JPWO2014054613A1 - Hollow poppet valve - Google Patents

Hollow poppet valve Download PDF

Info

Publication number
JPWO2014054613A1
JPWO2014054613A1 JP2014539748A JP2014539748A JPWO2014054613A1 JP WO2014054613 A1 JPWO2014054613 A1 JP WO2014054613A1 JP 2014539748 A JP2014539748 A JP 2014539748A JP 2014539748 A JP2014539748 A JP 2014539748A JP WO2014054613 A1 JPWO2014054613 A1 JP WO2014054613A1
Authority
JP
Japan
Prior art keywords
valve
hollow portion
coolant
diameter hollow
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014539748A
Other languages
Japanese (ja)
Other versions
JP6251177B2 (en
Inventor
本間 弘一
弘一 本間
拓海 戸塚
拓海 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittan Valve Co Ltd
Original Assignee
Nittan Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2012/075452 external-priority patent/WO2014054113A1/en
Priority claimed from PCT/JP2013/057133 external-priority patent/WO2014141416A1/en
Application filed by Nittan Valve Co Ltd filed Critical Nittan Valve Co Ltd
Publication of JPWO2014054613A1 publication Critical patent/JPWO2014054613A1/en
Application granted granted Critical
Publication of JP6251177B2 publication Critical patent/JP6251177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values

Abstract

熱引き効果に優れ、製造設備を簡略化できる中空ポペットバルブを提供する。軸部(12)の一端側に傘部(14)を一体的に形成したポペットバルブの傘部(14)から軸部(12)にかけて中空部(S)が形成され、中空部(S)に、従来の金属Naに代えてZn-Al合金を冷却材(19)として装填した。Zn-Al合金と金属Naは、略同じ熱伝導率で、従来と同じ熱引き効果が得られる。冷却材(19)は酸化し難いので、大気下で冷却材(19)を保管し装填でき、冷却材(19)の保管設備、装填設備が簡潔になる分、中空バルブの製造が容易で、コストも低減できる。Provided is a hollow poppet valve that has an excellent heat-drawing effect and can simplify manufacturing equipment. A hollow portion (S) is formed from the umbrella portion (14) to the shaft portion (12) of the poppet valve integrally formed with the umbrella portion (14) on one end side of the shaft portion (12), and the hollow portion (S) is formed. Instead of the conventional metal Na, a Zn—Al alloy was loaded as a coolant (19). Zn-Al alloy and metal Na have substantially the same thermal conductivity, and the same heat-drawing effect as before can be obtained. Since the coolant (19) is difficult to oxidize, the coolant (19) can be stored and loaded in the atmosphere. Cost can also be reduced.

Description

ポペットバルブの傘部から軸部にかけて形成された中空部に冷却材が装填された中空ポペットバルブに関する。   The present invention relates to a hollow poppet valve in which a coolant is loaded in a hollow portion formed from an umbrella portion to a shaft portion of the poppet valve.

下記特許文献1、2等には、軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、バルブの母材よりも熱伝導率の高い冷却材(例えば、金属ナトリウム、融点約98℃)が不活性ガスとともに中空部に装填された中空ポペットバルブが記載されている。   In the following Patent Documents 1, 2, etc., a hollow part is formed from the umbrella part of the poppet valve integrally formed on one end side of the shaft part to the shaft part, and has a higher thermal conductivity than the base material of the valve. A hollow poppet valve is described in which a coolant (eg, metallic sodium, melting point about 98 ° C.) is loaded into the hollow portion with an inert gas.

バルブの中空部は、傘部内から軸部内に延びており、それだけ多くの量の冷却材を中空部に装填できるので、バルブの熱伝導率(以下、バルブの熱引き効果という)を高めることができる。   Since the hollow portion of the valve extends from the inside of the umbrella portion into the shaft portion, and so much coolant can be loaded into the hollow portion, the thermal conductivity of the valve (hereinafter referred to as the heat extraction effect of the valve) can be increased. it can.

即ち、エンジンの駆動によって燃焼室は高温になるが、燃焼室の温度が高すぎると、ノッキングが発生して所定のエンジン出力が得られず、燃費の悪化(エンジンの性能の低下)につながる。そこで、燃焼室の温度を下げるために、燃焼室10Aで発生する熱をバルブを介して積極的に熱伝導させる方法(バルブの熱引き効果を上げる方法)として、冷却材を不活性ガスとともに中空部に装填した種々の中空バルブが提案されている。   That is, although the combustion chamber becomes hot due to the driving of the engine, if the temperature of the combustion chamber is too high, knocking occurs and a predetermined engine output cannot be obtained, leading to deterioration of fuel consumption (deterioration of engine performance). Therefore, as a method of actively conducting heat generated in the combustion chamber 10A through the valve in order to lower the temperature of the combustion chamber (a method for increasing the heat-sucking effect of the valve), the coolant is hollowed with an inert gas. Various hollow valves loaded in the part have been proposed.

WO2010/041337WO2010 / 041337 特開2011-179328JP2011-179328

この種の中空バルブの中空部に装填する冷却材としては、金属ナトリウムの他にナトリウムカリウム合金が知られているが、ナトリウムカリウム合金は、毒劇物取締法により劇物に指定され、空気や水との接触によって炎上・爆発にいたるため、採用にはいたらず、従来は金属ナトリウムが冷却材として採用されている。   As a coolant to be loaded in the hollow part of this type of hollow valve, sodium potassium alloy is known in addition to metallic sodium. Sodium potassium alloy is designated as a deleterious substance by the Poisonous and Deleterious Substances Control Law, Due to contact with water leading to flames and explosions, it has not been adopted. Conventionally, metallic sodium has been adopted as a coolant.

しかし、金属ナトリウムは、非常に酸化し易く、酸化すると熱伝導率が著しく低下する。このため、空気に触れないように、例えば石油に浸けた状態で保管したり、バルブに装填するには、不活性ガス雰囲気下において不活性ガスとともに装填する等、金属ナトリウムの管理および装填工程が非常に面倒である。さらに、金属ナトリウムは、第3類危険物に指定されており、取り扱う上で、消防法などの種々の制約も受ける。   However, metallic sodium is very easy to oxidize, and when oxidized, the thermal conductivity is significantly reduced. For this reason, in order not to touch the air, for example, in order to store it in oil, or to load a valve, it is necessary to manage and load metal sodium, such as loading with an inert gas in an inert gas atmosphere. Very troublesome. Furthermore, metallic sodium is designated as a third class hazardous material and is subject to various restrictions such as the Fire Service Act when handled.

このような経緯から、自動車用エンジンバルブ業界では、中空バルブに採用する冷却材として、金属ナトリウムに代わる新たな物質が希求されていた。   For these reasons, the automotive engine valve industry has been demanding a new material to replace metallic sodium as a coolant used in hollow valves.

発明者は、この種の中空バルブに装填する冷却材として、熱伝導率に優れ、取り扱いが容易な金属がないかを検討した結果、制振ダンパ用の超塑性金属として開発された亜鉛−アルミ合金(Zn-22wt%Al)に着目した。   As a result of investigating whether or not there is a metal having excellent thermal conductivity and easy handling as a coolant to be loaded in this kind of hollow valve, the inventor has developed zinc-aluminum that has been developed as a superplastic metal for damping dampers. We focused on the alloy (Zn-22wt% Al).

即ち、バルブの素材であるFe、冷却材である金属ナトリウム、超塑性金属である亜鉛−アルミ合金(Zn-22wt%Al)等の物理的性質は、図8の通りである。   That is, physical properties of Fe as a valve material, metallic sodium as a coolant, and zinc-aluminum alloy (Zn-22 wt% Al) as a superplastic metal are as shown in FIG.

超塑性金属として知られている亜鉛−アルミ合金(Zn-22wt%Al)は、金属ナトリウムの熱伝導率とほぼ同じ熱伝導率で、酸化し難く、取り扱いが容易である。   Zinc-aluminum alloy (Zn-22wt% Al), which is known as a superplastic metal, has almost the same thermal conductivity as that of metallic sodium, is difficult to oxidize, and is easy to handle.

亜鉛−アルミ合金(Zn-22wt%Al)の融点は約500℃で、金属ナトリウムの融点よりもかなり高く、固体のままでは熱引き効果を十分に発揮できないが、自動車の通常走行時(エンジン駆動時)の燃焼室や吸、排気通路の温度は、融点(500℃)をはるかに越える500〜800℃になるため、亜鉛−アルミ合金(Zn-22wt%Al)は熱引き効果を十分に発揮できる液体となる。   The melting point of zinc-aluminum alloy (Zn-22wt% Al) is about 500 ° C, much higher than the melting point of metallic sodium. ) Combustion chamber, suction and exhaust passage temperature is 500-800 ° C, far exceeding the melting point (500 ° C), so zinc-aluminum alloy (Zn-22wt% Al) exhibits a sufficient heat-drawing effect It becomes a liquid that can be made.

また、亜鉛−アルミ合金(Zn-22wt%Al)は、亜鉛78wt%に対しアルミニウム22wt%を含む合金で、その比重は、バルブの素材の比重よりも小さいが、金属ナトリウムの比重よりもかなり大きいため、バルブ軽量化のメリットは低い。しかし、図9に示す、亜鉛−アルミ合金の平衡状態図から分かるように、亜鉛とアルミニウムの成分比(重量比)を調整することで、亜鉛−アルミ合金の密度(比重)を調整できるし、融点や熱伝導率についても同様に調整できる。   Zinc-aluminum alloy (Zn-22wt% Al) is an alloy containing 22wt% of aluminum with respect to 78wt% of zinc. Its specific gravity is smaller than the specific gravity of the valve material, but much larger than the specific gravity of metallic sodium. Therefore, the merit of reducing the weight of the valve is low. However, as can be seen from the equilibrium diagram of the zinc-aluminum alloy shown in FIG. 9, the density (specific gravity) of the zinc-aluminum alloy can be adjusted by adjusting the component ratio (weight ratio) of zinc and aluminum, The melting point and thermal conductivity can be similarly adjusted.

特に、亜鉛−アルミ合金は、酸化しにくいため、大気下で保管できるし、金属ナトリウムのように不活性ガスとともに装填する必要もない。さらに、亜鉛−アルミ合金は、金属ナトリウムのように危険物に指定されていないため、取り扱いが容易で、金属ナトリウムを取り扱う場合のような制約もない。   In particular, since zinc-aluminum alloys are difficult to oxidize, they can be stored in the atmosphere and do not need to be loaded with an inert gas like metallic sodium. Furthermore, since zinc-aluminum alloy is not designated as a hazardous material like metallic sodium, it is easy to handle and there are no restrictions as in the case of handling metallic sodium.

このように、「亜鉛−アルミ合金」について、バルブの中空部に装填する冷却材としての利用可能性を検討した結果、金属ナトリウムに代わる冷却材として「亜鉛−アルミ合金」を採用できると確信し、今回の出願にいたったものである。   As described above, as a result of examining the possibility of using “zinc-aluminum alloy” as a coolant to be loaded in the hollow portion of the valve, we are confident that “zinc-aluminum alloy” can be adopted as a coolant in place of metallic sodium. This is the result of this application.

