JPWO2015121920A1 - Poppet valve - Google Patents

Poppet valve Download PDF

Info

Publication number
JPWO2015121920A1
JPWO2015121920A1 JP2015562583A JP2015562583A JPWO2015121920A1 JP WO2015121920 A1 JPWO2015121920 A1 JP WO2015121920A1 JP 2015562583 A JP2015562583 A JP 2015562583A JP 2015562583 A JP2015562583 A JP 2015562583A JP WO2015121920 A1 JPWO2015121920 A1 JP WO2015121920A1
Authority
JP
Japan
Prior art keywords
heat
poppet valve
umbrella
metal layer
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015562583A
Other languages
Japanese (ja)
Inventor
一憲 倉橋
一憲 倉橋
佳弘 高橋
佳弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittan Valve Co Ltd
Original Assignee
Nittan Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittan Valve Co Ltd filed Critical Nittan Valve Co Ltd
Publication of JPWO2015121920A1 publication Critical patent/JPWO2015121920A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group

Abstract

伝熱の3 形態のすべてを遮断して、最大の燃焼効率を達成出来るポペットバルブを提供する。軸部(12)の一端側に傘部(14)を一体的に形成したポペットバルブにおいて、前記傘部(14)内には、傘表(24)に沿って延在する中空部(19)が形成され、該中空部(19)の天井面(25)に輻射熱を遮断する金属層(17)が形成され、前記金属層(17)と前記中空部(19)の底面間に断熱部が形成されている。前記断熱部により、伝熱形態のうちの伝導および対流が、前記金属層(17)により輻射が遮断される。Providing a poppet valve that can block all three forms of heat transfer and achieve maximum combustion efficiency. In the poppet valve integrally formed with the umbrella portion (14) on one end side of the shaft portion (12), the umbrella portion (14) has a hollow portion (19) extending along the umbrella surface (24). A metal layer (17) that blocks radiant heat is formed on the ceiling surface (25) of the hollow portion (19), and a heat insulating portion is provided between the metal layer (17) and the bottom surface of the hollow portion (19). Is formed. The heat insulation portion blocks conduction and convection in the heat transfer form by the metal layer (17).

Description

本発明は、燃焼室からの伝熱、特に輻射による熱の散逸を抑制するようにしたポペットバルブに関する。  The present invention relates to a poppet valve that suppresses heat transfer from a combustion chamber, particularly heat dissipation due to radiation.

特許文献1には、軸端部に傘部を一体的に形成したポペットバルブが記載されている。内燃機関で使用されるポペットバルブは、吸気路又は排気路が接続されるシリンダヘッドの弁座に着座して前記吸気路又は排気路を開閉させてエンジンを駆動させている。  Patent Document 1 describes a poppet valve in which an umbrella portion is integrally formed at a shaft end portion. A poppet valve used in an internal combustion engine is seated on a valve seat of a cylinder head to which an intake passage or an exhaust passage is connected, and drives the engine by opening and closing the intake passage or the exhaust passage.

通常、内燃機関は、燃焼室内で生じたエネルギーの損失が少ないほど燃焼効率は向上する。エネルギーの損失としては熱が外部へ飛散することによる冷却損失などがある。前記燃焼室の熱は前記ポペットバルブや燃焼室内壁を介して外部に散逸することが多い。そのため、前記燃焼室に接触するポペットバルブの傘表にあるいはその近傍に、空間を形成して、この空間を真空にしたり、不活性ガスを充填したり、あるいは前記ポペットバルブを構成する材料より熱伝導度の小さい材料を充填して、断熱空間を形成し、燃焼室内の熱の散逸を抑制している(特許文献1参照)。  Normally, the combustion efficiency of an internal combustion engine improves as the loss of energy generated in the combustion chamber decreases. The energy loss includes a cooling loss due to heat scattered outside. The heat in the combustion chamber is often dissipated to the outside through the poppet valve and the combustion chamber wall. Therefore, a space is formed on or near the umbrella surface of the poppet valve that contacts the combustion chamber, and the space is evacuated, filled with an inert gas, or heated by the material constituting the poppet valve. A material with low conductivity is filled to form an adiabatic space to suppress heat dissipation in the combustion chamber (see Patent Document 1).

熱が伝達される(伝熱)態様には、熱伝導、対流および輻射(熱放射)の3種類がある。熱伝導は、物体が移動せず直接触れ合うことにより、対流は流体の流れを媒介させることにより間接的に熱を伝え、どちらも熱は熱振動のまま伝わって行く。これに対し輻射は、輸送元の物体が電磁波を放出し、輸送先の物体がそれを吸収することによって熱が運ばれる。輻射の場合、二つの物体のあいだに媒介する物質がなく、真空であったとしても熱が伝達される。  There are three types of heat transfer (heat transfer) modes: heat conduction, convection, and radiation (heat radiation). In heat conduction, when an object does not move but directly touches, convection transfers heat indirectly by mediating the flow of fluid, and in both cases, heat is transferred as thermal vibration. On the other hand, in the radiation, heat is carried by the object at the transportation source emitting electromagnetic waves and the object at the transportation destination absorbing it. In the case of radiation, there is no intermediary between the two objects, and heat is transferred even in a vacuum.

エンジンの燃焼室からポペットバルブへの伝熱も、熱伝導、対流および輻射の3種類の態様により生ずる。前述した特許文献1では、バルブヘッド面に凹部を形成し、この凹部に断熱性の多孔材を充填して、燃焼室からの熱放散を抑制している。この多孔材の材料としてはステンレス鋼等の耐熱金属製の不織布(段落0036)が例示されている。しかし通常の断熱材料では、前記3態様の伝熱のうち、熱伝導、対流による伝熱は遮断できても、輻射熱は透過してしまい、その分の燃焼室内の温度低下は回避できない。特許文献1には輻射に関する記載は一切なく、輻射熱を遮断することは発想されていない。  Heat transfer from the engine combustion chamber to the poppet valve also occurs in three ways: heat conduction, convection and radiation. In Patent Document 1 described above, a concave portion is formed on the valve head surface, and the concave portion is filled with a heat insulating porous material to suppress heat dissipation from the combustion chamber. Examples of the material of the porous material include a nonwoven fabric (paragraph 0036) made of a heat-resistant metal such as stainless steel. However, in a normal heat insulating material, even though heat transfer by heat conduction and convection can be interrupted among the heat transfer of the above three modes, the radiant heat is transmitted and the temperature drop in the combustion chamber cannot be avoided. Patent Document 1 has no description about radiation and does not conceive of blocking radiant heat.

