JPWO2015119064A1 - Thermally conductive composite and method for producing the same - Google Patents

Thermally conductive composite and method for producing the same Download PDF

Info

Publication number
JPWO2015119064A1
JPWO2015119064A1 JP2015526082A JP2015526082A JPWO2015119064A1 JP WO2015119064 A1 JPWO2015119064 A1 JP WO2015119064A1 JP 2015526082 A JP2015526082 A JP 2015526082A JP 2015526082 A JP2015526082 A JP 2015526082A JP WO2015119064 A1 JPWO2015119064 A1 JP WO2015119064A1
Authority
JP
Japan
Prior art keywords
fiber
conductive composite
metal foil
composite material
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015526082A
Other languages
Japanese (ja)
Other versions
JP6571000B2 (en
Inventor
優樹 延澤
優樹 延澤
倉田 功
功 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumikin Materials Co Ltd
Publication of JPWO2015119064A1 publication Critical patent/JPWO2015119064A1/en
Application granted granted Critical
Publication of JP6571000B2 publication Critical patent/JP6571000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

低コストで、且つ、高剛性と放熱性を両立させることができる熱伝導性複合材を提供する。連続した強化繊維fを含むシート状の繊維強化樹脂材2と、繊維強化樹脂材2の両面に一体に接合された金属箔層3(3a、3b)とを有し、厚さ(T1)が0.07〜1mmとされる熱伝導性複合材1であって、繊維強化樹脂材2は厚さ(t2)が0.05mm以上、1mm未満とされ、金属箔層3(3a、3b)は厚さ(t3a、t3b)が0.009〜0.1mmとされ、熱伝導性複合材1の引張弾性率は80GPa以上である。Provided is a thermally conductive composite material that can achieve both high rigidity and heat dissipation at low cost. It has a sheet-like fiber reinforced resin material 2 including continuous reinforcing fibers f, and metal foil layers 3 (3a, 3b) integrally bonded to both surfaces of the fiber reinforced resin material 2, and the thickness (T1) is The heat conductive composite material 1 is 0.07 to 1 mm, the fiber reinforced resin material 2 has a thickness (t2) of 0.05 mm or more and less than 1 mm, and the metal foil layers 3 (3a, 3b) are The thickness (t3a, t3b) is 0.009 to 0.1 mm, and the tensile elastic modulus of the heat conductive composite 1 is 80 GPa or more.

Description

本発明は、スマートフォン、タブレット、携帯型パソコンなどに代表される情報端末機器の筐体、筐体ケースやモバイルタイプのデジタル医療用カセッテやその他熱対策が必要な電気機器筐体などの補強板として使用される高剛性(高弾性)の、且つ、高い放熱特性、即ち、熱伝導性を有した熱伝導性複合材及びその製造方法に関するものである。   The present invention is used as a reinforcing plate for casings of information terminal devices such as smartphones, tablets, and portable personal computers, casing cases, mobile-type digital medical cassettes, and other electrical equipment casings that require heat countermeasures. The present invention relates to a heat conductive composite material having high rigidity (high elasticity) and high heat dissipation characteristics, that is, heat conductivity, and a method for manufacturing the same.

現在、例えばスマートフォン、タブレット、携帯型パソコンなどの情報端末機器にてバッテリー、回路基板等が搭載される筐体、筐体ケース、斯かる筐体等に一体的に取付けられる筐体表面材、天板等は、軽量化のためにプラスチック系材料を成形して作製されるのが主流となっている。例えば、図1に概略構成を示すスマートフォン100は、一般には、バッテリー、回路基板等が搭載された薄型箱状の筐体(或いは、筐体ケース)101と、筐体(或いは、筐体ケース)101に取付けられたディスプレー、タッチパネルとを備えた蓋体102とにて構成される。
近年、上述のような情報端末機器では、CPUなどの処理性能の向上に伴い、半導体装置等の消費電力の増加によるバッテリーの大型化と発熱量の増大が余儀なくされ、従って、筐体(或いは筐体ケース)の剛性化、及び、放熱性(熱伝導性)が一層強く求められるようになっている。
従来、放熱部材として一般に使用されているグラファイトシートなどは驚異的な熱伝導率を有しているが、非常に高価であり、また、剛性の点で問題がある。
そこで、特許文献1は、集積回路に使用される半導体などの発熱素子を冷却するために、炭素繊維複合材を用いたハイブリッドの放熱板を提案している。この放熱板は、炭素繊維複合材が熱伝導率に異方性があることから、半導体などの発熱素子を搭載する炭素繊維複合体の周囲に高熱伝導性金属を接合して構成され、炭素繊維複合体の炭素繊維が発熱素子を搭載する面に対して垂直に1軸配向されている。
また、特許文献2は、高性能CPUを内蔵したパソコンの筐体として、箱形の長繊維ペレットを有する炭素繊維強化プラスチック成形品の底面部に接着剤にてアルミニウム平板を接着した熱伝導性の複合成型品を提案している。
Currently, for example, a case in which a battery, a circuit board, etc. are mounted in an information terminal device such as a smartphone, a tablet, or a portable personal computer, a case case, a case surface material that is integrally attached to the case, a ceiling Plates and the like are mainly produced by molding a plastic material for weight reduction. For example, a smartphone 100 having a schematic configuration shown in FIG. 1 generally includes a thin box-shaped housing (or housing case) 101 on which a battery, a circuit board, and the like are mounted, and a housing (or housing case). A lid 102 provided with a display and a touch panel attached to 101.
In recent years, in the information terminal device as described above, with the improvement of the processing performance of the CPU and the like, the size of the battery and the amount of generated heat have been increased due to the increase in power consumption of the semiconductor device and the like. The rigidity of the body case) and the heat dissipation (thermal conductivity) are required more strongly.
Conventionally, a graphite sheet or the like generally used as a heat radiating member has an amazing heat conductivity, but is very expensive and has a problem in rigidity.
Therefore, Patent Document 1 proposes a hybrid heat dissipation plate using a carbon fiber composite material in order to cool a heating element such as a semiconductor used in an integrated circuit. Since this carbon fiber composite material has anisotropy in thermal conductivity, this heat radiating plate is formed by bonding a high thermal conductivity metal around the carbon fiber composite on which a heating element such as a semiconductor is mounted. The carbon fiber of the composite is uniaxially oriented perpendicular to the surface on which the heating element is mounted.
Further, Patent Document 2 discloses a thermal conductive material in which an aluminum flat plate is bonded to the bottom surface of a carbon fiber reinforced plastic molded product having a box-shaped long fiber pellet as a housing of a personal computer incorporating a high-performance CPU. Proposes composite molded products.

特開2002−57259号公報JP 2002-57259 A 特開平11−147286号公報JP-A-11-147286

上記特許文献の記載からも理解されるように、炭素繊維強化複合材は、使用される強化繊維である炭素繊維が、繊維軸方向には良く熱を伝えるが、繊維軸と直角な方向には殆ど熱を伝えない。そのため、炭素繊維強化複合材の熱源に近い表面の炭素繊維は、熱拡散に或る程度寄与するが、炭素繊維強化複合材の厚み方向に対して熱伝導率が悪いために表面から遠い内側の炭素繊維は熱拡散に殆ど寄与しない。つまり、例えばピッチ系炭素繊維そのものは熱伝導率が100〜600W/mKと非常に高い数値を示すが、繊維軸方向にしかその能力を発揮できず、異方性があること、また、炭素繊維に樹脂を含浸させて作製された炭素繊維強化複合材とした場合には樹脂の熱伝導率の悪さが影響して所望の熱伝導特性が得られないといった問題を抱えている。
また、上記特許文献1に記載される炭素繊維複合材を用いたハイブリッドの放熱板は、例えば、30mm角、厚み2mmの銅片の中央部に厚み2mmの炭素繊維複合体を嵌め込み、この炭素繊維複合体の上に発熱素子を搭載する構成とされている。また、特許文献2に記載の炭素繊維強化プラスチック成形品は、例えば、炭素繊維強化プラスチック成形品の厚みは1.4mm、長繊維ペレットは、重量平均繊維長が0.38mm、アルミニウム平板の厚みが0.6mmとされている。
特許文献1、2に記載のハイブリッドの放熱板或いは炭素繊維強化プラスチック成形品はそれ自体を、スマートフォンなどの筐体カバー或いは筐体の補強のために使用する補強板として使用することはできない。
そこで、本発明者らは、上記従来の炭素繊維複合材を用いたハイブリッドの放熱板或いは炭素繊維強化プラスチック成形品の上記問題点を改善するために、多くの研究実験を行った結果、発熱体との接触部となる表面は金属とし、内側に高剛性な炭素繊維強化複合材のような繊維強化複合材を配置するか、又は、内側に金属を配置し、その両側に炭素繊維強化複合材のような繊維強化複合材を配置し、金属の厚み及び繊維強化複合材の厚みを最適に設計することで、繊維強化複合材の繊維軸方向以外の面内方向へは等方材料である金属の熱伝導性で熱拡散を促し、面内方向及び厚み方向にも良好な放熱特性(熱伝導率)を保持しつつ、高い剛性を確保できることを見出した。
つまり、本発明の目的は、低コストで、且つ、高剛性と放熱性を両立させることができる熱伝導性複合材を提供することである。
As understood from the description of the above-mentioned patent document, the carbon fiber reinforced composite material is a reinforcing fiber to be used, the carbon fiber conducts heat well in the fiber axis direction, but in the direction perpendicular to the fiber axis. Hardly conveys heat. Therefore, the carbon fiber on the surface close to the heat source of the carbon fiber reinforced composite material contributes to thermal diffusion to some extent, but the thermal conductivity is poor with respect to the thickness direction of the carbon fiber reinforced composite material, so Carbon fiber contributes little to heat diffusion. In other words, for example, pitch-based carbon fiber itself has a very high thermal conductivity of 100 to 600 W / mK, but can exhibit its ability only in the fiber axis direction and has anisotropy. In the case of a carbon fiber reinforced composite material produced by impregnating a resin with a resin, there is a problem that a desired heat conduction characteristic cannot be obtained due to the poor heat conductivity of the resin.
Moreover, the hybrid heat sink using the carbon fiber composite material described in Patent Document 1 is, for example, a carbon fiber composite having a thickness of 2 mm fitted into a central portion of a 30 mm square copper piece having a thickness of 2 mm. A heating element is mounted on the composite. In addition, the carbon fiber reinforced plastic molded product described in Patent Document 2 has, for example, a carbon fiber reinforced plastic molded product having a thickness of 1.4 mm, a long fiber pellet having a weight average fiber length of 0.38 mm, and an aluminum flat plate having a thickness of 1.4 mm. It is set to 0.6 mm.
The hybrid heat dissipation plate or carbon fiber reinforced plastic molded product described in Patent Literatures 1 and 2 cannot be used as a reinforcing plate used for reinforcing a housing cover or housing of a smartphone or the like.
Therefore, the present inventors have conducted many research experiments in order to improve the above-described problems of hybrid heat sinks or carbon fiber reinforced plastic molded products using the above-mentioned conventional carbon fiber composite materials. The surface to be in contact with the metal is made of metal and a fiber reinforced composite material such as a highly rigid carbon fiber reinforced composite material is arranged on the inside, or a metal is arranged on the inside and a carbon fiber reinforced composite material on both sides thereof. By arranging fiber reinforced composite materials such as the above and designing the thickness of the metal and the fiber reinforced composite material optimally, the metal that is an isotropic material in the in-plane direction other than the fiber axis direction of the fiber reinforced composite material The present inventors have found that high rigidity can be secured while promoting thermal diffusion with the heat conductivity and maintaining good heat radiation characteristics (thermal conductivity) in the in-plane direction and the thickness direction.
That is, an object of the present invention is to provide a thermally conductive composite material that can achieve both high rigidity and heat dissipation at low cost.

