WO2019039446A1 - Water generating device - Google Patents

Water generating device Download PDF

Info

Publication number
WO2019039446A1
WO2019039446A1 PCT/JP2018/030747 JP2018030747W WO2019039446A1 WO 2019039446 A1 WO2019039446 A1 WO 2019039446A1 JP 2018030747 W JP2018030747 W JP 2018030747W WO 2019039446 A1 WO2019039446 A1 WO 2019039446A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air passage
desiccant rotor
water
passage
Prior art date
Application number
PCT/JP2018/030747
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 慎吾
Original Assignee
水谷 慎吾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017159624A external-priority patent/JP6334792B1/en
Priority claimed from JP2018100413A external-priority patent/JP2021006673A/en
Application filed by 水谷 慎吾 filed Critical 水谷 慎吾
Publication of WO2019039446A1 publication Critical patent/WO2019039446A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air

Definitions

  • the present invention relates to a water generator that generates water from air.
  • Patent Document 1 An apparatus is known which takes out moisture in the atmosphere and uses it for water supply to plants and the like.
  • Patent Document 1 listed below a fan disposed inside a box having an air intake, a plurality of heat dissipation plates vertically disposed at an upper portion of the fan, and both ends of the heat dissipation plate
  • An automatic watering device is described having a cooling element provided at In this automatic water supply device, the water droplets generated by the cooling element are stored in the water storage tank (Japanese Patent Laid-Open No. 6-153716).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a water generating apparatus in which the water generation capacity is less likely to decrease even in a low humidity environment.
  • a water generating apparatus comprises a first air passage and a second air passage to which air is fed, a heater for heating air sent to the first air passage, a first air passage and A desiccant rotor disposed on the downstream side of the second air passage and adapted to absorb the moisture of the air delivered from the second air passage and release the absorbed moisture to the air delivered from the first air passage. And a condenser for extracting moisture from the air delivered from the first air passage and passing through the desiccant rotor.
  • the air is sent from the second air path to the desiccant rotor, and the moisture contained in the air is absorbed by the desiccant rotor. Further, the air fed into the first air passage is heated by the heater and is sent out to the desiccant rotor. As the desiccant rotor is driven to rotate, the heated air strikes the portion of the desiccant rotor where moisture is absorbed, and the moisture absorbed by the desiccant rotor is released to the air. As a result, the humidity of the air delivered from the first air passage and passing through the desiccant rotor becomes high. Since water is taken out from this high-humidity air by the condenser, even in a low-humidity environment, the water generation capacity is less likely to decrease.
  • the water generating device may comprise a compression pump for compressing the air delivered from the first air passage and passed through the desiccant rotor.
  • the condenser may remove moisture from the air compressed by the compression pump.
  • the air delivered from the first air passage and passing through the desiccant rotor is compressed in the compression pump, and water is taken out from the compressed air by the condenser. Therefore, even in a low humidity environment, it is difficult to reduce the water generation capacity.
  • the desiccant rotor may have two end faces perpendicular to the axis of rotation by the rotational drive.
  • the first and second air channels may deliver air to different areas of one end face of the desiccant rotor.
  • the air is sent out from the first air passage and the second air passage to the same end face of the desiccant rotor, the air is sent out from the first air passage and the second air passage to the different end faces of the desiccant rotor Compared to the above, it is difficult for the desiccant air to absorb the moisture and dry the air back to the first air passage. As a result, it is easy to suppress a decrease in the water generation capacity due to the return of the dried air to the first air passage.
  • the water generating device may comprise at least one first blower feeding air upstream of the first air passage and at least one second blower feeding air upstream of the second blower.
  • the first air passage and the second air passage may extend in a direction perpendicular to the end face of the desiccant rotor, respectively.
  • the air flow easily contacts the end face of the desiccant rotor perpendicularly.
  • absorption of water from the air delivered from the second air passage and release of water to the air delivered from the first air passage are more likely to occur.
  • one end face of the desiccant rotor may include a first region facing the first air passage and a second region facing the second air passage, and the area of the second region relative to the first region May be large.
  • the area of the second region facing the second air passage is larger than the first region facing the first air passage, so the amount of moisture absorbed by the desiccant rotor becomes large. As a result, even in a low humidity environment, the humidity of the air sent from the first air passage and having passed through the desiccant rotor does not easily decrease.
  • the first air passage may be located vertically above the second air passage.
  • the water generating device includes a temperature sensor for detecting the temperature of air sent out from the first air passage and passing through the desiccant rotor, and a heater so that the average value of the temperatures detected by the temperature sensor approaches a predetermined temperature. And a control circuit that controls the heat generation of the
  • the average value of the temperature of the air delivered from the first air passage and passing through the desiccant rotor can be easily maintained at a predetermined temperature.
  • a water generating apparatus comprising: a first case forming a first air passage and a second air passage to which air is respectively fed; A heater for heating the air fed into the first air passage; While being disposed on the downstream side of the first air passage and the second air passage, the moisture of the air sent out from the second air passage is absorbed, and the absorbed water is released to the air sent out from the first air passage A desiccant rotor, which is driven to rotate A second case forming an exhaust chamber into which air having a higher humidity is introduced, which has been sent from the first air passage to the desiccant rotor and passed therethrough; A compression pump that sucks and compresses air from the exhaust chamber; The compressor includes a condenser which directly receives compressed air and takes out water; The desiccant rotor has two end faces perpendicular to the axis of rotation by the rotational drive, The first air passage and the second air passage send air in mutually opposite directions to different areas
  • the air is sent from the second air path to the desiccant rotor, and the moisture contained in the air is absorbed by the desiccant rotor. Further, the air fed into the first air passage is heated by the heater and is sent out to the desiccant rotor. As the desiccant rotor is driven to rotate, the heated air strikes the portion of the desiccant rotor where moisture is absorbed, and the moisture absorbed by the desiccant rotor is released to the air. As a result, the humidity of the air delivered from the first air passage and passing through the desiccant rotor becomes high.
  • a barrier such as an air curtain can be formed in the rotation space of the shaft 1 of the desiccant rotor, and it becomes difficult for the desiccant rotor to absorb air and dry air from flowing back to the first air passage. As a result, it is possible to suppress a decrease in water generation capacity due to the return of the dried air to the first air passage.
  • the condenser includes a plurality of fins arranged to be in contact with the compressed air, and a pipe through which a refrigerant flows and contacts the fins.
  • the second housing is fixed to the first air passage side of the first housing.
  • the first air includes at least one first blower feeding air upstream of the first air passage, and at least one second blower feeding air upstream of the second air passage, the first air
  • the passage and the second air passage extend in the direction perpendicular to the end face.
  • the first air passage is located vertically above the second air passage.
  • a temperature sensor for detecting the temperature of the exhaust chamber, and a control circuit for controlling the heat generation of the heater such that the average value of the temperature detected by the temperature sensor approaches a predetermined temperature.
  • the present invention it is possible to provide a water generation device in which the water generation capacity is less likely to decrease even in a low humidity environment.
  • FIG. 2A shows the arrangement of the blower viewed in a direction parallel to the axis of rotation of the desiccant rotor.
  • FIG. 2B is a diagram in which the first region facing the first air passage and the second region facing the second air passage are hatched in the end face of the desiccant rotor.
  • FIG. 3A is a view from a direction parallel to the plane of the fin, and
  • FIG. 3B is a view from an oblique direction to the plane of the fin. It is a figure which shows an example of a structure of the water generation apparatus which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a figure which shows an example of a structure of the water generator 1 which concerns on the 1st Embodiment of this invention.
  • three directions orthogonal to one another are denoted as “X”, “Y”, and “Z”, respectively.
  • directions opposite to each other included in the X direction are described as “X1” and “X2”
  • directions opposite to each other included in the Y direction are described as “Y1” and “Y2”
  • those included in the Z direction The directions in the opposite direction are denoted as "Z1” and "Z2".
  • FIG. 1 is a figure which shows an example of a structure of the water generator 1 which concerns on the 1st Embodiment of this invention.
  • three directions orthogonal to one another are denoted as “X”, “Y”, and “Z”, respectively.
  • directions opposite to each other included in the X direction are described as “X1” and “X2”
  • directions opposite to each other included in the Y direction are described as “Y1” and “Y2”
  • the Z1 direction represents an upward direction with respect to the vertical direction
  • the Z2 direction represents a downward direction with respect to the vertical direction.
  • the water generator 1 is a device that generates water from air.
  • the water generator 1 includes a first air passage 11 and a second air passage 12 to which air is fed, and a heater 20 that heats the air A11 sent to the first air passage 11.
  • Desiccant rotor 30 disposed on the downstream side of air passage 11 and second air passage 12, rotary drive mechanism 100 for rotationally driving desiccant rotor 30, and air that has been delivered from first air passage 11 and passed through desiccant rotor 30.
  • a condenser 60 for taking out water from A13.
  • the air A22 is sent out from the second air passage 12 to the desiccant rotor 30, and the moisture contained in the air A22 is absorbed by the desiccant rotor 30. Further, the air A11 fed into the first air passage 11 is heated by the heater 20, and the heated air A12 is sent out to the desiccant rotor 30. The desiccant rotor 30 is driven to rotate so as to absorb the moisture of the air A22 delivered from the second air passage 12 and release the absorbed moisture to the air A12 delivered from the first air passage 11.
  • the air A12 heated by the heater 20 hits the portion of the desiccant rotor 30 where the water is absorbed, and the water absorbed by the desiccant rotor 30 is released to the air A12. Due to the release of the moisture from the desiccant rotor 30, the humidity of the air A13 which is sent out from the first air passage 11 and passes through the desiccant rotor 30 becomes high. The high humidity air A13 is fed into the condenser 60 to be cooled, and the moisture contained in the air is taken out.
  • the desiccant rotor 30 reversibly absorbs moisture from the air and releases moisture to the air with a desiccant such as silica gel, zeolite, or diatomaceous earth.
  • a desiccant such as silica gel, zeolite, or diatomaceous earth.
  • the desiccant rotor 30 has a generally cylindrical (drum) shape, and is formed by processing a sheet material (fibrous sheet, resin sheet, etc.) carrying a desiccant.
  • the desiccant rotor 30 has a large number of holes that allow air to flow, and absorbs and humidifies the air by acting between the air flowing through the holes and the desiccant.
  • the desiccant of the desiccant rotor 30 has a hygroscopic action on relatively low temperature air (e.g., air at normal temperature) and a humidifying action on relatively high temperature air (e.g., high temperature air as compared to normal temperature).
  • relatively low temperature air e.g., air at normal temperature
  • relatively high temperature air e.g., high temperature air as compared to normal temperature
  • the water generator 1 shown in FIG. 1 has a first housing 10 in which a first air passage 11 and a second air passage 12 are formed.
  • the desiccant rotor 30 is rotatably accommodated in the first housing 10.
  • the axis of rotation of the desiccant rotor 30 by the rotational drive mechanism 100 is in the Y direction.
  • the upstream side of the first air passage 11 and the second air passage 12 is the Y1 side, and the downstream side is the Y2 side.
  • the desiccant rotor 30 is located on the downstream side (Y2 side) of the first air passage 11 and the second air passage 12.
  • the first air passage 11 is located on the upper side (Z1 side) in the vertical direction with respect to the second air passage 12.
  • the air A12 heated by the heater 20 in the first air passage 11 does not easily flow to the second air passage 12 below, so the temperature of the air A22 flowing in the second air passage 12 is affected by the heater 20. It becomes difficult.
  • the desiccant rotor 30 has two end faces 31 and 32 perpendicular to the axis of rotation by the rotational drive mechanism 100 (parallel to the XZ plane).
  • the first air passage 11 and the second air passage 12 send air (A11, A12) to different areas of the same end face 31 of the desiccant rotor 30.
  • the air A23 which has been dried by absorbing moisture by the desiccant rotor 30 is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side, and from the upstream side (Y1 side) of the first air passage 11. is seperated. Therefore, the dried air A23 discharged from the end face 32 of the desiccant rotor 30 is less likely to be returned to the upstream side (Y1 side) of the first air passage 11 and the second air passage 12 as air A11 and A21.
  • FIG. 2A is a view showing the arrangement of the fans (F11 to F13, F21 to F23) viewed from the direction (Y direction) parallel to the axis of rotation of the desiccant rotor 30.
  • FIG. 2A in order to show the arrangement of the blower with respect to the desiccant rotor 30, the illustration of the first housing 10 and other components is omitted.
  • the water generating apparatus 1 sends first air blowers F11, F12 and F13 that feed air A11 to the upstream side of the first air passage 11, and air A21 at the upstream side of the second air passage 12. It has the 2nd fan F21, F22, F23 to feed.
  • the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30, as shown in FIG.
  • the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) easily collides perpendicularly with the end face 31 of the desiccant rotor 30.
  • FIG. 2B is a diagram in which the first region 311 facing the first air passage 11 and the second region 312 facing the second air passage 12 at the end face 31 of the desiccant rotor 30 are hatched.
  • the end face 31 of the desiccant rotor 30 is generally divided into a first area 311 and a second area 312, and the area of the second area 312 is larger than that of the first area 311.
  • the area of the first region 311 is about 40% (for example, within the range of 25% to 45%) of the entire area of the end face 31 facing the first air passage 11 and the second air passage 12;
  • the area of 312 is about 60% (for example, in the range of 55% to 70%).
  • the amount of moisture absorbed by the desiccant rotor 30 is large. As a result, even in an environment where the humidity is low, the humidity of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30 does not easily decrease.
  • the heater 20 is a rod-shaped heating element, and is formed of, for example, an infrared lamp or a heating wire.
  • the heater 20 is fixed to the first housing 10 in a posture in which the longitudinal direction is substantially parallel to the X direction.
  • the first fans F11 to F13 are arranged side by side in the X direction so as to overlap the heater 20 as viewed from the Y direction. As a result, the air A11 fed from the first blowers F11 to F13 to the first air passage 11 is easily heated by the heater 20.
  • the water generation device 1 has an exhaust chamber 41 into which the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30 is discharged.
  • the water generating apparatus 1 has a second case 40 fixed to the Y2 side of the first case 10, and an exhaust chamber 41 is formed inside the second case 40.
  • the first housing 10 and the second housing 40 may be separate parts as shown in FIG. 1 or may be different parts of the same part.
  • the rotary drive mechanism 100 includes a shaft 101 fixed to the desiccant rotor 30, and bearings 102 and 103 for rotatably supporting the shaft 101 with respect to the first housing 10 and the second housing 40. , A motor 104, and gears 105 and 106 as a power transmission mechanism for transmitting the power of the motor 104 to the shaft 101.
  • the shaft 101 is disposed along the axis of rotation of the desiccant rotor 30.
  • the bearing 102 supports the shaft 101 at the end on the Y1 side of the first housing 10.
  • the bearing 103 supports the shaft 101 with a fixing member 42 fixed to the end of the second housing 40 on the Y2 side.
  • the motor 104 is located closer to the Z2 side than the shaft 101 and is fixed by the fixing member 42.
  • the gear 105 is fixed to the rotating shaft of the motor 104, and the gear 106 is fixed to the shaft 101.
  • the rotary drive mechanism 100 rotates the desiccant rotor 30 at a relatively slow speed of, for example, one rotation in 2 to 3 minutes.
  • the water generating device 1 has a compression pump 50 that compresses the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30.
  • the compression pump 50 sucks and compresses the air A13 from the exhaust chamber 41.