特許文献2には、エンジンの燃焼室の内壁に、セラミックスにより形成された断熱多孔質層とセラミックスにより形成された表面緻密層の断熱材を被覆している(段落0023)。そして燃料の燃焼時に表面緻密層により輻射熱を反射することが開示されている(段落0024)。  In Patent Document 2, the inner wall of the combustion chamber of the engine is covered with a heat insulating porous layer made of ceramics and a surface dense layer made of ceramics (paragraph 0023). It is disclosed that radiant heat is reflected by the surface dense layer during fuel combustion (paragraph 0024).

特開2012−72748JP2012-72748 WO 2013/080389A1WO 2013 / 080389A1

http://www.landinst.jp/info/faq/faq3.htmlhttp://www.landinst.jp/info/faq/faq3.html http://www.fintech.co.jp/etc-data/housharitsu.htmhttp://www.fintech.co.jp/etc-data/housharitsu.htm

発明者の検討によると、特許文献1の記載の粗面状の不織布では輻射を含めた熱の反射は殆ど起こらず、また特許文献2記載のセラミックスは、特許文献2の記載に反して、輻射熱の十分な反射は起こらないことが明らかになった。例えば非特許文献1および特許文献2には、金属やセラミックス等による電磁波の放射率が記載され、放射率は、(放射率=1−反射率−透過率)で定義されている。したがって放射率が低ければ反射率は高くなるが、セラミックスの放射率は0.4から0.95とかなり高く、そのため反射率はかなり低くなり、電磁波の反射効率は十分でないことが分かる。アルミニウムや銅の放射率は0.05から0.09で、反射率はかなり高くなる。金属による反射は、自由電子による働きが大きく、電磁波を自由電子の集団振動により反射するため、反射効果が高く、また前述の反射には指向性を有している。しかしながらアルミニウムや銅の金属は、高温耐性に欠け、燃焼ガス温度が2000℃から2500℃に達するエンジンでは使用できないことは明らかである。  According to the inventors' investigation, the rough nonwoven fabric described in Patent Document 1 hardly reflects heat including radiation, and the ceramic described in Patent Document 2 is radiant heat contrary to the description in Patent Document 2. It has become clear that there is no sufficient reflection. For example, Non-Patent Document 1 and Patent Document 2 describe the emissivity of electromagnetic waves from metals, ceramics, etc., and the emissivity is defined by (emissivity = 1-reflectance-transmittance). Therefore, the reflectance is high when the emissivity is low, but the emissivity of ceramics is considerably high from 0.4 to 0.95. Therefore, it can be seen that the reflectance is quite low and the reflection efficiency of electromagnetic waves is not sufficient. The emissivity of aluminum and copper is 0.05 to 0.09, and the reflectivity is considerably high. The reflection by metal is largely due to free electrons, and since the electromagnetic waves are reflected by collective vibration of free electrons, the reflection effect is high, and the above-mentioned reflection has directivity. However, it is clear that aluminum and copper metals lack high temperature resistance and cannot be used in engines where the combustion gas temperature reaches 2000 ° C to 2500 ° C.

また、特許文献2では、燃焼室側の最表層部に輻射熱反射機構を有している為、材料に要求される耐熱温度が高く、適用可能な材料が限られることや、燃焼残渣物の付着や酸化層が発生することにより、反射機能が劣化する。したがって、セラミックを特許文献1のポペットバルブのバルブヘッド面に適用しても、輻射熱の反射による熱放散の抑制には繋がらない。  Moreover, in patent document 2, since it has a radiant heat reflection mechanism in the outermost layer part by the side of a combustion chamber, the heat-resistant temperature requested | required of material is high, applicable material is restricted, and adhesion of combustion residue As a result of the generation of the oxide layer, the reflection function deteriorates. Therefore, even if ceramic is applied to the valve head surface of the poppet valve of Patent Document 1, it does not lead to suppression of heat dissipation due to reflection of radiant heat.

本発明は、先行文献に対する発明者の前記した知見に基づいてなされたもので、その目的は、ポペットバルブの燃焼室からの輻射熱を該燃焼室方向に反射させて、輻射による熱放散を抑制して、長期間、安定して燃焼効率を高く維持できるポペットバルブを提供することにある。  The present invention has been made on the basis of the above-mentioned knowledge of the inventor with respect to the prior art, and its purpose is to reflect the radiant heat from the combustion chamber of the poppet valve toward the combustion chamber, thereby suppressing heat dissipation due to radiation. Therefore, an object of the present invention is to provide a poppet valve that can stably maintain a high combustion efficiency for a long period of time.

前記目的を達成するために、本発明(請求項1)に係るポペットバルブにおいては、軸部の一端側に傘部を一体的に形成したポペットバルブにおいて、前記傘部に、燃焼室側に位置する断熱部と、軸部側に位置する輻射熱を遮断する金属層が形成されるように構成した。  In order to achieve the above object, in the poppet valve according to the present invention (Claim 1), in the poppet valve in which the umbrella portion is integrally formed on one end side of the shaft portion, the umbrella portion is positioned on the combustion chamber side. The heat insulation part to perform and the metal layer which interrupts | blocks the radiant heat located in the axial part side were comprised.

(作用)このような構成から成るポペットバルブを、エンジンバルブとして使用すると、燃焼室での燃料燃焼により発生する燃焼炎及び燃焼による燃焼ガスの熱は、熱伝導、対流および輻射の形態で、燃焼室からポペットバルブ方向に伝達される。前記燃焼ガスの熱は、バルブ本体の傘部のバルブヘッドの燃焼室側に断熱空間や該断熱空間に断熱材料が充填された断熱領域(断熱部)で、熱伝導および対流による熱が遮断される。熱が電磁波として運ばれる輻射熱は、断熱領域を通過し、光沢を有する金属に接触する。  (Operation) When the poppet valve having such a configuration is used as an engine valve, the combustion flame generated by the fuel combustion in the combustion chamber and the heat of the combustion gas by the combustion are combusted in the form of heat conduction, convection and radiation. It is transmitted from the chamber toward the poppet valve. The heat of the combustion gas is cut off from heat conduction and convection heat in a heat insulating space (heat insulating portion) filled with a heat insulating material in the heat insulating space on the combustion chamber side of the valve head of the valve head umbrella portion. The Radiant heat, in which heat is carried as electromagnetic waves, passes through the heat insulating region and comes into contact with a glossy metal.

熱伝導および対流による熱が前記断熱部で遮断され、前記金属に達しないため、該金属に接触する燃焼ガスの温度は大きく減少し、高温耐性に欠ける金属であっても、劣化することなく輻射熱を燃焼室方向に反射でき、かつバルブ本体を透過して放散することがなく、輻射熱を燃焼室内に留めることにより、バルブによる燃焼ガスの熱の冷却を防ぐことで燃焼効率の向上が可能となる。特に前記金属は断熱部を介した燃焼ガスの熱、言い換えると断熱部では遮断できない輻射を主とした熱を受けて、燃焼ガスの熱を前記金属に直接伝達させないため、耐熱温度が低い材料でも選択可能である。また、バルブ内部に輻射熱反射機構を有することで、燃焼残渣物の付着などの汚れや酸化層の発生による反射能力の低下を防ぐことが出来る。なお、本発明の金属には、金属合金も含まれる。  Since heat due to heat conduction and convection is blocked by the heat insulating part and does not reach the metal, the temperature of the combustion gas in contact with the metal is greatly reduced, and even if the metal lacks high temperature resistance, radiation heat does not deteriorate. It is possible to improve the combustion efficiency by preventing the cooling of the heat of the combustion gas by the valve by keeping the radiant heat in the combustion chamber without passing through the valve body and diffusing it. . In particular, the metal receives heat mainly from the combustion gas through the heat insulating part, in other words, radiation that cannot be blocked by the heat insulating part, and does not directly transfer the heat of the combustion gas to the metal. Selectable. In addition, by having a radiant heat reflection mechanism inside the bulb, it is possible to prevent a reduction in reflection ability due to contamination such as adhesion of combustion residues and generation of an oxide layer. The metal of the present invention includes a metal alloy.

本発明の金属層は、輻射熱遮断性を有する必要がある。輻射熱遮断性を有する金属は、通常光沢面や鏡面を有するが、該光沢面や鏡面を有しなくても、輻射熱遮断性を有していれば、本発明の金属として使用できる。輻射熱遮断性を有していない金属の場合は、表面を光沢仕上げや鏡面仕上げを行って、輻射熱遮断性を付与して本発明の金属として使用できる。特に燃焼室内で発生する燃焼ガスの温度を2500℃とすると、その燃焼ガスの熱による放射の波長はウィーンの変位則より波長が1.0μm(1500℃での波長は1.6μm)であり、金属は前記波長域での反射率が高いため、輻射熱遮断特性が高くなる。よって、本発明で使用できる金属は、セラミックス等よりかなり大きい輻射熱遮断性を有している。  The metal layer of the present invention needs to have a radiation heat shielding property. A metal having a radiant heat blocking property usually has a glossy surface or a mirror surface, but even if it does not have the glossy surface or mirror surface, it can be used as the metal of the present invention as long as it has a radiant heat blocking property. In the case of a metal that does not have radiant heat shielding properties, the surface can be polished or mirror-finished to impart radiant heat shielding properties and used as the metal of the present invention. In particular, if the temperature of the combustion gas generated in the combustion chamber is 2500 ° C, the wavelength of radiation due to the heat of the combustion gas is 1.0 μm (the wavelength at 1500 ° C is 1.6 μm) from the Viennese displacement law. Since the reflectance in the wavelength region is high, the radiant heat blocking characteristic is enhanced. Therefore, the metal that can be used in the present invention has a radiation heat shielding property that is considerably larger than that of ceramics or the like.

請求項2においては、請求項1に記載のポペットバルブにおいて、前記傘部内には、傘表に沿って延在する中空部が形成され、該中空部の天井面に輻射熱を遮断する金属層が形成され、前記金属層と前記中空部の底面間に断熱部が形成されるように構成した。  In the poppet valve according to claim 1, in the poppet valve according to claim 1, a hollow portion extending along the surface of the umbrella is formed in the umbrella portion, and a metal layer that blocks radiant heat is formed on a ceiling surface of the hollow portion. The heat insulating part is formed between the metal layer and the bottom surface of the hollow part.

(作用)このような構成から成るポペットバルブでは、中空部には、ガスや低熱伝導材料の断熱材が充填され、あるいは前記中空部が真空に維持されている。中空部の条件を適宜選択することにより、最適の熱遮断効果が得られる。  (Operation) In the poppet valve having such a configuration, the hollow portion is filled with a heat insulating material such as gas or a low heat conductive material, or the hollow portion is maintained in a vacuum. The optimum heat shielding effect can be obtained by appropriately selecting the conditions of the hollow portion.

請求項3においては、請求項1に記載のポペットバルブにおいて、前記傘部の底面に、輻射熱を遮断する金属層が形成され、該輻射熱を遮断する金属層の燃焼室側に断熱性の表面処理層が形成されるよう構成した。  According to a third aspect of the present invention, in the poppet valve according to the first aspect, a metal layer that blocks radiant heat is formed on the bottom surface of the umbrella portion, and a heat-insulating surface treatment is performed on the combustion chamber side of the metal layer that blocks the radiant heat. A layer was formed to form.

(作用)このような構成から成るポペットバルブでは、中空部を形成しないため、バルブの製造性を向上することが出来る。  (Operation) Since the poppet valve having such a configuration does not form a hollow portion, the manufacturability of the valve can be improved.

請求項4においては、請求項1に記載のポペットバルブにおいて、金属が、アルミニウム、銅およびアルミニウム合金から選択されるよう構成した。アルミニウム合金を構成するアルミニウム以外の金属としては、銅、マンガン、ケイ素、マグネシウム、亜鉛およびニッケルなどがある。  According to a fourth aspect of the present invention, in the poppet valve according to the first aspect, the metal is selected from aluminum, copper and an aluminum alloy. Examples of the metal other than aluminum constituting the aluminum alloy include copper, manganese, silicon, magnesium, zinc, and nickel.

(作用)アルミニウムや銅は比較的軽量で、輻射熱反射効率が高いため、好適な材料である。アルミニウム合金も輻射熱反射能を有し、燃費向上が達成できる。  (Operation) Aluminum and copper are suitable materials because they are relatively light and have high radiant heat reflection efficiency. Aluminum alloy also has radiant heat reflectivity and can achieve improved fuel efficiency.

請求項5においては、請求項1または2に記載のポペットバルブにおいて、金属が、箔状またはシート状であるように構成している。アルミニウム箔や銅箔は、通常それら自身が光沢を有し、そのままバルブヘッドの燃焼室側に、断熱領域を介して貼着等することにより、輻射熱反射による熱の外部への飛散を防ぐことが出来、かつ燃焼効率向上に伴う燃費向上に寄与できる。また前記金属をシート状に成形する場合も同様に、所定箇所に位置させて使用することで輻射熱を反射することができる。  According to a fifth aspect, in the poppet valve according to the first or second aspect, the metal is configured in a foil shape or a sheet shape. Aluminum foil and copper foil are usually glossy themselves, and sticking to the combustion chamber side of the valve head directly through a heat insulating region can prevent the heat from scattering to the outside due to radiant heat reflection. And can contribute to the improvement of fuel efficiency accompanying the improvement of combustion efficiency. Similarly, when the metal is formed into a sheet shape, the radiant heat can be reflected by using it in a predetermined position.

請求項6においては、請求項1に記載のポペットバルブにおいて、金属層が、物理蒸着(PVD),溶射およびメッキから選択される表面処理にて形成された皮膜であるように構成した。本発明の金属層は、既存の箔やシートとしても良いが、前記表面処理により、金属層を形成しても良く、このような表面処理によると、輻射熱遮断性の高い金属層が形成できる。  According to a sixth aspect of the present invention, in the poppet valve according to the first aspect, the metal layer is a film formed by a surface treatment selected from physical vapor deposition (PVD), thermal spraying and plating. The metal layer of the present invention may be an existing foil or sheet, but the metal layer may be formed by the surface treatment. According to such a surface treatment, a metal layer having a high radiant heat blocking property can be formed.

本発明に係るポペットバルブによれば、燃焼室内の燃焼炎及び燃焼ガスの熱の熱伝導、対流および輻射のすべての形態の熱伝達を効果的に遮断して、燃焼室内で発生した熱が外部へ飛散することを防ぐことで、冷却による燃焼効率の損失を軽減することができる。輻射熱遮断性の高い金属層を形成する金属の高温耐性が十分でなくても、燃焼ガスの熱のうち、熱伝導および対流に起因する熱が断熱部で除去されて、輻射に起因する熱のみが前記金属層に達するため、金属劣化が生じることは殆どない。  According to the poppet valve according to the present invention, heat generated in the combustion chamber is effectively blocked by effectively interrupting all forms of heat conduction, convection and radiation of the heat of the combustion flame and combustion gas in the combustion chamber. By preventing scattering, the loss of combustion efficiency due to cooling can be reduced. Even if the metal that forms the metal layer with high radiant heat blocking properties is not sufficiently resistant to high temperatures, only the heat caused by radiation is removed from the heat of the combustion gas due to heat conduction and convection at the heat insulating part. Reaches the metal layer, so that metal degradation hardly occurs.

本発明の第1の実施例であるポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the poppet valve which is the 1st Example of this invention. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 本発明の第2の実施例であるポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the poppet valve which is the 2nd Example of this invention. 本発明の第3の実施例であるポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the poppet valve which is the 3rd Example of this invention.

次に、本発明の実施の形態を実施例に基づいて説明する。  Next, embodiments of the present invention will be described based on examples.

図1および図2は、本発明の第1の実施例である内燃機関用の中空ポペットバルブを示す。  1 and 2 show a hollow poppet valve for an internal combustion engine according to a first embodiment of the present invention.

図1において、符号10は、真っ直ぐに延びるバルブ軸部12の一端側に、外径が徐々に大きくなるR形状のフィレット部13を介して、バルブ傘部14が一体的に形成された耐熱合金製のポペットバルブで、バルブ傘部14の外周には、テーパ形状のフェース部16が設けられている。軸部12の一端側には傘部外殻14aが一体的に形成されて、シェル11が構成される。  In FIG. 1, reference numeral 10 denotes a heat-resistant alloy in which a valve umbrella portion 14 is integrally formed on one end side of a valve shaft portion 12 that extends straight through an R-shaped fillet portion 13 that gradually increases in outer diameter. A tapered face portion 16 is provided on the outer periphery of the valve umbrella portion 14 in the made poppet valve. An umbrella outer shell 14 a is integrally formed on one end side of the shaft portion 12 to constitute the shell 11.

バルブ傘部14の傘表24側の天井面14bには、好ましくは鏡面が形成された箔状またはシート状の金属から成る輻射熱反射面(輻射熱を遮断する金属層)17が溶射等により形成されかつ接合されるか、シート状に成形された金属を溶着等の手法で接合されている。使用可能な金属としては、アルミニウムや銅があり、さらにこれらの金属、特にアルミニウムの合金が含まれる。  On the ceiling surface 14b of the valve umbrella portion 14 on the umbrella surface 24 side, a radiant heat reflecting surface (a metal layer that blocks radiant heat) 17 made of foil-like or sheet-like metal, preferably having a mirror surface, is formed by thermal spraying or the like. And it joins by the method of welding etc., or the metal shape | molded by the sheet form is joined. Usable metals include aluminum and copper, and further include alloys of these metals, particularly aluminum.

通常、箔状の金属は鏡面を有し輻射熱遮断性を有するため、そのまま使用すれば良いが、シート状又は表面処理により形成された金属は十分な輻射熱遮断性を有しないことがある。その際には表面に光沢を有するように処理を行って輻射熱遮断性を高めることが必要になる。金属の光沢処理の一例として金属表面の研磨がある。  Usually, a foil-like metal has a mirror surface and has a radiant heat blocking property, and thus may be used as it is. However, a metal formed by sheet or surface treatment may not have a sufficient radiant heat blocking property. In that case, it is necessary to improve the radiation heat blocking property by performing a treatment so that the surface is glossy. An example of metal gloss treatment is polishing of the metal surface.

次いで、輻射熱反射面17が形成された前記バルブ傘部14の天井面14bにキャップ18を装着する。このキャップ18は、周縁部を上向きに折曲して成る上向き折曲部18aを有する円板形状を有し、さらに内方の上面には、ドーナツ状の円環を4個に等分した円弧状リブ18bが一体成型または溶接により形成されている。このキャップ18の前記上向き折曲部18aを、前記バルブ傘部14の天井面14bに溶接等で固定すると、前記各リブ18bは、前記輻射熱反射面17を介して、前記バルブ傘部14の天井面14bを支持する。前記キャップ18の上面とバルブ傘部14の天井面14b間には中空部19が形成される。形成された空間内を真空とすることで燃焼室側からの熱の伝導を断熱し、断熱空間として機能する。また、この空間に空気又はアルゴン等のガスを充填することでも断熱空間として機能する。図1の場合、前記キャップ18の上面が、前記中空部の底面25となる。  Next, the cap 18 is attached to the ceiling surface 14b of the valve umbrella portion 14 on which the radiant heat reflecting surface 17 is formed. The cap 18 has a disk shape having an upward bent portion 18a formed by bending the peripheral edge upward, and a circular donut-shaped ring equally divided into four on the inner upper surface. The arc-shaped rib 18b is formed by integral molding or welding. When the upward bent portion 18 a of the cap 18 is fixed to the ceiling surface 14 b of the valve umbrella portion 14 by welding or the like, the ribs 18 b are connected to the ceiling of the valve umbrella portion 14 via the radiant heat reflecting surface 17. The surface 14b is supported. A hollow portion 19 is formed between the upper surface of the cap 18 and the ceiling surface 14 b of the valve umbrella portion 14. By forming a vacuum in the formed space, heat conduction from the combustion chamber side is insulated and functions as a heat insulation space. Moreover, it fills in this space with gas, such as air or argon, and functions as a heat insulation space. In the case of FIG. 1, the upper surface of the cap 18 becomes the bottom surface 25 of the hollow portion.

なお、図1における符号2はシリンダヘッド、符号6は燃焼室4から延びる排気通路で、排気通路6の燃焼室4への開口周縁部には、バルブ10のフェース部16が当接できるテーパを備えた円環状のバルブシート8が設けられている。符号3はシリンダヘッド2に設けられたバルブ挿通孔で、バルブ挿通孔3は、バルブ10の軸部12が摺接する円筒形状のバルブガイド3aで構成されている。符号9は、バルブ10を閉弁方向(図1の上方向)に付勢するバルブスプリング、符号12cは、バルブ軸部12の端部に設けられたコッタ溝である。軸部12には縦方向の中空部21が形成され、該中空部21は、前記中空部(断熱部)19と前記軸端部材12bの下面を連通させている。  In FIG. 1, reference numeral 2 denotes a cylinder head, and reference numeral 6 denotes an exhaust passage extending from the combustion chamber 4. The opening peripheral edge of the exhaust passage 6 to the combustion chamber 4 has a taper with which the face portion 16 of the valve 10 can abut. An annular valve seat 8 provided is provided. Reference numeral 3 denotes a valve insertion hole provided in the cylinder head 2, and the valve insertion hole 3 includes a cylindrical valve guide 3 a with which the shaft portion 12 of the valve 10 is slidably contacted. Reference numeral 9 is a valve spring that urges the valve 10 in the valve closing direction (upward in FIG. 1), and reference numeral 12 c is a cotter groove provided at the end of the valve shaft 12. A vertical hollow portion 21 is formed in the shaft portion 12, and the hollow portion 21 communicates the hollow portion (heat insulating portion) 19 with the lower surface of the shaft end member 12b.

また、燃焼室4や排気通路6の高温ガスにさらされる部位である、シェル11およびキャップ18は、耐熱鋼で構成されているのに対し、機械的強度が要求されるものの、シェル11およびキャップ18ほどの耐熱性が要求されない軸端部材12bは、一般的な鋼材で構成されている。  The shell 11 and the cap 18 that are exposed to the high-temperature gas in the combustion chamber 4 and the exhaust passage 6 are made of heat-resistant steel. The shaft end member 12b that does not require as much heat resistance as 18 is made of a general steel material.

このように構成された中空ポペットバルブ10の燃焼室4で燃料が燃焼すると、高温の燃焼ガスの熱が発生し、この燃焼ガスの熱は前記ポペットバルブ10のキャップ18を通って、前記中空部(断熱部)19に達する。燃焼ガスの熱の熱伝達態様である熱伝導、対流および輻射のうち、熱伝導および対流は、この断熱部19で遮断され、燃焼ガスの熱が前記輻射熱反射面17からバルブ傘部14方向に伝達されない。燃焼ガスの熱中の輻射熱は、アルミニウム製等の輻射熱反射面17で反射し、キャップ18を通って、燃焼室4内に戻る。したがって、本実施例のポペットバルブ10では、燃焼ガスの熱の熱伝達態様である熱伝導、対流および輻射が抑制され、燃料の燃焼によって発生するエネルギーが熱としてバルブ本体を介して外部に奪われる量が少なくなる(冷却損失が小さくなる)。  When fuel burns in the combustion chamber 4 of the hollow poppet valve 10 configured in this way, heat of high-temperature combustion gas is generated, and the heat of this combustion gas passes through the cap 18 of the poppet valve 10 and the hollow portion. (Insulation part) 19 is reached. Of the heat conduction, convection and radiation, which is the heat transfer mode of the combustion gas heat, the heat conduction and convection are blocked by the heat insulating portion 19, and the heat of the combustion gas is directed from the radiant heat reflecting surface 17 toward the valve umbrella portion 14. Not transmitted. Radiant heat in the heat of the combustion gas is reflected by the radiant heat reflecting surface 17 made of aluminum or the like, passes through the cap 18, and returns to the combustion chamber 4. Therefore, in the poppet valve 10 of the present embodiment, heat conduction, convection, and radiation, which are heat transfer modes of the combustion gas heat, are suppressed, and energy generated by the combustion of the fuel is taken outside through the valve body as heat. The amount is reduced (cooling loss is reduced).