上記目的は本発明に係る熱伝導性複合材にて達成される。要約すれば、本発明の第一の態様によれば、連続した強化繊維を含むシート状の繊維強化樹脂材と、前記繊維強化樹脂材の両面に一体に接合された金属箔層とを有し、厚さが0.07〜1mmとされる熱伝導性複合材であって、
前記繊維強化樹脂材は厚さが0.05mm以上、1mm未満とされ、前記金属箔層は厚さが0.009〜0.1mmとされ、
前記熱伝導性複合材の引張弾性率は80GPa以上である、
ことを特徴とする熱伝導性複合材が提供される。
本発明の第二の態様によれば、金属箔層と、前記金属箔層の両面に一体に接合された、連続した強化繊維を含むシート状の繊維強化樹脂材とを有し、厚さが0.12〜1mmとされる熱伝導性複合材であって、
前記繊維強化樹脂材は厚さが0.05mm以上、1mm未満とされ、前記金属箔層は厚さが0.009〜0.1mmとされ、
前記熱伝導性複合材の引張弾性率は80GPa以上である、
ことを特徴とする熱伝導性複合材が提供される。
上記本発明にて第一の実施態様によれば、前記繊維強化樹脂材は、強化繊維の熱伝導率が100W/mK以上、引張弾性率が400GPa以上を有するピッチ系炭素繊維を繊維体積含有率で20%以上含有する。
上記本発明にて他の実施態様によれば、前記繊維強化樹脂材は、強化繊維がピッチ系炭素繊維、PAN系炭素繊維若しくはガラス繊維であるか、又は、前記繊維を2種以上混合したものである。
上記第1及び第2の本発明にて他の実施態様によれば、前記繊維強化樹脂材は、連続した前記強化繊維を一方向に引き揃え、樹脂含浸して形成されるか、及び/又は、少なくとも2軸方向にて織成された織物に樹脂含浸して形成される。
上記第1及び第2の本発明にて他の実施態様によれば、前記繊維強化樹脂材は、連続した前記強化繊維を一方向に引き揃え、樹脂含浸して形成されたシートを、少なくとも2軸方向に積層して作製される。
上記第1及び第2の本発明にて他の実施態様によれば、前記金属箔層は、50W/mK以上の熱伝導率を有した金属にて作製される。
上記本発明にて他の実施態様によれば、前記熱伝導性複合材は、厚さが0.12〜0.5mmである。
本発明の第三の態様によれば、連続した強化繊維を含むシート状の繊維強化樹脂材と、前記繊維強化樹脂材の両面に一体に接合された金属箔層とを有し、厚さが0.07〜1mmとされ、引張弾性率は80GPa以上である熱伝導性複合材の製造方法であって、
(a)連続した強化繊維を少なくとも一方向に引き揃えて配列し、樹脂を含浸して半硬化した繊維目付量が25〜600g/m、繊維体積含有率が20〜70%とされる少なくとも1枚のプリプレグシートと、厚さが0.009〜0.1mmとされる金属箔と、を準備し、
(b)前記プリプレグシートの両面に前記金属箔を押圧して一体に積層し、
(c)その後、前記プリプレグシートを硬化して繊維強化樹脂材とする、
ことを特徴とする繊維強化樹脂材の両面に金属箔層が一体とされた熱伝導性複合材の製造方法が提供される。
本発明の第四の態様によれば、金属箔層と、前記金属箔層の両面に一体に接合された、連続した強化繊維を含むシート状の繊維強化樹脂材とを有し、厚さが0.12〜1mmとされ、引張弾性率は80GPa以上である熱伝導性複合材の製造方法であって、
(a)連続した強化繊維を少なくとも一方向に引き揃えて配列し、樹脂を含浸して半硬化した繊維目付量が25〜600g/m、繊維体積含有率が20〜70%とされる少なくとも1枚のプリプレグシートと、厚さが0.009〜0.1mmとされる金属箔と、を準備し、
(b)前記金属箔の両面に前記プリプレグシートを押圧して一体に積層し、
(c)その後、前記プリプレグシートを硬化して繊維強化樹脂材とする、
ことを特徴とする金属箔層の両面に繊維強化樹脂材が一体とされた熱伝導性複合材の製造方法が提供される。
The above object is achieved by the thermally conductive composite material according to the present invention. In summary, according to the first aspect of the present invention, a sheet-like fiber reinforced resin material containing continuous reinforcing fibers, and a metal foil layer integrally bonded to both surfaces of the fiber reinforced resin material are provided. A thermally conductive composite material having a thickness of 0.07 to 1 mm,
The fiber reinforced resin material has a thickness of 0.05 mm or more and less than 1 mm, the metal foil layer has a thickness of 0.009 to 0.1 mm,
The tensile modulus of the heat conductive composite is 80 GPa or more,
A thermally conductive composite material is provided.
According to the second aspect of the present invention, it has a metal foil layer and a sheet-like fiber reinforced resin material containing continuous reinforcing fibers integrally bonded to both surfaces of the metal foil layer, and has a thickness. A thermally conductive composite material of 0.12 to 1 mm,
The fiber reinforced resin material has a thickness of 0.05 mm or more and less than 1 mm, the metal foil layer has a thickness of 0.009 to 0.1 mm,
The tensile modulus of the heat conductive composite is 80 GPa or more,
A thermally conductive composite material is provided.
According to the first embodiment of the present invention, the fiber reinforced resin material has a fiber volume content of pitch-based carbon fibers having a thermal conductivity of the reinforcing fibers of 100 W / mK or more and a tensile elastic modulus of 400 GPa or more. 20% or more.
According to another embodiment of the present invention, the fiber reinforced resin material may be a pitch-based carbon fiber, a PAN-based carbon fiber, or a glass fiber, or a mixture of two or more of the fibers. It is.
According to another embodiment of the first and second aspects of the present invention, the fiber reinforced resin material is formed by aligning the continuous reinforcing fibers in one direction and impregnating the resin, and / or The woven fabric woven in at least two axial directions is impregnated with resin.
According to another embodiment of the first and second inventions described above, the fiber reinforced resin material includes at least two sheets formed by aligning the continuous reinforcing fibers in one direction and impregnating the resin. It is produced by laminating in the axial direction.
According to another embodiment of the first and second aspects of the present invention, the metal foil layer is made of a metal having a thermal conductivity of 50 W / mK or more.
According to another embodiment of the present invention, the thermally conductive composite material has a thickness of 0.12 to 0.5 mm.
According to the third aspect of the present invention, it has a sheet-like fiber reinforced resin material containing continuous reinforcing fibers, and a metal foil layer integrally bonded to both surfaces of the fiber reinforced resin material, and has a thickness. The manufacturing method of the heat conductive composite material which is 0.07 to 1 mm and the tensile elastic modulus is 80 GPa or more,
(A) At least a continuous reinforcing fiber is arranged in at least one direction and arranged and semi-cured by impregnating with a resin, the basis weight of the fiber is 25 to 600 g / m 2 , and the fiber volume content is at least 20 to 70%. Preparing one prepreg sheet and a metal foil having a thickness of 0.009 to 0.1 mm,
(B) The metal foil is pressed onto both sides of the prepreg sheet and laminated together,
(C) Thereafter, the prepreg sheet is cured to obtain a fiber reinforced resin material.
The manufacturing method of the heat conductive composite material by which the metal foil layer was united on both surfaces of the fiber reinforced resin material characterized by the above is provided.
According to the fourth aspect of the present invention, the metal foil layer and the sheet-like fiber-reinforced resin material including continuous reinforcing fibers integrally bonded to both surfaces of the metal foil layer have a thickness. A method for producing a thermally conductive composite material having a tensile modulus of 0.12 to 1 mm and a tensile modulus of 80 GPa or more,
(A) At least a continuous reinforcing fiber is arranged in at least one direction and arranged and semi-cured by impregnating with a resin, the basis weight of the fiber is 25 to 600 g / m 2 , and the fiber volume content is at least 20 to 70%. Preparing one prepreg sheet and a metal foil having a thickness of 0.009 to 0.1 mm,
(B) The prepreg sheet is pressed on both sides of the metal foil and laminated together,
(C) Thereafter, the prepreg sheet is cured to obtain a fiber reinforced resin material.
The manufacturing method of the heat conductive composite material with which the fiber reinforced resin material was united on both surfaces of the metal foil layer characterized by the above is provided.

本発明によれば、高剛性と放熱性を備え、被補強体に貼付するだけで、被補強体の外力による変形を防止して装置内部が壊れることを防ぎ、且つ、ヒートスポットを作ることなく拡散させることができる。   According to the present invention, it has high rigidity and heat dissipation, and only by sticking to the reinforced body, it prevents deformation of the reinforced body due to external force, prevents the inside of the apparatus from being broken, and without creating a heat spot. Can be diffused.

図1は、スマートフォンの概略構成を示す斜視図であり、本発明に係る熱伝導性複合材にてスマートフォンの筐体或いは筐体ケースが補強された態様を示す。
図2(a)は、本発明に係る熱伝導性複合材にて補強された被補強体とされるスマートフォンの筐体或いは筐体ケースの概略構成断面図であり、図2(b)は、本発明に係る熱伝導性複合材の一実施例の概略構成拡大断面図である。また、図2(c)は、本発明に係る熱伝導性複合材の他の実施例の概略構成拡大断面図である。
図3(a)は、金属箔層が接合される前のプリプレグシート(繊維強化樹脂材)、強化繊維シートの一実施例を示す斜視図であり、図3(b)は、プリプレグシートの積層態様の一例を説明する図である。
図4(a)、(b)は、本発明に係る熱伝導性複合材の製造方法を説明する概略構成図である。
図5(a)及び図5(b)は、それぞれ、熱伝導性複合材の試験サンプルの寸法形状を説明するための平面図及び断面図であり、図5(c)は試験サンプルの放熱性を試験するための温度測定方法を示す図である。
FIG. 1 is a perspective view showing a schematic configuration of a smartphone, and shows a mode in which a case or case of a smartphone is reinforced with a thermally conductive composite material according to the present invention.
FIG. 2A is a schematic cross-sectional view of a smartphone casing or a casing case that is a reinforced body reinforced with the thermally conductive composite material according to the present invention, and FIG. It is a schematic structure expanded sectional view of one example of the heat conductive composite concerning the present invention. Moreover, FIG.2 (c) is a schematic structure expanded sectional view of the other Example of the heat conductive composite material which concerns on this invention.
FIG. 3A is a perspective view showing an example of a prepreg sheet (fiber reinforced resin material) and a reinforced fiber sheet before the metal foil layer is joined, and FIG. 3B is a lamination of prepreg sheets. It is a figure explaining an example of an aspect.
4 (a) and 4 (b) are schematic configuration diagrams illustrating a method for manufacturing a heat conductive composite material according to the present invention.
FIG. 5A and FIG. 5B are a plan view and a cross-sectional view, respectively, for explaining the dimensional shape of the test sample of the thermally conductive composite material, and FIG. 5C is the heat dissipation property of the test sample. It is a figure which shows the temperature measurement method for testing this.

以下、本発明に係る熱伝導性複合材を図面に則して更に詳しく説明する。   Hereinafter, the heat conductive composite material according to the present invention will be described in more detail with reference to the drawings.

図1は、上述したように、スマートフォン100の概略構成を示しており、本発明に係る熱伝導性複合材1にて形成された補強板によりスマートフォン100の筐体或いは筐体ケース(即ち、被補強体)101の底板部分101aが補強された態様を示す。
図2(a)は、本発明に係る熱伝導性複合材1にて補強された被補強体とされるスマートフォンの筐体或いは筐体ケース101の概略構成を示す断面図であり、図2(b)は、本発明に係る熱伝導性複合材1の一実施例の概略構成拡大断面図である。なお、図2(a)では、図1と異なり被補強体101の底板部分101aが上方に位置して図示されている。図2(c)は、後で実施例2として説明する、本発明に係る熱伝導性複合材1の他の実施例の概略構成拡大断面図である。
先ず、図2(b)を参照すると、本実施例にて、本発明に係る熱伝導性複合材1は、連続した強化繊維を含むシート状の繊維強化樹脂材2と、該繊維強化樹脂材2の両面に一体に接合された金属箔層3(3a、3b)とを有する。本発明によると、図3をも参照すると、熱伝導性複合材1による熱拡散は、基本的には、繊維強化樹脂材2及び金属箔層3により繊維強化樹脂材2の強化繊維fの繊維軸方向(図3にてX−X方向)の熱拡散を図り、強化繊維fの繊維軸方向に交差(直交)する方向(図3にてY−Y方向)の熱拡散は金属箔層3にて行う。
また、熱伝導性複合材1の所望の放熱性は、熱伝導性複合材1及び各構成部材2、3の厚み設計により達成される。つまり、本発明では、熱伝導性複合材1の厚さ方向(図3にてZ−Z方向)の熱伝導については、繊維強化樹脂材2の強化繊維fに対し直交する方向(図3にてY−Y方向)の熱伝導率の悪さが影響し難い最適な繊維強化樹脂材2と金属箔層3の構成にて達成される。
つまり、本発明の一実施例を示す図2(b)を参照すると、熱伝導性複合材1の厚さ(T1)は、1mm以下とされ、通常0.07〜1mm(0.07mm≦T1≦1mm)とされる。厚さ(T1)が1mmを超えると、本実施例のように、熱伝導性複合材1を被補強体である例えばスマートフォンの筐体(或いは、筐体ケース)101の補強板として使用する場合に、被補強体101の内空間を占有し過ぎてしまい、スマートフォンの主要部材を収容するために必然的に被補強体101であるスマートフォンの筐体等は大となり、総重量も大となり、小型化、軽量化を損なうこととなる。また、厚さ(T1)が0.07mm未満とされると、本発明が目的とする、補強板としての高剛性を達成することが困難となり、また、繊維強化樹脂材2、金属箔層3が極めて薄くなってしまい、既存の原材料では製作出来ずコスト高となってしまう。好ましくは、熱伝導性複合材1の厚さ(T1)は、0.12〜0.5mmとされる。
また、本発明者らの実験研究の結果によれば、熱伝導性複合材1は、所要の引張剛性(引張弾性率×断面積)を得るために引張弾性率が少なくともアルミニウムの引張弾性率(70GPa)より大とされる80GPa以上であることが必要であることが分かった。引張弾性率が80GPa未満では補強のための十分な剛性が得られない。
以下に、本発明に係る熱伝導性複合材1の各構成部材について更に詳しく説明する。
(繊維強化樹脂材)
シート状の繊維強化樹脂材2は、厚さ(t2)が0.05mm以上、1mm未満(0.05mm≦t2<1mm)とされ、厚さ(t2)が1mm以上であると、放熱性の悪化を招くといった問題があり、厚さ(t2)が0.05mm未満では、補強板としての高剛性を達成することが困難となり、また、繊維強化樹脂材2が極めて薄くなってしまい、既存の原材料では製作出来ずコスト高となってしまう、といった問題が生じる。好ましくは、繊維強化樹脂材2の厚さ(t2)は、0.1〜0.46mmとされる。
繊維強化樹脂材2は、熱伝導率が100W/mK以上、引張弾性率が400GPa以上とされるピッチ系炭素繊維を繊維体積含有率(Vf)で20%以上含有する繊維強化複合材とされる。詳しくは後述するが、本発明では、繊維体積含有率(Vf)は20〜70%、好ましくは、40〜65%とされる。即ち、本実施例によれば、ピッチ系炭素繊維を使用した場合、繊維体積含有率20%の繊維強化樹脂材2は、引張弾性率が、400GPa×繊維体積含有率(Vf)20%=80GPaとされる。つまり、現状では、繊維強化樹脂材2は強化繊維としてピッチ系炭素繊維を使用した場合において最大の熱伝導率(放熱性)及び剛性が得られる。斯かる構成の繊維強化樹脂材2を使用することにより、本発明に従った引張弾性率が80GPa以上とされる熱伝導性複合材1を得ることができる。
繊維強化樹脂材2は、連続した強化繊維fに樹脂Rを含浸して作製されるが、強化繊維fとしては、炭素繊維を最も好適に使用することができ、特に、上述したように、ピッチ系の炭素繊維が好ましい。要求される補強板、即ち、熱伝導性複合材1の仕様によっては、ピッチ系炭素繊維よりも、引張弾性率及び熱伝導率の点で劣るPAN系の炭素繊維も使用することができる。また、場合によっては、炭素繊維以外には、炭素繊維よりも更に引張弾性率及び熱伝導率の点で劣るガラス繊維を使用することもできる。勿論、これら繊維を混ぜて使用することもできる。
ここで、本発明で使用し得る強化繊維の引張弾性率及び熱伝導率を示せば、表1に示す通りである。

Figure 2015119064
また、本発明にて使用することのできる繊維強化樹脂材2は、図3(a)に示すように、繊維軸方向に連続した上記の如き強化繊維fを一方向に引き揃えてシート状に構成した強化繊維シート10Sに樹脂Rを含浸し半硬化(Bステージ化)させたプリプレグシート10PGを用いて作製される。
プリプレグシート10PGの繊維目付量は、25〜600g/mのものが好適に使用され、炭素繊維の繊維体積含有率(Vf)は、上述のように、20%以上とされる。プリプレグシート10PGは所望に応じて複数枚積層して使用することができる。このプリプレグシート10PGは、硬化後においては、上述したように、厚さ(t2)が0.05mm以上、1mm未満、好ましくは、0.1〜0.46mmの繊維強化樹脂材を形成する。
上記説明では、強化繊維fを一方向に引き揃えて作製されるUD形状のものとして説明したが、必要に応じて強化繊維fが互いに交差するようにしてプリプレグシート10PGを複数枚積層して使用することもできる。つまり、強化繊維fを一方向に引き揃えて作製されるUD形状のプリプレグシート10PGを、強化繊維fの方向が少なくとも2軸方向、場合によっては、3軸、4軸方向に配向するように積層して作製することができる。例えば、図3(b)に示すように、強化繊維fが0°方向に配向されたプリプレグシート10PG(0°)、強化繊維fが90°方向に配向されたプリプレグシート10PG(90°)、及び、強化繊維fが0°方向に配向されたプリプレグシート10PG(0°)の3枚を積層して作製することができる。更には、図示してはいないが、上記強化繊維fが90°方向に配向されたプリプレグシート10PG(90°)の代わりに、強化繊維fが+45°方向に配向されたプリプレグシート10PG(+45°)と強化繊維fが−45°方向に配向されたプリプレグシート10PG(−45°)とを使用した3軸構成、又は、上記強化繊維fが90°方向に配向されたプリプレグシート10PG(90°)に加えて、更に、強化繊維fが+45°方向に配向されたプリプレグシート10PG(+45°)と強化繊維fが−45°方向に配向されたプリプレグシート10PG(−45°)とを使用した4軸構成とすることも可能である。
更には、強化繊維シート10Sは、必要に応じて1種類或いは複数種の強化繊維fを織成して形成される、例えば、平織クロス、綾織クロス、朱子織クロスなどの織物(クロス)とすることもできる。更には、上記UD形状のものとクロスとを併用することも可能である。
含浸樹脂(マトリックス樹脂)Rとしては、エポキシ樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂のいずれかが好適に使用される。
繊維強化樹脂材2における強化繊維fは、上述したように、例えばピッチ系炭素繊維を使用した場合は、繊維体積含有率(Vf)にて20%以上含有することが重要である。通常、20〜70%とされる。強化繊維fの繊維体積含有率(Vf)が20%未満では、繊維量が少なく、所望の剛性及び放熱性を得ることができないといった問題があり、70%を超えると、樹脂不足となり、本来の機械的物性が得られないといった問題が生じる。好ましくは、繊維体積含有率(Vf)は、40〜65%の範囲とされる。
(金属箔層)
金属箔層3(3a、3b)は、アルミニウム、或いは、銅のような200W/mK以上の熱伝導率を有した金属で作製される。要求される放熱性の程度によっては、これら金属材料より劣る熱伝導率50〜200W/mKを有した、例えば、鉄やニッケルや真鍮などを使用しても良い。更には、50〜200W/mKを有した、例えばアルミニウム合金などの、上記諸金属の合金で作製しても良い。金属箔層3a、3bは、熱伝導性複合材1の形状によっては、同じ金属であっても良く、異なる金属とすることもできる。
また、金属箔層3(3a、3b)の厚さ(t3a、t3b)は各々0.009〜0.1mm(0.009mm≦t3a、t3b≦0.1mm)とされるが、厚さ(t3a、t3b)が0.1mmを超えると、金属箔層3(3a、3b)の厚さ(t3a、t3b)が厚すぎ、繊維強化樹脂材2の引張弾性率が生かせなくなり剛性の点で不利になる。また、一般的に金属箔層3の方が繊維強化樹脂材2より密度が高いため、厚さ(t3a、t3b)の増加に伴い、熱伝導性複合材1の重量が重くなってしまう。厚さ(t3a、t3b)が0.009mm未満では、既存の原材料では製作出来ずコスト高となってしまう、といった問題が生じる。更には、材料が薄すぎるため、折れたり破れたりなど取扱いが非常に難しくなってしまう。好ましくは、金属箔層3(3a、3b)の厚さ(t3a、t3b)は、各々0.01〜0.05mmである。なお、熱伝導性複合材1の形状によっては、金属箔層3a、3bの厚さ(t3a、t3b)は、同じであっても良く、また異なるものとすることもできる。
(製造方法)
本発明によると、金属箔層3(3a、3b)は、繊維強化樹脂材2に対して一体成型されることが必要である。即ち、例えば、図4(a)に示すように、金属箔層3(3a、3b)は、強化繊維シート10Sに対して樹脂Rが含浸され、未だ完全に硬化されていない、所謂、プリプレグシート10PGの両面に押圧して一体的に積層し、必要により加熱して、樹脂Rを硬化する。
もし、後接着、即ち、プリプレグシート10PGの含浸樹脂Rが完全に硬化した、即ち、繊維強化樹脂材2に対して、接着剤を使用して金属箔層3(3a、3b)を接着して一体とした場合には、接着剤の厚みによっては、接着層で放熱性や剛性の低下が懸念される。また、金属箔層3の接着前下地処理や接着剤塗布量の均一性を確保することが困難であったり、接着前下地処理自体が煩雑であったりする。更には貼付の工程が別途発生する分、コスト高となる。
(補強方法)
上述のようにして作製した熱伝導性複合材1は、例えばスマートフォン筐体或いは筐体ケース(被補強体)101等に一体に接合される(図1参照)。
作業を簡便に行うために治具などを用意し、例えば、予め成型された筐体ケース又はケースの天面部となる天板等に接着剤、場合によっては両面テープなどにより一体に接合する。この場合、接着剤の厚み、材質を適正に設定することで、放熱性や剛性の低下を起こさないようにする。また、スマートフォン筐体、或いは、筐体ケース101の成形時に成型型に設置し、同時にプレス成型することにより被補強体101に一体に接合することもできる。
このようにして得られた繊維強化プラスチック製品である被補強体101は、上述したようにその厚さ(T1)が0.07〜1mmとされ、引張弾性率が80GPa以上とされる高剛性と放熱性を備えた補強体(即ち、熱伝導性複合材1)にて補強され、それにより、外力による変形を有効に防止して装置内部が壊れることを防ぎ、且つ、装置内部に収容した発熱源によるヒートスポットを作ることなく拡散させることができる。
(実験例の説明)
次に、本発明に係る熱伝導性複合材1の作用効果を立証するべく、種々の試験サンプルを作製し、機械的強度、放熱性に対する性能試験を行った。表2、表4に、本実験例で使用した試験サンプルの材料、構成、諸寸法などを示し、表3、表5に試験結果を示す。
(1)実験例1〜4
(試験サンプル)
実験例1では、薄板状のアルミニウム(A5052)単体(金属単体)を使用した。実験例2では、ピッチ系炭素繊維のクロス(織物)に樹脂を含浸した炭素繊維強化樹脂(CFRPクロス)を使用した。実験例3では、ガラス繊維のクロス(織物)に樹脂を含浸したガラス繊維強化樹脂(GFRPクロス)と、ピッチ系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸した炭素繊維強化樹脂(CFRP一方向)とを重ね合わせたガラス−炭素繊維接合複合材(GFRPクロス−CFRP一方向)を使用した。実験例4では、本発明の構成に従って、ピッチ系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸した炭素繊維強化樹脂(CFRP一方向)の両面に銅箔を一体成型して作製した繊維強化複合材(金属箔表層−CFRP一方向コア)を使用した。
また、実験例2、3、4で使用したピッチ系炭素繊維は、モノフィラメント平均径9μm、収束本数3000本、6000本又は12000本の繊維束、即ち、ピッチ系炭素繊維ストランド(日本グラファイトファイバー株式会社製(商品名:グラノックXN−80)を使用し、繊維にエポキシ樹脂を含浸させてプリプレグを得た。
実験例3で使用したガラス繊維クロスプリプレグは、三菱レイヨン株式会社製(商品名:GHO250−381IM)を使用した。繊維目付量は、表2に示す通りとした。
実験例3においては、ガラス繊維クロスプリプレグと一方向炭素繊維シートプリプレグとを重ね合わせ一体とした後、加熱して樹脂硬化して試験サンプルを作製した。また、実験例4においては、一方向炭素繊維シートプリプレグの両面に銅箔を押圧して一体に積層し、加熱して樹脂硬化し、熱伝導性複合材1を作製した。
使用したアルミニウム、銅、ガラス繊維、ピッチ系炭素繊維の機械的特性及び熱伝導率は、次の通りであった。
アルミニウム(A5052):引張弾性率:70GPa
熱伝導率:138W/mK
銅 :引張弾性率:110〜130GPa
熱伝導率:398W/mK
ガラス繊維 :引張弾性率:70GPa
熱伝導率:0.5W/mK
ピッチ系炭素繊維:引張弾性率:780GPa
熱伝導率:320W/mK
実験例1〜4で使用した試験サンプルSは、図5(a)、(b)に示すように長さ×幅が100mm×50mmとされ、各サンプルSの厚さ寸法(総厚みT1、金属箔層厚t3、繊維強化樹脂材厚t2)は、表2に示す通りである。
(放熱性)
各試験サンプルSの放熱性は、次のようにして測定した。
図5(c)に示すように、試験サンプル、即ち、試験片Sの長手方向一端(図5(c)で左側端)の幅方向中央部にヒータ(H)を設置し、試験片の少なくともヒータ設置位置、及び、ヒータ(H)が設置された側とは反対側(図5(c)にて右側端)の温度測定点を温度センサー(TS)で測定した。温度試験スタート時と平衡状態に達したときの温度を測定した。温度測定の結果による放熱性の判断は、次のようにした。つまり、ヒータ直下の点の温度が高いと、周囲に温度が逃がせていないので、放熱性が悪いと判断した。また、ヒータから遠い、試験片の他端(図5(c)で右側端)における測定点での温度が上昇した場合には、遠いところまで熱が逃がせているので、放熱性が良いと判断した。
放熱性の測定結果は、表3に示す通りであり、実験例1のサンプルは、ヒータ直下の温度が、実験例1〜4の中では1番低く、全体に熱が拡がっている様子が見受けられた(◎:放熱性非常に良好)。実験例2のサンプルは、実験例1〜4の中では3番目であり、実験例1のサンプルと同様に全体に熱が拡がっているものの実験例1のサンプルより劣っている(△)。実験例3のサンプルは、ヒータ直下の温度が、実験例1〜4の中では一番高く、蓄熱しており、一方向にしか熱が拡がっていない(×:放熱性不良)。実験例4のサンプルは、ヒータ直下の温度は、実験例1〜4の中では2番めに低く、全体に熱が拡がっており、試験サンプルの端部まで熱が拡がっている様子が見受けられた(◎〜○:放熱性良好)。
(引張弾性率、引張剛性)
引張弾性率(E)、引張剛性及び重量は、計算により求めた。引張剛性は、サンプルの引張弾性率(E)とサンプルの横断面積(A)(本実施例では、A=50mm×T1)との積である。
引張弾性率、引張剛性及び重量の結果は、表3に示す通りである。表3より、本発明に従って構成した実験例4の試験サンプルが、放熱性及び剛性において優れており、また、重量においても実験例1のアルミニウム単体より軽量であった。
Figure 2015119064
Figure 2015119064
(2)実験例5〜9
本発明に係る熱伝導性複合材1の作用効果をさらに立証するべく、先に述べた実験例1〜4に加えて、熱伝導性複合材1の厚み(T1)を変更し、且つ極力厚みを揃えて性能試験を行った。上述したように、表4に本実験例で使用した試験サンプルの材料、構成、諸寸法などを示し、表5に試験結果を示す。
(試験サンプル)
実験例5では、薄板状のアルミニウムA5052単体(金属単体)を使用した。厚みは0.48mmとした。実験例6では、ピッチ系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸したプリプレグをX方向とY方向に積層して得られた炭素繊維強化樹脂(CFRP一方向0°/90°板)を使用した。実験例7では、本発明の構成に従って、ピッチ系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸したプリプレグをX方向とY方向に積層して得られた炭素繊維強化樹脂の両面に銅箔を一体成型して作製した繊維強化複合材(金属箔表層−ピッチ系CFRP一方向0°/90°板)を使用した。実験例8では、PAN系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸したプリプレグをX方向とY方向に積層して得られた炭素繊維強化樹脂(PAN系CFRP一方向0°/90°板)を使用した。実験例9では、本発明の構成に従って、PAN系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸したプリプレグをX方向とY方向に積層して得られた炭素繊維強化樹脂の両面に銅箔を一体成型して作製した繊維強化複合材(金属箔表層−PAN系CFRP一方向0°/90°板)を使用した。
また、実験例5〜9で使用したピッチ系炭素繊維、アルミニウム、銅については実験例1〜4と同じ諸物性のものを使用した。実験例8、9で使用したPAN系炭素繊維は三菱レイヨン株式会社製(TR380G125他)を使用した。使用した総繊維目付量は表4に示す通りとした。
実験例5〜9で使用した試験サンプルは、実施例1〜4と同様長さ×幅が100mm×50mmとされ、各サンプルの厚さ寸法(総厚みT1、金属箔層厚t3、繊維強化樹脂材厚t2)は表4に示す通りである。
(放熱性)
各試験サンプルの放熱性は、実験例1〜4と同様の方法で測定した。
放熱性の測定結果は、表5に示す通りであり、実験例5のサンプルは、ヒータ直下の温度が38.8℃と実験例5〜9の中では一番低く、更に全体に熱が拡がっている様子が見受けられた(◎:放熱性非常に良好)。実験例6のサンプルは、ヒータ直下の温度は40℃と実験例5のアルミ並みではあったが、熱の拡散の様子は全体には拡がっているものの実験例5のアルミより劣っていた(○:放熱性やや良好)。実験例7のサンプルは、ヒータ直下の温度が39.8℃であり、銅箔の効果により熱の拡散の様子は実験例5のアルミ並みであった(◎:放熱性非常に良好)。実験例8のサンプルは、ヒータ直下の温度が93.4℃と著しく蓄熱しており、熱もほとんど拡がっていない(×:放熱性不良)。実験例9のサンプルは、ヒータ直下の温度が50℃程度の蓄熱が見られたが、実験例9のサンプルに比べると銅箔の効果により蓄熱が抑えられ、少し熱が拡がっている様子が見受けられた(△:放熱性やや劣る)。
(引張弾性率、引張剛性)
引張弾性率(E)、引張剛性および重量は、実験例1〜4と同様、計算により求めた。引張弾性率、引張剛性及び重量の結果は表5に示す通りである。表5より本発明に従って、構成した実験例7の試験サンプルが放熱性及び剛性において優れており、また、重量においてもほぼ同じ厚さの実験例5のアルミニウム単体より軽量であった。
Figure 2015119064
Figure 2015119064
FIG. 1 shows a schematic configuration of the smartphone 100 as described above, and a case or a housing case (that is, a cover) of the smartphone 100 by the reinforcing plate formed of the heat conductive composite material 1 according to the present invention. (Reinforcing body) 101 shows a mode in which the bottom plate portion 101a of the reinforcing body is reinforced.
FIG. 2A is a cross-sectional view showing a schematic configuration of a smartphone case or a housing case 101 that is a reinforced body reinforced by the heat conductive composite material 1 according to the present invention. b) is an enlarged schematic cross-sectional view of an embodiment of the thermally conductive composite material 1 according to the present invention. In FIG. 2A, unlike FIG. 1, the bottom plate portion 101a of the to-be-reinforced body 101 is illustrated as being positioned above. FIG. 2C is an enlarged schematic cross-sectional view of another embodiment of the heat conductive composite material 1 according to the present invention, which will be described later as a second embodiment.
First, referring to FIG. 2 (b), in this example, the thermally conductive composite material 1 according to the present invention includes a sheet-like fiber reinforced resin material 2 including continuous reinforcing fibers, and the fiber reinforced resin material. 2 and the metal foil layer 3 (3a, 3b) integrally joined to both surfaces. According to the present invention, referring also to FIG. 3, the thermal diffusion by the thermally conductive composite material 1 is basically the fiber of the reinforcing fiber f of the fiber reinforced resin material 2 by the fiber reinforced resin material 2 and the metal foil layer 3. Thermal diffusion in the axial direction (XX direction in FIG. 3) is attempted, and thermal diffusion in the direction (YY direction in FIG. 3) intersecting (orthogonal) the fiber axis direction of the reinforcing fiber f is the metal foil layer 3 To do.
Moreover, the desired heat dissipation of the heat conductive composite material 1 is achieved by the thickness design of the heat conductive composite material 1 and the constituent members 2 and 3. That is, in the present invention, the heat conduction in the thickness direction of the thermally conductive composite material 1 (the ZZ direction in FIG. 3) is perpendicular to the reinforcing fiber f of the fiber reinforced resin material 2 (in FIG. 3). (Y-Y direction) and the optimum configuration of the fiber reinforced resin material 2 and the metal foil layer 3 which are hardly affected by the poor thermal conductivity.
That is, referring to FIG. 2 (b) showing an embodiment of the present invention, the thickness (T1) of the heat conductive composite material 1 is set to 1 mm or less, usually 0.07 to 1 mm (0.07 mm ≦ T1). ≦ 1 mm). When the thickness (T1) exceeds 1 mm, the thermal conductive composite material 1 is used as a reinforcing plate for a case (or case case) 101 of a smartphone, which is a body to be reinforced, as in this embodiment. In addition, the internal space of the to-be-reinforced body 101 occupies too much, and the housing of the smartphone, which is the to-be-reinforced body 101, is inevitably large in order to accommodate the main members of the smartphone. And weight reduction. Further, when the thickness (T1) is less than 0.07 mm, it is difficult to achieve high rigidity as a reinforcing plate, which is an object of the present invention, and the fiber reinforced resin material 2 and the metal foil layer 3 are difficult to achieve. Becomes extremely thin and cannot be manufactured with existing raw materials, resulting in high costs. Preferably, the thickness (T1) of the heat conductive composite 1 is 0.12 to 0.5 mm.
Further, according to the results of the experimental study by the present inventors, the heat conductive composite material 1 has a tensile elastic modulus of at least an aluminum tensile modulus (a tensile elastic modulus (cross-sectional area)) in order to obtain a required tensile rigidity (tensile elastic modulus × cross-sectional area). It was found that it was necessary to be 80 GPa or more, which is greater than 70 GPa). If the tensile modulus is less than 80 GPa, sufficient rigidity for reinforcement cannot be obtained.
Below, each structural member of the heat conductive composite material 1 which concerns on this invention is demonstrated in more detail.
(Fiber reinforced resin material)
The sheet-like fiber reinforced resin material 2 has a thickness (t2) of 0.05 mm or more and less than 1 mm (0.05 mm ≦ t2 <1 mm), and a heat dissipation property when the thickness (t2) is 1 mm or more. When the thickness (t2) is less than 0.05 mm, it is difficult to achieve high rigidity as a reinforcing plate, and the fiber reinforced resin material 2 becomes extremely thin, resulting in a problem of causing deterioration. There is a problem that raw materials cannot be manufactured and the cost is high. Preferably, the fiber reinforced resin material 2 has a thickness (t2) of 0.1 to 0.46 mm.
The fiber reinforced resin material 2 is a fiber reinforced composite material containing 20% or more of pitch-based carbon fibers having a thermal conductivity of 100 W / mK or more and a tensile modulus of 400 GPa or more in terms of fiber volume content (Vf). . Although mentioned later in detail, in this invention, fiber volume content (Vf) is 20 to 70%, Preferably, it is 40 to 65%. That is, according to this example, when pitch-based carbon fibers are used, the fiber reinforced resin material 2 having a fiber volume content of 20% has a tensile elastic modulus of 400 GPa × fiber volume content (Vf) 20% = 80 GPa. It is said. That is, at present, the fiber-reinforced resin material 2 can obtain the maximum thermal conductivity (heat dissipation) and rigidity when pitch-based carbon fibers are used as the reinforcing fibers. By using the fiber reinforced resin material 2 having such a configuration, it is possible to obtain the thermally conductive composite material 1 having a tensile elastic modulus of 80 GPa or more according to the present invention.
The fiber reinforced resin material 2 is produced by impregnating a continuous reinforcing fiber f with a resin R, and as the reinforcing fiber f, carbon fiber can be most preferably used. Of these, carbon fibers are preferred. Depending on the specifications of the required reinforcing plate, that is, the thermal conductive composite 1, PAN-based carbon fibers that are inferior in terms of tensile modulus and thermal conductivity to pitch-based carbon fibers can also be used. Moreover, depending on the case, the glass fiber which is inferior in terms of a tensile elasticity modulus and thermal conductivity further than a carbon fiber other than a carbon fiber can also be used. Of course, these fibers can also be mixed and used.
Here, the tensile elastic modulus and thermal conductivity of the reinforcing fibers that can be used in the present invention are as shown in Table 1.
Figure 2015119064
Further, as shown in FIG. 3A, the fiber reinforced resin material 2 that can be used in the present invention is formed into a sheet by aligning the reinforcing fibers f as described above continuous in the fiber axis direction in one direction. It is produced using a prepreg sheet 10PG obtained by impregnating the resin R with the reinforcing fiber sheet 10S thus configured and semi-curing (B-stage).
The fiber basis weight of the prepreg sheet 10PG is preferably 25 to 600 g / m 2 , and the fiber volume content (Vf) of the carbon fiber is 20% or more as described above. A plurality of prepreg sheets 10PG can be laminated and used as desired. After curing, the prepreg sheet 10PG forms a fiber reinforced resin material having a thickness (t2) of 0.05 mm or more and less than 1 mm, preferably 0.1 to 0.46 mm, as described above.
In the above description, the description has been given on the assumption that the reinforced fiber f is formed in a UD shape that is aligned in one direction. However, if necessary, a plurality of prepreg sheets 10PG are laminated so that the reinforced fibers f intersect each other. You can also That is, the UD-shaped prepreg sheet 10PG produced by aligning the reinforcing fibers f in one direction is laminated so that the directions of the reinforcing fibers f are at least biaxial, and in some cases, triaxial and tetraaxial. Can be produced. For example, as shown in FIG. 3B, a prepreg sheet 10PG (0 °) in which the reinforcing fibers f are oriented in the 0 ° direction, a prepreg sheet 10PG (90 °) in which the reinforcing fibers f are oriented in the 90 ° direction, And it can be produced by laminating three prepreg sheets 10PG (0 °) in which the reinforcing fibers f are oriented in the 0 ° direction. Furthermore, although not shown, instead of the prepreg sheet 10PG (90 °) in which the reinforcing fibers f are oriented in the 90 ° direction, the prepreg sheet 10PG (+ 45 ° in which the reinforcing fibers f are oriented in the + 45 ° direction. ) And a prepreg sheet 10PG (−45 °) in which the reinforcing fibers f are oriented in the −45 ° direction, or a prepreg sheet 10PG (90 ° in which the reinforcing fibers f are oriented in the 90 ° direction. In addition, the prepreg sheet 10PG (+ 45 °) in which the reinforcing fibers f are oriented in the + 45 ° direction and the prepreg sheet 10PG (−45 °) in which the reinforcing fibers f are oriented in the −45 ° direction were used. A 4-axis configuration is also possible.
Furthermore, the reinforcing fiber sheet 10S may be formed by weaving one or more kinds of reinforcing fibers f as necessary, for example, a woven fabric (cross) such as a plain weave cloth, a twill cloth, a satin cloth, etc. it can. Furthermore, it is possible to use a UD shape and a cloth in combination.
As the impregnating resin (matrix resin) R, any of epoxy resin, vinyl ester resin, MMA resin, unsaturated polyester resin, or phenol resin is preferably used.
As described above, for example, when pitch-based carbon fibers are used, it is important that the reinforcing fibers f in the fiber-reinforced resin material 2 are contained in a fiber volume content (Vf) of 20% or more. Usually, it is 20 to 70%. If the fiber volume content (Vf) of the reinforcing fiber f is less than 20%, there is a problem that the amount of fibers is small and the desired rigidity and heat dissipation cannot be obtained. There arises a problem that mechanical properties cannot be obtained. Preferably, the fiber volume content (Vf) is in the range of 40 to 65%.
(Metal foil layer)
The metal foil layer 3 (3a, 3b) is made of a metal having a thermal conductivity of 200 W / mK or higher, such as aluminum or copper. Depending on the required degree of heat dissipation, for example, iron, nickel, brass or the like having a thermal conductivity of 50 to 200 W / mK inferior to these metal materials may be used. Furthermore, you may produce with the alloys of the said various metals which have 50-200 W / mK, for example, an aluminum alloy. The metal foil layers 3 a and 3 b may be the same metal or different metals depending on the shape of the heat conductive composite material 1.
In addition, the thickness (t3a, t3b) of the metal foil layer 3 (3a, 3b) is 0.009 to 0.1 mm (0.009 mm ≦ t3a, t3b ≦ 0.1 mm), respectively. , T3b) exceeds 0.1 mm, the thickness (t3a, t3b) of the metal foil layer 3 (3a, 3b) is too thick, and the tensile elastic modulus of the fiber reinforced resin material 2 cannot be utilized, which is disadvantageous in terms of rigidity. Become. Moreover, since the density of the metal foil layer 3 is generally higher than that of the fiber reinforced resin material 2, the weight of the heat conductive composite material 1 increases as the thickness (t3a, t3b) increases. When the thickness (t3a, t3b) is less than 0.009 mm, there is a problem that the existing raw materials cannot be manufactured and the cost is increased. Furthermore, since the material is too thin, it becomes very difficult to handle such as breaking or tearing. Preferably, the thickness (t3a, t3b) of the metal foil layer 3 (3a, 3b) is 0.01 to 0.05 mm, respectively. Depending on the shape of the heat conductive composite 1, the thicknesses (t3a, t3b) of the metal foil layers 3a, 3b may be the same or different.
(Production method)
According to the present invention, the metal foil layer 3 (3a, 3b) needs to be integrally molded with the fiber reinforced resin material 2. That is, for example, as shown in FIG. 4A, the metal foil layer 3 (3a, 3b) is a so-called prepreg sheet in which the reinforcing fiber sheet 10S is impregnated with the resin R and is not yet completely cured. The two sides of 10PG are pressed and laminated together, and if necessary, heated to cure the resin R.
If the post-bonding, that is, the impregnation resin R of the prepreg sheet 10PG is completely cured, that is, the metal foil layer 3 (3a, 3b) is bonded to the fiber reinforced resin material 2 using an adhesive. In the case of being integrated, depending on the thickness of the adhesive, there is a concern that the adhesive layer may reduce heat dissipation and rigidity. Moreover, it is difficult to ensure the uniformity of the pre-adhesion ground treatment and adhesive application amount of the metal foil layer 3, or the pre-adhesion ground treatment itself is complicated. Furthermore, the cost increases due to the additional sticking process.
(Reinforcing method)
The heat conductive composite material 1 produced as described above is integrally joined to, for example, a smartphone housing or a housing case (reinforcement body) 101 (see FIG. 1).
For example, a jig or the like is prepared in order to easily perform the work. For example, a jig or the like is integrally bonded to a pre-molded casing case or a top plate to be a top surface portion of the case with an adhesive, or in some cases, a double-sided tape. In this case, the thickness and material of the adhesive are set appropriately so as not to cause a decrease in heat dissipation and rigidity. Moreover, it can also be integrally joined to the to-be-reinforced body 101 by installing in a shaping | molding die at the time of shaping | molding of a smart phone housing | casing or the housing | casing case 101, and simultaneously press-molding.
As described above, the to-be-reinforced body 101 which is a fiber-reinforced plastic product thus obtained has a high rigidity with a thickness (T1) of 0.07 to 1 mm and a tensile elastic modulus of 80 GPa or more. Reinforced by a heat-dissipating reinforcing body (that is, the heat conductive composite 1), thereby effectively preventing deformation due to external force to prevent the inside of the apparatus from being broken, and generating heat contained in the inside of the apparatus It can diffuse without creating a heat spot from the source.
(Explanation of experimental examples)
Next, in order to verify the action and effect of the thermally conductive composite material 1 according to the present invention, various test samples were prepared, and performance tests on mechanical strength and heat dissipation were performed. Tables 2 and 4 show the materials, configurations, dimensions, and the like of the test samples used in this experimental example, and Tables 3 and 5 show the test results.
(1) Experimental Examples 1-4
(Test sample)
In Experimental Example 1, a thin plate-like aluminum (A5052) simple substance (metal simple substance) was used. In Experimental Example 2, a carbon fiber reinforced resin (CFRP cloth) obtained by impregnating a pitch carbon fiber cloth (woven fabric) with a resin was used. In Experimental Example 3, a glass fiber reinforced resin (GFRP cloth) in which a glass fiber cloth (woven fabric) is impregnated with a resin and a carbon fiber in which a resin is impregnated with a unidirectional carbon fiber sheet in which pitch-based carbon fibers are aligned in one direction. A glass-carbon fiber bonded composite (GFRP cross-CFRP unidirectional) laminated with a reinforced resin (CFRP unidirectional) was used. In Experimental Example 4, in accordance with the configuration of the present invention, a copper foil was integrally formed on both sides of a carbon fiber reinforced resin (CFRP unidirectional) obtained by impregnating a unidirectional carbon fiber sheet in which pitch-based carbon fibers were aligned in one direction. The fiber reinforced composite material (metal foil surface layer—CFRP unidirectional core) produced in this manner was used.
In addition, the pitch-based carbon fibers used in Experimental Examples 2, 3, and 4 have a monofilament average diameter of 9 μm and a bundle of 3000, 6000, or 12000 fibers, that is, pitch-based carbon fiber strands (Nippon Graphite Fiber Co., Ltd.). (Trade name: Granock XN-80) was used, and the fiber was impregnated with an epoxy resin to obtain a prepreg.
The glass fiber cloth prepreg used in Experimental Example 3 was manufactured by Mitsubishi Rayon Co., Ltd. (trade name: GHO250-381IM). The fiber basis weight was as shown in Table 2.
In Experimental Example 3, a glass fiber cloth prepreg and a unidirectional carbon fiber sheet prepreg were laminated and integrated, and then heated to cure the resin to prepare a test sample. Moreover, in Experimental example 4, the copper foil was pressed on both surfaces of the unidirectional carbon fiber sheet prepreg to be laminated integrally, and the resin was cured by heating to produce the thermally conductive composite material 1.
The mechanical properties and thermal conductivity of the used aluminum, copper, glass fiber, and pitch-based carbon fiber were as follows.
Aluminum (A5052): Tensile elastic modulus: 70 GPa
Thermal conductivity: 138W / mK
Copper: Tensile elastic modulus: 110-130 GPa
Thermal conductivity: 398 W / mK
Glass fiber: Tensile modulus: 70 GPa
Thermal conductivity: 0.5 W / mK
Pitch-based carbon fiber: Tensile modulus: 780 GPa
Thermal conductivity: 320W / mK
The test sample S used in Experimental Examples 1 to 4 has a length × width of 100 mm × 50 mm as shown in FIGS. 5A and 5B, and the thickness dimension (total thickness T1, metal) of each sample S The foil layer thickness t3 and the fiber reinforced resin material thickness t2) are as shown in Table 2.
(Heat dissipation)
The heat dissipation of each test sample S was measured as follows.
As shown in FIG.5 (c), a heater (H) is installed in the width direction center part of the longitudinal direction one end (left side end in FIG.5 (c)) of a test sample, ie, the test piece S, and at least a test piece is shown. The temperature measurement point was measured with the temperature sensor (TS) on the heater installation position and on the side opposite to the side where the heater (H) was installed (the right end in FIG. 5C). The temperature at the start of the temperature test and when the equilibrium was reached was measured. Judgment of heat dissipation by the result of temperature measurement was as follows. That is, if the temperature at the point immediately below the heater is high, the temperature is not allowed to escape to the surroundings, so it was determined that the heat dissipation is poor. In addition, when the temperature at the measurement point at the other end of the test piece (the right end in FIG. 5C) is far from the heater, heat is released to a far place, so it is determined that heat dissipation is good. did.
The measurement results of heat dissipation are as shown in Table 3, and the sample of Experimental Example 1 shows that the temperature immediately below the heater is the lowest in Experimental Examples 1 to 4, and the heat spreads throughout. (◎: very good heat dissipation). The sample of the experimental example 2 is the third among the experimental examples 1 to 4, and is inferior to the sample of the experimental example 1 (Δ) although the heat spreads as a whole like the sample of the experimental example 1. In the sample of Experimental Example 3, the temperature immediately below the heater is the highest among the Experimental Examples 1 to 4, storing heat, and heat spreading only in one direction (x: poor heat dissipation). In the sample of Experimental Example 4, the temperature immediately below the heater is the second lowest in Experimental Examples 1 to 4, and the heat spreads to the whole, and it can be seen that the heat spreads to the end of the test sample. (◎ to ○: good heat dissipation).
(Tensile modulus, tensile stiffness)
The tensile elastic modulus (E), tensile rigidity, and weight were obtained by calculation. The tensile stiffness is the product of the tensile modulus (E) of the sample and the cross-sectional area (A) of the sample (A = 50 mm × T1 in this example).
The results of tensile modulus, tensile stiffness and weight are as shown in Table 3. From Table 3, the test sample of Experimental Example 4 configured according to the present invention was excellent in heat dissipation and rigidity, and was lighter in weight than the aluminum simple substance of Experimental Example 1.
Figure 2015119064
Figure 2015119064
(2) Experimental Examples 5-9
In order to further prove the effects of the heat conductive composite material 1 according to the present invention, in addition to the experimental examples 1 to 4 described above, the thickness (T1) of the heat conductive composite material 1 is changed and the thickness is as much as possible. A performance test was conducted. As described above, Table 4 shows the material, configuration, dimensions, and the like of the test sample used in this experimental example, and Table 5 shows the test result.
(Test sample)
In Experimental Example 5, a sheet-like aluminum A5052 simple substance (metal simple substance) was used. The thickness was 0.48 mm. In Experimental Example 6, a carbon fiber reinforced resin (CFRP unidirectional 0 °) obtained by laminating a prepreg impregnated with resin in a unidirectional carbon fiber sheet in which pitch-based carbon fibers are aligned in one direction in the X direction and the Y direction. / 90 ° plate). In Experimental Example 7, a carbon fiber reinforced resin obtained by laminating a prepreg impregnated with a resin in a unidirectional carbon fiber sheet in which pitch-based carbon fibers are aligned in one direction in accordance with the configuration of the present invention, in the X direction and the Y direction. A fiber reinforced composite material (metal foil surface layer-pitch-based CFRP unidirectional 0 ° / 90 ° plate) produced by integrally molding copper foil on both sides of the sheet was used. In Experimental Example 8, a carbon fiber reinforced resin (PAN-based CFRP unidirectional) obtained by laminating a prepreg impregnated with a resin in a unidirectional carbon fiber sheet in which PAN-based carbon fibers are aligned in one direction, in the X direction and the Y direction. 0 ° / 90 ° plate) was used. In Experimental Example 9, a carbon fiber reinforced resin obtained by laminating a prepreg impregnated with a resin in a unidirectional carbon fiber sheet in which PAN-based carbon fibers are aligned in one direction in accordance with the configuration of the present invention, in the X direction and the Y direction. A fiber reinforced composite material (metal foil surface layer—PAN-based CFRP unidirectional 0 ° / 90 ° plate) produced by integrally molding copper foil on both sides of the sheet was used.
Moreover, the thing of the same physical property as Experimental Examples 1-4 was used about the pitch-type carbon fiber, aluminum, and copper which were used in Experimental Examples 5-9. As the PAN-based carbon fiber used in Experimental Examples 8 and 9, Mitsubishi Rayon Co., Ltd. (TR380G125, etc.) was used. The total fiber basis weight used was as shown in Table 4.
The test samples used in Experimental Examples 5 to 9 have a length × width of 100 mm × 50 mm as in Examples 1 to 4, and the thickness dimensions of each sample (total thickness T1, metal foil layer thickness t3, fiber reinforced resin) The material thickness t2) is as shown in Table 4.
(Heat dissipation)
The heat dissipation of each test sample was measured by the same method as in Experimental Examples 1 to 4.
The results of measurement of heat dissipation are as shown in Table 5. The sample of Experimental Example 5 has the lowest temperature immediately below the heater at 38.8 ° C., which is the lowest among Experimental Examples 5 to 9, and the entire heat spreads. (◎: Very good heat dissipation). In the sample of Experimental Example 6, the temperature immediately below the heater was 40 ° C., which was similar to that of Aluminum of Experimental Example 5, but the state of heat diffusion was inferior to that of Aluminum of Experimental Example 5 although it spread throughout. : Heat dissipation is slightly better. The sample of Experimental Example 7 had a temperature immediately below the heater of 39.8 ° C., and due to the effect of the copper foil, the state of heat diffusion was similar to that of Aluminum of Experimental Example 5 (5: very good heat dissipation). In the sample of Experimental Example 8, the temperature immediately below the heater is remarkably stored at 93.4 ° C., and the heat hardly spreads (×: poor heat dissipation). The sample of Experimental Example 9 showed heat storage at a temperature just below the heater of about 50 ° C., but compared to the sample of Experimental Example 9, the heat storage was suppressed by the effect of the copper foil, and the heat spread a little. (△: heat dissipation is slightly inferior).
(Tensile modulus, tensile stiffness)
The tensile modulus (E), tensile rigidity, and weight were obtained by calculation as in Experimental Examples 1 to 4. The results of tensile modulus, tensile rigidity and weight are as shown in Table 5. From Table 5, the test sample of Experimental Example 7 constructed according to the present invention was excellent in heat dissipation and rigidity, and was lighter than the single aluminum of Experimental Example 5 having substantially the same thickness.
Figure 2015119064
Figure 2015119064

図2(c)に、本発明に係る熱伝導性複合材1の第二の実施例を示す。本実施例によると、熱伝導性複合材1は、金属箔層3と、該金属箔層3の両面に一体に接合されたシート状の繊維強化樹脂材2(2a、2b)とを有する。
本実施例の熱伝導性複合材1は、実施例1の熱伝導性複合材1に比較すると、高引張弾性率を有する繊維強化樹脂材2(2a、2b)が金属箔層3の両面に配置されている構成とすることにより、放熱性に比較して、より剛性を重視するタイプのものである。
本実施例の熱伝導性複合材1は、実施例1の場合とは、金属箔層3の両面にシート状の繊維強化樹脂材2(2a、2b)が一体に接合された点において異なり、構成部材である金属箔層3及びシート状の繊維強化樹脂材2(2a、2b)は、実施例1と同様の材料、構成とされる。従って、金属箔層3及びシート状の繊維強化樹脂材2(2a、2b)についての説明は、実施例1の説明を援用し、詳しい説明は省略する。
本実施例において、熱伝導性複合材1の厚さ(T2)は、上記実施例1の場合と同様に、1mm以下とされ、通常、本実施例では、0.12〜1mm(0.12mm≦T2≦1mm)とされる。好ましくは、熱伝導性複合材の厚さ(T2)は、0.12〜0.5mmとされる。
(製造方法)
本実施例においても、金属箔層3は、繊維強化樹脂材2(2a、2b)に対して一体成型されることが必要である。即ち、例えば、図4(b)に示すように、強化繊維シート10Sa、10Sbに対して樹脂Rが含浸され、未だ完全に硬化されていない、所謂、プリプレグ状態の強化繊維シート(プリプレグシート)10PG(10PGa、10PGb)が金属箔層3の両面に押圧して一体的に積層され、必要により加熱して、樹脂Rを硬化する。
実施例1にても説明したように、もし、後接着、即ち、金属箔層3の両面に対して、プリプレグシート10PG(10PGa、10PGb)の含浸樹脂が完全に硬化した、即ち、繊維強化樹脂材2(2a、2b)を接着して一体とした場合には、接着剤の厚みによっては、接着層で放熱性や剛性の低下が懸念される。
(補強方法)
上述のようにして作製した熱伝導性複合材1は、実施例1の場合と同様にして被補強体101に一体に接合される。
このようにして得られた繊維強化プラスチック製品である被補強体101は、上述したように、その厚さ(T2)が0.12〜1mmとされ、引張弾性率が80GPa以上とされる高剛性と放熱性を備えた補強体(即ち、熱伝導性複合材1)にて補強され、それにより、外力による変形を有効に防止して装置内部が壊れることを防ぎ、且つ、装置内部に収容した発熱源によるヒートスポットを作ることなく拡散させることができる。
(実験例の説明)
次に、本発明に係る熱伝導性複合材1の作用効果を立証するべく試験サンプルを作製し、機械的強度、放熱性に対する性能試験を行った。上述の表4、表5に、本実験例を実験例10として示す。表4に実験例10で使用した試験サンプルの材料、構成、諸寸法などを示し、表5に試験結果を示す。
実験例10
(試験サンプル)
実験例10では、本発明の構成に従って、銅箔3の両面に、ピッチ系炭素繊維を一方向に引き揃えた一方向炭素繊維シートに樹脂を含浸したプリプレグをX方向とY方向に積層し、一体化して作製した繊維強化複合材(金属箔コア−ピッチ系CFRP一方向0°/90°板)を使用した。
また、実験例10で使用したピッチ系炭素繊維、銅については実験例1〜9と同じ諸物性のものを使用した。使用した総繊維目付量は表4に示す通りとした。
実験例10で使用した試験サンプルは、実験例1〜9と同様長さ×幅が100mm×50mmとされ、各サンプルの厚さ寸法(総厚みT2、金属箔層厚t3、繊維強化樹脂材厚t2)は表4に示すとおりである。
(放熱性)
試験サンプルの放熱性は、実験例1〜9と同様の方法で測定した。
放熱性の測定結果は、表5に示す通りであり、実験例10のサンプルは、ヒータ直下の温度が39.4℃であったが、熱の拡散の様子は、上記実験例7のサンプルに比べてやや劣っていた(◎〜○:放熱性良好)。
(引張弾性率、引張剛性)
引張弾性率(E)、引張剛性および重量は、実験例1〜9と同様、計算により求めた。引張弾性率、引張剛性及び重量の結果は表5に示す通りである。表5より本実施例に従って、構成した実験例10の試験サンプルが放熱性及び剛性において優れており、また、重量においてもほぼ同じ厚さの上記実験例5のアルミニウム単体より軽量であった。
FIG. 2 (c) shows a second embodiment of the thermally conductive composite material 1 according to the present invention. According to the present embodiment, the thermally conductive composite material 1 includes the metal foil layer 3 and the sheet-like fiber reinforced resin material 2 (2a, 2b) integrally bonded to both surfaces of the metal foil layer 3.
Compared with the heat conductive composite material 1 of the first embodiment, the heat conductive composite material 1 of the present embodiment has a fiber reinforced resin material 2 (2a, 2b) having a high tensile elastic modulus on both surfaces of the metal foil layer 3. By adopting the arrangement, the rigidity is more important than the heat dissipation.
The heat conductive composite material 1 of this example differs from the case of Example 1 in that the sheet-like fiber reinforced resin material 2 (2a, 2b) is integrally bonded to both surfaces of the metal foil layer 3, The metal foil layer 3 and the sheet-like fiber reinforced resin material 2 (2a, 2b), which are constituent members, are made of the same material and configuration as in the first embodiment. Therefore, the description of the metal foil layer 3 and the sheet-like fiber reinforced resin material 2 (2a, 2b) uses the description of the first embodiment, and the detailed description is omitted.
In the present embodiment, the thickness (T2) of the heat conductive composite material 1 is set to 1 mm or less, as in the case of the above-described embodiment 1. Usually, in this embodiment, 0.12 to 1 mm (0.12 mm). ≦ T2 ≦ 1 mm). Preferably, the thickness (T2) of the heat conductive composite material is 0.12 to 0.5 mm.
(Production method)
Also in the present embodiment, the metal foil layer 3 needs to be integrally molded with the fiber reinforced resin material 2 (2a, 2b). That is, for example, as shown in FIG. 4B, the so-called prepreg state reinforcing fiber sheet (prepreg sheet) 10PG in which the reinforcing fiber sheets 10Sa and 10Sb are impregnated with the resin R and not yet completely cured. (10 PGa, 10 PGb) are pressed and laminated integrally on both surfaces of the metal foil layer 3, and if necessary, heated to cure the resin R.
As described in Example 1, if the post-bonding, that is, the impregnation resin of the prepreg sheet 10PG (10 PGa, 10 PGb) is completely cured on both sides of the metal foil layer 3, that is, fiber reinforced resin. When the material 2 (2a, 2b) is bonded and integrated, there is a concern that the heat dissipation and rigidity of the adhesive layer may be lowered depending on the thickness of the adhesive.
(Reinforcing method)
The heat conductive composite 1 produced as described above is integrally joined to the reinforced body 101 in the same manner as in the first embodiment.
As described above, the to-be-reinforced body 101 which is a fiber-reinforced plastic product obtained in this way has a high rigidity with a thickness (T2) of 0.12 to 1 mm and a tensile elastic modulus of 80 GPa or more. And a reinforcing body having heat dissipation (that is, the heat conductive composite material 1), thereby effectively preventing deformation due to external force to prevent the inside of the apparatus from being broken and accommodated in the inside of the apparatus. It can be diffused without creating a heat spot by a heat source.
(Explanation of experimental examples)
Next, a test sample was prepared in order to verify the operational effect of the heat conductive composite material 1 according to the present invention, and performance tests on mechanical strength and heat dissipation were performed. Table 4 and Table 5 described above show this experimental example as Experimental Example 10. Table 4 shows the material, configuration, dimensions, and the like of the test sample used in Experimental Example 10, and Table 5 shows the test results.
Experimental Example 10
(Test sample)
In Experimental Example 10, in accordance with the configuration of the present invention, prepregs impregnated with resin in a unidirectional carbon fiber sheet in which pitch-based carbon fibers are aligned in one direction are laminated on both sides of the copper foil 3 in the X direction and the Y direction, A fiber reinforced composite material (metal foil core-pitch-based CFRP unidirectional 0 ° / 90 ° plate) produced by integration was used.
Moreover, about the pitch-type carbon fiber and copper which were used in Experimental example 10, the thing of the same physical property as Experimental example 1-9 was used. The total fiber basis weight used was as shown in Table 4.
The test sample used in Experimental Example 10 has a length × width of 100 mm × 50 mm as in Experimental Examples 1 to 9, and the thickness dimensions of each sample (total thickness T2, metal foil layer thickness t3, fiber reinforced resin material thickness) t2) is as shown in Table 4.
(Heat dissipation)
The heat dissipation of the test sample was measured by the same method as in Experimental Examples 1-9.
The results of measurement of heat dissipation are as shown in Table 5. The temperature of the sample in Experimental Example 10 was 39.4 ° C. immediately below the heater, but the state of heat diffusion was similar to that of the sample in Experimental Example 7 above. It was slightly inferior compared with (◎ to ○: good heat dissipation).
(Tensile modulus, tensile stiffness)
The tensile elastic modulus (E), tensile rigidity, and weight were obtained by calculation in the same manner as in Experimental Examples 1-9. The results of tensile modulus, tensile rigidity and weight are as shown in Table 5. From Table 5, the test sample of Experimental Example 10 constructed according to the present example was excellent in heat dissipation and rigidity, and was lighter than the aluminum simple substance in Experimental Example 5 having substantially the same thickness.

1 熱伝導性複合材
2 繊維強化樹脂材
3 金属箔層
10 繊維強化シート
10PG プリプレグシート
101 被補強体
DESCRIPTION OF SYMBOLS 1 Thermal conductive composite material 2 Fiber reinforced resin material 3 Metal foil layer 10 Fiber reinforced sheet 10PG prepreg sheet 101 Reinforced body

Claims (10)

連続した強化繊維を含むシート状の繊維強化樹脂材と、前記繊維強化樹脂材の両面に一体に接合された金属箔層とを有し、厚さが0.07〜1mmとされる熱伝導性複合材であって、
前記繊維強化樹脂材は厚さが0.05mm以上、1mm未満とされ、前記金属箔層は厚さが0.009〜0.1mmとされ、
前記熱伝導性複合材の引張弾性率は80GPa以上である、
ことを特徴とする熱伝導性複合材。
Thermal conductivity having a sheet-like fiber reinforced resin material containing continuous reinforcing fibers and a metal foil layer integrally bonded to both surfaces of the fiber reinforced resin material, and having a thickness of 0.07 to 1 mm A composite material,
The fiber reinforced resin material has a thickness of 0.05 mm or more and less than 1 mm, the metal foil layer has a thickness of 0.009 to 0.1 mm,
The tensile modulus of the heat conductive composite is 80 GPa or more,
A thermally conductive composite material characterized by that.
金属箔層と、前記金属箔層の両面に一体に接合された、連続した強化繊維を含むシート状の繊維強化樹脂材とを有し、厚さが0.12〜1mmとされる熱伝導性複合材であって、
前記繊維強化樹脂材は厚さが0.05mm以上、1mm未満とされ、前記金属箔層は厚さが0.009〜0.1mmとされ、
前記熱伝導性複合材の引張弾性率は80GPa以上である、
ことを特徴とする熱伝導性複合材。
Thermal conductivity having a metal foil layer and a sheet-like fiber reinforced resin material including continuous reinforcing fibers integrally bonded to both surfaces of the metal foil layer, and having a thickness of 0.12 to 1 mm A composite material,
The fiber reinforced resin material has a thickness of 0.05 mm or more and less than 1 mm, the metal foil layer has a thickness of 0.009 to 0.1 mm,
The tensile modulus of the heat conductive composite is 80 GPa or more,
A thermally conductive composite material characterized by that.
前記繊維強化樹脂材は、強化繊維の熱伝導率が100W/mK以上、引張弾性率が400GPa以上を有するピッチ系炭素繊維を繊維体積含有率で20%以上含有することを特徴とする請求項1又は2に記載の熱伝導性複合材。   The fiber-reinforced resin material contains pitch-based carbon fibers having a thermal conductivity of reinforcing fibers of 100 W / mK or more and a tensile elastic modulus of 400 GPa or more in a fiber volume content of 20% or more. Or the heat conductive composite material of 2. 前記繊維強化樹脂材は、強化繊維がピッチ系炭素繊維、PAN系炭素繊維若しくはガラス繊維であるか、又は、前記繊維を2種以上混合したものであることを特徴とする請求項1又は2に記載の熱伝導性複合材。   The fiber reinforced resin material according to claim 1 or 2, wherein the reinforced fiber is a pitch-based carbon fiber, a PAN-based carbon fiber, or a glass fiber, or a mixture of two or more of the fibers. The thermally conductive composite described. 前記繊維強化樹脂材は、連続した前記強化繊維を一方向に引き揃え、樹脂含浸して形成されるか、及び/又は、少なくとも2軸方向にて織成された織物に樹脂含浸して形成されることを特徴とする請求項1〜4のいずれかの項に記載の熱伝導性複合材。   The fiber-reinforced resin material is formed by aligning the continuous reinforcing fibers in one direction and impregnating with resin, and / or formed by impregnating a woven fabric woven in at least two directions. The heat conductive composite material according to claim 1, wherein the heat conductive composite material is a heat conductive composite material. 前記繊維強化樹脂材は、連続した前記強化繊維を一方向に引き揃え、樹脂含浸して形成されたシートを、少なくとも2軸方向に積層して作製されることを特徴とする請求項1〜4のいずれかの項に記載の熱伝導性複合材。   The fiber-reinforced resin material is produced by aligning the continuous reinforcing fibers in one direction and laminating sheets formed by resin impregnation in at least two axial directions. The thermally conductive composite material according to any one of the above. 前記金属箔層は、50W/mK以上の熱伝導率を有した金属にて作製されることを特徴とする請求項1〜6のいずれかの項に記載の熱伝導性複合材。   The thermally conductive composite material according to claim 1, wherein the metal foil layer is made of a metal having a thermal conductivity of 50 W / mK or more. 前記熱伝導性複合材は、厚さが0.12〜0.5mmであることを特徴とする請求項1〜7のいずれかの項に記載の熱伝導性複合材。   The heat conductive composite material according to claim 1, wherein the heat conductive composite material has a thickness of 0.12 to 0.5 mm. 連続した強化繊維を含むシート状の繊維強化樹脂材と、前記繊維強化樹脂材の両面に一体に接合された金属箔層とを有し、厚さが0.07〜1mmとされ、引張弾性率は80GPa以上である熱伝導性複合材の製造方法であって、
(a)連続した強化繊維を少なくとも一方向に引き揃えて配列し、樹脂を含浸して半硬化した繊維目付量が25〜600g/m、繊維体積含有率が20〜70%とされる少なくとも1枚のプリプレグシートと、厚さが0.009〜0.1mmとされる金属箔と、を準備し、
(b)前記プリプレグシートの両面に前記金属箔を押圧して一体に積層し、
(c)その後、前記プリプレグシートを硬化して繊維強化樹脂材とする、
ことを特徴とする繊維強化樹脂材の両面に金属箔層が一体とされた熱伝導性複合材の製造方法。
It has a sheet-like fiber-reinforced resin material containing continuous reinforcing fibers, and a metal foil layer integrally bonded to both surfaces of the fiber-reinforced resin material, and has a thickness of 0.07 to 1 mm, and a tensile elastic modulus Is a method for producing a thermally conductive composite material of 80 GPa or more,
(A) At least a continuous reinforcing fiber is arranged in at least one direction and arranged and semi-cured by impregnating with a resin, the basis weight of the fiber is 25 to 600 g / m 2 , and the fiber volume content is at least 20 to 70%. Preparing one prepreg sheet and a metal foil having a thickness of 0.009 to 0.1 mm,
(B) The metal foil is pressed onto both sides of the prepreg sheet and laminated together,
(C) Thereafter, the prepreg sheet is cured to obtain a fiber reinforced resin material.
A method for producing a thermally conductive composite material in which metal foil layers are integrated on both sides of a fiber reinforced resin material.
金属箔層と、前記金属箔層の両面に一体に接合された、連続した強化繊維を含むシート状の繊維強化樹脂材とを有し、厚さが0.12〜1mmとされ、引張弾性率は80GPa以上である熱伝導性複合材の製造方法であって、
(a)連続した強化繊維を少なくとも一方向に引き揃えて配列し、樹脂を含浸して半硬化した繊維目付量が25〜600g/m、繊維体積含有率が20〜70%とされる少なくとも1枚のプリプレグシートと、厚さが0.009〜0.1mmとされる金属箔と、を準備し、
(b)前記金属箔の両面に前記プリプレグシートを押圧して一体に積層し、
(c)その後、前記プリプレグシートを硬化して繊維強化樹脂材とする、
ことを特徴とする金属箔層の両面に繊維強化樹脂材が一体とされた熱伝導性複合材の製造方法。
It has a metal foil layer and a sheet-like fiber reinforced resin material containing continuous reinforcing fibers integrally bonded to both surfaces of the metal foil layer, and has a thickness of 0.12 to 1 mm and a tensile elastic modulus Is a method for producing a thermally conductive composite material of 80 GPa or more,
(A) At least a continuous reinforcing fiber is arranged in at least one direction and arranged and semi-cured by impregnating with a resin, the basis weight of the fiber is 25 to 600 g / m 2 , and the fiber volume content is at least 20 to 70%. Preparing one prepreg sheet and a metal foil having a thickness of 0.009 to 0.1 mm,
(B) The prepreg sheet is pressed on both sides of the metal foil and laminated together,
(C) Thereafter, the prepreg sheet is cured to obtain a fiber reinforced resin material.
A method for producing a thermally conductive composite material in which a fiber reinforced resin material is integrated on both surfaces of a metal foil layer.
JP2015526082A 2014-02-10 2015-01-27 Thermally conductive composite and method for producing the same Active JP6571000B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014023666 2014-02-10
JP2014023666 2014-02-10
JP2014178596 2014-09-02
JP2014178596 2014-09-02
PCT/JP2015/052788 WO2015119064A1 (en) 2014-02-10 2015-01-27 Thermally conductive composite material, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2015119064A1 true JPWO2015119064A1 (en) 2017-03-23
JP6571000B2 JP6571000B2 (en) 2019-09-04

Family

ID=53777870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526082A Active JP6571000B2 (en) 2014-02-10 2015-01-27 Thermally conductive composite and method for producing the same

Country Status (3)

Country Link
JP (1) JP6571000B2 (en)
TW (2) TWI659095B (en)
WO (1) WO2015119064A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028199A1 (en) * 2015-08-18 2017-02-23 Hewlett-Packard Development Company, L.P. Composite material
WO2017047439A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Housing
JP6463667B2 (en) * 2015-12-11 2019-02-06 本田技研工業株式会社 Cylinder block
IT201700011367A1 (en) * 2017-02-02 2018-08-02 Niteko S R L Planar heat sink in composite material with high thermal conductivity and high mechanical resistance
JP6888740B2 (en) 2018-04-18 2021-06-16 日本製鉄株式会社 Method for manufacturing metal-carbon fiber reinforced resin material composite and metal-carbon fiber reinforced resin material composite
CN114728495A (en) * 2019-11-29 2022-07-08 东丽株式会社 Sandwich structure and method for producing same
EP4067064A4 (en) * 2019-11-29 2024-03-20 Toray Industries, Inc. Sandwich structure and method for manufacturing same
KR102314378B1 (en) * 2019-12-20 2021-10-20 한국과학기술연구원 A fiber reinforced composite structure comprising a metal coating layer and the method for producing the same
CN112684850A (en) * 2020-12-16 2021-04-20 太仓鸿恩电子科技有限公司 Forming process of ultra-light notebook carbon fiber plate shell capable of quickly dissipating heat
CN114734707B (en) * 2022-04-25 2022-11-11 叶金蕊 Heat-conducting ultrahigh voltage-resistant insulating composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102927A (en) * 1986-08-27 1988-05-07 ゼネラル・エレクトリック・カンパニイ Thermal conductive laminated board consisting of metallic layer and reinforced high-molecular base-material composite material layer and having low thermal expansion coefficient
JP2000043186A (en) * 1998-07-31 2000-02-15 Nippon Steel Corp Good heat conductive composite material
JP2001118974A (en) * 1999-10-15 2001-04-27 Mitsubishi Chemicals Corp Heat radiating plate
JP2010229238A (en) * 2009-03-26 2010-10-14 Mitsubishi Plastics Inc Carbon fiber-reinforced resin sheet, and roll-wound rolled body thereof
JP2012101530A (en) * 2010-11-11 2012-05-31 Samsung Electro-Mechanics Co Ltd Metal clad laminate, method for manufacturing the same, and heat-radiating substrate
JP2012109452A (en) * 2010-11-18 2012-06-07 Mitsubishi Plastics Inc Electromagnetic-wave shielding composite material, electronic device housing, and battery case

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102927A (en) * 1986-08-27 1988-05-07 ゼネラル・エレクトリック・カンパニイ Thermal conductive laminated board consisting of metallic layer and reinforced high-molecular base-material composite material layer and having low thermal expansion coefficient
JP2000043186A (en) * 1998-07-31 2000-02-15 Nippon Steel Corp Good heat conductive composite material
JP2001118974A (en) * 1999-10-15 2001-04-27 Mitsubishi Chemicals Corp Heat radiating plate
JP2010229238A (en) * 2009-03-26 2010-10-14 Mitsubishi Plastics Inc Carbon fiber-reinforced resin sheet, and roll-wound rolled body thereof
JP2012101530A (en) * 2010-11-11 2012-05-31 Samsung Electro-Mechanics Co Ltd Metal clad laminate, method for manufacturing the same, and heat-radiating substrate
JP2012109452A (en) * 2010-11-18 2012-06-07 Mitsubishi Plastics Inc Electromagnetic-wave shielding composite material, electronic device housing, and battery case

Also Published As

Publication number Publication date
JP6571000B2 (en) 2019-09-04
TWI689580B (en) 2020-04-01
TW201536907A (en) 2015-10-01
TWI659095B (en) 2019-05-11
WO2015119064A1 (en) 2015-08-13
TW201920592A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6571000B2 (en) Thermally conductive composite and method for producing the same
CN108029212B (en) Shell body
JP6360198B2 (en) Graphite laminate, method for producing graphite laminate, heat transport structure, and rod-shaped heat transport body
JP4670532B2 (en) Composite molded product
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
CN108029215B (en) Shell body
CN108029213B (en) Shell body
CN108029214B (en) Shell body
JP2016022685A (en) Heat conductive laminate
JP7325930B2 (en) Case and method for manufacturing case
JPH11179830A (en) Composite molded product and member for electrical and electronic equipment
JP2012119607A (en) High heat dissipation substrate
JP2009220478A (en) Fiber-reinforced sandwich structure composite and composite molding
JP2005213459A (en) High thermal conductive material
JP5323974B2 (en) Graphite composite film and method for producing the same
JP2012025831A (en) Heat-dissipating molded body, heat-dissipating member, and housing
JP2021142671A (en) Integrally molded body and method of manufacturing the same
KR102537709B1 (en) Thermal conductive sheet using graphite combined with dopamin and method of manufacturing the same
JP2009173027A (en) Manufacturing method of composite molded product
JP2010131804A (en) Composite molding and method for manufacturing the same
KR20170104247A (en) Heat sink plate using carbon composites and method of manufacturing the same
JP3210737U (en) Three-dimensional composite heat balance radiator
JP2017177388A (en) Fiber reinforced resin composite structure and manufacturing method therefor
JP2010046938A (en) Composite molded product and method of manufacturing the same
JP2023162146A (en) Heat conductive laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6571000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250