31e of one of the sealing plates (for example, the fan-side sealing plates 30, 31) is fixed to the outer ring, and the base end 40e of the other side (that is, the anti-fan-side sealing plate 40). A similar effect can be realized even in a configuration in which is fixed to the inner ring 24.

(a)は、クリーナモータの全体構成を概略的に示す断面図、(b)は、本発明の一実施の形態に係るクリーナモータ用軸受の構成例を示す部分断面図、(c)は、クリーナモータ用軸受の他の構成例を示す部分断面図、(d)は、クリーナモータ用軸受の更に他の構成例を示す部分断面図、(e)は、外輪肉厚タイプの軸受の構成例を示す部分断面図。(a) is a cross-sectional view schematically showing the overall configuration of the cleaner motor, (b) is a partial cross-sectional view showing a configuration example of a bearing for a cleaner motor according to an embodiment of the present invention, (c), Partial sectional view showing another configuration example of the cleaner motor bearing, (d) is a partial sectional view showing still another configuration example of the cleaner motor bearing, and (e) is a configuration example of the outer ring thick type bearing. FIG. クリーナモータ用軸受に既存の密封板を用いた場合の構成例を示す部分断面図であり、(a)は、シールドを適用した軸受の断面図、(b)は、空気流の下流側に向けて接触した接触シールを適用した軸受の断面図、(c)は、空気流の上流側に向けて接触した接触シールを適用した軸受の断面図。It is a fragmentary sectional view which shows the structural example at the time of using the existing sealing board for the bearing for cleaner motors, (a) is sectional drawing of the bearing which applied the shield, (b) is toward the downstream of an air flow. Sectional drawing of the bearing which applied the contact seal which contacted in this way, (c) is sectional drawing of the bearing which applied the contact seal contacted toward the upstream of the air flow. 密封板の負荷圧力とモータ消費電流及び漏れ空気圧力との関係を示す図。The figure which shows the relationship between the load pressure of a sealing board, motor consumption current, and leak air pressure. (a)は、空気の作用方向下流側(反ファン側)の密封板の構成例を加えたクリーナモータ用軸受の断面図、(b)は、ファン側の密封板を非接触タイプとして構成したクリーナモータ用軸受の断面図。(a) is a sectional view of a bearing for a cleaner motor to which a configuration example of a sealing plate on the downstream side (anti-fan side) of the air acting direction is added, and (b) is configured as a non-contact type fan-side sealing plate. Sectional drawing of the bearing for cleaner motors. 図4に示す密封板の耐圧性能を比較測定するための軸受の構成例を示す図であり、(a)は、シールドを適用した軸受の断面図、(b)は、接触シールを適用した軸受の断面図、(c)は、ファン側に接触シールを適用し且つ反ファン側にシールドを適用した軸受の断面図。It is a figure which shows the structural example of the bearing for comparing and measuring the pressure | voltage resistant performance of the sealing board shown in FIG. 4, (a) is sectional drawing of the bearing which applied the shield, (b) is a bearing which applied the contact seal. FIG. 6C is a cross-sectional view of a bearing in which a contact seal is applied to the fan side and a shield is applied to the anti-fan side. 図4及び図5に示す密封板の負荷圧力とモータ消費電流及び漏れ空気圧力との関係を示す図。The figure which shows the relationship between the load pressure of the sealing board shown in FIG.4 and FIG.5, motor consumption current, and leakage air pressure.

符号の説明Explanation of symbols

2 空気吸込口
4 空気排気口
6a,6b ケーシング
8 回転軸
10 ファン
12 軸受
30 ファン側の密封板
40 反ファン側の密封板
2 Air inlet 4 Air outlet
6a, 6b Casing 8 Rotating shaft 10 Fan 12 Bearing 30 Fan side sealing plate 40 Anti-fan side sealing plate

Claims (3)

空気吸込口及び空気排気口を有するケーシング内に設けられたモータと、モータの回転軸に取り付けられたファンと、回転軸を回転自在に支持する軸受とを具備し、ファンの回転により空気吸込口から吸い込んだ空気をケーシング内に流通させて空気排気口から排気するクリーナモータ用軸受であって、
軸受は、相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組込まれた複数の転動体と、軌道輪の両側において当該軌道輪間に介在させた環状の密封板とを備え、
双方の密封板は、その基端が一方の軌道輪に固定され、その先端が空気の作用方向とは反対向きの凸形状を成した状態で、かつ他方の軌道輪に対して所定の接触圧で接触した状態に位置決めされていると共に、ケーシング内を流通する空気の空気圧が密封板に作用した際に、密封板の先端が他方の軌道輪から離間する方向に移動することで、当該他方の軌道輪に対する密封板の接触圧を所定圧だけ減少させることを特徴とするクリーナモータ用軸受。
A motor provided in a casing having an air suction port and an air exhaust port, a fan attached to a rotation shaft of the motor, and a bearing that rotatably supports the rotation shaft, and the air suction port by rotation of the fan A cleaner motor bearing that circulates air sucked from the casing and exhausts it from the air exhaust port,
The bearing includes a bearing ring disposed so as to be relatively rotatable, a plurality of rolling elements that are rotatably incorporated between the bearing rings, and an annular sealing plate interposed between the bearing rings on both sides of the bearing ring. With
Both sealing plates have their base ends fixed to one of the race rings and their tips formed in a convex shape opposite to the direction of air action, and with a predetermined contact pressure against the other race ring. When the air pressure of the air flowing through the casing acts on the sealing plate, the tip of the sealing plate moves in a direction away from the other raceway, so that the other A cleaner motor bearing characterized in that the contact pressure of the sealing plate against the raceway is reduced by a predetermined pressure.
他方の軌道輪には、密封板の先端が一部入り込んで接触する環状のシール溝が設けられており、密封板の先端は、当該密封板に対する空気の作用方向とは反対向きにシール溝に接触していることを特徴とする請求項1に記載のクリーナモータ用軸受。   The other race ring is provided with an annular seal groove in which the tip of the sealing plate partially enters and contacts, and the tip of the sealing plate is formed in the seal groove in a direction opposite to the direction of the air acting on the sealing plate. The cleaner motor bearing according to claim 1, wherein the cleaner motor bearing is in contact with the cleaner motor. 軌道輪の両側に介在させた密封板のうち、反ファン側の密封板の先端は、ファン側の密封板の先端と同一向きでシール溝に接触していることを特徴とする請求項1又は2に記載のクリーナ用軸受。
Of the sealing plate interposed on either side of the bearing ring, the tip of the sealing plate of the anti-fan side claim 1 or, characterized in that in contact with the seal groove in the tip and the same direction of the sealing plate fan side 2. A cleaner bearing according to 2.
JP2005348670A 2005-05-13 2005-12-02 Cleaner motor bearings Expired - Fee Related JP4742834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348670A JP4742834B2 (en) 2005-05-13 2005-12-02 Cleaner motor bearings

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005141308 2005-05-13
JP2005141308 2005-05-13
JP2005205634 2005-07-14
JP2005205634 2005-07-14
JP2005348670A JP4742834B2 (en) 2005-05-13 2005-12-02 Cleaner motor bearings

Publications (2)

Publication Number Publication Date
JP2007046767A JP2007046767A (en) 2007-02-22
JP4742834B2 true JP4742834B2 (en) 2011-08-10

Family

ID=37849742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348670A Expired - Fee Related JP4742834B2 (en) 2005-05-13 2005-12-02 Cleaner motor bearings

Country Status (1)

Country Link
JP (1) JP4742834B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207757A (en) * 2011-03-30 2012-10-25 Keihin Corp Compressor
JP2013152017A (en) * 2011-12-27 2013-08-08 Nsk Ltd Cleaner motor bearing
JP6016230B2 (en) 2012-09-27 2016-10-26 澤藤電機株式会社 Generator
KR20160097280A (en) 2014-02-17 2016-08-17 닛본 세이고 가부시끼가이샤 Ball bearing with seal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123429U (en) * 1984-01-27 1985-08-20 光洋精工株式会社 Rolling bearing sealing device
JPH0214827U (en) * 1988-07-12 1990-01-30
JPH1193892A (en) * 1997-09-18 1999-04-06 Mitsubishi Electric Corp Motor-driven air blower

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123429A (en) * 1983-12-06 1985-07-02 Nichiden Kagaku Kk Substrate for pulverization of liquid substance
DE3815460A1 (en) * 1988-05-06 1989-11-16 Philips Patentverwaltung METHOD FOR PRODUCING A SUPRAL-CONDUCTING OXIDIC LAYER
JPH11299710A (en) * 1998-04-20 1999-11-02 Nippon Seiko Kk Cleaner motor
JP2004092785A (en) * 2002-08-30 2004-03-25 Nsk Ltd Sealing device for rolling bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123429U (en) * 1984-01-27 1985-08-20 光洋精工株式会社 Rolling bearing sealing device
JPH0214827U (en) * 1988-07-12 1990-01-30
JPH1193892A (en) * 1997-09-18 1999-04-06 Mitsubishi Electric Corp Motor-driven air blower

Also Published As

Publication number Publication date
JP2007046767A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP6444492B2 (en) Sliding parts
JP7139067B2 (en) sliding parts
JP7217232B2 (en) Vented bearing retainer for turbomachinery
CN101372981B (en) Heat radiation fan
JPWO2016186019A1 (en) Sliding parts
JP5577297B2 (en) Scroll type fluid machine
JP4742834B2 (en) Cleaner motor bearings
JP2013152017A (en) Cleaner motor bearing
EP0998640A1 (en) Unitary bearing seal
CN108087556B (en) Box type sealing structure
JP4647489B2 (en) Air supply device
JP3912926B2 (en) Floating machine floating seal
CN103115072A (en) Seal structure of oil-lubricated bearing
JP5865960B2 (en) Compressor
JP2017115904A (en) Rolling bearing
JP2002089576A (en) Shaft sealing device
JP2003247556A (en) Multi-point contact ball bearing and pulley for automobiles
JP2017115902A (en) Rolling bearing
JP2016148399A (en) Bearing for cleaner motor
JP2020094557A (en) Fluid machine
JP2004239293A (en) Sealed ball bearing, compressor, and blower
CN218913497U (en) Wear-resisting type pivot of long-life
US3834773A (en) Unit bearing motor
CN210957991U (en) Motor front bearing dustproof construction
CN218817625U (en) Portable fan and bearing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees