JPWO2015079607A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
JPWO2015079607A1
JPWO2015079607A1 JP2015501984A JP2015501984A JPWO2015079607A1 JP WO2015079607 A1 JPWO2015079607 A1 JP WO2015079607A1 JP 2015501984 A JP2015501984 A JP 2015501984A JP 2015501984 A JP2015501984 A JP 2015501984A JP WO2015079607 A1 JPWO2015079607 A1 JP WO2015079607A1
Authority
JP
Japan
Prior art keywords
voltage
capacity
secondary battery
mode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015501984A
Other languages
English (en)
Other versions
JP5971397B2 (ja
Inventor
健介 阿比留
健介 阿比留
央典 尼嵜
央典 尼嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Application granted granted Critical
Publication of JP5971397B2 publication Critical patent/JP5971397B2/ja
Publication of JPWO2015079607A1 publication Critical patent/JPWO2015079607A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Materials Engineering (AREA)

Abstract

二次電池の充放電を制御する制御演算部は、第1の電圧での高容量モード、または第1の電圧よりも低い第2の電圧での長寿命モードを選択設定する動作モード設定部と、二次電池の放電容量を求め、放電容量と満充電容量とから相対残容量を算出する残容量算出部と、残容量算出部での算出結果からサイクル数を算出するサイクル数算出部と、サイクル数に基づいて第1の電圧を低減させ、第1の電圧が第2の電圧に所定の電圧を加算した値以下になったとき、第2の電圧を第1の電圧から所定の電圧を減算した電圧にする充電終止電圧設定部とを有することにより、二次電池の相対残容量を、その動作モードに応じて、更には動作モードが変更されたときでも的確に求めることができる。

Description

本発明は、二次電池の充電時の充電終止電圧を変更することで、二次電池の満充電まで充電容量を高くした高容量モード、または二次電池のサイクル寿命を長くした長寿命モードに選択設定して使用することができ、特にサイクル特性による満充電容量の低下を考慮して充電終止電圧を低下させる場合も、その動作モードに応じた相対残容量を求めるようにした電池パックに関するものである。
二次電池と、この二次電池の充放電制御を司る制御演算部とを備えた電池パックは、ノート型のパーソナルコンピュータ(PC)等の電子機器に装着される電源部として多用されている。ちなみにこれら電子機器に用いられる電池パックにおける二次電池は、例えば電子機器の電源部を介して外部電源(商用電源)により充電され、電子機器が外部電源から取り外されたときには、外部電源に代わって電子機器に電力を供給する役割を担う。
ところで二次電池である、例えばリチウムイオン電池の特性、具体的には充電容量およびサイクル寿命は、図7に示すようにその充電電圧によって大きく変化する。具体的には充電終了を検出するための電圧である充電終止電圧を高くして二次電池(リチウムイオン電池)を充電した場合、図7にAの特性として示すように充電容量を大きくし得るものの、サイクル寿命が短い。その反面、充電終止電圧を低くして二次電池(リチウムイオン電池)を充電した場合、図7にBの特性として示すように充電容量が低下するものの、サイクル寿命が長くなる。
そこでこのような電池特性に着目し、二次電池の充電時における充電終止電圧を切り換えることで、電池パックを高容量モード、または長寿命モードで選択的に使用することが考えられている(例えば特許文献1を参照)。具体的には高容量モードの場合には、二次電池(リチウムイオン電池)に対する充電終止電圧を4.2V/cellに設定し、また長寿命モードの場合には、二次電池(リチウムイオン電池)に対する充電終止電圧を4.0V/cellに設定して、その充電が行われる。
特開2002−78222号公報
ところで上述した電池パックを電子機器に装着して使用する場合、二次電池の残容量を的確に把握することが重要である。ちなみに二次電池の残容量については、一般的には二次電池の満充電状態(満充電容量;FCC)を100%としてその残容量(RC)の割合を求めた、相対残容量(RSOC)として管理することが多い。
そして、上述した高容量モードと長寿命モードとを選択設定して使用される電池パックにおいては、高容量モードが設定された場合、二次電池の規格容量(DC)や満充電容量(FCC)の100%が最大充電容量とし、長寿命モードが設定された場合、二次電池の規格容量(DC)や満充電容量(FCC)の100%以下の割合、例えば、80%が最大充電容量とし使用される。そのため、図8のように、高容量モードでの充電終止電圧は4.2V/cellに設定され、長寿命モードでの充電終止電圧は4.0V/cellに設定される。
しかしながら、高容量モードにおいて、二次電池(リチウムイオン電池)が多くのサイクル数で劣化した後にも充電終止電圧を4.2V/cellで継続した場合、二次電池は過充電となり劣化がより進行することとなる。
本発明はこのような事情を考慮してなされたもので、その目的は、高容量モードまたは長寿命モードに選択設定して使用される二次電池の過充電による劣化を抑制しながら、二次電池の相対残容量を、その動作モード(充電モード)に応じて、更には動作モードが変更されたときでも的確に求めることのできる電池パックを提供することにある。
上述した目的を達成するべく本発明に係る電池パックは、二次電池と、前記二次電池の充放電を制御する制御演算部とを備え、前記制御演算部は、前記二次電池の充電終止電圧を第1の電圧に制限して前記二次電池の満充電容量を高くする高容量モード、または前記充電終止電圧を前記第1の電圧よりも低い第2の電圧に制限して前記二次電池のサイクル寿命を長くする長寿命モードを選択設定する動作モード設定部と、前記二次電池の放電電流と放電時間または放電電流と電池電圧に基づいて前記二次電池の放電容量を求め、前記放電容量と前記二次電池の満充電容量とから前記二次電池の相対残容量を算出する残容量算出部と、前記残容量算出部での算出結果から前記二次電池のサイクル数を算出するサイクル数算出部と、前記サイクル数に基づいて前記第1の電圧を低減させ、前記第1の電圧が前記第2の電圧に所定の電圧を加算した値以下になったとき、前記第2の電圧を前記第1の電圧から所定の電圧を減算した電圧にする充電終止電圧設定部とを有することを特徴としている。
これにより、二次電池のサイクル特性に合った充電終止電圧になるので、二次電池の過充電による劣化を防ぐことができる。
上記構成の電池パックによれば、高容量モードまたは長寿命モードに選択設定して使用される二次電池の過充電による劣化を抑制しながら、二次電池の相対残容量を、その動作モードに応じて、更には動作モードが変更されたときでも的確に求めることのできる電池パックを提供することができる。
本発明の実施の形態に係る電池パックの構成図である。 本発明の実施の形態に係る電池パックにおける二次電池のサイクル数と、高容量モードまたは長寿命モードの充電終止電圧との関係を示す図である。 本発明の実施の形態に係る電池パックの高容量モードまたは長寿命モードにおける容量と相対残容量の変化を示す図である。 本発明の実施の形態に係る電池パックの高容量モードから長寿命モードに切換えたときの相対残容量の変化を示す図である。 本発明の実施の形態に係る電池パックの長寿命モードから高容量モードに切換えたときの相対残容量の変化を示す図である。 本発明の実施の形態に係る他の電池パックにおける二次電池のサイクル数と、高容量モードまたは長寿命モードの充電終止電圧との関係を示す図である。 充電電圧によって変化する二次電池(リチウムイオン電池)の充電容量およびサイクル寿命を示す図である。 従来の電池パックにおける二次電池のサイクル数と、高容量モードまたは長寿命モードの充電終止電圧との関係を示す図である。
以下、図面を参照して本発明の一実施形態に係る電池パックについて説明する。
図1は本発明の実施の形態に係る電池パックの構成図であって、電池パック10は、ノート型のパーソナルコンピュータ(PC)等の電子機器20に着脱自在に装着されるである。電池パック10は、基本的には二次電池(BAT)11と、二次電池11の充放電を制御する制御部12とを備えて構成され、電子機器20に装着して使用される。
具体的には電池パック10における二次電池11は、例えば2600mAh/セル程度のリチウムイオン電池からなる複数の電池セルを2個ずつ並列に接続すると共に、これらの並列接続された電池セルを3段直列に接続した、いわゆる3直2並タイプのものからなる。尚、ここでは3直2並タイプの二次電池11を例に説明するが、電池セルの並列接続数および直列接続段数は、電池仕様として与えられる定格出力電圧および定格出力電流容量に応じて決定すれば良いものである。
電池パック10における二次電池11の充放電路には、その充放電を制御するFET等のスイッチ素子13が直列に介装されると共に、充放電電流を検出する電流検出部14としてシャント抵抗が直列に介挿されている。また電池パック10に設けられた制御部12は、例えばマイクロプロセッサ(MPU)からなり、その主体部を構成する制御・演算部15と、二次電池11の端子電圧、具体的には各段の電池セルの端子電圧(セル電圧)をそれぞれ検出する電圧検出部16、および電子機器20との間で情報通信する通信処理部17とを具備して構成される。
ちなみに制御・演算部15は、サーミスタ等の温度検出素子19にて検出される二次電池11の温度(電池温度)、電圧検出部16にて検出されるセル電圧、および電流検出部14にて検出される充放電電流に基づいて二次電池11の充放電状態を監視する。そして制御・演算部15は、異常な充放電から二次電池11を保護するべくスイッチ素子13をオン・オフ制御すると共に、通信処理部17を介して電子機器20側に制御指令を与えて二次電池11に対する充電電圧や充電電流を制御する役割を担う。
また、電子機器20は、基本的には外部電力(図示せず;商用電源)を受けて電子機器20の本体部である負荷21を駆動すると共に、電池パック10に対して電力を供給して前述した二次電池11を充電する制御・電源部22を備えて構成される。制御・電源部22は、例えば外部電力の供給が途絶えたとき、電池パック10の二次電池11から供給される電力にて負荷21を駆動する役割を担う。制御・電源部22による二次電池11の充電は、二次電池11がリチウムイオン電池である場合には、最大電流(0.5〜4C程度)および最大電圧(約4.2V/cell程度)をそれぞれ規制した定電流・定電圧充電により行われる。
尚、制御・電源部22は、電池パック10における通信処理部17との間で、例えばデータラインSDAおよびクロックラインSCLを介してSMBUS方式にて情報通信する機能を備える。電池パック10の制御部12は上記の情報通信機能を利用して制御・電源部22の作動を制御し、制御・電源部22による二次電池11の充電電圧や充電電流を可変設定する。この制御・電源部22の制御により、二次電池11に対する充電が制御される。
さてマイクロプロセッサにより実現される制御・演算部15は、メモリ18に予め登録されたソフトウェア・プログラムを実行することで、例えば動作モード設定部15a、充放電制御部15b、サイクル数算出部15c、および残容量算出部15dを有している。尚、制御・演算部15は、上述した構成以外にも、例えば二次電池11の、満充電検出部や故障・異常監視部や性能(寿命)判定部等、電池パック10の安全運用に拘わる各種機能を備えるが、ここでは本発明の要旨とは直接関係しないので、その説明については省略する。
動作モード設定部15aは、電池パック10に設けられた図示しないモード切換スイッチの状態を検出して、或いは電子機器20側から通知される動作モードの選択指令を受けて二次電池11の運用動作モードを、例えば高容量モード、または長寿命モードに選択設定する役割を担う。
高容量モードは、二次電池11がリチウムイオン電池である場合、二次電池11の充電終止電圧を満充電容量になる第1の電圧(例えば4.2V/cell)に制限して充電し、二次電池11の充電容量を十分に高くするモードである。また長寿命モードは、二次電池11の充電終止電圧を第1の電圧よりも低い第2の電圧(例えば4.0V/cell)に制限して、満充電付近の充電を避けることで、二次電池11の充電容量を或る程度抑えながら、その繰り返し充放電期間、いわゆるサイクル寿命を長くするモードである。第2の電圧は、過充電にならず、かつ、ある程度の容量を充電するため、3.9〜4.1V/Cellが適している。
ちなみに二次電池11の充電は、前述したように充電電流および充電電圧を制限した、いわゆる定電流・定電圧充電により行われる。具体的にはリチウムイオン電池セルを3直2並列に接続した二次電池11を充電する場合には、例えば最大出力電流が5000mA、最大出力電圧が4.2V/cellの定電流・定電圧電源を用いて定電流・定電圧充電が行われる。上述した第1および第2の電圧は、この定電流・定電圧充電による二次電池11の充電終止電圧を、前述した高容量モードまたは長寿命モードに応じてそれぞれ制限する電圧である。
制御・演算部15における充放電制御部15bは、上述した動作モードに応じた制約条件、具体的にはその充電終止電圧を規制して二次電池11に対する充電を制御し、また最大放電電流を規制して二次電池11の放電を制御する役割を担う。またサイクル数算出部15cは、上記充電制御の下で二次電池11の充電のサイクル数を監視し、例えば二次電池11の放電量を累積した累積放電量を満充電容量で割った値や、二次電池11の残容量が放電不可状態に近い所定の容量以下になった回数で、サイクル数を算出する。尚、ここではサイクル数が累積放電量を満充電容量で割った値であることを例に説明するが、サイクル数は二次電池11の使用頻度が推測できる値であればこれに限るものでない。
また制御・演算部15における残容量算出部15dは、基本的には電流検出部14にて検出される二次電池11の充放電電流値と電圧値の積から求められる電力量(ΔW;単位[AV]または[W])、若しくは充放電電流値とその電流通電時間とから求められる量(ΔI;単位[mAh])を積算して、その充電容量(CC;Charge Capacity)または放電容量(DCC;Discharge Capacity)を算出する。そして二次電池11の満充電容量(FCC;Full Charge Capacity)に対する残容量(RC;Remaining Capacity)の比率を、相対残容量(RSOC;Relative State Of Charge)として算出する役割を担う。
具体的には相対残容量(RSOC)は、充電時には充電容量(CC)を残容量(RC)として用い、放電時にはその満充電容量(FCC)から放電容量(DCC)を減じた容量(FCC−DCC)を残容量(RC)として求めて、数式1で算出される。
(数1)
RSOC=RC/FCC (1)
そしてこの残容量算出部15dにて求められた二次電池11の相対残容量(RSOC)は、前述した通信処理部17を介して電子機器20に通知される。
基本的には上述した如く構成される電池パック10において、本発明が特徴とするところは、前述した動作モードに拘わることなく二次電池11の規格容量(DC;Design Capacity)と満充電容量(FCC)を一元的に管理すると共に、二次電池11の充放電に伴う充電容量(RC)または放電容量(DCC)を一義的に求め、前述した動作モードに応じて二次電池11の相対残容量(RSOC)を算出するようにした点にある。
次に、図2は本発明の実施の形態に係る電池パックにおける二次電池のサイクル数と、高容量モードまたは長寿命モードの充電終止電圧との関係を示す図である。横軸は二次電池11のサイクル数(回)で、縦軸は高容量モードまたは長寿命モードの充電終止電圧(V/Cell)である。そして、高容量モードを実線で、長寿命モードを破線で示している。
高容量モードでは、図2のように二次電池11の使用状態が初期のときは充電終止電圧を第1の電圧(4.2V/cell)と設定して、充電を行う。そして、二次電池11のサイクル数の増加に伴って、充電終止電圧を第1の電圧(例えば、4.2V/cell)から徐々に低減する制御を行う。これにより、二次電池11のサイクル数が多くなって劣化した後に過充電による更なる劣化を防ぐことができる。
長寿命モードでは、図2のように二次電池11のサイクル数が少ない間は二次電池11の容量が規格容量の所定割合(例えば80%)になるように、充電終止電圧を第1の電圧(4.2V/cell)より低い第2の電圧(例えば、4.0V/cell)で充電する。これにより、二次電池11はある程度の容量を確保することができると共に、二次電池11を満充電付近まで充電していないので、図7のように高容量モードより長寿命で使用することができる。
そして、二次電池11のサイクル数が増加すると、高容量モードでの相対残容量100%となる容量が二次電池11の規格容量の所定割合(例えば80%)に近づいていき、図2のように充電終止電圧も第1の電圧が第2の電圧に近づいていく。そして、例えば高容量モードの容量が規格容量の85%になると、長寿命モードの充電終止電圧を図2のように高容量モードと同様にサイクル数の増加に伴って徐々に減少させる制御を行う。
さらに詳細に述べると、二次電池11のサイクル数が増加すると、図2のように高容量モードでの充電終止電圧である第1の電圧が長寿命モードの充電終止電圧である第2の電圧(例えば、4.0V/cell)に近づいていく。そして、高容量モードの充電終止電圧と長寿命モードの充電終止電圧との差が所定電圧、例えば0.065V以下になると、長寿命モードの充電終止電圧を図2のように高容量モードと同様にサイクル数の増加に伴って徐々に減少させる制御を行う。例えば、高容量モードの充電終止電圧と長寿命モードの充電終止電圧との差を所定電圧、例えば0.065Vとして、図2のように平行に減少させる。
また、サイクル数が所定回数、例えば、1000サイクル以上で電池パックの交換が近い状態になると、高容量モードの充電終止電圧である第1の電圧を例えば、3.9V/cellに固定し、それ以降にサイクル数が増えても充電終止電圧を3.9V/cellのまま維持する。
これにより、高容量モードと長寿命モードの充電終止電圧の逆転を防ぐとともに、長寿命モードは、満充電付近まで充電しないので、二次電池11の劣化後も長寿命で使用することができる。
次に、図3は本発明の実施の形態に係る電池パックの高容量モードまたは長寿命モードにおける容量と相対残容量の変化を示す図である。横軸は二次電池11の規格容量(初期のFCC)に対するサイクル経過後の残容量(RC)の割合(RC/FCCint)(%)で、縦軸は高容量モードまたは長寿命モードのサイクル経過後の相対残容量(%)である。そして、高容量モードを実線で、長寿命モードを破線で示している。
図3は、二次電池11の初期状態(点A)と、サイクル数が経過して二次電池が劣化した3つの状態(点B、C、D)における高容量モード及び長寿命モードの容量と相対残容量の関係を示している。二次電池11の満充電容量で説明すると、満充電容量が規格容量の100%、85%、80%、65%の4つのタイミングを高容量モードでは0点と点A〜Dを結ぶ実線で、長寿命モードでは0点と点a〜bを結ぶ破線で示している。また、これらのタイミングは、図2においても同じ符号(点A〜D及び点a〜b)で示している。高容量モードの相対残容量(RSOCHC)は0〜100%の間を変動し、長寿命モードの相対残容量(RSOCLL)は0〜80%の間を変動する。数式2となる。
(数2)
0% ≦ RSOCHC ≦ 100% (2)
0% ≦ RSOCLL ≦ 80%
各々のタイミングについて図3で説明する。
二次電池11の初期状態である図3の点A及び点aにおいて、高容量モードの相対残容量(RSOCHC)と長寿命モードの相対残容量(RSOCLL)は二次電池11の規格容量と残容量の割合(RC/FCCint)と同じ値とする。
(数3)
RSOCHC = RSOCLL = RC/FCCint (3)
次に、サイクル数が進んで二次電池11の劣化が進むに従い、高容量モードにおいて矢印1のように二次電池11の満充電容量を徐々に低下させていく。例えば、二次電池11の容量が規格容量の85%になった状態である図3の点B及び点bにおいて、高容量モードの相対残容量(RSOCHC)の85%が二次電池11の規格容量と残容量の割合(RC/FCCint)となる。また、長寿命モードは図2のように充電終止電圧が二次電池11の初期状態と同じ4.0Vのままであるので、相対残容量(RSOCLL)は二次電池11の初期状態と同じで二次電池11の規格容量と残容量の割合(RC/FCCint)と同じ値とする。
(数4)
RSOCHC × 0.85 = RSOCLL = RC/FCCint (4)
上記の二つのタイミングから、二次電池11の初期状態から容量が規格容量の80%付近(例えば83%)までは、高容量モードの相対残容量と長寿命モードの相対残容量は異なる計算式で求められることとなる(xは係数である)。
(数5)
RSOCHC × x = RSOCLL = RC/FCCint (5)
0.80 < x ≦ 1.0
そして、二次電池11の劣化が更に進み矢印2のように、二次電池の高容量モードの満充電容量が長寿命モードの80%容量との差が所定値以下になると、図2のように長寿命モードの充電終止電圧を高容量モードと同様に低減させていく。例えば、二次電池11の容量が規格容量の80%になった劣化状態である図3の点C及び点cにおいて、高容量モードの相対残容量(RSOCHC)の80%が二次電池11の規格容量と残容量の割合(RC/FCCint)となる。また、長寿命モードの相対残容量(RSOCLL)の75/80(=94)%が二次電池11の規格容量と残容量の割合(RC/FCCint)となる。
(数6)
RSOCHC × 0.80 = RSOCLL × 0.94 = RC/FCCint (6)
さらに、二次電池11の劣化が矢印3のように進んだ場合、例えば、二次電池11の容量が規格容量の65%になった状態である図3の点D及び点dにおいて、高容量モードの相対残容量(RSOCHC)の65%が二次電池11の規格容量と残容量の割合(RC/FCCint)となる。また、長寿命モードの相対残容量(RSOCLL)の62/80(=78)%が二次電池11の規格容量と残容量の割合(RC/FCCint)となる。
(数7)
RSOCHC × 0.65 = RSOCLL × 0.78 = RC/FCCint (7)
つまり、二次電池11の容量が規格容量の80%付近(例えば85%)より小さいときは、高容量モードの相対残容量と長寿命モードの相対残容量は以下の計算式で求められることとなる(y、zは係数である)。
(数8)
RSOCHC × y = RSOCLL × z = RC/FCCint (8)
y < 0.85
z < 1.0
最後に、長寿命モードと高容量モードの動作モードの切換えによる相対残容量について説明する。
動作モードの切換えを放電中及び充電中に行った場合、残容量算出部15dは切換前の動作モードの二次電池11の規格容量と残容量の割合に対する相対残容量の特性に従って相対残容量を算出する。そして、充電で切換後の動作モードの充電終止電圧になった後、残容量算出部15dは切換後の動作モードの二次電池11の規格容量と残容量の割合に対する相対残容量の特性に従って相対残容量を算出する。
動作モードの切換直後の相対残容量の変化について、図3の点Cのタイミングで動作モードを切換えた場合を例にして説明する。図4は、本発明の実施の形態に係る電池パックの高容量モードから長寿命モードに切換えたときの相対残容量の変化を示す図で、図5は、本発明の実施の形態に係る電池パックの長寿命モードから高容量モードに切換えたときの相対残容量の変化を示す図である。
図4は黒丸の位置で高容量モードから長寿命モードに切換られ、充電を実施している場合を示している。動作モードの切換直後は、切換前の高容量モードの二次電池11の規格容量と残容量の割合に対する相対残容量の特性に従うので、点線矢印のように0点とC点を結ぶ直線に沿って、相対残容量が増加する。そして、相対残容量が80%になったとき、点線矢印が横軸方向に曲がるように相対残容量は切換後の長寿命モードの相対残容量の最大値である80%を充電終止電圧になるまで維持し、充電を終了させる。或いは、相対残容量を79%で維持し、充電終止電圧になった後に、相対残容量を80%に変化させ、充電を終了させるとしてもよい。
残容量算出部15dは、図4のc点である充電終止電圧になった時点で、二次電池11の規格容量と残容量の割合に対する相対残容量を80%と設定する。そして、次に動作モードが切換えられるまで、残容量算出部15dは充放電による二次電池11の規格容量と残容量の割合に対する相対残容量の特性は0点とc点を結ぶ直線に沿って算出する。
図5は黒丸の位置で長寿命モードから高容量モードに切換えられ、充電を実施している場合を示している。動作モードの切換直後は、切換前の長寿命モードの二次電池11の規格容量と残容量の割合に対する相対残容量の特性に従うので、点線矢印のように0点とc点を結ぶ直線に沿って、相対残容量が変化する。そして、相対残容量が80%になった後も0点とc点を結ぶ直線の延長線上で相対残容量が増加する。そして、充電終止電圧になった後に、相対残容量を100%に急上昇させ、充電を終了させる。
残容量算出部15dは、図5のC点である充電終止電圧になった時点での二次電池11の規格容量と残容量の割合に対する相対残容量を100%と設定する。そして、次に動作モードが切換えられるまで、残容量算出部15dは充放電による二次電池11の規格容量と残容量の割合に対する相対残容量の特性は0点とC点を結ぶ直線に沿って算出する。
これらにより、動作モードを高容量モードから長寿命モードへ、或いは、長寿命モードから高容量モードへ切換えたとしても、切換直後の1回の満充電付近のみ相対残容量が80%で維持したり、80%付近から100%に急上昇したりすることになるが、充電状態に注意が必要な残容量が少ないタイミングなどでは、相対残容量を的確に表示することができる。
図3の点Cのタイミングを例に説明したが、点B、C、Dやその他のタイミングで高容量モードと長寿命モードの特性が異なるタイミングでは、動作モードを切換えるときは同様の処理を行う。
かかる構成によれば、高容量モードまたは長寿命モードに選択設定して使用される二次電池の過充電による劣化を抑制しながら、二次電池の相対残容量を、その動作モードに応じて、更には動作モードが変更されたときでも的確に求めることのできる電池パックを提供することができる。
なお、本実施の形態において、図2のように充電終止電圧をサイクル数に対して直線的に低減するとしたが、曲線状に低減するとしてもよい。または、階段状に低減するとしてもよい。または、使用する電池の特性に合わせて、初期、中期、末期と異なる直線や曲線で充電終止電圧を低減するとしてもよい。特に、図6のように初期から100〜200サイクルまでに充電終止電圧を大きく低減することで、それ以降の二次電池の劣化を抑制することができる。
なお、本実施の形態において、図2のように充電終止電圧をサイクル数に対して低減するとしたが、充電終止電圧を経過日数に対して低減するとしてもよい。その場合は、電子機器から入力される日数情報に従い充電終止電圧を低減させる。または、使用前半は充電終止電圧をサイクル数に対して低減し、使用後半は充電終止電圧を使用日数に対して低減するとしてもよい。そうすることで、使用前半は二次電池のサイクル数で使用された頻度による劣化に対応することができ、使用後半は実施の有無にかかわらず経年変化の劣化に対応することができる。
なお、本実施の形態において、初期の二次電池における高容量モードの第1の電圧を二次電池が最大の満充電容量になる4.2V/cellとしたが、第1の電圧を第2の電圧より高い4.05〜4.19V/cellとして、満充電容量を二次電池の最大の満充電容量の85〜99%としてもよい。そうすることで、高容量モードでも満充電付近で充電を行っていないので劣化を低減することができる。
本発明にかかる電池パックは、高容量モードまたは長寿命モードに選択設定して使用される二次電池の過充電による劣化を抑制しながら、二次電池の相対残容量を、その動作モードに応じて、更には動作モードが変更されたときでも的確に求めることのできるので、動作モードを切換る電池パックや電池システム等として有用である。
10 電池パック
11 二次電池
12 制御部
13 スイッチ素子
14 電流検出部
15 制御・演算部
15a 動作モード設定部
15b 充放電制御部
15c サイクル数算出部
15d 残容量算出部
16 電圧検出部
17 通信処理部
18 メモリ
19 温度検出素子
20 電子機器
21 負荷
22 制御・電源部
上述した目的を達成するべく本発明に係る電池パックは、二次電池と、前記二次電池の充放電を制御する制御演算部とを備え、前記制御演算部は、前記二次電池の充電終止電圧を第1の電圧に制限して前記二次電池の満充電容量を高くする高容量モード、または前記充電終止電圧を前記第1の電圧よりも低い第2の電圧に制限して前記二次電池のサイクル寿命を長くする長寿命モードを選択設定する動作モード設定部と、前記二次電池の放電電流と放電時間または放電電流と電池電圧に基づいて前記二次電池の放電容量を求め、前記放電容量と前記二次電池の満充電容量とから前記二次電池の相対残容量を算出する残容量算出部と、前記残容量算出部での算出結果から前記二次電池のサイクル数を算出するサイクル数算出部と、前記サイクル数に基づいて前記第1の電圧を低減させ、前記第1の電圧が前記第2の電圧に所定の電圧を加算した値以下になったとき、前記第2の電圧を前記第1の電圧から前記所定の電圧を減算した電圧にする充電終止電圧設定部とを有することを特徴としている。

Claims (7)

  1. 二次電池と、
    前記二次電池の充放電を制御する制御演算部とを備え、
    前記制御演算部は、
    前記二次電池の充電終止電圧を第1の電圧に制限して前記二次電池の満充電容量を高くする高容量モード、または前記充電終止電圧を前記第1の電圧よりも低い第2の電圧に制限して前記二次電池のサイクル寿命を長くする長寿命モードを選択設定する動作モード設定部と、
    前記二次電池の放電電流と放電時間または放電電流と電池電圧に基づいて前記二次電池の残容量を求め、前記残容量と前記二次電池の満充電容量とから前記二次電池の相対残容量を算出する残容量算出部と、
    前記残容量算出部での算出結果から前記二次電池のサイクル数を算出するサイクル数算出部と、
    前記サイクル数に基づいて前記第1の電圧を低減させ、前記第1の電圧が前記第2の電圧に所定の電圧を加算した値以下になったとき、前記第2の電圧を前記第1の電圧から所定の電圧を減算した電圧にする充電終止電圧設定部とを有することを特徴とする電池パック。
  2. 前記残容量算出部は、
    前記高容量モードが設定されたときには、前記二次電池の規格容量または充電終止電圧での充電容量を満充電容量として用い、
    前記長寿命モードが設定されたときで前記第1の電圧が前記第2の電圧に所定の電圧を加算した値より大きいときには、前記規格容量に100%以下の所定の係数を乗じた容量を前記長寿命モードでの最大充電容量として用い、
    前記長寿命モードが設定されたときで前記第1の電圧が前記第2の電圧に所定の電圧を加算した値以下のときには、前記第2の電圧での充電容量を前記長寿命モードでの最大充電容量として用いる請求項1に記載の電池パック。
  3. 前記残容量算出部は、
    動作モードが変更された直後は、変更前の動作モードにおける算出方法で相対残容量を算出し、充電で変更後の動作モードの充電終止電圧になった後、切換後の動作モードにおける算出方法で相対残容量を算出する請求項2に記載の電池パック。
  4. 前記残容量算出部は、
    動作モードが前記高容量モードから前記長寿命モードに変更された後の最初の満充電付近の充電において、最大値を前記所定の係数に制限して前記相対残容量を求める請求項3に記載の電池パック。
  5. 前記残容量算出部は、
    動作モードが前記長寿命モードから前記高容量モードに変更された後の最初の満充電付近の充電において、前記充電終止電圧になったとき前記相対残容量を100%に変更する請求項3に記載の電池パック。
  6. 前記残容量算出部は、
    前記高容量モードにおいて、前記満充電容量を相対残容量100%とし、
    前記長寿命モードにおいて、前記最大充電容量を相対残容量が前記所定の係数とする請求項2に記載の電池パック。
  7. 前記二次電池は、リチウムイオン電池であって、
    前記二次電池の使用状態が初期のときに、前記高容量モードでの充電終止電圧を規制する前記第1の電圧は4.2V/cellとして設定され、前記長寿命モードでの充電終止電圧を規制する前記第2の電圧は3.9〜4.1V/cellとして設定される請求項1に記載の電池パック。
JP2015501984A 2013-11-29 2014-09-08 電池パック Active JP5971397B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013247138 2013-11-29
JP2013247138 2013-11-29
PCT/JP2014/004592 WO2015079607A1 (ja) 2013-11-29 2014-09-08 電池パック

Publications (2)

Publication Number Publication Date
JP5971397B2 JP5971397B2 (ja) 2016-08-17
JPWO2015079607A1 true JPWO2015079607A1 (ja) 2017-03-16

Family

ID=53198587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015501984A Active JP5971397B2 (ja) 2013-11-29 2014-09-08 電池パック

Country Status (4)

Country Link
US (1) US9780592B2 (ja)
JP (1) JP5971397B2 (ja)
CN (1) CN104813560B (ja)
WO (1) WO2015079607A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051722A1 (ja) * 2014-09-29 2017-07-13 日本電気株式会社 蓄電装置、制御装置、蓄電システム、蓄電装置の制御方法および制御プログラム
CN104734281B (zh) * 2015-01-28 2019-04-16 惠州Tcl移动通信有限公司 可穿戴移动电源及其供电控制方法
JP6536466B2 (ja) * 2016-04-27 2019-07-03 株式会社オートネットワーク技術研究所 電源装置
KR102503430B1 (ko) * 2017-10-26 2023-02-28 삼성전자주식회사 배터리를 포함하는 전자 장치
US10666077B1 (en) * 2017-11-01 2020-05-26 Amazon Technologies, Inc. Remote configuration of battery charging settings
KR102103454B1 (ko) 2018-07-18 2020-04-23 삼화콘덴서공업 주식회사 하이브리드 어셈블리 구조를 가지는 배터리 커패시터
CN109586359A (zh) * 2018-11-09 2019-04-05 金龙联合汽车工业(苏州)有限公司 电池过充预警方法和装置
CN111416398B (zh) * 2019-01-08 2023-11-14 太普动力新能源(常熟)股份有限公司 可充电电池的相对荷电状态的修正方法
CN112542861B (zh) * 2019-09-23 2023-05-30 北京小米移动软件有限公司 一种电池充电方法、装置及介质
US11662391B1 (en) * 2020-10-19 2023-05-30 Amazon Technologies, Inc. Dynamic adjustments to battery parameters using battery metrics

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161215B2 (ja) * 1994-03-15 2001-04-25 日産自動車株式会社 2次電池の充放電制御装置
JP2001309568A (ja) 2000-04-26 2001-11-02 Internatl Business Mach Corp <Ibm> 充電システム、充電制御装置、充電制御方法及びコンピュータ
JP2002078222A (ja) * 2000-08-31 2002-03-15 Sanyo Electric Co Ltd リチウムイオン二次電池の充電回路とパック電池
JP4019734B2 (ja) * 2001-03-28 2007-12-12 株式会社ジーエス・ユアサコーポレーション 二次電池の運用方法及び二次電池装置
CN100438204C (zh) * 2002-12-05 2008-11-26 松下电器产业株式会社 电池组及其充放电方法
JP4144568B2 (ja) * 2004-06-04 2008-09-03 ソニー株式会社 バッテリ残量検出システム、電子機器及びバッテリパック
CN101388562B (zh) * 2008-07-10 2010-10-13 广州丰江电池新技术有限公司 快速充电方法
JP5512250B2 (ja) 2009-12-09 2014-06-04 三洋電機株式会社 パック電池
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device
CN104145398B (zh) * 2012-02-29 2017-04-05 Nec能源元器件株式会社 电池控制系统、电池组、电子设备

Also Published As

Publication number Publication date
CN104813560A (zh) 2015-07-29
WO2015079607A1 (ja) 2015-06-04
US20160197506A1 (en) 2016-07-07
JP5971397B2 (ja) 2016-08-17
US9780592B2 (en) 2017-10-03
CN104813560B (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5971397B2 (ja) 電池パック
JP5512250B2 (ja) パック電池
JP4966998B2 (ja) 充電制御回路、電池パック、及び充電システム
JP5638779B2 (ja) 二次電池の特性検出方法および二次電池装置
US10505477B2 (en) Load drive current control method and system
JP5119307B2 (ja) バッテリーパックの充電制御方法
JP4691140B2 (ja) 充放電システムおよび携帯式コンピュータ
JP5091634B2 (ja) 電池パック、及び充電システム
JP2011015481A (ja) 充電制御方法、充電制御装置およびパック電池
JP2015144562A (ja) 二次電池の充電方法、充電制御装置及びパック電池
JP5410248B2 (ja) 二次電池の寿命期間を保証する充電システム
KR102160272B1 (ko) 배터리 관리 장치 및 이를 이용한 lfp 셀의 과전압 보호 방법
JP5361353B2 (ja) 二次電池の充電制御方法および充電制御装置
JP2008206259A (ja) 充電システム、充電装置、及び電池パック
JP2011053088A (ja) 二次電池の残容量演算方法および二次電池装置
JP2011004509A5 (ja)
JP2004357481A (ja) 複数のバッテリを充電する方法と放電する方法
WO2013008409A1 (ja) 電池パックの製造方法および電池パック
JP2009225632A (ja) 充電制御回路、電池パック、及び充電システム
CN111106400B (zh) 一种电池控制方法和电池管理设备
JP4796784B2 (ja) 2次電池の充電方法
JP6824295B2 (ja) 電気機器
JP2011038878A (ja) 二次電池の劣化度判定方法および二次電池装置
JP5165405B2 (ja) 充電制御回路、電池パック、及び充電システム
JP5489779B2 (ja) リチウムイオン組電池の充電システムおよび充電方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R151 Written notification of patent or utility model registration

Ref document number: 5971397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250