本発明は、先行文献に対する発明者の前記した知見に基づいてなされたもので、その目的は、バルブの中空部に装填する冷却材として、従来の金属ナトリウムに代えて、取り扱いが容易な「亜鉛−アルミ合金」を用いることで、熱引き効果に優れるとともに、製造設備を簡略化できる中空ポペットバルブを提供することにある。   The present invention has been made on the basis of the above-mentioned knowledge of the inventor with respect to the prior art document. The purpose of the present invention is to replace the conventional metallic sodium as a coolant to be loaded in the hollow part of the valve with “zinc” which is easy to handle. By using “aluminum alloy”, it is to provide a hollow poppet valve that has an excellent heat-drawing effect and can simplify the manufacturing equipment.

前記目的を達成するために、本発明(請求項1)に係る中空ポペットバルブにおいては、軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に冷却材である亜鉛−アルミ合金を装填するように構成した。   In order to achieve the object, in the hollow poppet valve according to the present invention (Claim 1), a hollow portion is formed from the umbrella portion of the poppet valve integrally formed on one end side of the shaft portion to the shaft portion. The zinc-aluminum alloy, which is a coolant, is loaded into the hollow portion.

また、請求項2においては、請求項1に記載の中空ポペットバルブにおいて、前記中空部には、大気(空気)とともに前記冷却材(亜鉛−アルミ合金)を装填するように構成した。   According to a second aspect of the present invention, in the hollow poppet valve according to the first aspect of the present invention, the hollow portion is filled with the coolant (zinc-aluminum alloy) together with the atmosphere (air).

(作用)例えば、亜鉛−アルミ合金(Zn-22wt%Al)の熱伝導率は、135W/m/Kで、金属ナトリウムの熱伝導率132W/m/Kとほぼ同じである。   (Operation) For example, the thermal conductivity of zinc-aluminum alloy (Zn-22 wt% Al) is 135 W / m / K, which is almost the same as the thermal conductivity of metallic sodium 132 W / m / K.

亜鉛−アルミ合金(Zn-22wt%Al)の融点(約500℃)は、金属ナトリウムの融点(97.8℃)に比べて高いため、亜鉛−アルミ合金(Zn-22wt%Al)が固体のままでは熱引き効果を十分に発揮できないが、自動車の通常走行時(エンジン駆動時)の燃焼室や吸、排気通路の温度は融点をはるかに越える500〜800℃になるため、バルブの中空部に装填された亜鉛−アルミ合金(Zn-22wt%Al)は液体となって、本発明では、金属ナトリウムを装填した従来の中空バルブと同程度の熱引き効果を十分に発揮できる。   Since the melting point of zinc-aluminum alloy (Zn-22wt% Al) (approximately 500 ° C) is higher than the melting point of metallic sodium (97.8 ° C), the zinc-aluminum alloy (Zn-22wt% Al) remains solid. Although the heat-absorbing effect cannot be fully exhibited, the temperature of the combustion chamber, intake and exhaust passages during normal driving of the automobile (when the engine is driven) is 500 to 800 ° C, far exceeding the melting point. The zinc-aluminum alloy (Zn-22 wt% Al) thus formed becomes a liquid, and in the present invention, the heat drawing effect comparable to that of a conventional hollow valve loaded with metallic sodium can be sufficiently exhibited.

なお、Zn-22wt%Alは、融点500℃、熱伝導率135W/m/K、密度5.14g/cm3であるが、バルブの熱引き効果をいっそう改善するには、装填する「亜鉛−アルミ合金」の熱伝導率はより高い方が望ましく、融点もより低い方が望ましく、また、バルブをいっそう軽量化するには、密度(比重)はより小さいが望ましい。Zn-22wt% Al has a melting point of 500 ° C, a thermal conductivity of 135 W / m / K, and a density of 5.14 g / cm 3. The higher the thermal conductivity of the “alloy”, the lower the melting point, and the lower the melting point, and the lower the density (specific gravity), in order to further reduce the weight of the valve.

図9には、「亜鉛−アルミ合金」の平衡状態図を示すが、「亜鉛−アルミ合金」の融点は、その成分比(重量比)によって変化する。図に示すように、「亜鉛−アルミ合金」の共晶点(共晶温度)は382℃で、例えば、アルミニウムの含有量が100〜5wt%(亜鉛の含有量が0〜95wt%)では、融点は660℃から382℃(共晶温度)まで徐々に変化し、アルミニウムの含有量が少ない(亜鉛の含有量が多い)ほど、融点は低い。   FIG. 9 shows an equilibrium diagram of “zinc-aluminum alloy”. The melting point of “zinc-aluminum alloy” varies depending on the component ratio (weight ratio). As shown in the figure, the eutectic point (eutectic temperature) of “zinc-aluminum alloy” is 382 ° C., for example, when the aluminum content is 100-5 wt% (zinc content is 0-95 wt%), The melting point gradually changes from 660 ° C. to 382 ° C. (eutectic temperature), and the lower the aluminum content (the higher the zinc content), the lower the melting point.

また、「亜鉛−アルミ合金」の熱伝導率は、アルミニウムと亜鉛のそれぞれの熱伝導率(図8参照)からして、アルミニウムの含有量が多い(亜鉛の含有量が少ない)ほど、高くなる。一方、「亜鉛−アルミ合金」の密度(比重)は、アルミニウムと亜鉛のそれぞれの密度(比重)(図8参照)からして、アルミニウムの含有量が多い(亜鉛の含有量が少ない)ほど、低くなる。   Further, the thermal conductivity of the “zinc-aluminum alloy” is higher as the aluminum content is higher (the zinc content is lower) from the thermal conductivity of aluminum and zinc (see FIG. 8). . On the other hand, the density (specific gravity) of “zinc-aluminum alloy” is higher as the aluminum content is higher (the zinc content is lower) from the density (specific gravity) of aluminum and zinc (see FIG. 8). Lower.

したがって、中空部に装填する冷却材としては、熱引き効果および軽量化というニーズに合致する融点,熱伝導率および密度(比重)となるように、成分比(重量比)を調整した「亜鉛−アルミ合金」で構成することが望ましい。   Therefore, as the coolant to be loaded in the hollow portion, “Zinc-” in which the component ratio (weight ratio) is adjusted so that the melting point, the thermal conductivity, and the density (specific gravity) meet the needs of the heat drawing effect and weight reduction. It is desirable to use “aluminum alloy”.

また、「亜鉛−アルミ合金」は、酸化しにくいため、大気下で保管できるし、金属ナトリウムのように不活性ガスとともに中空部に装填する必要もない。即ち、大気下において、請求項2のように、大気(空気)とともに「亜鉛−アルミ合金」をバルブの中空部に装填できる。   In addition, since “zinc-aluminum alloy” is difficult to oxidize, it can be stored in the atmosphere and does not need to be loaded into the hollow portion together with an inert gas like metallic sodium. That is, in the atmosphere, as in claim 2, “zinc-aluminum alloy” can be loaded into the hollow portion of the valve together with the atmosphere (air).

さらに、「亜鉛−アルミ合金」は、金属ナトリウムのように危険物に指定されていないため、取り扱いが容易で、金属ナトリウムを取り扱う場合のような制約もない。   Furthermore, since “zinc-aluminum alloy” is not designated as a hazardous material like metallic sodium, it is easy to handle and there are no restrictions as in the case of handling metallic sodium.

請求項3においては、請求項1または2に記載の中空ポペットバルブにおいて、
前記傘部内には、該傘部の外形に倣うテーパ形状の外周面を備えた円錐台形状の大径中空部を設け、前記軸部内には、前記円錐台形状の大径中空部の天井面に直交するように連通する直線状の小径中空部を設け、前記大径中空部の天井面を形成する、前記小径中空部の前記大径中空部への開口周縁部を、前記バルブの中心軸線に対し直交する平面で構成して、即ち、連通部に庇状の環状段差部を形成して、前記バルブが軸方向に往復動作する際に、前記大径中空部内の冷却材である亜鉛−アルミ合金(液体)に前記バルブの中心軸線周りに縦方向内回りの循環流(対流)が形成されるように構成した。
In Claim 3, in the hollow poppet valve of Claim 1 or 2,
A frustoconical large-diameter hollow portion having a tapered outer peripheral surface that follows the outer shape of the umbrella portion is provided in the umbrella portion, and a ceiling surface of the frustoconical large-diameter hollow portion is provided in the shaft portion. A linear small-diameter hollow portion that communicates perpendicularly to the large-diameter hollow portion is provided, and the opening peripheral edge of the small-diameter hollow portion to the large-diameter hollow portion is formed as a central axis of the valve. Zinc, which is a coolant in the large-diameter hollow portion when the valve reciprocates in the axial direction by forming a bowl-shaped annular stepped portion in the communication portion. A circulating flow (convection) in the longitudinal direction is formed around the central axis of the valve in the aluminum alloy (liquid).

(作用)バルブが閉弁状態から開弁状態に移行する際(バルブが下降する際)には、図2(a)に示すように、中空部内の冷却材(液体)には慣性力が上向きに作用する。そして、大径中空部中央部の冷却材に作用する慣性力(上向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きいため、大径中空部内の冷却材が連通部を介して小径中空部に移動しようとする。しかし、連通部には庇状の環状段差部が形成されているため、換言すれば、大径中空部の天井面(大径中空部における小径中空部の開口周縁部)がバルブの中心軸線に対し略直交する平面で構成されているため、冷却材は、連通部が滑らかな形状で形成されている従来の中空バルブのようにスムーズに小径中空部に移動できない。   (Operation) When the valve shifts from the closed state to the open state (when the valve descends), as shown in FIG. 2 (a), the inertial force is upward on the coolant (liquid) in the hollow portion. Act on. And since the inertial force (upward) acting on the coolant in the central part of the large-diameter hollow part is larger than the inertial force acting on the coolant in the peripheral area of the large-diameter hollow part, the coolant in the large-diameter hollow part It tries to move to the small-diameter hollow part via. However, since the communication portion is formed with a bowl-shaped annular step portion, in other words, the ceiling surface of the large-diameter hollow portion (the opening peripheral edge of the small-diameter hollow portion in the large-diameter hollow portion) is in the central axis of the valve. On the other hand, since it is composed of a plane that is substantially orthogonal, the coolant cannot smoothly move to the small-diameter hollow portion like a conventional hollow valve in which the communicating portion is formed in a smooth shape.

即ち、大径中空部内の冷却材には、上向きの慣性力が作用することで、図3(a)に示すように、環状段差部(大径中空部の天井面)に沿って連通部の中心(半径方向内側)に向かう流れF1,F2が発生する。そして、環状段差部に沿って連通部の中心(半径方向内側)に向かう流れF2同士が互いに衝突して、連通部においては、大径中空部底面側に向かう流れF3と、小径中空部S2の上方に向かう流れF4が発生する。連通部において、大径中空部底面側に向かう流れF3は、大径中空部底面に沿って半径方向外方から大径中空部天井面側に回り込み、再び、大径中空部の天井面に沿って連通部の中心(半径方向内側)に向かう流れF1,F2となる。一方、連通部において、小径中空部の上方に向かう流れF4,F5は、図3(a)に示すような乱流となる。   That is, an upward inertial force acts on the coolant in the large-diameter hollow portion, and as shown in FIG. 3 (a), the communicating portion along the annular stepped portion (the ceiling surface of the large-diameter hollow portion). Flows F1 and F2 toward the center (radially inside) are generated. Then, the flows F2 heading toward the center (radially inner side) of the communication portion along the annular stepped portion collide with each other, and in the communication portion, the flow F3 toward the bottom surface side of the large-diameter hollow portion and the small-diameter hollow portion S2 An upward flow F4 is generated. In the communicating portion, the flow F3 toward the bottom surface side of the large-diameter hollow portion wraps around the bottom surface of the large-diameter hollow portion from the outside in the radial direction along the bottom surface of the large-diameter hollow portion, and again along the ceiling surface of the large-diameter hollow portion. Thus, the flows F1 and F2 are directed toward the center (radially inward) of the communication portion. On the other hand, in the communicating portion, the flows F4 and F5 directed upward of the small-diameter hollow portion are turbulent as shown in FIG.

このように、大径中空部内の冷却材には、矢印F1→F2→F3→F1に示すように、バルブの中心軸線の周りに縦方向内回りの循環流(対流)が形成され、小径中空部の冷却材では、F4,F5に示すような乱流が発生する。   As described above, the coolant in the large-diameter hollow portion is formed with a circulation flow (convection) in the longitudinal direction around the central axis of the valve, as indicated by arrows F1 → F2 → F3 → F1, and the small-diameter hollow portion In this coolant, a turbulent flow as indicated by F4 and F5 occurs.

一方、バルブが開弁状態から閉弁状態に移行する際(バルブが上昇する際)は、図2(b)に示すように、中空部内の冷却材には慣性力が下向きに作用する。そして、大径中空部中央部の冷却材に作用する慣性力(下向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きいため、図3(b)に示すように、大径中空部内の冷却材には、大径中空部の中央部から底面に沿って半径方向外方に向かう流れF6が発生し、同時に、小径中空部においても連通部を通って下方に向かう流れ(乱流)F7が発生する。大径中空部の底面に沿った流れF6は、大径中空部の外方から天井面側に回りこみ、大径中空部S1の天井面に沿った流れF8となり、大径中空部の中央部において下方に向かう流れF6,F7に合流する。   On the other hand, when the valve transitions from the open state to the closed state (when the valve rises), the inertial force acts downward on the coolant in the hollow portion, as shown in FIG. Since the inertial force (downward) acting on the coolant in the central portion of the large-diameter hollow portion is larger than the inertial force acting on the coolant in the peripheral region of the large-diameter hollow portion, as shown in FIG. In the coolant in the diameter hollow portion, a flow F6 directed radially outward from the center portion of the large diameter hollow portion along the bottom surface is generated, and at the same time, the flow toward the lower side through the communicating portion also in the small diameter hollow portion ( Turbulence) F7 occurs. The flow F6 along the bottom surface of the large-diameter hollow portion flows from the outside of the large-diameter hollow portion to the ceiling surface side to become a flow F8 along the ceiling surface of the large-diameter hollow portion S1, and the central portion of the large-diameter hollow portion , Merges with downward flows F6 and F7.

即ち、大径中空部の冷却材には、矢印F6→F8→F6に示すように、バルブの中心軸線の周りに縦方向内回りの循環流(対流)が形成され、小径中空部内の冷却材には、矢印F7に示すような乱流が形成される。   That is, as indicated by arrows F6 → F8 → F6, the large-diameter hollow portion is formed with a circulating flow (convection) in the longitudinal direction around the central axis of the valve. A turbulent flow as shown by an arrow F7 is formed.

このように、バルブが開閉動作することで、バルブの中空部内全体の冷却材に、図3(a),(b)に示すような循環流F1→F2→F3;F6→F8や乱流F4,F5,F7,F9,F10が形成されて、冷却材の上層部、中層部、下層部が積極的に攪拌されるため、バルブの熱引き効果(熱伝導性)が著しく改善される。   As described above, when the valve is opened and closed, the circulating material F1 → F2 → F3; F6 → F8 or turbulent flow F4 as shown in FIGS. , F5, F7, F9, and F10 are formed, and the upper layer portion, middle layer portion, and lower layer portion of the coolant are positively stirred, so that the heat drawing effect (thermal conductivity) of the valve is remarkably improved.

請求項4においては、請求項1〜3のいずれかに記載の中空ポペットバルブにおいて、
前記バルブ軸端部寄りの小径中空部の内径を、前記バルブ傘部寄り小径中空部の内径よりも大きく形成して、前記小径中空部内の軸方向所定位置に円環状の段差部を設けるとともに、前記段差部を越えた位置まで前記冷却材である亜鉛−アルミ合金(液体)を装填するように構成した。
In Claim 4, in the hollow poppet valve in any one of Claims 1-3,
The inner diameter of the small-diameter hollow portion near the valve shaft end is formed larger than the inner diameter of the small-diameter hollow portion near the valve umbrella, and an annular step portion is provided at a predetermined position in the axial direction in the small-diameter hollow portion. The zinc-aluminum alloy (liquid), which is the coolant, is loaded up to a position beyond the stepped portion.

(作用)バルブが閉弁状態から開弁状態に移行する際(バルブが下降する際)は、小径中空部内の冷却材(液体)が、内径の小さいバルブ傘部寄りの小径中空部から内径の大きいバルブ軸端部寄りの小径中空部に移動する際に、図3(a)に示すように、段差部の下流側で乱流F9が形成されて、小径中空部内の冷却材(液体)が攪拌される。   (Operation) When the valve shifts from the closed state to the open state (when the valve descends), the coolant (liquid) in the small-diameter hollow part is changed from the small-diameter hollow part near the valve umbrella part having a small inner diameter to the inner diameter. When moving to the small-diameter hollow portion near the large valve shaft end, as shown in FIG. 3A, a turbulent flow F9 is formed on the downstream side of the step portion, and the coolant (liquid) in the small-diameter hollow portion is Stir.

一方、バルブが開弁状態から閉弁状態に移行する際(バルブが上昇する際)は、開弁動作によって小径中空部内を上方にいったん移動した冷却材(液体)が、内径の大きいバルブ軸端部寄りの小径中空部から内径の小さいバルブ傘部寄りの小径中空部に移動する際に、図3(b)に示すように、円環状の段差部の下流側で乱流F10が形成されて、小径中空部内の冷却材(液体)が攪拌される。   On the other hand, when the valve transitions from the open state to the closed state (when the valve rises), the coolant (liquid) once moved upward in the small-diameter hollow portion by the valve-opening operation is When moving from the small-diameter hollow portion near the portion to the small-diameter hollow portion near the valve umbrella portion having a small inner diameter, a turbulent flow F10 is formed on the downstream side of the annular stepped portion as shown in FIG. The coolant (liquid) in the small-diameter hollow portion is agitated.

このように、バルブの開閉動作(上下方向の往復動作)に伴って、冷却材(液体)が小径中空部内を軸方向に移動する際に段差部の近傍に乱流が発生し、これによって小径中空部内の冷却材(液体)が攪拌されるので、バルブ軸部における熱引き効果(熱伝導性)がさらに高くなる。   Thus, when the coolant (liquid) moves in the axial direction in the small-diameter hollow portion along with the opening / closing operation (vertical reciprocating operation) of the valve, turbulent flow is generated in the vicinity of the step portion, thereby reducing the small diameter. Since the coolant (liquid) in the hollow portion is agitated, the heat drawing effect (thermal conductivity) in the valve shaft portion is further enhanced.

本発明に係る中空ポペットバルブによれば、中空部内に装填されている冷却材である亜鉛−アルミ合金の熱伝導率が従来冷却材として採用されている金属ナトリウムの熱伝導率とほぼ同じ熱伝導率であるため、従来の中空バルブの熱引き効果と同程度の熱引き効果が発揮される。   According to the hollow poppet valve according to the present invention, the heat conductivity of the zinc-aluminum alloy, which is the coolant loaded in the hollow portion, is approximately the same as the heat conductivity of metal sodium conventionally employed as the coolant. Therefore, the heat drawing effect comparable to that of the conventional hollow valve is exhibited.

一方、亜鉛−アルミ合金の比重は、金属ナトリウムの比重よりも大きいため、軽量化という点では従来の中空バルブに劣るが、亜鉛−アルミ合金は、金属ナトリウムのように第3類危険物に指定されておらず、消防法などの種々の制約も受けない等、取り扱いが容易であるため、以下の特有の効果がある。   On the other hand, the specific gravity of zinc-aluminum alloy is larger than that of metallic sodium, so it is inferior to conventional hollow valves in terms of weight reduction. However, zinc-aluminum alloy is designated as a third class hazardous material like metallic sodium. Since it is easy to handle, such as not subject to various restrictions such as the Fire Service Act, it has the following specific effects.

第1には、中空部内に装填する冷却材である亜鉛−アルミ合金は酸化し難いので、金属ナトリウムを保管する場合のように、大気から遮断した状態で冷却材(亜鉛−アルミ合金)を保管する必要はなく、それだけ冷却材(亜鉛−アルミ合金)を保管するための設備が簡潔となる。   First, since the zinc-aluminum alloy, which is the coolant loaded in the hollow portion, is difficult to oxidize, store the coolant (zinc-aluminum alloy) in a state of being cut off from the atmosphere, such as when storing metallic sodium. Therefore, the facility for storing the coolant (zinc-aluminum alloy) is simplified.

第2には、不活性ガス雰囲気ではなく大気下において冷却材(亜鉛−アルミ合金)をバルブの中空部に装填できるので、バルブを製造する工程における、冷却材を装填するための設備や環境も簡潔となる。   Second, since the coolant (zinc-aluminum alloy) can be loaded into the hollow portion of the valve in the air instead of the inert gas atmosphere, the equipment and environment for loading the coolant in the process of manufacturing the valve are also included. Be concise.

その結果、中空ポポペットバルブの製造コストを大幅に削減できる。   As a result, the manufacturing cost of the hollow poppet valve can be greatly reduced.

請求項2によれば、大気(空気)とともに冷却材(亜鉛−アルミ合金)をバルブの中空部に装填できるので、バルブの中空部に冷却材を装填するための設備および作業が簡略化されて、中空バルブの製造コストをいっそう削減できる。   According to the second aspect, since the coolant (zinc-aluminum alloy) can be loaded into the hollow portion of the valve together with the atmosphere (air), facilities and work for loading the coolant into the hollow portion of the valve are simplified. The manufacturing cost of the hollow valve can be further reduced.

請求項3によれば、バルブの開閉動作の際に、大径中空部から小径中空部にかけての広範囲の領域を冷却材である亜鉛−アルミ合金(液体)が循環することで、バルブの熱引き効果(熱伝導性)が著しく改善されて、それだけエンジンの性能が向上する。   According to the third aspect of the present invention, when the valve is opened and closed, the zinc-aluminum alloy (liquid) as the coolant circulates in a wide area from the large-diameter hollow portion to the small-diameter hollow portion. The effect (thermal conductivity) is significantly improved and the performance of the engine is improved accordingly.

特に、大径中空部内に冷却材である多量の「亜鉛−アルミ合金」を装填できるとともに、バルブが開閉動作する際に、大径中空部内の冷却材である亜鉛−アルミ合金(液体)に形成される縦方向内回りの循環流(対流)が活発になるので、バルブの熱引き効果(熱伝導性)がいっそう改善されて、エンジンの性能がさらに向上する。   In particular, a large amount of “zinc-aluminum alloy”, which is a coolant, can be loaded into the large-diameter hollow portion, and formed into a zinc-aluminum alloy (liquid) that is the coolant in the large-diameter hollow portion when the valve opens and closes. Since the circulating flow (convection) in the longitudinal inner direction becomes active, the heat drawing effect (thermal conductivity) of the valve is further improved, and the engine performance is further improved.