本実施例では、輻射熱反射面の材料としてアルミニウム、銅あるいはアルミニウム合金が使用可能であり、特許文献2記載のセラミックスとは異なり、輻射熱の多くを反射して、燃焼室内に戻せることが明らかになった。  In the present embodiment, aluminum, copper, or an aluminum alloy can be used as the material for the radiant heat reflecting surface. Unlike ceramics described in Patent Document 2, it is clear that most of the radiant heat can be reflected and returned to the combustion chamber. It was.

図3は、本発明の第2の実施例である内燃機関用のポペットバルブを示す。第2の実施例の中空ポペットバルブ10Aは、前記第1の実施例の変形例で、第1の実施例と同一部材には同一符号を付して説明を省略する。第2の実施例では、天井面14b’と円盤状のキャップ18’の底面25’間に球面状(ドーム状)空間である中空部19’が形成され、この中空部19’の下端周縁を除く内周面に輻射熱反射面17’が被覆形成され、前記中空部19’下端には、前記円盤状のキャップ18’が嵌合されている。軸部12内の前記輻射熱反射面17’のやや上から上方に向けて小径中空部Sが形成され、この小径中空部S内には、エンジンバルブの母材よりも熱伝導率の高い冷却材23(例えば、金属ナトリウム、融点約98℃)が不活性ガスとともに装填されている。そしてこの小径中空部S内には、段差部22が形成され、このため、小径中空部S内の冷却材23が、バルブ10Aが開閉動作する際に作用する慣性力によって上下方向に移動する際に、段差部22近傍に乱流が発生し、冷却材23が攪拌されることとなって、バルブ軸部12における熱引き効果(熱伝導性)が改善されている。燃焼室側の燃焼ガスの熱を遮断することによりバルブを介して熱が散逸されることなく、且つ、バルブ軸部の熱引きにより効果により、材料に要求される耐熱温度を下げることが出来る。  FIG. 3 shows a poppet valve for an internal combustion engine according to a second embodiment of the present invention. The hollow poppet valve 10A of the second embodiment is a modification of the first embodiment, and the same members as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the second embodiment, a hollow portion 19 ′, which is a spherical (dome-shaped) space, is formed between the ceiling surface 14b ′ and the bottom surface 25 ′ of the disc-shaped cap 18 ′. A radiant heat reflecting surface 17 'is formed on the inner peripheral surface except the outer peripheral surface, and the disc-shaped cap 18' is fitted to the lower end of the hollow portion 19 '. A small-diameter hollow portion S is formed from slightly above the radiant heat reflecting surface 17 ′ in the shaft portion 12, and in the small-diameter hollow portion S, a coolant having a higher thermal conductivity than the base material of the engine valve. 23 (for example, metallic sodium, melting point about 98 ° C.) is loaded with an inert gas. A stepped portion 22 is formed in the small-diameter hollow portion S. For this reason, when the coolant 23 in the small-diameter hollow portion S moves in the vertical direction by the inertial force that acts when the valve 10A is opened and closed. Furthermore, a turbulent flow is generated in the vicinity of the stepped portion 22 and the coolant 23 is agitated, so that the heat drawing effect (thermal conductivity) in the valve shaft portion 12 is improved. By shutting off the heat of the combustion gas on the combustion chamber side, heat is not dissipated through the valve, and the heat-resistant temperature required for the material can be lowered by the effect of heat drawing of the valve shaft.

図4は、本発明の第3の実施例である内燃機関用のポペットバルブを示す。第3の実施例のポペットバルブ10Bは、前記第1の実施例の変形例で、第1の実施例と同一部材には同一符号を付して説明を省略する。第3の実施例では、中実状軸部12Bの燃焼室4側に傘部14Bが一体成型され、本実施例では、中空部は形成しない。前記バルブ10Bの傘部14Bの底面15に、両端が露出しないように、輻射熱反射面17”が形成され、前記輻射熱反射面17”の表面には、熱伝導率が3W/mK以下の表面処理断熱層18cの被覆または熱伝導率が3W/mK以下のプレート状の低熱伝導材料の被覆が形成されている。形成された表面処理断熱層18cは第1の実施例の中空部19の断熱空間と同様の効果を有しており、燃焼室内で生じる高温の燃焼ガスの熱は前記ポペットバルブ10Bの表面処理層断熱18cを通って、輻射熱反射面17”に達する。燃焼ガスの熱の熱伝達態様である熱伝導、対流および輻射のうち、熱伝導および対流は、この低熱伝導率の表面処理断熱層18cで遮断され、輻射は前記輻射熱反射面17”により燃焼室4内に反射させる。この際に、輻射熱反射面17”は、傘部14Bの底面15および表面処理断熱層18cに囲まれ、雰囲気中に露出されないため、アルミニウム等の耐熱性のない金属も前記輻射熱反射面17”の材料として使用できる。したがって、本実施例のポペットバルブ10Bでは、燃焼ガスの熱の熱伝達態様である熱伝導、対流および輻射が抑制され、燃料の燃焼によって発生するエネルギーが熱としてバルブ本体を介して外部に奪われる量が少なくなる(冷却損失が小さくなる)。低熱伝導率の表面処理断熱層18cの形成は、大気プラズマ溶射などにより被覆される。  FIG. 4 shows a poppet valve for an internal combustion engine according to a third embodiment of the present invention. The poppet valve 10B of the third embodiment is a modification of the first embodiment, and the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the third embodiment, the umbrella portion 14B is integrally formed on the combustion chamber 4 side of the solid shaft portion 12B, and in this embodiment, no hollow portion is formed. A radiant heat reflecting surface 17 ″ is formed on the bottom surface 15 of the umbrella portion 14B of the bulb 10B so that both ends are not exposed, and the surface of the radiant heat reflecting surface 17 ″ has a heat treatment of 3 W / mK or less. A coating of the heat insulating layer 18c or a coating of a plate-like low thermal conductivity material having a thermal conductivity of 3 W / mK or less is formed. The formed surface treatment heat insulation layer 18c has the same effect as the heat insulation space of the hollow portion 19 of the first embodiment, and the heat of the high-temperature combustion gas generated in the combustion chamber is the surface treatment layer of the poppet valve 10B. Through the heat insulation 18c, it reaches the radiant heat reflecting surface 17 ". Of the heat conduction, convection and radiation, which are heat transfer modes of the combustion gas, the heat conduction and convection are caused by the surface treatment heat insulation layer 18c having the low thermal conductivity. The radiation is blocked, and the radiation is reflected into the combustion chamber 4 by the radiant heat reflecting surface 17 ″. At this time, the radiant heat reflecting surface 17 ″ is surrounded by the bottom surface 15 of the umbrella portion 14B and the surface treatment heat insulating layer 18c and is not exposed to the atmosphere. Therefore, a metal having no heat resistance such as aluminum is also included in the radiant heat reflecting surface 17 ″. Can be used as material. Therefore, in the poppet valve 10B of the present embodiment, heat conduction, convection and radiation, which are heat transfer modes of the combustion gas heat, are suppressed, and energy generated by the combustion of the fuel is taken to the outside through the valve body as heat. The amount is reduced (cooling loss is reduced). The formation of the surface-treated heat insulating layer 18c having a low thermal conductivity is covered by atmospheric plasma spraying or the like.

2 シリンダヘッド
3 バルブ挿通孔
3a バルブガイド
4 燃焼室
6 排気通路
8 バルブシート
9 バルブスプリング
10、10A、10B ポペットバルブ
11、11A シェル
12 軸部
12b 軸端部材
12c コッタ溝
13 フィレット部
14、14B 傘部
14a 傘部外殻
14b 天井面
15 底面
16 フェース部
17、17’、17” 輻射熱反射面(輻射熱を遮断する金属層)
18,18’ キャップ
18a 折曲部
18b 円弧状リブ
18c 表面処理断熱層
19、19’ 中空部(断熱部、断熱空間)
21 中空部
22 段差部
23 冷却材
24、24’ 傘表
25、25’ 底面
2 Cylinder head 3 Valve insertion hole 3a Valve guide 4 Combustion chamber 6 Exhaust passage 8 Valve seat 9 Valve spring 10, 10A, 10B Poppet valve 11, 11A Shell 12 Shaft portion 12b Shaft end member 12c Cutter groove 13 Fillet portion 14, 14B Umbrella Portion 14a Umbrella outer shell 14b Ceiling surface 15 Bottom surface 16 Face portion 17, 17 ', 17 "Radiant heat reflecting surface (metal layer blocking radiant heat)
18, 18 'Cap 18a Bent part 18b Arc-shaped rib 18c Surface treatment heat insulation layer 19, 19' Hollow part (heat insulation part, heat insulation space)
21 Hollow part 22 Step part 23 Coolant 24, 24 'Umbrella table 25, 25' Bottom

Claims (6)

軸部の一端側に傘部を一体的に形成したポペットバルブにおいて、前記傘部に、燃焼室側に位置する断熱部と、軸部側に位置する輻射熱を遮断する金属層が形成されていることを特徴とするポペットバルブ。  In the poppet valve in which an umbrella part is integrally formed on one end side of the shaft part, a heat insulating part located on the combustion chamber side and a metal layer blocking the radiant heat located on the shaft part side are formed on the umbrella part. A poppet valve characterized by that. 前記傘部内には、傘表に沿って延在する中空部が形成され、該中空部の天井面に輻射熱を遮断する金属層が形成され、前記金属層と前記中空部の底面間に断熱部が形成されることを特徴とする請求項1に記載のポペットバルブ。  A hollow portion extending along the surface of the umbrella is formed in the umbrella portion, a metal layer that blocks radiant heat is formed on a ceiling surface of the hollow portion, and a heat insulating portion is formed between the metal layer and the bottom surface of the hollow portion. The poppet valve according to claim 1, wherein the poppet valve is formed. 前記傘部の底面に、輻射熱を遮断する金属層が形成され、該輻射熱を遮断する金属層の燃焼室側に断熱性の表面処理層が形成されることを特徴とする請求項1に記載のポペットバルブ。  The metal layer for blocking radiant heat is formed on the bottom surface of the umbrella portion, and a heat-insulating surface treatment layer is formed on the combustion chamber side of the metal layer for blocking radiant heat. Poppet valve. 金属が、アルミニウム、銅およびアルミニウム合金から選択される請求項1から3までのいずれか1項に記載のポペットバルブ。  The poppet valve according to any one of claims 1 to 3, wherein the metal is selected from aluminum, copper, and an aluminum alloy. 金属が、箔状またはシート状である請求項1から4までのいずれか1項に記載のポペットバルブ。  The poppet valve according to any one of claims 1 to 4, wherein the metal is in a foil shape or a sheet shape. 金属層が、物理蒸着(PVD),溶射およびメッキから選択される表面処理にて形成された皮膜である請求項1または2に記載のポペットバルブ。  The poppet valve according to claim 1 or 2, wherein the metal layer is a film formed by a surface treatment selected from physical vapor deposition (PVD), thermal spraying, and plating.
JP2015562583A 2014-02-12 2014-02-12 Poppet valve Pending JPWO2015121920A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053156 WO2015121920A1 (en) 2014-02-12 2014-02-12 Poppet valve

Publications (1)

Publication Number Publication Date
JPWO2015121920A1 true JPWO2015121920A1 (en) 2017-03-30

Family

ID=53799690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562583A Pending JPWO2015121920A1 (en) 2014-02-12 2014-02-12 Poppet valve

Country Status (7)

Country Link
US (1) US20160348546A1 (en)
EP (1) EP3106634A4 (en)
JP (1) JPWO2015121920A1 (en)
KR (1) KR101661497B1 (en)
CN (1) CN105339610A (en)
TW (1) TW201540938A (en)
WO (1) WO2015121920A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202021A1 (en) 2014-02-05 2015-08-06 Mahle International Gmbh Method for measuring a wall thickness of hollow valves
US11022027B2 (en) * 2016-11-18 2021-06-01 Honda Motor Co., Ltd. Internal combustion engine with reduced engine knocking
GB2568975A (en) * 2017-10-30 2019-06-05 Eaton Srl Poppet valve
EP3667036B1 (en) 2018-03-20 2022-08-31 Nittan Corporation Hollow exhaust poppet valve
JP7190506B2 (en) 2018-11-12 2022-12-15 株式会社Nittan Manufacturing method of engine poppet valve
US10787939B1 (en) 2019-04-01 2020-09-29 Cyclazoom, LLC Poppet valve for internal combustion engine
EP4129525A4 (en) 2020-03-30 2023-06-14 Nittan Corporation Method for manufacturing engine poppet valve
US11506091B2 (en) 2021-03-03 2022-11-22 Cyclazoom, LLC Poppet valve and internal combustion piston engine head including same
US11933204B2 (en) * 2022-06-23 2024-03-19 Caterpillar Inc. Systems and methods for thermal barrier coatings to modify engine component thermal characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111813U (en) * 1976-02-21 1977-08-25
JPS5431711U (en) * 1977-08-03 1979-03-02

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1727621A (en) * 1928-02-18 1929-09-10 Gen Motors Corp Exhaust valve
US2086420A (en) * 1935-08-28 1937-07-06 Eaton Mfg Co Engine valve
US3426741A (en) * 1968-04-03 1969-02-11 Thomas E Haagen Diesel engine poppet valve
JPS5273306U (en) * 1975-11-29 1977-06-01
US4362134A (en) * 1978-05-22 1982-12-07 Eaton Corporation Shielded valve
US4300492A (en) * 1978-05-22 1981-11-17 Eaton Corporation Thermal barrier valve
JPS5525679U (en) * 1978-08-09 1980-02-19
US4351292A (en) * 1980-10-03 1982-09-28 Eaton Corporation Poppet valve shield
US4346870A (en) * 1980-11-26 1982-08-31 Eaton Corporation Thermal barrier for poppet valve
JPS6040709A (en) * 1983-08-16 1985-03-04 Ishikawajima Harima Heavy Ind Co Ltd Exhaust valve construction of internal-combustion engine
JPH01173417U (en) * 1988-05-24 1989-12-08
GB2238349B (en) * 1989-11-25 1993-09-15 T & N Technology Ltd Ceramic coated engine valves.
JPH04311611A (en) * 1991-04-09 1992-11-04 Aisan Ind Co Ltd Ceramic coated engine valve
US5413073A (en) * 1993-04-01 1995-05-09 Eaton Corporation Ultra light engine valve
US6679478B2 (en) * 2000-07-17 2004-01-20 Nittan Valve Co., Ltd. Hollow poppet valve and method for manufacturing the same
JP2003307105A (en) * 2002-04-12 2003-10-31 Fuji Oozx Inc Engine valve
US6912984B2 (en) * 2003-03-28 2005-07-05 Eaton Corporation Composite lightweight engine poppet valve
WO2009044482A1 (en) * 2007-10-05 2009-04-09 Nittan Valve Co., Ltd. Engine valve
US8230834B2 (en) * 2008-10-10 2012-07-31 Nittan Valve Co., Ltd. Hollow poppet valve and method of manufacturing the same
JP5696351B2 (en) * 2009-04-15 2015-04-08 トヨタ自動車株式会社 Engine combustion chamber structure
JP5625690B2 (en) 2010-09-30 2014-11-19 マツダ株式会社 Valve for engine
WO2013080389A1 (en) 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure
US8960148B2 (en) * 2012-07-11 2015-02-24 George McGinnis Heat transferring engine valve for fuel conservation
KR101358692B1 (en) * 2012-10-02 2014-02-07 니탄 밸브 가부시키가이샤 Hollow poppet valve
CN103090156B (en) * 2013-02-26 2015-09-30 沈双喜 The energy-conservation conveyance conduit of vacuum heat-insulating hot fluid
JP6316588B2 (en) * 2013-12-27 2018-04-25 日本ピストンリング株式会社 Combining valve and valve seat for internal combustion engine
US20160186620A1 (en) * 2014-12-30 2016-06-30 General Electric Company Multi-material valve guide system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111813U (en) * 1976-02-21 1977-08-25
JPS5431711U (en) * 1977-08-03 1979-03-02

Also Published As

Publication number Publication date
EP3106634A1 (en) 2016-12-21
US20160348546A1 (en) 2016-12-01
TW201540938A (en) 2015-11-01
KR101661497B1 (en) 2016-09-30
WO2015121920A1 (en) 2015-08-20
CN105339610A (en) 2016-02-17
KR20160085213A (en) 2016-07-15
EP3106634A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2015121920A1 (en) Poppet valve
JP6205437B2 (en) Hollow poppet valve
JP6088641B2 (en) Hollow poppet valve
EP2738457A1 (en) Illuminating led lamp
JP5858007B2 (en) Overlaying method for valve seat and manufacturing method of cylinder head
JP6033402B2 (en) Hollow poppet valve
JPWO2014054613A1 (en) Hollow poppet valve
JP6017246B2 (en) Heat treatment furnace
WO2018216122A1 (en) Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror
TW201121814A (en) Hub motor
JP2014034917A (en) Piston structure of engine
RU2010142554A (en) Pilot burner for gas turbine engine, combustion chamber and gas turbine engine
JP2006097498A (en) Hollow valve for internal combustion engine
JP2007170395A (en) Heat shield installed on heat radiation object especially rocket engine
JP6079669B2 (en) Turbine housing
JP2018145957A (en) Piston for internal combustion engine
JP6276937B2 (en) Reflective insulation and heat treatment furnace
JP6250366B2 (en) Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same
JP4420709B2 (en) Light source device
JP2018206745A (en) LED lighting device
JP2023105653A (en) piston and internal combustion engine
JP2005164086A (en) Gas stove
JP2008196461A (en) Cylinder block
JP2017025725A (en) Internal combustion engine
JP2016090069A (en) Electric stove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171204