  • the condenser 60 removes moisture from the air A14 compressed by the compression pump 50.
  • the pressure of the air A14 increases due to compression, the amount of saturated water vapor of the air A14 decreases, so that the water content is easily extracted from the air A14 in the condenser 60.
  • FIGS. 3A and 3B are diagrams showing an example of the configuration of the condenser 60.
  • the condenser 60 has a plurality of fins 61 arranged to be in contact with the air A14, and a pipe 62 through which a refrigerant such as water flows.
  • the fins 61 are thin plates made of a material (such as aluminum) having a high thermal conductivity.
  • a plurality of fins 61 are arranged in parallel, and air A 14 flows between the fins 61.
  • FIG. 3A is a view from a direction parallel to the plane of the fins 61
  • FIG. 3B is a view from an oblique direction to the plane of the fins 61.
  • the pipe 62 is arranged to be in contact with each of the plurality of fins 61.
  • the pipe 62 meanders so as to vertically penetrate each of the plurality of fins 61 a plurality of times.
  • the condenser 60 has two pipes 62.
  • the water generator 1 has a temperature sensor 70 and a control circuit 80.
  • the temperature sensor 70 detects the temperature (the temperature of the air A13 in the exhaust chamber 41) of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30.
  • the control circuit 80 calculates an average value (for example, weighted average or moving average) of the temperature detected by the temperature sensor 70, and generates heat from the heater 20 so that the calculated average value approaches a predetermined temperature (for example, 50.degree. C.). Control.
  • a predetermined temperature for example, 50.degree. C.
  • the control circuit 80 for example, an analog-digital converter that converts the detection result of the temperature sensor 70 into a digital value, and a processing circuit (a computer, a dedicated hardware circuit, etc.) that receives the digital value and executes predetermined processing. )including.
  • a processing circuit a computer, a dedicated hardware circuit, etc.
  • the moisture of the air A 22 sent out from the second air passage 12 to the desiccant rotor 30 is absorbed by the desiccant rotor 30, while the desiccant
  • the water absorbed by the rotor 30 is heated by the heater 20 and discharged to the air A12 sent out from the first air passage 11.
  • the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 has a higher humidity than the air A11 before being delivered to the first air passage 11.
  • Water is taken out of the high humidity air A13 by the condenser 60. Therefore, compared with the method of removing the moisture by directly contacting the air which has not been treated with the cooling element or the like as it is, it is possible to make it difficult to reduce the water generation ability even in an environment with low humidity.
  • the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 is compressed by the compression pump 50, and the compressed air A14 is condensed in the condenser 60.
  • the water of air A14 is taken out. Since the amount of saturated water vapor of the air A14 is reduced by the compression, the water generation capacity can be enhanced as compared with the case where the compression is not performed. In addition, even in a low humidity environment, it is possible to make it difficult to reduce the water generation capacity.
  • the first air passage 11 and the second air are formed on one end surface 31 of the two end surfaces 31 and 32 of the desiccant rotor 30 perpendicular to the axis of rotation.
  • Air A12 and A22 are discharged from the passage 12.
  • the air A23 which has been absorbed with moisture by the desiccant rotor 30 and dried is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side. Therefore, compared with the case where air is sent out from the first air passage 11 and the second air passage 12 to different end faces of the desiccant rotor 30, air dried by absorbing moisture by the desiccant rotor 30 flows back to the first air passage 11. It becomes difficult to do. As a result, it is possible to suppress a decrease in the water generation capacity due to the return of the dried air to the first air passage 11.
  • the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30 respectively.
  • the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) easily collides perpendicularly with the end face 31 of the desiccant rotor 30, and the end face It becomes easy to pass through the desiccant rotor 30 uniformly from 31 to the end face 32. Therefore, the moisture contained in the air A22 is easily absorbed by the desiccant rotor 30, and the moisture is easily released from the desiccant rotor 30 to the air A12, and it becomes easy to improve the water generation capacity.
  • the end face 31 of the desiccant rotor 30 includes a first area 311 facing the first air passage 11 and a second area 312 facing the second air passage 12. And the area of the second region 312 is larger than that of the first region 311.
  • the total amount of water absorbed by the desiccant rotor 30 is increased, so that the humidity of the air A13 sent out from the first air passage 11 and passed through the desiccant rotor 30 is less likely to decrease even in a low humidity environment. It is possible to suppress the decline in the ability to
  • the first air passage 11 is located above (Z 1 side) in the vertical direction with respect to the second air passage 12.
  • the air A12 heated by the heater 20 does not easily flow to the lower side of the second air passage 12, and the temperature of the air A22 flowing through the second air passage 12 is less affected by the heater 20.
  • the temperature rise of the air A 22 due to the influence of the heater 20 is suppressed, so that the decrease in the moisture absorption capacity of the desiccant rotor 30 can be suppressed.
  • the heat generation of the heater 20 is controlled such that the average value of the temperature of the air A13 detected by the temperature sensor 70 approaches a predetermined temperature.
  • the temperature of the air A13 can be maintained at a predetermined temperature at which a good water generation capacity can be obtained, so that the water generation capacity can be kept in a good state even when the environmental temperature changes variously. it can.
  • FIG. 4 is a figure which shows an example of a structure of the water generation apparatus 101 which concerns on the 2nd Embodiment of this invention.
  • the water generator 101 is a device that generates water from air.
  • the water generating apparatus 101 includes a first air passage 11 and a second air passage 12 to which air is fed, and a heater 20 that heats the air A11 sent to the first air passage 11.
  • Desiccant rotor 30 disposed on the downstream side of air passage 11 and second air passage 12, rotary drive mechanism 100 for rotationally driving desiccant rotor 30, and air that has been delivered from first air passage 11 and passed through desiccant rotor 30.
  • a condenser 60 for taking out water from A13.
  • the air A22 is sent out from the second air passage 12 to the desiccant rotor 30, and the moisture contained in the air A22 is absorbed by the desiccant rotor 30. Further, the air A11 fed into the first air passage 11 is heated by the heater 20, and the heated air A12 is sent out to the desiccant rotor 30. The desiccant rotor 30 is driven to rotate so as to absorb the moisture of the air A22 delivered from the second air passage 12 and release the absorbed moisture to the air A12 delivered from the first air passage 11.
  • the air A12 heated by the heater 20 hits the portion of the desiccant rotor 30 where the water is absorbed, and the water absorbed by the desiccant rotor 30 is released to the air A12. Due to the release of the moisture from the desiccant rotor 30, the humidity of the air A13 which is sent out from the first air passage 11 and passes through the desiccant rotor 30 becomes high. The high humidity air A13 is fed into the condenser 60 to be cooled, and the moisture contained in the air is taken out.
  • the desiccant rotor 30 reversibly absorbs moisture from the air and releases moisture to the air with a desiccant such as silica gel, zeolite, or diatomaceous earth.
  • a desiccant such as silica gel, zeolite, or diatomaceous earth.
  • the desiccant rotor 30 has a generally cylindrical (drum) shape, and is formed by processing a sheet material (fiber sheet, resin sheet, etc.) carrying a desiccant.
  • the desiccant rotor 30 has a large number of holes that allow air to flow, and absorbs and humidifies the air by acting between the air flowing through the holes and the desiccant.
  • the desiccant of the desiccant rotor 30 has a hygroscopic action on relatively low temperature air (e.g., air at normal temperature) and a humidifying action on relatively high temperature air (e.g., high temperature air as compared to normal temperature).
  • relatively low temperature air e.g., air at normal temperature
  • relatively high temperature air e.g., high temperature air as compared to normal temperature
  • the water generating apparatus 101 shown in FIG. 4 has a first housing 18 in which the first air passage 11 is formed, and a second housing 10 in which the second air passage 12 is formed.
  • a third housing 40 in which an exhaust chamber 41 is formed is provided on the opposite side (downstream side) of the first housing 18 of the desiccant rotor 30, a third housing 40 in which an exhaust chamber 41 is formed is provided on the opposite side (downstream side) of the first housing 18 of the desiccant rotor 30, a third housing 40 in which an exhaust chamber 41 is formed is provided.
  • the desiccant rotor 30 is rotatably accommodated in the first housing 18 and the second housing 10.
  • the axis of rotation of the desiccant rotor 30 by the rotational drive mechanism 100 is in the Y direction.
  • the upstream side of the first air passage 11 is the Y2 side
  • the upstream side of the second air passage 12 is the Y1 side.
  • the first air passage 11 and the exhaust chamber 41 are located above (Z 1 side) in the vertical direction with respect to the second air passage 12.
  • the air A12 heated by the heater 20 in the first air passage 11 does not easily flow to the second air passage 12 below, so the temperature of the air A22 flowing in the second air passage 12 is affected by the heater 20. It becomes difficult.
  • the desiccant rotor 30 has two end faces 31 and 32 perpendicular to the axis of rotation by the rotary drive mechanism 100 (parallel to the XZ plane).
  • the first air passage 11 and the second air passage 12 send air (A11, A12) to different areas of different end faces 31, 32 of the desiccant rotor 30.
  • the air A23 which has been dried by absorbing moisture by the desiccant rotor 30 is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side, and from the upstream side (Y1 side) of the first air passage 11 is seperated. Accordingly, the dried air A23 discharged from the lower region of the end face 32 of the desiccant rotor 30 is less likely to be returned to the first air passage 11 and the second air passage 12 as air A11 and A21.
  • FIGS. 2A and 2B are the same as in this embodiment.
  • the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30, as shown in FIG. Thereby, the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) can easily hit perpendicularly to the end faces 32, 31 of the desiccant rotor 30 .
  • the first housing 18, the second housing 10, and the third housing 40 may be separate parts as shown in FIG. 4 or may be different parts of the same part.
  • the rotary drive mechanism 100 includes a shaft 101 fixed to the desiccant rotor 30, and bearings 102 and 103 for rotatably supporting the shaft 101 with respect to the first housing 18 and the second housing 10. , A motor 104, and gears 105 and 106 as a power transmission mechanism for transmitting the power of the motor 104 to the shaft 101.
  • the shaft 101 is disposed along the axis of rotation of the desiccant rotor 30.
  • the bearing 102 supports the shaft 101 at the end on the Y1 side of the second housing 10.
  • the bearing 103 supports the shaft 101 with a fixing member 42 fixed to the end on the Y2 side of the first housing 18.
  • the motor 104 is located closer to the Z2 side than the shaft 101 and is fixed by the fixing member 42.
  • the gear 105 is fixed to the rotating shaft of the motor 104, and the gear 106 is fixed to the shaft 101.
  • the rotary drive mechanism 100 rotates the desiccant rotor 30 at a relatively slow speed of, for example, one rotation in 2 to 3 minutes.
  • the water generating apparatus 101 has a compression pump 50 that compresses the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30.
  • the compression pump 50 sucks and compresses the air A13 from the exhaust chamber 41.
  • the condenser 60 removes moisture from the air A14 compressed by the compression pump 50.
  • the pressure of the air A14 increases due to compression, the amount of saturated water vapor of the air A14 decreases, so that the water content is easily extracted from the air A14 in the condenser 60.
  • FIGS. 3A and 3B are the same in this embodiment.
  • the water generator 101 has a temperature sensor 70 and a control circuit 80.
  • the temperature sensor 70 detects the temperature (the temperature of the air A13 in the exhaust chamber 41) of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30.
  • the control circuit 80 calculates an average value (for example, weighted average or moving average) of the temperature detected by the temperature sensor 70, and generates heat from the heater 20 so that the calculated average value approaches a predetermined temperature (for example, 50.degree. C.). Control.
  • a predetermined temperature for example, 50.degree. C.
  • the control circuit 80 for example, an analog-digital converter that converts the detection result of the temperature sensor 70 into a digital value, and a processing circuit (a computer, a dedicated hardware circuit, etc.) that receives the digital value and executes predetermined processing. )including.
  • a processing circuit a computer, a dedicated hardware circuit, etc.
  • the moisture of the air A 22 sent out to the desiccant rotor 30 from the second air passage 12 is absorbed by the desiccant rotor 30, while the desiccant
  • the water absorbed by the rotor 30 is heated by the heater 20 and discharged to the air A12 sent out from the first air passage 11.
  • the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 has a higher humidity than the air A11 before being delivered to the first air passage 11.
  • Water is taken out of the high humidity air A13 by the condenser 60. Therefore, compared with the method of removing the moisture by directly contacting the air which has not been treated with the cooling element or the like as it is, it is possible to make it difficult to reduce the water generation ability even in an environment with low humidity.
  • the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 is compressed by the compression pump 50, and the compressed air A14 is condensed in the condenser 60.
  • the water of air A14 is taken out. Since the amount of saturated water vapor of the air A14 is reduced by the compression, the water generation capacity can be enhanced as compared with the case where the compression is not performed. In addition, even in a low humidity environment, it is possible to make it difficult to reduce the water generation capacity.
  • the air A12 is supplied from the first air passage 11 to one of the two end surfaces 31 and 32 of the desiccant rotor 30 perpendicular to the axis of rotation.
  • the air A22 is sent out from the second air passage 12 to the other end face 31 of the air.
  • a barrier such as an air curtain can be formed in the rotational space of the shaft 101 of the desiccant rotor 30, and the air absorbed by the desiccant rotor 30 and dried becomes difficult to flow back to the first air passage 11.
  • the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30 respectively.
  • the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) can easily come into contact perpendicularly with the end faces 32, 31 of the desiccant rotor 30.
  • the desiccant rotor 30 can easily pass uniformly from one end face to the other end face. Therefore, the moisture contained in the air A22 is easily absorbed by the desiccant rotor 30, and the moisture is easily released from the desiccant rotor 30 to the air A12, and it becomes easy to improve the water generation capacity.
  • the end face 31 (32) of the desiccant rotor 30 includes the first region 311 facing the first air passage 11 and the second region facing the second air passage 12 A second region 312 is included, and the area of the second region 312 is larger than that of the first region 311.
  • the total amount of water absorbed by the desiccant rotor 30 is increased, so that the humidity of the air A13 sent out from the first air passage 11 and passed through the desiccant rotor 30 is less likely to decrease even in a low humidity environment. It is possible to suppress the decline in the ability to
  • the first air passage 11 since the first air passage 11 is located above (Z 1 side) in the vertical direction with respect to the second air passage 12, in the first air passage 11
  • the air A12 heated by the heater 20 does not easily flow to the lower side of the second air passage 12, and the temperature of the air A22 flowing through the second air passage 12 is less affected by the heater 20.
  • the temperature rise of the air A 22 due to the influence of the heater 20 is suppressed, so that the decrease in the moisture absorption capacity of the desiccant rotor 30 can be suppressed.
  • the heat generation of the heater 20 is controlled such that the average value of the temperature of the air A13 detected by the temperature sensor 70 approaches a predetermined temperature.
  • the temperature of the air A13 can be maintained at a predetermined temperature at which a good water generation capacity can be obtained, so that the water generation capacity can be kept in a good state even when the environmental temperature changes variously. it can.
  • the present invention is not limited to the above-described embodiment, but includes various variations.
  • the desiccant rotor 30 is rotationally driven by rotating the shaft 101 fixed to the desiccant rotor 30, but the present invention is not limited to this embodiment.
  • the motive power of rotation may be transmitted to the desiccant rotor via a belt, a rotor, a gear or the like in contact with the outer periphery of the desiccant rotor.
  • the air A14 compressed by the compression pump 50 is fed into the condenser 60, but the present invention is not limited to this example.
  • the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 may be delivered to the condenser 60 as it is.
  • a blower is provided in each of the first air passage 11 and the second air passage 12, but in another embodiment of the present invention, the first air passage 11 and the second air are provided by a common blower. Air may be pumped into each of the passages 12.

Abstract

A water generating device 1 has: a first air path 11 and a second air path 12 to each of which air is fed; a heater 20 for heating air A11 fed to the first air path 11; a desiccant rotor 30 disposed downstream of the first air path 11 and the second air path 12 and rotationally driven so as to absorb moisture in air A22 fed from the second air path 12 and release the moisture that has been absorbed into air A12 fed from the first air path 11; a condenser 60 for compressing air A13 fed from the first air path 11 and passing through the desiccant rotor 20; and a condenser 60 for extracting moisture from air A14 that has been compressed by the condenser 60.

Description

水生成装置Water generator
 本発明は、空気から水を生成する水生成装置に関するものである。 The present invention relates to a water generator that generates water from air.
 大気中の水分を取り出して、植物への給水などに利用する装置が知られている。下記の特許文献1には、空気取入口を有する箱体の内部に配置されたファンと、ファンの上部に間隔を有して縦向きに配置された複数の放熱板と、放熱板の両端部に設けられた冷却素子とを有した自動給水装置が記載されている。この自動給水装置では、冷却素子によって生成された水滴が水貯蔵タンクに貯蔵される(特開平6-153716号公報) An apparatus is known which takes out moisture in the atmosphere and uses it for water supply to plants and the like. In Patent Document 1 listed below, a fan disposed inside a box having an air intake, a plurality of heat dissipation plates vertically disposed at an upper portion of the fan, and both ends of the heat dissipation plate An automatic watering device is described having a cooling element provided at In this automatic water supply device, the water droplets generated by the cooling element are stored in the water storage tank (Japanese Patent Laid-Open No. 6-153716).
 上述した特許文献1に記載される自動給水装置では、ファンから送り込まれた空気を冷却素子の表面に触れさせることによって空気中の水分が取り出される。そのため、湿度が低い環境では水の生成能力が低下し易いという問題がある。 In the automatic water supply device described in Patent Document 1 described above, the moisture in the air is taken out by causing the air fed from the fan to touch the surface of the cooling element. Therefore, there is a problem that the ability to generate water is likely to be reduced in an environment where the humidity is low.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、湿度が低い環境でも水の生成能力が低下し難い水生成装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a water generating apparatus in which the water generation capacity is less likely to decrease even in a low humidity environment.
 本発明の第1の側面に係る水生成装置は、それぞれ空気が送り込まれる第1空気路及び第2空気路と、第1空気路に送り込まれた空気を加熱するヒータと、第1空気路及び第2空気路の下流側に配置され、第2空気路から送り出される空気の水分を吸収するとともに、第1空気路から送り出される空気へ当該吸収した水分を放出するように回転駆動されたデシカントロータと、第1空気路から送り出されてデシカントロータを通過した空気から水分を取り出す凝縮器とを有する。 A water generating apparatus according to a first aspect of the present invention comprises a first air passage and a second air passage to which air is fed, a heater for heating air sent to the first air passage, a first air passage and A desiccant rotor disposed on the downstream side of the second air passage and adapted to absorb the moisture of the air delivered from the second air passage and release the absorbed moisture to the air delivered from the first air passage. And a condenser for extracting moisture from the air delivered from the first air passage and passing through the desiccant rotor.
 この構成によれば、第2空気路からデシカントロータに空気が送り出され、その空気に含まれる水分がデシカントロータに吸収される。また、第1空気路に送り込まれた空気がヒータで加熱され、デシカントロータに送り出される。デシカントロータが回転駆動されることにより、デシカントロータにおいて水分が吸収された部分に加熱された空気が当たり、デシカントロータに吸収された水分が空気に放出される。これにより、第1空気路から送り出されてデシカントロータを通過した空気の湿度が高くなる。この湿度の高い空気から凝縮器によって水分が取り出されるため、湿度が低い環境でも、水の生成能力が低下し難くなる。 According to this configuration, the air is sent from the second air path to the desiccant rotor, and the moisture contained in the air is absorbed by the desiccant rotor. Further, the air fed into the first air passage is heated by the heater and is sent out to the desiccant rotor. As the desiccant rotor is driven to rotate, the heated air strikes the portion of the desiccant rotor where moisture is absorbed, and the moisture absorbed by the desiccant rotor is released to the air. As a result, the humidity of the air delivered from the first air passage and passing through the desiccant rotor becomes high. Since water is taken out from this high-humidity air by the condenser, even in a low-humidity environment, the water generation capacity is less likely to decrease.
 好適に、水生成装置は、第1空気路から送り出されてデシカントロータを通過した空気を圧縮する圧縮ポンプを有してよい。凝縮器は、圧縮ポンプが圧縮した空気から水分を取り出してよい。 Preferably, the water generating device may comprise a compression pump for compressing the air delivered from the first air passage and passed through the desiccant rotor. The condenser may remove moisture from the air compressed by the compression pump.
 この構成によれば、第1空気路から送り出されてデシカントロータを通過した空気が圧縮ポンプにおいて圧縮され、この圧縮された空気から凝縮器によって水が取り出される。そのため、湿度が低い環境でも、水の生成能力が低下し難くなる。 According to this configuration, the air delivered from the first air passage and passing through the desiccant rotor is compressed in the compression pump, and water is taken out from the compressed air by the condenser. Therefore, even in a low humidity environment, it is difficult to reduce the water generation capacity.
 好適に、デシカントロータは、回転駆動による回転の軸に対して垂直な2つの端面を持ってよい。第1空気路及び第2空気路は、デシカントロータの一方の端面の異なる領域に空気を送り出してよい。 Preferably, the desiccant rotor may have two end faces perpendicular to the axis of rotation by the rotational drive. The first and second air channels may deliver air to different areas of one end face of the desiccant rotor.
 この構成によれば、デシカントロータの同一の端面に第1空気路及び第2空気路から空気が送り出されるため、デシカントロータの異なる端面に第1空気路及び第2空気路から空気が送り出される場合に比べて、デシカントロータに水分を吸収されて乾燥した空気が第1空気路へ還流し難くなる。これにより、第1空気路へ乾燥した空気が還流することによる水の生成能力の低下が抑制され易くなる。 According to this configuration, since the air is sent out from the first air passage and the second air passage to the same end face of the desiccant rotor, the air is sent out from the first air passage and the second air passage to the different end faces of the desiccant rotor Compared to the above, it is difficult for the desiccant air to absorb the moisture and dry the air back to the first air passage. As a result, it is easy to suppress a decrease in the water generation capacity due to the return of the dried air to the first air passage.
 好適に、水生成装置は、第1空気路の上流側に空気を送り込む少なくとも1つの第1送風機と、第2送風機の上流側に空気を送り込む少なくとも1つの第2送風機とを有してよい。第1空気路及び第2空気路は、デシカントロータの端面に対してそれぞれ垂直な方向に延びていてよい。 Preferably, the water generating device may comprise at least one first blower feeding air upstream of the first air passage and at least one second blower feeding air upstream of the second blower. The first air passage and the second air passage may extend in a direction perpendicular to the end face of the desiccant rotor, respectively.
 この構成によれば、第1空気路及び第2空気路がデシカントロータの端面に対してそれぞれ垂直な方向に延びているため、デシカントロータの端面に対して気流が垂直に当たり易くなる。これにより、第2空気路から送り出される空気からの水分の吸収と、第1空気路から送り出される空気への水分の放出とがそれぞれ起こり易くなる。 According to this configuration, since the first air passage and the second air passage extend in the directions perpendicular to the end face of the desiccant rotor, the air flow easily contacts the end face of the desiccant rotor perpendicularly. As a result, absorption of water from the air delivered from the second air passage and release of water to the air delivered from the first air passage are more likely to occur.
 好適に、デシカントロータの一方の端面は、第1空気路に面した第1領域と、第2空気路に面した第2領域とを含んでよく、第1領域に比べて第2領域の面積が大きくてよい。 Preferably, one end face of the desiccant rotor may include a first region facing the first air passage and a second region facing the second air passage, and the area of the second region relative to the first region May be large.
 この構成によれば、第1空気路に面した第1領域に比べて、第2空気路に面した第2領域の面積が大きいため、デシカントロータに吸収される水分量が大きくなる。これにより、湿度が低い環境でも、第1空気路から送り出されてデシカントロータを通過した空気の湿度が低下し難くなる。 According to this configuration, the area of the second region facing the second air passage is larger than the first region facing the first air passage, so the amount of moisture absorbed by the desiccant rotor becomes large. As a result, even in a low humidity environment, the humidity of the air sent from the first air passage and having passed through the desiccant rotor does not easily decrease.
 好適に、第1空気路は第2空気路に対して鉛直方向の上方に位置してよい。 Preferably, the first air passage may be located vertically above the second air passage.
 この構成によれば、第1空気路でヒータに加熱された空気が第2空気路側へ流れ難くなるため、第2空気路を流れる空気の温度がヒータの影響を受け難くなる。 According to this configuration, since the air heated by the heater in the first air passage is less likely to flow to the second air passage side, the temperature of the air flowing in the second air passage is less likely to be affected by the heater.
 好適に、水生成装置は、第1空気路から送り出されてデシカントロータを通過した空気の温度を検出する温度センサと、温度センサにおいて検出される温度の平均値が所定の温度へ近づくようにヒータの発熱を制御する制御回路とを有してよい。 Preferably, the water generating device includes a temperature sensor for detecting the temperature of air sent out from the first air passage and passing through the desiccant rotor, and a heater so that the average value of the temperatures detected by the temperature sensor approaches a predetermined temperature. And a control circuit that controls the heat generation of the
 この構成によれば、第1空気路から送り出されてデシカントロータを通過した空気の温度の平均値が所定の温度に保たれ易くなる。 According to this configuration, the average value of the temperature of the air delivered from the first air passage and passing through the desiccant rotor can be easily maintained at a predetermined temperature.
 本発明の第2の側面に係る水生成装置は、 それぞれ空気が送り込まれる第1空気路及び第2空気路とを形成する第1筐体と、
 前記第1空気路に送り込まれた空気を加熱するヒータと、
 前記第1空気路及び前記第2空気路の下流側に配置され、前記第2空気路から送り出される空気の水分を吸収するとともに、前記第1空気路から送り出される空気へ当該吸収した水分を放出するように回転駆動されたデシカントロータと、
 前記第1空気路から前記デシカントロータに送り出されて通過した、前記デシカントロータに送り出される前に比べて湿度が高い空気を流入する排気室を形成する第2筐体と、
 前記排気室から空気を吸引して圧縮する圧縮ポンプと、
 前記圧縮ポンプが圧縮した空気を直接流入して水を取り出す凝縮器とを有し、
 前記デシカントロータは、前記回転駆動による回転の軸に対して垂直な2つの端面を持ち、
 前記第1空気路及び前記第2空気路は、相互に異なる前記端面の異なる領域に、相互に逆方向となるように空気を送り出し、
 前記デシカントロータの前記一方の端面は、前記第1空気路に面した第1領域と、前記第2空気路に面した第2領域とを含んでおり、
 前記第1領域に比べて前記第2領域の面積が大きい、
According to a second aspect of the present invention, there is provided a water generating apparatus, comprising: a first case forming a first air passage and a second air passage to which air is respectively fed;
A heater for heating the air fed into the first air passage;
While being disposed on the downstream side of the first air passage and the second air passage, the moisture of the air sent out from the second air passage is absorbed, and the absorbed water is released to the air sent out from the first air passage A desiccant rotor, which is driven to rotate
A second case forming an exhaust chamber into which air having a higher humidity is introduced, which has been sent from the first air passage to the desiccant rotor and passed therethrough;
A compression pump that sucks and compresses air from the exhaust chamber;
The compressor includes a condenser which directly receives compressed air and takes out water;
The desiccant rotor has two end faces perpendicular to the axis of rotation by the rotational drive,
The first air passage and the second air passage send air in mutually opposite directions to different areas of the end face different from each other,
The one end face of the desiccant rotor includes a first region facing the first air passage and a second region facing the second air passage,
The area of the second area is larger than that of the first area,
 この構成によれば、第2空気路からデシカントロータに空気が送り出され、その空気に含まれる水分がデシカントロータに吸収される。また、第1空気路に送り込まれた空気がヒータで加熱され、デシカントロータに送り出される。デシカントロータが回転駆動されることにより、デシカントロータにおいて水分が吸収された部分に加熱された空気が当たり、デシカントロータに吸収された水分が空気に放出される。これにより、第1空気路から送り出されてデシカントロータを通過した空気の湿度が高くなる。この湿度の高い空気から凝縮器によって水分が取り出されるため、湿度が低い環境でも、水の生成能力が低下し難くなる。
 また、デシカントロータのシャフト1の回転スペースにエアカーテンのようなバリアを形成でき、デシカントロータに水分を吸収されて乾燥した空気が第1空気路へ還流し難くなる。これにより、第1空気路へ乾燥した空気が還流することによる水の生成能力の低下を抑制できる。
According to this configuration, the air is sent from the second air path to the desiccant rotor, and the moisture contained in the air is absorbed by the desiccant rotor. Further, the air fed into the first air passage is heated by the heater and is sent out to the desiccant rotor. As the desiccant rotor is driven to rotate, the heated air strikes the portion of the desiccant rotor where moisture is absorbed, and the moisture absorbed by the desiccant rotor is released to the air. As a result, the humidity of the air delivered from the first air passage and passing through the desiccant rotor becomes high. Since water is taken out from this high-humidity air by the condenser, even in a low-humidity environment, the water generation capacity is less likely to decrease.
In addition, a barrier such as an air curtain can be formed in the rotation space of the shaft 1 of the desiccant rotor, and it becomes difficult for the desiccant rotor to absorb air and dry air from flowing back to the first air passage. As a result, it is possible to suppress a decrease in water generation capacity due to the return of the dried air to the first air passage.
 好適に、前記凝縮器は、前記圧縮した空気と触れるように配置された複数のフィンと、冷媒が流れ、前記フィンと接触する配管と、を有する。 Preferably, the condenser includes a plurality of fins arranged to be in contact with the compressed air, and a pipe through which a refrigerant flows and contacts the fins.
 好適に、前記第2筐体は、前記第1筐体の前記第1空気路側に固定されている。 Preferably, the second housing is fixed to the first air passage side of the first housing.
 好適に、前記第1空気路の上流側に空気を送り込む少なくとも1つの第1送風機と、前記第2空気路の上流側に空気を送り込む少なくとも1つの第2送風機とを有し、前記第1空気路及び前記第2空気路は、前記端面に対してそれぞれ垂直な方向に延びている。 Preferably, the first air includes at least one first blower feeding air upstream of the first air passage, and at least one second blower feeding air upstream of the second air passage, the first air The passage and the second air passage extend in the direction perpendicular to the end face.
 好適に、前記第1空気路は前記第2空気路に対して鉛直方向の上方に位置する。 Preferably, the first air passage is located vertically above the second air passage.
 好適に、前記排気室の温度を検出する温度センサと、前記温度センサにおいて検出される温度の平均値が所定の温度へ近づくように前記ヒータの発熱を制御する制御回路とを有する。 Preferably, a temperature sensor for detecting the temperature of the exhaust chamber, and a control circuit for controlling the heat generation of the heater such that the average value of the temperature detected by the temperature sensor approaches a predetermined temperature.
 本発明によれば、湿度が低い環境でも水の生成能力が低下し難い水生成装置を提供できる。 According to the present invention, it is possible to provide a water generation device in which the water generation capacity is less likely to decrease even in a low humidity environment.
本発明の第1実施形態に係る水生成装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the water generating apparatus which concerns on 1st Embodiment of this invention. デシカントロータに対する送風路と送風機の配置を示す図である。図2Aは、デシカントロータの回転の軸と平行な方向からみた送風機の配置を示す。図2Bは、デシカントロータの端面において第1送風路に面する第1領域と第2送風路に面する第2領域とを斜線で表した図である。It is a figure which shows arrangement | positioning of the ventilation path and fan with respect to a desiccant rotor. FIG. 2A shows the arrangement of the blower viewed in a direction parallel to the axis of rotation of the desiccant rotor. FIG. 2B is a diagram in which the first region facing the first air passage and the second region facing the second air passage are hatched in the end face of the desiccant rotor. 凝縮器の構成の一例を示す図である。図3Aはフィンの平面に対して平行な方向からみた図であり、図3Bはフィンの平面に対して斜め方向からみた図である。It is a figure which shows an example of a structure of a condenser. FIG. 3A is a view from a direction parallel to the plane of the fin, and FIG. 3B is a view from an oblique direction to the plane of the fin. 本発明の第2実施形態に係る水生成装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the water generation apparatus which concerns on 2nd Embodiment of this invention.
 <第1実施形態>
 以下、図面を参照して、本第1実施形態に係る水生成装置を説明する。図1は、本第1実施形態に係る水生成装置1の構成の一例を示す図である。本明細書では、互いに直交する3つの方向をそれぞれ「X」、「Y」、「Z」と記す。また、X方向に含まれる互いに逆向きの方向を「X1」及び「X2」と記し、Y方向に含まれる互いに逆向きの方向を「Y1」及び「Y2」と記し、Z方向に含まれる互いに逆向きの方向を「Z1」及び「Z2」と記す。図1は、水生成装置1をYZ平面で切断し、X1側からX2方向に向かって切断面を見た断面図である。Z1方向は鉛直方向に対して上向きの方向を表し、Z2方向は鉛直方向に対して下向きの方向を表す。
First Embodiment
The water generator according to the first embodiment will be described below with reference to the drawings. FIG. 1: is a figure which shows an example of a structure of the water generator 1 which concerns on the 1st Embodiment of this invention. In the present specification, three directions orthogonal to one another are denoted as “X”, “Y”, and “Z”, respectively. Also, directions opposite to each other included in the X direction are described as “X1” and “X2”, directions opposite to each other included in the Y direction are described as “Y1” and “Y2”, and those included in the Z direction The directions in the opposite direction are denoted as "Z1" and "Z2". FIG. 1 is a cross-sectional view of the water generator 1 cut along the YZ plane and viewed from the X1 side in the X2 direction. The Z1 direction represents an upward direction with respect to the vertical direction, and the Z2 direction represents a downward direction with respect to the vertical direction.
 本第1実施形態に係る水生成装置1は、空気から水を生成する装置である。図1の例において、水生成装置1は、それぞれ空気が送り込まれる第1空気路11及び第2空気路12と、第1空気路11に送り込まれた空気A11を加熱するヒータ20と、第1空気路11及び第2空気路12の下流側に配置されたデシカントロータ30と、デシカントロータ30を回転駆動する回転駆動機構100と、第1空気路11から送り出されてデシカントロータ30を通過した空気A13から水分を取り出す凝縮器60とを有する。 The water generator 1 according to the first embodiment is a device that generates water from air. In the example of FIG. 1, the water generator 1 includes a first air passage 11 and a second air passage 12 to which air is fed, and a heater 20 that heats the air A11 sent to the first air passage 11. Desiccant rotor 30 disposed on the downstream side of air passage 11 and second air passage 12, rotary drive mechanism 100 for rotationally driving desiccant rotor 30, and air that has been delivered from first air passage 11 and passed through desiccant rotor 30. And a condenser 60 for taking out water from A13.
 図1に示す水生成装置1では、第2空気路12からデシカントロータ30に空気A22が送り出され、その空気A22に含まれる水分がデシカントロータ30に吸収される。また、第1空気路11に送り込まれた空気A11がヒータ20で加熱され、加熱された空気A12がデシカントロータ30に送り出される。デシカントロータ30は、第2空気路12から送り出される空気A22の水分を吸収するとともに、第1空気路11から送り出される空気A12へ当該吸収した水分を放出するように回転駆動される。この回転駆動に伴い、デシカントロータ30において水分が吸収された部分には、ヒータ20で加熱された空気A12が当たり、デシカントロータ30に吸収された水分が空気A12に放出される。デシカントロータ30からの水分の放出により、第1空気路11から送り出されてデシカントロータ30を通過した空気A13の湿度が高くなる。この湿度の高い空気A13が凝縮器60に送り込まれて冷却され、空気中に含まれた水分が取り出される。 In the water generator 1 shown in FIG. 1, the air A22 is sent out from the second air passage 12 to the desiccant rotor 30, and the moisture contained in the air A22 is absorbed by the desiccant rotor 30. Further, the air A11 fed into the first air passage 11 is heated by the heater 20, and the heated air A12 is sent out to the desiccant rotor 30. The desiccant rotor 30 is driven to rotate so as to absorb the moisture of the air A22 delivered from the second air passage 12 and release the absorbed moisture to the air A12 delivered from the first air passage 11. With this rotation, the air A12 heated by the heater 20 hits the portion of the desiccant rotor 30 where the water is absorbed, and the water absorbed by the desiccant rotor 30 is released to the air A12. Due to the release of the moisture from the desiccant rotor 30, the humidity of the air A13 which is sent out from the first air passage 11 and passes through the desiccant rotor 30 becomes high. The high humidity air A13 is fed into the condenser 60 to be cooled, and the moisture contained in the air is taken out.
 デシカントロータ30は、シリカゲルやゼオライト、珪藻土などの乾燥剤によって、空気からの水分の吸収と空気への水分の放出とを可逆的に行う。図1の例において、デシカントロータ30は、全体的に円柱型(ドラム型)の形状を持ち、乾燥剤を担持させたシート材(繊維質シート、樹脂シートなど)を加工して形成される。例えばデシカントロータ30は、空気の通流を許容する多数の孔を持っており、孔の中を流れる空気と乾燥剤とを作用させることによって空気の吸湿や加湿を行う。デシカントロータ30の乾燥剤は、比較的低温の空気(例えば常温の空気)に対して吸湿作用を持ち、比較的高温の空気(例えば常温に比べて高温の空気)に対して加湿作用を持つ。 The desiccant rotor 30 reversibly absorbs moisture from the air and releases moisture to the air with a desiccant such as silica gel, zeolite, or diatomaceous earth. In the example of FIG. 1, the desiccant rotor 30 has a generally cylindrical (drum) shape, and is formed by processing a sheet material (fibrous sheet, resin sheet, etc.) carrying a desiccant. For example, the desiccant rotor 30 has a large number of holes that allow air to flow, and absorbs and humidifies the air by acting between the air flowing through the holes and the desiccant. The desiccant of the desiccant rotor 30 has a hygroscopic action on relatively low temperature air (e.g., air at normal temperature) and a humidifying action on relatively high temperature air (e.g., high temperature air as compared to normal temperature).
 図1に示す水生成装置1は、第1空気路11及び第2空気路12が形成された第1筐体10を持つ。デシカントロータ30は、この第1筐体10の中に回転自在に収容される。回転駆動機構100によるデシカントロータ30の回転の軸は、Y方向を向いている。第1空気路11及び第2空気路12の上流側はY1側、下流側はY2側である。デシカントロータ30は、第1空気路11及び第2空気路12の下流側(Y2側)に位置する。 The water generator 1 shown in FIG. 1 has a first housing 10 in which a first air passage 11 and a second air passage 12 are formed. The desiccant rotor 30 is rotatably accommodated in the first housing 10. The axis of rotation of the desiccant rotor 30 by the rotational drive mechanism 100 is in the Y direction. The upstream side of the first air passage 11 and the second air passage 12 is the Y1 side, and the downstream side is the Y2 side. The desiccant rotor 30 is located on the downstream side (Y2 side) of the first air passage 11 and the second air passage 12.
 図1の例において、第1空気路11は、第2空気路12に対して鉛直方向の上方(Z1側)に位置している。これにより、第1空気路11でヒータ20に加熱された空気A12が下方の第2空気路12側へ流れ難くなるため、第2空気路12を流れる空気A22の温度がヒータ20の影響を受け難くなる。 In the example of FIG. 1, the first air passage 11 is located on the upper side (Z1 side) in the vertical direction with respect to the second air passage 12. As a result, the air A12 heated by the heater 20 in the first air passage 11 does not easily flow to the second air passage 12 below, so the temperature of the air A22 flowing in the second air passage 12 is affected by the heater 20. It becomes difficult.
 図1の例において、デシカントロータ30は、回転駆動機構100による回転の軸に対して垂直な(XZ平面に対して平行な)2つの端面31及び32を持つ。第1空気路11及び第2空気路12は、デシカントロータ30における同一の端面31の異なる領域に空気(A11,A12)を送り出す。デシカントロータ30によって水分を吸収されて乾燥した空気A23は、図1に示すように、デシカントロータ30の端面32からY2側へ排気されており、第1空気路11の上流側(Y1側)から離れている。従って、デシカントロータ30の端面32から排出される乾燥した空気A23は、第1空気路11や第2空気路12の上流側(Y1側)に空気A11,A21として還流され難い。 In the example of FIG. 1, the desiccant rotor 30 has two end faces 31 and 32 perpendicular to the axis of rotation by the rotational drive mechanism 100 (parallel to the XZ plane). The first air passage 11 and the second air passage 12 send air (A11, A12) to different areas of the same end face 31 of the desiccant rotor 30. As shown in FIG. 1, the air A23 which has been dried by absorbing moisture by the desiccant rotor 30 is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side, and from the upstream side (Y1 side) of the first air passage 11. is seperated. Therefore, the dried air A23 discharged from the end face 32 of the desiccant rotor 30 is less likely to be returned to the upstream side (Y1 side) of the first air passage 11 and the second air passage 12 as air A11 and A21.
 図2Aは、デシカントロータ30の回転の軸と平行な方向(Y方向)からみた送風機(F11~F13,F21~F23)の配置を示す図である。図2Aでは、デシカントロータ30に対する送風機の配置を示すため、第1筐体10や他の構成の図示を省略している。図1及び図2Aの例において、水生成装置1は、第1空気路11の上流側に空気A11を送り込む第1送風機F11、F12及びF13と、第2空気路12の上流側に空気A21を送り込む第2送風機F21,F22,F23とを有する。 FIG. 2A is a view showing the arrangement of the fans (F11 to F13, F21 to F23) viewed from the direction (Y direction) parallel to the axis of rotation of the desiccant rotor 30. FIG. In FIG. 2A, in order to show the arrangement of the blower with respect to the desiccant rotor 30, the illustration of the first housing 10 and other components is omitted. In the example of FIG. 1 and FIG. 2A, the water generating apparatus 1 sends first air blowers F11, F12 and F13 that feed air A11 to the upstream side of the first air passage 11, and air A21 at the upstream side of the second air passage 12. It has the 2nd fan F21, F22, F23 to feed.
 第1空気路11及び第2空気路12は、図1に示すように、デシカントロータ30の端面31に対してそれぞれ垂直な方向(Y方向)に延びている。これにより、送風機(F11~F13,F21~F23)によって第1空気路11及び第2空気路12に流れる空気(A12,A21)は、デシカントロータ30の端面31に対して垂直に当たり易くなる。 The first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30, as shown in FIG. As a result, the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) easily collides perpendicularly with the end face 31 of the desiccant rotor 30.
 図2Bは、デシカントロータ30の端面31において第1空気路11に面する第1領域311と第2空気路12に面する第2領域312とを斜線で表した図である。図2Bの例において、デシカントロータ30の端面31は概ね第1領域311と第2領域312とに区分されており、第1領域311に比べて第2領域312の面積が大きい。第1空気路11及び第2空気路12に面する端面31の全体の面積に対して、第1領域311の面積は40%程度(例えば25%から45%までの範囲内)、第2領域312の面積は60%程度(例えば55%から70%までの範囲内)である。第1空気路11に面した第1領域311に比べて、第2空気路12に面した第2領域312の面積が大きいため、デシカントロータ30に吸収される水分量が大きくなる。これにより、湿度が低い環境でも、第1空気路11から送り出されデシカントロータ30を通過した空気A13の湿度が低下し難くなる。 FIG. 2B is a diagram in which the first region 311 facing the first air passage 11 and the second region 312 facing the second air passage 12 at the end face 31 of the desiccant rotor 30 are hatched. In the example of FIG. 2B, the end face 31 of the desiccant rotor 30 is generally divided into a first area 311 and a second area 312, and the area of the second area 312 is larger than that of the first area 311. The area of the first region 311 is about 40% (for example, within the range of 25% to 45%) of the entire area of the end face 31 facing the first air passage 11 and the second air passage 12; The area of 312 is about 60% (for example, in the range of 55% to 70%). Since the area of the second region 312 facing the second air passage 12 is larger than that of the first region 311 facing the first air passage 11, the amount of moisture absorbed by the desiccant rotor 30 is large. As a result, even in an environment where the humidity is low, the humidity of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30 does not easily decrease.
 図2Aにおいて、ヒータ20は棒状の発熱体であり、例えば赤外線ランプや電熱線などで構成される。ヒータ20は、長手方向がX方向と略平行となる姿勢で第1筐体10に固定される。第1送風機F11~F13は、図2Aに示すように、Y方向からみてヒータ20と重なるようにX方向へ並んで配置される。これにより、第1送風機F11~F13から第1空気路11へ送り込まれる空気A11が、それぞれヒータ20において加熱され易くなる。 In FIG. 2A, the heater 20 is a rod-shaped heating element, and is formed of, for example, an infrared lamp or a heating wire. The heater 20 is fixed to the first housing 10 in a posture in which the longitudinal direction is substantially parallel to the X direction. As shown in FIG. 2A, the first fans F11 to F13 are arranged side by side in the X direction so as to overlap the heater 20 as viewed from the Y direction. As a result, the air A11 fed from the first blowers F11 to F13 to the first air passage 11 is easily heated by the heater 20.
 図1の例において、水生成装置1は、第1空気路11から送り出されてデシカントロータ30を通過した空気A13が排出される排気室41を有する。水生成装置1は、第1筐体10のY2側に固定された第2筐体40を有しており、この第2筐体40の内部に排気室41が形成される。なお、第1筐体10と第2筐体40は、図1に示すように別の部品でもよいし、同一の部品の異なる部分でもよい。 In the example of FIG. 1, the water generation device 1 has an exhaust chamber 41 into which the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30 is discharged. The water generating apparatus 1 has a second case 40 fixed to the Y2 side of the first case 10, and an exhaust chamber 41 is formed inside the second case 40. The first housing 10 and the second housing 40 may be separate parts as shown in FIG. 1 or may be different parts of the same part.
 図1の例において、回転駆動機構100は、デシカントロータ30に固定されたシャフト101と、シャフト101を第1筐体10及び第2筐体40に対して回転自在に支持する軸受102及び103と、モータ104と、モータ104の動力をシャフト101に伝達する動力伝達機構としてのギヤ105及び106とを含む。シャフト101は、デシカントロータ30の回転の軸に沿って配置される。軸受102は、第1筐体10のY1側の端部においてシャフト101を支持する。軸受103は、第2筐体40のY2側の端部に固定された固定部材42においてシャフト101を支持する。モータ104は、シャフト101よりもZ2側に位置しており、固定部材42において固定される。ギヤ105はモータ104の回転シャフトに固定され、ギヤ106はシャフト101に固定される。ギヤ105とギヤ106とが噛み合って回転することにより、モータ104の動力がシャフト101に伝達され、デシカントロータ30が回転する。回転駆動機構100は、例えば2~3分間で1回転する程度の比較的遅い速度でデシカントロータ30を回転させる。 In the example of FIG. 1, the rotary drive mechanism 100 includes a shaft 101 fixed to the desiccant rotor 30, and bearings 102 and 103 for rotatably supporting the shaft 101 with respect to the first housing 10 and the second housing 40. , A motor 104, and gears 105 and 106 as a power transmission mechanism for transmitting the power of the motor 104 to the shaft 101. The shaft 101 is disposed along the axis of rotation of the desiccant rotor 30. The bearing 102 supports the shaft 101 at the end on the Y1 side of the first housing 10. The bearing 103 supports the shaft 101 with a fixing member 42 fixed to the end of the second housing 40 on the Y2 side. The motor 104 is located closer to the Z2 side than the shaft 101 and is fixed by the fixing member 42. The gear 105 is fixed to the rotating shaft of the motor 104, and the gear 106 is fixed to the shaft 101. As the gear 105 and the gear 106 mesh and rotate, the power of the motor 104 is transmitted to the shaft 101 and the desiccant rotor 30 rotates. The rotary drive mechanism 100 rotates the desiccant rotor 30 at a relatively slow speed of, for example, one rotation in 2 to 3 minutes.
 図1の例において、水生成装置1は、第1空気路11から送り出されてデシカントロータ30を通過した空気A13を圧縮する圧縮ポンプ50を有する。圧縮ポンプ50は、排気室41から空気A13を吸引して圧縮する。凝縮器60は、圧縮ポンプ50が圧縮した空気A14から水分を取り出す。圧縮によって空気A14の圧力が高くなると、空気A14の飽和水蒸気量が減少するため、凝縮器60において空気A14から水分が取り出され易くなる。 In the example of FIG. 1, the water generating device 1 has a compression pump 50 that compresses the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30. The compression pump 50 sucks and compresses the air A13 from the exhaust chamber 41. The condenser 60 removes moisture from the air A14 compressed by the compression pump 50. When the pressure of the air A14 increases due to compression, the amount of saturated water vapor of the air A14 decreases, so that the water content is easily extracted from the air A14 in the condenser 60.
 図3A及び図3Bは、凝縮器60の構成の一例を示す図である。凝縮器60は、例えば図3A及び図3Bに示すように、空気A14と触れるように配置された複数のフィン61と、水などの冷媒が流れる配管62を有する。フィン61は、熱伝導率が高い材料(アルミなど)で形成された薄い板である。複数のフィン61が平行に配置されており、このフィン61の間を空気A14が流れる。図3Aはフィン61の平面に対して平行な方向からみた図であり、図3Bはフィン61の平面に対して斜め方向からみた図である。配管62は、複数のフィン61の各々と接触するように配置される。例えば、配管62は、複数のフィン61の各々を垂直に複数回貫くように蛇行している。図3A及び図3Bの例において、凝縮器60は2本の配管62を有する。 FIGS. 3A and 3B are diagrams showing an example of the configuration of the condenser 60. FIG. For example, as shown in FIGS. 3A and 3B, the condenser 60 has a plurality of fins 61 arranged to be in contact with the air A14, and a pipe 62 through which a refrigerant such as water flows. The fins 61 are thin plates made of a material (such as aluminum) having a high thermal conductivity. A plurality of fins 61 are arranged in parallel, and air A 14 flows between the fins 61. FIG. 3A is a view from a direction parallel to the plane of the fins 61, and FIG. 3B is a view from an oblique direction to the plane of the fins 61. As shown in FIG. The pipe 62 is arranged to be in contact with each of the plurality of fins 61. For example, the pipe 62 meanders so as to vertically penetrate each of the plurality of fins 61 a plurality of times. In the example of FIGS. 3A and 3B, the condenser 60 has two pipes 62.
 冷媒(水など)が流れる配管62に接触した複数のフィン61が空気A14に触れることで、空気14Aの熱が奪われ、空気A14に含まれた水分が取り出される。水分が取り出された後の乾燥した空気A15は、水生成装置1の外部に排出される。 When the plurality of fins 61 in contact with the pipe 62 through which the refrigerant (such as water) flows touches the air A14, the heat of the air 14A is taken away, and the water contained in the air A14 is extracted. The dried air A15 after the water is removed is discharged to the outside of the water generator 1.
 図1の例において、水生成装置1は、温度センサ70と制御回路80を有する。温度センサ70は、第1空気路11から送り出されてデシカントロータ30を通過した空気A13の温度(排気室41内の空気A13の温度)を検出する。制御回路80は、温度センサ70において検出される温度の平均値(例えば加重平均や移動平均)を算出し、算出した平均値が所定の温度(例えば50℃)へ近づくようにヒータ20の発熱を制御する。制御回路80は、例えば、温度センサ70の検出結果をデジタル値に変換するアナログ-デジタル変換器と、このデジタル値を入力して所定の処理を実行する処理回路(コンピュータや専用のハードウェア回路など)を含む。これにより、環境温度が様々に変化する場合でも、空気A13の温度が、良好な水の生成能力が得られる所定の温度に保たれ易くなる。 In the example of FIG. 1, the water generator 1 has a temperature sensor 70 and a control circuit 80. The temperature sensor 70 detects the temperature (the temperature of the air A13 in the exhaust chamber 41) of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30. The control circuit 80 calculates an average value (for example, weighted average or moving average) of the temperature detected by the temperature sensor 70, and generates heat from the heater 20 so that the calculated average value approaches a predetermined temperature (for example, 50.degree. C.). Control. The control circuit 80, for example, an analog-digital converter that converts the detection result of the temperature sensor 70 into a digital value, and a processing circuit (a computer, a dedicated hardware circuit, etc.) that receives the digital value and executes predetermined processing. )including. As a result, even when the environmental temperature changes variously, the temperature of the air A13 can be easily maintained at a predetermined temperature at which a good water generation capacity can be obtained.
 以上説明したように、本第1実施形態に係る水生成装置1によれば、第2空気路12からデシカントロータ30に送り出された空気A22の水分がデシカントロータ30に吸収される一方、このデシカントロータ30に吸収された水分が、ヒータ20で加熱されて第1空気路11から送り出された空気A12に放出される。これにより、第1空気路11から送り出されてデシカントロータ30を通過した空気A13は、第1空気路11に送り込まれる前の空気A11に比べて湿度が高くなる。この湿度の高い空気A13から凝縮器60によって水分が取り出される。従って、何も処理をしていない空気をそのまま冷却素子などに触れさせて水分を取り出す方法に比べて、湿度が低い環境でも、水の生成能力を低下し難くすることができる。 As described above, according to the water generating apparatus 1 according to the first embodiment, the moisture of the air A 22 sent out from the second air passage 12 to the desiccant rotor 30 is absorbed by the desiccant rotor 30, while the desiccant The water absorbed by the rotor 30 is heated by the heater 20 and discharged to the air A12 sent out from the first air passage 11. Thus, the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 has a higher humidity than the air A11 before being delivered to the first air passage 11. Water is taken out of the high humidity air A13 by the condenser 60. Therefore, compared with the method of removing the moisture by directly contacting the air which has not been treated with the cooling element or the like as it is, it is possible to make it difficult to reduce the water generation ability even in an environment with low humidity.
 本第1実施形態に係る水生成装置1によれば、第1空気路11から送り出されてデシカントロータ30を通過した空気A13が圧縮ポンプ50において圧縮され、この圧縮後の空気A14が凝縮器60に送り込まれて、空気A14の水分が取り出される。圧縮によって空気A14の飽和水蒸気量が減少するため、圧縮を行わない場合に比べて、水の生成能力を高めることができる。また、湿度が低い環境でも、水の生成能力を低下し難くすることができる。 According to the water generating apparatus 1 according to the first embodiment, the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 is compressed by the compression pump 50, and the compressed air A14 is condensed in the condenser 60. The water of air A14 is taken out. Since the amount of saturated water vapor of the air A14 is reduced by the compression, the water generation capacity can be enhanced as compared with the case where the compression is not performed. In addition, even in a low humidity environment, it is possible to make it difficult to reduce the water generation capacity.
 本第1実施形態に係る水生成装置1によれば、回転の軸に対して垂直なデシカントロータ30の2つの端面31及び32のうち、一方の端面31に第1空気路11及び第2空気路12から空気A12,A22が送り出される。デシカントロータ30によって水分を吸収されて乾燥した空気A23は、デシカントロータ30の端面32からY2側へ排気される。そのため、デシカントロータ30の異なる端面に第1空気路11及び第2空気路12から空気が送り出される場合に比べて、デシカントロータ30に水分を吸収されて乾燥した空気が第1空気路11へ還流し難くなる。これにより、第1空気路11へ乾燥した空気が還流することによる水の生成能力の低下を抑制できる。 According to the water generating apparatus 1 in the first embodiment, the first air passage 11 and the second air are formed on one end surface 31 of the two end surfaces 31 and 32 of the desiccant rotor 30 perpendicular to the axis of rotation. Air A12 and A22 are discharged from the passage 12. The air A23 which has been absorbed with moisture by the desiccant rotor 30 and dried is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side. Therefore, compared with the case where air is sent out from the first air passage 11 and the second air passage 12 to different end faces of the desiccant rotor 30, air dried by absorbing moisture by the desiccant rotor 30 flows back to the first air passage 11. It becomes difficult to do. As a result, it is possible to suppress a decrease in the water generation capacity due to the return of the dried air to the first air passage 11.
 本第1実施形態に係る水生成装置1によれば、デシカントロータ30の端面31に対してそれぞれ垂直な方向(Y方向)に第1空気路11及び第2空気路12が延びている。これにより、送風機(F11~F13,F21~F23)によって第1空気路11及び第2空気路12に流れる空気(A12,A21)は、デシカントロータ30の端面31に対して垂直に当たり易くなり、端面31から端面32へデシカントロータ30の中を均一に通り抜け易くなる。そのため、空気A22に含まれた水分がデシカントロータ30に吸収され易くなるとともに、デシカントロータ30から空気A12へ水分が放出され易くなり、水の生成能力を向上させ易くなる。 According to the water generating apparatus 1 in the first embodiment, the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30 respectively. Thus, the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) easily collides perpendicularly with the end face 31 of the desiccant rotor 30, and the end face It becomes easy to pass through the desiccant rotor 30 uniformly from 31 to the end face 32. Therefore, the moisture contained in the air A22 is easily absorbed by the desiccant rotor 30, and the moisture is easily released from the desiccant rotor 30 to the air A12, and it becomes easy to improve the water generation capacity.
 本第1実施形態に係る水生成装置1によれば、デシカントロータ30の端面31には、第1空気路11に面した第1領域311と、第2空気路12に面した第2領域312とが含まれており、第1領域311に比べて第2領域312の面積が大きい。これにより、デシカントロータ30に吸収される全体の水分量が大きくなるため、湿度が低い環境でも、第1空気路11から送り出されデシカントロータ30を通過した空気A13の湿度が低下し難くなり、水の生成能力の低下を抑制できる。 According to the water generator 1 of the first embodiment, the end face 31 of the desiccant rotor 30 includes a first area 311 facing the first air passage 11 and a second area 312 facing the second air passage 12. And the area of the second region 312 is larger than that of the first region 311. As a result, the total amount of water absorbed by the desiccant rotor 30 is increased, so that the humidity of the air A13 sent out from the first air passage 11 and passed through the desiccant rotor 30 is less likely to decrease even in a low humidity environment. It is possible to suppress the decline in the ability to
 本第1実施形態に係る水生成装置1によれば、第2空気路12に対して第1空気路11が鉛直方向の上方(Z1側)に位置しているため、第1空気路11でヒータ20に加熱された空気A12が下方の第2空気路12側へ流れ難くなり、第2空気路12を流れる空気A22の温度がヒータ20の影響を受け難くなる。これにより、ヒータ20の影響による空気A22の温度上昇が抑制されるため、デシカントロータ30の吸湿能力の低下を抑制できる。 According to the water generating apparatus 1 in the first embodiment, the first air passage 11 is located above (Z 1 side) in the vertical direction with respect to the second air passage 12. The air A12 heated by the heater 20 does not easily flow to the lower side of the second air passage 12, and the temperature of the air A22 flowing through the second air passage 12 is less affected by the heater 20. As a result, the temperature rise of the air A 22 due to the influence of the heater 20 is suppressed, so that the decrease in the moisture absorption capacity of the desiccant rotor 30 can be suppressed.
 本第1実施形態に係る水生成装置1によれば、温度センサ70において検出される空気A13の温度の平均値が所定の温度へ近づくように、ヒータ20の発熱が制御される。これにより、空気A13の温度を、良好な水の生成能力が得られる所定の温度に保つことができるため、環境温度が様々に変化する場合でも、水の生成能力を良好な状態に保つことができる。 According to the water generating apparatus 1 in the first embodiment, the heat generation of the heater 20 is controlled such that the average value of the temperature of the air A13 detected by the temperature sensor 70 approaches a predetermined temperature. As a result, the temperature of the air A13 can be maintained at a predetermined temperature at which a good water generation capacity can be obtained, so that the water generation capacity can be kept in a good state even when the environmental temperature changes variously. it can.
<第2実施形態>
 以下、図面を参照して、本第2実施形態に係る水生成装置を説明する。図4は、本第2実施形態に係る水生成装置101の構成の一例を示す図である。
Second Embodiment
The water generator according to the second embodiment will be described below with reference to the drawings. FIG. 4: is a figure which shows an example of a structure of the water generation apparatus 101 which concerns on the 2nd Embodiment of this invention.
 本第2実施形態に係る水生成装置101は、空気から水を生成する装置である。図4の例において、水生成装置101は、それぞれ空気が送り込まれる第1空気路11及び第2空気路12と、第1空気路11に送り込まれた空気A11を加熱するヒータ20と、第1空気路11及び第2空気路12の下流側に配置されたデシカントロータ30と、デシカントロータ30を回転駆動する回転駆動機構100と、第1空気路11から送り出されてデシカントロータ30を通過した空気A13から水分を取り出す凝縮器60とを有する。 The water generator 101 according to the second embodiment is a device that generates water from air. In the example of FIG. 4, the water generating apparatus 101 includes a first air passage 11 and a second air passage 12 to which air is fed, and a heater 20 that heats the air A11 sent to the first air passage 11. Desiccant rotor 30 disposed on the downstream side of air passage 11 and second air passage 12, rotary drive mechanism 100 for rotationally driving desiccant rotor 30, and air that has been delivered from first air passage 11 and passed through desiccant rotor 30. And a condenser 60 for taking out water from A13.
 図4に示す水生成装置101では、第2空気路12からデシカントロータ30に空気A22が送り出され、その空気A22に含まれる水分がデシカントロータ30に吸収される。また、第1空気路11に送り込まれた空気A11がヒータ20で加熱され、加熱された空気A12がデシカントロータ30に送り出される。デシカントロータ30は、第2空気路12から送り出される空気A22の水分を吸収するとともに、第1空気路11から送り出される空気A12へ当該吸収した水分を放出するように回転駆動される。この回転駆動に伴い、デシカントロータ30において水分が吸収された部分には、ヒータ20で加熱された空気A12が当たり、デシカントロータ30に吸収された水分が空気A12に放出される。デシカントロータ30からの水分の放出により、第1空気路11から送り出されてデシカントロータ30を通過した空気A13の湿度が高くなる。この湿度の高い空気A13が凝縮器60に送り込まれて冷却され、空気中に含まれた水分が取り出される。 In the water generator 101 shown in FIG. 4, the air A22 is sent out from the second air passage 12 to the desiccant rotor 30, and the moisture contained in the air A22 is absorbed by the desiccant rotor 30. Further, the air A11 fed into the first air passage 11 is heated by the heater 20, and the heated air A12 is sent out to the desiccant rotor 30. The desiccant rotor 30 is driven to rotate so as to absorb the moisture of the air A22 delivered from the second air passage 12 and release the absorbed moisture to the air A12 delivered from the first air passage 11. With this rotation, the air A12 heated by the heater 20 hits the portion of the desiccant rotor 30 where the water is absorbed, and the water absorbed by the desiccant rotor 30 is released to the air A12. Due to the release of the moisture from the desiccant rotor 30, the humidity of the air A13 which is sent out from the first air passage 11 and passes through the desiccant rotor 30 becomes high. The high humidity air A13 is fed into the condenser 60 to be cooled, and the moisture contained in the air is taken out.
 デシカントロータ30は、シリカゲルやゼオライト、珪藻土などの乾燥剤によって、空気からの水分の吸収と空気への水分の放出とを可逆的に行う。図4の例において、デシカントロータ30は、全体的に円柱型(ドラム型)の形状を持ち、乾燥剤を担持させたシート材(繊維質シート、樹脂シートなど)を加工して形成される。例えばデシカントロータ30は、空気の通流を許容する多数の孔を持っており、孔の中を流れる空気と乾燥剤とを作用させることによって空気の吸湿や加湿を行う。デシカントロータ30の乾燥剤は、比較的低温の空気(例えば常温の空気)に対して吸湿作用を持ち、比較的高温の空気(例えば常温に比べて高温の空気)に対して加湿作用を持つ。 The desiccant rotor 30 reversibly absorbs moisture from the air and releases moisture to the air with a desiccant such as silica gel, zeolite, or diatomaceous earth. In the example of FIG. 4, the desiccant rotor 30 has a generally cylindrical (drum) shape, and is formed by processing a sheet material (fiber sheet, resin sheet, etc.) carrying a desiccant. For example, the desiccant rotor 30 has a large number of holes that allow air to flow, and absorbs and humidifies the air by acting between the air flowing through the holes and the desiccant. The desiccant of the desiccant rotor 30 has a hygroscopic action on relatively low temperature air (e.g., air at normal temperature) and a humidifying action on relatively high temperature air (e.g., high temperature air as compared to normal temperature).
 図4に示す水生成装置101は、第1空気路11が形成された第1筐体18と、第2空気路12が形成された第2筐体10を有する。また、デシカントロータ30の第1筐体18の反対側(下流側)には、排気室41が形成された第3筐体40が設けられている。
 デシカントロータ30は、第1筐体18及び第2筐体10中に回転自在に収容される。回転駆動機構100によるデシカントロータ30の回転の軸は、Y方向を向いている。第1空気路11の上流側はY2側、第2空気路12の上流側はY1側となる。
The water generating apparatus 101 shown in FIG. 4 has a first housing 18 in which the first air passage 11 is formed, and a second housing 10 in which the second air passage 12 is formed. In addition, on the opposite side (downstream side) of the first housing 18 of the desiccant rotor 30, a third housing 40 in which an exhaust chamber 41 is formed is provided.
The desiccant rotor 30 is rotatably accommodated in the first housing 18 and the second housing 10. The axis of rotation of the desiccant rotor 30 by the rotational drive mechanism 100 is in the Y direction. The upstream side of the first air passage 11 is the Y2 side, and the upstream side of the second air passage 12 is the Y1 side.
 図4の例において、第1空気路11及び排気室41は、第2空気路12に対して鉛直方向の上方(Z1側)に位置している。これにより、第1空気路11でヒータ20に加熱された空気A12が下方の第2空気路12側へ流れ難くなるため、第2空気路12を流れる空気A22の温度がヒータ20の影響を受け難くなる。 In the example of FIG. 4, the first air passage 11 and the exhaust chamber 41 are located above (Z 1 side) in the vertical direction with respect to the second air passage 12. As a result, the air A12 heated by the heater 20 in the first air passage 11 does not easily flow to the second air passage 12 below, so the temperature of the air A22 flowing in the second air passage 12 is affected by the heater 20. It becomes difficult.
 図4の例において、デシカントロータ30は、回転駆動機構100による回転の軸に対して垂直な(XZ平面に対して平行な)2つの端面31及び32を持つ。第1空気路11及び第2空気路12は、デシカントロータ30における異なる端面31,32の異なる領域に空気(A11,A12)を送り出す。デシカントロータ30によって水分を吸収されて乾燥した空気A23は、図4に示すように、デシカントロータ30の端面32からY2側へ排気されており、第1空気路11の上流側(Y1側)から離れている。従って、デシカントロータ30の端面32の下側領域から排出される乾燥した空気A23は、第1空気路11や第2空気路12に空気A11,A21として還流され難い。 In the example of FIG. 4, the desiccant rotor 30 has two end faces 31 and 32 perpendicular to the axis of rotation by the rotary drive mechanism 100 (parallel to the XZ plane). The first air passage 11 and the second air passage 12 send air (A11, A12) to different areas of different end faces 31, 32 of the desiccant rotor 30. As shown in FIG. 4, the air A23 which has been dried by absorbing moisture by the desiccant rotor 30 is exhausted from the end face 32 of the desiccant rotor 30 to the Y2 side, and from the upstream side (Y1 side) of the first air passage 11 is seperated. Accordingly, the dried air A23 discharged from the lower region of the end face 32 of the desiccant rotor 30 is less likely to be returned to the first air passage 11 and the second air passage 12 as air A11 and A21.
 図2A及び図2Bに示す構造は、本実施形態においても同様である。 The structures shown in FIGS. 2A and 2B are the same as in this embodiment.
 第1空気路11及び第2空気路12は、図4に示すように、デシカントロータ30の端面31に対してそれぞれ垂直な方向(Y方向)に延びている。これにより、送風機(F11~F13,F21~F23)によって第1空気路11及び第2空気路12に流れる空気(A12,A21)は、デシカントロータ30の端面32,31に対して垂直に当たり易くなる。 The first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30, as shown in FIG. Thereby, the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) can easily hit perpendicularly to the end faces 32, 31 of the desiccant rotor 30 .
 なお、第1筐体18,第2筐体10及び第3筐体40は、図4に示すように別の部品でもよいし、同一の部品の異なる部分でもよい。 The first housing 18, the second housing 10, and the third housing 40 may be separate parts as shown in FIG. 4 or may be different parts of the same part.
 図4の例において、回転駆動機構100は、デシカントロータ30に固定されたシャフト101と、シャフト101を第1筐体18及び第2筐体10に対して回転自在に支持する軸受102及び103と、モータ104と、モータ104の動力をシャフト101に伝達する動力伝達機構としてのギヤ105及び106とを含む。シャフト101は、デシカントロータ30の回転の軸に沿って配置される。軸受102は、第2筐体10のY1側の端部においてシャフト101を支持する。軸受103は、第1筐体18のY2側の端部に固定された固定部材42においてシャフト101を支持する。モータ104は、シャフト101よりもZ2側に位置しており、固定部材42において固定される。ギヤ105はモータ104の回転シャフトに固定され、ギヤ106はシャフト101に固定される。ギヤ105とギヤ106とが噛み合って回転することにより、モータ104の動力がシャフト101に伝達され、デシカントロータ30が回転する。回転駆動機構100は、例えば2~3分間で1回転する程度の比較的遅い速度でデシカントロータ30を回転させる。 In the example of FIG. 4, the rotary drive mechanism 100 includes a shaft 101 fixed to the desiccant rotor 30, and bearings 102 and 103 for rotatably supporting the shaft 101 with respect to the first housing 18 and the second housing 10. , A motor 104, and gears 105 and 106 as a power transmission mechanism for transmitting the power of the motor 104 to the shaft 101. The shaft 101 is disposed along the axis of rotation of the desiccant rotor 30. The bearing 102 supports the shaft 101 at the end on the Y1 side of the second housing 10. The bearing 103 supports the shaft 101 with a fixing member 42 fixed to the end on the Y2 side of the first housing 18. The motor 104 is located closer to the Z2 side than the shaft 101 and is fixed by the fixing member 42. The gear 105 is fixed to the rotating shaft of the motor 104, and the gear 106 is fixed to the shaft 101. As the gear 105 and the gear 106 mesh and rotate, the power of the motor 104 is transmitted to the shaft 101 and the desiccant rotor 30 rotates. The rotary drive mechanism 100 rotates the desiccant rotor 30 at a relatively slow speed of, for example, one rotation in 2 to 3 minutes.
 図4の例において、水生成装置101は、第1空気路11から送り出されてデシカントロータ30を通過した空気A13を圧縮する圧縮ポンプ50を有する。圧縮ポンプ50は、排気室41から空気A13を吸引して圧縮する。凝縮器60は、圧縮ポンプ50が圧縮した空気A14から水分を取り出す。圧縮によって空気A14の圧力が高くなると、空気A14の飽和水蒸気量が減少するため、凝縮器60において空気A14から水分が取り出され易くなる。 In the example of FIG. 4, the water generating apparatus 101 has a compression pump 50 that compresses the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30. The compression pump 50 sucks and compresses the air A13 from the exhaust chamber 41. The condenser 60 removes moisture from the air A14 compressed by the compression pump 50. When the pressure of the air A14 increases due to compression, the amount of saturated water vapor of the air A14 decreases, so that the water content is easily extracted from the air A14 in the condenser 60.
 図3A及び図3Bに示す構造は、本実施形態においも同様である。 The structures shown in FIGS. 3A and 3B are the same in this embodiment.
 冷媒(水など)が流れる配管62に接触した複数のフィン61が空気A14に触れることで、空気14Aの熱が奪われ、空気A14に含まれた水分が取り出される。水分が取り出された後の乾燥した空気A15は、水生成装置101の外部に排出される。 When the plurality of fins 61 in contact with the pipe 62 through which the refrigerant (such as water) flows touches the air A14, the heat of the air 14A is taken away, and the water contained in the air A14 is extracted. The dried air A15 after the water is removed is discharged to the outside of the water generator 101.
 図4の例において、水生成装置101は、温度センサ70と制御回路80を有する。温度センサ70は、第1空気路11から送り出されてデシカントロータ30を通過した空気A13の温度(排気室41内の空気A13の温度)を検出する。制御回路80は、温度センサ70において検出される温度の平均値(例えば加重平均や移動平均)を算出し、算出した平均値が所定の温度(例えば50℃)へ近づくようにヒータ20の発熱を制御する。制御回路80は、例えば、温度センサ70の検出結果をデジタル値に変換するアナログ-デジタル変換器と、このデジタル値を入力して所定の処理を実行する処理回路(コンピュータや専用のハードウェア回路など)を含む。これにより、環境温度が様々に変化する場合でも、空気A13の温度が、良好な水の生成能力が得られる所定の温度に保たれ易くなる。 In the example of FIG. 4, the water generator 101 has a temperature sensor 70 and a control circuit 80. The temperature sensor 70 detects the temperature (the temperature of the air A13 in the exhaust chamber 41) of the air A13 which is sent out from the first air passage 11 and passed through the desiccant rotor 30. The control circuit 80 calculates an average value (for example, weighted average or moving average) of the temperature detected by the temperature sensor 70, and generates heat from the heater 20 so that the calculated average value approaches a predetermined temperature (for example, 50.degree. C.). Control. The control circuit 80, for example, an analog-digital converter that converts the detection result of the temperature sensor 70 into a digital value, and a processing circuit (a computer, a dedicated hardware circuit, etc.) that receives the digital value and executes predetermined processing. )including. As a result, even when the environmental temperature changes variously, the temperature of the air A13 can be easily maintained at a predetermined temperature at which a good water generation capacity can be obtained.
 以上説明したように、本第2実施形態に係る水生成装置101によれば、第2空気路12からデシカントロータ30に送り出された空気A22の水分がデシカントロータ30に吸収される一方、このデシカントロータ30に吸収された水分が、ヒータ20で加熱されて第1空気路11から送り出された空気A12に放出される。これにより、第1空気路11から送り出されてデシカントロータ30を通過した空気A13は、第1空気路11に送り込まれる前の空気A11に比べて湿度が高くなる。この湿度の高い空気A13から凝縮器60によって水分が取り出される。従って、何も処理をしていない空気をそのまま冷却素子などに触れさせて水分を取り出す方法に比べて、湿度が低い環境でも、水の生成能力を低下し難くすることができる。 As described above, according to the water generation apparatus 101 according to the second embodiment, the moisture of the air A 22 sent out to the desiccant rotor 30 from the second air passage 12 is absorbed by the desiccant rotor 30, while the desiccant The water absorbed by the rotor 30 is heated by the heater 20 and discharged to the air A12 sent out from the first air passage 11. Thus, the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 has a higher humidity than the air A11 before being delivered to the first air passage 11. Water is taken out of the high humidity air A13 by the condenser 60. Therefore, compared with the method of removing the moisture by directly contacting the air which has not been treated with the cooling element or the like as it is, it is possible to make it difficult to reduce the water generation ability even in an environment with low humidity.
 本第2実施形態に係る水生成装置101によれば、第1空気路11から送り出されてデシカントロータ30を通過した空気A13が圧縮ポンプ50において圧縮され、この圧縮後の空気A14が凝縮器60に送り込まれて、空気A14の水分が取り出される。圧縮によって空気A14の飽和水蒸気量が減少するため、圧縮を行わない場合に比べて、水の生成能力を高めることができる。また、湿度が低い環境でも、水の生成能力を低下し難くすることができる。 According to the water generating apparatus 101 according to the second embodiment, the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 is compressed by the compression pump 50, and the compressed air A14 is condensed in the condenser 60. The water of air A14 is taken out. Since the amount of saturated water vapor of the air A14 is reduced by the compression, the water generation capacity can be enhanced as compared with the case where the compression is not performed. In addition, even in a low humidity environment, it is possible to make it difficult to reduce the water generation capacity.
 本第2実施形態に係る水生成装置101によれば、回転の軸に対して垂直なデシカントロータ30の2つの端面31及び32のうち、一方の端面32に第1空気路11から空気A12が送り出され、他方の端面31に第2空気路12から空気A22が送り出される。
これにより、デシカントロータ30のシャフト101の回転スペースにエアカーテンのようなバリアを形成でき、デシカントロータ30に水分を吸収されて乾燥した空気が第1空気路11へ還流し難くなる。これにより、第1空気路11へ乾燥した空気が還流することによる水の生成能力の低下を抑制できる。
According to the water generating apparatus 101 of the second embodiment, the air A12 is supplied from the first air passage 11 to one of the two end surfaces 31 and 32 of the desiccant rotor 30 perpendicular to the axis of rotation. The air A22 is sent out from the second air passage 12 to the other end face 31 of the air.
As a result, a barrier such as an air curtain can be formed in the rotational space of the shaft 101 of the desiccant rotor 30, and the air absorbed by the desiccant rotor 30 and dried becomes difficult to flow back to the first air passage 11. As a result, it is possible to suppress a decrease in the water generation capacity due to the return of the dried air to the first air passage 11.
 本第2実施形態に係る水生成装置101によれば、デシカントロータ30の端面31に対してそれぞれ垂直な方向(Y方向)に第1空気路11及び第2空気路12が延びている。これにより、送風機(F11~F13,F21~F23)によって第1空気路11及び第2空気路12に流れる空気(A12,A21)は、デシカントロータ30の端面32,31に対して垂直に当たり易くなり、一方の端面から他方の端面へデシカントロータ30の中を均一に通り抜け易くなる。そのため、空気A22に含まれた水分がデシカントロータ30に吸収され易くなるとともに、デシカントロータ30から空気A12へ水分が放出され易くなり、水の生成能力を向上させ易くなる。 According to the water generating apparatus 101 of the second embodiment, the first air passage 11 and the second air passage 12 extend in the direction (Y direction) perpendicular to the end face 31 of the desiccant rotor 30 respectively. Thus, the air (A12, A21) flowing to the first air passage 11 and the second air passage 12 by the blowers (F11 to F13, F21 to F23) can easily come into contact perpendicularly with the end faces 32, 31 of the desiccant rotor 30. The desiccant rotor 30 can easily pass uniformly from one end face to the other end face. Therefore, the moisture contained in the air A22 is easily absorbed by the desiccant rotor 30, and the moisture is easily released from the desiccant rotor 30 to the air A12, and it becomes easy to improve the water generation capacity.
 本第2実施形態に係る水生成装置101によれば、デシカントロータ30の端面31(32)には、第1空気路11に面した第1領域311と、第2空気路12に面した第2領域312とが含まれており、第1領域311に比べて第2領域312の面積が大きい。これにより、デシカントロータ30に吸収される全体の水分量が大きくなるため、湿度が低い環境でも、第1空気路11から送り出されデシカントロータ30を通過した空気A13の湿度が低下し難くなり、水の生成能力の低下を抑制できる。 According to the water generating apparatus 101 of the second embodiment, the end face 31 (32) of the desiccant rotor 30 includes the first region 311 facing the first air passage 11 and the second region facing the second air passage 12 A second region 312 is included, and the area of the second region 312 is larger than that of the first region 311. As a result, the total amount of water absorbed by the desiccant rotor 30 is increased, so that the humidity of the air A13 sent out from the first air passage 11 and passed through the desiccant rotor 30 is less likely to decrease even in a low humidity environment. It is possible to suppress the decline in the ability to
 本第2実施形態に係る水生成装置101によれば、第2空気路12に対して第1空気路11が鉛直方向の上方(Z1側)に位置しているため、第1空気路11でヒータ20に加熱された空気A12が下方の第2空気路12側へ流れ難くなり、第2空気路12を流れる空気A22の温度がヒータ20の影響を受け難くなる。これにより、ヒータ20の影響による空気A22の温度上昇が抑制されるため、デシカントロータ30の吸湿能力の低下を抑制できる。 According to the water generating apparatus 101 in the second embodiment, since the first air passage 11 is located above (Z 1 side) in the vertical direction with respect to the second air passage 12, in the first air passage 11 The air A12 heated by the heater 20 does not easily flow to the lower side of the second air passage 12, and the temperature of the air A22 flowing through the second air passage 12 is less affected by the heater 20. As a result, the temperature rise of the air A 22 due to the influence of the heater 20 is suppressed, so that the decrease in the moisture absorption capacity of the desiccant rotor 30 can be suppressed.
 本第2実施形態に係る水生成装置101によれば、温度センサ70において検出される空気A13の温度の平均値が所定の温度へ近づくように、ヒータ20の発熱が制御される。これにより、空気A13の温度を、良好な水の生成能力が得られる所定の温度に保つことができるため、環境温度が様々に変化する場合でも、水の生成能力を良好な状態に保つことができる。 According to the water generating apparatus 101 according to the second embodiment, the heat generation of the heater 20 is controlled such that the average value of the temperature of the air A13 detected by the temperature sensor 70 approaches a predetermined temperature. As a result, the temperature of the air A13 can be maintained at a predetermined temperature at which a good water generation capacity can be obtained, so that the water generation capacity can be kept in a good state even when the environmental temperature changes variously. it can.
 なお、本発明は上述した実施形態にのみ限定されるものではなく、種々のバリエーションを含んでいる。 The present invention is not limited to the above-described embodiment, but includes various variations.
 例えば上述した実施形態では、デシカントロータ30に固定されたシャフト101を回転させることによってデシカントロータ30を回転駆動しているが、本発明はこの実施形態に限定されない。本発明の他の実施形態では、例えば、デシカントロータの外周に接触させたベルトやロータ、ギヤなどを介してデシカントロータに回転の動力を伝達してもよい。 For example, in the embodiment described above, the desiccant rotor 30 is rotationally driven by rotating the shaft 101 fixed to the desiccant rotor 30, but the present invention is not limited to this embodiment. In another embodiment of the present invention, for example, the motive power of rotation may be transmitted to the desiccant rotor via a belt, a rotor, a gear or the like in contact with the outer periphery of the desiccant rotor.
 上述した実施形態では、圧縮ポンプ50によって圧縮された空気A14が凝縮器60に送り込まれているが、本発明はこの例に限定されない。本発明の他の実施形態では、第1空気路11から送り出されてデシカントロータ30を通過した空気A13がそのまま凝縮器60に送り込まれてもよい。 In the embodiment described above, the air A14 compressed by the compression pump 50 is fed into the condenser 60, but the present invention is not limited to this example. In another embodiment of the present invention, the air A13 delivered from the first air passage 11 and having passed through the desiccant rotor 30 may be delivered to the condenser 60 as it is.
 上述した実施形態では、第1空気路11と第2空気路12のそれぞれに送風機が設けられているが、本発明の他の実施形態では、共通の送風機によって第1空気路11と第2空気路12のそれぞれに空気を送り込んでもよい。 In the embodiment described above, a blower is provided in each of the first air passage 11 and the second air passage 12, but in another embodiment of the present invention, the first air passage 11 and the second air are provided by a common blower. Air may be pumped into each of the passages 12.
1,101…水生成装置、10…第1筐体、11…第1空気路、12…第2空気路、20…ヒータ、30…デシカントロータ、31,32…端面、311…第1領域、312…第2領域、40…第2筐体、41…排気室、50…圧縮ポンプ、60…凝縮器、61…フィン、62…配管、70…温度センサ、80…制御回路、100…回転駆動機構、101…シャフト、102,103…軸受、104…モータ、105,106…ギヤ、F11~F13…第1送風機、F21~F23…第2送風機 DESCRIPTION OF SYMBOLS 1, 101 ... Water generation apparatus, 10 ... 1st housing | casing, 11 ... 1st air path, 12 ... 2nd air path, 20 ... Heater, 30 ... Desiccant rotor, 31, 32 ... End surface, 311 ... 1st area | region, 312: second area, 40: second housing, 41: exhaust chamber, 50: compression pump, 60: condenser, 61: fin, 62: piping, 70: temperature sensor, 80: control circuit, 100: rotational drive Mechanism, 101 ... shaft, 102, 103 ... bearing, 104 ... motor, 105, 106 ... gear, F11 to F13 ... first blower, F21 to F23 ... second blower

Claims (13)

  1.  それぞれ空気が送り込まれる第1空気路及び第2空気路と、
     前記第1空気路に送り込まれた空気を加熱するヒータと、
     前記第1空気路及び前記第2空気路の下流側に配置され、前記第2空気路から送り出される空気の水分を吸収するとともに、前記第1空気路から送り出される空気へ当該吸収した水分を放出するように回転駆動されたデシカントロータと、
     前記第1空気路から送り出されて前記デシカントロータを通過した空気から水分を取り出す凝縮器とを有する、
     水生成装置。
    First and second air passages to which air is respectively fed;
    A heater for heating the air fed into the first air passage;
    While being disposed on the downstream side of the first air passage and the second air passage, the moisture of the air sent out from the second air passage is absorbed, and the absorbed water is released to the air sent out from the first air passage A desiccant rotor, which is driven to rotate
    A condenser for extracting moisture from the air delivered from the first air passage and passing through the desiccant rotor;
    Water generator.
  2.  前記第1空気路から送り出されて前記デシカントロータを通過した空気を圧縮する圧縮ポンプを有し、
     前記凝縮器は、前記圧縮ポンプが圧縮した空気から水分を取り出す、
     請求項1に記載の水生成装置。
    A compression pump for compressing the air delivered from the first air passage and passing through the desiccant rotor;
    The condenser removes moisture from the air compressed by the compression pump,
    The water generator according to claim 1.
  3.  前記デシカントロータは、前記回転駆動による回転の軸に対して垂直な2つの端面を持ち、
     前記第1空気路及び前記第2空気路は、一方の前記端面の異なる領域に空気を送り出す、
     請求項1又は2に記載の水生成装置。
    The desiccant rotor has two end faces perpendicular to the axis of rotation by the rotational drive,
    The first air passage and the second air passage deliver air to different areas of one of the end faces,
    The water generator according to claim 1 or 2.
  4.  前記第1空気路の上流側に空気を送り込む少なくとも1つの第1送風機と、
     前記第2送風機の上流側に空気を送り込む少なくとも1つの第2送風機とを有し、
     前記第1空気路及び前記第2空気路は、前記端面に対してそれぞれ垂直な方向に延びている、
     請求項3に記載の水生成装置。
    At least one first fan for feeding air upstream of the first air passage;
    And at least one second fan for feeding air upstream of the second fan;
    The first air passage and the second air passage extend in directions perpendicular to the end face, respectively.
    The water generator according to claim 3.
  5.  前記デシカントロータの前記一方の端面は、前記第1空気路に面した第1領域と、前記第2空気路に面した第2領域とを含んでおり、
     前記第1領域に比べて前記第2領域の面積が大きい、
     請求項3又は4に記載の水生成装置。
    The one end face of the desiccant rotor includes a first region facing the first air passage and a second region facing the second air passage,
    The area of the second area is larger than that of the first area,
    The water generator according to claim 3 or 4.
  6.  前記第1空気路は前記第2空気路に対して鉛直方向の上方に位置する、
     請求項3~5の何れかに記載の水生成装置。
    The first air passage is located vertically above the second air passage,
    The water generator according to any one of claims 3 to 5.
  7.  前記第1空気路から送り出されて前記デシカントロータを通過した空気の温度を検出する温度センサと、
     前記温度センサにおいて検出される温度の平均値が所定の温度へ近づくように前記ヒータの発熱を制御する制御回路とを有する、
     請求項1~6の何れかに記載の水生成装置。
    A temperature sensor for detecting the temperature of the air delivered from the first air passage and passing through the desiccant rotor;
    A control circuit for controlling heat generation of the heater such that an average value of temperatures detected by the temperature sensor approaches a predetermined temperature;
    The water generator according to any one of claims 1 to 6.
  8.  それぞれ空気が送り込まれる第1空気路及び第2空気路とを形成する第1筐体と、
     前記第1空気路に送り込まれた空気を加熱するヒータと、
     前記第1空気路及び前記第2空気路の下流側に配置され、前記第2空気路から送り出される空気の水分を吸収するとともに、前記第1空気路から送り出される空気へ当該吸収した水分を放出するように回転駆動されたデシカントロータと、
     前記第1空気路から前記デシカントロータに送り出されて通過した、前記デシカントロータに送り出される前に比べて湿度が高い空気を流入する排気室を形成する第2筐体と、
     前記排気室から空気を吸引して圧縮する圧縮ポンプと、
     前記圧縮ポンプが圧縮した空気を直接流入して水を取り出す凝縮器とを有し、
     前記デシカントロータは、前記回転駆動による回転の軸に対して垂直な2つの端面を持ち、
     前記第1空気路及び前記第2空気路は、相互に異なる前記端面の異なる領域に、相互に逆方向となるように空気を送り出し、
     前記デシカントロータの前記一方の端面は、前記第1空気路に面した第1領域と、前記第2空気路に面した第2領域とを含んでおり、
     前記第1領域に比べて前記第2領域の面積が大きい、
     水生成装置。
    A first housing forming a first air passage and a second air passage, respectively, to which air is fed;
    A heater for heating the air fed into the first air passage;
    While being disposed on the downstream side of the first air passage and the second air passage, the moisture of the air sent out from the second air passage is absorbed, and the absorbed water is released to the air sent out from the first air passage A desiccant rotor, which is driven to rotate
    A second case forming an exhaust chamber into which air having a higher humidity is introduced, which has been sent from the first air passage to the desiccant rotor and passed therethrough;
    A compression pump that sucks and compresses air from the exhaust chamber;
    The compressor includes a condenser which directly receives compressed air and takes out water;
    The desiccant rotor has two end faces perpendicular to the axis of rotation by the rotational drive,
    The first air passage and the second air passage send air in mutually opposite directions to different areas of the end face different from each other,
    The one end face of the desiccant rotor includes a first region facing the first air passage and a second region facing the second air passage,
    The area of the second area is larger than that of the first area,
    Water generator.
  9.  前記凝縮器は、
     前記圧縮した空気と触れるように配置された複数のフィンと、
     冷媒が流れ、前記フィンと接触する配管と、
     を有する請求項8に記載の水生成装置。
    The condenser is
    A plurality of fins arranged to contact the compressed air;
    Piping in which the refrigerant flows and contacts the fins;
    The water generating device according to claim 8, comprising
  10.  前記第2筐体は、前記第1筐体の前記第1空気路側に固定されている
     請求項8又は請求項9に記載の水生成装置。
    The water generating device according to claim 8, wherein the second housing is fixed to the first air passage side of the first housing.
  11.  前記第1空気路の上流側に空気を送り込む少なくとも1つの第1送風機と、
     前記第2空気路の上流側に空気を送り込む少なくとも1つの第2送風機とを有し、
     前記第1空気路及び前記第2空気路は、前記端面に対してそれぞれ垂直な方向に延びている、
     請求項8~10のいずれかに記載の水生成装置。
    At least one first fan for feeding air upstream of the first air passage;
    And at least one second fan for feeding air upstream of the second air passage,
    The first air passage and the second air passage extend in directions perpendicular to the end face, respectively.
    The water generator according to any one of claims 8 to 10.
  12.  前記第1空気路は前記第2空気路に対して鉛直方向の上方に位置する、
     請求項8~11のいずれかにに記載の水生成装置。
    The first air passage is located vertically above the second air passage,
    A water generator according to any of claims 8-11.
  13.  前記排気室の温度を検出する温度センサと、
     前記温度センサにおいて検出される温度の平均値が所定の温度へ近づくように前記ヒータの発熱を制御する制御回路とを有する、
     請求項8~12のいずれかに記載の水生成装置。
     
     
     
    A temperature sensor for detecting the temperature of the exhaust chamber;
    A control circuit for controlling heat generation of the heater such that an average value of temperatures detected by the temperature sensor approaches a predetermined temperature;
    The water generator according to any one of claims 8 to 12.


PCT/JP2018/030747 2017-08-22 2018-08-21 Water generating device WO2019039446A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-159624 2017-08-22
JP2017159624A JP6334792B1 (en) 2017-08-22 2017-08-22 Water generator
JP2018-100413 2018-05-25
JP2018100413A JP2021006673A (en) 2018-05-25 2018-05-25 Water generating apparatus

Publications (1)

Publication Number Publication Date
WO2019039446A1 true WO2019039446A1 (en) 2019-02-28

Family

ID=65439024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030747 WO2019039446A1 (en) 2017-08-22 2018-08-21 Water generating device

Country Status (1)

Country Link
WO (1) WO2019039446A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029731A (en) * 1999-07-26 2001-02-06 Seibu Giken Co Ltd Air compressor
JP2001179034A (en) * 1999-12-22 2001-07-03 Flair Japan Inc Drying equipment for air or gas
JP2003148845A (en) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd Air heat source type liquefied natural gas vaporizer
JP2009145022A (en) * 2007-12-18 2009-07-02 Daikin Ind Ltd Humidity controller
JP2012120973A (en) * 2010-12-08 2012-06-28 Panasonic Corp Dehumidifier
JP2012170857A (en) * 2011-02-18 2012-09-10 Panasonic Corp Organic solvent gas treatment apparatus and method
WO2015083733A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Dehumidifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029731A (en) * 1999-07-26 2001-02-06 Seibu Giken Co Ltd Air compressor
JP2001179034A (en) * 1999-12-22 2001-07-03 Flair Japan Inc Drying equipment for air or gas
JP2003148845A (en) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd Air heat source type liquefied natural gas vaporizer
JP2009145022A (en) * 2007-12-18 2009-07-02 Daikin Ind Ltd Humidity controller
JP2012120973A (en) * 2010-12-08 2012-06-28 Panasonic Corp Dehumidifier
JP2012170857A (en) * 2011-02-18 2012-09-10 Panasonic Corp Organic solvent gas treatment apparatus and method
WO2015083733A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Dehumidifier

Similar Documents

Publication Publication Date Title
JP6787885B2 (en) Dehumidification system and method
JP2016121529A (en) Ph2ocp-transportable water and climate generation system
JP2010529398A5 (en)
JP6334792B1 (en) Water generator
JP2008111649A (en) Dehumidifying air conditioner
JP4910607B2 (en) Dehumidifier
FI120218B (en) A method and apparatus for increasing the yield of the air drying process
US20170268158A1 (en) Hydronic drying machine
WO2019039446A1 (en) Water generating device
JP5287662B2 (en) Dehumidifier
JP2021006673A (en) Water generating apparatus
TWI825294B (en) Dehumidifier
CN101216200A (en) Supersaturated steam dehumidifying method and runner dehumidifier implementing the method
WO2009087779A1 (en) Dehumidifier
JP2018161630A (en) Dehumidifying device
EP1598601A2 (en) Humidity adjusting apparatus using desiccant
JP2012166163A (en) Dehumidifying apparatus
JP2010274183A (en) Dehumidifier
KR101854650B1 (en) Heat fanless with antibacterial deodorization and air purification function
RU2502023C2 (en) Air drying method and device
CN204532709U (en) A kind of wind power generator cabin dehumidification by condensation device
JP7178283B2 (en) dehumidifier
GB2576515A (en) Desiccant dehumidifier
JP2011161356A (en) Dehumidifier
JP5600889B2 (en) Dehumidifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/07/2020).

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18848907

Country of ref document: EP

Kind code of ref document: A1