JPWO2015083733A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JPWO2015083733A1
JPWO2015083733A1 JP2015551535A JP2015551535A JPWO2015083733A1 JP WO2015083733 A1 JPWO2015083733 A1 JP WO2015083733A1 JP 2015551535 A JP2015551535 A JP 2015551535A JP 2015551535 A JP2015551535 A JP 2015551535A JP WO2015083733 A1 JPWO2015083733 A1 JP WO2015083733A1
Authority
JP
Japan
Prior art keywords
rotor
moisture
hygroscopic material
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015551535A
Other languages
Japanese (ja)
Other versions
JP6091656B2 (en
Inventor
浦元 嘉弘
嘉弘 浦元
伸基 崎川
伸基 崎川
康昌 鈴木
康昌 鈴木
克嗣 森本
克嗣 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Application granted granted Critical
Publication of JP6091656B2 publication Critical patent/JP6091656B2/en
Publication of JPWO2015083733A1 publication Critical patent/JPWO2015083733A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40094Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by applying microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40098Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating with other heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/806Microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • F24F2003/1464Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

除湿機は、加熱されることで吸湿した水分を直接水滴として排出する吸湿材と、前記吸湿材を担持し通気構造を有するロータ(1)と、前記ロータ(1)を加熱して放湿させる刺激付与部(6)と、前記ロータ(1)を軸周りに回転させて吸湿と放湿を連続して行わせる回転機構とを備えた除湿機であって、前記刺激付与部(6)は前記ロータ(1)の通気構造を空気循環路の一部とする閉鎖空間を形成する。The dehumidifier comprises a moisture absorbent material that directly discharges moisture absorbed by heating as water droplets, a rotor (1) that supports the moisture absorbent and has a ventilation structure, and heats the rotor (1) to release moisture. A dehumidifier comprising a stimulus applying unit (6) and a rotating mechanism for rotating the rotor (1) around an axis to continuously absorb and release moisture, the stimulus applying unit (6) A closed space is formed with the ventilation structure of the rotor (1) as a part of the air circulation path.

Description

本発明は、吸湿材を使用する除湿機に関するものである。   The present invention relates to a dehumidifier using a hygroscopic material.

除湿および調湿を行なうための装置としては、冷凍サイクル式と吸湿材式とがある。「冷凍サイクル式」は、圧縮機を内蔵し、冷媒を圧縮、膨張させて蒸発器で室内空気を冷却することにより空気内の湿度を結露させ、除湿するものである。「吸湿材式」は、ロータに担持した吸湿材に室内空気中の水分を吸湿させ、吸湿したロータに高温の風を当て、ロータ内の水分を高温・高湿の空気として取り出し、その空気を冷却することにより、高温・高湿の空気に含まれる水分を結露させて取り出す。   As a device for performing dehumidification and humidity control, there are a refrigeration cycle type and a hygroscopic material type. The “refrigeration cycle type” has a built-in compressor, compresses and expands the refrigerant, and cools the indoor air with an evaporator to condense and dehumidify the humidity in the air. In the “hygroscopic material type”, moisture in the room air is absorbed by the hygroscopic material carried on the rotor, high-temperature air is applied to the absorbed rotor, and the moisture in the rotor is taken out as high-temperature and high-humidity air, and the air is extracted. By cooling, moisture contained in high-temperature and high-humidity air is condensed and removed.

冷凍サイクル式の例が記載された文献としては、特開2003−144833号公報(特許文献1)を挙げることができる。吸湿材式の例が記載された文献としては、特開2001−259349号公報(特許文献2)を挙げることができる。両者の特徴を合わせた構成は、特開2005−34838号公報(特許文献3)に記載されている。   JP-A-2003-144833 (Patent Document 1) can be cited as a document in which an example of a refrigeration cycle is described. JP-A-2001-259349 (Patent Document 2) can be cited as a document describing an example of the hygroscopic material type. A configuration combining both features is described in Japanese Patent Application Laid-Open No. 2005-34838 (Patent Document 3).

また、従来のゼオライト等の吸湿材とは異なり、分子構造の変化によって吸湿状態と放湿状態とを呈する高分子ゲル材料が開発されており、吸水シートや除湿剤として使用することも特開2002−126442号公報(特許文献4)に提案されている。   Further, unlike conventional hygroscopic materials such as zeolite, a polymer gel material has been developed that exhibits a moisture absorption state and a moisture release state due to a change in molecular structure, and can be used as a water absorbent sheet or a dehumidifying agent. -126442 (patent document 4).

特開2003−144833号公報JP 2003-144833 A 特開2001−259349号公報JP 2001-259349 A 特開2005−34838号公報JP 2005-34838 A 特開2002−126442号公報JP 2002-126442 A

除湿および調湿する機構において、圧縮機を用いる冷凍サイクル式においては冷凍効率COPが5に達するなど効率の高い除湿および調湿が可能である。しかし、このような冷凍サイクル式では、環境破壊につながるハロゲン系ガスを使ったり、圧縮機を搭載するために大型化しがちであったり、騒音が大きかったりなどといった問題が依然として存在する。   In the mechanism for dehumidification and humidity adjustment, in the refrigeration cycle type using a compressor, high-efficiency dehumidification and humidity adjustment such that the refrigeration efficiency COP reaches 5 is possible. However, such refrigeration cycle types still have problems such as the use of halogen-based gases that lead to environmental destruction, the tendency to increase in size due to the installation of a compressor, and the loud noise.

一方、吸湿材式においては、吸湿した吸湿材から水分を排出するために再生熱が必要で、一般には再生熱として200℃前後の高温が必要で、再生側でヒータとファンとにより生成した熱風を吸湿材に当てた後、得られた高温高湿空気に対して熱交換器で冷却して凝縮水にしていたので効率が悪かった。   On the other hand, in the hygroscopic material type, regeneration heat is required to discharge moisture from the hygroscopic material that has absorbed moisture, and generally a high temperature of around 200 ° C. is necessary as regeneration heat, and hot air generated by a heater and a fan on the regeneration side. After being applied to the hygroscopic material, the resulting high-temperature and high-humidity air was cooled with a heat exchanger to form condensed water, so the efficiency was poor.

また、これらを融合したハイブリッドタイプでは、圧縮機の圧縮熱を吸湿材ロータの再生に一部利用するなど改善されており、吸湿材式の利用範囲を広げることができるが、複雑な空気経路や機構が必要になり、大型化は避けられない。また、吸着するなどして集めた水蒸気を冷却用熱交換器で冷却し過飽和冷却することで凝縮させることは冷凍サイクル式と変わりない。   In addition, the hybrid type, which combines these, has been improved by partially using the compression heat of the compressor for the regeneration of the hygroscopic rotor, which can widen the range of use of the hygroscopic material type. A mechanism is required, and an increase in size is inevitable. Further, the water vapor collected by adsorption or the like is cooled by a cooling heat exchanger and condensed by supersaturated cooling, which is the same as the refrigeration cycle type.

そこで、本発明は、ハロゲン系ガスを使わずに、装置の小型化が可能で、さらにエネルギーロスの少ない除湿機を提供することを目的とする。   Accordingly, an object of the present invention is to provide a dehumidifier that can reduce the size of the apparatus without using a halogen-based gas and that further reduces energy loss.

上記目的を達成するため、本発明に基づく除湿機は、吸湿材を使用する。さらに吸湿材には、水分を吸収しうる第1の状態と、第1の状態のときに吸収した水分を放出する第2の状態とを有し、外部からの刺激により第1の状態から第2の状態に変化し、かつ、刺激がなくなったときには、第1の状態に戻る性質を有する高分子ゲル吸湿材料を使用する。以下の説明では、高分子ゲル吸湿材を単に吸湿材と表する。   In order to achieve the above object, the dehumidifier according to the present invention uses a hygroscopic material. Furthermore, the hygroscopic material has a first state in which moisture can be absorbed and a second state in which the moisture absorbed in the first state is released. A polymer gel moisture-absorbing material having a property of returning to the first state when the state changes to 2 and the stimulus is lost is used. In the following description, the polymer gel hygroscopic material is simply referred to as a hygroscopic material.

さらに、刺激付与部を閉鎖空間とし、外部刺激として用いたエネルギーを外部へ漏出させずに使用可能な構造とする。   Further, the stimulus applying part is a closed space, and the energy used as the external stimulus is configured to be usable without leaking outside.

さらに、高分子ゲル吸湿材が第1の状態から第2の状態へ変化する相転移(体積相転移)温度を変更した高分子ゲル吸湿材を複数使用して、外部刺激を有効に使用できるようにした。   Furthermore, it is possible to effectively use external stimuli by using a plurality of polymer gel hygroscopic materials whose phase transition (volume phase transition) temperature is changed so that the polymer gel hygroscopic material changes from the first state to the second state. I made it.

本発明によれば、吸湿材を使用することでハロゲン系ガスを使わず、装置の小型化が可能で、さらに刺激付与部を閉鎖空間とすることでエネルギーロスが少ない、除湿機とすることができる。   According to the present invention, it is possible to make a dehumidifier that uses a hygroscopic material, does not use a halogen-based gas, can be downsized, and has a reduced energy loss by making the stimulus imparting portion a closed space. it can.

本発明の実施の形態1における除湿機の概念的な構造を示す平面図である。It is a top view which shows the notional structure of the dehumidifier in Embodiment 1 of this invention. 図1中のII−II線で切断した概念的な構造を示す断面図である。It is sectional drawing which shows the conceptual structure cut | disconnected by the II-II line | wire in FIG. 本発明の実施の形態1における放湿メカニズムを説明する模式図である。It is a schematic diagram explaining the moisture release mechanism in Embodiment 1 of this invention. 本発明の実施の形態3におけるロータ構造を示す軸方向断面図である。It is axial direction sectional drawing which shows the rotor structure in Embodiment 3 of this invention. 本発明の実施の形態4におけるロータ構造を示す部分拡大平面図である。It is a partial enlarged plan view which shows the rotor structure in Embodiment 4 of this invention. 本発明の実施の形態4におけるロータ構造を示す軸方向断面図である。It is an axial sectional view showing a rotor structure in a fourth embodiment of the present invention. 本発明の実施の形態4における除湿機の一連動作を説明する図である。It is a figure explaining a series of operation | movement of the dehumidifier in Embodiment 4 of this invention. 本発明の実施の形態5におけるロータ構造を示す部分拡大平面図である。It is a partial enlarged plan view which shows the rotor structure in Embodiment 5 of this invention. 本発明の実施の形態6における除湿機の概念的な構造を示す平面図である。It is a top view which shows the notional structure of the dehumidifier in Embodiment 6 of this invention. 本発明の実施の形態7における除湿機の概念的な構造を示す平面図である。It is a top view which shows the notional structure of the dehumidifier in Embodiment 7 of this invention. 本発明の実施の形態7における放湿メカニズムを説明する模式図である。It is a schematic diagram explaining the moisture release mechanism in Embodiment 7 of this invention. 本発明の実施の形態8における除湿機の概念的な構造を示す平面図である。It is a top view which shows the conceptual structure of the dehumidifier in Embodiment 8 of this invention. 図11中のXII−XII線で切断した概念的な構造を示す断面図である。It is sectional drawing which shows the conceptual structure cut | disconnected by the XII-XII line | wire in FIG.

(実施の形態1)
図1および図2を参照して、本発明に基づく実施の形態1における除湿機100について説明する。図1は、除湿機100の構造を概念的に示した平面図であり、図2は図1の中央線II−IIで切断した内部構造を示す断面図である。実際の各部の寸法比や位置関係はこのとおりとは限らない。
(Embodiment 1)
With reference to FIG. 1 and FIG. 2, the dehumidifier 100 in Embodiment 1 based on this invention is demonstrated. FIG. 1 is a plan view conceptually showing the structure of the dehumidifier 100, and FIG. 2 is a cross-sectional view showing an internal structure taken along the center line II-II in FIG. The actual dimensional ratio and positional relationship of each part are not necessarily as described above.

除湿機100は、吸湿材2を担持するとともに通気構造を有するロータ1と、ロータ1を通過して吸湿材2に湿った空気3を供給する外気供給装置4と、吸湿したロータ1に刺激を与える刺激付与部6を備える。吸湿材2には高分子ゲル吸湿材料を使用する。本実施形態において、高分子ゲル吸湿材料は、ポリ−N−イソプロピルアクリルアミド(p−NIPAM)およびその誘導体やポリビニルエーテルおよびその誘導体などの感温性高分子を用いた温度応答型吸湿材料であって、作成後十分に乾燥させた後に水分を吸収しうる第1の状態と、第1の状態のときに吸収した水分を水滴として排出する第2の状態とを有し、外部からの熱刺激により第1の状態から第2の状態に相転移し、かつ、刺激がなくなったときには逆方向に相転移して第1の状態に戻る性質を有する。   The dehumidifier 100 carries the moisture absorbent 2 and has a ventilation structure, the outside air supply device 4 that supplies the moisture 3 to the moisture absorbent 2 through the rotor 1, and the moisture absorbed by the rotor 1. A stimulating unit 6 is provided. A polymer gel hygroscopic material is used for the hygroscopic material 2. In this embodiment, the polymer gel moisture-absorbing material is a temperature-responsive moisture-absorbing material using a temperature-sensitive polymer such as poly-N-isopropylacrylamide (p-NIPAM) and its derivatives, polyvinyl ether and its derivatives, , Having a first state in which moisture can be absorbed after being sufficiently dried after creation, and a second state in which moisture absorbed in the first state is discharged as water droplets, by heat stimulation from the outside The phase transition from the first state to the second state has the property of returning to the first state by phase transition in the opposite direction when the stimulus is lost.

刺激付与部6は、断熱材を貼り付けたケース6aと、加熱装置7と、空気循環装置8と、ロータ1から排出された水分を機外へ取り出すための排出孔9とを備える。ケース6aは環状になった筒状容器であって内部が空気循環通路6bとなっており、ロータ1が挟み込まれる部分が切除されている。ケース6aは、ロータ1が回転しながらも端部で摺動可能に構成される。ケース6aは、自身とロータ1の通気構造によって空気循環路6bとなる閉空間を形成するようにされる。   The stimulus imparting unit 6 includes a case 6a attached with a heat insulating material, a heating device 7, an air circulation device 8, and a discharge hole 9 for taking out moisture discharged from the rotor 1 to the outside of the machine. The case 6a is an annular cylindrical container having an air circulation passage 6b inside, and a portion where the rotor 1 is sandwiched is cut off. The case 6a is configured to be slidable at the end while the rotor 1 rotates. The case 6a forms a closed space serving as an air circulation path 6b by the ventilation structure of itself and the rotor 1.

ロータ1は、波状に成型した基材と平板状の基材を一体としてロール状に巻き上げた構造をしており、中心部に回転軸10が挿入される。ロータ1は、回転軸10で支持されることによって回転自在にされるとともに、外周部には歯付きベルトが施設され、ギア付き駆動モータ13によって白抜き矢印Aで示すように一方向にゆっくりと回転させられる。ロータ1の波状の基材と平板状の基材の間には空間が形成され通気構造を提供する。   The rotor 1 has a structure in which a corrugated base material and a flat base material are integrally wound up in a roll shape, and a rotating shaft 10 is inserted in the center. The rotor 1 is made rotatable by being supported by the rotating shaft 10 and is provided with a toothed belt on the outer peripheral portion, and is slowly moved in one direction as indicated by a white arrow A by a geared drive motor 13. Rotated. A space is formed between the corrugated base material and the flat base material of the rotor 1 to provide a ventilation structure.

このように構成された除湿機100の動作について説明を行う。除湿機100においては、吸込風路11を経由して湿った空気3が機外から取り込まれ、外気供給装置4によってロータ1に導かれる。吸込風路11内側のロータ領域は、ロータ1に担持された吸湿材2と湿った空気3が触れる吸湿エリア1aとなる。吸湿材2に触れて除湿された空気は、乾燥空気5となって吹出風路12を経由して室内へ出ていく。   Operation | movement of the dehumidifier 100 comprised in this way is demonstrated. In the dehumidifier 100, the moist air 3 is taken from outside the machine via the suction air passage 11 and guided to the rotor 1 by the outside air supply device 4. The rotor area inside the suction air passage 11 is a moisture absorption area 1a where the moisture absorbent 2 carried on the rotor 1 and the damp air 3 come into contact. The air dehumidified by touching the hygroscopic material 2 becomes dry air 5 and goes out into the room through the blowout air passage 12.

前工程で水分を含んだロータ1は駆動モータ13によって回転軸10の周りにゆっくりと回転駆動されて、刺激付与部6が形成する放湿エリア1bに到達する。刺激付与部6内部は、加熱装置7と空気循環装置8との働きで高温空気6cが循環する状態で満たされており、ロータ1の通気構造を高温空気6cが通過するときに吸湿材2に熱刺激を与えることにより、吸湿状態である第1の状態から放湿状態である第2の状態へと吸湿材2に相転移が起きる。吸湿材2として採用した高分子ゲル吸湿材料ポリ−N−イソプロピルアクリルアミドは相転移を起こす温度がたとえば32℃や40℃などと低温である。すなわち、これは低温で感応する感温性高分子であって、ロータ1の通気構造を通過したのちの空気温度がこの温度と同等であれば相転移するための最低限の条件が達成される。この吸湿材2の相転移に伴って、吸湿されていた水分が直接、水となって排出されて刺激付与部6の下部に溜まり排出孔9から排水され、水受け容器14に受けられる。水受け容器14は必須ではない。   The rotor 1 containing moisture in the previous step is slowly rotated around the rotation shaft 10 by the drive motor 13 and reaches the moisture release area 1b formed by the stimulus applying unit 6. The inside of the stimulus applying unit 6 is filled with the high temperature air 6c circulated by the action of the heating device 7 and the air circulation device 8, and the moisture absorbing material 2 is used when the high temperature air 6c passes through the ventilation structure of the rotor 1. By applying thermal stimulation, a phase transition occurs in the hygroscopic material 2 from the first state which is a moisture absorption state to the second state which is a moisture release state. The polymer gel hygroscopic material poly-N-isopropylacrylamide employed as the hygroscopic material 2 has a low temperature such as 32 ° C. or 40 ° C. for causing a phase transition. That is, this is a temperature-sensitive polymer that is sensitive at low temperatures, and if the air temperature after passing through the ventilation structure of the rotor 1 is equal to this temperature, the minimum condition for phase transition is achieved. . Accompanying the phase transition of the hygroscopic material 2, the moisture that has been absorbed is directly discharged as water, collected in the lower part of the stimulus applying unit 6, drained from the discharge hole 9, and received by the water receiving container 14. The water receiving container 14 is not essential.

実施の形態1では、吸湿材2は、熱刺激を受けることによって吸湿する第1の状態から放湿する第2の状態に変化するものとした。ロータ1に担持された吸湿材2は高温空気6cが通過するときに加熱されて、第1の状態から第2の状態へと相転移し、これに伴って吸湿されていた水分が水滴として排出される。この時の様子を概念的に図3に示す。   In the first embodiment, the hygroscopic material 2 is changed from the first state that absorbs moisture to the second state that releases moisture by receiving thermal stimulation. The hygroscopic material 2 carried on the rotor 1 is heated when the high-temperature air 6c passes, and the phase transitions from the first state to the second state, and the moisture absorbed in accordance with this transition is discharged as water droplets. Is done. The state at this time is conceptually shown in FIG.

図3において、ロータ1には感温度40℃に調整した吸湿材2が均等に担持されているものとする。ロータ1の上端面から流入した高温空気6cは、通気構造を通って近傍のロータ基材および吸湿材2を加熱しながら下端面へと移動する。同時に、下端面に近づくにつれて高温空気6cの温度が低下する。もし、高温空気6cの温度が上端面通過時に40℃であったとすれば、下端面ではその温度以下になる訳で、この状態では、上端面近傍の吸湿材2は相転移が出来ても、下端面近傍の吸湿材2は相転移温度に達しないので吸湿する状態を継続している。   In FIG. 3, it is assumed that the hygroscopic material 2 adjusted to a temperature sensitive temperature of 40 ° C. is evenly carried on the rotor 1. The high temperature air 6c that has flowed in from the upper end surface of the rotor 1 moves to the lower end surface through the ventilation structure while heating the adjacent rotor base material and the hygroscopic material 2. At the same time, the temperature of the hot air 6c decreases as it approaches the lower end surface. If the temperature of the high-temperature air 6c is 40 ° C. when passing through the upper end surface, the lower end surface is below that temperature. In this state, even if the hygroscopic material 2 near the upper end surface can undergo phase transition, Since the hygroscopic material 2 near the lower end surface does not reach the phase transition temperature, the hygroscopic material 2 continues to absorb moisture.

つまり、上端面近傍では吸湿した水分が水滴となって排出されるのに、下端面近傍では垂れてきた水滴が吸収されてしまう。このような状態を長く続けると、下端面近傍では吸湿材2が多量の水分で膨潤しロータが変形してしまう。従って、高温空気6cはロータ1を通過した後の温度が、吸湿材2の相転移温度と同等以上であることが要求される。   In other words, moisture that has absorbed moisture is discharged as water droplets in the vicinity of the upper end surface, but water droplets that have drooped in the vicinity of the lower end surface are absorbed. If such a state is continued for a long time, the hygroscopic material 2 swells with a large amount of water near the lower end surface, and the rotor is deformed. Therefore, the temperature of the hot air 6c after passing through the rotor 1 is required to be equal to or higher than the phase transition temperature of the moisture absorbent material 2.

ケース6a内部を効率の良い空気循環用閉空間とするために、ケース6aとロータ1とが接触する端面は、ロータ1の回転が阻害されない程度に接触し、空気の漏れは出来る限り少なくなるように構成するのが好ましい。また、ケース6aには断熱を施し熱漏洩が出来る限り少なく出来るように構成するのが好ましい。このように構成することで、熱漏洩が少なくなり高いエネルギー効率で除湿機を作動させることができる。   In order to make the inside of the case 6a efficient closed space for air circulation, the end surface where the case 6a and the rotor 1 are in contact is in contact with the rotation of the rotor 1 so that the rotation of the rotor 1 is not hindered, and air leakage is minimized. It is preferable to configure. The case 6a is preferably insulated so that heat leakage can be minimized. By comprising in this way, a heat leak decreases and a dehumidifier can be operated with high energy efficiency.

さらに、吸湿材2は相転移を起こす温度が約40℃と低温であって、ロータ1の通気構造を通過したのちの空気温度がこの温度と同等であれば最低限の条件が達成されるので、ケース6a内部の温度と機外温度とを比較してもあまり差がない温度で済むことから断熱材を通して漏洩する熱量も少なくなる。循環する高温空気6cの温度は、ロータ1の寸法、基材の材質、吸湿材2の質量やロータ1の回転数等で決まるロータ1の熱容量によって左右されるため適宜実験して決定される。   Further, the moisture absorbing material 2 has a low temperature of about 40 ° C. causing the phase transition, and the minimum condition is achieved if the air temperature after passing through the ventilation structure of the rotor 1 is equal to this temperature. Since the temperature inside the case 6a and the outside temperature are not so different from each other, the amount of heat leaked through the heat insulating material is reduced. The temperature of the circulating high-temperature air 6c depends on the heat capacity of the rotor 1 determined by the dimensions of the rotor 1, the material of the base material, the mass of the hygroscopic material 2, the number of rotations of the rotor 1, etc.

ケース6a内部を約40℃の温度に保つことから、ロータ1から排出された水分の一部が循環する高温空気6cによって蒸発することも考えられるが、空気中の飽和水蒸気の量は、40℃では51グラム/立方メートル(乾燥空気)、50℃で83グラム/立方メートル(乾燥空気)程度であって、除湿機100の運転を継続してもこれ以上の水蒸気は包含されないので、ロータ1から滴下した水滴は、すべて水滴として排出される。   Since the inside of the case 6a is kept at a temperature of about 40 ° C., it is conceivable that a part of the water discharged from the rotor 1 evaporates due to the circulating high-temperature air 6c, but the amount of saturated water vapor in the air is 40 ° C. Then, it is about 51 grams / cubic meter (dry air), 83 grams / cubic meter (dry air) at 50 ° C., and no further water vapor is included even if the dehumidifier 100 is continuously operated. All water droplets are discharged as water droplets.

本発明に対して吸湿材にゼオライトを使用する従来の吸湿材式除湿機の場合について検討すると、次のような不都合が発生する。   Considering the case of a conventional moisture absorbent dehumidifier using zeolite as a moisture absorbent for the present invention, the following inconvenience occurs.

ゼオライトを使用する吸湿材式除湿機では、吸湿したロータを乾燥するために約200℃の熱風を必要とする。また、ゼオライトは吸湿した水分を水蒸気として放出するので、ロータからは、高温空気と高温水蒸気が排出される。200℃の空気の飽和水蒸気の量は約7500グラム/立方メートル(乾燥空気)であって、ロータから排出された水蒸気量がこの値以上にならないと高温水蒸気は水滴として排出されない。このため、従来の吸湿材式除湿機では、高温水蒸気を冷却するために熱交換器を設け、結露水として機外へ排出する構造が必要であった。また、熱交換器を設けない場合には、刺激付与部を循環型閉空間とせずに、水蒸気を含んだ熱風をそのまま室外等へ排出するしかなかった。また、結露水を得るための熱交換器を設置する場合には、その働きによってロータを乾燥させるための熱風温度が大きく引き下げられ、再加熱するためにも大きなエネルギーを必要とした。   In a moisture absorbent dehumidifier using zeolite, hot air of about 200 ° C. is required to dry the moisture-absorbed rotor. Further, since the zeolite releases the absorbed moisture as water vapor, high temperature air and high temperature water vapor are discharged from the rotor. The amount of saturated water vapor in air at 200 ° C. is about 7500 grams / cubic meter (dry air), and high-temperature water vapor is not discharged as water droplets unless the amount of water vapor discharged from the rotor exceeds this value. For this reason, in the conventional moisture absorption material type dehumidifier, the heat exchanger was provided in order to cool high temperature steam, and the structure discharged | emitted out of the apparatus as condensed water was required. Further, when the heat exchanger is not provided, the stimulation imparting part is not made into the circulation type closed space, and the hot air containing water vapor can only be discharged outside the room as it is. In addition, when a heat exchanger for obtaining condensed water is installed, the hot air temperature for drying the rotor is greatly lowered by the function, and a large amount of energy is required for reheating.

また仮に、熱交換器を備えずに熱風を循環するだけの構造とすると、熱風が水蒸気を含むに従ってロータに担持された吸湿材の水蒸気圧と循環空気の水蒸気圧が接近して、ロータからの水蒸気放出が出来なくなってしまう。これは、ゼオライトの吸放湿特性が、微細孔での水分子の物理的および化学的吸着に基づく特性だからである。ゼオライトの微細孔中の湿度に対して周囲の湿度が高い時には微細孔中に水分子を引き込み、周囲の湿度が低い時には微細孔中の水分子を吐き出すのである。乾燥のために与える高温エネルギーは、微細孔表面から水分子を引き剥がすのに必要なエネルギーとして使用される。このような特性のために、高温の循環空気が水蒸気で飽和した状態では、ロータが全く乾燥されることが無くなり、除湿機として作用しなくなるのである。   If the structure is such that only hot air is circulated without a heat exchanger, the water vapor pressure of the hygroscopic material carried on the rotor and the water vapor pressure of the circulating air approach each other as the hot air contains water vapor. Water vapor can no longer be released. This is because the moisture absorption / release characteristics of zeolite are based on physical and chemical adsorption of water molecules in the micropores. When the ambient humidity is higher than the humidity in the zeolite micropores, water molecules are drawn into the micropores, and when the ambient humidity is low, water molecules in the micropores are discharged. The high temperature energy given for drying is used as the energy required to peel off water molecules from the micropore surface. Due to such characteristics, when the high-temperature circulating air is saturated with water vapor, the rotor is not dried at all and does not function as a dehumidifier.

つまり、ゼオライトなどを使用する従来の吸湿材式除湿機では、ロータを乾燥させる熱エネルギーの漏洩を防ごうと刺激付与部のケースを断熱し、熱風を循環させる構造としても、冷却用熱交換器から多くの熱エネルギーが奪われるという大きな矛盾を生じるのである。   In other words, with conventional moisture absorbent dehumidifiers that use zeolite or the like, a heat exchanger for cooling can also be used as a structure that insulates the case of the stimulus imparting part and circulates hot air to prevent leakage of heat energy that dries the rotor. It causes a big contradiction that a lot of heat energy is deprived.

(実施の形態2)
実施の形態1では、高分子ゲル吸湿材料をポリ-N−イソプロピルアクリルアミドとして説明をしたが、同様に温度に応答して吸湿をする第1の状態と放湿をする第2の状態との間で相転移を行う高分子ゲル材料が他にも知られているので、前者とは動作条件が異なるものの除湿機としての応用が可能である。例えば、ポリエチレンオキシド、ポリメチルビニルエーテルや、オキシエチレン鎖を有するビニルエーテルやポリメタクリレート、ポリヒドロキシブチルビニルエーテルおよびこれらの誘導体などがある。
(Embodiment 2)
In the first embodiment, the polymer gel moisture-absorbing material has been described as poly-N-isopropylacrylamide, but similarly, between the first state where moisture is absorbed in response to temperature and the second state where moisture is released. Since other polymer gel materials that undergo phase transition are known, they can be applied as dehumidifiers although their operating conditions differ from those of the former. For example, there are polyethylene oxide, polymethyl vinyl ether, vinyl ether and polymethacrylate having an oxyethylene chain, polyhydroxybutyl vinyl ether, and derivatives thereof.

除湿機のシステムとしては吸湿材料が変更されるだけで、構造等は実施の形態1と同じになるので説明は省略する。   As the dehumidifier system, only the hygroscopic material is changed, and the structure and the like are the same as those of the first embodiment, and thus the description thereof is omitted.

(実施の形態3)
実施の形態1では、ロータ1を通過した後の高温空気6cの温度が吸湿材2の相転移温度約40℃以上であることが条件であったが、このような不具合に対応するため、本実施形態では上端面近傍の吸湿材の相転移温度と下端面近傍の吸湿材の相転移温度を異ならせることとした。つまり、ロータの上端面近傍の吸湿材の相転移温度よりも、下端面近傍の吸湿材の相転移温度を低くなるように構成する。好ましくは通気構造を通過する高温空気の温度変化に合わせた相転移温度に調整するのが良い。除湿機構造としては実施の形態1と同じものとなる。以下の説明において、図中の符号は実施の形態1と同じものは同じ番号を附し説明は省く。
(Embodiment 3)
In the first embodiment, the condition is that the temperature of the high-temperature air 6c after passing through the rotor 1 is about 40 ° C. or more of the phase change temperature of the hygroscopic material 2. In the embodiment, the phase transition temperature of the hygroscopic material near the upper end surface and the phase transition temperature of the hygroscopic material near the lower end surface are made different. That is, it is configured such that the phase transition temperature of the hygroscopic material near the lower end surface is lower than the phase transition temperature of the hygroscopic material near the upper end surface of the rotor. It is preferable to adjust the phase transition temperature according to the temperature change of the hot air passing through the ventilation structure. The dehumidifier structure is the same as that of the first embodiment. In the following description, the same reference numerals as those in the first embodiment denote the same reference numerals, and a description thereof will be omitted.

このように構成したロータの放湿動作について概念を図4に示す。本実施形態では、ロータ31の上半分は実施形態1と同様の吸湿材2を担持した構成とし、下半分を相転移温度が低い吸湿材料22を担持したロータとした。実施の形態1と同じ高分子ゲル吸湿材料を使用する場合であれば、ゲル中に含まれるイオンの量によって相転移温度を異ならせることができることが知られている。イオンの量が多いほど相転移温度が低く、イオンの量が少ないほど相転移温度が高くなるので調整が可能である。   The concept of the moisture release operation of the rotor configured as described above is shown in FIG. In the present embodiment, the upper half of the rotor 31 is configured to carry the same hygroscopic material 2 as in the first embodiment, and the lower half is configured to carry a hygroscopic material 22 having a low phase transition temperature. If the same polymer gel hygroscopic material as in the first embodiment is used, it is known that the phase transition temperature can be varied depending on the amount of ions contained in the gel. Since the phase transition temperature is lower as the amount of ions is larger, and the phase transition temperature is higher as the amount of ions is smaller, adjustment is possible.

このように構成したロータを使用した除湿機では、ロータ31の上半分で吸湿材2が相転移して吸湿した水分が放出された場合では、下半分の吸湿材22も相転移しているので、上から垂れてきた放出水15が下半分のロータ部分で再吸収されることなく下端面まで到達し、滴下水16となる。また、このように構成することで、ロータ31通過後の空気温度を低くすることが出来、全体として加熱温度を低下することが出来る。このことで加熱エネルギーが少なくて済み、さらに刺激付与部6と外気との温度差が少なくなるので一層漏洩する熱エネルギーが少なくなる。   In the dehumidifier using the rotor configured as described above, when the moisture absorbing material 2 undergoes phase transition in the upper half of the rotor 31 and moisture absorbed is released, the moisture absorbing material 22 in the lower half also undergoes phase transition. The discharged water 15 dripping from above reaches the lower end surface without being reabsorbed by the lower half of the rotor portion, and becomes dripped water 16. Moreover, by comprising in this way, the air temperature after rotor 31 passage can be made low, and heating temperature can be lowered | hung as a whole. This requires less heating energy and further reduces the temperature difference between the stimulus applying section 6 and the outside air, so that the heat energy leaked further decreases.

ロータ31の上半分に担持する吸湿材2と下半分に担持する吸湿材22の相転移温度の差をどの程度に設定するかは、高温空気6cの温度や循環風量、ロータの回転速度、ロータの基材材料、ロータの寸法、ロータの質量等のシステム構成によって異なるので、適宜実験して最適なものを設定するのが好ましい。   The degree of difference in the phase transition temperature between the hygroscopic material 2 carried on the upper half of the rotor 31 and the hygroscopic material 22 carried on the lower half depends on the temperature of the high-temperature air 6c, the amount of circulating air, the rotational speed of the rotor, and the rotor Therefore, it is preferable to set an optimum one by performing experiments as appropriate.

なお、本実施形態では相転移温度の異なる2種類の吸湿材を使用した例を示したが、使用する吸湿材が2種類に限られないのは言うまでもなく、ロータの厚さや動作させる条件によって異なる相転移温度を持つ数種の吸湿材を用意することが好ましい。また、これに対応して分割数も増やすことも言うまでもない。また、本実施形態では、ロータの厚さ方向を均等に2分割した例を示したが、分割は均等にすることにはこだわらず、適宜比率を決定することができる。   In this embodiment, an example in which two types of moisture absorbent materials having different phase transition temperatures are used has been described. However, it is needless to say that the moisture absorbent material to be used is not limited to two types, and varies depending on the thickness of the rotor and operating conditions. It is preferable to prepare several types of hygroscopic materials having a phase transition temperature. Needless to say, the number of divisions increases correspondingly. Further, in the present embodiment, the example in which the thickness direction of the rotor is equally divided into two has been shown, but the ratio can be appropriately determined without being divided equally.

(実施の形態4)
実施の形態3では、ロータの厚さ方向に数種類の吸湿材を相転移温度が低くなる順に担持する構造について述べたが、本実施形態ではロータの半径方向に異なる相転移温度を有する吸湿材を担持させる場合について説明する。
(Embodiment 4)
In the third embodiment, the structure in which several types of moisture absorbing materials are supported in the thickness direction of the rotor in order of decreasing phase transition temperature has been described. However, in this embodiment, moisture absorbing materials having different phase transition temperatures in the radial direction of the rotor are used. The case where it carries is demonstrated.

図5、図6に本実施形態のロータ41について構造模式図を示す。ロータ41は、基材44に透水性材料を使用している。また、吸湿材には温度応答性を有する高分子ゲル吸湿材であって異なる相転移温度を有する吸湿材42および吸湿材43を使用する。この基材44の一方の面に吸湿材42を、他の面に吸湿材43を担持させている。ここでは、吸湿材42は吸湿材43よりも高い温度で相転移するものとする。吸湿材42および吸湿材43を担持した基材44は、波板状と平板状とに各々成形されて組み合わされその隙間が通気構造を提供する。   5 and 6 are structural schematic diagrams of the rotor 41 of the present embodiment. The rotor 41 uses a water permeable material for the substrate 44. Further, a hygroscopic material 42 and a hygroscopic material 43 which are polymer gel hygroscopic materials having temperature responsiveness and different phase transition temperatures are used as the hygroscopic material. A moisture absorbent material 42 is carried on one surface of the substrate 44 and a moisture absorbent material 43 is carried on the other surface. Here, it is assumed that the hygroscopic material 42 undergoes phase transition at a higher temperature than the hygroscopic material 43. The base material 44 carrying the hygroscopic material 42 and the hygroscopic material 43 is molded and combined into a corrugated plate shape and a flat plate shape, and the gaps provide a ventilation structure.

なお、除湿機としての構造は実施の形態1と同様とするので図1を参照されたい。このように構成したロータ41を使用した除湿機について動作を説明する。ロータ41はすでに吸湿段階を終えて、放湿のための加熱段階に移行しているものとする。   In addition, since the structure as a dehumidifier is the same as that of Embodiment 1, please refer to FIG. Operation | movement is demonstrated about the dehumidifier using the rotor 41 comprised in this way. It is assumed that the rotor 41 has already finished the moisture absorption stage and has shifted to a heating stage for moisture release.

ロータ41が回転軸の周りに回転して刺激付与部6の放湿エリア1bに入った段階で、高温空気6cによって吸湿材42および吸湿材43が加熱される。高温空気6cは、ロータ41の厚さ方向に通過した後でも吸湿材42を相転移させるに十分な温度を有するものとする。吸湿材43は相転移温度が低いので吸湿材42よりも先に相転移温度に達して放湿を始める。この段階では、吸湿材42は未だ吸湿状態であり、基材44を介して吸湿材43が放出した水分を吸収する。   When the rotor 41 rotates around the rotation axis and enters the moisture release area 1b of the stimulus applying unit 6, the moisture absorbent 42 and the moisture absorbent 43 are heated by the high temperature air 6c. It is assumed that the high-temperature air 6c has a temperature sufficient to cause the hygroscopic material 42 to undergo phase transition even after passing in the thickness direction of the rotor 41. Since the hygroscopic material 43 has a low phase transition temperature, it reaches the phase transition temperature before the hygroscopic material 42 and starts to release moisture. At this stage, the hygroscopic material 42 is still in a hygroscopic state and absorbs moisture released by the hygroscopic material 43 via the base material 44.

この後も、ロータ41の回転が継続して行われており放湿エリア1b内を回転移動しながら、時間の経過に伴って吸湿材42も次第に相転移温度に到達をする。この段階では、吸湿材43はすべて放湿状態であって再び水分を吸湿することが無く、吸湿材42は吸湿材43が放出した水分をすべて吸収している。ここで、吸湿材42が相転移温度に到達すると吸湿材43が含んでいた水分と吸湿材42が含んでいた水分の両方が一気に放出される。水分が一気に放出されることで、滴下水16の大きさが大きくなり、滴下しやすくなるとともに高温空気6cの影響を受けにくく蒸発が抑えられて排水が良好に行われる。これは、水滴は粒径が小さいほど質量に対する表面積の割合が大きく、外気の影響を強く受けて蒸発がしやすくなる。逆に、水滴の粒径が大きくなれば質量に対する表面積の割合が小さくなり、外気の影響を受けにくくなって蒸発がしにくくなることによる。   Thereafter, the rotation of the rotor 41 continues and the moisture absorbing material 42 gradually reaches the phase transition temperature as time passes while rotating in the moisture release area 1b. At this stage, all of the hygroscopic material 43 is in a moisture releasing state and does not absorb moisture again, and the hygroscopic material 42 absorbs all of the moisture released by the hygroscopic material 43. Here, when the hygroscopic material 42 reaches the phase transition temperature, both the moisture contained in the hygroscopic material 43 and the moisture contained in the hygroscopic material 42 are released all at once. By releasing the water at once, the size of the dripping water 16 is increased, the dripping water 16 is easily dripped, and it is hardly affected by the high-temperature air 6c, so that evaporation is suppressed and drainage is performed well. This is because the smaller the particle size, the larger the ratio of the surface area to the mass of the water droplets, and the water droplets are strongly influenced by the outside air and are easily evaporated. On the contrary, if the particle size of the water droplet is increased, the ratio of the surface area to the mass is decreased, and it is difficult to be evaporated due to being hardly influenced by the outside air.

図7に以上の動作について模式図を示す。図7(a)は、外気供給装置4によって水分を含んだ空気3がロータ41に供給され、吸湿材42および43が水蒸気を吸湿している状態である。図7(b)はロータ41が回転して放湿エリア1bに移行して、加熱装置7と空気循環装置8によって加熱された高温空気6cがロータ41に供給され、吸湿材43が相転移温度に達して放湿している状態である。この時点では吸湿材43から放出された水分が、基材44を透過して吸湿材42に吸収をされる。図7(c)は時間が経過して吸湿材42が相転移温度に達して水分を放出している状態で、吸湿材43から移行してきた水分と元々吸湿材42が吸湿していた水分の両方が排出されるため滴下水16が形成される。図7(d)はロータ41が水分の排出を終えてさらに回転移動して放湿エリア1bを抜けた状態を示す。こののちロータ41は回転を継続して吸湿エリア1aに入って再び吸湿をする。このような動作を繰り返して除湿機が動作する。   FIG. 7 shows a schematic diagram of the above operation. FIG. 7A shows a state in which moisture 3 containing air 3 is supplied to the rotor 41 by the outside air supply device 4 and the moisture absorbents 42 and 43 absorb moisture. In FIG. 7B, the rotor 41 rotates to move to the moisture release area 1b, high temperature air 6c heated by the heating device 7 and the air circulation device 8 is supplied to the rotor 41, and the hygroscopic material 43 has a phase transition temperature. It is in a state where it reaches and is dehumidified. At this time, moisture released from the hygroscopic material 43 passes through the base material 44 and is absorbed by the hygroscopic material 42. FIG. 7C shows a state in which the moisture absorbent 42 has reached the phase transition temperature and the moisture has been released over time, and the moisture transferred from the moisture absorbent 43 and the moisture originally absorbed by the moisture absorbent 42. Since both are discharged, dripping water 16 is formed. FIG. 7 (d) shows a state where the rotor 41 has finished discharging moisture and further rotated and moved out of the moisture release area 1 b. After that, the rotor 41 continues to rotate and enters the moisture absorption area 1a to absorb moisture again. The dehumidifier operates by repeating such an operation.

(実施の形態5)
ロータ41の基材44が構成する通気構造は、図8に示すように断面が三角形であっても、その他の多角形であっても特に制限するものではない。また、吸湿材を粒状に成型して、円筒形で中心軸方向の両端面を通気構造とした筐体に詰めた構造、網状立体構造を有する基材に吸湿材を担持させた構造、など従来から知られる形状であってもよい。
(Embodiment 5)
The ventilation structure formed by the base material 44 of the rotor 41 is not particularly limited as long as the cross section is triangular as shown in FIG. In addition, the hygroscopic material is molded into a granular shape and packed in a casing that has a cylindrical shape with both ends in the central axis direction ventilated, and a structure in which the hygroscopic material is supported on a substrate having a net-like three-dimensional structure, etc. The shape known from

(実施の形態6)
実施の形態4または実施の形態5に示したような相転移温度の異なる吸湿材を複数使用する場合に、より好ましい刺激付与部61の構造について図9に示す。本実施形態では、実施の形態4で使用したロータ41を使用する除湿機として説明を行う。
(Embodiment 6)
FIG. 9 shows a more preferable structure of the stimulus imparting unit 61 when a plurality of hygroscopic materials having different phase transition temperatures as shown in the fourth embodiment or the fifth embodiment are used. In the present embodiment, a dehumidifier that uses the rotor 41 used in the fourth embodiment will be described.

本実施形態では、ロータの回転方向に加熱装置7a、7bが並列するように刺激付与部61の内部を仕切り壁61dで区切るものである。刺激付与部61内部は、相転移温度が異なる複数の吸湿材に対応するように高温空気も複数の温度に設定して、ロータ41を厚さ方向に通過した後の温度で加熱温度を調節してある。本実施形態では、放湿エリア41bでは低温で相転移する吸湿材43に対応する高温空気61cを、放湿エリア41cでは高温で相転移する吸湿材42に対応する高温空気62cを発生するように加熱温度を調節する。   In the present embodiment, the inside of the stimulus applying unit 61 is partitioned by the partition wall 61d so that the heating devices 7a and 7b are arranged in parallel in the rotation direction of the rotor. Inside the stimulus applying unit 61, the high temperature air is also set to a plurality of temperatures so as to correspond to a plurality of hygroscopic materials having different phase transition temperatures, and the heating temperature is adjusted by the temperature after passing through the rotor 41 in the thickness direction. It is. In the present embodiment, the moisture release area 41b generates high-temperature air 61c corresponding to the moisture absorbent material 43 that undergoes phase transition at a low temperature, and the moisture release area 41c generates hot air 62c that corresponds to the moisture absorbent material 42 that undergoes phase transition at a high temperature. Adjust the heating temperature.

刺激付与部61は環状に形成された筒状容器であって内部を空気が循環する。環状形状の一部を切除しロータ41が挟み込まれるように配置される。刺激付与部61とロータ41の接触部は、ロータ41の回転が可能でかつ内部を循環する空気が漏れないように構成される。   The stimulus imparting unit 61 is a cylindrical container formed in an annular shape, and air circulates inside. It arrange | positions so that a part of annular shape may be excised and the rotor 41 may be pinched | interposed. The contact portion between the stimulus applying unit 61 and the rotor 41 is configured such that the rotor 41 can rotate and the air circulating inside does not leak.

本実施形態においては、放湿エリア41bは高温空気61cで加熱され、放湿エリア41cは高温空気62cで加熱されており、高温空気61cはロータ通過後の温度が吸湿材43を相転移させるに足る温度であり、高温空気62cは高温空気61cよりも高温で、ロータ通過後の温度が吸湿材42を相転移させるに足る温度である。また、刺激付与部61内部は2等分され放湿エリア41bと放湿エリア41cは同等の大きさとなっている。また、室内空気の供給を受け、高分子ゲル吸湿材が水分を吸収する領域は吸湿エリア41aである。その他の部分は実施の形態1と同じなので説明は省略する。   In this embodiment, the moisture release area 41b is heated by the high temperature air 61c, the moisture release area 41c is heated by the high temperature air 62c, and the temperature after passing through the rotor causes the moisture absorbent material 43 to change phase. The high-temperature air 62c is higher than the high-temperature air 61c, and the temperature after passing through the rotor is sufficient to cause the hygroscopic material 42 to undergo phase transition. In addition, the inside of the stimulus imparting unit 61 is divided into two equal parts, and the moisture release area 41b and the moisture release area 41c have the same size. Further, a region where the polymer gel hygroscopic material absorbs moisture upon receiving the supply of room air is a hygroscopic area 41a. Since other parts are the same as those of the first embodiment, description thereof is omitted.

このような構成において除湿動作を説明する。ロータ41は、前述のように基材44に透水性材料を使用している。この基材44の一方の面に高分子ゲル吸湿材からなる吸湿材42を、他の面に吸湿材43を担持させている。吸湿材42は吸湿材43よりも高い温度で相転移する。   The dehumidifying operation in such a configuration will be described. The rotor 41 uses a water-permeable material for the base material 44 as described above. A hygroscopic material 42 made of a polymer gel hygroscopic material is supported on one surface of the substrate 44, and a hygroscopic material 43 is supported on the other surface. The hygroscopic material 42 undergoes a phase transition at a higher temperature than the hygroscopic material 43.

ロータ41が吸湿段階を終えて、放湿のための加熱段階に移行しているものとする。ロータ41が回転軸の周りに回転して刺激付与部61の放湿エリア41bに入った段階で、加熱装置7aが発生する高温空気61cによって吸湿材42および43が加熱される。吸湿材43は相転移温度が低いので吸湿材42よりも先に相転移温度に達し放湿を始める。この段階では、吸湿材42は未だ吸湿状態であり、基材44を介して吸湿材43が放出した水分を吸収する。   It is assumed that the rotor 41 has finished the moisture absorption stage and has shifted to a heating stage for moisture release. At the stage where the rotor 41 rotates around the rotation axis and enters the moisture release area 41b of the stimulus applying unit 61, the moisture absorbing materials 42 and 43 are heated by the high temperature air 61c generated by the heating device 7a. Since the hygroscopic material 43 has a low phase transition temperature, it reaches the phase transition temperature before the hygroscopic material 42 and starts to release moisture. At this stage, the hygroscopic material 42 is still in a hygroscopic state and absorbs moisture released by the hygroscopic material 43 via the base material 44.

ロータ41が回転継続して放湿エリア41cに移動すると、放湿エリア41cでは加熱装置7bによって高温空気61cよりも高温の高温空気62cが流通しており、時間の経過に伴って吸湿材42も相転移温度に到達する。この段階では、吸湿材43はすべて相転移を終えており放湿状態であって再び水分を吸湿することが無く、吸湿材42は吸湿材43が放出した水分をすべて吸収している。ここで、吸湿材42が相転移温度に到達すると、もともと吸湿材43が含んでいた水分と吸湿材42自身が含んでいた水分の両方が一気に放出される。水分が一気に放出されることで、滴下水16の大きさが大きくなって滴下しやすくなり、高温空気61cまたは62cの影響を受けにくくなって蒸発が抑えられ排水が良好に行われる。また、循環する高温空気61cおよび高温空気62cがロータ41の上面から下面に向かって通過するため滴下を補助する。このような動作を繰り返して除湿機が動作する。   When the rotor 41 continues to rotate and moves to the moisture release area 41c, in the moisture release area 41c, the high-temperature air 62c that is hotter than the high-temperature air 61c is circulated by the heating device 7b. The phase transition temperature is reached. At this stage, all of the hygroscopic material 43 has finished the phase transition and is in a dehumidified state and does not absorb moisture again, and the hygroscopic material 42 absorbs all the moisture released by the hygroscopic material 43. Here, when the hygroscopic material 42 reaches the phase transition temperature, both the moisture originally contained in the hygroscopic material 43 and the moisture contained in the hygroscopic material 42 are released all at once. By releasing the water at a stretch, the size of the dropped water 16 becomes large and becomes easy to drop, and is less susceptible to the influence of the high-temperature air 61c or 62c, thereby suppressing evaporation and allowing good drainage. Moreover, since the circulating hot air 61c and the hot air 62c pass from the upper surface of the rotor 41 toward the lower surface, the dripping is assisted. The dehumidifier operates by repeating such an operation.

本実施形態において、刺激付与部61内部を2等分したが、3つ以上に分割して構成することも可能である。高分子ゲル吸湿材の種類やロータの質量、高分子ゲル吸湿材の量やロータの回転数によって熱容量が左右されるため、適宜分割比率を変更することもできる。また、分割比率の決定は実験確認などで適切になされるのが好ましい。   In the present embodiment, the inside of the stimulus imparting unit 61 is divided into two equal parts, but it may be divided into three or more parts. Since the heat capacity depends on the type of the polymer gel hygroscopic material, the mass of the rotor, the amount of the polymer gel hygroscopic material, and the rotation speed of the rotor, the division ratio can be changed as appropriate. Further, it is preferable that the division ratio is appropriately determined by experimental confirmation.

(実施の形態7)
実施の形態6では、相転移温度が異なる複数の吸湿材をロータの半径方向に配設したものとして説明を行ったが、実施の形態3で使用した様に相転移温度が異なる複数の吸湿材をロータの厚さ方向に配設したものを使用しても同じように動作させることが出来る。除湿機の構成は図10、図11にロータ構造を説明する模式図を示す。
(Embodiment 7)
In the sixth embodiment, a description has been given assuming that a plurality of hygroscopic materials having different phase transition temperatures are arranged in the radial direction of the rotor. However, as used in the third embodiment, a plurality of hygroscopic materials having different phase transition temperatures are used. It is possible to operate in the same manner even if a rotor disposed in the thickness direction of the rotor is used. The structure of a dehumidifier shows the schematic diagram explaining a rotor structure in FIG. 10, FIG.

実施の形態3では、ロータ31を使用し、高温で相転移する吸湿材2を上面側、低温で相転移する吸湿材22を下面側に配置したが、本実施形態では逆に配置する。つまり、本実施形態で使用するロータ71では、上面側には低温で相転移する吸湿材22を、下面側には高温で相転移する吸湿材2を配置する。   In the third embodiment, the rotor 31 is used and the hygroscopic material 2 that undergoes phase transition at a high temperature is disposed on the upper surface side, and the hygroscopic material 22 that undergoes a phase transition at a low temperature is disposed on the lower surface side. That is, in the rotor 71 used in the present embodiment, the hygroscopic material 22 that undergoes phase transition at a low temperature is disposed on the upper surface side, and the hygroscopic material 2 that undergoes a phase transition at a high temperature is disposed on the lower surface side.

刺激付与部は実施の形態6と同じである。前述のように高温空気61cはロータ通過後の温度が吸湿材22を相転移させるに足る温度であり、高温空気62cは高温空気61cよりも高温で、ロータ通過後の温度が吸湿材2を相転移させるに足る温度である。   The stimulus applying unit is the same as in the sixth embodiment. As described above, the high-temperature air 61c is a temperature sufficient for the phase after passing through the rotor to cause phase transition of the hygroscopic material 22, and the high-temperature air 62c is higher than the high-temperature air 61c. The temperature is sufficient to cause the transition.

ロータ71が吸湿段階を終えて、放湿のための加熱段階に移行しているものとする。ロータ71が回転軸の周りに回転して刺激付与部61の放湿エリア71bに入った段階で、加熱装置7aが発生する高温空気61cによって吸湿材22および2が加熱される。吸湿材22は相転移温度が低いので吸湿材2よりも先に相転移温度に達し放湿を始める。放湿された水分は自重と高温空気61cおよび62cロータ71の下側へ移動する。この段階では、吸湿材2は未だ吸湿状態であり、吸湿材22が放出した水分を吸収する。   It is assumed that the rotor 71 has finished the moisture absorption stage and has shifted to a heating stage for moisture release. When the rotor 71 rotates around the rotation axis and enters the moisture release area 71b of the stimulus applying unit 61, the hygroscopic materials 22 and 2 are heated by the high temperature air 61c generated by the heating device 7a. Since the hygroscopic material 22 has a low phase transition temperature, it reaches the phase transition temperature before the hygroscopic material 2 and starts to release moisture. Moisturized moisture moves to the lower side of its own weight and high-temperature air 61c and 62c rotor 71. At this stage, the hygroscopic material 2 is still in the hygroscopic state and absorbs the moisture released by the hygroscopic material 22.

ロータ71が回転継続して放湿エリア71cに移動すると、放湿エリア71cでは加熱装置7bによって高温空気61cよりも高温の高温空気62cが流通しており、時間の経過に伴って吸湿材2も相転移温度に到達する。この段階では、吸湿材22はすべて相転移を終えており放湿状態であって再び水分を吸湿することが無く、吸湿材2は吸湿材22が放出した水分をすべて吸収している。ここで、吸湿材2が相転移温度に到達すると、もともと吸湿材22が含んでいた水分と吸湿材2自身が含んでいた水分の両方が一気に放出される。水分が一気に放出されることで、滴下水16の大きさが大きくなって滴下しやすくなり、高温空気61cまたは62cの影響を受けにくくなって蒸発が抑えられ排水が良好に行われる。また、循環する高温空気61cおよび高温空気62cがロータ71の上面から下面に向かって通過するため滴下を補助する。このような動作を繰り返して除湿機が動作する。   When the rotor 71 continues to rotate and moves to the moisture release area 71c, the high temperature air 62c that is hotter than the high temperature air 61c is circulated by the heating device 7b in the moisture release area 71c. The phase transition temperature is reached. At this stage, all of the hygroscopic material 22 has finished the phase transition and is in a moisture releasing state and does not absorb moisture again, and the hygroscopic material 2 absorbs all of the moisture released by the hygroscopic material 22. Here, when the hygroscopic material 2 reaches the phase transition temperature, both the moisture originally contained in the hygroscopic material 22 and the moisture contained in the hygroscopic material 2 itself are released all at once. By releasing the water at a stretch, the size of the dropped water 16 becomes large and becomes easy to drop, and is less susceptible to the influence of the high-temperature air 61c or 62c, thereby suppressing evaporation and allowing good drainage. Further, since the circulating hot air 61c and the hot air 62c pass from the upper surface to the lower surface of the rotor 71, the dripping is assisted. The dehumidifier operates by repeating such an operation.

本実施形態では、刺激付与部内部を高温空気61cが流通する通路と、高温空気62cが流通する通路に分割をしたが、分割をしないで実施の形態1と同じような構成であってもよい。この場合には流通する高温空気をロータ71の下面側に配置した吸湿材2を相転移温度にまで加熱できる温度とすることが重要である。このように相転移温度の異なる吸湿材を配置することで、放湿初期段階において、初めにロータ71の上面側の吸湿材22が水分を放出するが、下面側の吸湿材2は未だ吸湿する状態を保っており、吸湿材22から放出された水分は吸湿材2に吸収される。ロータ71が回転移動して下面側の吸湿材2が相転移温度に達すると、吸湿材22が含んでいた水分と吸湿材2が含んでいた水分が一気に放出されるので、滴下水16が大きくなって排出され易くなる。また、これによって高温空気の影響を受けにくくなり、排水が良好に行われる。   In the present embodiment, the inside of the stimulus imparting unit is divided into a passage through which the high temperature air 61c circulates and a passage through which the high temperature air 62c circulates, but the same configuration as in the first embodiment may be used without division. . In this case, it is important to set the temperature of the hygroscopic material 2 in which the circulating high-temperature air is disposed on the lower surface side of the rotor 71 so that it can be heated to the phase transition temperature. By arranging the moisture absorbents having different phase transition temperatures in this way, in the initial stage of moisture release, the moisture absorbent 22 on the upper surface side of the rotor 71 first releases moisture, but the moisture absorbent material 2 on the lower surface side still absorbs moisture. The moisture is released from the hygroscopic material 22 and is absorbed by the hygroscopic material 2. When the rotor 71 rotates and the moisture absorbing material 2 on the lower surface side reaches the phase transition temperature, the moisture contained in the moisture absorbing material 22 and the moisture contained in the moisture absorbing material 2 are released all at once. It becomes easy to be discharged. Moreover, this makes it less susceptible to the influence of high-temperature air, and drainage is performed well.

(実施の形態8)
実施の形態1〜7については、使用する吸湿材が温度応答性を有する高分子ゲル吸湿材料であるとして説明を行ったが、温度応答性以外の特性を有する高分子ゲル吸湿材料も使用できる。例えば、電磁波応答性を有する高分子ゲル吸湿材料などが除湿機には使用できる。電磁波応答性を有する高分子ゲル吸湿材料は、前述した温度応答性を有する高分子ゲル吸湿材料に電磁波を吸収して発熱する物質を混合させることで実現できる。例えば、黒鉛やカーボングラファイト、カーボンナノチューブなどの炭素系物質や炭化チタン、炭化ジルコニウムなどの炭化物、黒化銀、酸化鉄などの金属酸化物や天然顔料、有機顔料など多くのものが利用できる。添加する電磁波吸収物質は、高分子ゲル吸湿材料が含んでいる水分に溶解せず、電気的にかい離せずイオン化しない物質が好ましい。
(Embodiment 8)
Although Embodiments 1 to 7 have been described on the assumption that the hygroscopic material used is a polymer gel hygroscopic material having temperature responsiveness, polymer gel hygroscopic materials having characteristics other than temperature responsiveness can also be used. For example, a polymer gel hygroscopic material having electromagnetic wave response can be used for the dehumidifier. The polymer gel hygroscopic material having electromagnetic wave responsiveness can be realized by mixing the above-described polymer gel hygroscopic material having temperature responsiveness with a substance that absorbs electromagnetic waves and generates heat. For example, carbon-based materials such as graphite, carbon graphite, and carbon nanotubes, carbides such as titanium carbide and zirconium carbide, metal oxides such as blackened silver and iron oxide, natural pigments, and organic pigments can be used. The electromagnetic wave absorbing substance to be added is preferably a substance that does not dissolve in the moisture contained in the polymer gel moisture-absorbing material, does not separate electrically, and does not ionize.

図12に電磁波応答性を有する高分子ゲル吸湿材を使用したロータ81を搭載する除湿機の平面模式図、図13に断面模式図を示す。ロータ81は、電磁波吸収物質を混入した吸湿材82を基材に均等に担持したもので、基本的構造は実施の形態1で使用したロータ1と同じである。除湿機の構成で前述の実施の形態と異なる部分としては、実施の形態1〜7で使用した刺激付与部に代わって刺激付与部83が設けられる。   FIG. 12 is a schematic plan view of a dehumidifier equipped with a rotor 81 using a polymer gel hygroscopic material having electromagnetic wave response, and FIG. 13 is a schematic cross-sectional view. The rotor 81 is one in which a hygroscopic material 82 mixed with an electromagnetic wave absorbing material is evenly supported on a base material, and the basic structure is the same as that of the rotor 1 used in the first embodiment. As a portion different from the above-described embodiment in the configuration of the dehumidifier, a stimulus applying unit 83 is provided instead of the stimulus applying unit used in the first to seventh embodiments.

刺激付与部83には、ケース83a、空気循環装置8、電磁波発生装置20、排水孔9が備えられる。ケース83aは、実施の形態1〜7とは異なり必ずしも断熱の必要が無く、周辺の空気で冷却される構造であってもよい。また、加熱装置が無いので内部空間を大きくとる必要も無く全体の小型化が可能である。その他の構成は実施の形態1と同じであり説明は省略する。   The stimulus imparting unit 83 includes a case 83a, an air circulation device 8, an electromagnetic wave generation device 20, and a drain hole 9. Unlike Embodiments 1-7, case 83a does not necessarily require heat insulation, and may be structured to be cooled by ambient air. Further, since there is no heating device, it is not necessary to make a large internal space, and the entire size can be reduced. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

このように構成された除湿機200の動作について説明を行う。除湿機200においては、吸込風路11を経由して湿った空気3が機外から取り込まれ、外気供給装置4を通じてロータ81に導かれる。吸込風路11内側のロータ領域は、ロータ1に担持された吸湿材82と湿った空気3が触れる吸湿エリア81aとなる。吸湿材82に触れて除湿された空気は、乾燥空気5となって吹出風路12を経由して室内へ出ていく。   Operation | movement of the dehumidifier 200 comprised in this way is demonstrated. In the dehumidifier 200, the moist air 3 is taken in from outside the machine via the suction air passage 11 and guided to the rotor 81 through the outside air supply device 4. The rotor area inside the suction air passage 11 is a moisture absorption area 81a where the moisture absorbent 82 carried on the rotor 1 and the moist air 3 come into contact. The air dehumidified by touching the hygroscopic material 82 becomes dry air 5 and goes out into the room via the blowout air passage 12.

前工程で水分を含んだロータ81は回転軸10の周りにゆっくりと回転駆動されて、刺激付与部83で形成する放湿エリア81bに到達する。刺激付与部83内部では、電磁波発生装置20から照射された電磁波がロータ81の電磁波吸収物質に吸収されて電磁波吸収物質が発熱しロータ81を加熱する。このときに吸湿材82に熱刺激を与えることにより、吸湿材82に吸湿状態から放湿状態へと相転移が起きる。この相転移に伴って吸湿されていた水分が直接、水となって排出されて刺激付与部83下部に溜まり排出孔9から排水され、水受け容器14に受けられる。   The rotor 81 containing moisture in the previous step is slowly rotated around the rotary shaft 10 and reaches the moisture release area 81 b formed by the stimulus applying unit 83. Inside the stimulus applying unit 83, the electromagnetic wave irradiated from the electromagnetic wave generator 20 is absorbed by the electromagnetic wave absorbing material of the rotor 81, and the electromagnetic wave absorbing material generates heat to heat the rotor 81. At this time, by applying a thermal stimulus to the hygroscopic material 82, the hygroscopic material 82 undergoes a phase transition from the moisture absorbing state to the moisture releasing state. Moisture absorbed by this phase transition is directly discharged as water, accumulated at the bottom of the stimulus applying portion 83, drained from the discharge hole 9, and received by the water receiving container 14.

高分子ゲル吸湿材料に混合される電磁波吸収物質の量は、使用する物質、物質の形状、大きさ、などによって発熱状態が異なるため適宜実験して決定される。電磁波吸収物質が発した熱が効率よく使われるためには電磁波吸収物質と高分子ゲル物質とが均一に混合されていることが好ましい。また、高分子ゲル吸湿材内での熱伝搬を良好にするために伝熱特性に優れた材料をさらに添加してもよい。   The amount of the electromagnetic wave absorbing substance to be mixed with the polymer gel hygroscopic material is determined by an appropriate experiment because the heat generation state varies depending on the substance used, the shape and size of the substance, and the like. In order to efficiently use the heat generated by the electromagnetic wave absorbing material, it is preferable that the electromagnetic wave absorbing material and the polymer gel material are uniformly mixed. Moreover, in order to improve the heat propagation in the polymer gel hygroscopic material, a material excellent in heat transfer characteristics may be further added.

本実施形態においては、空気循環装置8は主としてロータ81から滲み出た水滴を吹き飛ばす気流を送出する役目を担うと解釈できる。また、高分子ゲル吸湿材料は炭素などの電磁波吸収材料が無い場合でも水分を含んでいれば電磁波の一種であるマイクロ波によって自己発熱するが、特に配慮をせずに加熱実施すると表面が先に固くなってレンジで茹でたまごを作ったときのようにゲルが破裂してしまう。これを防止するために電磁波を吸収してゲルより先に温度が上がる電磁波吸収物質を出来るだけゲルの中心部に入れ周辺部は少なくするのが良い。   In the present embodiment, it can be interpreted that the air circulation device 8 mainly plays a role of sending an air flow that blows away water droplets that have oozed out of the rotor 81. In addition, polymer gel moisture-absorbing material is self-heated by microwaves, which is a type of electromagnetic wave, if it contains moisture even when there is no electromagnetic wave-absorbing material such as carbon. The gel ruptures as if it were hard and made a boiled egg in the range. In order to prevent this, an electromagnetic wave absorbing material that absorbs electromagnetic waves and rises in temperature prior to the gel should be put in the center of the gel as much as possible to reduce the peripheral part.

なお、本実施形態において、刺激付与部83は必ずしも断熱する必要が無いと説明したが内部温度を維持するために断熱材を貼り付けることは電磁波による発熱を補助するので好ましい。また、電磁波にはいわゆる電波だけではなく赤外線やその他の光を含む。   In addition, in this embodiment, although it demonstrated that the stimulus imparting part 83 did not necessarily heat-insulate, it is preferable to stick a heat insulating material in order to maintain internal temperature, since it assists the heat_generation | fever by electromagnetic waves. In addition, electromagnetic waves include not only so-called radio waves but also infrared rays and other light.

なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。   In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、吸湿材を使用する除湿機に利用することができる。   The present invention can be used for a dehumidifier using a hygroscopic material.

1,31,41,71,81 ロータ、1a,41a,71a,81a 吸湿エリア、1b,41b,41c,71b,81b 放湿エリア、2,22,42,43,82 吸湿材、3 (湿った)空気、4 外気供給装置、5 乾燥空気、6,61,83 刺激付与部、6a,61a,83a ケース、6b,83b 空気循環通路、6c,61c,62c,83c 高温空気、7,7a,7b 加熱装置、8 空気循環装置、9 排水孔、10 (ロータの)回転軸、11 吸込風路、12 吹出風路、13 (ロータの)駆動モータ、14 水受け容器、15 放出水、16 滴下水、20 電磁波発生装置、100,200 除湿機。   1, 31, 41, 71, 81 Rotor, 1a, 41a, 71a, 81a Moisture absorption area, 1b, 41b, 41c, 71b, 81b Moisture release area, 2, 22, 42, 43, 82 Hygroscopic material, 3 (wet ) Air, 4 Outside air supply device, 5 Dry air, 6, 61, 83 Stimulation section, 6a, 61a, 83a Case, 6b, 83b Air circulation passage, 6c, 61c, 62c, 83c Hot air, 7, 7a, 7b Heating device, 8 Air circulation device, 9 Drain hole, 10 (Rotor) rotating shaft, 11 Suction air passage, 12 Blow air passage, 13 (Rotor) drive motor, 14 Water receiving container, 15 Discharge water, 16 Drop water 20 Electromagnetic wave generator, 100, 200 Dehumidifier.

Claims (6)

加熱されることで吸湿した水分を直接水滴として排出する吸湿材と、
前記吸湿材を担持し通気構造を有するロータと、
前記ロータを加熱して放湿させる刺激付与部と、
前記ロータを軸周りに回転させて吸湿と放湿を連続して行わせる回転機構とを備えた除湿機であって、
前記刺激付与部は前記ロータの通気構造を空気循環路の一部とする閉鎖空間を形成する、除湿機。
A moisture absorbent material that directly discharges moisture absorbed by heating as water droplets;
A rotor carrying the hygroscopic material and having a ventilation structure;
A stimulus applying unit that heats and dehumidifies the rotor;
A dehumidifier comprising a rotation mechanism for rotating the rotor around an axis to continuously absorb and release moisture;
The stimulator is a dehumidifier that forms a closed space in which the ventilation structure of the rotor is part of an air circulation path.
前記ロータは、放湿開始温度の異なる複数の吸湿材を基材に担持させたものである、請求項1に記載の除湿機。   The dehumidifier according to claim 1, wherein the rotor has a plurality of hygroscopic materials having different moisture release start temperatures supported on a base material. 前記ロータの半径方向に放湿開始温度の異なる複数の吸湿材が配置されている、請求項2に記載の除湿機。   The dehumidifier according to claim 2, wherein a plurality of moisture absorbing materials having different moisture release start temperatures are arranged in a radial direction of the rotor. 前記ロータの軸方向に放湿開始温度の異なる複数の吸湿材が配置されている、請求項2に記載の除湿機。   The dehumidifier according to claim 2, wherein a plurality of moisture absorbing materials having different moisture release start temperatures are arranged in the axial direction of the rotor. 前記刺激付与部からの放熱を防ぐ断熱層が設けられている、請求項1から4のいずれかに記載の除湿機。   The dehumidifier in any one of Claim 1 to 4 with which the heat insulation layer which prevents the heat radiation from the said stimulus provision part is provided. 前記吸湿材は、作成時にはまず乾燥させてから使い始めるものである、請求項1から5のいずれかに記載の除湿機。   The dehumidifier according to any one of claims 1 to 5, wherein the hygroscopic material is first dried and then used.
JP2015551535A 2013-12-06 2014-12-03 Dehumidifier Active JP6091656B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013252671 2013-12-06
JP2013252671 2013-12-06
PCT/JP2014/081959 WO2015083733A1 (en) 2013-12-06 2014-12-03 Dehumidifier

Publications (2)

Publication Number Publication Date
JP6091656B2 JP6091656B2 (en) 2017-03-08
JPWO2015083733A1 true JPWO2015083733A1 (en) 2017-03-16

Family

ID=53273495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551535A Active JP6091656B2 (en) 2013-12-06 2014-12-03 Dehumidifier

Country Status (4)

Country Link
JP (1) JP6091656B2 (en)
CN (1) CN105473208B (en)
MY (1) MY173576A (en)
WO (1) WO2015083733A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569063B2 (en) * 2015-07-01 2019-09-04 シャープ株式会社 Humidifying device, dehumidifying device and humidifying method
DE102017202007A1 (en) * 2017-02-08 2018-08-09 E.G.O. Elektro-Gerätebau GmbH Apparatus for dehumidifying, electrical appliance with such a device and method for dehumidifying
WO2019039446A1 (en) * 2017-08-22 2019-02-28 水谷 慎吾 Water generating device
WO2019043979A1 (en) 2017-09-01 2019-03-07 シャープ株式会社 Moisture absorption material
WO2019043975A1 (en) * 2017-09-04 2019-03-07 シャープ株式会社 Humidity control device
CN108443971A (en) * 2018-05-29 2018-08-24 珠海格力电器股份有限公司 Machine through walls
CN109945379B (en) * 2019-03-04 2021-04-02 山东雪圣电器有限公司 Hub type fresh air ventilation equipment
JP7414033B2 (en) 2020-03-30 2024-01-16 株式会社富士通ゼネラル Air treatment equipment and air treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517622A (en) * 2005-11-28 2009-04-30 オプティマイアー ホールディング ベー フェー イー オー Dew point cooling system
JP2012101169A (en) * 2010-11-10 2012-05-31 Panasonic Corp Dehumidifier
US20130309927A1 (en) * 2012-05-18 2013-11-21 Juzer Jangbarwala Composite Porous Fibrous Dehumidifying Material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126442A (en) * 2000-10-31 2002-05-08 New Industry Research Organization Dehumidifying/water-absorbing sheet
CN101915443B (en) * 2004-11-09 2012-08-29 松下电器产业株式会社 Dehumidifier
JP4697413B2 (en) * 2005-08-12 2011-06-08 栗田工業株式会社 Water vapor adsorbent for adsorption heat pump and adsorption heat pump apparatus using the adsorbent
JP2008200615A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Dehumidifying apparatus
JP2008246438A (en) * 2007-03-30 2008-10-16 Nichias Corp Dehumidifier and dehumidification method
JP5926082B2 (en) * 2012-03-27 2016-05-25 大阪瓦斯株式会社 Desiccant air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517622A (en) * 2005-11-28 2009-04-30 オプティマイアー ホールディング ベー フェー イー オー Dew point cooling system
JP2012101169A (en) * 2010-11-10 2012-05-31 Panasonic Corp Dehumidifier
US20130309927A1 (en) * 2012-05-18 2013-11-21 Juzer Jangbarwala Composite Porous Fibrous Dehumidifying Material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHHABRA A. ET AL.: "'Humidity Effects on the Wetting Characteristics of Poly(N-isopropylacrylamide) during a Lower Criti", LANGMUIR, vol. 29, JPN6016037670, 23 May 2013 (2013-05-23), pages 8116 - 8124, ISSN: 0003478452 *

Also Published As

Publication number Publication date
WO2015083733A1 (en) 2015-06-11
CN105473208A (en) 2016-04-06
JP6091656B2 (en) 2017-03-08
MY173576A (en) 2020-02-04
CN105473208B (en) 2020-06-02

Similar Documents

Publication Publication Date Title
JP6091656B2 (en) Dehumidifier
EP3022352B1 (en) Drying machine
JPH06241495A (en) Absorber used for cooling device, air conditioner, etc.
JP6432022B2 (en) Dehumidifier and water machine
CN104548873A (en) Dehumidification device and refrigerator or freezer employing same
CN103453621A (en) Automatic temperature-controlled rotary wheel type dehumidifier
JP4910607B2 (en) Dehumidifier
JP2009285225A (en) Hybrid drying machine
CN101216200B (en) Supersaturated steam dehumidifying method and runner dehumidifier implementing the method
WO2005123225A1 (en) Dehumidifier
JP5228337B2 (en) Hybrid dehumidifier
KR100610989B1 (en) Dehumidifying drier apparatus
JP5683138B2 (en) Dehumidifying dryer
JP2003001047A (en) Dehumidification device and cold air generator using this dehumidification device
JP2007229644A (en) Dehumidifier
JP2011257016A (en) Air conditioning system
CN115265098A (en) Graphene far infrared drying system and drying method
JP2010167178A (en) Washing drying machine
JPS61164623A (en) Dehumidifier
JP2007170786A (en) Ventilation system
JP2005021840A (en) Heat exchange type dehumidification rotor and desiccant air-conditioner using it
JP6231418B2 (en) Cooling dehumidification system
JP6911400B2 (en) Humidity control device
KR20090121619A (en) Dehumidifying air conditioner
JP5417712B2 (en) Dehumidifier

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150