請求項4によれば、バルブの開閉動作(上下方向の動作)に伴って、小径中空部内の冷却材である亜鉛−アルミ合金(液体)全体も積極的に撹拌されるので、熱引き効果(熱伝導性)にさらにいっそう優れた中空ポペットバルブを提供できる。   According to the fourth aspect, the entire zinc-aluminum alloy (liquid), which is the coolant in the small-diameter hollow portion, is also actively agitated along with the opening / closing operation (vertical operation) of the valve. It is possible to provide a hollow poppet valve that is further superior in thermal conductivity.

本発明の第1の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 1st Example of this invention. 同中空ポペットバルブが軸方向に往復動作する際の中空部内の冷却材に作用する慣性力を示す図で、(a)は開弁動作(下降動作)時の冷却材に作用する慣性力を示す断面図、(b)は閉弁動作(上昇動作)時の冷却材に作用する慣性力を示す断面図である。It is a figure which shows the inertial force which acts on the coolant in the hollow part at the time of the same hollow poppet valve reciprocatingly, (a) shows the inertial force which acts on the coolant at the time of valve opening operation | movement (lowering operation | movement). Sectional drawing and (b) are sectional drawings which show the inertial force which acts on the coolant at the time of valve closing operation | movement (rise operation | movement). 同中空ポペットバルブが開閉動作(軸方向に往復動作)する際の中空部内の冷却材の動きを拡大して示す図で、(a)は閉弁状態から開弁状態に移行する際の冷却材の動きを示す図で、(b)は開弁状態から閉弁状態に移行する際の冷却材の動きを示す図である。It is a figure which expands and shows the motion of the coolant in a hollow part when the hollow poppet valve opens and closes (reciprocates in an axial direction), and (a) is the coolant at the time of shifting from a valve closing state to a valve opening state (B) is a figure which shows a motion of the coolant at the time of transfering from a valve opening state to a valve closing state. 同中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程を示し、(b)は小径中空部に相当する孔を軸部に穿設する孔穿設工程を示し、(c)は軸端部寄りの小径中空部に相当する孔を穿設する孔穿設工程を示し、(d)は軸端部材を軸接する軸接工程を示し、(e)は小径中空部に冷却材を充填する工程を示し、(f)は不活性ガス雰囲気下で傘部外殻の凹部(大径中空部)の開口部にキャップを溶接する工程(大径中空部密閉工程)を示す。FIGS. 4A and 4B are diagrams showing a manufacturing process of the hollow poppet valve, wherein FIG. 4A shows a hot forging process for forging a shell which is an intermediate product of the valve, and FIG. 4B shows a hole corresponding to a small-diameter hollow portion formed in a shaft portion. Shows a hole drilling step, (c) shows a hole drilling step for drilling a hole corresponding to a small-diameter hollow portion near the shaft end, (d) shows a shaft contact step for axially contacting the shaft end member, (E) shows a step of filling the small-diameter hollow portion with a coolant, and (f) shows a step of welding a cap to the opening of the concave portion (large-diameter hollow portion) of the umbrella outer shell in an inert gas atmosphere (large The diameter hollow part sealing process) is shown. 本発明の第2の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 2nd Example of this invention. 本発明の第3の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 3rd Example of this invention. 本発明の第4の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 4th Example of this invention. Fe、Na、亜鉛−アルミ合金(Zn-22wt%Al)等の金属の物理的性質を示す図表である。It is a graph which shows the physical property of metals, such as Fe, Na, and zinc-aluminum alloy (Zn-22wt% Al). 亜鉛−アルミ合金の平衡状態図である。It is an equilibrium diagram of a zinc-aluminum alloy.

次に、本発明の実施の形態を実施例に基づいて説明する。   Next, embodiments of the present invention will be described based on examples.

図1〜図4は、本発明の第1の実施例である内燃機関用の中空ポペットバルブを示す。   1 to 4 show a hollow poppet valve for an internal combustion engine according to a first embodiment of the present invention.

これらの図において、符号10は、真っ直ぐに延びる軸部12の一端側に、外径が徐々に大きくなるR形状のフィレット部13を介して、傘部14が一体的に形成された耐熱合金製の中空ポペットバルブで、傘部14の外周には、テーパ形状のフェース部16が設けられている。   In these drawings, reference numeral 10 denotes a heat-resistant alloy in which an umbrella portion 14 is integrally formed on one end side of a shaft portion 12 that extends straight through an R-shaped fillet portion 13 that gradually increases in outer diameter. In the hollow poppet valve, a tapered face portion 16 is provided on the outer periphery of the umbrella portion 14.

詳しくは、円筒形状の軸部12aの一端側に傘部外殻14aが一体的に形成されたバルブ中間品である軸一体型シェル(以下、単にシェルという)11(図1,4参照)と、シェル11の軸部12aに軸接された軸端部材12bと、シェル11の傘部外殻14aの円錐台形状の凹部14bにおける開口部14cに溶接された円盤形状のキャップ18とによって、傘部14から軸部12にかけて中空部Sが設けられた中空ポペットバルブ10が構成され、中空部Sには、冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)が大気(空気)とともに装填されている。   Specifically, a shaft-integrated shell (hereinafter simply referred to as a shell) 11 (see FIGS. 1 and 4), which is a valve intermediate product in which an umbrella outer shell 14a is integrally formed on one end of a cylindrical shaft portion 12a; The shaft end member 12b axially contacted with the shaft portion 12a of the shell 11 and the disc-shaped cap 18 welded to the opening portion 14c in the frustoconical recess 14b of the umbrella outer shell 14a of the shell 11 A hollow poppet valve 10 having a hollow portion S provided from the portion 14 to the shaft portion 12 is configured. In the hollow portion S, a zinc-aluminum alloy (Zn-22 wt% Al) that is a coolant 19 is combined with air (air). It is loaded.

冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)の特性は、図8,9に示すように、融点約500℃、熱伝導率135W/m/K、密度(比重)5.14g/cm3で、熱伝導率(135W/m/K)は、金属ナトリウムの熱伝導率(132W/m/K)にほぼ等しい。As shown in FIGS. 8 and 9, the characteristics of the zinc-aluminum alloy (Zn-22wt% Al) as the coolant 19 are as follows: melting point: about 500 ° C., thermal conductivity: 135 W / m / K, density (specific gravity): 5.14 g / At cm 3 , the thermal conductivity (135 W / m / K) is approximately equal to that of metallic sodium (132 W / m / K).

亜鉛−アルミ合金(Zn-22wt%Al)の融点(約500℃)は、金属ナトリウムの融点(97.8℃)に比べて高いため、固体のままでは熱引き効果を十分に発揮できないが、自動車の通常走行時(エンジン駆動時)の燃焼室や吸、排気通路の温度は融点をはるかに越える500〜800℃になるため、中空部S内の冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)は液体となって、金属ナトリウムを装填した従来の中空バルブと同程度の熱引き効果を発揮する。   The melting point of zinc-aluminum alloy (Zn-22wt% Al) (about 500 ° C) is higher than the melting point of metallic sodium (97.8 ° C). Since the temperature of the combustion chamber and the intake and exhaust passages during normal driving (when the engine is driven) is 500 to 800 ° C., which exceeds the melting point, the zinc-aluminum alloy (Zn-22wt) that is the coolant 19 in the hollow portion S % Al) becomes a liquid and exhibits the same heat-drawing effect as a conventional hollow valve filled with metallic sodium.

なお、冷却材19の装填量は、多い方が熱引き効果に優れるものの、所定量以上では熱引き効果としての差が僅かとなるため、費用対効果(冷却材19が多ければ、コストもかかること)を考慮して、例えば、中空部Sの容積の約1/2〜約4/5の量が装填されていればよい。   In addition, although the larger the amount of the coolant 19 is, the better the heat-drawing effect is. However, if the amount is larger than the predetermined amount, the difference as the heat-drawing effect is small, so the cost-effectiveness (the more the coolant 19 is, the higher the cost). For example, an amount of about 1/2 to about 4/5 of the volume of the hollow portion S may be loaded.

なお、図1における符号2はシリンダヘッドで、符号6は燃焼室4から延びる排気通路で、排気通路6の燃焼室4への開口周縁部には、バルブ10のフェース部16が当接するテーパ面8aを備えた円環状のバルブシート8が設けられている。符号3は、シリンダヘッド2に設けられたバルブ挿通孔で、バルブ挿通孔3の内周面は、バルブ10の軸部12が摺接するバルブガイド3aで構成されている。符号9は、バルブ10を閉弁方向(図1上方向)に付勢するバルブスプリング、符号12cは、バルブ軸端部に設けたコッタ溝である。   In FIG. 1, reference numeral 2 denotes a cylinder head, and reference numeral 6 denotes an exhaust passage extending from the combustion chamber 4, and a tapered surface with which the face portion 16 of the valve 10 abuts the opening peripheral edge of the exhaust passage 6 to the combustion chamber 4. An annular valve seat 8 provided with 8a is provided. Reference numeral 3 denotes a valve insertion hole provided in the cylinder head 2, and an inner peripheral surface of the valve insertion hole 3 is constituted by a valve guide 3 a with which the shaft portion 12 of the valve 10 is slidably contacted. Reference numeral 9 is a valve spring for urging the valve 10 in the valve closing direction (upward in FIG. 1), and reference numeral 12c is a cotter groove provided at the end of the valve shaft.

また、燃焼室4や排気通路6の高温ガスにさらされる部位である、シェル11およびキャップ18は、耐熱鋼で構成されているのに対し、機械的強度が要求されるものの、シェル11およびキャップ18ほどの耐熱性が要求されない軸端部材12bは、一般的な鋼材で構成されている。   The shell 11 and the cap 18 that are exposed to the high-temperature gas in the combustion chamber 4 and the exhaust passage 6 are made of heat-resistant steel. The shaft end member 12b that does not require as much heat resistance as 18 is made of a general steel material.

また、バルブ10内の中空部Sは、バルブ傘部14内に設けられた円錐台形状の大径中空部S1と、バルブ軸部12内に設けられた直線状(棒状)の小径中空部S2とが直交するように連通する構造で、大径中空部S1の円形天井面(小径中空部S1の開口周縁部である傘部外殻14aの円錐台形状の凹部14bの底面)14b1は、バルブ10の中心軸線Lに対し直交する平面で構成されている。   The hollow portion S in the valve 10 includes a truncated cone-shaped large-diameter hollow portion S1 provided in the valve umbrella portion 14 and a linear (rod-shaped) small-diameter hollow portion S2 provided in the valve shaft portion 12. The circular ceiling surface of the large-diameter hollow portion S1 (the bottom surface of the truncated cone-shaped concave portion 14b of the umbrella outer shell 14a that is the opening peripheral portion of the small-diameter hollow portion S1) 14b1 10 planes orthogonal to the central axis L.

即ち、大径中空部S1における小径中空部S2との連通部Pには、先行文献1,2のような滑らかな形状に代えて、大径中空部S1側から見て庇状の環状段差部15が形成されており、この環状段差部15の大径中空部S1に臨む側(面)14b1がバルブ10の中心軸線Lに対し直交する平面で構成されている。換言すれば、小径中空部S2の開口周縁部(傘部外殻14aの円錐台形状の凹部14bの底面)14b1と、小径中空部S2の内周面によって、庇状の環状段差部15が画成されている。   That is, the communicating portion P with the small-diameter hollow portion S2 in the large-diameter hollow portion S1 has a bowl-shaped annular step portion as viewed from the large-diameter hollow portion S1 instead of the smooth shape as in the prior art documents 1 and 2. 15 is formed, and the side (surface) 14b1 facing the large-diameter hollow portion S1 of the annular step portion 15 is configured by a plane orthogonal to the central axis L of the bulb 10. In other words, the bowl-shaped annular step portion 15 is defined by the opening peripheral edge portion (bottom surface of the truncated cone-shaped concave portion 14b of the umbrella outer shell 14a) 14b1 and the inner peripheral surface of the small-diameter hollow portion S2. It is made.

また、小径中空部S2は、バルブ軸端部寄りの、内径が比較的大きい小径中空部S21と、バルブ傘部14寄りの、内径が比較的小さい小径中空部S22で構成されて、小径中空部S21と小径中空部S22間には、円環状の段差部17が形成されるとともに、段差部17を越えた位置まで冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)が装填されている。   The small-diameter hollow portion S2 is composed of a small-diameter hollow portion S21 having a relatively large inner diameter near the valve shaft end portion and a small-diameter hollow portion S22 having a relatively small inner diameter near the valve umbrella portion 14, and the small-diameter hollow portion. An annular step portion 17 is formed between S21 and the small-diameter hollow portion S22, and a zinc-aluminum alloy (Zn-22wt% Al) that is a coolant 19 is loaded up to a position beyond the step portion 17. Yes.

このため、バルブ10が開閉動作する際に、大径中空部S1内の冷却材19には、図3(a),(b)の矢印F1→F2→F3;F6→F8に示すように、縦方向内回りの循環流(対流)が形成され、同時に、小径中空部S2内の大径中空部S1近傍の冷却材19には、矢印F4,F5,F7に示すように、乱流が形成され、さらに、円環状の段差部17近傍の冷却材19には、図3(a),(b)の矢印F9,F10に示すように、乱流が形成される。   For this reason, when the valve 10 opens and closes, the coolant 19 in the large-diameter hollow portion S1 has an arrow F1 → F2 → F3; F6 → F8 in FIGS. A circulation flow (convection) inward in the vertical direction is formed, and at the same time, turbulence is formed in the coolant 19 near the large-diameter hollow portion S1 in the small-diameter hollow portion S2, as indicated by arrows F4, F5, and F7. Furthermore, a turbulent flow is formed in the coolant 19 in the vicinity of the annular stepped portion 17 as indicated by arrows F9 and F10 in FIGS.

即ち、バルブ10の開閉動作の際に、中空部S内全体の冷却材19に形成される循環流(対流)や乱流によって、中空部S内の冷却材19の下層部,中層部,上層部が積極的に攪拌されることとなって、バルブ10における熱引き効果(熱伝導性)が大幅に改善されている。   That is, when the valve 10 is opened and closed, the lower layer, middle layer, and upper layer of the coolant 19 in the hollow portion S are circulated by the circulating flow (convection) or turbulent flow formed in the coolant 19 in the hollow portion S. The part is actively stirred, so that the heat drawing effect (thermal conductivity) in the valve 10 is greatly improved.

特に、本実施例では、大径中空部S1の円形の天井面(円錐台の上面)14b1とその外周面(円錐台の外周面)14b2が鈍角をなすので、バルブ10が開閉動作する際に、大径中空部S1の半径方向外方から大径中空部S1の天井面に沿って連通部Pに向かう冷却材19の流れ(図3(a)のF1,F2および図3(b)のF8)の発生がスムーズとなる分、大径中空部S2内の冷却材19に形成される縦方向内回りの循環流(対流)が活発になるので、中空部S内の冷却材19の攪拌がそれだけ促進されて、バルブ10における熱引き効果(熱伝導性)が著しく改善されることになる。   In particular, in this embodiment, the circular ceiling surface (the upper surface of the truncated cone) 14b1 and the outer peripheral surface (the outer circumferential surface of the truncated cone) 14b2 of the large-diameter hollow portion S1 form an obtuse angle. The flow of the coolant 19 from the radially outer side of the large-diameter hollow portion S1 toward the communicating portion P along the ceiling surface of the large-diameter hollow portion S1 (F1, F2 in FIG. 3 (a) and in FIG. 3 (b) Since the generation of F8) becomes smoother, the circulating flow (convection) in the longitudinal direction formed in the coolant 19 in the large-diameter hollow portion S2 becomes active, so that the coolant 19 in the hollow portion S is agitated. As a result, the heat sink effect (thermal conductivity) in the valve 10 is remarkably improved.

次に、バルブ10が開閉動作する際の冷却材の動きを、図2,3に基づいて詳しく説明する。   Next, the movement of the coolant when the valve 10 is opened and closed will be described in detail with reference to FIGS.

バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、図2(a)に示すように、中空部S内の冷却材(液体)19に慣性力が上向きに作用する。そして、大径中空部S1中央部の冷却材19に作用する慣性力(上向き)が大径中空部S1周辺領域の冷却材19に作用する慣性力よりも大きいため、大径中空部S1内の冷却材19が連通部Pを介して小径中空部S2に移動しようとする。しかし、連通部Pには庇状の環状段差部15が形成されているため、連通部が滑らかな形状に形成されている、先行文献に示す従来の中空バルブのようにスムーズに小径中空部S2側に移動できない。   When the valve 10 shifts from the closed state to the open state (when the valve 10 is lowered), the inertial force is upwardly applied to the coolant (liquid) 19 in the hollow portion S as shown in FIG. Act on. Since the inertial force (upward) acting on the coolant 19 in the central portion of the large-diameter hollow portion S1 is larger than the inertial force acting on the coolant 19 in the peripheral region of the large-diameter hollow portion S1, the inside of the large-diameter hollow portion S1 The coolant 19 tries to move to the small-diameter hollow portion S2 via the communication portion P. However, since the communication portion P is formed with the bowl-shaped annular step portion 15, the communication portion is formed in a smooth shape, and the small-diameter hollow portion S <b> 2 can be smoothly smooth like the conventional hollow valve shown in the prior art. Cannot move to the side.

即ち、大径中空部S1内の冷却材19には、上向きの慣性力が作用することで、図3(a)に示すように、円環状の段差部15(大径中空部S1の天井面14b1)に沿って連通部Pの中心(半径方向内側)に向かう流れF1,F2が形成される。そして、環状段差部15に沿って連通部Pの中心(半径方向内側)に向かう流れF2同士が互いに衝突して、連通部Pにおいては、大径中空部S1底面側に向かう流れF3と、小径中空部S2の上方に向かう流れF4が発生する。   In other words, an upward inertia force acts on the coolant 19 in the large-diameter hollow portion S1, and as shown in FIG. 3A, the annular step portion 15 (the ceiling surface of the large-diameter hollow portion S1). Flows F1 and F2 are formed along the line 14b1) toward the center (radially inner side) of the communication portion P. Then, the flows F2 toward the center (radially inner side) of the communication portion P along the annular stepped portion 15 collide with each other, and in the communication portion P, the flow F3 toward the bottom surface side of the large-diameter hollow portion S1 and the small diameter A flow F4 directed upward of the hollow portion S2 is generated.

連通部Pにおいて、大径中空部S1底面側に向かう流れF3は、大径中空部S1底面に沿って半径方向外方から大径中空部S1天井面に回り込み、再び、大径中空部S1の天井面に沿って連通部Pの中心(半径方向内側)に向かう流れF1,F2となる。一方、連通部Pにおいて、小径中空部S2の上方に向かう流れF4,F5は、図3(a)に示すような乱流となる。   In the communication portion P, the flow F3 toward the bottom surface side of the large-diameter hollow portion S1 wraps around the large-diameter hollow portion S1 from the outside in the radial direction along the bottom surface of the large-diameter hollow portion S1, and The flows F1 and F2 are directed toward the center (radially inward) of the communication portion P along the ceiling surface. On the other hand, in the communication part P, the flows F4 and F5 directed upward of the small-diameter hollow part S2 are turbulent flows as shown in FIG.

このように、バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、大径中空部S1内の冷却材19には、矢印F1→F2→F3→F1に示すように、バルブ10の中心軸線Lの周りに縦方向内回りの循環流(対流)が形成され、小径中空部S2内の冷却材19には、F4,F5に示すような乱流が形成される。   Thus, when the valve 10 shifts from the closed state to the open state (when the valve 10 is lowered), the coolant 19 in the large-diameter hollow portion S1 has an arrow F1-> F2-> F3-> F1. As shown in the figure, a circulating flow (convection) inward in the vertical direction is formed around the central axis L of the valve 10, and turbulent flows as shown in F4 and F5 are formed in the coolant 19 in the small diameter hollow portion S2. The

さらには、バルブが閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、小径中空部S2内の冷却材19は、上向きに作用する慣性力により、小径中空部S2内を上方に移動するが、内径の小さいバルブ傘部14寄りの小径中空部S22から内径の大きいバルブ軸端部寄りの小径中空部S21に移動する際に、図3(a)に示すように、段差部17の下流側で乱流F9が形成される。   Furthermore, when the valve shifts from the closed state to the open state (when the valve 10 is lowered), the coolant 19 in the small-diameter hollow portion S2 is moved into the small-diameter hollow portion S2 by the inertial force acting upward. As shown in FIG. 3A, when moving from a small-diameter hollow portion S22 near the valve umbrella portion 14 having a small inner diameter to a small-diameter hollow portion S21 near the valve shaft end portion having a large inner diameter, A turbulent flow F9 is formed on the downstream side of the stepped portion 17.

一方、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)は、図2(b)に示すように、中空部S内の冷却材19には慣性力が下向きに作用する。そして、大径中空部S1中央部の冷却材19に作用する慣性力(下向き)が大径中空部S1周辺領域の冷却材19に作用する慣性力よりも大きいため、図3(b)に示すように、大径中空部S1内の冷却材19には、大径中空部S1の中央部から底面に沿って半径方向外方に向かう流れF6が発生し、同時に、小径中空部S2においても連通部Pを通って下方に向かう流れ(乱流)F7が発生する。大径中空部S1の底面に沿った流れF6は、大径中空部S1の外方から天井面側に回りこみ、大径中空部S1の天井面に沿った流れF8となり、大径中空部S1の中央部(連通部P)において下方に向かう流れF6,F7に合流する。   On the other hand, when the valve 10 shifts from the valve-opened state to the valve-closed state (when the valve 10 is raised), as shown in FIG. 2B, the inertial force is applied downward to the coolant 19 in the hollow portion S. Act on. And since the inertia force (downward) which acts on the coolant 19 of large diameter hollow part S1 center part is larger than the inertial force which acts on the coolant 19 of large diameter hollow part S1 peripheral region, it shows in FIG.3 (b). As described above, the coolant 19 in the large-diameter hollow portion S1 generates a flow F6 directed radially outward from the central portion of the large-diameter hollow portion S1 along the bottom surface, and at the same time, communicates also in the small-diameter hollow portion S2. A downward flow (turbulent flow) F7 is generated through the portion P. The flow F6 along the bottom surface of the large-diameter hollow portion S1 circulates from the outside of the large-diameter hollow portion S1 to the ceiling surface side to become a flow F8 along the ceiling surface of the large-diameter hollow portion S1, and the large-diameter hollow portion S1 In the central portion (communication portion P) of the gas flow merges with the downward flows F6 and F7.

即ち、大径中空部S1内の冷却材19には、矢印F6→F8→F6に示すように、バルブ10の中心軸線Lの周りに縦方向内回りの循環流(対流)が形成され、小径中空部S2内の冷却材19には、矢印F7に示すような乱流が形成される。   That is, in the coolant 19 in the large-diameter hollow portion S1, as shown by arrows F6 → F8 → F6, a circulation flow (convection) inward in the vertical direction is formed around the central axis L of the valve 10, and the small-diameter hollow A turbulent flow as shown by an arrow F7 is formed in the coolant 19 in the part S2.

さらには、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)は、開弁動作によって小径中空部S2内上方にいったん移動した冷却材(液体)19に慣性力が下向きに作用するため、冷却材19は小径中空部S2内を下方に移動するが、内径の大きいバルブ軸端部寄りの小径中空部S21から内径の小さいバルブ傘部寄りの小径中空部S22に移動する際に、図3(b)に示すように、段差部17の下流側で乱流F10が形成される。   Furthermore, when the valve 10 shifts from the open state to the closed state (when the valve 10 is raised), the inertial force is applied to the coolant (liquid) 19 once moved upward in the small-diameter hollow portion S2 by the valve opening operation. Acts downward, the coolant 19 moves downward in the small-diameter hollow portion S2, but from the small-diameter hollow portion S21 near the end of the valve shaft having a large inner diameter to the small-diameter hollow portion S22 near the valve umbrella portion having a small inner diameter. When moving, a turbulent flow F10 is formed on the downstream side of the stepped portion 17, as shown in FIG.

このようにして、バルブ10の開閉動作の際に、中空部S内全体の冷却材19に形成される対流(循環流)や乱流によって、中空部S内の冷却材19全体が積極的に攪拌されて、バルブ10における熱引き効果(熱伝導性)が大幅に改善されている。   In this way, during the opening / closing operation of the valve 10, the entire coolant 19 in the hollow portion S is positively caused by convection (circulation flow) or turbulent flow formed in the coolant 19 in the entire hollow portion S. As a result of stirring, the heat drawing effect (thermal conductivity) in the valve 10 is greatly improved.

また、小径中空部S内の段差部17は、図1に示すように、バルブガイド3aの排気通路6に臨む側の端部3bに略対応する位置に設けられて、内径の大きい軸端部寄り小径中空部S21を軸方向に長く形成することで、バルブ10の耐久性を低下させることなく、バルブ軸部12の冷却材19との接触面積が増えて、バルブ軸部12の熱伝達効率が上がり、小径中空部S21形成壁が薄肉となって、バルブ10も軽量となる。即ち、小径中空部S内の段差部17は、図1の仮想線に示すように、バルブ10が開弁(下降)しきった状態で、排気通路6内とならない所定位置(バルブ軸部12における薄肉の小径中空部S21形成壁が排気通路6内の熱の影響を受け難い所定位置)に設けられている。図1の符号17Xは、バルブ10が開弁(下降)しきった状態での段差部17の位置を示す。   Further, as shown in FIG. 1, the stepped portion 17 in the small-diameter hollow portion S is provided at a position substantially corresponding to the end portion 3b facing the exhaust passage 6 of the valve guide 3a, and has a shaft end portion having a large inner diameter. By forming the small-diameter hollow portion S21 in the axial direction to be long in the axial direction, the contact area between the valve shaft portion 12 and the coolant 19 is increased without reducing the durability of the valve 10, and the heat transfer efficiency of the valve shaft portion 12 is increased. As a result, the small-diameter hollow portion S21 forming wall becomes thin, and the bulb 10 is also light. That is, the stepped portion 17 in the small-diameter hollow portion S has a predetermined position (in the valve shaft portion 12) that does not enter the exhaust passage 6 when the valve 10 is fully opened (lowered) as shown by the phantom line in FIG. A thin-walled small-diameter hollow portion S21 forming wall is provided at a predetermined position that is not easily affected by heat in the exhaust passage 6. Reference numeral 17X in FIG. 1 indicates the position of the stepped portion 17 in a state where the valve 10 is fully opened (lowered).

詳しくは、金属の疲労強度は高温になるほど低下するため、常に排気通路6内にあって高熱にさらされる部位である、バルブ軸部12におけるバルブ傘部14寄りの領域は、疲労強度の低下に耐え得る程度の肉厚に形成する必要がある。一方、熱源から離れ、しかも常にバルブガイド3aに摺接する部位である、バルブ軸部12における軸端部寄りの領域は、冷却材19を介して燃焼室4や排気通路6の熱が伝達されるものの、伝達された熱はバルブガイド3aを介して直ちにシリンダヘッド2に放熱されるため、バルブ傘部14寄りの領域ほどの高温となることがない。   Specifically, since the fatigue strength of the metal decreases as the temperature increases, the region near the valve umbrella portion 14 in the valve shaft portion 12 that is always in the exhaust passage 6 and exposed to high heat reduces the fatigue strength. It must be formed to a thickness that can withstand. On the other hand, in the region near the shaft end portion of the valve shaft portion 12 that is away from the heat source and is always in sliding contact with the valve guide 3 a, heat from the combustion chamber 4 and the exhaust passage 6 is transmitted via the coolant 19. However, since the transmitted heat is immediately radiated to the cylinder head 2 through the valve guide 3a, the temperature does not become as high as that near the valve umbrella portion 14.

即ち、バルブ軸部12における軸端部寄り領域は、バルブ傘部14寄りの領域よりも疲労強度が低下しないため、薄肉に形成(小径中空部S21の内径を大きく形成)しても、強度的(疲労により折損する等の耐久性)には問題がない。   That is, since the fatigue strength does not decrease in the region near the shaft end portion in the valve shaft portion 12 than in the region near the valve umbrella portion 14, even if it is formed thin (the inner diameter of the small-diameter hollow portion S21 is increased), it is strong. There is no problem in (durability such as breakage due to fatigue).

そこで、本実施例では、段差部17の位置を、バルブ10が開弁(下降)しきった状態で排気通路6内とならない、できるだけ下方の、バルブガイド3の下端部3bに略対応する位置とするとともに、小径中空部S21の内径を大きく形成して、第1には、小径中空部S2全体の表面積(冷却材19との接触面積)を増やすことで、バルブ軸部12における熱伝達効率が高められている。第2には、小径中空部S21全体の容積を増やすことで、バルブ10の総重量が軽量化されている。   Therefore, in the present embodiment, the position of the stepped portion 17 is a position substantially corresponding to the lower end portion 3b of the valve guide 3 that is as low as possible and does not enter the exhaust passage 6 when the valve 10 is fully opened (lowered). In addition, the inner diameter of the small-diameter hollow portion S21 is increased, and first, the surface area (contact area with the coolant 19) of the entire small-diameter hollow portion S2 is increased, so that the heat transfer efficiency in the valve shaft portion 12 is increased. Has been enhanced. Secondly, the total weight of the valve 10 is reduced by increasing the volume of the entire small-diameter hollow portion S21.

次に、中空ポペットバルブ10の製造工程を、図4に基づいて説明する。   Next, the manufacturing process of the hollow poppet valve 10 will be described with reference to FIG.

まず、図4(a)に示すように、熱間鍛造工程により、円錐台形状の凹部14bを設けた傘部外殻14aと軸部12aとを一体的に形成したシェル11を成形する。傘部外殻14aにおける円錐台形状の凹部14bの底面14b1は、軸部12(シェル11の中心軸線L)に対し直交する平面で形成されている。   First, as shown in FIG. 4A, a shell 11 in which an umbrella outer shell 14a provided with a truncated cone-shaped recess 14b and a shaft 12a are integrally formed is formed by a hot forging process. A bottom surface 14b1 of the truncated conical recess 14b in the umbrella outer shell 14a is formed by a plane orthogonal to the shaft portion 12 (the central axis L of the shell 11).

熱間鍛造工程としては、金型を順次取り替える押し出し鍛造で、耐熱鋼製金属ブロックからシェル11を製造する押し出し鍛造、またはアップセッタで耐熱鋼製棒材の端部に球状部を据え込んだ後に、金型を用いてシェル11(の傘部外殻14a)を鍛造する据え込み鍛造のいずれであってもよい。なお、熱間鍛造工程において、シェル11の傘部外殻14aと軸部12aとの間には、R形状フィレット部13が形成され、傘部外殻14aの外周面には、テーパ形状フェース部16が形成される。   The hot forging process is extrusion forging in which the dies are sequentially replaced, extrusion forging for manufacturing the shell 11 from a heat-resistant steel metal block, or after installing a spherical portion at the end of the heat-resistant steel bar with an upsetter. Any of upsetting forging that forges the shell 11 (the umbrella outer shell 14a) using a mold may be used. In the hot forging process, an R-shaped fillet portion 13 is formed between the umbrella outer shell 14a and the shaft portion 12a of the shell 11, and a tapered face portion is formed on the outer peripheral surface of the umbrella outer shell 14a. 16 is formed.

次に、図4(b)に示すように、傘部外殻14aの凹部14bが上向きとなるようにシェル11を配置し、傘部外殻14aの凹部14bの底面14b1から軸部12aにかけて小径中空部S22に相当する孔14eをドリル加工により穿設する(孔穿設工程)。   Next, as shown in FIG. 4 (b), the shell 11 is arranged so that the concave portion 14b of the umbrella outer shell 14a faces upward, and the diameter decreases from the bottom surface 14b1 of the concave portion 14b of the umbrella outer shell 14a to the shaft portion 12a. The hole 14e corresponding to the hollow part S22 is drilled by drilling (hole drilling step).

孔穿設工程により、大径中空部S1を構成する傘部外殻14aの凹部14bと、小径中空部S22を構成する軸部12a側の孔14eが連通することで、凹部14bと孔14eの連通部には、凹部14b側から見て庇状の環状段差部15が形成される。   By the hole drilling step, the concave portion 14b of the umbrella outer shell 14a constituting the large-diameter hollow portion S1 and the hole 14e on the shaft portion 12a side constituting the small-diameter hollow portion S22 communicate with each other, so that the concave portion 14b and the hole 14e In the communication portion, a bowl-shaped annular step portion 15 is formed as viewed from the concave portion 14b side.

次に、図4(c)に示すように、シェル11の軸端部側から、小径中空部S21に相当する孔14fをドリル加工により穿設する(孔穿設工程)。   Next, as shown in FIG. 4 (c), a hole 14f corresponding to the small-diameter hollow portion S21 is drilled from the shaft end side of the shell 11 (hole drilling step).

次に、図4(d)に示すように、シェル11の軸端部に軸端部材12bを軸接する(軸端部材軸接工程)。   Next, as shown in FIG. 4D, the shaft end member 12b is axially contacted with the shaft end portion of the shell 11 (shaft end member axial contact step).

次に、図4(e)に示すように、シェル11の傘部外殻14aの凹部14bの孔14eに冷却材(固体)19を所定量挿入する(冷却材装填工程)。   Next, as shown in FIG. 4 (e), a predetermined amount of coolant (solid) 19 is inserted into the hole 14e of the recess 14b of the umbrella outer shell 14a of the shell 11 (coolant loading step).

なお、冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)は、常温下では固体であるので、冷却材(固体)19を、シェル11の孔14eに挿入可能な所定の太さおよび長さをもった丸棒材にあらかじめ加工しておくことで、図4(e)に示す冷却材装填工程において、冷却材(固体)19をシェル11の孔14eにスムーズに挿入できる。   Since the zinc-aluminum alloy (Zn-22 wt% Al) that is the coolant 19 is solid at room temperature, the coolant (solid) 19 can be inserted into the hole 14e of the shell 11 with a predetermined thickness and By processing in advance into a round bar having a length, the coolant (solid) 19 can be smoothly inserted into the hole 14e of the shell 11 in the coolant loading step shown in FIG.

最後に、図4(f)に示すように、大気雰囲気下で、シェル11の傘部外殻14aの凹部14bの開口部14cにキャップ18を溶接(例えば、抵抗溶接)して、バルブ10の中空部Sを密閉する(中空部密閉工程)。なお、キャップ18の溶接は、抵抗溶接に代えて、電子ビーム溶接やレーザー溶接等を採用してもよい。   Finally, as shown in FIG. 4 (f), a cap 18 is welded (for example, resistance welding) to the opening 14c of the concave portion 14b of the umbrella outer shell 14a of the shell 11 in an air atmosphere, so that the valve 10 The hollow part S is sealed (hollow part sealing step). The welding of the cap 18 may employ electron beam welding or laser welding instead of resistance welding.

なお、図4(e)に示す冷却材装填工程と図4(f)に示す中空部密閉工程は、バルブ10の中空部Sに大気(空気)とともに冷却材(固体)19を装填する工程であるが、冷却材として金属ナトリウムを用いる従来の中空ポペットバルブ製造工程では、冷却材(金属ナトリウム)の酸化を防止するために、冷却材装填工程および中空部密閉工程を行う環境をアルゴンガスなどの不活性ガス雰囲気に保持する必要があって、それだけ設備や機器が複雑で、しかもコストもかかるのに対し、本実施例では、冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)が酸化しにくいため、図4(e)に示す冷却材装填工程および図4(f)に示す中空部密閉工程を大気雰囲気下において行えばよく、それだけ設備や機器が簡略化され、しかもコストもかからない。   Note that the coolant loading step shown in FIG. 4 (e) and the hollow portion sealing step shown in FIG. 4 (f) are steps of loading the coolant (solid) 19 together with the atmosphere (air) into the hollow portion S of the valve 10. However, in the conventional hollow poppet valve manufacturing process using metallic sodium as the coolant, the environment in which the coolant loading process and the hollow portion sealing process are performed is controlled by argon gas or the like to prevent oxidation of the coolant (metal sodium). In the present embodiment, the zinc-aluminum alloy (Zn-22wt% Al), which is the coolant 19, is used. Since it is difficult to oxidize, the coolant loading step shown in FIG. 4 (e) and the hollow portion sealing step shown in FIG. 4 (f) need only be performed in an air atmosphere, and the facilities and equipment are simplified and the cost does not increase.

図5は、本発明の第2の実施例である中空ポペットバルブを示す。   FIG. 5 shows a hollow poppet valve according to a second embodiment of the present invention.

前記した第1の実施例の中空ポペットバルブ10では、バルブ傘部14内の大径中空部S1が円錐台形状に構成されるとともに、バルブ軸部12内の小径中空部S2が大径中空部S1の円形の天井面に直交するように連通しているが、この第2の実施例の中空ポペットバルブ10Aでは、バルブ軸部12内の小径中空部S2が滑らかな曲線領域(内径が徐々に変わる遷移領域)Xを介してバルブ傘部14内の略円錐形状の大径中空部S1’に連通している。   In the hollow poppet valve 10 of the first embodiment described above, the large-diameter hollow portion S1 in the valve umbrella portion 14 is configured in a truncated cone shape, and the small-diameter hollow portion S2 in the valve shaft portion 12 is a large-diameter hollow portion. In the hollow poppet valve 10A of the second embodiment, the small-diameter hollow portion S2 in the valve shaft portion 12 has a smooth curved region (the inner diameter gradually increases). The change transition region) X communicates with the substantially conical large-diameter hollow portion S1 ′ in the valve umbrella portion 14 via X.

即ち、符号11Aは、円筒形状の軸部12aの一端側に傘部外殻14a’が一体的に形成されたバルブ中間品であるシェルで、シェル11Aの傘部外殻14a’には、軸部12a内の小径中空部S2に滑らかに連通する大径中空部S1’を画成する略円錐形状の凹部14b’が設けられている。   That is, reference numeral 11A denotes a shell that is a valve intermediate product in which an umbrella outer shell 14a ′ is integrally formed on one end side of a cylindrical shaft portion 12a, and the umbrella outer shell 14a ′ of the shell 11A has a shaft A substantially conical recess 14b ′ is provided that defines a large-diameter hollow portion S1 ′ that smoothly communicates with the small-diameter hollow portion S2 in the portion 12a.

その他は、前記した第1の実施例の中空ポペットバルブ10と同一であり、同一の符号を付すことで、その重複した説明は省略する。   Others are the same as those of the hollow poppet valve 10 of the first embodiment described above, and the same reference numerals are given to omit redundant description.

この中空ポペットバルブ10Aにおいても、前記した第1の実施例の中空ポペットバルブ10と同様、バルブ10Aの開閉動作(上下方向の動作)に伴って、冷却材(液体)19である亜鉛−アルミ合金(Zn-22wt%Al)が小径中空部S2内を軸方向に移動する際に段差部17の近傍に乱流(図示せず)が発生し、この乱流が小径中空部S2内の冷却材(液体)19を攪拌し、これによって中空部S’内全体の冷却材19の少なくとも上層部から中層部が攪拌されて、中空部S内の冷却材19による熱伝達が活発となることで、バルブ10Aの熱引き効果が改善されている。   Also in this hollow poppet valve 10A, as with the hollow poppet valve 10 of the first embodiment described above, a zinc-aluminum alloy which is a coolant (liquid) 19 in accordance with the opening / closing operation (vertical operation) of the valve 10A. When (Zn-22wt% Al) moves in the small diameter hollow portion S2 in the axial direction, a turbulent flow (not shown) is generated in the vicinity of the stepped portion 17, and this turbulent flow is a coolant in the small diameter hollow portion S2. (Liquid) 19 is stirred, whereby the middle layer portion is stirred from at least the upper layer portion of the coolant 19 in the entire hollow portion S ′, and heat transfer by the coolant 19 in the hollow portion S is activated, The heat drawing effect of the valve 10A is improved.

また、前記した第1,第2の実施例では、バルブ軸端部寄りの小径中空部S21の内径を、バルブ傘部14寄り小径中空部S22の内径よりも大きく形成して、小径中空部S2内の軸方向所定位置に円環状の段差部17が設けられているが、図6に示す第3の実施例のように、バルブ軸部12内の小径中空部S2が軸線方向に一定の内径に形成されるとともに、小径中空部S2の所定位置まで冷却材19である亜鉛−アルミ合金(Zn-22wt%Al)が装填されている。   In the first and second embodiments described above, the inner diameter of the small-diameter hollow portion S21 near the valve shaft end portion is formed larger than the inner diameter of the small-diameter hollow portion S22 near the valve umbrella portion 14, and the small-diameter hollow portion S2 is formed. An annular stepped portion 17 is provided at a predetermined position in the axial direction, but the small-diameter hollow portion S2 in the valve shaft portion 12 has a constant inner diameter in the axial direction as in the third embodiment shown in FIG. And a zinc-aluminum alloy (Zn-22 wt% Al) as the coolant 19 is loaded up to a predetermined position of the small-diameter hollow portion S2.

その他は、前記第1の実施例と同一であるので、その重複した説明は省略する。   Others are the same as those in the first embodiment, and a duplicate description thereof is omitted.

また、図7に、本発明の第4の実施例を示す。   FIG. 7 shows a fourth embodiment of the present invention.

前記した第1〜第3の実施例では、軸部12側の小径中空部S2が傘部14側の大径中空部S1,S’1に連通する構造、即ち、軸部12側の中空部S2と傘部14側の中空部S1,S’1の内径が異なる構造であったが、第4の実施例の中空バルブ10Cでは、軸部12から傘部14にかけて設けられた中空部S”が一定の内径に形成されている。   In the first to third embodiments described above, the structure in which the small-diameter hollow portion S2 on the shaft portion 12 side communicates with the large-diameter hollow portions S1 and S′1 on the umbrella portion 14 side, that is, the hollow portion on the shaft portion 12 side. The hollow portions S1 and S′1 on the umbrella portion 14 side have different inner diameters, but in the hollow valve 10C of the fourth embodiment, the hollow portion S ″ provided from the shaft portion 12 to the umbrella portion 14 is used. Is formed to have a constant inner diameter.

その他は、前記した第1の実施例の中空バルブ10と同一であり、同一の符号を付すことで、重複する説明は省略する。   Others are the same as those of the hollow valve 10 of the first embodiment described above, and the same reference numerals are given to omit redundant description.

また、前記した第1〜第4の実施例では、バルブ10,10A,10B,10Cの中空部S,S’,S”に装填する冷却材19が、亜鉛−アルミ合金(Zn-22wt%Al)で構成されていたが、冷却材19はZn-22wt%Alに限るものではなく、亜鉛とアルミニウムの成分比(重量比)を変えたものでもよい。   In the first to fourth embodiments, the coolant 19 loaded in the hollow portions S, S ′, S ″ of the valves 10, 10A, 10B, 10C is made of zinc-aluminum alloy (Zn-22wt% Al However, the coolant 19 is not limited to Zn-22 wt% Al, and may be one in which the component ratio (weight ratio) of zinc and aluminum is changed.

即ち、中空部S,S’,S”に装填されているZn-22wt%Alは、融点500℃、熱伝導率135W/m/K、密度5.14g/cm3であるが、バルブの熱引き効果をいっそう改善するには、装填する「亜鉛−アルミ合金」の熱伝導率はより高い方が望ましく、融点もより低い方が望ましく、また、バルブをいっそう軽量化するには、密度(比重)はより小さいが望ましい。That is, Zn-22wt% Al loaded in the hollow portions S, S ', S "has a melting point of 500 ° C, a thermal conductivity of 135 W / m / K, and a density of 5.14 g / cm 3 , In order to further improve the effect, the thermal conductivity of the “zinc-aluminum alloy” to be loaded is preferably higher, the melting point is preferably lower, and in order to further reduce the weight of the valve, the density (specific gravity) Is smaller but desirable.

図9は、「亜鉛−アルミ合金」の平衡状態図を示し、図では、右に行くほどアルミニウムの含有量が少なく(亜鉛の含有量が多く)、左に行くほどアルミニウムの含有量が多い(亜鉛の含有量が少ない)。この図に示すように、「亜鉛−アルミ合金」の融点は、その成分比(重量比)によって変化する。   FIG. 9 shows an equilibrium diagram of “zinc-aluminum alloy”. In the figure, the aluminum content decreases toward the right (the zinc content increases), and the aluminum content increases toward the left ( Low zinc content). As shown in this figure, the melting point of “zinc-aluminum alloy” varies depending on the component ratio (weight ratio).

詳しくは、「亜鉛−アルミ合金」の共晶点(共晶温度)は382℃で、この共晶点に対応する「亜鉛−アルミ合金」の配合比(重量比)は、アルミニウム約5wt%(亜鉛約95wt%)である。そして、アルミニウムの含有量が100〜5wt%(亜鉛の含有量が0〜95wt%)では、アルミニウムの含有量が少ない(亜鉛の含有量が多い)ほど、融点は660℃から382℃まで徐々に低くなる。一方、アルミニウムの含有量が5〜0wt%(亜鉛の含有量が95〜100wt%)では、アルミニウムの含有量が少ない(亜鉛の含有量が多い)ほど、融点は382℃から419℃まで徐々に高くなる。   Specifically, the eutectic point (eutectic temperature) of “zinc-aluminum alloy” is 382 ° C., and the blending ratio (weight ratio) of “zinc-aluminum alloy” corresponding to this eutectic point is about 5 wt% of aluminum ( About 95 wt% zinc). When the aluminum content is 100 to 5 wt% (zinc content is 0 to 95 wt%), the melting point gradually increases from 660 ° C to 382 ° C as the aluminum content decreases (the zinc content increases). Lower. On the other hand, when the aluminum content is 5 to 0 wt% (zinc content is 95 to 100 wt%), the melting point gradually increases from 382 ° C to 419 ° C as the aluminum content decreases (the zinc content increases). Get higher.

また、「亜鉛−アルミ合金」の熱伝導率は、アルミニウムと亜鉛のそれぞれの熱伝導率(図8参照)からして、アルミニウムの含有量が多い(亜鉛の含有量が少ない)ほど、高くなる。一方、「亜鉛−アルミ合金」の密度(比重)は、アルミニウムと亜鉛のそれぞれの密度(比重)(図8参照)からして、アルミニウムの含有量が多い(亜鉛の含有量が少ない)ほど、低くなる。   Further, the thermal conductivity of the “zinc-aluminum alloy” is higher as the aluminum content is higher (the zinc content is lower) from the thermal conductivity of aluminum and zinc (see FIG. 8). . On the other hand, the density (specific gravity) of “zinc-aluminum alloy” is higher as the aluminum content is higher (the zinc content is lower) from the density (specific gravity) of aluminum and zinc (see FIG. 8). Lower.

したがって、熱引き効果および軽量化というニーズに合致する融点,熱伝導率および密度(比重)となるように成分比(重量比)を調整した「亜鉛−アルミ合金」を、バルブの中空部に装填するようにしてもよい。   Therefore, "Zinc-aluminum alloy" with the component ratio (weight ratio) adjusted so that the melting point, thermal conductivity, and density (specific gravity) meet the needs of the heat-drawing effect and weight reduction is loaded into the hollow part of the valve. You may make it do.

10,10A,10B,10C 中空ポペットバルブ
11,11A 傘部外殻と軸部を一体的に形成したシェル
12 バルブ軸部
12a 軸部
12b 軸端部材
14 バルブ傘部
14a,14a’ 傘部外殻
14b,14b’ 傘部外殻の凹部
14b1 大径中空部の円形の天井面
14b2 傘部外殻の円錐台形状の凹部内周面
15 大径中空部の天井面における小径中空部の開口周縁部である庇状の環状段差部
17 円環状の段差部
18 キャップ
19 冷却材
L バルブの中心軸線
S,S’,S” 中空部
S1,S1’ 大径中空部
S2 直線状の小径中空部
S21 軸端部寄りの小径中空部
S22 傘部寄りの小径中空部
P 連通部
F1→F2→F3;F6→F8 縦方向内回りの循環流
10, 10A, 10B, 10C Hollow poppet valve 11, 11A Shell 12 in which the outer shell and the shaft portion are integrally formed 12 Valve shaft portion 12a Shaft portion 12b Shaft end member 14 Valve umbrella portion 14a, 14a 'Umbrella portion outer shell 14b, 14b 'Umbrella outer shell concave part 14b1 Large-diameter hollow circular ceiling surface 14b2 Umbrella outer shell frustoconical concave inner peripheral surface 15 Small-diameter hollow opening peripheral edge of large-diameter hollow part An annular stepped portion 17 that is an annular stepped portion 18 Cap 19 Coolant L Central axis S, S ', S "of the valve Hollow portion S1, S1' Large-diameter hollow portion S2 Linear small-diameter hollow portion S21 Axis Small-diameter hollow portion S22 near the end Small-diameter hollow portion P near the umbrella portion Communication portion F1->F2->F3;F6-> F8 Circulating flow in the longitudinal direction

Claims (4)

軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に冷却材である亜鉛−アルミ合金が装填されたことを特徴とする中空ポペットバルブ。   A hollow portion is formed from the umbrella portion of the poppet valve integrally formed with the umbrella portion on one end side of the shaft portion to the shaft portion, and a zinc-aluminum alloy as a coolant is loaded in the hollow portion. Hollow poppet valve. 前記中空部には、大気(空気)とともに亜鉛−アルミ合金が装填されたことを特徴とする請求項1に記載の中空ポペットバルブ。   The hollow poppet valve according to claim 1, wherein the hollow portion is filled with a zinc-aluminum alloy together with air (air). 前記傘部内には、該傘部の外形に倣うテーパ形状の外周面を備えた円錐台形状の大径中空部が設けられ、前記軸部内には、前記円錐台形状の大径中空部の天井面に直交するように連通する直線状の小径中空部が設けられ、前記大径中空部の天井面を形成する、前記小径中空部の前記大径中空部への開口周縁部が、前記バルブの中心軸線に対し直交する平面で構成されて、前記バルブが軸方向に往復動作する際に、前記大径中空部内の亜鉛−アルミ合金(液体)に前記バルブの中心軸線周りに縦方向内回りの循環流(対流)が形成されることを特徴とする請求項1または2に記載の中空ポペットバルブ。   A frustoconical large-diameter hollow part having a tapered outer peripheral surface following the outer shape of the umbrella part is provided in the umbrella part, and the ceiling of the frustoconical large-diameter hollow part is provided in the shaft part. A linear small-diameter hollow portion that communicates perpendicularly to the surface is provided, and an opening peripheral portion of the small-diameter hollow portion to the large-diameter hollow portion that forms a ceiling surface of the large-diameter hollow portion is provided on the valve. Consists of a plane perpendicular to the central axis, and when the valve reciprocates in the axial direction, the zinc-aluminum alloy (liquid) in the large-diameter hollow portion circulates in the longitudinal direction around the central axis of the valve. The hollow poppet valve according to claim 1, wherein a flow (convection) is formed. 前記バルブ軸端部寄りの小径中空部の内径が、前記バルブ傘部寄り小径中空部の内径よりも大きく形成されて、前記小径中空部内の軸方向所定位置に円環状の段差部が設けられるとともに、前記段差部を越えた位置まで前記亜鉛−アルミ合金が装填されたことを特徴とする請求項1〜3のいずれかに記載の中空ポペットバルブ。   The inner diameter of the small-diameter hollow portion near the valve shaft end is formed larger than the inner diameter of the small-diameter hollow portion near the valve umbrella, and an annular step portion is provided at a predetermined axial position in the small-diameter hollow portion. The hollow poppet valve according to any one of claims 1 to 3, wherein the zinc-aluminum alloy is loaded up to a position beyond the stepped portion.
JP2014539748A 2012-10-02 2013-10-01 Hollow poppet valve Expired - Fee Related JP6251177B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/075452 2012-10-02
PCT/JP2012/075452 WO2014054113A1 (en) 2012-10-02 2012-10-02 Hollow poppet valve
PCT/JP2013/057133 WO2014141416A1 (en) 2013-03-14 2013-03-14 Hollow poppet valve
JPPCT/JP2013/057133 2013-03-14
PCT/JP2013/076652 WO2014054613A1 (en) 2012-10-02 2013-10-01 Hollow poppet valve

Publications (2)

Publication Number Publication Date
JPWO2014054613A1 true JPWO2014054613A1 (en) 2016-08-25
JP6251177B2 JP6251177B2 (en) 2017-12-20

Family

ID=50434939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014539748A Expired - Fee Related JP6251177B2 (en) 2012-10-02 2013-10-01 Hollow poppet valve

Country Status (2)

Country Link
JP (1) JP6251177B2 (en)
WO (1) WO2014054613A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170384A1 (en) * 2014-05-08 2015-11-12 日鍛バルブ株式会社 Hollow poppet valve
US9683467B2 (en) * 2014-12-10 2017-06-20 General Electric Company System and method of cooling valve with material in cavity
EP3667036B1 (en) 2018-03-20 2022-08-31 Nittan Corporation Hollow exhaust poppet valve
JP7190506B2 (en) 2018-11-12 2022-12-15 株式会社Nittan Manufacturing method of engine poppet valve
EP4129525A4 (en) 2020-03-30 2023-06-14 Nittan Corporation Method for manufacturing engine poppet valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB131662A (en) *
JPS5020544B1 (en) * 1969-03-28 1975-07-16
JPS5697788A (en) * 1979-12-28 1981-08-06 Nippon Sanso Kk Heat exchanger for high-pressure fluid
JPH0323607U (en) * 1989-07-17 1991-03-12
JPH05106413A (en) * 1991-10-18 1993-04-27 Mitsubishi Motors Corp Intake valve
JPH06159953A (en) * 1992-11-20 1994-06-07 Takata Kk Latent-heat storage device
JP2003314264A (en) * 2002-04-25 2003-11-06 Aisin Takaoka Ltd Catalytic converter for purifying exhaust gas
JP2004301124A (en) * 2003-03-28 2004-10-28 Eaton Corp Composite lightweight engine poppet valve
JP2005036697A (en) * 2003-07-18 2005-02-10 Fuji Heavy Ind Ltd Internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522241B2 (en) * 1985-09-06 1996-08-07 石川島播磨重工業株式会社 Temperature control device for poppet type valve
JP2811602B2 (en) * 1990-09-13 1998-10-15 フジオーゼックス株式会社 Hollow valves for internal combustion engines
JP2547383Y2 (en) * 1990-11-19 1997-09-10 フジオーゼックス株式会社 Hollow valves for internal combustion engines
JP3177889B2 (en) * 1998-04-20 2001-06-18 フジオーゼックス株式会社 Hollow valves for internal combustion engines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB131662A (en) *
JPS5020544B1 (en) * 1969-03-28 1975-07-16
JPS5697788A (en) * 1979-12-28 1981-08-06 Nippon Sanso Kk Heat exchanger for high-pressure fluid
JPH0323607U (en) * 1989-07-17 1991-03-12
JPH05106413A (en) * 1991-10-18 1993-04-27 Mitsubishi Motors Corp Intake valve
JPH06159953A (en) * 1992-11-20 1994-06-07 Takata Kk Latent-heat storage device
JP2003314264A (en) * 2002-04-25 2003-11-06 Aisin Takaoka Ltd Catalytic converter for purifying exhaust gas
JP2004301124A (en) * 2003-03-28 2004-10-28 Eaton Corp Composite lightweight engine poppet valve
JP2005036697A (en) * 2003-07-18 2005-02-10 Fuji Heavy Ind Ltd Internal combustion engine

Also Published As

Publication number Publication date
WO2014054613A1 (en) 2014-04-10
JP6251177B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6251177B2 (en) Hollow poppet valve
JP6072053B2 (en) Hollow poppet valve
JP6205437B2 (en) Hollow poppet valve
WO2014167694A1 (en) Hollow poppet valve
JP6033402B2 (en) Hollow poppet valve
JP2017535714A (en) piston
JP6029742B2 (en) Hollow poppet valve
JP6063558B2 (en) Hollow poppet valve
JP6131318B2 (en) Hollow poppet valve
WO2015170384A1 (en) Hollow poppet valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6251177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees