JP6029742B2 - Hollow poppet valve - Google Patents

Hollow poppet valve Download PDF

Info

Publication number
JP6029742B2
JP6029742B2 JP2015506455A JP2015506455A JP6029742B2 JP 6029742 B2 JP6029742 B2 JP 6029742B2 JP 2015506455 A JP2015506455 A JP 2015506455A JP 2015506455 A JP2015506455 A JP 2015506455A JP 6029742 B2 JP6029742 B2 JP 6029742B2
Authority
JP
Japan
Prior art keywords
valve
hollow portion
diameter hollow
coolant
umbrella
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015506455A
Other languages
Japanese (ja)
Other versions
JPWO2014147759A1 (en
Inventor
摂 常石
摂 常石
賢 富島
賢 富島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittan Valve Co Ltd
Original Assignee
Nittan Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittan Valve Co Ltd filed Critical Nittan Valve Co Ltd
Application granted granted Critical
Publication of JP6029742B2 publication Critical patent/JP6029742B2/en
Publication of JPWO2014147759A1 publication Critical patent/JPWO2014147759A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group

Description

ポペットバルブの傘部から軸部にかけて形成された中空部に冷却材が装填された中空ポペットバルブに係り、特に、バルブ傘部の大径中空部とバルブ軸部の小径中空部が連通する中空ポペットバルブに関する。   The present invention relates to a hollow poppet valve in which a coolant is charged in a hollow portion formed from an umbrella portion to a shaft portion of the poppet valve, and in particular, a hollow poppet in which a large-diameter hollow portion of the valve umbrella portion and a small-diameter hollow portion of the valve shaft portion communicate with each other. Regarding valves.

下記特許文献1、2等には、軸端部に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、バルブの母材よりも熱伝導率の高い冷却材(例えば、金属ナトリウム、融点約98℃)が不活性ガスとともに中空部に装填された中空ポペットバルブが記載されている。   In the following Patent Documents 1 and 2 and the like, a hollow portion is formed from the umbrella portion to the shaft portion of the poppet valve in which the umbrella portion is integrally formed at the shaft end portion, and the coolant has a higher thermal conductivity than the base material of the valve. A hollow poppet valve is described in which (for example, metallic sodium, melting point about 98 ° C.) is loaded into the hollow part together with an inert gas.

バルブの中空部は、傘部内から軸部内に延びており、それだけ多くの量の冷却材を中空部に装填できるので、バルブの熱伝導性(以下、バルブの熱引き効果という)を高めることができる。   Since the hollow portion of the valve extends from the inside of the umbrella portion into the shaft portion, and so much coolant can be loaded into the hollow portion, the thermal conductivity of the valve (hereinafter referred to as the heat extraction effect of the valve) can be improved. it can.

即ち、エンジンの駆動によって燃焼室は高温になるが、燃焼室の温度が高すぎると、ノッキングが発生して所定のエンジン出力が得られず、燃費の悪化(エンジンの性能の低下)につながる。そこで、燃焼室の温度を下げるために、燃焼室で発生する熱をバルブを介して積極的に熱伝導させる方法(バルブの熱引き効果を上げる方法)として、冷却材を不活性ガスとともに中空部に装填した種々の中空バルブが提案されている。   That is, although the combustion chamber becomes hot due to the driving of the engine, if the temperature of the combustion chamber is too high, knocking occurs and a predetermined engine output cannot be obtained, leading to deterioration of fuel consumption (deterioration of engine performance). Therefore, as a method of actively conducting heat generated in the combustion chamber through the valve in order to lower the temperature of the combustion chamber (a method for increasing the heat-sucking effect of the valve), the coolant is hollowed together with the inert gas. Various hollow valves loaded in the box have been proposed.

WO2010/041337WO2010 / 041337 特開2011-179328JP2011-179328 実開平2-124022-12402

従来の冷媒入り中空ポペットバルブ(特許文献1,2)では、傘部内の円盤状大径中空部と軸部内の直線状小径中空部間の連通部が滑らかな曲線領域(内径が徐々に変わる遷移領域)で構成されているが、この連通部が滑らかに連続する形状であることで、バルブの開閉動作(バルブの軸方向への往復動作)の際に冷却材(液体)が封入ガスとともに大径中空部と小径中空部間をスムーズに移動できて、バルブの熱引き効果が上がると考えられている。   In the conventional hollow poppet valve with refrigerant (Patent Documents 1 and 2), the communication portion between the disk-shaped large-diameter hollow portion in the umbrella portion and the linear small-diameter hollow portion in the shaft portion is a smooth curved region (the inner diameter gradually changes). However, when the valve is opened and closed (reciprocating in the axial direction of the valve), the coolant (liquid) is large together with the enclosed gas. It is considered that the diameter of the hollow portion can be smoothly moved between the small-diameter hollow portion and the small-diameter hollow portion, so that the heat drawing effect of the valve is improved.

然るに、従来技術(特許文献1,2)では、バルブの開閉動作に合わせて大径中空部と小径中空部間で冷却材(液体)がスムーズに移動できることから、中空部内の冷却材(液体)は、上層部,中層部,下層部が攪拌されることなく互いに上下関係を保持したままの状態で軸方向に移動している。   However, in the prior art (Patent Documents 1 and 2), since the coolant (liquid) can move smoothly between the large-diameter hollow portion and the small-diameter hollow portion in accordance with the opening / closing operation of the valve, the coolant (liquid) in the hollow portion Are moving in the axial direction in a state where the upper layer portion, middle layer portion, and lower layer portion are maintained in a vertical relationship without being stirred.

このため、熱源に近い側の冷却材下層部における熱が冷却材中層部,上層部に積極的に伝達されず、熱引き効果(熱伝導性)が十分に発揮されない、という問題があった。   For this reason, there is a problem that heat in the lower layer portion of the coolant close to the heat source is not positively transmitted to the middle layer portion and the upper layer portion of the coolant, and the heat drawing effect (thermal conductivity) is not sufficiently exhibited.

これに対し、特許文献3では、バルブ軸部内の小径中空部がバルブ傘部内の円盤形状(円柱形状)の大径中空部の天井面に直交して連通する構造で、バルブが軸方向に往復動作する際の冷却材に作用する慣性力に起因して、大径中空部の外周面に沿って上方に向かう冷却材の流れが発生し、大径中空部内の冷却材に縦方向内回りの旋回流(以下、この縦方向の旋回流をタンブル流という)が形成されて、冷却材が攪拌されるので、バルブの熱引き効果が上がる、と推定される。   On the other hand, in Patent Document 3, the small-diameter hollow portion in the valve shaft portion communicates perpendicularly to the ceiling surface of the disk-shaped (cylindrical) large-diameter hollow portion in the valve umbrella portion, and the valve reciprocates in the axial direction. Due to the inertial force acting on the coolant during operation, the coolant flows upward along the outer peripheral surface of the large-diameter hollow portion, and the coolant in the large-diameter hollow portion turns inward in the longitudinal direction. It is presumed that since the flow (hereinafter, this vertical swirl flow is called a tumble flow) is formed and the coolant is agitated, the heat-sucking effect of the valve is increased.

しかし、特許文献3では、大径中空部の外周面(傘部外殻の凹部の内周面)が円筒形であるため、バルブが軸方向に往復動作する際に発生する、大径中空部の外周面に沿って上方に向かう冷却材の流れは、非常に弱い。   However, in Patent Document 3, since the outer peripheral surface of the large-diameter hollow portion (the inner peripheral surface of the concave portion of the umbrella outer shell) is cylindrical, the large-diameter hollow portion generated when the valve reciprocates in the axial direction. The flow of the coolant upward along the outer peripheral surface is very weak.

即ち、発明者が検討したところ、例えば、自動車の加減速時やコーナリング時には、バルブ中空部内の冷却材に作用する慣性力の作用方向は上下方向とは異なる種々の方向となるので、バルブが軸方向に往復動作する際に、大径中空部内の外周面の全周にわたって上方に向かう冷却材の流れが必ず発生するとは限らない。   That is, the inventors have examined that, for example, during acceleration / deceleration or cornering of an automobile, the direction of the inertial force acting on the coolant in the hollow portion of the valve is different from the vertical direction. When the reciprocating operation is performed in the direction, the coolant flow does not necessarily occur upward over the entire outer periphery of the large-diameter hollow portion.

しかも、軸荷重が伝達されるバルブ軸端部と軸荷重伝達部材(例えば、ロッカアーム式動弁機構では、ロッカアーム、直動式動弁機構では、タペット)との摺接面に発生する回転摩擦トルクの大きさによっては、バルブが周方向に回転しつつ軸方向に上下動する場合もあり、そのような場合は、バルブが軸方向に往復動作する際に、大径中空部の外周面に沿って周方向に向かう流れも発生し、その分、大径中空部の外周面に沿って上方に向かう冷却材の流れが弱くなる。   Moreover, the rotational friction torque generated on the sliding contact surface between the valve shaft end portion to which the shaft load is transmitted and the shaft load transmission member (for example, a rocker arm in the rocker arm type valve mechanism, or a tappet in the direct acting type valve mechanism). Depending on the size of the valve, the valve may move up and down in the axial direction while rotating in the circumferential direction. In such a case, when the valve reciprocates in the axial direction, it follows the outer circumferential surface of the large-diameter hollow portion. Accordingly, a flow in the circumferential direction is also generated, and accordingly, the flow of the coolant upward is weakened along the outer peripheral surface of the large-diameter hollow portion.

このように、特許文献3では、バルブが軸方向に往復動作する際に、大径中空部内の冷却材に内回りのタンブル流がスムーズに形成されるとは限らず、冷却材が十分に攪拌されず、バルブの熱引き効果を大きく改善することはできない。   As described above, in Patent Document 3, when the valve reciprocates in the axial direction, the inner tumble flow is not always smoothly formed in the coolant in the large-diameter hollow portion, and the coolant is sufficiently stirred. Therefore, the heat-sucking effect of the valve cannot be greatly improved.

そこで、発明者は、大径中空部の外周面を画成する傘部外殻の凹部の内周面に周方向等間隔に縦リブを設けて、バルブが軸方向に往復動作する際に、大径中空部外周面に沿った上方に向かう冷却材の流れの発生を助長してやれば、大径中空部内の冷却材において内回りのタンブル流の形成が促進される、と考えた。   Therefore, the inventor provided vertical ribs at equal intervals in the circumferential direction on the inner circumferential surface of the concave portion of the umbrella outer shell that defines the outer circumferential surface of the large-diameter hollow portion, and when the valve reciprocates in the axial direction, It was considered that the formation of an inner tumble flow was promoted in the coolant in the large-diameter hollow portion if the generation of the coolant flowing upward along the outer peripheral surface of the large-diameter hollow portion was promoted.

本発明は、前記した従来技術の問題点および発明者の知見に基づいてなされたもので、その目的は、大径中空部を画成する傘部外殻の凹部の内周面に縦リブを設けて、大径中空部の底面側から外周面に沿って上方に向かう冷却材の流れの発生を助長することで、内回りのタンブル流の形成が促進されて、バルブの熱引き効果(熱伝導性)を大きく改善できる中空ポペットバルブを提供することにある。   The present invention has been made on the basis of the problems of the prior art described above and the knowledge of the inventor. The purpose of the present invention is to provide vertical ribs on the inner peripheral surface of the concave portion of the umbrella outer shell that defines the large-diameter hollow portion. By providing it and facilitating the generation of coolant flow upward from the bottom surface side of the large-diameter hollow portion along the outer peripheral surface, the formation of the inner tumble flow is promoted, and the heat drawing effect of the valve (heat conduction) It is an object of the present invention to provide a hollow poppet valve that can greatly improve the performance.

前記目的を達成するために、本発明(請求項1)に係る中空ポペットバルブにおいては、軸端部に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に不活性ガスとともに冷却材が装填された中空ポペットバルブにおいて、
前記バルブ傘部内には、円盤形状の大径中空部が設けられ、前記バルブ軸部内に設けられた直線状の小径中空部が前記円盤形状の大径中空部の天井面に直交するように連通して、前記バルブが軸方向に往復動作する際、少なくとも前記大径中空部内の冷却材に前記バルブの中心軸線周りに縦方向内回りのタンブル流が形成される中空ポペットバルブであって、
前記大径中空部を、該大径中空部の天井側全体を画成する凹部を形成した傘部外殻と、前記凹部の開口側に溶接して該大径中空部の底面を画成するキャップで構成し、
前記傘部外殻の内周面には、周方向等間隔に縦リブを設けるように構成した。
In order to achieve the object, in the hollow poppet valve according to the present invention (Claim 1), the hollow portion is formed from the umbrella portion of the poppet valve integrally formed at the shaft end portion to the shaft portion, In a hollow poppet valve in which a coolant is loaded with an inert gas in the hollow portion,
A disc-shaped large-diameter hollow portion is provided in the valve umbrella portion, and a linear small-diameter hollow portion provided in the valve shaft portion communicates perpendicularly to a ceiling surface of the disc-shaped large-diameter hollow portion. And, when the valve reciprocates in the axial direction, a hollow poppet valve in which a tumble flow around the central axis of the valve is formed at least in the coolant in the large-diameter hollow portion,
The large-diameter hollow portion is welded to the outer shell of the umbrella portion formed with a recess that defines the entire ceiling side of the large-diameter hollow portion, and the bottom surface of the large-diameter hollow portion is defined by welding to the opening side of the recess. Composed of caps,
Longitudinal ribs were provided at equal intervals in the circumferential direction on the inner circumferential surface of the umbrella outer shell.

(作用)バルブが閉弁状態から開弁状態に移行する際(バルブが下降する際)には、図3(a)に示すように、中空部内の冷却材(液体)には慣性力が上向きに作用する。そして、大径中空部中央部の冷却材に作用する慣性力(上向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きいため、大径中空部内の冷却材が連通部を介して小径中空部に移動しようとする。しかし、連通部には庇状の環状段差部が形成されているため、換言すれば、大径中空部の天井面(大径中空部における小径中空部の開口周縁部)がバルブの中心軸線に対し略直交する平面で構成されているため、冷却材は、連通部が滑らかな形状で形成されている従来の中空バルブのようにスムーズに小径中空部に移動できない。   (Operation) When the valve shifts from the closed state to the open state (when the valve descends), as shown in FIG. 3 (a), the inertial force is directed upward in the coolant (liquid) in the hollow portion. Act on. And since the inertial force (upward) acting on the coolant in the central part of the large-diameter hollow part is larger than the inertial force acting on the coolant in the peripheral area of the large-diameter hollow part, the coolant in the large-diameter hollow part It tries to move to the small-diameter hollow part via. However, since the communication portion is formed with a bowl-shaped annular step portion, in other words, the ceiling surface of the large-diameter hollow portion (the opening peripheral edge of the small-diameter hollow portion in the large-diameter hollow portion) is in the central axis of the valve. On the other hand, since it is composed of a plane that is substantially orthogonal, the coolant cannot smoothly move to the small-diameter hollow portion like a conventional hollow valve in which the communicating portion is formed in a smooth shape.

即ち、大径中空部内の冷却材には、上向きの慣性力が作用することで、図4(a)に示すように、環状段差部(大径中空部の天井面)に沿って連通部の中心(半径方向内側)に向かう流れF1,F2が発生する。そして、環状段差部に沿って連通部の中心(半径方向内側)に向かう流れF2同士が互いに衝突して、連通部においては、大径中空部底面側に向かう流れF3と、小径中空部S2の上方に向かう流れF4が発生する。連通部において、大径中空部底面側に向かう流れF3は、大径中空部底面に沿って半径方向外方から大径中空部天井面側に回り込み、再び、大径中空部の天井面に沿って連通部の中心(半径方向内側)に向かう流れF1,F2となる。一方、連通部において、小径中空部の上方に向かう流れF4,F5は、図4(a)に示すような乱流となる。   That is, an upward inertial force acts on the coolant in the large-diameter hollow portion, and as shown in FIG. 4 (a), the communication portion along the annular stepped portion (the ceiling surface of the large-diameter hollow portion). Flows F1 and F2 toward the center (radially inside) are generated. Then, the flows F2 heading toward the center (radially inner side) of the communication portion along the annular stepped portion collide with each other, and in the communication portion, the flow F3 toward the bottom surface side of the large-diameter hollow portion and the small-diameter hollow portion S2 An upward flow F4 is generated. In the communicating portion, the flow F3 toward the bottom surface side of the large-diameter hollow portion wraps around the bottom surface of the large-diameter hollow portion from the outside in the radial direction along the bottom surface of the large-diameter hollow portion, and again along the ceiling surface of the large-diameter hollow portion. Thus, the flows F1 and F2 are directed toward the center (radially inward) of the communication portion. On the other hand, in the communicating portion, the flows F4 and F5 directed upward of the small-diameter hollow portion are turbulent as shown in FIG.

このように、大径中空部内の冷却材には、矢印F1→F2→F3→F1に示すように、バルブの中心軸線の周りに内回りのタンブル流が形成され、小径中空部の冷却材では、F4,F5に示すような乱流が発生する。   In this way, in the coolant in the large-diameter hollow portion, as shown by arrows F1 → F2 → F3 → F1, an inward tumble flow is formed around the central axis of the valve. Turbulence as shown by F4 and F5 occurs.

一方、バルブが開弁状態から閉弁状態に移行する際(バルブが上昇する際)は、図3(b)に示すように、中空部内の冷却材には慣性力が下向きに作用する。そして、大径中空部中央部の冷却材に作用する慣性力(下向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きいため、図4(b)に示すように、大径中空部内の冷却材には、大径中空部の中央部から底面に沿って半径方向外方に向かう流れF6が発生し、同時に、小径中空部においても連通部を通って下方に向かう流れ(乱流)F7が発生する。大径中空部の底面に沿った流れF6は、大径中空部の外方から天井面側に回りこみ、大径中空部S1の天井面に沿った流れF8となり、大径中空部の中央部において下方に向かう流れF6,F7に合流する。   On the other hand, when the valve transitions from the open state to the closed state (when the valve is raised), as shown in FIG. 3B, the inertial force acts downward on the coolant in the hollow portion. Since the inertial force (downward) acting on the coolant in the central portion of the large-diameter hollow portion is larger than the inertial force acting on the coolant in the peripheral region of the large-diameter hollow portion, as shown in FIG. In the coolant in the diameter hollow portion, a flow F6 directed radially outward from the center portion of the large diameter hollow portion along the bottom surface is generated, and at the same time, the flow toward the lower side through the communicating portion also in the small diameter hollow portion ( Turbulence) F7 occurs. The flow F6 along the bottom surface of the large-diameter hollow portion flows from the outside of the large-diameter hollow portion to the ceiling surface side to become a flow F8 along the ceiling surface of the large-diameter hollow portion S1, and the central portion of the large-diameter hollow portion , Merges with downward flows F6 and F7.

即ち、大径中空部の冷却材には、矢印F6→F8→F6に示すように、バルブの中心軸線の周りに内回りの渦流(以下、タンブル流という)が形成され、小径中空部内の冷却材には、矢印F7に示すような乱流が発生する。   That is, as shown by arrows F6 → F8 → F6, an inward vortex flow (hereinafter referred to as a tumble flow) is formed in the coolant in the large-diameter hollow portion, and the coolant in the small-diameter hollow portion is formed. , A turbulent flow as shown by an arrow F7 occurs.

このように、バルブが開閉動作することで、バルブの大径中空部内の冷却材には、タンブル流や乱流も形成されて、冷却材の上層部、中層部、下層部が積極的に攪拌されるため、バルブの熱引き効果(熱伝導性)が著しく改善される。   As described above, when the valve opens and closes, tumble flow and turbulent flow are also formed in the coolant in the large-diameter hollow portion of the valve, and the upper, middle, and lower layers of the coolant are actively stirred. Therefore, the heat pulling effect (thermal conductivity) of the valve is remarkably improved.

前記したように、バルブが軸方向に往復動作する際、中空部内の冷却材は作用する慣性力により中空部内を上下方向に移動し、そのときの大径中空部内の冷却材には、大径中空部の底面側から外周面に沿って上方に向かう流れが発生することで、バルブの中心軸線周りに内回りのタンブル流が形成される。特に、自動車の加減速走行時やコーナリング走行時のように、中空部内の冷却材に上下方向以外の方向に慣性力が作用したり、あるいは、軸荷重が伝達されるバルブ軸端部と軸荷重伝達部材(例えば、ロッカアームやタペット)との摺接面に発生する回転摩擦トルクによって、バルブが周方向に回転しつつ軸方向に上下動する場合においても、バルブの軸方向への往復動作に伴って作用する慣性力で移動しようとする冷却材は、傘部外殻の内周面に設けられている縦リブによって、周方向への移動が抑制されるので、大径中空部の底面側から外周面に沿って上方に向かう冷却材の流れが確実に発生する。   As described above, when the valve reciprocates in the axial direction, the coolant in the hollow portion moves up and down in the hollow portion due to the inertial force that acts, and the coolant in the large-diameter hollow portion at that time has a large diameter. By generating a flow upward from the bottom surface side of the hollow portion along the outer peripheral surface, an inward tumble flow is formed around the central axis of the valve. Especially when the vehicle is accelerating / decelerating or cornering, inertia force acts on the coolant in the hollow part in a direction other than the vertical direction, or the shaft end and the shaft load to which the axial load is transmitted. Even when the valve moves up and down in the axial direction while rotating in the circumferential direction due to rotational friction torque generated on the sliding contact surface with the transmission member (for example, rocker arm or tappet), the valve reciprocates in the axial direction. Since the coolant that tries to move with the inertial force acting on the inner surface of the umbrella outer shell is restrained from moving in the circumferential direction by the vertical ribs provided on the inner peripheral surface of the umbrella outer shell, A coolant flowing upward along the outer peripheral surface is reliably generated.

さらに、大径中空部の外周全域で発生した上方に向かう流れは、縦リブによって大径中空部の天井面に向けて縦方向に案内されるので、バルブの中心軸線周りの全周において内回りのタンブル流が形成される。   Furthermore, since the upward flow generated in the entire outer periphery of the large-diameter hollow portion is guided in the vertical direction by the vertical ribs toward the ceiling surface of the large-diameter hollow portion, the inner flow is in the entire periphery around the central axis of the valve. A tumble flow is formed.

また、バルブ傘部内の大径中空部外周面(傘部外殻の凹部の内周面)に設けられた縦リブによって、バルブ傘部の剛性強度が増す分、バルブ傘部(傘部外殻)を薄肉にして大径中空部の容積を増加する(バルブ傘部内の冷却材の装填量が増す)ことで、バルブ傘部における熱伝達効率が上がる。   In addition, the vertical rib provided on the outer peripheral surface of the large-diameter hollow portion in the valve umbrella (the inner peripheral surface of the concave portion of the umbrella outer shell) increases the rigidity of the valve umbrella. ) Is increased in thickness to increase the volume of the large-diameter hollow portion (the amount of coolant loaded in the valve umbrella portion is increased), thereby increasing the heat transfer efficiency in the valve umbrella portion.

また、バルブ傘部内の大径中空部外周面(傘部外殻の凹部の内周面)に設けられた縦リブによって、傘部外殻の冷却材との接触面積が増える分、バルブ傘部における熱伝達効率が上がる。   In addition, the vertical rib provided on the outer peripheral surface of the large-diameter hollow portion in the valve umbrella portion (the inner peripheral surface of the concave portion of the umbrella outer shell) increases the contact area of the umbrella outer shell with the coolant, thereby increasing the valve umbrella portion. Increases heat transfer efficiency.

なお、バルブ傘部内の大径中空部外周面(傘部外殻の凹部の内周面)に設ける縦リブの数に比例して、大径中空部の底面側から外周面(傘部外殻の凹部の内周面)に沿って上方に導かれる冷却材の流れの数が増えるとともに、バルブ傘部の剛性強度も上がり、冷却材との接触面積も増えるので、縦リブの数は多いほど望ましい。   In addition, in proportion to the number of vertical ribs provided on the outer peripheral surface of the large-diameter hollow portion in the valve umbrella portion (inner peripheral surface of the concave portion of the outer shell of the umbrella portion), the outer peripheral surface (umbrella outer shell) from the bottom side of the large-diameter hollow portion As the number of coolant flows guided upward along the inner peripheral surface of the concave portion of the recess increases, the rigidity of the valve umbrella increases, and the contact area with the coolant also increases. desirable.

一方、縦リブの数が多すぎると、隣接する縦リブ間の間隔が狭く、大径中空部の底面側から外周面(傘部外殻の凹部の内周面)に沿って上方に導かれる冷却材の流路抵抗が増えるとともに、縦リブの加工も面倒になるので、多すぎるのも問題で、周方向等分4箇所〜16箇所に設けることが望ましい。   On the other hand, when there are too many vertical ribs, the interval between adjacent vertical ribs is narrow, leading upward from the bottom surface side of the large-diameter hollow portion along the outer peripheral surface (the inner peripheral surface of the concave portion of the umbrella outer shell). Since the flow path resistance of the coolant increases and the processing of the vertical ribs becomes troublesome, it is also a problem that there are too many, and it is desirable to provide them at 4 to 16 locations equally in the circumferential direction.

請求項2においては、請求項1に記載の中空ポペットバルブにおいて、前記凹部の内周面に、前記縦リブで挟まれた水平断面円弧状の縦溝を周方向に連続して設けるように構成した。   According to a second aspect of the present invention, in the hollow poppet valve according to the first aspect, a vertical groove having an arc-shaped horizontal section sandwiched between the vertical ribs is continuously provided in the circumferential direction on the inner peripheral surface of the recess. did.

(作用)水平断面円弧状の縦溝は、水平断面コの字状の縦溝に比べて、溝側面と溝底面のなす角度が大きい分、冷却材の縦方向上方に向かう流れがスムーズとなる。   (Operation) The vertical groove with the horizontal cross-section arc shape has a larger angle between the groove side surface and the groove bottom surface than the vertical groove with the U-shaped horizontal cross section, and the flow of the coolant upward in the vertical direction becomes smoother. .

即ち、大径中空部外周面(傘部外殻の凹部の内周面)の全周に設けられている縦溝によって、大径中空部の底面側から外周面(傘部外殻の凹部の内周面)に沿って縦方向上方に向かう冷却材の流れが、大径中空部の全周においてスムーズに形成されるので、タンブル流による大径中空部内の冷却材の攪拌がいっそう促進される。   That is, the outer circumferential surface (recess of the concave portion of the umbrella outer shell) is formed from the bottom surface side of the large diameter hollow portion by the longitudinal grooves provided on the entire circumference of the outer peripheral surface of the large hollow portion (the inner peripheral surface of the concave portion of the umbrella outer shell). Since the coolant flow toward the upper side in the vertical direction along the inner peripheral surface is smoothly formed in the entire circumference of the large-diameter hollow portion, the stirring of the coolant in the large-diameter hollow portion by the tumble flow is further promoted. .

請求項3においては、請求項1または2に記載の中空ポペットバルブにおいて、前記大径中空部を、前記バルブ傘部の外形に略倣うテーパ形状の外周面を備えた円錐台形状に構成した。   According to a third aspect of the present invention, in the hollow poppet valve according to the first or second aspect, the large-diameter hollow portion is formed in a truncated cone shape having a tapered outer peripheral surface that substantially follows the outer shape of the valve umbrella portion.

(作用)大径中空部の円形の天井面(円錐台の上面)と大径中空部の外周面(円錐台の外周面)が鈍角をなすので、バルブが開閉動作する際に、大径中空部の半径方向外方から大径中空部の外周面および天井面に沿って連通部に向かう冷却材の流れ(図4(a)のF1,F2および図4(b)のF8)がスムーズとなる分、大径中空部内の冷却材にタンブル流が形成され易い。   (Operation) Since the circular ceiling surface of the large-diameter hollow part (upper surface of the truncated cone) and the outer peripheral surface of the large-diameter hollow part (the outer peripheral surface of the truncated cone) form an obtuse angle, The coolant flow (F1, F2 in FIG. 4 (a) and F8 in FIG. 4 (b)) from the outside in the radial direction toward the communicating portion along the outer peripheral surface and ceiling surface of the large-diameter hollow portion is smooth. Therefore, a tumble flow is likely to be formed in the coolant in the large-diameter hollow portion.

本願発明(請求項1)に係る中空ポペットバルブによれば、バルブが軸方向に往復動作する際に、大径中空部の全周において上方に向かう流れが確実に発生し、バルブの中心軸線周り全周に内回りのタンブル流が形成されて、大径中空部内の冷却材の攪拌が促進されるので、バルブの熱引き効果(熱伝導性)が改善されて、エンジンの性能が向上する。   According to the hollow poppet valve according to the present invention (Claim 1), when the valve reciprocates in the axial direction, an upward flow is surely generated in the entire circumference of the large-diameter hollow portion, and the valve is around the central axis of the valve. An inward tumble flow is formed around the entire circumference and the stirring of the coolant in the large-diameter hollow portion is promoted, so that the heat-drawing effect (thermal conductivity) of the valve is improved and the performance of the engine is improved.

また、バルブ傘部の剛性強度が増す分、バルブ傘部(傘部外殻)を薄肉にして大径中空部の容積(バルブ傘部内の冷却材の装填量)を増加することで、バルブ傘部における熱伝達効率が上がり、バルブの熱引き効果をいっそう高めることができる。   In addition, by increasing the rigidity of the valve umbrella part, the valve umbrella part (umbrella outer shell) is thinned and the volume of the large-diameter hollow part (the amount of coolant loaded in the valve umbrella part) is increased. The heat transfer efficiency in the section is increased, and the heat-sucking effect of the valve can be further enhanced.

また、傘部外殻の冷却材との接触面積が増える分、バルブ傘部における熱伝達効率が上がり、バルブの熱引き効果をいっそう高めることができる。   In addition, the heat transfer efficiency in the valve umbrella is increased by increasing the contact area of the umbrella outer shell with the coolant, and the heat extraction effect of the valve can be further enhanced.

請求項2に係る中空ポペットバルブによれば、バルブが軸方向に往復動作する際に、大径中空部の全周において上方に向かう流れがスムーズに発生し、内回りのタンブル流による大径中空部内の冷却材の攪拌がいっそう促進されるので、バルブの熱引き効果(熱伝導性)が確実に改善されて、エンジンの性能がいっそう向上する。   According to the hollow poppet valve according to claim 2, when the valve reciprocates in the axial direction, the upward flow is smoothly generated in the entire circumference of the large-diameter hollow portion, and the inside of the large-diameter hollow portion due to the inner tumble flow Since the stirring of the coolant is further promoted, the heat extraction effect (thermal conductivity) of the valve is surely improved, and the performance of the engine is further improved.

請求項3に係る中空ポペットバルブによれば、バルブが開閉動作する際に、大径中空部内の冷却材にタンブル流が発生し易いので、バルブの熱引き効果(熱伝導性)がいっそう改善されて、エンジンの性能がさらに向上する。   According to the hollow poppet valve of the third aspect, since the tumble flow is likely to occur in the coolant in the large-diameter hollow portion when the valve opens and closes, the heat drawing effect (thermal conductivity) of the valve is further improved. The engine performance is further improved.

本発明の第1の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 1st Example of this invention. (a)は傘部外殻の縦断面図、(b)は傘部外殻の底面図である。(A) is a longitudinal cross-sectional view of an umbrella part outer shell, (b) is a bottom view of an umbrella part outer shell. 同中空ポペットバルブが軸方向に往復動作する際の中空部内の冷却材に作用する慣性力を示す図で、(a)は開弁動作(下降動作)時の冷却材に作用する慣性力を示す断面図、(b)は閉弁動作(上昇動作)時の冷却材に作用する慣性力を示す断面図である。It is a figure which shows the inertial force which acts on the coolant in the hollow part at the time of the same hollow poppet valve reciprocatingly, (a) shows the inertial force which acts on the coolant at the time of valve opening operation | movement (lowering operation | movement). Sectional drawing and (b) are sectional drawings which show the inertial force which acts on the coolant at the time of valve closing operation | movement (rise operation | movement). 同中空ポペットバルブが開閉動作(軸方向に往復動作)する際の中空部内の冷却材の動きを拡大して示す図で、(a)は閉弁状態から開弁状態に移行する際の冷却材の動きを示す図、(b)は開弁状態から閉弁状態に移行する際の冷却材の動きを示す図である。It is a figure which expands and shows the motion of the coolant in a hollow part when the hollow poppet valve opens and closes (reciprocates in an axial direction), and (a) is the coolant at the time of shifting from a valve closing state to a valve opening state FIG. 5B is a diagram illustrating the movement of the coolant when the valve is shifted from the open state to the closed state. 同中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェードを鍛造する熱間鍛造工程を示し、(b)は傘部寄り小径中空部に相当する孔を穿設する孔穿設工程を示し、(c)は軸端部寄り小径中空部に相当する孔を穿設する孔穿設工程を示し、(d)は軸端部材を軸接する軸接工程を示し、(e)は小径中空部に冷却材を充填する冷却材装填工程を示し、(f)は傘部外殻の凹部(大径中空部)の開口内周にキャップを溶接する工程(大径中空部密閉工程)を示す。FIG. 4 is a diagram showing a manufacturing process of the hollow poppet valve, where (a) shows a hot forging process for forging a shade which is an intermediate product of the valve, and (b) drills a hole corresponding to a small-diameter hollow part near the umbrella part. (C) shows a hole drilling process for drilling a hole corresponding to the small-diameter hollow portion near the shaft end, (d) shows an axial contact process for axially contacting the shaft end member, e) shows a coolant loading step of filling the small-diameter hollow portion with the coolant, and (f) shows a step of welding a cap to the inner periphery of the opening of the concave portion (large-diameter hollow portion) of the umbrella outer shell (large-diameter hollow portion) (Sealing process). 本発明の第2の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 2nd Example of this invention. 同バルブの傘部外殻の底面図(図2(b)に対応する図)である。It is a bottom view (figure corresponding to Drawing 2 (b)) of the umbrella part outer shell of the valve. 本発明の第3の実施例である中空ポペットバルブの縦断面図である。It is a longitudinal cross-sectional view of the hollow poppet valve which is the 3rd Example of this invention. 同中空ポペットバルブの製造工程を示す図で、(a)は据え込み鍛造(または押し出し鍛造)により軸端部に傘部外殻を成形する鍛造工程を示し、(b)は小径中空部に相当する孔を軸部に穿設する孔穿設工程を示し、(c)は小径中空部に冷却材を充填する工程を示し、(d)は不活性ガス雰囲気下で傘部外殻の凹部(大径中空部)の開口部にキャップを溶接する工程(大径中空部密閉工程)を示す。The figure which shows the manufacturing process of the same hollow poppet valve, (a) shows the forging process which shape | molds an umbrella outer shell in an axial end part by upset forging (or extrusion forging), (b) is equivalent to a small diameter hollow part (C) shows a step of filling the small-diameter hollow portion with a coolant, and (d) shows a concave portion of the umbrella outer shell under an inert gas atmosphere. The process (large diameter hollow part sealing process) which welds a cap to the opening part of a large diameter hollow part is shown.

次に、本発明の実施の形態を実施例に基づいて説明する。   Next, embodiments of the present invention will be described based on examples.

図1〜図5は、本発明の第1の実施例である内燃機関用の中空ポペットバルブを示す。   1 to 5 show a hollow poppet valve for an internal combustion engine according to a first embodiment of the present invention.

これらの図において、符号10は、真っ直ぐに延びる軸部12の一端側に、外径が徐々に大きくなるR形状のフィレット部13を介して、傘部14が一体的に形成された耐熱合金製の中空ポペットバルブで、傘部14の外周には、テーパ形状のフェース部16が設けられている。   In these drawings, reference numeral 10 denotes a heat-resistant alloy in which an umbrella portion 14 is integrally formed on one end side of a shaft portion 12 that extends straight through an R-shaped fillet portion 13 that gradually increases in outer diameter. In the hollow poppet valve, a tapered face portion 16 is provided on the outer periphery of the umbrella portion 14.

詳しくは、円筒形状の軸部12aの一端側に傘部外殻14aが一体的に形成されたバルブ中間品である軸一体型シェル(以下、単にシェルという)11と、軸部12aに軸接された軸端部材12bと、傘部外殻14aの円錐台形状の凹部14bにおける開口内周14cに溶接された円盤形状のキャップ18とによって、傘部14から軸部12にかけて中空部Sが設けられた中空ポペットバルブ10が構成され、中空部Sには、金属ナトリウム等の冷却材19がアルゴンガスなどの不活性ガスとともに装填されている。   Specifically, a shaft-integrated shell (hereinafter simply referred to as a shell) 11 that is a valve intermediate product in which an umbrella outer shell 14a is integrally formed on one end side of a cylindrical shaft portion 12a, and a shaft contact with the shaft portion 12a. A hollow portion S is provided from the umbrella portion 14 to the shaft portion 12 by the shaft end member 12b and the disk-shaped cap 18 welded to the inner periphery 14c of the opening in the truncated cone-shaped recess 14b of the umbrella portion outer shell 14a. The hollow poppet valve 10 is configured, and the hollow portion S is loaded with a coolant 19 such as metallic sodium together with an inert gas such as argon gas.

冷却材19の装填量は、多い方が熱引き効果に優れるものの、所定量以上では熱引き効果としての差が僅かとなるため、費用対効果(冷却材19が多ければ、コストもかかること)を考慮して、例えば、中空部Sの容積の約1/2〜約4/5の量が装填されていればよい。   Although a larger amount of the coolant 19 is more excellent in the heat-drawing effect, a difference in heat-drawing effect is small if the amount is larger than a predetermined amount, so that cost-effectiveness (the more the coolant 19 is, the higher the cost). For example, an amount of about 1/2 to about 4/5 of the volume of the hollow portion S may be loaded.

なお、図1における符号2はシリンダヘッド、符号6は燃焼室4から延びる排気通路、排気通路6の燃焼室4への開口周縁部には、バルブ10のフェース部16が当接できるテーパ面8aを備えた円環状のバルブシート8が設けられている。符号3は、シリンダヘッド2に設けられたバルブ挿通孔で、バルブ挿通孔3の内周面は、バルブ10の軸部12が摺接するバルブガイド3aで構成されている。符号9は、バルブ10を閉弁方向に付勢するバルブスプリング、符号12cは、バルブ軸端部に設けたコッタ溝である。   In FIG. 1, reference numeral 2 is a cylinder head, reference numeral 6 is an exhaust passage extending from the combustion chamber 4, and a tapered surface 8a on which the face portion 16 of the valve 10 can abut the peripheral edge of the exhaust passage 6 to the combustion chamber 4. An annular valve seat 8 is provided. Reference numeral 3 denotes a valve insertion hole provided in the cylinder head 2, and an inner peripheral surface of the valve insertion hole 3 is constituted by a valve guide 3 a with which the shaft portion 12 of the valve 10 is slidably contacted. Reference numeral 9 is a valve spring for urging the valve 10 in the valve closing direction, and reference numeral 12c is a cotter groove provided at the end of the valve shaft.

また、バルブ10内の中空部Sは、バルブ傘部14内に設けられた円錐台形状の大径中空部S1と、バルブ軸部12内に設けられた直線状(棒状)の小径中空部S2とが直交するように連通する構造で、大径中空部S1の円形天井面(傘部外殻14aの円錐台形状の凹部14bの円形底面)14b1は、バルブ10の中心軸線Lに対し直交する平面で構成されている。   The hollow portion S in the valve 10 includes a truncated cone-shaped large-diameter hollow portion S1 provided in the valve umbrella portion 14 and a linear (rod-shaped) small-diameter hollow portion S2 provided in the valve shaft portion 12. The circular ceiling surface of the large-diameter hollow portion S1 (the circular bottom surface of the truncated conical recess 14b of the umbrella outer shell 14a) 14b1 is orthogonal to the central axis L of the bulb 10. It consists of a plane.

即ち、大径中空部S1における小径中空部S2との連通部Pには、先行文献1,2のような滑らかな形状に代えて、大径中空部S1側から見て庇状の環状段差部15が形成されており、この環状段差部15の大径中空部S1に臨む側(面)14b1がバルブ10の中心軸線Lに対し直交する平面で構成されている。換言すれば、小径中空部S1の開口周縁部(傘部外殻14aの円錐台形状の凹部14bの円形底面)14b1と、小径中空部S1の内周面によって、庇状の環状段差部15が画成されている。   That is, the communicating portion P with the small-diameter hollow portion S2 in the large-diameter hollow portion S1 has a bowl-shaped annular step portion as viewed from the large-diameter hollow portion S1 instead of the smooth shape as in the prior art documents 1 and 2. 15 is formed, and the side (surface) 14b1 facing the large-diameter hollow portion S1 of the annular step portion 15 is configured by a plane orthogonal to the central axis L of the bulb 10. In other words, the bowl-shaped annular step portion 15 is formed by the opening peripheral edge portion (circular bottom surface of the truncated conical recess 14b of the umbrella outer shell 14a) 14b1 and the inner peripheral surface of the small diameter hollow portion S1. It is defined.

このため、バルブ10が開閉動作する際に、大径中空部S1内の冷却材19には、後で詳しく説明するが、図4(a),(b)の矢印F1→F2→F3;矢印F6→F8に示すように、内回りのタンブル流が形成され、同時に、小径中空部S2内の大径中空部S1近傍の冷却材19には、矢印F4,F5,F7に示すように、乱流が発生して、中空部S内の冷却材19の下層部,中層部,上層部が積極的に攪拌されることとなって、バルブ10における熱引き効果(熱伝導性)が大幅に改善されている。   For this reason, when the valve 10 is opened and closed, the coolant 19 in the large-diameter hollow portion S1 will be described in detail later, but arrows F1 → F2 → F3 in FIGS. 4 (a) and 4 (b); As shown in F6 → F8, an inner tumble flow is formed, and at the same time, the coolant 19 near the large-diameter hollow portion S1 in the small-diameter hollow portion S2 has a turbulent flow as shown by arrows F4, F5, and F7. Is generated, and the lower layer portion, the middle layer portion, and the upper layer portion of the coolant 19 in the hollow portion S are positively stirred, so that the heat drawing effect (thermal conductivity) in the valve 10 is greatly improved. ing.

特に、本実施例では、大径中空部S1の円形の天井面(凹部14bの円形の底面)14b1とその傾斜外周面(傾斜内周面)14b2が鈍角をなすので、バルブ10が開閉動作する際に、大径中空部S1の半径方向外方から大径中空部S1の傾斜外周面14b2および天井面14b1に沿って連通部Pに向かう冷却材19の流れ(図4(a)のF1,F2および図4(b)のF8)の発生がスムーズとなって、大径中空部S2内の冷却材19に形成される内回りのタンブル流が活発になるので、中空部S内の冷却材19の攪拌がそれだけ促進されて、バルブ10における熱引き効果(熱伝導性)が著しく改善されることになる。   In particular, in this embodiment, the circular ceiling surface (circular bottom surface of the recess 14b) 14b1 of the large-diameter hollow portion S1 and the inclined outer peripheral surface (inclined inner peripheral surface) 14b2 form an obtuse angle, so that the valve 10 opens and closes. At the same time, the flow of the coolant 19 from the radially outer side of the large-diameter hollow portion S1 toward the communicating portion P along the inclined outer peripheral surface 14b2 and the ceiling surface 14b1 of the large-diameter hollow portion S1 (F1, F1 in FIG. 4A) Since the generation of F2 and F8) in FIG. 4B is smooth and the inner tumble flow formed in the coolant 19 in the large-diameter hollow portion S2 becomes active, the coolant 19 in the hollow portion S is activated. Therefore, the heat absorption effect (thermal conductivity) in the valve 10 is remarkably improved.

また、大径中空部S1の外周面を構成する傘部外殻14aの凹部14bの内周面14b2には、図2に拡大して示すように、周方向等ピッチで水平断面円弧状の縦溝20が連続して形成されている。そして、周方向に隣接する縦溝20,20によって画成された縦リブ21が、バルブ10が軸方向に往復動作する際に、大径中空部S1の外周面に沿った上方に向かう冷却材19の流れの発生を助長して、大径中空部S1内の冷却材19に内回りのタンブル流の形成されることを促進する。   Further, on the inner peripheral surface 14b2 of the concave portion 14b of the umbrella outer shell 14a constituting the outer peripheral surface of the large-diameter hollow portion S1, as shown in an enlarged view in FIG. The groove 20 is formed continuously. Then, when the valve 10 reciprocates in the axial direction, the longitudinal rib 21 defined by the longitudinal grooves 20 and 20 adjacent in the circumferential direction moves upward along the outer peripheral surface of the large-diameter hollow portion S1. The generation of the flow 19 is promoted to promote the formation of an inner tumble flow in the coolant 19 in the large-diameter hollow portion S1.

即ち、自動車の加減速走行時やコーナリング走行時のように、種々の方向の慣性力が中空部S内の冷却材19に作用したとしても、あるいは、軸荷重が伝達されるバルブ軸端部と軸荷重伝達部材(例えば、ロッカアーム式動弁機構では、ロッカアーム、直動式動弁機構では、タペット)との摺接面に発生する回転摩擦トルクによって、バルブ10が周方向に回転しつつ軸方向に上下動する場合においても、バルブ10の軸方向への往復動作に伴って作用する慣性力で移動しようとする冷却材19は、傘部外殻14aの内周面14b2に設けられている縦リブ21によって、周方向への移動が抑制されるので、大径中空部S1の底面側から傾斜外周面14b2に沿って上方に向かう冷却材19の流れが確実に発生する。   That is, even when an inertial force in various directions acts on the coolant 19 in the hollow portion S, such as during acceleration / deceleration traveling or cornering traveling of an automobile, or the valve shaft end portion to which the axial load is transmitted While the valve 10 rotates in the circumferential direction due to rotational friction torque generated on the sliding contact surface with an axial load transmission member (for example, a rocker arm in a rocker arm type valve mechanism, a tappet in a direct acting valve mechanism) Even when the valve 10 moves up and down, the coolant 19 that tends to move with the inertial force that acts as the valve 10 reciprocates in the axial direction is provided on the inner peripheral surface 14b2 of the umbrella outer shell 14a. Since the movement in the circumferential direction is suppressed by the ribs 21, the flow of the coolant 19 from the bottom surface side of the large-diameter hollow portion S1 upward along the inclined outer peripheral surface 14b2 is reliably generated.

さらに、大径中空部S1の外周全域で発生した上方に向かう流れは、水平断面円弧状の縦溝20によって天井面14b1に向けて縦方向にスムーズに案内されるので、バルブ10の中心軸線L周りの全周において内回りのタンブル流が確実に形成される。この結果、大径中空部S1内の冷却材19の下層部,中層部,上層部がより積極的に攪拌されることとなって、バルブ10における熱引き効果(熱伝導性)がさらに大幅に改善されている。   Further, since the upward flow generated in the entire outer periphery of the large-diameter hollow portion S1 is smoothly guided in the vertical direction toward the ceiling surface 14b1 by the vertical groove 20 having an arc-shaped horizontal section, the central axis L of the valve 10 is obtained. An inner tumble flow is reliably formed on the entire circumference. As a result, the lower layer portion, middle layer portion, and upper layer portion of the coolant 19 in the large-diameter hollow portion S1 are more actively agitated, and the heat drawing effect (thermal conductivity) in the valve 10 is further greatly increased. It has been improved.

また、バルブ軸部12内の小径中空部S2は、バルブ軸端部寄りの、内径が比較的大きい小径中空部S21と、バルブ傘部14寄りの、内径が比較的小さい小径中空部S22で構成されて、小径中空部S21と小径中空部S22間には、円環状の段差部17が形成されるとともに、段差部17を越えた位置まで冷却材19が装填されている。   The small-diameter hollow portion S2 in the valve shaft portion 12 is composed of a small-diameter hollow portion S21 having a relatively large inner diameter near the valve shaft end portion and a small-diameter hollow portion S22 having a relatively small inner diameter near the valve umbrella portion 14. Thus, an annular stepped portion 17 is formed between the small-diameter hollow portion S21 and the small-diameter hollow portion S22, and the coolant 19 is loaded up to a position beyond the stepped portion 17.

このため、バルブ10が開閉動作する際に作用する慣性力によって、冷却材19が小径中空部S2を上下に移動する際に、図4(a),(b)の矢印F9,F10に示すように、円環状の段差部17近傍に乱流が形成され、小径中空部S2内の冷却材19の攪拌が促進されて、それだけバルブ10における熱引き効果(熱伝導性)がさらに改善されている。   Therefore, when the coolant 19 moves up and down the small-diameter hollow portion S2 by the inertial force that acts when the valve 10 is opened and closed, as indicated by arrows F9 and F10 in FIGS. 4 (a) and 4 (b). In addition, a turbulent flow is formed in the vicinity of the annular stepped portion 17, and the stirring of the coolant 19 in the small-diameter hollow portion S2 is promoted, so that the heat drawing effect (thermal conductivity) in the valve 10 is further improved. .

次に、バルブ10が開閉動作する際の冷却材の動きを、図3,4に基づいて詳しく説明する。   Next, the movement of the coolant when the valve 10 opens and closes will be described in detail with reference to FIGS.

バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、図3(a)に示すように、中空部S内の冷却材(液体)19に慣性力が上向きに作用する。そして、大径中空部S1中央部の冷却材19に作用する慣性力(上向き)が大径中空部S1周辺領域の冷却材19に作用する慣性力よりも大きいため、大径中空部S1内の冷却材19が連通部Pを介して小径中空部S2に移動しようとする。しかし、連通部Pには庇状の環状段差部15が形成されているため、連通部が滑らかな形状に形成されている、先行文献に示す従来の中空バルブのようにスムーズに小径中空部S2側に移動できない。   When the valve 10 shifts from the closed state to the open state (when the valve 10 is lowered), the inertial force is upwardly applied to the coolant (liquid) 19 in the hollow portion S as shown in FIG. Act on. Since the inertial force (upward) acting on the coolant 19 in the central portion of the large-diameter hollow portion S1 is larger than the inertial force acting on the coolant 19 in the peripheral region of the large-diameter hollow portion S1, the inside of the large-diameter hollow portion S1 The coolant 19 tries to move to the small-diameter hollow portion S2 via the communication portion P. However, since the communication portion P is formed with the bowl-shaped annular step portion 15, the communication portion is formed in a smooth shape, and the small-diameter hollow portion S <b> 2 can be smoothly smooth like the conventional hollow valve shown in the prior art. Cannot move to the side.

即ち、大径中空部S1内の冷却材19には、上向きの慣性力が作用することで、図4(a)に示すように、円環状の段差部15(大径中空部S1の天井面14b1)に沿って連通部Pの中心(半径方向内側)に向かう流れF1,F2が発生する。特に、傘部外殻14aの凹部14bの内周面14b2に周方向等間隔に設けられている縦溝20(縦リブ21)によって、周方向への冷却材19の移動が抑制されるので、大径中空部S1の底面側から外周面に沿って上方に向かう冷却材19の流れF1が確実に発生する。   That is, an upward inertia force acts on the coolant 19 in the large-diameter hollow portion S1, and as shown in FIG. 4A, an annular step portion 15 (the ceiling surface of the large-diameter hollow portion S1). 14b1), flows F1 and F2 are generated toward the center (radially inside) of the communication portion P. In particular, the movement of the coolant 19 in the circumferential direction is suppressed by the longitudinal grooves 20 (vertical ribs 21) provided at equal intervals in the circumferential direction on the inner circumferential surface 14b2 of the recess 14b of the umbrella outer shell 14a. The flow F1 of the coolant 19 that flows upward along the outer peripheral surface from the bottom surface side of the large-diameter hollow portion S1 is reliably generated.

そして、環状段差部15に沿って連通部Pの中心(半径方向内側)に向かう流れF2同士が互いに衝突して、連通部Pにおいては、大径中空部S1底面側に向かう流れF3と、小径中空部S2の上方に向かう流れF4が発生する。   Then, the flows F2 toward the center (radially inner side) of the communication portion P along the annular stepped portion 15 collide with each other, and in the communication portion P, the flow F3 toward the bottom surface side of the large-diameter hollow portion S1 and the small diameter A flow F4 directed upward of the hollow portion S2 is generated.

連通部Pにおいて、大径中空部S1底面側に向かう流れF3は、大径中空部S1底面に沿って半径方向外方から縦溝20(縦リブ21)に案内されて、大径中空部S1天井面14b1に回り込み、再び、大径中空部S1の天井面14b1に沿って連通部Pの中心(半径方向内側)に向かう流れF1,F2となる。一方、連通部Pにおいて、小径中空部S2の上方に向かう流れF4,F5は、図4(a)に示すような乱流となる。   In the communication portion P, the flow F3 toward the bottom surface side of the large-diameter hollow portion S1 is guided to the vertical groove 20 (vertical rib 21) from the outside in the radial direction along the bottom surface of the large-diameter hollow portion S1, and the large-diameter hollow portion S1. The air flows around the ceiling surface 14b1, and again becomes flows F1 and F2 toward the center (radially inner side) of the communication portion P along the ceiling surface 14b1 of the large-diameter hollow portion S1. On the other hand, in the communication portion P, the flows F4 and F5 directed upward of the small-diameter hollow portion S2 are turbulent as shown in FIG.

このように、バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、大径中空部S1内の冷却材19には、矢印F1→F2→F3→F1に示すように、バルブ10の中心軸線Lの周りに内回りのタンブル流が形成され、小径中空部S2内の冷却材19には、F4,F5に示すような乱流が発生する。   Thus, when the valve 10 shifts from the closed state to the open state (when the valve 10 is lowered), the coolant 19 in the large-diameter hollow portion S1 has an arrow F1-> F2-> F3-> F1. As shown, an inward tumble flow is formed around the central axis L of the valve 10, and turbulent flow as shown by F4 and F5 occurs in the coolant 19 in the small-diameter hollow portion S2.

さらには、バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、小径中空部S2内の冷却材19は、上向きに作用する慣性力により、小径中空部S2内を上方に移動するが、内径の小さいバルブ傘部14寄りの小径中空部S22から内径の大きいバルブ軸端部寄りの小径中空部S21に移動する際に、図4(a)に示すように、段差部17の下流側(図4(a)の上方)で乱流F9が発生する。   Furthermore, when the valve 10 shifts from the closed state to the open state (when the valve 10 is lowered), the coolant 19 in the small diameter hollow portion S2 is subjected to an upward inertial force so that the small diameter hollow portion S2 As shown in FIG. 4A, when moving from the small-diameter hollow portion S22 near the valve umbrella portion 14 having a small inner diameter to the small-diameter hollow portion S21 near the valve shaft end portion having a large inner diameter. A turbulent flow F9 is generated downstream of the stepped portion 17 (above FIG. 4A).

一方、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)は、図4(b)に示すように、中空部S内の冷却材19には慣性力が下向きに作用する。そして、大径中空部S1中央部の冷却材19に作用する慣性力(下向き)が大径中空部S1周辺領域の冷却材19に作用する慣性力よりも大きいため、図4(b)に示すように、大径中空部S1内の冷却材19には、大径中空部S1の中央部から底面に沿って半径方向外方に向かう流れF6が発生し、同時に、小径中空部S2においても連通部Pを通って下方に向かう流れ(乱流)F7が発生する。大径中空部S1の底面に沿った流れF6は、大径中空部S1の外方から縦溝20(縦リブ21)に案内されて天井面14b1側に回りこみ、大径中空部S1の天井面14b1に沿った流れF8となり、大径中空部S1の中央部(連通部P)において下方に向かう流れF6,F7に合流する。   On the other hand, when the valve 10 transitions from the open state to the closed state (when the valve 10 is raised), as shown in FIG. 4B, the inertial force is applied downward to the coolant 19 in the hollow portion S. Act on. And since the inertia force (downward) which acts on the coolant 19 of large diameter hollow part S1 center part is larger than the inertial force which acts on the coolant 19 of large diameter hollow part S1 peripheral region, it shows in FIG.4 (b). As described above, the coolant 19 in the large-diameter hollow portion S1 generates a flow F6 directed radially outward from the central portion of the large-diameter hollow portion S1 along the bottom surface, and at the same time, communicates also in the small-diameter hollow portion S2. A downward flow (turbulent flow) F7 is generated through the portion P. The flow F6 along the bottom surface of the large-diameter hollow portion S1 is guided from the outside of the large-diameter hollow portion S1 to the vertical groove 20 (vertical rib 21) and turns around the ceiling surface 14b1, and the ceiling of the large-diameter hollow portion S1 It becomes the flow F8 along the surface 14b1, and merges with the flows F6 and F7 going downward at the central portion (communication portion P) of the large-diameter hollow portion S1.

即ち、大径中空部S1内の冷却材19には、矢印F6→F8→F6に示すように、バルブ10の中心軸線Lの周りに内回りのタンブル流が形成され、小径中空部S2内の冷却材19には、矢印F7に示すような乱流が発生する。   That is, as shown by arrows F6 → F8 → F6, an inner tumble flow is formed around the central axis L of the valve 10 in the coolant 19 in the large diameter hollow portion S1, and the cooling in the small diameter hollow portion S2 is performed. A turbulent flow as indicated by an arrow F7 is generated in the material 19.

さらには、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)は、開弁動作によって小径中空部S2内上方にいったん移動した冷却材(液体)19に慣性力が下向きに作用するため、冷却材19は小径中空部S2内を下方に移動するが、内径の大きいバルブ軸端部寄りの小径中空部S21から内径の小さいバルブ傘部寄りの小径中空部S22に移動する際に、図4(b)に示すように、段差部17の下流側(図4(b)の下方)で乱流F10が形成される。   Furthermore, when the valve 10 shifts from the open state to the closed state (when the valve 10 is raised), the inertial force is applied to the coolant (liquid) 19 once moved upward in the small-diameter hollow portion S2 by the valve opening operation. Acts downward, the coolant 19 moves downward in the small-diameter hollow portion S2, but from the small-diameter hollow portion S21 near the end of the valve shaft having a large inner diameter to the small-diameter hollow portion S22 near the valve umbrella portion having a small inner diameter. When moving, as shown in FIG. 4B, a turbulent flow F10 is formed on the downstream side of the stepped portion 17 (below in FIG. 4B).

このようにして、バルブ10の開閉動作の際に、中空部S内の冷却材19には、矢印F1→F2→F3;F6→F8で示すタンブル流や、矢印F4,F5,F7,F9,F10で示す乱流が形成されて、中空部S内の冷却材19の下層部,中層部,上層部が積極的に攪拌されることとなって、バルブ10における熱引き効果(熱伝導性)が大幅に改善されている。   In this way, during the opening and closing operation of the valve 10, the coolant 19 in the hollow portion S has a tumble flow indicated by arrows F1, F2, F3; F6, F8, arrows F4, F5, F7, F9, The turbulent flow indicated by F10 is formed, and the lower layer portion, middle layer portion, and upper layer portion of the coolant 19 in the hollow portion S are actively stirred, so that the heat drawing effect (thermal conductivity) in the valve 10 is obtained. There have been significant improvements.

また、小径中空部S内の段差部17は、図1に示すように、バルブガイド3の排気通路6に臨む側の端部3bに略対応する位置に設けられて、内径の大きい軸端部寄り小径中空部S21を軸方向に長く形成することで、バルブ10の耐久性を低下させることなく、バルブ軸部12の冷却材19との接触面積が増えて、バルブ軸部12の熱伝達効率が上がり、小径中空部S21形成壁が薄肉となって、バルブ10も軽量となる。即ち、小径中空部S内の段差部17は、図1の仮想線に示すように、バルブ10が開弁(下降)しきった状態で、排気通路6内とならない所定位置(バルブ軸部12における薄肉の小径中空部S21形成壁が排気通路6内の熱の影響を受け難い所定位置)に設けられている。図1の符号17Xは、バルブ10が開弁(下降)しきった状態での段差部17の位置を示す。   Further, as shown in FIG. 1, the stepped portion 17 in the small-diameter hollow portion S is provided at a position substantially corresponding to the end portion 3 b facing the exhaust passage 6 of the valve guide 3 and has a shaft end portion having a large inner diameter. By forming the small-diameter hollow portion S21 in the axial direction to be long in the axial direction, the contact area between the valve shaft portion 12 and the coolant 19 is increased without reducing the durability of the valve 10, and the heat transfer efficiency of the valve shaft portion 12 is increased. As a result, the small-diameter hollow portion S21 forming wall becomes thin, and the bulb 10 is also light. That is, the stepped portion 17 in the small-diameter hollow portion S has a predetermined position (in the valve shaft portion 12) that does not enter the exhaust passage 6 when the valve 10 is fully opened (lowered) as shown by the phantom line in FIG. A thin-walled small-diameter hollow portion S21 forming wall is provided at a predetermined position that is not easily affected by heat in the exhaust passage 6. Reference numeral 17X in FIG. 1 indicates the position of the stepped portion 17 in a state where the valve 10 is fully opened (lowered).

詳しくは、金属の疲労強度は高温になるほど低下するため、常に排気通路6内にあって高熱にさらされる部位である、バルブ軸部12におけるバルブ傘部14寄りの領域は、疲労強度の低下に耐え得る程度の肉厚に形成する必要がある。一方、熱源から離れ、しかも常にバルブガイド3aに摺接する部位である、バルブ軸部12における軸端部寄りの領域は、冷却材19を介して燃焼室4や排気通路6の熱が伝達されるものの、伝達された熱はバルブガイド3aを介して直ちにシリンダヘッド2に放熱されるため、バルブ傘部14寄りの領域ほどの高温となることがない。   Specifically, since the fatigue strength of the metal decreases as the temperature increases, the region near the valve umbrella portion 14 in the valve shaft portion 12 that is always in the exhaust passage 6 and exposed to high heat reduces the fatigue strength. It must be formed to a thickness that can withstand. On the other hand, in the region near the shaft end portion of the valve shaft portion 12 that is away from the heat source and is always in sliding contact with the valve guide 3 a, heat from the combustion chamber 4 and the exhaust passage 6 is transmitted via the coolant 19. However, since the transmitted heat is immediately radiated to the cylinder head 2 through the valve guide 3a, the temperature does not become as high as that near the valve umbrella portion 14.

即ち、バルブ軸部12における軸端部寄り領域は、バルブ傘部14寄りの領域よりも疲労強度が低下しないため、薄肉に形成(小径中空部S21の内径を大きく形成)しても、強度的(疲労により折損する等の耐久性)には問題がない。   That is, since the fatigue strength does not decrease in the region near the shaft end portion in the valve shaft portion 12 than in the region near the valve umbrella portion 14, even if it is formed thin (the inner diameter of the small-diameter hollow portion S21 is increased), it is strong. There is no problem in (durability such as breakage due to fatigue).

そこで、本実施例では、小径中空部S21の内径を大きく形成して、第1には、小径中空部S2全体の表面積(冷却材19との接触面積)を増やすことで、バルブ軸部12における熱伝達効率が高められている。第2には、小径中空部S2全体の容積を増やすことで、バルブ10の総重量が軽減されている。   Therefore, in the present embodiment, the inner diameter of the small-diameter hollow portion S21 is increased, and first, the surface area of the entire small-diameter hollow portion S2 (contact area with the coolant 19) is increased, so that the valve shaft portion 12 Heat transfer efficiency is increased. Secondly, the total weight of the valve 10 is reduced by increasing the volume of the entire small-diameter hollow portion S2.

また、バルブの軸端部材12bは、シェル11ほど耐熱性が要求されないため、シェル11の材料よりも耐熱性の低い廉価材を用いることで、バルブ10を安価に提供できる。   Further, since the shaft end member 12b of the valve is not required to be as heat resistant as the shell 11, the valve 10 can be provided at low cost by using an inexpensive material having lower heat resistance than the material of the shell 11.

次に、中空ポペットバルブ10の製造工程を、図5に基づいて説明する。   Next, the manufacturing process of the hollow poppet valve 10 will be described with reference to FIG.

まず、図5(a)に示すように、熱間鍛造工程により、円錐台形状の凹部14bを設けた傘部外殻14aと軸部12aとを一体的に形成したシェル11を成形する。なお、シェル11(傘部外殻14a)を成形する際に、傘部外殻14aにおける凹部14bの底面14b1は、軸部12a(シェル11の中心軸線L)に対し直交する平面に形成され、傘部外殻14aにおける凹部14bの内周面14b2には、周方向に連続する縦溝20(縦リブ21)が形成される。   First, as shown in FIG. 5A, a shell 11 in which an umbrella outer shell 14a provided with a truncated cone-shaped recess 14b and a shaft 12a are integrally formed is formed by a hot forging process. When forming the shell 11 (umbrella outer shell 14a), the bottom surface 14b1 of the recess 14b in the umbrella outer shell 14a is formed on a plane orthogonal to the shaft 12a (the central axis L of the shell 11). A longitudinal groove 20 (vertical rib 21) continuous in the circumferential direction is formed on the inner peripheral surface 14b2 of the recess 14b in the umbrella outer shell 14a.

熱間鍛造工程としては、金型を順次取り替える押し出し鍛造で、耐熱鋼製ブロックからシェル11を製造する押し出し鍛造、またはアップセッタで耐熱鋼製棒材の端部に球状部を据え込んだ後に、金型を用いてシェル11(の傘部外殻14a)を鍛造する据え込み鍛造のいずれであってもよい。なお、熱間鍛造工程において、シェル11の傘部外殻14aと軸部12aとの間には、R形状フィレット部13が形成され、傘部外殻14aの外周面には、テーパ形状フェース部16が形成される。   As a hot forging process, after forging a spherical part at the end of a heat-resistant steel bar with an extruding forging to manufacture the shell 11 from a heat-resistant steel block or an upsetter by extrusion forging that sequentially replaces the mold, Any of upsetting forging which forges shell 11 (umbrella outer shell 14a) using a metal mold may be used. In the hot forging process, an R-shaped fillet portion 13 is formed between the umbrella outer shell 14a and the shaft portion 12a of the shell 11, and a tapered face portion is formed on the outer peripheral surface of the umbrella outer shell 14a. 16 is formed.

次に、図5(b)に示すように、傘部外殻14aの凹部14bが上向きとなるようにシェル11を配置し、傘部外殻14aの凹部14bの底面14b1から軸部12にかけて傘部寄り小径中空部S22に相当する孔14eをドリル加工により穿設する(孔穿設工程)。   Next, as shown in FIG. 5 (b), the shell 11 is disposed so that the concave portion 14b of the umbrella outer shell 14a faces upward, and the umbrella extends from the bottom surface 14b1 of the concave portion 14b of the umbrella outer shell 14a to the shaft portion 12. The hole 14e corresponding to the small-diameter hollow portion S22 near the part is drilled by drilling (hole drilling step).

孔穿設工程により、大径中空部S1を構成する傘部外殻14aの凹部14bと、小径中空部S22に相当する軸部12a側の孔14eが連通することで、凹部14bと孔14eの連通部には、凹部14b側から見て庇状の環状段差部15が形成される。   By the hole drilling step, the recess 14b of the umbrella outer shell 14a constituting the large-diameter hollow portion S1 and the hole 14e on the shaft 12a side corresponding to the small-diameter hollow portion S22 communicate with each other, so that the recess 14b and the hole 14e In the communication portion, a bowl-shaped annular step portion 15 is formed as viewed from the concave portion 14b side.

次に、図5(c)に示すように、シェル11の軸端部側から、軸端部寄り小径中空部S21に相当する孔14fをドリル加工により穿設する(孔穿設工程)。   Next, as shown in FIG. 5C, a hole 14f corresponding to the small-diameter hollow portion S21 near the shaft end is drilled from the shaft end of the shell 11 (hole drilling step).

次に、図5(d)に示すように、シェル11の軸端部に軸端部材12bを軸接する(軸端部材軸接工程)。   Next, as shown in FIG. 5D, the shaft end member 12b is axially contacted with the shaft end portion of the shell 11 (shaft end member axial contact step).

次に、図5(e)に示すように、シェル11の傘部外殻14aの凹部14bの孔14eに冷却材(固体)19を所定量充填する(冷却材装填工程)。   Next, as shown in FIG. 5 (e), a predetermined amount of coolant (solid) 19 is filled in the holes 14e of the recesses 14b of the umbrella outer shell 14a of the shell 11 (coolant charging step).

最後に、図5(f)に示すように、アルゴンガス雰囲気下で、シェル11の傘部外殻14aの凹部14bの開口内周14cにキャップ18を溶接(例えば、抵抗溶接)して、バルブ10の中空部Sを密閉する(中空部密閉工程)。なお、キャップ18の溶接は、抵抗溶接に代えて、電子ビーム溶接やレーザー溶接等を採用してもよい。   Finally, as shown in FIG. 5 (f), a cap 18 is welded (for example, resistance welding) to the opening inner periphery 14c of the recess 14b of the umbrella outer shell 14a of the shell 11 under an argon gas atmosphere, and the valve The 10 hollow portions S are sealed (hollow portion sealing step). Note that the welding of the cap 18 may employ electron beam welding, laser welding, or the like instead of resistance welding.

図6、7は、本発明の第2の実施例である中空ポペットバルブを示す。   6 and 7 show a hollow poppet valve according to a second embodiment of the present invention.

前記した第1の実施例の中空ポペットバルブ10では、バルブ傘部14内の大径中空部S1が円錐台形状に形成されているのに対し、この第2の実施例の中空ポペットバルブ10Aでは、バルブ傘部14内の大径中空部S1’が先行特許文献3と同様、高さの低い円柱形状に形成されている。   In the hollow poppet valve 10 of the first embodiment described above, the large-diameter hollow portion S1 in the valve umbrella portion 14 is formed in a truncated cone shape, whereas in the hollow poppet valve 10A of the second embodiment, The large-diameter hollow portion S1 ′ in the valve umbrella portion 14 is formed in a columnar shape having a low height, as in the prior art document 3.

そして、大径中空部S1’を画成する傘部外殻14a’の凹部14b’の内周面14b2’には、水平断面円弧状の縦溝20’(縦リブ21’)が周方向等ピッチに連続して形成されている。   A vertical groove 20 ′ (vertical rib 21 ′) having an arcuate horizontal section is provided on the inner peripheral surface 14b2 ′ of the concave portion 14b ′ of the umbrella outer shell 14a ′ that defines the large-diameter hollow portion S1 ′. It is formed continuously with the pitch.

そして、傘部外殻14a’の円柱形状凹部14bの開口部14c’には、キャップ18が溶接されることで、中空部S’が密閉され、中空部S’には、金属ナトリウム等の冷却材19がアルゴンガスなどの不活性ガスとともに装填されている。   Then, the cap 18 is welded to the opening 14c ′ of the cylindrical recess 14b of the umbrella outer shell 14a ′ so that the hollow portion S ′ is sealed, and the hollow portion S ′ is cooled with metal sodium or the like. Material 19 is loaded with an inert gas such as argon gas.

その他は、前記した第1の実施例の中空ポペットバルブ10と同一であり、同一の符号を付すことで、その重複した説明は省略する。   Others are the same as those of the hollow poppet valve 10 of the first embodiment described above, and the same reference numerals are given to omit redundant description.

即ち、この中空ポペットバルブ10Aにおいても、前記した第1の実施例の中空ポペットバルブ10と同様、バルブ10Aの開閉動作(上下方向の動作)に伴って、中空部S’内の冷却材19は慣性力により中空部S’内を上下方向に移動し、そのときの大径中空部S1’内の冷却材19には、大径中空部S1’の底面側から外周面に沿って上方に向かう流れが発生することで、バルブ10Aの中心軸線L’周りに内回りのタンブル流が形成される。   That is, also in the hollow poppet valve 10A, as in the hollow poppet valve 10 of the first embodiment described above, the coolant 19 in the hollow portion S ′ is changed in accordance with the opening / closing operation (vertical operation) of the valve 10A. The inside of the hollow portion S ′ moves up and down due to the inertial force, and the coolant 19 in the large-diameter hollow portion S1 ′ at that time is directed upward along the outer peripheral surface from the bottom surface side of the large-diameter hollow portion S1 ′. By generating the flow, an inward tumble flow is formed around the central axis L ′ of the valve 10A.

特に、大径中空部S1’を画成する傘部外殻14a’の凹部14b’の内周面14b2’に水平断面円弧状の縦溝20’(縦リブ21’)が周方向等ピッチに連続して形成されていることで、バルブ10Aが軸方向に往復動作する際に、大径中空部S1’の外周面(凹部14b’の内周面14b2’)に沿った上方に向かう冷却材19の流れの発生が助長されて、大径中空部S1’内の冷却材19において内回りのタンブル流の形成が促進されるので、中空部S’内全体の冷却材19による熱伝達が活発となって、バルブ10Aの熱引き効果が高められている。   In particular, vertical grooves 20 ′ (vertical ribs 21 ′) having an arcuate horizontal section are formed on the inner peripheral surface 14 b 2 ′ of the concave portion 14 b ′ of the umbrella outer shell 14 a ′ defining the large-diameter hollow portion S 1 ′ at equal pitches in the circumferential direction. By being formed continuously, when the valve 10A reciprocates in the axial direction, the coolant is directed upward along the outer peripheral surface of the large-diameter hollow portion S1 ′ (the inner peripheral surface 14b2 ′ of the concave portion 14b ′). Since the generation of the flow 19 is promoted and the formation of the inner tumble flow is promoted in the coolant 19 in the large-diameter hollow portion S1 ′, heat transfer by the coolant 19 in the entire hollow portion S ′ is actively performed. Thus, the heat pulling effect of the valve 10A is enhanced.

図8、9は、本発明の第3の実施例である中空ポペットバルブを示す。   8 and 9 show a hollow poppet valve according to a third embodiment of the present invention.

前記した第1,第2の実施例の中空ポペットバルブ10,10Aでは、バルブ軸部12内の小径中空部S2が、バルブ軸端部寄りの内径が大きい小径中空部S21と、バルブ傘部14寄りの内径が小さい小径中空部S22で構成されて、小径中空部S2の長手方向の途中に段差部17が形成されているのに対し、本実施例の中空ポペットバルブ10Bでは、軸部12内の小径中空部S2”が長手方向に一定の内径に形成されている。   In the hollow poppet valves 10 and 10A of the first and second embodiments described above, the small-diameter hollow portion S2 in the valve shaft portion 12 includes a small-diameter hollow portion S21 having a large inner diameter near the valve shaft end portion, and the valve umbrella portion 14. In contrast to the small-diameter hollow portion S22 having a small inner diameter, the step portion 17 is formed in the middle of the small-diameter hollow portion S2 in the longitudinal direction. Is formed with a constant inner diameter in the longitudinal direction.

その他は、前記した第1の実施例の中空ポペットバルブ10と同一であり、同一の符号を付すことで、その重複した説明は省略する。   Others are the same as those of the hollow poppet valve 10 of the first embodiment described above, and the same reference numerals are given to omit redundant description.

即ち、第1,第2の実施例の中空ポペットバルブ10,10Aでは、小径中空部S2内に設けられた段差部17によって、小径中空部S2内の冷却材19が攪拌されるのに対し、本実施例の中空ポペットバルブ10Bでは、そのような作用(段差部17による冷却材19の攪拌作用)がないが、前記した第1の実施例の中空ポペットバルブ10と同様、バルブ10Bが軸方向に往復動作する際に、大径中空部S1の傾斜する外周面(凹部の内周面)14b2に沿った上方に向かう冷却材19の流れの発生が助長されて、大径中空部S1内の冷却材19において内回りのタンブル流の形成が促進されるので、中空部S”内全体の冷却材19による熱伝達が活発となって、バルブ10Bの熱引き効果が高められている。   That is, in the hollow poppet valves 10 and 10A of the first and second embodiments, the coolant 19 in the small-diameter hollow portion S2 is agitated by the stepped portion 17 provided in the small-diameter hollow portion S2. In the hollow poppet valve 10B of this embodiment, there is no such action (stirring action of the coolant 19 by the stepped portion 17). However, like the hollow poppet valve 10 of the first embodiment described above, the valve 10B is in the axial direction. When the reciprocating operation is performed, the flow of the coolant 19 toward the upper side along the inclined outer peripheral surface (inner peripheral surface of the recess) 14b2 of the large-diameter hollow portion S1 is promoted, and the inside of the large-diameter hollow portion S1 is promoted. Since the formation of the inner tumble flow in the coolant 19 is promoted, heat transfer by the coolant 19 in the entire hollow portion S ″ becomes active, and the heat drawing effect of the valve 10B is enhanced.

また、中空ポペットバルブ10Bの製造工程を図9に示すが、バルブ軸部12内の小径中空部S2”に段差部を設けないため、小径中空部S2”に相当する孔を穿設する孔穿設工程が1工程で済み、しかも軸端部材を軸接する軸接工程も不要となるなど、製造工程が簡潔となっている。   FIG. 9 shows a manufacturing process of the hollow poppet valve 10B. Since the step portion is not provided in the small-diameter hollow portion S2 ″ in the valve shaft portion 12, a hole corresponding to the small-diameter hollow portion S2 ″ is formed. The manufacturing process is simplified, for example, the installation process is only one process, and the axial contact process for axially connecting the shaft end member is not required.

まず、図9(a)に示すように、熱間鍛造により、円錐台形状の凹部14bを設けた傘部外殻14aと軸部12とを一体的に形成したシェル11’を成形する。シェル11’(傘部外殻14a)の成形と同時に、傘部外殻14aにおける凹部14bの内周面14b1には、周方向に連続する縦溝20(縦リブ21)が形成される。   First, as shown in FIG. 9A, a shell 11 'in which an umbrella outer shell 14a provided with a truncated cone-shaped recess 14b and a shaft portion 12 are integrally formed is formed by hot forging. Simultaneously with the molding of the shell 11 ′ (umbrella outer shell 14 a), longitudinal grooves 20 (vertical ribs 21) that are continuous in the circumferential direction are formed on the inner peripheral surface 14 b 1 of the recess 14 b in the umbrella outer shell 14 a.

次に、図9(b)に示すように、傘部外殻14aの凹部14bの底面14b1から軸部12にかけて、小径中空部S2”に相当する孔14e’をドリル加工により穿設する(孔穿設工程)。   Next, as shown in FIG. 9B, a hole 14e ′ corresponding to the small-diameter hollow portion S2 ″ is drilled from the bottom surface 14b1 of the concave portion 14b of the umbrella outer shell 14a to the shaft portion 12 by drilling (hole). Drilling process).

次に、図9(c)に示すように、シェル11’の傘部外殻14aの凹部14bの孔14e’に冷却材(固体)19を所定量挿入する(冷却材装填工程)。   Next, as shown in FIG. 9C, a predetermined amount of coolant (solid) 19 is inserted into the hole 14e 'of the recess 14b of the umbrella outer shell 14a of the shell 11' (coolant loading step).

最後に、図9(d)に示すように、アルゴンガス雰囲気下で、シェル11’の傘部外殻14aの凹部14bの開口内周14cにキャップ18を溶接(例えば、抵抗溶接)して、バルブ10の中空部Sを密閉する(中空部密閉工程)。   Finally, as shown in FIG. 9 (d), under an argon gas atmosphere, a cap 18 is welded (for example, resistance welding) to the opening inner periphery 14c of the recess 14b of the umbrella outer shell 14a of the shell 11 ′, The hollow part S of the valve 10 is sealed (hollow part sealing step).

10,10A,10B 中空ポペットバルブ
11,11’ 傘部外殻と軸部を一体的に形成したシェル
12 バルブ軸部
12a 軸部
14 バルブ傘部
14a,14a’ 傘部外殻
14b,14b’ 傘部外殻の凹部
14b1 大径中空部の円形の天井面
14b2,14b2’ 傘部外殻の凹部内周面
14c,14c’ 傘部外殻の凹部の開口部
15 大径中空部の天井面における小径中空部の開口周縁部である庇状の環状段差部
17 円環状の段差部
20,20’ 縦溝
21,21’ 縦リブ
L,L’ バルブの中心軸線
S,S’S” 中空部
S1 円錐台形状の大径中空部
S1’ 円柱形状の大径中空部
S2,S2’ 直線状の小径中空部
P 連通部
18 キャップ
19 冷却材
S21 軸端部寄り小径中空部
S22 傘部寄り小径中空部
F1→F2→F3;F6→F8タンブル流
F4,F5,F7 乱流
F9,F10 乱流
10, 10A, 10B Hollow poppet valve 11, 11 'Shell in which umbrella portion outer shell and shaft portion are integrally formed Valve shaft portion 12a Shaft portion 14 Valve umbrella portions 14a, 14a' Umbrella portion outer shells 14b, 14b 'Umbrella Recess 14b1 of the outer shell Circular ceiling surfaces 14b2, 14b2 'of the large-diameter hollow portion Recess inner peripheral surfaces 14c, 14c' of the outer shell of the umbrella portion Opening 15 of the concave portion of the outer shell of the umbrella portion Saddle-shaped annular stepped portion 17 which is the peripheral edge of the opening of the small-diameter hollow portion, annular stepped portions 20, 20 ′, longitudinal grooves 21, 21 ′, longitudinal ribs L, L ′, valve center axes S, S ′S ″, hollow portion S1 Frustum-shaped large-diameter hollow part S1 'Cylindrical large-diameter hollow part S2, S2' Linear small-diameter hollow part P Communication part 18 Cap 19 Coolant S21 Small-diameter hollow part near the shaft end S22 Small-diameter hollow part near the umbrella part F1 → F2 → F3; F6 → F8 tumble flow F4 5, F7 turbulence F9, F10 turbulence

Claims (3)

軸端部に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に不活性ガスとともに冷却材が装填された中空ポペットバルブにおいて、
前記バルブ傘部内には、円盤形状の大径中空部が設けられ、前記バルブ軸部内に設けられた直線状の小径中空部が前記円盤形状の大径中空部の天井面に直交するように連通して、前記バルブが軸方向に往復動作する際、少なくとも前記大径中空部内の冷却材に前記バルブの中心軸線周りに縦方向内回りのタンブル流が形成される中空ポペットバルブであって、
前記大径中空部は、該大径中空部の天井側全体を画成する凹部が形成された傘部外殻と、前記凹部の開口側に溶接されて該大径中空部の底面を画成するキャップで構成され、
前記凹部の内周面には、周方向等間隔に縦リブが設けられたことを特徴とする中空ポペットバルブ。
In a hollow poppet valve in which a hollow portion is formed from an umbrella portion to a shaft portion of a poppet valve in which an umbrella portion is integrally formed at a shaft end portion, and a coolant is loaded together with an inert gas in the hollow portion,
A disc-shaped large-diameter hollow portion is provided in the valve umbrella portion, and a linear small-diameter hollow portion provided in the valve shaft portion communicates perpendicularly to a ceiling surface of the disc-shaped large-diameter hollow portion. And, when the valve reciprocates in the axial direction, a hollow poppet valve in which a tumble flow around the central axis of the valve is formed at least in the coolant in the large-diameter hollow portion,
The large-diameter hollow part includes an umbrella outer shell formed with a recess that defines the entire ceiling side of the large-diameter hollow part, and a bottom surface of the large-diameter hollow part that is welded to the opening side of the recess. Consists of a cap to
A hollow poppet valve characterized in that longitudinal ribs are provided at equal intervals in the circumferential direction on the inner peripheral surface of the recess.
前記傘部外殻の凹部の内周面には、前記縦リブで挟まれた水平断面円弧状の縦溝が周方向に連続して設けられたことを特徴とする請求項1に記載の中空ポペットバルブ。   2. The hollow according to claim 1, wherein a vertical groove having a horizontal cross-section arc shape sandwiched between the vertical ribs is continuously provided in a circumferential direction on an inner peripheral surface of the concave portion of the umbrella outer shell. Poppet valve. 前記大径中空部は、前記バルブ傘部の外形に略倣うテーパ形状の外周面を備えた円錐台形状に構成されたことを特徴とする請求項1または2に記載の中空ポペットバルブ。   3. The hollow poppet valve according to claim 1, wherein the large-diameter hollow portion is formed in a truncated cone shape having a tapered outer peripheral surface that substantially follows the outer shape of the valve umbrella portion.
JP2015506455A 2013-03-19 2013-03-19 Hollow poppet valve Expired - Fee Related JP6029742B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057880 WO2014147759A1 (en) 2013-03-19 2013-03-19 Hollow poppet valve

Publications (2)

Publication Number Publication Date
JP6029742B2 true JP6029742B2 (en) 2016-11-24
JPWO2014147759A1 JPWO2014147759A1 (en) 2017-02-16

Family

ID=51579491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015506455A Expired - Fee Related JP6029742B2 (en) 2013-03-19 2013-03-19 Hollow poppet valve

Country Status (2)

Country Link
JP (1) JP6029742B2 (en)
WO (1) WO2014147759A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116009C5 (en) 2015-09-22 2020-07-30 Federal-Mogul Valvetrain Gmbh Valve for internal combustion engines with a guide vane for coolant
DE102016117698A1 (en) * 2016-09-20 2018-03-22 Man Diesel & Turbo Se Valve body of a gas exchange valve, gas exchange valve and internal combustion engine
CN110914520B (en) 2018-03-20 2021-11-16 日锻汽门株式会社 Hollow lift valve for exhaust
JP7190506B2 (en) 2018-11-12 2022-12-15 株式会社Nittan Manufacturing method of engine poppet valve
CN115697584A (en) 2020-03-30 2023-02-03 日锻株式会社 Method for manufacturing poppet valve of engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218983A (en) * 1937-10-14 1940-10-22 Eaton Mfg Co Valve structure
US2280758A (en) * 1941-03-07 1942-04-21 Eaton Mfg Co Hollow valve structure
JPS54180819U (en) * 1978-06-13 1979-12-21

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2369063A (en) * 1942-07-13 1945-02-06 Thompson Prod Inc Evacuated coolant containing valve
JP2547383Y2 (en) * 1990-11-19 1997-09-10 フジオーゼックス株式会社 Hollow valves for internal combustion engines
JP2006097499A (en) * 2004-09-28 2006-04-13 Toyota Motor Corp Hollow valve for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218983A (en) * 1937-10-14 1940-10-22 Eaton Mfg Co Valve structure
US2280758A (en) * 1941-03-07 1942-04-21 Eaton Mfg Co Hollow valve structure
JPS54180819U (en) * 1978-06-13 1979-12-21

Also Published As

Publication number Publication date
JPWO2014147759A1 (en) 2017-02-16
WO2014147759A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6072053B2 (en) Hollow poppet valve
JP6088641B2 (en) Hollow poppet valve
JP6029742B2 (en) Hollow poppet valve
JP6205437B2 (en) Hollow poppet valve
JP6033402B2 (en) Hollow poppet valve
JP6251177B2 (en) Hollow poppet valve
JP6063558B2 (en) Hollow poppet valve
JP6131318B2 (en) Hollow poppet valve
WO2015170384A1 (en) Hollow poppet valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees