JPWO2015076283A1 - Fiber reinforced thermoplastic resin sheet - Google Patents

Fiber reinforced thermoplastic resin sheet Download PDF

Info

Publication number
JPWO2015076283A1
JPWO2015076283A1 JP2014561612A JP2014561612A JPWO2015076283A1 JP WO2015076283 A1 JPWO2015076283 A1 JP WO2015076283A1 JP 2014561612 A JP2014561612 A JP 2014561612A JP 2014561612 A JP2014561612 A JP 2014561612A JP WO2015076283 A1 JPWO2015076283 A1 JP WO2015076283A1
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
resin sheet
reinforced thermoplastic
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014561612A
Other languages
Japanese (ja)
Inventor
森脇 敦史
敦史 森脇
真信 晝田
真信 晝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2015076283A1 publication Critical patent/JPWO2015076283A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明の繊維強化熱可塑性樹脂シートは、強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂シートであって、破断エネルギー量の値が、特定の条件を満たす繊維強化熱可塑性樹脂シートであり、高い樹脂含浸性と破断エネルギーを有する、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートである。この時、強化繊維と熱可塑性樹脂との質量比が、85/15〜40/60である事が好ましく、強化繊維がガラス繊維、若しくはカーボン繊維である事が好ましい。The fiber reinforced thermoplastic resin sheet of the present invention is a fiber reinforced thermoplastic resin sheet containing reinforced fibers and a thermoplastic resin, and is a fiber reinforced thermoplastic resin sheet whose breaking energy value satisfies a specific condition. It is a fiber-reinforced thermoplastic resin sheet having high resin impregnation property and breaking energy, and less physical property variation due to orientation. At this time, the mass ratio between the reinforcing fiber and the thermoplastic resin is preferably 85/15 to 40/60, and the reinforcing fiber is preferably glass fiber or carbon fiber.

Description

本発明は繊維強化熱可塑性樹脂シートに関する。より詳細には、強化繊維と熱可塑性樹脂との密着度が高く、ボイドが少なく、シートが破断する際のエネルギー吸収量が大きく、衝撃吸収部材用材料として好適な繊維強化熱可塑性樹脂シートに関する。  The present invention relates to a fiber reinforced thermoplastic resin sheet. More specifically, the present invention relates to a fiber reinforced thermoplastic resin sheet that has a high degree of adhesion between a reinforced fiber and a thermoplastic resin, has few voids, and has a large energy absorption amount when the sheet breaks, and is suitable as a material for an impact absorbing member.

近年、繊維強化熱可塑性樹脂シートが成形用中間体として、または成形品として幅広く用いられている。特に、成形用中間体はスタンパブルシートと呼ばれ、例えば、所定の形状に切断され、遠赤外線加熱などにより熱可塑性樹脂の軟化点または融点付近或いはそれ以上の温度まで加熱され、所定の温度の金型に配置され、そして加圧および冷却固化されて最終成形品に成形される。  In recent years, fiber reinforced thermoplastic resin sheets have been widely used as molding intermediates or molded articles. In particular, the molding intermediate is called a stampable sheet, and is cut into a predetermined shape, for example, heated to a temperature near or above the softening point or the melting point of a thermoplastic resin by far-infrared heating, etc. It is placed in a mold and pressed and cooled and solidified to form a final molded product.

このような成形用中間体は、一般に、強化繊維(例えば、ガラス繊維、炭素繊維)のマット状物(例えば、チョップトストランドマット)または引き揃え品などに、熱可塑性樹脂の粉体、フィルムまたはシートを、少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度で溶融含浸させて製造される。  Such a molding intermediate is generally used as a thermoplastic resin powder, a film, or a reinforced fiber (eg, glass fiber, carbon fiber) mat (eg, chopped strand mat) or assorted product. The sheet is produced by melt impregnation at a temperature higher than at least the softening point or melting point of the thermoplastic resin.

この成形用中間体の従来の製造方法としては、例えば、次のような方法が挙げられる。  Examples of conventional methods for producing this molding intermediate include the following methods.

A.プレス成形:
プレスへの取り付けの嵌合精度に優れ、加熱および冷却装置を有する金型を、熱媒により少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度に加熱する。この金型に、強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを配置し、加熱および加圧により溶融含浸させる。次いで、金型を冷媒により冷却し、溶融樹脂を加圧および冷却固化して繊維強化熱可塑性樹脂シートを得る。
A. Press molding:
A mold having excellent fitting accuracy for attachment to the press and having a heating and cooling device is heated to a temperature higher than at least the softening point or melting point of the thermoplastic resin by a heating medium. A reinforcing fiber and a thermoplastic resin sheet or thermoplastic resin powder are placed in this mold and melt impregnated by heating and pressing. Next, the mold is cooled with a refrigerant, and the molten resin is pressurized and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet.

B.金型搬送冷却成形:
加熱および/または冷却可能な一対のプレスに取り付けた嵌合精度に優れる金型を用いる。先ず、この金型を一方のプレスに取り付け、少なくとも熱可塑性樹脂の軟化点または融点よりも高い温度に加熱した後に、この金型に強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを配置し、加熱および加圧により溶融含浸させる。次いで、強化繊維と溶融樹脂とを配置したままの金型を、他方のプレスに移し、溶融樹脂を加圧および冷却固化して繊維強化熱可塑性樹脂シートを得る。
B. Mold transfer cooling molding:
A die having excellent fitting accuracy attached to a pair of presses that can be heated and / or cooled is used. First, the mold is attached to one press and heated at least to a temperature higher than the softening point or melting point of the thermoplastic resin, and then the reinforcing fiber and the thermoplastic resin sheet or thermoplastic resin powder are placed in the mold. And melt impregnation by heating and pressing. Next, the mold in which the reinforcing fibers and the molten resin are arranged is transferred to the other press, and the molten resin is pressurized and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet.

C.ダブルベルトプレス成形:
無端ベルトと加熱および/または冷却を行う補助装置とを有するダブルベルトプレス装置と呼ばれる装置を用いる。強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とをダブルベルトプレス装置に配置し、加熱および加圧により溶融含浸させ、そして連続して加圧および冷却固化して、繊維強化熱可塑性樹脂シートを得る。
C. Double belt press molding:
A device called a double belt press device having an endless belt and an auxiliary device for heating and / or cooling is used. The reinforcing fiber and the thermoplastic resin sheet or thermoplastic resin powder are placed in a double belt press machine, melt impregnated by heating and pressing, and continuously pressed and cooled and solidified to obtain a fiber-reinforced thermoplastic resin sheet. obtain.

D.ロール成形:
少なくとも一対の加熱ロールと、少なくとも一対の冷却ロールとを有する装置を用いる。強化繊維と熱可塑性樹脂シートまたは熱可塑性樹脂粉末とを、加熱ロールで加熱および加圧することにより溶融含浸させ、次いで、冷却ロールで加圧および冷却固化して、繊維強化熱可塑性樹脂シートを得る。
D. Roll forming:
An apparatus having at least a pair of heating rolls and at least a pair of cooling rolls is used. The reinforcing fiber and the thermoplastic resin sheet or the thermoplastic resin powder are melted and impregnated by heating and pressurizing with a heating roll, and then pressurized and cooled and solidified with a cooling roll to obtain a fiber-reinforced thermoplastic resin sheet.

Aのプレス成形、Bの金型搬送冷却成形では、強化繊維と熱可塑性樹脂との密着度が高く、ボイドが少ない、優れた物性を有する熱可塑性樹脂シートを得る事が出来る。しかし、生産効率が非常に悪い欠点がある。また、Cのダブルベルトプレス成形、Dのロール成形の生産効率は非常に高いが、強化繊維と熱可塑性樹脂との密着度が低く、所々にボイドが残った物が得られ易い欠点がある。ボイドが残ると破壊の基点に成り易く、少しの変形量でも剥離破壊を起こし、物性バラツキは大きくなり、衝撃吸収部材の様なエネルギー吸収性能を必要とする物には使用しにくい問題があった。
この様に、何れの方法も一長一短があり、効率良く、強化繊維と熱可塑性樹脂との密着度が高く、ボイドが少ない熱可塑性樹脂シートは得られていなかった。
In the press molding of A and the mold conveyance cooling molding of B, it is possible to obtain a thermoplastic resin sheet having excellent physical properties with high adhesion between the reinforcing fiber and the thermoplastic resin and few voids. However, there is a drawback that the production efficiency is very bad. Further, although the production efficiency of the double belt press molding of C and the roll molding of D is very high, the adhesion between the reinforcing fiber and the thermoplastic resin is low, and there is a drawback that it is easy to obtain a product in which voids remain in some places. If voids remain, they tend to become the starting point of destruction, even if a small amount of deformation occurs, peeling damage occurs, the physical property variation becomes large, and there is a problem that it is difficult to use for materials that require energy absorption performance such as shock absorbing members .
As described above, each method has advantages and disadvantages, and a thermoplastic resin sheet having high efficiency, high adhesion between the reinforcing fiber and the thermoplastic resin, and few voids has not been obtained.

この状況を鑑み、予め強化繊維を開繊させ、熱可塑性樹脂を予備含浸した後、任意の長さにカットしたテープを無方向(ランダム)に積層し、耐熱性離型シートで覆い、熱可塑性樹脂の軟化点または融点よりも高い温度に加熱したプレス機にて十分エアーを排出させた後、冷却金型へ搬送し冷却プレスを行う耐熱性離型シートを用いたプレス成形法が提案されている。例えば、特許文献1、2には、流動性と樹脂含浸性の良い材料が提案されているが、何れも衝撃吸収部材用材料として好適な範囲を規定したものでは無かった。  In view of this situation, after reinforcing fibers are pre-opened and pre-impregnated with a thermoplastic resin, tapes cut to any length are laminated in a non-direction (random), covered with a heat-resistant release sheet, and thermoplastic A press molding method using a heat-resistant release sheet has been proposed in which air is sufficiently discharged by a press machine heated to a temperature higher than the softening point or melting point of the resin, and then conveyed to a cooling mold and subjected to a cooling press. Yes. For example, Patent Documents 1 and 2 propose materials having good fluidity and resin impregnation properties, but none of them defines a suitable range as a material for an impact absorbing member.

特許2885038号公報Japanese Patent No. 2885038 特許2877052号公報Japanese Patent No. 2877052

本発明は、高い樹脂含浸性と破断エネルギーを有する、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートを提供する事を目的とする。  An object of the present invention is to provide a fiber-reinforced thermoplastic resin sheet having high resin impregnation property and breaking energy, and having little property variation due to orientation.

本発明者らは、鋭意検討を行った結果、以下の構成のシートとする事によって、高い樹脂含浸性と破断エネルギーを有する、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートを提供できる事を見出し本発明に至った。本発明の繊維強化熱可塑性樹脂シートは、主に耐熱性離型シートを使用したプレス方法をベースに条件を鋭意検討する事によって得られるものであるが、従来の技術では検討されていなかった、衝撃吸収部材用材料として好適な、方向性が無く、高い衝撃吸収性能と成形性を有する繊維強化熱可塑性樹脂シートを提供するものである。  As a result of intensive studies, the present inventors can provide a fiber-reinforced thermoplastic resin sheet having high resin impregnation property and breaking energy and less physical property variation due to directionality by using a sheet having the following configuration. We found out and came to the present invention. The fiber-reinforced thermoplastic resin sheet of the present invention is obtained by earnestly examining the conditions mainly based on a press method using a heat-resistant release sheet, but has not been studied in the prior art. The present invention provides a fiber reinforced thermoplastic resin sheet that is suitable as a material for an impact absorbing member, has no directionality, and has high impact absorbing performance and moldability.

即ち本発明の繊維強化熱可塑性樹脂シートは、以下の構成を有する。
[1] 強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂シートであって、破断エネルギー量の値が、下記(1)及び(2)を満たす事を特徴とする繊維強化熱可塑性樹脂シート。
(1)E、E45、及びE90がいずれも4J以上
(2)E/E、E45/E、及びE90/Eがいずれも0.85〜1.15の範囲
(ここで、E、E45、及びE90は、シート面内において、任意の方向を0°とした時のそれぞれ、0°の方向の破断エネルギー量、45°の方向の破断エネルギー量、及び90°の方向の破断エネルギー量であり、Eは、E、E45、E90の平均値である。)
[2] 強化繊維と熱可塑性樹脂との質量比(強化繊維/熱可塑性樹脂)が、85/15〜40/60である事を特徴とする[1]に記載の繊維強化熱可塑性樹脂シート。
[3] 前記強化繊維がガラス繊維、若しくはカーボン繊維である事を特徴とする[1]または[2]に記載の繊維強化熱可塑性樹脂シート。
[4] 前記熱可塑性樹脂がポリオレフィン系樹脂、若しくはポリアミド系樹脂である事を特徴とする[1]〜[3]のいずれかに記載の繊維強化熱可塑性樹脂シート。
[5] 前記繊維強化熱可塑性樹脂シートが、長さ5mm〜100mm、幅5mm〜60mm、厚み0.05mm〜0.3mmの薄膜片のテープをランダムに分散積層し、熱圧着されている事を特徴とする[1]〜[4]のいずれかに記載の繊維強化熱可塑性樹脂シート。
[6] 前記強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂シートのJIS
K 7017:1999で求められる破断時のたわみの値が、3mm以上である事を特徴とする[1]〜[5]のいずれかに記載の繊維強化熱可塑性樹脂シート。
[7] 前記繊維強化熱可塑性樹脂シート内に存在する空気層の割合が、3%以下である事を特徴とする[1]〜[6]のいずれかに記載の繊維強化熱可塑性樹脂シート。
That is, the fiber-reinforced thermoplastic resin sheet of the present invention has the following configuration.
[1] A fiber reinforced thermoplastic resin containing a reinforced fiber and a thermoplastic resin, wherein the value of breaking energy satisfies the following (1) and (2): Sheet.
(1) E 0, E 45 , and E 90 are both 4J more (2) E 0 / E A , the range of E 45 / E A, and E 90 / E both A is 0.85 to 1.15 (Here, E 0 , E 45 , and E 90 are the amount of rupture energy in the direction of 0 °, the amount of rupture energy in the direction of 45 °, respectively, when an arbitrary direction is set to 0 ° in the sheet surface, and a breaking energy amount in the direction of 90 °, E a is the average value of E 0, E 45, E 90 .)
[2] The fiber reinforced thermoplastic resin sheet according to [1], wherein a mass ratio of the reinforced fiber and the thermoplastic resin (reinforced fiber / thermoplastic resin) is 85/15 to 40/60.
[3] The fiber-reinforced thermoplastic resin sheet according to [1] or [2], wherein the reinforcing fibers are glass fibers or carbon fibers.
[4] The fiber-reinforced thermoplastic resin sheet according to any one of [1] to [3], wherein the thermoplastic resin is a polyolefin resin or a polyamide resin.
[5] The fiber-reinforced thermoplastic resin sheet is thermocompression-bonded by randomly dispersing and laminating thin film pieces of tape each having a length of 5 mm to 100 mm, a width of 5 mm to 60 mm, and a thickness of 0.05 mm to 0.3 mm. The fiber-reinforced thermoplastic resin sheet according to any one of [1] to [4].
[6] JIS of a fiber reinforced thermoplastic resin sheet containing the reinforced fiber and a thermoplastic resin
The fiber-reinforced thermoplastic resin sheet according to any one of [1] to [5], wherein the value of deflection at break obtained by K 7017: 1999 is 3 mm or more.
[7] The fiber-reinforced thermoplastic resin sheet according to any one of [1] to [6], wherein a ratio of an air layer present in the fiber-reinforced thermoplastic resin sheet is 3% or less.

本発明によれば、高い樹脂含浸性と破断エネルギーを有する、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートを提供する事が出来る。  According to the present invention, it is possible to provide a fiber-reinforced thermoplastic resin sheet having high resin impregnation property and breaking energy, and having little property variation due to orientation.

本発明における強化繊維の代表例としては、炭素繊維、炭化珪素繊維、ガラス繊維などの無機繊維、ボロン繊維などの金属繊維、アラミド繊維などの有機繊維が挙げられる。コスト、ならびに得られる成形品の弾性率および機械的強度の点から、ガラス繊維、炭素繊維などの無機繊維が好ましい。これらの繊維は、連続繊維を引き揃え、そして十分に開繊させて用いることが好ましい。  Representative examples of the reinforcing fibers in the present invention include inorganic fibers such as carbon fibers, silicon carbide fibers and glass fibers, metal fibers such as boron fibers, and organic fibers such as aramid fibers. In view of cost and the elastic modulus and mechanical strength of the resulting molded article, inorganic fibers such as glass fibers and carbon fibers are preferred. These fibers are preferably used by drawing continuous fibers and opening them sufficiently.

熱可塑性樹脂の代表例としては、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド46、ポリメタキシリレンアジパミド(MXD6)などのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂などが挙げられる。  Representative examples of the thermoplastic resin include polyamide resins such as polyamide 6, polyamide 12, polyamide 66, polyamide 46, polymetaxylylene adipamide (MXD6), polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyethylene, Examples thereof include polyolefin resins such as polypropylene, polyether ketone resins, polyphenylene sulfide resins, polyether imide resins, and polycarbonate resins.

特に好ましい熱可塑性樹脂の代表例は、以下の通りである。これらは、成形品の用途(または所望の特性)に応じて、適宜使用され得る。
(1)低コスト、成形時の流動性、耐水性、耐熱水性、または耐化学薬品性が要求される場合には、ポリオレフィン系樹脂が好ましい。入手が容易であるという理由で、ポリプロピレンが特に好ましく、本発明においては、酸変性されたポリプロピレンを用いる事が好ましい。後述の強化繊維との接着性に特に優れるからである。
(2)耐摩耗性、耐油性、または長期耐熱特性が要求される場合には、ポリアミド系樹脂が好ましく、ポリアミド6、ポリアミド66、MXD6樹脂が特に好ましい。
Typical examples of particularly preferred thermoplastic resins are as follows. These can be used as appropriate depending on the use (or desired properties) of the molded article.
(1) Polyolefin resins are preferred when low cost, fluidity during molding, water resistance, hot water resistance, or chemical resistance is required. Polypropylene is particularly preferable because it is easily available. In the present invention, it is preferable to use acid-modified polypropylene. This is because it is particularly excellent in adhesiveness with the reinforcing fiber described later.
(2) When abrasion resistance, oil resistance, or long-term heat resistance is required, polyamide-based resins are preferable, and polyamide 6, polyamide 66, and MXD6 resin are particularly preferable.

本発明の繊維強化熱可塑性樹脂シートは、破断エネルギー量の値(E、E45、及びE90)が、4J以上である。この破断エネルギー量は、JIS K 7017:1999「繊維強化プラスチック−曲げ特性の求め方」・3点曲げ法(A法)の曲げ特性試験に準じて、島津製作所製オートグラフ AG−X 50kNを用いて、TRAPEZIUM2(ソフトウエア)により得られる破断時のエネルギー(J)である。破断エネルギー量が4J未満である場合、少量の変形でも強化繊維の剥離破壊が起き易く、物性バラツキも大きくなり好ましくない。より好ましい範囲は5J以上、更に好ましい範囲は6J以上である。破断エネルギー量の値の上限は、特に設けないが、用いる原料を勘案すると30J程度である。
尚、試験片は、シート内の任意の方向を0°と設定し、その方向がスパン長となる試験片(厚みは4mm、幅は25mm、スパン長は64mm)、この方向から45°の試験片、90°の試験片を、シートからそれぞれn=10で切出し、破断エネルギー量が測定される。
また、E/E、E45/E、及びE90/Eがいずれも0.85〜1.15の範囲である。この範囲にあることで、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートが得られる。E/E、E45/E、及びE90/Eは、いずれも0.9〜1.1の範囲であることが好ましい。
The fiber-reinforced thermoplastic resin sheet of the present invention has a value of breaking energy (E 0 , E 45 , and E 90 ) of 4 J or more. The amount of energy to break is determined according to JIS K 7017: 1999 “Fiber-Reinforced Plastics—How to Obtain Bending Properties” and the bending property test of the three-point bending method (Method A) using an autograph AG-X 50 kN manufactured by Shimadzu Corporation. The energy (J) at break obtained by TRAPEZIUM2 (software). When the amount of breaking energy is less than 4 J, even if a small amount of deformation occurs, the detachment failure of the reinforcing fibers is likely to occur and the variation in physical properties increases, which is not preferable. A more preferable range is 5 J or more, and a further preferable range is 6 J or more. The upper limit of the value of the breaking energy amount is not particularly set, but is about 30 J considering the raw materials to be used.
In addition, the test piece is set to 0 ° in any direction in the sheet, and the test piece whose thickness is the span length (thickness is 4 mm, width is 25 mm, span length is 64 mm), and the test is 45 ° from this direction. A piece and a 90 ° test piece are each cut out from the sheet at n = 10, and the amount of breaking energy is measured.
Further, in the range of E 0 / E A, E 45 / E A, and any E 90 / E A is 0.85 to 1.15. By being in this range, a fiber-reinforced thermoplastic resin sheet with little variation in physical properties due to directionality can be obtained. E 0 / E A, E 45 / E A, and E 90 / E A is preferably either in the range of 0.9 to 1.1.

本発明の繊維強化熱可塑性樹脂シートの厚みは、1.5〜8mmであることが好ましい。
また、繊維強化熱可塑性樹脂シートは、長さ5mm〜100mm、幅5mm〜60mm、厚み0.05mm〜0.3mmの薄膜片のテープを無方向に分散積層し、熱圧着され作製されている事が望ましい。強化繊維は無撚りで、十分に開繊させた後、樹脂含浸させ、賦形ローラーで冷却プレスさせた後、任意の長さにカットされる。このようにテープを作製することが、繊維強化熱可塑性樹脂シート内に存在する空気層の割合を少なくすることに有効である。
テープの長さが5mm未満である場合、高い物性が得られにくく、逆に100mmを超える場合、成形流動性が悪くなると同時に、シート物性に方向性が生じ易くなるので好ましくない。より好ましい範囲としては、10〜50mm、更に好ましい範囲としては、15〜40mmが挙げられる。
The thickness of the fiber-reinforced thermoplastic resin sheet of the present invention is preferably 1.5 to 8 mm.
In addition, the fiber reinforced thermoplastic resin sheet is manufactured by dispersing and laminating thin film pieces of tape having a length of 5 mm to 100 mm, a width of 5 mm to 60 mm, and a thickness of 0.05 mm to 0.3 mm, and thermocompression bonding. Is desirable. The reinforcing fiber is untwisted, sufficiently spread, then impregnated with resin, cooled with a shaping roller, and then cut into an arbitrary length. Producing a tape in this way is effective in reducing the proportion of the air layer present in the fiber-reinforced thermoplastic resin sheet.
When the length of the tape is less than 5 mm, it is difficult to obtain high physical properties. On the other hand, when the length exceeds 100 mm, the molding fluidity is deteriorated and at the same time, the directionality is easily generated in the sheet, which is not preferable. A more preferable range is 10 to 50 mm, and a still more preferable range is 15 to 40 mm.

また、テープの幅が5mm未満である場合、開繊状態が不十分となり、ボイドが残り易く好ましくない。逆にテープ幅が、60mmを超える場合も、生産工程でテープ折れが発生し易く、シート化の工程でボイドが残り易くなるので好ましくない。より好ましい範囲としては、10〜45mm、更に好ましい範囲は、15〜40mmである。尚、テープの幅と強化繊維の長さ(テープの長さ)は出来るだけ近い方が、シートの方向性が出にくくなるので好ましい。  Moreover, when the width of the tape is less than 5 mm, the opened state becomes insufficient, and voids are likely to remain, which is not preferable. Conversely, when the tape width exceeds 60 mm, it is not preferable because tape breakage is likely to occur in the production process and voids are likely to remain in the sheet forming process. A more preferable range is 10 to 45 mm, and a further preferable range is 15 to 40 mm. Note that it is preferable that the width of the tape and the length of the reinforcing fiber (tape length) be as close as possible because the directionality of the sheet is less likely to occur.

テープの厚みが0.05mm未満である場合、強化繊維の量が少なく、生産効率が悪くなるので好ましくない。逆にテープの厚みが0.3mmを超える場合、強化繊維の量が多く、樹脂の含浸性が悪くなるので好ましくない。より好ましい範囲は、0.07〜0.2mm、更に好ましい範囲は、0.09〜0.15mmである。  When the thickness of the tape is less than 0.05 mm, the amount of reinforcing fibers is small and the production efficiency is deteriorated. Conversely, when the thickness of the tape exceeds 0.3 mm, the amount of reinforcing fibers is large, and the impregnation property of the resin is deteriorated. A more preferable range is 0.07 to 0.2 mm, and a still more preferable range is 0.09 to 0.15 mm.

本発明の繊維強化熱可塑性樹脂シートは、強化繊維と熱可塑性樹脂との質量比(強化繊維/熱可塑性樹脂)は、85/15〜40/60である事が好ましい。強化繊維の量が85質量%を超える場合、樹脂の量が少なく、ボイドが残り易くなるので好ましくない。逆に、40質量%未満である場合、シート物性が低くなるので好ましくない。強化繊維量のより好ましい範囲は、45〜75質量%、更に好ましい範囲は、50〜70質量%であり、熱可塑性樹脂のより好ましい範囲は、25〜55質量%、更に好ましい範囲は、30〜50質量%である。上記テープも、この質量比で作製することが好ましい。  In the fiber reinforced thermoplastic resin sheet of the present invention, the mass ratio of the reinforced fiber and the thermoplastic resin (reinforced fiber / thermoplastic resin) is preferably 85/15 to 40/60. When the amount of reinforcing fibers exceeds 85% by mass, the amount of resin is small and voids are likely to remain, which is not preferable. Conversely, if it is less than 40% by mass, the physical properties of the sheet are lowered, which is not preferable. A more preferable range of the amount of reinforcing fibers is 45 to 75% by mass, a further preferable range is 50 to 70% by mass, a more preferable range of the thermoplastic resin is 25 to 55% by mass, and a further preferable range is 30 to 30% by mass. 50% by mass. The tape is also preferably produced with this mass ratio.

また、JIS K 7017:1999「繊維強化プラスチック−曲げ特性の求め方」・3点曲げ法(A法)で求められる破断時のたわみの値が、3mm以上である事が望ましい。3mm未満である場合、破断までの変形量が不足し、十分なエネルギー吸収効果が得られないためである。変形量は大きい方が望ましいが、強化繊維の種類、量による弾性率との兼ね合いで適宜設計される。より好ましい変形量は3.4〜6mm、更に好ましい変形量は3.8〜5.5mmである。  Further, it is desirable that the value of the deflection at break obtained by JIS K 7017: 1999 “Fiber-reinforced plastics—How to obtain bending characteristics” / three-point bending method (A method) is 3 mm or more. If it is less than 3 mm, the amount of deformation until breakage is insufficient, and a sufficient energy absorption effect cannot be obtained. Although it is desirable that the amount of deformation is large, it is appropriately designed in consideration of the elastic modulus depending on the type and amount of reinforcing fibers. A more preferable deformation amount is 3.4 to 6 mm, and a further preferable deformation amount is 3.8 to 5.5 mm.

また、繊維強化熱可塑性樹脂シート内に存在する空気層の割合が、3%以下である事が好ましい。3%を超える場合、変形による剥離破壊が起き易く、物性バラツキが大きくなり、エネルギー吸収効果も不足するので好ましくない。より好ましい範囲は2%以下、更に好ましい範囲は1%以下である。本発明における空気層の割合(ボイド量)は、シートの中央部と周辺部をそれぞれエポキシ樹脂で包埋後、断面を研磨し、鏡面に仕上げ、断面の拡大写真を撮り、ボイドの発生面積を計測して、その平均値を求めることで得られる割合(%)である。  Moreover, it is preferable that the ratio of the air layer which exists in a fiber reinforced thermoplastic resin sheet is 3% or less. If it exceeds 3%, peeling failure due to deformation tends to occur, the physical property variation becomes large, and the energy absorption effect is insufficient, which is not preferable. A more preferable range is 2% or less, and a further preferable range is 1% or less. The ratio of the air layer in the present invention (void amount) is determined by embedding the central part and peripheral part of the sheet with epoxy resin, polishing the cross section, finishing to a mirror surface, taking an enlarged photograph of the cross section, and determining the void generation area. It is a ratio (%) obtained by measuring and obtaining the average value.

また、熱可塑性樹脂は、必要に応じて、熱劣化防止剤、酸化劣化防止剤、紫外線吸収剤、などの添加剤を含有し得る。これらの添加剤の含有量は、目的に応じて変化し得るが、通常、これらの添加剤は、それぞれ0.5質量%以下が好ましく、より好ましくはそれぞれ0.2〜0.5質量%の範囲内で添加される。  In addition, the thermoplastic resin may contain additives such as a thermal degradation inhibitor, an oxidation degradation inhibitor, and an ultraviolet absorber as necessary. The content of these additives may vary depending on the purpose, but usually these additives are preferably 0.5% by mass or less, more preferably 0.2 to 0.5% by mass, respectively. It is added within the range.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、各物性の測定は以下の通りである。  EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement of each physical property is as follows.

破断エネルギー量:
JIS K 7017:1999「繊維強化プラスチック−曲げ特性の求め方」・3点曲げ法(A法)に準じて曲げ特性試験を行った。島津製作所製オートグラフ AG−X 50kNを用いて、TRAPEZIUM2(ソフトウエア)により、破断時のエネルギー(J)を求めた。試験片は、シート内の任意の方向を0°と設定し、その方向がスパン長となる試験片(厚みは4mm、幅は25mm、スパン長は64mm)、この方向から45°の試験片、90°の試験片を、シートからそれぞれn=10で切出し、E、E45、及びE90(それぞれn=10の平均値)を求めた。また、3方向での平均値(E)も求めた。
破断時のたわみ:
JIS K 7017:1999「繊維強化プラスチック−曲げ特性の求め方」・3点曲げ法(A法)に準じた。試験片は、上記0°の試験片を用いた。
空気層の割合(ボイド量):
繊維強化熱可塑性樹脂シート内のボイド量は、シートの中央部と周辺部をそれぞれエポキシ樹脂で包埋後、断面を研磨し、鏡面に仕上げ、断面の拡大写真を撮り、ボイドの発生面積を計測して平均値を求めた。
Breaking energy amount:
JIS K 7017: 1999 “Fiber-reinforced plastics—How to obtain bending properties” A bending property test was performed according to the three-point bending method (A method). Using an autograph AG-X 50 kN manufactured by Shimadzu Corporation, the energy (J) at break was determined by TRAPEZIUM2 (software). The test piece is set to 0 ° in any direction in the sheet, and the test piece whose direction is the span length (thickness is 4 mm, width is 25 mm, span length is 64 mm), test piece at 45 ° from this direction, A 90 ° test piece was cut out from the sheet at n = 10, and E 0 , E 45 , and E 90 (each average value of n = 10) were obtained. The average value of the three-way (E A) was also determined.
Deflection at break:
JIS K 7017: 1999 “Fiber-reinforced plastics—How to obtain bending properties”, according to the three-point bending method (A method). As the test piece, the 0 ° test piece was used.
Air layer ratio (void amount):
The amount of voids in the fiber reinforced thermoplastic resin sheet was measured by embedding the center and periphery of the sheet with epoxy resin, polishing the cross section, finishing it into a mirror surface, taking an enlarged photograph of the cross section, and measuring the void generation area. The average value was obtained.

(実施例1)
強化繊維として、連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)ロービング2本をそれぞれ回転させつつ撚りが入らない様に解舒し、直径2cmのローラーに通し開繊後、0.6MPaの圧力を有する酸変性されたポリプロピレン((株)プライムポリマー製、J139、及びMMP006のブレンド、融点160℃)が入った240℃の樹脂槽を通し、樹脂を連続的に含浸させ、その後、賦形ローラーで潰し冷却固化させた後、カッティングし、ガラス繊維75質量部に酸変性されたポリプロピレン樹脂25質量部が含浸されてなる、幅30mm、長さ35mm、厚み0.1mmのテープを作製した。その後、アルミニウム製の耐熱離型容器内に無方向に積層させた後、240℃に過熱された加熱金型内でエアーを十分に抜いた後、100℃の冷却金型内でプレスし、4mm厚のシートを作製した。
得られたシートの空気層の割合は0.4%、破断エネルギー量の平均値は6.1J(E :6.2J、E45:6.0J、E90:6.1J)、破断時のたわみは3.6mmであった。
(Example 1)
  As the reinforcing fiber, continuous glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f) is unwound so as not to twist while rotating two rovings, and is opened through a roller with a diameter of 2 cm. Thereafter, the resin was continuously impregnated through a 240 ° C. resin bath containing acid-modified polypropylene (manufactured by Prime Polymer Co., Ltd., blend of J139 and MMP006, melting point 160 ° C.) having a pressure of 0.6 MPa. Then, after crushing with a shaping roller and solidifying by cooling, cutting is performed, and 75 parts by mass of glass fiber is impregnated with 25 parts by mass of polypropylene resin acid-modified, width 30 mm, length 35 mm, thickness 0.1 mm A tape was prepared. Then, after laminating in an aluminum heat-resistant release container in a non-directional direction, the air was sufficiently removed in a heating mold heated to 240 ° C., then pressed in a cooling mold at 100 ° C., and 4 mm A thick sheet was produced.
  The ratio of the air layer of the obtained sheet was 0.4%, and the average value of the breaking energy was 6.1 J (E 0: 6.2J, E45: 6.0J, E90: 6.1J), and the deflection at break was 3.6 mm.

(実施例2)
強化繊維としてガラス繊維60質量部に、熱可塑性樹脂として汎用のポリアミド6(東洋紡製、RV2.7)40質量部を用い、実施例1と同法にて、幅40mm、長さ35mm、厚み0.1mmのテープを作製した。その後、アルミニウム製の耐熱離型容器内に無方向に積層させた後、260℃に過熱された加熱金型内でエアーを十分に抜いた後、140℃の冷却金型内でプレスし、4mm厚のシートを作製した。
得られたシートの空気層の割合は0.3%、破断エネルギー量の平均値は8.2J(E :8.2J、E45:8.1J、E90:8.3J)、破断時のたわみは3.9mmであった。
(Example 2)
  Using 40 parts by mass of general-purpose polyamide 6 (Toyobo Co., Ltd., RV2.7) as a thermoplastic resin in 60 parts by mass of glass fiber as a reinforcing fiber, the same method as in Example 1, width 40 mm, length 35 mm, thickness 0 A 1 mm tape was produced. Then, after laminating in a heat-resistant mold release container made of aluminum in a non-directional direction, after sufficiently removing air in a heating mold heated to 260 ° C., pressing in a cooling mold at 140 ° C. and 4 mm A thick sheet was produced.
  The ratio of the air layer of the obtained sheet was 0.3%, and the average value of the breaking energy was 8.2 J (E 0: 8.2J, E45: 8.1J, E90: 8.3 J), and the deflection at break was 3.9 mm.

(実施例3)
強化繊維として、連続炭素繊維ロービング(東邦テナックス社製 IMS40,340Tex,6000フィラメント)4本を横取り解舒で使用した以外は、実施例1と同法で炭素繊維53質量部に酸変性されたポリプロピレン樹脂47質量部が含浸されてなる、幅15mm、長さ20mm、厚み0.12mmの短冊状のテープを作製した。その後、実施例1と同法で、アルミニウム製の耐熱離型容器を介しテープ内の熱可塑性樹脂を240℃に加熱後、100℃の冷却プレスにて4mm厚の繊維強化熱可塑性樹脂シートを作製した。
得られたシートの空気層の割合は0.8%、破断エネルギー量の平均値は9.0J(E :8.9J、E45:8.9J、E90:9.1J)、破断時のたわみは3.1mmであった。
Example 3
  Polypropylene that was acid-modified to 53 parts by mass of carbon fiber in the same manner as in Example 1 except that four continuous carbon fiber rovings (IMS40, 340Tex, 6000 filaments manufactured by Toho Tenax Co., Ltd.) were used as the reinforcing fibers in the horizontal unraveling. A strip-shaped tape having a width of 15 mm, a length of 20 mm, and a thickness of 0.12 mm, which was impregnated with 47 parts by mass of resin, was produced. Thereafter, in the same manner as in Example 1, the thermoplastic resin in the tape was heated to 240 ° C. through a heat-resistant release container made of aluminum, and then a fiber-reinforced thermoplastic resin sheet having a thickness of 4 mm was produced with a cooling press at 100 ° C. did.
  The ratio of the air layer of the obtained sheet was 0.8%, and the average value of the amount of breaking energy was 9.0 J (E 0: 8.9J, E45: 8.9J, E90: 9.1 J), and the deflection at break was 3.1 mm.

(実施例4)
強化繊維として、連続炭素繊維ロービング(東邦テナックス社製 IMS40,340Tex,6000フィラメント)4本を横取り解舒で使用した以外は、実施例2と同法で炭素繊維48質量部にポリアミド樹脂52質量部が含浸されてなる、幅15mm、長さ20mm、厚み0.1mmの短冊状のテープを作製した。その後、実施例2と同法で、アルミニウム製の耐熱離型容器を介しテープ内の熱可塑性樹脂を260℃に加熱後、140℃の冷却プレスにて4mm厚の繊維強化熱可塑性樹脂シートを作製した。
得られたシートの空気層の割合は0.7%、破断エネルギー量の平均値は12.3J(E:12.3J、E45:12.2J、E90:12.4J)、破断時のたわみは3.3mmであった。
Example 4
The same method as in Example 2 except that four continuous carbon fiber rovings (IMS40, 340Tex, 6000 filaments manufactured by Toho Tenax Co., Ltd.) were used as reinforcing fibers in the same manner as in Example 2, and 52 parts by mass of polyamide resin in 48 parts by mass of carbon fiber. A strip-shaped tape having a width of 15 mm, a length of 20 mm, and a thickness of 0.1 mm was prepared. Thereafter, in the same manner as in Example 2, the thermoplastic resin in the tape was heated to 260 ° C. through an aluminum heat-resistant release container, and a 4 mm thick fiber-reinforced thermoplastic resin sheet was produced with a 140 ° C. cooling press. did.
The ratio of the air layer of the obtained sheet was 0.7%, the average value of the breaking energy was 12.3J (E 0 : 12.3J, E 45 : 12.2J, E 90 : 12.4J), at break The deflection was 3.3 mm.

(比較例1)
強化繊維として、連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)ロービング1本を解舒撚りが残った状態のままの状態で実施例1と同法にて、酸変性されたポリプロピレンの樹脂層を通し、賦形ローラーを通さずにカッティングし、ガラス繊維75質量部に酸変性されたポリプロピレン樹脂25質量部が含浸されてなる、幅4mm、長さ35mm、厚み0.32mmのテープを作製した。その後、アルミニウム製の耐熱離型容器内に無方向に積層させた後、実施例1と同法にて加熱、冷却プレスを行い、4mm厚のシートを作製した。
得られたシートの空気層の割合は3.4%、破断エネルギー量の平均値は3.4J(E :3.3J、E45:3.2J、E90:3.6J)、破断時のたわみは2.4mmであった。
(Comparative Example 1)
  As a reinforcing fiber, a continuous glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f) is used in the same manner as in Example 1 with the untwisted state remaining in the same manner as in Example 1. Cutting through the modified polypropylene resin layer without passing through the shaping roller, 75 parts by mass of glass fiber impregnated with 25 parts by mass of acid-modified polypropylene resin, width 4 mm, length 35 mm, thickness 0 A 32 mm tape was produced. Then, after laminating in an aluminum heat-resistant release container in a non-directional direction, heating and cooling presses were performed in the same manner as in Example 1 to produce a 4 mm thick sheet.
  The ratio of the air layer of the obtained sheet was 3.4%, and the average value of the breaking energy was 3.4 J (E 0: 3.3J, E45: 3.2J, E90: 3.6J), and the deflection at break was 2.4 mm.

(比較例2)
強化繊維として、連続ガラス繊維(日本電気硝子(株)製、ER2310−431N、2310Tex、4000f)ロービング1本を用い、繊維がばらけない様にポリアミド系収束剤を浸漬し、40mmの長さにカット後、ポリアミド6のパウダーと共に(ガラス繊維60質量部、ポリアミド40質量部)、アルミニウム製の耐熱離型容器内で無方向に積層させた後、実施例2と同法にて4mm厚のシートを作製した。
得られたシートの空気層の割合は3.6%、破断エネルギー量の平均値は3.7J(E :3.9J、E45:3.6J、E90:3.7J)、破断時のたわみは2.8mmであった。
(Comparative Example 2)
  As a reinforcing fiber, a continuous glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 2310Tex, 4000f) is used, and a polyamide-based sizing agent is dipped so that the fiber does not come apart. After cutting, together with the polyamide 6 powder (60 parts by mass of glass fiber, 40 parts by mass of polyamide) and non-directional lamination in a heat-resistant release container made of aluminum, a sheet 4 mm thick by the same method as in Example 2 Was made.
  The ratio of the air layer of the obtained sheet was 3.6%, and the average value of the breaking energy was 3.7 J (E 0: 3.9J, E45: 3.6J, E90: 3.7J), and the deflection at break was 2.8 mm.

本発明によれば、高い樹脂含浸性と破断エネルギーを有する、方向性による物性変動の少ない、繊維強化熱可塑性樹脂シートが得られる。  According to the present invention, a fiber-reinforced thermoplastic resin sheet having a high resin impregnation property and breaking energy and less physical property variation due to orientation can be obtained.

Claims (7)

強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂シートであって、破断エネルギー量の値が、下記(1)及び(2)を満たす事を特徴とする繊維強化熱可塑性樹脂シート。
(1)E、E45、及びE90がいずれも4J以上
(2)E/E、E45/E、及びE90/Eがいずれも0.85〜1.15の範囲
(ここで、E、E45、及びE90は、シート面内において、任意の方向を0°とした時のそれぞれ、0°の方向の破断エネルギー量、45°の方向の破断エネルギー量、及び90°の方向の破断エネルギー量であり、Eは、E、E45、E90の平均値である。)
A fiber-reinforced thermoplastic resin sheet containing reinforcing fibers and a thermoplastic resin, wherein the value of the amount of breaking energy satisfies the following (1) and (2).
(1) E 0, E 45 , and E 90 are both 4J more (2) E 0 / E A , the range of E 45 / E A, and E 90 / E both A is 0.85 to 1.15 (Here, E 0 , E 45 , and E 90 are the amount of rupture energy in the direction of 0 °, the amount of rupture energy in the direction of 45 °, respectively, when an arbitrary direction is set to 0 ° in the sheet surface, and a breaking energy amount in the direction of 90 °, E a is the average value of E 0, E 45, E 90 .)
強化繊維と熱可塑性樹脂との質量比(強化繊維/熱可塑性樹脂)が、85/15〜40/60である事を特徴とする請求項1に記載の繊維強化熱可塑性樹脂シート。  2. The fiber-reinforced thermoplastic resin sheet according to claim 1, wherein a mass ratio of the reinforcing fiber to the thermoplastic resin (reinforcing fiber / thermoplastic resin) is 85/15 to 40/60. 前記強化繊維がガラス繊維、若しくはカーボン繊維である事を特徴とする請求項1または2に記載の繊維強化熱可塑性樹脂シート。  The fiber-reinforced thermoplastic resin sheet according to claim 1 or 2, wherein the reinforcing fibers are glass fibers or carbon fibers. 前記熱可塑性樹脂がポリオレフィン系樹脂、若しくはポリアミド系樹脂である事を特徴とする請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂シート。  The fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 3, wherein the thermoplastic resin is a polyolefin resin or a polyamide resin. 前記繊維強化熱可塑性樹脂シートが、長さ5mm〜100mm、幅5mm〜60mm、厚み0.05mm〜0.3mmの薄膜片のテープをランダムに分散積層し、熱圧着されている事を特徴とする請求項1〜4のいずれかに記載の繊維強化熱可塑性樹脂シート。  The fiber reinforced thermoplastic resin sheet is characterized in that a thin film piece tape having a length of 5 mm to 100 mm, a width of 5 mm to 60 mm, and a thickness of 0.05 mm to 0.3 mm is randomly dispersed and laminated and thermocompression-bonded. The fiber-reinforced thermoplastic resin sheet according to any one of claims 1 to 4. 前記強化繊維と熱可塑性樹脂とを含有する繊維強化熱可塑性樹脂シートのJIS K 7017:1999で求められる破断時のたわみの値が、3mm以上である事を特徴とする請求項1〜5のいずれかに記載の繊維強化熱可塑性樹脂シート。  6. The value of the deflection at the time of the fracture | rupture calculated | required by JISK7017: 1999 of the fiber reinforced thermoplastic resin sheet containing the said reinforced fiber and a thermoplastic resin is 3 mm or more, A fiber-reinforced thermoplastic resin sheet according to claim 1. 前記繊維強化熱可塑性樹脂シート内に存在する空気層の割合が、3%以下である事を特徴とする請求項1〜6のいずれかに記載の繊維強化熱可塑性樹脂シート。  The fiber reinforced thermoplastic resin sheet according to any one of claims 1 to 6, wherein a ratio of an air layer present in the fiber reinforced thermoplastic resin sheet is 3% or less.
JP2014561612A 2013-11-20 2014-11-19 Fiber reinforced thermoplastic resin sheet Pending JPWO2015076283A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013239828 2013-11-20
JP2013239828 2013-11-20
PCT/JP2014/080597 WO2015076283A1 (en) 2013-11-20 2014-11-19 Fiber-reinforced thermoplastic resin sheet

Publications (1)

Publication Number Publication Date
JPWO2015076283A1 true JPWO2015076283A1 (en) 2017-03-16

Family

ID=53179543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014561612A Pending JPWO2015076283A1 (en) 2013-11-20 2014-11-19 Fiber reinforced thermoplastic resin sheet

Country Status (2)

Country Link
JP (1) JPWO2015076283A1 (en)
WO (1) WO2015076283A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063058A1 (en) * 2021-10-14 2023-04-20 東洋紡株式会社 Impact-absorbing member
WO2023063057A1 (en) * 2021-10-14 2023-04-20 東洋紡株式会社 Impact-absorbing member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031914A (en) * 1989-05-31 1991-01-08 Honda Motor Co Ltd Method for molding bumper beam
JP2004142165A (en) * 2002-10-22 2004-05-20 Toyobo Co Ltd Compression molding material
JP2004292646A (en) * 2003-03-27 2004-10-21 Jfe Chemical Corp Method for producing reinforcing fiber sheet, reinforcing fiber sheet and application thereof
JP2007138320A (en) * 2005-11-16 2007-06-07 Toyobo Co Ltd Protective inner-type safety cap
JP2007138319A (en) * 2005-11-16 2007-06-07 Toyobo Co Ltd Head injury-preventive inner-type safety cap
JP2008254437A (en) * 2007-03-13 2008-10-23 Du Pont Toray Co Ltd Manufacturing method of fiber reinforced resin composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031914A (en) * 1989-05-31 1991-01-08 Honda Motor Co Ltd Method for molding bumper beam
JP2004142165A (en) * 2002-10-22 2004-05-20 Toyobo Co Ltd Compression molding material
JP2004292646A (en) * 2003-03-27 2004-10-21 Jfe Chemical Corp Method for producing reinforcing fiber sheet, reinforcing fiber sheet and application thereof
JP2007138320A (en) * 2005-11-16 2007-06-07 Toyobo Co Ltd Protective inner-type safety cap
JP2007138319A (en) * 2005-11-16 2007-06-07 Toyobo Co Ltd Head injury-preventive inner-type safety cap
JP2008254437A (en) * 2007-03-13 2008-10-23 Du Pont Toray Co Ltd Manufacturing method of fiber reinforced resin composite material

Also Published As

Publication number Publication date
WO2015076283A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
JPH0657407B2 (en) Fiber reinforced pellet structure
KR101417245B1 (en) Complex sheet manufacturing device with excellent saturation property and method of manufacturing high strength complex sheet
JP5374506B2 (en) Laminate for vehicle exterior material, manufacturing method thereof, and vehicle exterior material
JP2020100156A5 (en)
WO2016159365A1 (en) Laminated body
CN104416912A (en) Continuous fiber-reinforced thermoplastic resin product and preparation method thereof
JP2013221114A (en) Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2012213946A (en) Molding manufacturing method and molding
JPWO2015076283A1 (en) Fiber reinforced thermoplastic resin sheet
JP6435696B2 (en) Method for producing laminated substrate
JP2013173338A (en) Method for manufacturing fiber-reinforced thermoplastic resin molding
JPH09277387A (en) Manufacture of fiber reinforced thermoplastic resin sheet
TW201406842A (en) Carbon fiber composite material and molded article formed by the same, and manufacturing method of these
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
JP2016172322A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
JP2015224297A (en) Production method of prepreg
JP2015157384A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
JP6581680B2 (en) Method for producing resin-impregnated fiber bundle
US20190284752A1 (en) Reinforcement fabric, protection board, and method for manufacturing the protection board
CN105946252A (en) Honeycomb-shaped fabric composite thermoplastic sheet and machining method for molding case shell of trolley case through compression molding
JP2016169271A (en) Carbon fiber resin composite material sheet having improved draw-down properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618