JPWO2015012412A1 - Rare earth sintered magnet manufacturing method and rare earth sintered magnet sintering mold - Google Patents

Rare earth sintered magnet manufacturing method and rare earth sintered magnet sintering mold Download PDF

Info

Publication number
JPWO2015012412A1
JPWO2015012412A1 JP2015528369A JP2015528369A JPWO2015012412A1 JP WO2015012412 A1 JPWO2015012412 A1 JP WO2015012412A1 JP 2015528369 A JP2015528369 A JP 2015528369A JP 2015528369 A JP2015528369 A JP 2015528369A JP WO2015012412 A1 JPWO2015012412 A1 JP WO2015012412A1
Authority
JP
Japan
Prior art keywords
mold
rare earth
sintered
sintering
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015528369A
Other languages
Japanese (ja)
Other versions
JP6425251B2 (en
Inventor
眞人 佐川
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDFEB CORPORATION
Original Assignee
NDFEB CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDFEB CORPORATION filed Critical NDFEB CORPORATION
Publication of JPWO2015012412A1 publication Critical patent/JPWO2015012412A1/en
Application granted granted Critical
Publication of JP6425251B2 publication Critical patent/JP6425251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

希土類焼結磁石の製造において、製造過程を簡素化し、製造コストを大幅に下げることを目的とする。本発明の希土類焼結磁石製造法は、合金粉末を焼結モールドに充填し、磁界中配向後、焼結モールドご焼結炉に入れて加熱し焼結体を得る過程において、焼結中に焼結モールドが消耗することを特徴とする。すなわち焼結モールドは樹脂製であるか、樹脂と焼結中に消失しない物質(フィラー)との混合物であって、使い捨てである。焼結モールドは、内部に焼結中に消耗する仕切り板を有し、複数の焼結体を同時に製造できる。樹脂中に含まれる焼結中に消失しない物質は、焼結モールドや仕切り板の形状が失われた後も残留し、焼結体間の溶着を防止する。In the production of rare earth sintered magnets, the object is to simplify the production process and greatly reduce the production cost. In the rare earth sintered magnet manufacturing method of the present invention, the alloy powder is filled in a sintering mold, and after being oriented in a magnetic field, put in a sintering mold sintering furnace and heated to obtain a sintered body. The sintered mold is consumed. That is, the sintered mold is made of resin or a mixture of a resin and a substance (filler) that does not disappear during sintering and is disposable. The sintered mold has a partition plate that is consumed during sintering, and can simultaneously manufacture a plurality of sintered bodies. The substance contained in the resin that does not disappear during sintering remains even after the shape of the sintering mold or partition plate is lost, and prevents welding between the sintered bodies.

Description

本発明は、希土類焼結磁石の製造方法に関する。 The present invention relates to a method for producing a rare earth sintered magnet.

希土類焼結磁石は、空調機のコンプレッサーやハイブリッド車のモータや発電機、ハードディスクのボイスコイルモータ(VCM)などに幅広く使われて、機器の小型化、省エネルギー化に役立っており、地球温暖化防止に貢献している。 Rare earth sintered magnets are widely used in air conditioner compressors, hybrid vehicle motors and generators, hard disk voice coil motors (VCM), etc., helping to reduce the size and energy of equipment, and prevent global warming. Contributing to

これらの用途に使用されている希土類焼結磁石は、多くの場合まっすぐな平板状か、あるいは湾曲しているアークセギュメント板状をしている。これらの板状希土類焼結磁石は、板の縦又は横の長さに比べて厚みが小さい薄肉品である。 In many cases, rare earth sintered magnets used in these applications have a straight flat plate shape or a curved arc segment plate shape. These plate-like rare earth sintered magnets are thin-walled products having a thickness smaller than the vertical or horizontal length of the plate.

薄板状希土類焼結磁石を製造する方法として、従来2つの方法が知られていた。希土類焼結磁石用合金粉末を金型に充填して磁界中でプレス成形して圧粉体を作り、この圧紛体を焼結する金型プレス法(非特許文献1)と、希土類焼結磁石用合金粉末を容器に充填してパルス磁界により配向させ、粉末を容器に入れたまま焼結するプレスなし法(Press−less process:PLP法)(特許文献1)である。 Conventionally, two methods have been known as a method for producing a thin plate-like rare earth sintered magnet. A die press method (Non-patent Document 1) for filling a die with alloy powder for rare earth sintered magnet and press-molding in a magnetic field to form a green compact, and sintering the compact, and a rare earth sintered magnet This is a press-less process (PLP method) (Patent Document 1) in which a container alloy powder is filled in a container and oriented by a pulsed magnetic field, and the powder is sintered in a container.

金型プレス法では、薄肉品のプレス成形が困難なので、まず大きな金型を用いて大きなブロック状圧粉体を作製し、それを焼結してブロック状焼結体を得る。この大きなブロック状焼結体を外周刃切断機で薄くスライスして薄肉板状品としていた。スライス工程には大きな費用がかかるうえに、スライス工程中に大量の切り屑が発生するので、原料歩留まり(原料投入重量に対する製品重量の比)が低下する。そのため、金型プレス法では製品価格が高くなる欠点を有していた。 Since it is difficult to press-mold thin-walled products by the mold pressing method, first, a large block-shaped green compact is produced using a large mold, and the block-shaped sintered body is obtained by sintering it. This large block-shaped sintered body was thinly sliced with an outer peripheral blade cutting machine to obtain a thin plate-like product. The slicing process is expensive and a large amount of chips are generated during the slicing process, so that the raw material yield (ratio of the product weight to the raw material input weight) decreases. Therefore, the die press method has a drawback that the product price is high.

プレスなし法(PLP法)では、製品の形状及び寸法に対応して設計された容器(以下「モールド」と呼ぶ)に希土類合金粉末を充填して蓋をした後、パルス磁界を加えて粉末を配向させ、そのまま焼結する(特許文献1、2)。この方法により曲がりの少ない薄肉板状希土類焼結磁石が効率よく生産できる。この方法は原料歩留まりがよく、加工費を低減できるため、量産工場で用いられるようになった。 In the pressless method (PLP method), a container (hereinafter referred to as “mold”) designed according to the shape and dimensions of a product is filled with a rare earth alloy powder, covered, and then a pulse magnetic field is applied to remove the powder. Oriented and sintered as it is (Patent Documents 1 and 2). By this method, a thin plate rare earth sintered magnet with less bending can be efficiently produced. This method has been used in mass production factories because of its high raw material yield and reduced processing costs.

希土類磁石の大量生産技術として、プレスなし法(PLP法)には次のような問題がある。
(1)PLP法では、金型プレス法の金型と同じ程度にモールドを精密に作らなければならない。モールドを精密に作るには加工費用がかかる。モールド製作費用が高いことがプレスなし法(PLP法)の問題である。
(2)PLP法は大量生産に使われるので、モールドは繰り返し使用することが前提である。モールドを繰り返し使用するためには、モールドを構成する容器部分や仕切り板部分の材質を選び、かつ十分に肉厚を厚くしておかなければならない。モールド各部の肉厚を厚く取ると、材料費が高くなるとともに、工程中におけるモールドの占有体積が増大して、粉末充填装置、粉末磁界配向装置から焼結装置までの、各装置1台あたりの生産性が低下する。
(3)モールドを金属で作製すると、モールド各部の肉厚を小さくできるが、金属は高温の焼結中に変形しやすいので、繰り返し使用に限界がある。そのため合金粉末の粒径を小さくし、焼結温度を引き下げる試みもなされている(特許文献3)が、それにより金属製モールドの変形を完全になくすることはできない。また、金属モールドは焼結中に希土類焼結磁石用合金と反応しやすいので、モールドに合金粉末を充填する前に、毎回セラミック粉末の塗布(特許文献4)などが必要で、これが製品価格を押し上げる。
(4)大量生産に使われる製品のためのモールドは多量に作っておかなければならない。工程中のモールド以外に、工程に入る前の待機中のモールドも多量に作っておくことにより、量産装置の稼働を円滑に進めることができる。量産装置の生産性を高めるために、モールドの保守管理が重要である。多量のモールドの保守管理には費用がかかることが問題である。
As a technique for mass production of rare earth magnets, the pressless method (PLP method) has the following problems.
(1) In the PLP method, the mold must be made precisely as much as the mold of the die press method. Making a mold precisely requires processing costs. The high cost of mold production is a problem of the pressless method (PLP method).
(2) Since the PLP method is used for mass production, it is assumed that the mold is used repeatedly. In order to use the mold repeatedly, it is necessary to select the material of the container portion and the partition plate portion constituting the mold and sufficiently increase the thickness. When the thickness of each part of the mold is increased, the material cost increases and the occupied volume of the mold in the process increases, and each unit from the powder filling device, the powder magnetic field orientation device to the sintering device is increased. Productivity decreases.
(3) If the mold is made of metal, the thickness of each part of the mold can be reduced. However, since metal is easily deformed during high-temperature sintering, there is a limit to repeated use. For this reason, attempts have been made to reduce the particle size of the alloy powder and lower the sintering temperature (Patent Document 3), but the deformation of the metal mold cannot be completely eliminated. In addition, since metal molds easily react with rare earth sintered magnet alloys during sintering, it is necessary to apply ceramic powder every time before filling the mold with alloy powder (Patent Document 4). Push up.
(4) Molds for products used for mass production must be made in large quantities. In addition to the mold in the process, the mass production apparatus can be smoothly operated by making a large number of molds on standby before entering the process. In order to increase the productivity of mass production equipment, mold maintenance management is important. The problem is that it is expensive to maintain and manage a large number of molds.

特開2006−019521号公報JP 2006-019521 A 特開2009−049202号公報JP 2009-049202 A 特開2012−060139号公報JP 2012-060139 A 特開2008−294469号公報JP 2008-294469 A

俵好夫、大橋検「希土類永久磁石」森北出版株式会社、1999年、p.60−83Yoshio Tsuji, Ken Ohashi “Rare Earth Permanent Magnet”, Morikita Publishing Co., Ltd., 1999, p. 60-83 槙田顕、「Nd−Fe−B系焼結磁石の造粒プロセスと粒界構造に関する研究」京都大学工学研究科博士論文、2000年、p.59Akira Hirota, “Study on Granulation Process and Grain Boundary Structure of Nd—Fe—B System Sintered Magnet”, Doctoral Dissertation, Graduate School of Engineering, Kyoto University, 2000, p. 59

上に述べた諸問題は、費用をかけて作製したモールドを繰り返し使用する必要があることに起因している。モールドを低価格で作製でき、使い捨てとすることができれば、PLP法の生産性を格段に高めることができる。
本発明が解決しようとする課題は、使い捨てとすることができる新しい希土類磁石焼結用焼結モールドと、PLP法の生産性を格段に高めて、希土類焼結磁石の製造費用を大幅に低減できる方法を提供することである。
The problems described above are due to the need to repeatedly use a mold that has been produced at a high cost. If the mold can be manufactured at a low cost and can be made disposable, the productivity of the PLP method can be significantly increased.
The problem to be solved by the present invention is that the production cost of rare earth sintered magnets can be greatly reduced by dramatically increasing the productivity of a new sintering mold for rare earth magnets that can be disposable and the PLP method. Is to provide a method.

上記課題を解決するためになされた本発明に係わる希土類焼結磁石製造法は、希土類焼結磁石用合金粉末を希土類焼結磁石用焼結モールドに充填し、磁界中配向後、該焼結モールドごと焼結炉に入れて加熱し焼結体を得る希土類焼結磁石の製造法において、焼結中に該焼結モールドが消耗することを特徴とする。
ここで消耗するとは、1回の焼結工程でモールドを構成する物質の一部または全部が蒸発や分解により消失し、そのモールドが再使用できなくなることをいう。
The rare earth sintered magnet manufacturing method according to the present invention, which has been made to solve the above-described problems, comprises filling a rare earth sintered magnet alloy powder into a rare earth sintered magnet sintering mold, and aligning it in a magnetic field. In the method for producing a rare earth sintered magnet, which is put into a sintering furnace and heated to obtain a sintered body, the sintering mold is consumed during sintering.
Here, exhaustion means that part or all of the material constituting the mold disappears by evaporation or decomposition in one sintering step, and the mold cannot be reused.

上記課題を解決するためになされた本発明に係わる希土類焼結磁石用焼結モールドは、その内部に充填された希土類焼結磁石用合金粉末を磁界中で配向させ、その後焼結炉に入れて加熱し焼結体を得る希土類焼結磁石の製造法において用いられ、焼結炉で焼結中に消耗することを特徴とする。 The sintered mold for rare earth sintered magnet according to the present invention, which has been made to solve the above problems, orients the alloy powder for rare earth sintered magnet filled therein in a magnetic field, and then puts it in a sintering furnace. It is used in a method for producing a rare earth sintered magnet to obtain a sintered body by heating, and is characterized by being consumed during sintering in a sintering furnace.

希土類焼結磁石用焼結モールドは、モールド内部に焼結中に消耗する仕切り板を有し、仕切り板で区切られる複数の空洞を有する。複数の空洞に希土類磁石合金粉末を充填し、複数の焼結体を同時に製造できる。仕切り板は複数枚あってもよい。 The sintered mold for rare earth sintered magnet has a partition plate that is consumed during sintering inside the mold, and has a plurality of cavities partitioned by the partition plate. A plurality of sinters can be simultaneously manufactured by filling a plurality of cavities with rare earth magnet alloy powder. There may be a plurality of partition plates.

本発明に係る焼結用モールド及びそのしきり板の素材としては、樹脂が好ましい。
樹脂は材料費が安価で加工も容易でありながら、希土類合金粉末を充填したり配向したりする室温付近での機械的強度は十分に高いので、PLP法のモールドとして使用可能である。樹脂は高温にすると自然に消耗していくので、樹脂製モールドは自然に使い捨てとなる。モールドが焼結前に消滅すると、モールドに充填されていた合金粉末は形が崩れてしまい所望の形状の希土類焼結磁石が得られないと考えられていたため、このようなアイデアは従来試されることがなかった。
ここに樹脂とは、モールドの形状に成形することができ、かつ焼結中に消失する全ての有機化合物をいう。従って、必ずしも高分子化合物ではなく、例えばカンファーのような化合物も含まれる。
Resin is preferred as the material for the sintering mold and the cutting plate according to the present invention.
Resin is low in material cost and easy to process, but it has a sufficiently high mechanical strength near room temperature for filling and orienting rare earth alloy powder, so it can be used as a mold for the PLP method. Since the resin is naturally consumed at high temperatures, the resin mold is naturally disposable. When the mold disappears before sintering, it was thought that the alloy powder filled in the mold would lose its shape and a rare-earth sintered magnet with the desired shape could not be obtained. There was no.
Here, the resin means all organic compounds that can be molded into a mold shape and disappear during sintering. Therefore, it is not necessarily a polymer compound, and a compound such as camphor is also included.

樹脂製モールドに合金粉末を充填し、磁界中で粉末を配向したあと、樹脂製モールドは、焼結温度でも溶けたり変形したりしない焼結用台板(以下、単に台板という)に乗せられて焼結炉に搬送される。本発明者は、焼結炉を昇温していくとき、合金粉末の焼結が進行する前に樹脂製モールドが消耗しても、充填されている合金粉末の充填密度が一定値以上に高く、かつ、台板を傾けたり、強い振動を与えたりしないように注意すれば、合金粉末は充填されたままの形状を保ち続けることを確認した。モールドが消耗しても、合金粉末の形が崩れないために必要な充填密度は、粉末の平均粒径、粒子の形状、粉末への潤滑剤添加の有無と添加量などによって大きく変わる。標準的な希土類焼結磁石用合金粉末では、形状保持のために必要な充填密度は、その合金の理論密度の少なくとも35%以上でなければならない。潤滑剤が添加された粉末では、この値は40%以上になる。このように、合金粉末を焼結モールドに一定値以上の充填密度に充填すると、合金粉末の粒子どうしが絡み合って、焼結前に樹脂モールドが消耗しても合金粉末の形状が保持される。この合金粉末の形状保持は、合金粉末の充填密度を高くすることに加えて、合金粉末に磁界を印加して配向させることにより強化される。これは粉末を磁化することにより、粒子間の相互作用が増大するからである。合金粉末の形状が保たれていれば、焼結用モールドの有無にかかわらず、昇温と共に焼結が進行していく After filling the resin mold with alloy powder and orienting the powder in a magnetic field, the resin mold is placed on a sintering base plate (hereinafter simply referred to as a base plate) that does not melt or deform even at the sintering temperature. Then transported to the sintering furnace. When the temperature of the sintering furnace is increased, the inventor increases the filling density of the filled alloy powder to a certain value or higher even if the resin mold is consumed before the sintering of the alloy powder proceeds. Moreover, it was confirmed that the alloy powder keeps the shape as filled if care is taken not to tilt the base plate or give strong vibration. The filling density required for the shape of the alloy powder to remain unchanged even when the mold is consumed varies greatly depending on the average particle diameter of the powder, the shape of the particles, the presence / absence of addition of a lubricant to the powder, and the amount added. For standard rare earth sintered magnet alloy powders, the packing density required for shape retention must be at least 35% of the theoretical density of the alloy. This value is 40% or more in the powder to which the lubricant is added. As described above, when the alloy powder is filled in the sintered mold with a filling density of a certain value or more, the particles of the alloy powder are entangled with each other, and the shape of the alloy powder is maintained even if the resin mold is consumed before sintering. In addition to increasing the packing density of the alloy powder, the shape retention of the alloy powder is enhanced by applying a magnetic field to the alloy powder and orienting it. This is because the interaction between particles increases by magnetizing the powder. If the shape of the alloy powder is maintained, sintering proceeds with increasing temperature regardless of the presence or absence of a sintering mold.

本発明の希土類磁石焼結用モールドとして、あらゆる種類の樹脂を使用できる。希土類焼結磁石の焼結温度は1000℃を越えるので、このような高温になるまでに樹脂は蒸発や分解により消滅するからである。
しかし、焼結用モールドに使用される樹脂としては、成形しやすく、かつ焼結中に分解、蒸発がなるべく低温度で起こる樹脂が、焼結体の汚染や変形を抑えるために好ましい。アクリル樹脂、ポリエチレン、ポリエチレン・テレフタレート、ポリプロピレン、ポリスチレン、ABS樹脂、エチルセルロース、パラフィンワックス、スチレン・プタジエン共重合体、エチレン・酢酸ビニル共重合体、エチレン・エチルアクリレート共重合体、アタクチック・ポリプロピレン、メタクリル酸共重合体、ポリアミド、ポリブテン、ポリビニルアルコールなど主として熱可塑性樹脂を好適に用いることができる。また、フェノール樹脂、ポリエステル樹脂のような熱硬化性樹脂も用いることができる。これらの樹脂は、希土類磁石焼結中に、たかだか500℃程度までの昇温過程において消失する。
Any kind of resin can be used as the mold for sintering a rare earth magnet of the present invention. This is because the sintering temperature of the rare earth sintered magnet exceeds 1000 ° C., so that the resin disappears by evaporation or decomposition until reaching such a high temperature.
However, as the resin used for the sintering mold, a resin that is easy to mold and that decomposes and evaporates during sintering at a temperature as low as possible is preferable in order to suppress contamination and deformation of the sintered body. Acrylic resin, polyethylene, polyethylene terephthalate, polypropylene, polystyrene, ABS resin, ethyl cellulose, paraffin wax, styrene / ptadiene copolymer, ethylene / vinyl acetate copolymer, ethylene / ethyl acrylate copolymer, atactic polypropylene, methacrylic acid A thermoplastic resin such as a copolymer, polyamide, polybutene, and polyvinyl alcohol can be preferably used. Moreover, thermosetting resins such as phenol resins and polyester resins can also be used. These resins disappear during the heating process up to about 500 ° C. during rare earth magnet sintering.

本発明において、焼結は真空中、あるいは不活性ガス中で行われるが、本発明者は、昇温過程において炉内雰囲気に水素を流気させると、モールドを形成する樹脂が分解して発生する有機ガスと希土類磁石合金粉末とが反応して希土類成分が炭化するのを抑制できることを確認した。粉末中にバインダーや潤滑剤として多量の有機成分が含まれるときに、粉末と有機成分との反応を極力抑えるために、焼結温度以下の温度で加熱中に水素を流気させる従来技術(非特許文献2)が、本発明における、粉末とモールドとの反応を抑制するために有効なことを見出した。 In the present invention, sintering is performed in a vacuum or in an inert gas. However, when the present inventors flow hydrogen into the furnace atmosphere during the temperature rising process, the resin forming the mold is decomposed and generated. It was confirmed that the reaction between the organic gas and the rare earth magnet alloy powder could suppress the carbonization of the rare earth component. In order to suppress the reaction between the powder and the organic component as much as possible when the powder contains a large amount of organic component as a binder or lubricant, conventional technology for flowing hydrogen during heating at a temperature below the sintering temperature (non- It has been found that Patent Document 2) is effective for suppressing the reaction between the powder and the mold in the present invention.

これらの樹脂に、メチルスチレン、メタクリル酸メチル、アクリル酸メチル、イソブチルなどの熱分解性有機高分子や、ナフタリン、カンファーなどの昇華性物質を混ぜて、樹脂の易熱分解化を図り、焼結中の樹脂の消耗を早めて、焼結工程の生産性を改善することができる。また、モールドを構成する樹脂の易熱分解化により、樹脂成分と希土類磁石合金粉末との反応を抑えて、焼結磁石用合金粉末の汚染を軽減できる。 These resins are mixed with thermally decomposable organic polymers such as methylstyrene, methyl methacrylate, methyl acrylate and isobutyl, and sublimable substances such as naphthalene and camphor to facilitate thermal decomposition of the resin and sinter. The consumption of the resin in the inside can be accelerated and the productivity of the sintering process can be improved. In addition, by easily decomposing the resin constituting the mold, the reaction between the resin component and the rare earth magnet alloy powder can be suppressed, and contamination of the sintered magnet alloy powder can be reduced.

焼結用モールドの素材である樹脂中に焼結温度でも融解しない固体物質の粉末や繊維からなるフィラーを混練しておくと、合金粉末が焼結温度で焼結するとき、このフィラーが隣同士の焼結体の溶着を防止する。溶着防止のためのフィラーとしては、炭素粉末やアルミナ、BC、BN、希土類の酸化物、フッ化物、酸フッ化物などのセラミック粉末が適当である。When a filler made of solid material powder or fiber that does not melt even at the sintering temperature is kneaded in the resin that is the material of the sintering mold, when the alloy powder is sintered at the sintering temperature, the filler is adjacent to each other. Prevents welding of the sintered body. As the filler for preventing welding, ceramic powders such as carbon powder, alumina, B 4 C, BN, rare earth oxides, fluorides, and oxyfluorides are suitable.

薄板状焼結体は、焼結中に焼結炉の振動などで、隣の焼結体に倒れかかって斜めになり、もたれ合うことがある。斜めになり、もたれ合うと、焼結中あるいは焼結終了後でも高温状態にある間に、重力により薄板焼結体がたわむことがある。このようなことが起こると、できあがった焼結体は歪んだ不良品になってしまう。
樹脂モールドの樹脂中に球状のセラミック粉末などを混練しておくと、このような不良品の発生を防ぐことができる。焼結までの昇温中に樹脂が蒸発や分解により消失しても、球状のセラミック粉末は隣同士の焼結体の間に残留し、焼結体間の空隙に落下して下部の空隙を埋める。このためこの方法を用いれば、薄板焼結体同士のもたれ合いを防止できる。その結果、薄板焼結体の焼結過程でのたわみを防止できる。
The thin plate-like sintered body may lean against the adjacent sintered body due to vibration of a sintering furnace or the like during sintering and may lean against each other. If they are slanted and lean against each other, the thin plate sintered body may be bent by gravity while it is in a high temperature state even during or after sintering. When this happens, the finished sintered body becomes a distorted defective product.
When a spherical ceramic powder or the like is kneaded in the resin of the resin mold, the occurrence of such defective products can be prevented. Even if the resin disappears due to evaporation or decomposition during the temperature rise to sintering, the spherical ceramic powder remains between the adjacent sintered bodies and falls into the gap between the sintered bodies to form the lower gap. fill in. For this reason, if this method is used, it is possible to prevent the thin plate sintered bodies from leaning against each other. As a result, it is possible to prevent bending during the sintering process of the thin plate sintered body.

なお、混練しておくセラミック粉末は、球状に限定されない。樹脂に添加して樹脂の性質を改善するために、多種多様のフィラーを用いうる。これらのフィラーの中で、焼結温度でも融解しないセラミック製や炭素製の無定形、球状、針状、あるいは板状フィラーが、本発明の目的に使用できる。フィラーとして、希土類合金と高温で反応しにくい、BNやBCあるいは、希土類の酸化物、フッ化物、酸フッ化物の粉末も好適に用いることができる。The ceramic powder to be kneaded is not limited to a spherical shape. A wide variety of fillers can be used to add to the resin to improve the properties of the resin. Among these fillers, amorphous, spherical, acicular, or plate-like fillers made of ceramic or carbon that do not melt even at the sintering temperature can be used for the purpose of the present invention. As the filler, powders of BN, B 4 C, or rare earth oxides, fluorides, and oxyfluorides that hardly react with rare earth alloys at high temperatures can be suitably used.

モールドの素材である樹脂にフィラーを混ぜると、焼結中に発生する樹脂分解ガス発生量を低減させ、それにより、焼結体の密度を向上させ、焼結磁石の磁気特性を高めるという第2の効果を生じる。
モールドに希土類合金粉末を充填して、磁界中配向後焼結するとき、焼結温度に達するまでに樹脂が分解して排出される。このとき、樹脂が分解して発生する有機ガスと希土類合金粉末が反応し、合金粉末が炭化あるいは酸化されて汚染される。さらにモールド表面付近では、溶融した樹脂が直接希土類合金粉末と接触し希土類合金粉末を強く汚染する。これらの合金粉末の汚染は、焼結工程において焼結体の高密度化の障害になり、また焼結磁石の磁気特性を低下させる。
樹脂分解ガスによる合金粉末の汚染を極力低減させるためには、モールドの素材である樹脂にできるだけ多くのセラミック粉末などのフィラーを混ぜ、樹脂の絶対量を減らしておけばよい。
When filler is mixed with the resin of the mold, the amount of resin decomposition gas generated during sintering is reduced, thereby improving the density of the sintered body and increasing the magnetic properties of the sintered magnet. Produces the effect.
When the mold is filled with rare earth alloy powder and sintered after orientation in a magnetic field, the resin is decomposed and discharged until the sintering temperature is reached. At this time, the organic gas generated by decomposition of the resin reacts with the rare earth alloy powder, and the alloy powder is carbonized or oxidized to be contaminated. Further, in the vicinity of the mold surface, the molten resin directly contacts the rare earth alloy powder and strongly contaminates the rare earth alloy powder. Contamination of these alloy powders hinders densification of the sintered body in the sintering process, and deteriorates the magnetic properties of the sintered magnet.
In order to reduce contamination of the alloy powder by the resin decomposition gas as much as possible, it is only necessary to mix as much filler as ceramic powder with the resin as the mold material to reduce the absolute amount of the resin.

樹脂分解ガスによる合金粉末の汚染を極力低減させるためには、モールド中のフィラーの体積分率をできるだけ大きくして、樹脂の体積分率をできる限り小さくすることが望ましい。しかしあまり樹脂の体積分率を低下させると、モールドの機械的強度が低下し、モールドに希土類合金粉末を充填したり、磁界中配向したりするさいモールドが破損する。また、樹脂分が低下すると、モールドを射出成形法などで作製するとき、モールドを構成する材料の金型への注入や成形が困難になる。モールド中のフィラーの体積分率は40%以上が望ましく、60%以上がさらに望ましい。モールドがフィラーと樹脂の中実体(Full dense substance)であれば、フィラーの体積分率の上限は80%程度である。しかし、フィラー粒子同士が樹脂により接着されているだけで、粒子間の空隙が樹脂で埋められていない状態では、フィラーと樹脂の占める体積の合計に対するフィラーの体積分率は90%にもなりうる。モールドの機械的強度の限界から、モールド中におけるフィラーの体積分率の上限は95体積%である。 In order to reduce contamination of the alloy powder by the resin decomposition gas as much as possible, it is desirable to make the volume fraction of the filler in the mold as large as possible and to make the volume fraction of the resin as small as possible. However, if the volume fraction of the resin is reduced too much, the mechanical strength of the mold decreases, and the mold is damaged when the mold is filled with rare earth alloy powder or oriented in a magnetic field. Further, when the resin content is reduced, it becomes difficult to inject and mold the material constituting the mold into the mold when the mold is manufactured by an injection molding method or the like. The volume fraction of the filler in the mold is desirably 40% or more, and more desirably 60% or more. If the mold is a solid substance of the filler and the resin, the upper limit of the volume fraction of the filler is about 80%. However, the filler volume fraction can be as high as 90% with respect to the total volume occupied by the filler and the resin when the filler particles are merely bonded to each other by the resin and the voids between the particles are not filled with the resin. . From the limit of the mechanical strength of the mold, the upper limit of the volume fraction of the filler in the mold is 95% by volume.

焼結工程中での希土類合金粉末の汚染は、モールド表面付近のフィラーの体積分率を上げることでより低減できる。モールドの表面付近のフィラーの体積分率を上げるには、モールド作製後にモールド表面にフィラーを塗布してもよい。あるいはモールドの射出成形のさい、モールド作製用の金型表面に離形剤とともにフィラーを塗布して樹脂モールドを作製すれば、表面付近にフィラーが高濃度に存在する樹脂モールドが得られる。 Contamination of the rare earth alloy powder during the sintering process can be further reduced by increasing the volume fraction of the filler near the mold surface. In order to increase the volume fraction of the filler in the vicinity of the mold surface, the filler may be applied to the mold surface after the mold is manufactured. Alternatively, at the time of injection molding of a mold, if a resin mold is produced by applying a filler together with a mold release agent to the mold mold surface, a resin mold having a high concentration of filler near the surface can be obtained.

本発明の方法で希土類磁石を作製するとき、焼結中に樹脂から発生する有機ガスによる希土類合金粉末の上述した汚染を極力低減するため、モールドの底を除去してもよい。底を除去したモールドを、以下底なしモールドと呼ぶ。
底がなければ、底を構成する樹脂からの有機ガス発生が起こらない。
また、モールドの側壁や仕切り板から発生する有機ガスは、仕切り板や側壁の表面に沿って移動し、各所の隙間からモールド外に拡散する。モールドの底が密封されていると、それだけ隙間が少ないので有機ガスのモールド内からの拡散が阻害される。モールドの底を除去すれば、それだけ有機ガスが拡散する隙間が増加する。
When producing a rare earth magnet by the method of the present invention, the bottom of the mold may be removed in order to reduce the above-mentioned contamination of the rare earth alloy powder by the organic gas generated from the resin during sintering. The mold from which the bottom is removed is hereinafter referred to as a bottomless mold.
If there is no bottom, organic gas generation from the resin constituting the bottom does not occur.
In addition, the organic gas generated from the side wall and the partition plate of the mold moves along the surfaces of the partition plate and the side wall, and diffuses out of the mold through the gaps at various places. If the bottom of the mold is sealed, the gap is so small that diffusion of organic gas from the mold is hindered. If the bottom of the mold is removed, the gap through which the organic gas diffuses increases accordingly.

底なしモールドを使用すれば、ゆがみが極めて小さく、磁気特性が極めて高い、希土類焼結磁石の生産が可能になる。なお、この効果は底が全くないモールドでなくても、底の一部に穴を設けるだけでも、ある程度の効果が期待できる。 The use of a bottomless mold makes it possible to produce rare earth sintered magnets with very little distortion and very high magnetic properties. Note that this effect can be expected to a certain degree even if the hole is not provided in the mold with no bottom and only a hole is provided in a part of the bottom.

底なしモールドに合金粉末を充填する際には、底なしモールドに底台板を取り付けておく必要がある。焼結体は、焼結後底台板に軽く接着されて、多少の振動があっても底台板の上に安定に立っている。このため、焼結体が薄くて背が高いものであっても、焼結中に焼結体が隣の焼結体にもたれかかって曲がることは起こらない。このような効果を発揮する底台板としては、炭素製、BC、あるいはBNの板が有効であることを確認した。When filling the bottomless mold with the alloy powder, it is necessary to attach a base plate to the bottomless mold. The sintered body is lightly bonded to the bottom plate after sintering, and stands stably on the bottom plate even if there is some vibration. For this reason, even if the sintered body is thin and tall, the sintered body does not lean against the adjacent sintered body and bend during sintering. It was confirmed that a carbon plate, a B 4 C plate, or a BN plate is effective as a base plate that exhibits such an effect.

樹脂とフィラーの混合物より作製されたモールドは、焼結により樹脂は消耗しフィラーは残る。このときフィラーは粉末状態になっているので、吸引等により回収し、洗浄し、再利用することができる。再利用すれば、希土類磁石の生産に伴う廃棄物が減少する。 In a mold made of a mixture of resin and filler, the resin is consumed by sintering and the filler remains. At this time, since the filler is in a powder state, it can be recovered by suction or the like, washed, and reused. Reuse reduces the waste associated with the production of rare earth magnets.

希土類焼結磁石にはNd−Fe−B焼結磁石とSm−Co系焼結磁石がある。これまで述べたことは両者に適用できる。Sm−Co系焼結磁石の場合は、焼結モールドに充填するSm−Co合金粉末を真密度の40%以上とすることが好ましい。この充填密度にまで充填し、磁界配向後焼結すれば、Nd−Fe−B焼結磁石と同様に焼結中に消耗する焼結モールドを用いてSm−Co系焼結磁石を得ることができる。
Sm−Co系焼結磁石用合金粉末の焼結温度は、1200℃にも達する高温である。そのため、従来の非消耗モールドを用いる従来のプレスなし法(PLP法)では、どのような材料でモールドを作っても、モールドの損傷が激しすぎて量産技術としての適用が困難である。本発明の使い捨て、消耗モールド式PLP法では、焼結温度が高いことは全く問題にならない。本発明の、使い捨て、消耗モールドを用いるPLP法はNd−Fe−B焼結磁石にもSm−Co焼結磁石にも、量産技術として適用可能である。
Rare earth sintered magnets include Nd—Fe—B sintered magnets and Sm—Co based sintered magnets. What has been said so far is applicable to both. In the case of the Sm—Co based sintered magnet, it is preferable that the Sm—Co alloy powder filled in the sintered mold is 40% or more of the true density. If this packing density is filled and sintered after magnetic field orientation, an Sm—Co based sintered magnet can be obtained using a sintered mold that is consumed during sintering in the same manner as an Nd—Fe—B sintered magnet. it can.
The sintering temperature of the alloy powder for Sm—Co based sintered magnet is a high temperature reaching 1200 ° C. Therefore, in the conventional press-less method (PLP method) using a conventional non-consumable mold, even if a mold is made with any material, the damage to the mold is so severe that it is difficult to apply as a mass production technique. In the disposable and consumable mold type PLP method of the present invention, a high sintering temperature is not a problem at all. The PLP method using a disposable or consumable mold according to the present invention can be applied to Nd-Fe-B sintered magnets and Sm-Co sintered magnets as mass production techniques.

希土類焼結磁石は自動車や電気製品に使われるため、ある1つの型の希土類焼結磁石の典型的な生産量は数十万個から数百万個である。そのため本発明に係る焼結モールドは多数の成形品を効率よく作製できる射出成形法、真空成形法、あるいは圧空成形法によって作製されることが望ましい。これらの樹脂成形法では最初の金型が高価であるが、希土類磁石の大量生産に対応して、1つの金型で樹脂モールドを大量に作製すれば、希土類焼結磁石生産費用全体に占める金型費用と樹脂材料費および樹脂成形工程費用の合計はきわめて小さくなる。 Since rare earth sintered magnets are used in automobiles and electrical products, the typical production of one type of rare earth sintered magnet is several hundred thousand to several million. Therefore, it is desirable that the sintered mold according to the present invention be manufactured by an injection molding method, a vacuum molding method, or a pressure molding method that can efficiently produce a large number of molded products. In these resin molding methods, the first mold is expensive, but if a large number of resin molds are produced with one mold in response to the mass production of rare earth magnets, the mold accounting for the total production cost of rare earth sintered magnets. The sum of mold cost, resin material cost and resin molding process cost is extremely small.

焼結モールドを繰り返し使用する従来法では、機械的強度の確保のため、焼結モールド各部の板厚を著しく小さくすることはできなかった。しかし樹脂はきわめて成形性が良く、かつ室温付近では機械的強度も十分高いので、モールドの容器部分や仕切り板部分を薄くすることができる。これらの厚さを1mm以下に、さらには、0.5mm以下にすることも可能である。このように薄くしても粉末充填時や粉末配向時に容器部分や仕切り板部分にかかる応力に十分耐えられる。
焼結モールドは射出成形法などの生産性の高い樹脂成形法で作製するので、モールドとその仕切り板は同一の樹脂で一体的に製造される。
In the conventional method in which the sintered mold is repeatedly used, the plate thickness of each part of the sintered mold cannot be remarkably reduced in order to ensure the mechanical strength. However, since the resin has very good moldability and mechanical strength is sufficiently high near room temperature, the container portion and partition plate portion of the mold can be made thin. These thicknesses can be 1 mm or less, and further 0.5 mm or less. Even if it is made thin in this manner, it can sufficiently withstand the stress applied to the container portion and the partition plate portion during powder filling and powder orientation.
Since the sintered mold is manufactured by a highly productive resin molding method such as an injection molding method, the mold and its partition plate are integrally manufactured from the same resin.

モールドを樹脂で作製し、かつモールドの仕切り板を薄くしておくと、仕切り板で区切られた各空洞に粉末を均一に充填することが容易になることを発見した。仕切り板が厚いと、仕切り板上部に粉末が乗ることを避けるために、一つ一つの空洞ごとに粉末を均一に充填することが必要で、多数個の空洞をもつモールドでは、充填量のばらつきは不可避である。しかし、仕切り板が薄いと、一つのモールドに形成された多数個の空洞全体の上部の空間に囲いを設けて、この囲いに粉末を均一に充填して、その後、振動やタッピングにより高密度化して、すべての空洞に、所定の充填密度まで、粉末を均一に充填することができる。こうすると、囲いで囲まれた一つの空間に粉末を均一に充填することにより、すべての空洞に均一に粉末を充填することができる。一つの大きい空間に均一に粉末を充填することのほうが、小さい多数個の空洞に別々に充填して、空洞ごとの充填量のばらつきを小さくすることのほうが困難なのは当然である。空洞ごとの充填量のばらつきを小さくすることができれば、焼結後の焼結体の寸法ばらつきを小さくすることができ、焼結後の機械加工を最小限にできる。このように多数個の空洞に同時に粉末を充填できて、かつ空洞間の充填ばらつきを小さくできるのは、樹脂製のきわめて薄い仕切り板を持つモールドが使用できるからである。仕切り板の厚さは1mm以下が好ましく、0.5mm以下がさらに好ましい。仕切り板の機械的強度の限界から、仕切り板の厚さの限界は0.1mmである。 It has been found that if the mold is made of a resin and the partition plate of the mold is made thin, it is easy to uniformly fill the cavities delimited by the partition plate. When the partition plate is thick, it is necessary to uniformly fill the powder in each cavity in order to avoid powder getting on top of the partition plate. Is inevitable. However, if the partition plate is thin, an enclosure is provided in the upper space of the entire number of cavities formed in one mold, and the powder is uniformly filled in the enclosure, and then the density is increased by vibration or tapping. Thus, all the cavities can be uniformly filled up to a predetermined packing density. In this way, the powder can be uniformly filled in all the cavities by uniformly filling the powder in one space surrounded by the enclosure. Naturally, it is more difficult to uniformly fill a large space with a small number of small cavities separately to reduce the variation in filling amount for each cavity. If the variation in filling amount for each cavity can be reduced, the dimensional variation in the sintered body after sintering can be reduced, and the machining after sintering can be minimized. The reason why a large number of cavities can be filled with powder at the same time and the filling variation between cavities can be reduced is that a mold having a very thin partition plate made of resin can be used. The thickness of the partition plate is preferably 1 mm or less, and more preferably 0.5 mm or less. From the limit of the mechanical strength of the partition plate, the limit of the thickness of the partition plate is 0.1 mm.

樹脂製モールドは使い捨てであるから、モールド使用後のモールドの保守管理にかかる費用を節減できる。また、生産を休止しているとき、従来のPLP法では、つぎに生産が始まるまで、多量に作ったモールドを保管しておかなければいけない。多量のモールドの保管には大きな保管場所が必要である。しかし本発明の使い捨てモールドによるPLP法では、樹脂製モールドを作るための金型だけを保管しておくだけで良い。金型の保管には大きな保管場所は不要であり、従来のPLP法に比べてモールドの保管費用の低減ができる。 Since the resin mold is disposable, the cost for maintenance of the mold after using the mold can be reduced. In addition, when production is suspended, in the conventional PLP method, it is necessary to store a large amount of molds until production is next started. A large storage space is required to store a large amount of molds. However, in the PLP method using the disposable mold of the present invention, it is only necessary to store only a mold for making a resin mold. A large storage space is not required for storing the mold, and the storage cost of the mold can be reduced as compared with the conventional PLP method.

上述のように樹脂製モールドを用い希土類焼結磁石を製造すると、その製造原価を従来法より著しく低下させることができる。この方法により多数個同時焼結により、長方形平板品、異形形状平板品、湾曲したセグメント状平板品などの板状品を効率よく生産できる。 When a rare earth sintered magnet is manufactured using a resin mold as described above, the manufacturing cost can be significantly reduced as compared with the conventional method. By this method, it is possible to efficiently produce plate-shaped products such as rectangular flat plate products, irregular-shaped flat plate products, and curved segmented flat plate products by simultaneous sintering.

希土類焼結磁石の製造において使い捨ての樹脂製焼結モールドを用いれば、繰り返し使用の場合に必要な機械的強度が要求されなくなる。その結果、焼結モールドの壁や仕切り板の厚みを小さくでき、希土類焼結磁石用合金粉末を焼結モールドの複数の空洞に一様に充填するのが容易となる。また、壁や仕切り板の厚みを小さくできると製造装置単位面積あたりの焼結体の製造個数を増加でき、生産効率が上昇する。 If a disposable resin sintered mold is used in the production of a rare earth sintered magnet, the mechanical strength required for repeated use is not required. As a result, the thickness of the sintered mold wall and partition plate can be reduced, and it becomes easy to uniformly fill the plurality of cavities of the sintered mold with the alloy powder for rare earth sintered magnet. Further, if the thickness of the wall or partition plate can be reduced, the number of manufactured sintered bodies per unit area of the manufacturing apparatus can be increased, and the production efficiency is increased.

樹脂製の焼結モールドは、常温では合金粉末の充填やその磁界中配向に必要な十分な強度を有し、一方焼結温度に達する前に消耗し、使い捨てとなる。焼結モールド中に充填される粉末の充填密度を一定値以上に高くしておけば、従来の技術常識に反し、焼結体の形状が焼結中や焼結後に崩れることはない。 The resin-made sintered mold has sufficient strength necessary for filling of the alloy powder and its orientation in the magnetic field at room temperature, and is consumed and disposable before reaching the sintering temperature. If the packing density of the powder filled in the sintering mold is made higher than a certain value, the shape of the sintered body will not collapse during or after sintering, contrary to conventional technical common sense.

焼結モールドの素材である樹脂に焼結温度でも融解しない固体物質からなるフィラーを混練しておくことにより、焼結体の厚みが薄い場合でも、焼結中や焼結後の焼結体の転倒や融着を防止できる。さらに、フィラーを存在させることにより、樹脂を用いたことによる悪影響を減少させることができる。モールドの内表面付近でのフィラーの体積分率を上げることにより、モールドの強度を保ちつつ樹脂の悪影響を避けることができる。 By kneading the resin, which is the material of the sintering mold, with a filler made of a solid material that does not melt even at the sintering temperature, even if the sintered body is thin, Falling and fusing can be prevented. Furthermore, the presence of the filler can reduce the adverse effects caused by using the resin. By increasing the volume fraction of the filler in the vicinity of the inner surface of the mold, it is possible to avoid the adverse effects of the resin while maintaining the strength of the mold.

焼結モールドを底なしとすることにより、分解生成ガス等による樹脂からの悪影響をさらに低減できる。 By making the sintered mold bottomless, adverse effects from the resin due to decomposition product gas and the like can be further reduced.

樹脂製の焼結モールドは射出成形法、真空成形法、圧空成形法により容易に安価に大量生産できる。樹脂製の使い捨て焼結モールドの採用により、希土類焼結磁石の製造コストを大幅に下げることができる。 A resin-made sintered mold can be easily mass-produced at low cost by an injection molding method, a vacuum molding method, or a pressure molding method. By employing a resin-made disposable sintered mold, the manufacturing cost of the rare earth sintered magnet can be greatly reduced.

本発明は、Nd−Fe−B焼結磁石とSm−Co系焼結磁石の双方に適用できる。 The present invention can be applied to both Nd—Fe—B sintered magnets and Sm—Co based sintered magnets.

図1は、平板用モールドの一例の斜視図である。
図2は、平板用モールドとガイドセットの一例の図である。
図3は、セグメント用モールドの一例の斜視図である。
図4は、VCM用モールド(扇形)の一例の斜視図である。
図5は、焼結後の転倒防止手段の図である。
図6は、底なしモールドの一例の斜視図である。
図7は、底なしモールドの一例の断面図である。
図8は、底なしモールドと粉末充填セットの一例の図である。
図9は、底なしモールドの磁界配向セットの一例の図である。
図10は、底なしモールドの焼結中のセットの一例の図である。
図11は、底なしモールドを用いたときの焼結後の状態の一例の図である。
FIG. 1 is a perspective view of an example of a flat plate mold.
FIG. 2 is a diagram of an example of a flat plate mold and a guide set.
FIG. 3 is a perspective view of an example of a segment mold.
FIG. 4 is a perspective view of an example of a VCM mold (fan shape).
FIG. 5 is a diagram of the means for preventing overturning after sintering.
FIG. 6 is a perspective view of an example of a bottomless mold.
FIG. 7 is a cross-sectional view of an example of a bottomless mold.
FIG. 8 is a diagram of an example of a bottomless mold and a powder filling set.
FIG. 9 is a diagram of an example of a magnetic field orientation set for a bottomless mold.
FIG. 10 is an example of a set during sintering of a bottomless mold.
FIG. 11 is a diagram of an example of a state after sintering when a bottomless mold is used.

10 希土類磁石合金粉末
11 ガイド
12 モールド
13 モールド支持箱
14 焼結体
15 タルク
16 底なしモールド
17 底台板
18 モールド蓋
10 rare earth magnet alloy powder 11 guide 12 mold 13 mold support box 14 sintered body 15 talc 16 bottomless mold 17 bottom base plate 18 mold lid

本発明の実施例を以下に示すが、本発明は実施例に限定されるわけではない。また、各実施例において、焼結用モールドは個別的に試作した場合もあるが、大量生産の場合は射出成形法、真空成形法、あるいは圧空成形法により多数製作されるべきことは当然である。 Examples of the present invention are shown below, but the present invention is not limited to the examples. In each embodiment, the sintering mold may be individually made as a prototype, but in the case of mass production, it is natural that a large number should be manufactured by an injection molding method, a vacuum molding method, or a pressure forming method. .

希土類焼結磁石としてはNd−Fe−B焼結磁石の他にSm−Co系焼結磁石がある。以下の実施例において、Nd−Fe−B焼結磁石の結果は、技術的にはSm−Co系焼結磁石にも適用できる。 As rare earth sintered magnets, there are Sm—Co sintered magnets in addition to Nd—Fe—B sintered magnets. In the following examples, the result of the Nd—Fe—B sintered magnet is technically applicable to the Sm—Co based sintered magnet.

(合金微粉末の作成)
組成(重量分率)が31.5%Nd,0.99%B,0.1%Cu,0.25%Al,残部Feであるストリップキャスト合金に水素を吸蔵させて水素解砕を行いNdFeB焼結磁石用合金粗粉末を得た。この粗粉末を窒素ガスによるジェットミルにより粉砕してNdFeB焼結磁石用合金微粉末を作製した。この微粉末の粒子サイズをレーザー回折・散乱法により測定した。平均粒径はD50=5.2μmであった。この微粉末にステアリン酸亜鉛を0.1重量%添加して、ミキサーで攪拌混合した。以下、実施例1〜8において、この微粉末を用いて焼結磁石の作製を行った。
(Preparation of fine alloy powder)
NdFeB is obtained by occluding hydrogen in a strip cast alloy having a composition (weight fraction) of 31.5% Nd, 0.99% B, 0.1% Cu, 0.25% Al, and the balance Fe, and performing hydrogen cracking. A coarse alloy powder for a sintered magnet was obtained. This coarse powder was pulverized by a jet mill using nitrogen gas to prepare an alloy fine powder for NdFeB sintered magnet. The particle size of the fine powder was measured by a laser diffraction / scattering method. The average particle size was D 50 = 5.2 μm. To this fine powder, 0.1% by weight of zinc stearate was added and stirred and mixed with a mixer. Hereinafter, in Examples 1 to 8, a sintered magnet was produced using this fine powder.

厚さ0.5mmのアクリル樹脂シートを貼り合わせて、図1に示す平板状希土類焼結磁石用焼結モールドを作製した。このモールドは、粉末が充填される直方体形状の5つの空洞をもち、0.2mmの厚さの仕切り板によって仕切られている。各空洞の深さは35.7mm、開口部長手方向の辺の長さは47.6mm、開口部短い方向(仕切板に垂直な方向)の辺の長さは9.4mmであった。図2に示すように、モールド12を外部から保持するモールド支持箱13と、支持箱上面に粉末充填に必要なガイド11を設置した。 An acrylic resin sheet having a thickness of 0.5 mm was bonded to produce a flat mold for a rare earth sintered magnet shown in FIG. This mold has five cuboid-shaped cavities filled with powder and is partitioned by a partition plate having a thickness of 0.2 mm. The depth of each cavity was 35.7 mm, the length of the side in the longitudinal direction of the opening was 47.6 mm, and the length of the side in the short direction of the opening (the direction perpendicular to the partition plate) was 9.4 mm. As shown in FIG. 2, a mold support box 13 that holds the mold 12 from the outside, and a guide 11 necessary for powder filling are installed on the upper surface of the support box.

ガイド11の上部から、上述した希土類焼結磁石用合金微粉末271.6gをモールド12に充填した。希土類焼結磁石用合金微粉末は、充填直後は図2の灰色の部分に示されるように、ガイド11上端近くまで達していた。このときの充填密度は約2g/cmであった。モールドをモールド支持箱ごと振動させ、振動させつつガイド上部から粉末を軽く押しつけると、粉末のレベルはモールド上端まで下がった。このとき、各空洞に充填された粉末の充填密度は3.4g/cmであった。
その後、ガイドを取り去り、モールド上部に蓋を取り付けた。粉末が充填され蓋をされたモールドを、モールド支持箱を取り付けたまま磁界配向用コイルの中に入れ、仕切板に垂直な方向に5Tのパルス磁界を印加した。磁界配向後、モールド支持箱を取り外した。
From the upper part of the guide 11, the mold 12 was filled with 271.6g of the alloy fine powder for rare earth sintered magnet described above. The alloy fine powder for rare earth sintered magnet reached the vicinity of the upper end of the guide 11 immediately after filling, as shown in the gray part of FIG. The packing density at this time was about 2 g / cm 3 . When the mold was vibrated together with the mold support box and the powder was lightly pressed from the upper part of the guide while vibrating, the powder level was lowered to the upper end of the mold. At this time, the packing density of the powder filled in each cavity was 3.4 g / cm 3 .
Thereafter, the guide was removed, and a lid was attached to the upper part of the mold. The mold filled with powder and covered was placed in a magnetic field orientation coil with the mold support box attached, and a 5 T pulse magnetic field was applied in a direction perpendicular to the partition plate. After magnetic field orientation, the mold support box was removed.

希土類焼結磁石用合金微粉末が充填されたモールド12を、蓋をしたまま、厚さ3mmのステンレス板(焼結台板)の上に乗せて焼結炉に入れた。全体を真空排気後、焼結炉の昇温を開始した。昇温開始と同時に焼結炉内に水素を導入し、水素圧力を約1Paに維持するように、ポンプ排気速度と水素導入量を調整しつつ、3℃/分の昇温速度で500℃まで昇温した。水素圧力1Paの雰囲気中、500℃で1時間保持したあと水素の供給を止めた。ターボ分子ポンプで排気しながら、5℃/分の昇温速度で800℃まで昇温し、800℃で1時間保持したあと、再び5℃/分の昇温速度で1050℃まで昇温した。1050℃で2時間保持したあと加熱をやめ、炉の中で室温まで冷却した。 The mold 12 filled with the alloy fine powder for rare earth sintered magnet was put on a stainless steel plate (sintered base plate) having a thickness of 3 mm and put in a sintering furnace with the lid covered. After the whole was evacuated, the temperature of the sintering furnace was increased. Hydrogen is introduced into the sintering furnace simultaneously with the start of temperature increase, and the pump exhaust rate and the hydrogen introduction amount are adjusted so that the hydrogen pressure is maintained at about 1 Pa, and the temperature is increased to 500 ° C. at a temperature increase rate of 3 ° C./min. The temperature rose. After holding at 500 ° C. for 1 hour in an atmosphere with a hydrogen pressure of 1 Pa, the supply of hydrogen was stopped. While evacuating with a turbo molecular pump, the temperature was raised to 800 ° C. at a heating rate of 5 ° C./min, held at 800 ° C. for 1 hour, and then raised to 1050 ° C. at a heating rate of 5 ° C./min. After holding at 1050 ° C. for 2 hours, heating was stopped and the mixture was cooled to room temperature in a furnace.

焼結炉から焼結体を焼結台板ごと静かに取り出した。モールドは完全に消失していた。5個の焼結体は焼結台板の上に倒れることなく、一定間隔で整列していた。焼結体の重量は5個ともきわめてよく揃っていることを確認した。 The sintered body was gently taken out of the sintering furnace together with the sintered base plate. The mold was completely lost. The five sintered bodies were aligned at regular intervals without falling on the sintering base plate. It was confirmed that the weights of all the five sintered bodies were extremely well aligned.

図1に示すモールドを使用して行った上述の実験により、次のことを確認した。
(1)図2のように、複数の空洞に同時に給粉しても、機械的振動と軽荷重の押し込みにより、各空洞に高密度粉末充填状態を同時に、かつ高い能率で実現できた。各空洞を分ける仕切板が薄く、仕切り板上部に粉末が残って、各空洞への粉末の振り分けに支障をきたすことがないことを確認した、各空洞に振り分けられた粉末量は均一で、そのため、焼結後、空洞間で焼結体の重量および寸法は極めてよく揃っていることを確認した。
(2)モールドが焼結完了前に消耗しても、充填されていた粉末が飛散したり、型崩れが起こったりするようなことは全くなかった。焼結前にモールド容器が消耗することにより懸念される焼結体の形状欠損は起こらなかった。
The following was confirmed by the above-described experiment conducted using the mold shown in FIG.
(1) As shown in FIG. 2, even if powder is simultaneously supplied to a plurality of cavities, a high-density powder filling state can be simultaneously and efficiently achieved in each cavity by mechanical vibration and pressing of a light load. The partition plate that divides each cavity is thin, and it has been confirmed that the powder remains in the upper part of the partition plate and does not interfere with the powder distribution to each cavity. After the sintering, it was confirmed that the weight and dimensions of the sintered bodies were very well aligned between the cavities.
(2) Even when the mold was consumed before the completion of sintering, the filled powder did not scatter or lost shape. The shape defect of the sintered body, which was a concern due to the consumption of the mold container before sintering, did not occur.

図3のようなアークセグメント用モールド、および図4のようなVCM用モールドを、厚さ0.2mmのスチレン製フィルムを貼り合わせて作製した。セグメント用モールドによって作られる希土類焼結磁石は曲面を有しており、モータや発電機のロータ外周に取り付けて用いられる。VCMモールドによって作られる希土類焼結磁石は平面ではあるがその上下が曲線となっており、ハードディスクドライブ中で磁気ヘッドを駆動するボイスコイルモータ(VCM)に使われる。この2種類の形状は、実施例1で作製した長方形断面の板状形状と合わせて、希土類磁石として最もよく用いられる形状である。 The arc segment mold as shown in FIG. 3 and the VCM mold as shown in FIG. 4 were produced by laminating a 0.2 mm thick styrene film. The rare earth sintered magnet made by the segment mold has a curved surface and is used by being attached to the outer periphery of the rotor of a motor or generator. The rare earth sintered magnet made by the VCM mold is flat but curved up and down, and is used for a voice coil motor (VCM) that drives a magnetic head in a hard disk drive. These two types of shapes are the shapes most often used as rare earth magnets in combination with the rectangular plate-like plate shape produced in Example 1.

図3のアークセグメント用モールド及び図4のVCM用モールドに図2と同様の構成のモールド支持箱とガイドを取り付け、実施例1と同じ希土類焼結磁石用合金微粉末をモールドの各空洞に充填密度3.4g/cmになるように充填した。その後ガイドを取り外し、モールドに蓋をした。粉末が充填されたモールドを、モールド支持箱を取りつけたまま、磁界配向コイルに入れ、モールドの仕切り板に垂直な方向に5Tのパルス磁界を印加した。セグメント用モールドでは磁界印加方向は、仕切り板の中央において、仕切り板に垂直な方向である。磁界配向後、モールド支持箱と蓋をつけたまま焼結台板に乗せて焼結炉に入れ、実施例1と同じ焼結条件で焼結を行い、焼結体を取り出した。どちらの形状の焼結体も、焼結台板の上に整列した状態で焼結されていた。アークセグメント用モールド、およびVCM用モールドによって、アークセグメント形状、およびVCM形状のNd−Fe−B焼結磁石が作製できることを確認した。The mold support box and guide having the same configuration as in FIG. 2 are attached to the arc segment mold in FIG. 3 and the VCM mold in FIG. 4, and the same rare earth sintered magnet alloy powder as in Example 1 is filled in each cavity of the mold. It was filled so as to have a density of 3.4 g / cm 3 . The guide was then removed and the mold was capped. The mold filled with the powder was placed in a magnetic field orientation coil with the mold support box attached, and a 5 T pulse magnetic field was applied in a direction perpendicular to the partition plate of the mold. In the segment mold, the magnetic field application direction is a direction perpendicular to the partition plate at the center of the partition plate. After the magnetic field orientation, the mold support box and the lid were put on the sintering base plate, placed in a sintering furnace, sintered under the same sintering conditions as in Example 1, and the sintered body was taken out. Both types of sintered bodies were sintered in an aligned state on the sintering base plate. It was confirmed that an arc segment shape and a VCM-shaped Nd—Fe—B sintered magnet could be produced by the arc segment mold and the VCM mold.

図1の平板用モールドと、仕切り板の枚数は変えずに垂直な方向の長さを半分にし、他の寸法はすべて同じとした平板用モールドを、タルクを40重量%含む厚さ0.2mmのアクリル樹脂フィルムを用いて作製した。タルクの平均粒径は10μmである。このモールドを使用して、実施例1と同じ条件で粉末充填と磁場中配向を行った。その後モールド支持箱と蓋を取りつけたまま焼結台版に乗せて焼結炉に入れ、実施例1と同じ焼結条件で焼結してNd−Fe−B焼結磁石を作製した。できあがった焼結体の寸法は、実施例1の時の平板焼結体の厚さがちょうど半分で、他の寸法は実施例1で作製した焼結体の寸法と全く同じであった。上述したようにモールドを樹脂とタルクで作製したので、焼結過程で、分解や蒸発により樹脂は消耗してなくなるが、タルクは消失せずに残り、焼結体のあいだの空間の下部に落下して、薄い焼結体の転倒を防止する働きをすることを確認した。 The flat plate mold of FIG. 1 and the flat plate mold in which the length in the vertical direction is halved without changing the number of partition plates and all other dimensions are the same, and the thickness is 0.2 mm including 40% by weight of talc. It was produced using an acrylic resin film. The average particle size of talc is 10 μm. Using this mold, powder filling and orientation in a magnetic field were performed under the same conditions as in Example 1. After that, the mold support box and the lid were attached and placed on the sintering table, put into a sintering furnace, and sintered under the same sintering conditions as in Example 1 to produce an Nd—Fe—B sintered magnet. The size of the sintered body thus obtained was exactly half the thickness of the flat plate sintered body in Example 1, and the other dimensions were exactly the same as those of the sintered body produced in Example 1. As described above, since the mold was made of resin and talc, the resin was not consumed due to decomposition or evaporation during the sintering process, but the talc remained without disappearing and dropped to the lower part of the space between the sintered bodies. It was confirmed that it functions to prevent the thin sintered body from falling.

比較例として、上述の実験と同じ実験を、タルクを含まないアクリル樹脂を用いて作製した平板用モールドを使用して行った。それぞれの焼結体は、隣の焼結体にもたれ合っていた。もたれ合ってくっつき合っている焼結体や、重力でたわんでしまっている焼結体ばかりで、焼結台板上にきちんと立っていて、変形のない焼結体は皆無であった。
このように、樹脂のみで作製したモールドを用いて薄い平板状焼結体を作製すると、焼結中に焼結炉の振動などにより焼結体が転倒することがあり、あるいは隣の焼結体にもたれかかって焼結体が曲がることがあることが確認された。この実験により、薄い平板状焼結体を作製するときは、モールドの素材樹脂中に焼結により消失しない物質を含めておくことが有用なことが確認された。
As a comparative example, the same experiment as described above was performed using a flat plate mold prepared using an acrylic resin containing no talc. Each sintered body leaned against the adjacent sintered body. There were only sintered bodies that were leaning and sticking together and sintered bodies that were bent due to gravity, and there were no sintered bodies that stood on the sintering base plate and had no deformation.
As described above, when a thin flat plate-like sintered body is produced using a mold made of only resin, the sintered body may fall down due to vibration of the sintering furnace during the sintering, or the adjacent sintered body. It was confirmed that the sintered body might bend due to leaning against it. From this experiment, when producing a thin flat plate-like sintered body, it was confirmed that it is useful to include a substance that does not disappear by sintering in the mold material resin.

実施例3と同じモールドを用いて、実施例3と同じ粉末充填、磁場中配向を行った。図5(a)はモールドに粉末を充填した状態の断面図を示している。その後、焼結時のモールド支持箱の側壁と底面が全て必要か検討するため、モールドの仕切り板と垂直な側の側壁を除去し、仕切り板と平行な側の側壁と底面を残した。モールドに蓋をつけた状態で焼結台板に乗せて、焼結炉に入れた。この状態で、実施例3と同じ条件で焼結した。焼結後、静かに焼結台板ごと品物を取り出したところ、実施例3のときと同様、5個の焼結体が整列して歪みもなかった。図5(b)はこの状態の側面図若しくは断面図を示している。焼結体14は、転倒防止の働きをするタルク15に支えられていた。転倒防止の効果が効を奏していることが確認された。
極めて薄い板状焼結体を作製するとき、焼結体の転倒防止のためにモールド支持箱のモールド仕切り板に平行な側壁は必要であるが、モールド支持箱のモールド仕切り板に垂直の側の側壁は除去してもよいことが本実施例により確認された。
Using the same mold as in Example 3, the same powder filling and magnetic field orientation as in Example 3 were performed. FIG. 5A shows a cross-sectional view of the mold filled with powder. Thereafter, in order to examine whether the side wall and bottom surface of the mold support box during sintering are all necessary, the side wall on the side perpendicular to the partition plate of the mold was removed, leaving the side wall and bottom surface on the side parallel to the partition plate. The mold was put on a sintering base plate with a lid and placed in a sintering furnace. In this state, sintering was performed under the same conditions as in Example 3. After the sintering, the product was taken out together with the sintered base plate. As in Example 3, the five sintered bodies were aligned and there was no distortion. FIG.5 (b) has shown the side view or sectional drawing of this state. The sintered body 14 was supported by a talc 15 that functions to prevent overturning. It was confirmed that the fall prevention effect is effective.
When producing an extremely thin plate-like sintered body, a side wall parallel to the mold partition plate of the mold support box is necessary to prevent the sintered body from falling, but the side wall on the side perpendicular to the mold partition plate of the mold support box is necessary. This example confirmed that the sidewalls may be removed.

図1の平板状希土類焼結磁石用焼結モールドを、プレス成形法により、カンファーのみ、および40体積%と60体積%のBNを含む、カンファーとBNの混合物からなる3種類のモールドを作製した。モールド側壁、底板、および仕切り板の厚さは0.5mmとした。この3種類のモールドは粉末が充填される直方体形状の5つの空洞をもち、0.5mmの厚さの仕切り板によって仕切られている。モールド側壁および底板の厚さも0.5mmである。各空洞の深さは35.7mm、開口部、長手方向の辺の長さは47.6mm、開口部短い方向(仕切板に垂直な方向)の辺の長さは9.4mmであった。図2に示すように、モールドを外部から保持するモールド支持箱と、支持箱上面に粉末充填に必要なガイドを設置した。 Three types of molds composed of a mixture of camphor and BN containing only camphor and 40% by volume and 60% by volume of BN were produced from the flat mold for rare earth sintered magnet of FIG. 1 by press molding. . The thickness of the mold side wall, the bottom plate, and the partition plate was 0.5 mm. These three types of molds have five rectangular parallelepiped cavities filled with powder, and are partitioned by a partition plate having a thickness of 0.5 mm. The thickness of the mold side wall and the bottom plate is also 0.5 mm. The depth of each cavity was 35.7 mm, the length of the opening and the side in the longitudinal direction was 47.6 mm, and the length of the side in the direction in which the opening was short (perpendicular to the partition plate) was 9.4 mm. As shown in FIG. 2, a mold support box for holding the mold from the outside, and a guide necessary for powder filling were installed on the upper surface of the support box.

ガイドの上部から、上述したNdFeB焼結磁石用合金微粉末271.6gをモールドに充填した。NdFeB焼結磁石用合金微粉末は、充填直後は図2の灰色の部分に示されるように、ガイド上端近くまで達していた。このときの充填密度は約2g/cmであった。モールドをモールド支持箱ごと振動させ、振動させつつガイド上部から粉末を軽く押しつけると、粉末のレベルはモールド上端まで下がった。このとき、各空洞に充填された粉末の充填密度は3.4g/cmであった。
その後、ガイドを取り去り、モールド上部に蓋を取り付けた。粉末が充填され蓋をされたモールドを、モールド支持箱を取り付けたまま磁界配向用コイルの中に入れ、仕切板に垂直な方向に5Tのパルス磁界を印加した。磁界配向後、モールド支持箱を取り外した。
ここまでは実施例1と同じ手続である。
From the upper part of the guide, 271.6 g of the above-mentioned fine alloy powder for sintered NdFeB magnet was filled in a mold. The alloy fine powder for NdFeB sintered magnet reached the vicinity of the upper end of the guide immediately after filling, as shown in the gray part of FIG. The packing density at this time was about 2 g / cm 3 . When the mold was vibrated together with the mold support box and the powder was lightly pressed from the upper part of the guide while vibrating, the powder level was lowered to the upper end of the mold. At this time, the packing density of the powder filled in each cavity was 3.4 g / cm 3 .
Thereafter, the guide was removed, and a lid was attached to the upper part of the mold. The mold filled with powder and covered was placed in a magnetic field orientation coil with the mold support box attached, and a 5 T pulse magnetic field was applied in a direction perpendicular to the partition plate. After magnetic field orientation, the mold support box was removed.
The procedure so far is the same as that of the first embodiment.

希土類焼結磁石用合金微粉末が充填されたモールドを、蓋をしたまま、厚さ3mmの炭素製板(焼結台板)の上に乗せて焼結炉に入れた。全体を真空排気後、焼結炉の昇温を開始した。11℃/時の昇温速度で350℃まで昇温した。続いて5℃/分の昇温速度で800℃まで昇温し、800℃で1時間保持したあと、再び5℃/分の昇温速度で1035℃まで昇温した。1035℃で4時間保持したあと加熱をやめ、炉の中で室温まで冷却した。実施例1の場合とは異なり、この時は焼結炉中に水素は入れていない。 The mold filled with the alloy fine powder for rare earth sintered magnet was put on a 3 mm thick carbon plate (sintered base plate) with a lid, and placed in a sintering furnace. After the whole was evacuated, the temperature of the sintering furnace was increased. The temperature was increased to 350 ° C. at a temperature increase rate of 11 ° C./hour. Subsequently, the temperature was raised to 800 ° C. at a temperature rising rate of 5 ° C./minute, held at 800 ° C. for 1 hour, and then heated again to 1035 ° C. at a temperature rising rate of 5 ° C./minute. After holding at 1035 ° C. for 4 hours, heating was stopped and the furnace was cooled to room temperature in a furnace. Unlike the case of Example 1, hydrogen was not put into the sintering furnace at this time.

焼結炉から焼結体を焼結台板ごと静かに取り出した。モールドは完全に消失していた。5個の焼結体は焼結台板の上に倒れることなく、一定間隔で整列していた。焼結体はどれもゆがみは全くなく、寸法および重量は5個ともよく揃っていることを確認した。
図1に示すモールドを使用して行った上述の実験により、次のことを確認した。
(1)図2のように、複数の空洞に同時に給粉しても、機械的振動と軽荷重の押し込みにより、各空洞に高密度粉末充填状態を同時に、かつ高い能率で実現できた。各空洞を分ける仕切板が薄く、仕切り板上部に粉末が残って、各空洞への粉末の振り分けに支障をきたすことがないことを確認した、各空洞に振り分けられた粉末量は均一で、そのため、焼結後、空洞間で焼結体の重量および寸法は極めてよく揃っていることを確認した。
(2)モールドが焼結完了前に消耗しても、充填されていた粉末が飛散したり、型崩れが起こったりするようなことは全くなかった。焼結前にモールド容器が消耗することにより懸念される焼結体の形状欠損は起こらなかった。
(3)焼結モールドをカンファーのみで作製すれば、焼結に際し焼結炉に水素を入れなくても問題がなかった。
The sintered body was gently taken out of the sintering furnace together with the sintered base plate. The mold was completely lost. The five sintered bodies were aligned at regular intervals without falling on the sintering base plate. It was confirmed that none of the sintered bodies was distorted and that all the sizes and weights were well aligned.
The following was confirmed by the above-described experiment conducted using the mold shown in FIG.
(1) As shown in FIG. 2, even if powder is simultaneously supplied to a plurality of cavities, a high-density powder filling state can be simultaneously and efficiently achieved in each cavity by mechanical vibration and pressing of a light load. The partition plate that divides each cavity is thin, and it has been confirmed that the powder remains in the upper part of the partition plate and does not interfere with the powder distribution to each cavity. After the sintering, it was confirmed that the weight and dimensions of the sintered bodies were very well aligned between the cavities.
(2) Even when the mold was consumed before the completion of sintering, the filled powder did not scatter or lost shape. The shape defect of the sintered body, which was a concern due to the consumption of the mold container before sintering, did not occur.
(3) If the sintered mold was produced only with camphor, there was no problem even if hydrogen was not put into the sintering furnace during sintering.

上述の実験により作製された焼結体を真空中で800℃に加熱し、1時間保持したあと室温まで急冷し、その後また真空中で500℃まで加熱して、1時間保持したあと室温まで急冷した。このような熱処理を施した焼結体から、磁極面7mm角で、磁化方向5mm厚さの試料を切り出して、パルス磁化測定器で磁気特性を測定した。この実験を5回繰り返して、作製した試料の焼結体密度、および熱処理後の試料の保磁力を平均した結果を表1に示す。 The sintered body produced by the above-described experiment is heated to 800 ° C. in a vacuum, held for 1 hour, then rapidly cooled to room temperature, then again heated to 500 ° C. in a vacuum, held for 1 hour, and then rapidly cooled to room temperature. did. A sample having a magnetic pole surface of 7 mm square and a magnetization direction of 5 mm was cut out from the sintered body subjected to such heat treatment, and the magnetic characteristics were measured with a pulse magnetization measuring instrument. Table 1 shows the result of repeating this experiment five times and averaging the sintered body density of the prepared sample and the coercivity of the sample after the heat treatment.

本実施例から、本発明により作製されるNd−Fe−B焼結磁石の焼結体密度と焼結体の保磁力に、モールド材料が影響を与えると結論できる。モールド材料として、無機のフィラーであるBN成分が多いほど、そのモールドによって作製されるNd−Fe−B焼結磁石の焼結体密度、および焼結体保磁力が高くなる。焼結体の密度と保磁力はNd−Fe−B焼結磁石の品質管理上最重要の管理項目である。表1により、高い焼結体密度及び高い焼結体保磁力を有する希土類磁石を作製するために、使用されるモールド材料中に無機フィラー分は40%以上が好ましく、60%以上がさらに好ましいことが分かる。 From this example, it can be concluded that the molding material affects the sintered body density and the coercive force of the sintered body of the Nd—Fe—B sintered magnet produced according to the present invention. The more the BN component that is an inorganic filler as the mold material, the higher the sintered body density and coercive force of the Nd—Fe—B sintered magnet produced by the mold. The density and coercive force of the sintered body are the most important management items for the quality control of the Nd—Fe—B sintered magnet. According to Table 1, in order to produce a rare earth magnet having a high sintered body density and a high sintered body coercive force, the inorganic filler content in the mold material used is preferably 40% or more, more preferably 60% or more. I understand.

実施例5のカンファー100%のモールドの空洞内面に平均粒径5μmのBN粉末を刷毛で塗布した。このBN粉末を塗布したカンファー100%のモールドを使って、実施例5と同じ実験を行った。この実験を5回繰り返して、作製された焼結体の焼結体密度及び保磁力の平均値が、表1のBN体積%が40%の時の結果とほぼ同等であることを確認した。モールド内面にフィラーを塗布することにより、樹脂の分解ガスによるNd−Fe−B合金粉末の汚染が軽減された。 A BN powder having an average particle diameter of 5 μm was applied to the inner surface of the cavity of the mold of Example 5 with 100% camphor with a brush. The same experiment as in Example 5 was performed using a mold of 100% camphor coated with this BN powder. This experiment was repeated 5 times, and it was confirmed that the average value of the sintered body density and coercive force of the produced sintered body was almost equivalent to the result when the BN volume% in Table 1 was 40%. By applying a filler to the inner surface of the mold, the contamination of the Nd—Fe—B alloy powder by the resin decomposition gas was reduced.

図1の平板状空洞を持つモールドと図3のアークセグメント状空洞を持つモールドを、PVA、BC、BNと水の混合物を用いて射出成形法により作製した。射出成形後、これらのモールドを75℃で1日加熱して、水分を蒸発させた。乾燥後のモールド材質の組成は、PVA10体積%、BC85体積%、BN体積5%である。その後、機械研磨により、形状と寸法を整えることにより、側壁および仕切り板の厚さ0.3mm、底板の厚さ0.1mmの平板状空洞、およびアークセグメント状空洞をもつ、図1および図2のモールドを作製した。The mold having the flat plate-like cavity shown in FIG. 1 and the mold having the arc segment-like cavity shown in FIG. 3 were produced by an injection molding method using a mixture of PVA, B 4 C, BN and water. After injection molding, these molds were heated at 75 ° C. for 1 day to evaporate moisture. The composition of the mold material after drying is 10% by volume of PVA, 85% by volume of B 4 C, and 5% by volume of BN. Thereafter, the shape and dimensions are adjusted by mechanical polishing, so that a side wall and a partition plate having a thickness of 0.3 mm, a bottom plate having a thickness of 0.1 mm, and an arc segment-like cavity are shown in FIGS. A mold was prepared.

これらのモールドに図2に示すように、ポリアセタール製のモールド支持箱とガイドを取り付けた。ガイドの上部から、実施例5で使用した粉末と同じNdFeB焼結磁石用合金微粉末をモールドに充填した。NdFeB焼結磁石用合金微粉末は、充填直後は図2の灰色の部分に示されるように、ガイド上端近くまで達していた。このときの充填密度は約2g/cmであった。モールドをモールド支持箱ごと振動させ、振動させつつガイド上部から粉末を軽く押しつけると、粉末のレベルはモールド上端まで下がった。このとき、各空洞に充填された粉末の充填密度は3.4g/cmであった。その後、ガイドを取り去り、モールド上部に蓋を取り付けた。粉末が充填され蓋をされたモールドを、モールド支持箱を取り付けたまま磁界配向用コイルの中に入れ、仕切板に垂直な方向に5Tのパルス磁界を印加した。磁界配向後、モールド支持箱を取り外した。As shown in FIG. 2, a polyacetal mold support box and a guide were attached to these molds. From the upper part of the guide, the same fine powder of NdFeB sintered magnet alloy as the powder used in Example 5 was filled in the mold. The alloy fine powder for NdFeB sintered magnet reached the vicinity of the upper end of the guide immediately after filling, as shown in the gray part of FIG. The packing density at this time was about 2 g / cm 3 . When the mold was vibrated together with the mold support box and the powder was lightly pressed from the upper part of the guide while vibrating, the powder level was lowered to the upper end of the mold. At this time, the packing density of the powder filled in each cavity was 3.4 g / cm 3 . Thereafter, the guide was removed, and a lid was attached to the upper part of the mold. The mold filled with powder and covered was placed in a magnetic field orientation coil with the mold support box attached, and a 5 T pulse magnetic field was applied in a direction perpendicular to the partition plate. After magnetic field orientation, the mold support box was removed.

NdFeB焼結磁石用合金微粉末が充填されたモールドを、蓋をしたまま、厚さ3mmの炭素製板(焼結台板)の上に乗せて、それぞれ別の焼結炉に入れた。全体を真空排気後、焼結炉の昇温を開始した。3℃/分の昇温速度で500℃まで昇温した。続いて5℃/分の昇温速度で800℃まで昇温し、800℃で1時間保持したあと、再び5℃/分の昇温速度で1035℃まで昇温した。1035℃で4時間保持したあと加熱をやめ、炉の中で室温まで冷却した。 The mold filled with the alloy fine powder for NdFeB sintered magnet was put on a 3 mm thick carbon plate (sintered base plate) with the lid covered, and put in separate sintering furnaces. After the whole was evacuated, the temperature of the sintering furnace was increased. The temperature was raised to 500 ° C. at a rate of 3 ° C./min. Subsequently, the temperature was raised to 800 ° C. at a temperature rising rate of 5 ° C./minute, held at 800 ° C. for 1 hour, and then heated again to 1035 ° C. at a temperature rising rate of 5 ° C./minute. After holding at 1035 ° C. for 4 hours, heating was stopped and the furnace was cooled to room temperature in a furnace.

2つの焼結炉から焼結体を焼結台板ごと静かに取り出した。モールドは完全に消失していた。それぞれのモールドから作製した、それぞれ5個の焼結体は焼結台板の上に倒れることなく、一定間隔で整列していた。焼結体はどれもゆがみはなく、寸法および重量はそれぞれ5個ともよく揃っていることを確認した。焼結体は高密度で、平均7.53g/cmに達していた。磁気特性も次のように高特性が得られた。
=14.1kG
cJ=12.4kOe
(BH)max=48MGOe
The sintered body was gently taken out from the two sintering furnaces together with the sintered base plate. The mold was completely lost. Each of the five sintered bodies produced from the respective molds were aligned at regular intervals without falling on the sintered base plate. It was confirmed that none of the sintered bodies was distorted, and that all the sizes and weights were well aligned. The sintered body had a high density and reached an average of 7.53 g / cm 3 . High magnetic properties were obtained as follows.
B r = 14.1 kG
H cJ = 12.4 kOe
(BH) max = 48 MGOe

図6に示すような底のないモールド(底なしモールド)を作製した。この断面を図7に示す。本モールドは、平均粒径20μmのBC(炭化ホウ素)と平均粒径10μmのBN(窒化ホウ素)とPVAと水を混錬した混錬物から、射出成形と機械研磨を併用して作製した。このモールドの射出成形、加熱乾燥後の組成は、BC60体積%、BN30体積%、PVA10体積%である。仕切り板およびモールド側壁の厚さは0.5mmである。A mold without a bottom as shown in FIG. 6 (bottomless mold) was produced. This cross section is shown in FIG. This mold is made from a kneaded mixture of B 4 C (boron carbide) with an average particle size of 20 μm, BN (boron nitride) with an average particle size of 10 μm, PVA and water, using both injection molding and mechanical polishing. did. The composition of this mold after injection molding and heat drying is B 4 C 60% by volume, BN 30% by volume, and PVA 10% by volume. The thickness of the partition plate and the mold side wall is 0.5 mm.

底なしモールドに粉末を充填する際は底台板17を取り付ける必要があり、その粉末充填セットを図8に示す。この粉末充填セットにより、上部の開口部から、仕切り板で区切られたすべての空洞に粉末を同時に充填することが、本発明の特徴である。仕切り板の厚さが薄いので、このように粉末をすべての空洞に同時に充填しても、仕切り板の上端に粉末が乗って空洞への粉末充填が妨げられることがない上に、仕切り板の上端に粉末が少量乗ったままふたをしても、仕切り板は焼結中に消耗するので、空洞中に作られる焼結体の形成にはなんら影響しないことを確認した。モールドが消耗しない従来のPLP法(特許文献1)では仕切り板上端に乗った粉末があると、焼結体は、仕切り板に引っ張られて変形する。 When filling the bottomless mold with powder, it is necessary to attach the bottom base plate 17, and the powder filling set is shown in FIG. It is a feature of the present invention that the powder filling set simultaneously fills all cavities delimited by the partition plate from the upper opening. Since the partition plate is thin, even if the powder is filled in all the cavities at the same time, the powder does not get on the upper end of the partition plate and the powder filling into the cavities is not hindered. It was confirmed that even if the lid was placed with a small amount of powder on the upper end, the partition plate was consumed during the sintering, so that it had no effect on the formation of the sintered body formed in the cavity. In the conventional PLP method (Patent Document 1) in which the mold is not consumed, if there is powder on the upper end of the partition plate, the sintered body is pulled by the partition plate and deformed.

図8の粉末充填セットにより、粉末をモールド上端まで充填したあと、図9のようにモールドに蓋18をして、磁界を図9の矢印の方向に印加して、モールド内の粉末を配向した。その後、図10のように、モールド上下に蓋18と底台板17を付した状態で、充填され配向された粉末を保持したモールドを焼結炉に入れた。ここで、図10の焼結のときと、図9の磁界印加のときとで、蓋と底台板は同じものである必要はない。磁界配向後、これら両方または片方の板を必要に応じて取り替えることができる。図8の粉末充填セットにより、実施例5と同じNdFeB合金粉末を充填密度3.4g/cmに充填した。図10の焼結のとき、モールド蓋と底台板は厚さ3mmの炭素板を使用した。焼結は実施例6と同じ条件で行った。After the powder is filled to the upper end of the mold by the powder filling set in FIG. 8, the lid 18 is applied to the mold as shown in FIG. 9, and a magnetic field is applied in the direction of the arrow in FIG. 9 to orient the powder in the mold. . After that, as shown in FIG. 10, the mold holding the filled and oriented powder was put in a sintering furnace with the lid 18 and the bottom plate 17 attached to the upper and lower sides of the mold. Here, the lid and the bottom plate need not be the same for the sintering of FIG. 10 and the magnetic field application of FIG. After magnetic field orientation, both or one of the plates can be replaced as needed. The same NdFeB alloy powder as in Example 5 was filled to a packing density of 3.4 g / cm 3 using the powder filling set shown in FIG. At the time of sintering in FIG. 10, a carbon plate having a thickness of 3 mm was used as the mold lid and the bottom base plate. Sintering was performed under the same conditions as in Example 6.

焼結後、焼結体19は図11のように、モールド底板上に立った状態で、焼結炉から引き出された。図11ではモールドの仕切り板と側壁は破線で示されている。これは、焼結工程後には、これらは形が崩れてしまうことを示している。仕切り板と側壁が崩れてしまうと、これらによって支えられている、モールドの蓋18も焼結体の上に落下するが、図11では、焼結前の状態のままに描かれている。実際の工程では、モールドの蓋は、焼結前に除去することもできる。このような焼結工程の後で、本実施例で分かったことは、焼結体19は軽くモールド底板に接着されており、多少の振動では、焼結体は倒れないで、モールド底板上に安定に立っていることである。この現象を利用して、薄くて背の高い平板上希土類磁石を、本発明で安定して生産できる。この現象が起こらないと、背の高い薄板製品は、焼結中に互いにもたれあって、曲がってしまう。実施例3で示したように、モールドに含まれていた、セラッミック粉末が薄板焼結体間に落下して、倒れ掛かるのを防止することも可能である。しかし本実施例のように、焼結体とモールド底板との軽い接着効果を利用して、薄板焼結体の倒れ掛かりを防止することも、生産技術として有力な方法である。 After sintering, the sintered body 19 was pulled out of the sintering furnace while standing on the mold bottom plate as shown in FIG. In FIG. 11, the partition plate and the side wall of the mold are indicated by broken lines. This shows that after the sintering process, they lose shape. If the partition plate and the side wall collapse, the mold lid 18 supported by these also falls on the sintered body, but in FIG. 11, it is drawn as it was before sintering. In the actual process, the mold lid can also be removed before sintering. After such a sintering process, it was found in this example that the sintered body 19 was lightly bonded to the mold bottom plate, and the sintered body did not fall down with some vibrations. Standing stable. By utilizing this phenomenon, a thin and tall flat-plate rare earth magnet can be stably produced in the present invention. If this phenomenon does not occur, tall sheet products will lean against each other during sintering and bend. As shown in Example 3, it is also possible to prevent the ceramic powder contained in the mold from falling between the thin plate sintered bodies and falling over. However, as in this embodiment, it is also an effective method as a production technique to prevent the thin plate sintered body from falling over by utilizing the light adhesive effect between the sintered body and the mold bottom plate.

本実施例では、20個のモールドを作製して、多数個同時焼結テストも実施した。その結果、本実施例で作製された100個の焼結体は、いずれも密度7.54g/cmに達し、変形やゆがみが全くなく、寸法ばらつき、重量ばらつきも極めて小さかった。磁気特性は平均、下記の通りであった。
=14.2kG
cJ=12.6kOe
(BH)max=49MGOe
In this example, 20 molds were produced, and a large number of simultaneous sintering tests were also performed. As a result, the 100 sintered bodies produced in this example all reached a density of 7.54 g / cm 3 , had no deformation or distortion, and had extremely small dimensional and weight variations. The average magnetic properties were as follows.
B r = 14.2 kG
H cJ = 12.6 kOe
(BH) max = 49 MGOe

本実施例の方法は、次のような利点を持っている。
(1)焼結中にモールドから発生する有機ガスがモールド上端および下端からそれぞれモールドふたおよびモールド底板との隙間を通って逃散しやすいので、有機ガスによる希土類合金粉末の汚染が低減される。そのため、このような底なしモールドによって作製される希土類磁石は、多数個同時焼結しても、底があるモールドを使って作製される同じ磁石と比べて、焼結中の変形が少なく、焼結によって高密度になり、かつ高い磁気特性を示す。
(2)焼結中にモールド底板と焼結体の軽い接着効果によって、背の高い焼結体でも、焼結後安定に底板上に立っているので、焼結体の倒れ掛かりによる曲がりや変形を防止できる。
The method of this embodiment has the following advantages.
(1) Since organic gas generated from the mold during sintering easily escapes from the upper end and lower end of the mold through the gap between the mold lid and the mold bottom plate, contamination of the rare earth alloy powder by the organic gas is reduced. For this reason, rare earth magnets produced by such a bottomless mold have less deformation during sintering compared to the same magnet produced by using a mold with a bottom, even if many magnets are sintered at the same time. To achieve high density and high magnetic properties.
(2) Because of the light adhesive effect between the mold bottom plate and the sintered body during sintering, even a tall sintered body stands stably on the bottom plate after sintering, so bending and deformation due to the sintered body falling over Can be prevented.

(Sm−Co系焼結磁石の例)
重量比で15%Fe、8%Cu、25.5%Sm、1.5%Zr、50%Coの合金を高周波溶解法で作製して、ブラウンミルによる粗粉砕と、窒素ガスによるジェットミル粉砕により、レーザー回折法により測定した粉砕粒径5μmのSm−Co−Fe−Cu−Zr合金微粉末を作製した。
平均粒径20μmのBN(窒化ホウ素)85体積%とPVA15体積%からなる図6と同様の底なしモールドを作製した。仕切り板およびモールド側壁の厚さは0.5mmである。図8と同様の粉末充填セットにより、上述のSm−Co−Fe−Cu−Zr合金微粉末を充填密度3.8g/cmに充填した。焼結時のモールド底板とモールド蓋は厚さ3mmのBN板を使用した。
(Example of Sm-Co sintered magnet)
An alloy of 15% Fe, 8% Cu, 25.5% Sm, 1.5% Zr, and 50% Co by weight ratio is prepared by a high-frequency melting method, coarsely pulverized by a brown mill, and jet milled by nitrogen gas Thus, Sm—Co—Fe—Cu—Zr alloy fine powder having a pulverized particle size of 5 μm measured by a laser diffraction method was produced.
A bottomless mold similar to that shown in FIG. 6 and having 85% by volume of BN (boron nitride) having an average particle diameter of 20 μm and 15% by volume of PVA was produced. The thickness of the partition plate and the mold side wall is 0.5 mm. The above-mentioned Sm—Co—Fe—Cu—Zr alloy fine powder was filled to a packing density of 3.8 g / cm 3 by the same powder filling set as in FIG. A BN plate having a thickness of 3 mm was used for the mold bottom plate and the mold lid during sintering.

焼結は真空中で、室温から1200℃まで10℃/分の早さで昇温して、1200℃で2時間保持して、炉内で冷却した。焼結後、焼結体は図11のように、モールド底板上に立った状態で、焼結炉から引き出された。図11ではモールドの仕切り板と側壁は破線で示されている。これは、焼結工程後には、これらは形が崩れてしまうことを示している。このような焼結工程の後で、焼結体は軽くモールド底板に接着されており、多少の振動では、焼結体は倒れないで、モールド底板上に安定に立っていた。5個の焼結体は、いずれも密度8.4g/cmに達し、変形やゆがみが全くなく、寸法ばらつき、重量ばらつきも極めて小さかった。焼結体をArガス中で再度1200℃に加熱したあと急冷し、800℃で30分、700℃で30分、600℃で1時間、500℃で2時間、400℃で6時間の多段時効処理を施した。多段時効処理した後のSm−Co−Fe−Cu−Zr磁石の磁気特性は平均、下記の通りであった。
=11.0kG
cJ=6.7kOe
(BH)max=29.6MGOe
Sintering was performed in vacuum at a rate of 10 ° C./min from room temperature to 1200 ° C., held at 1200 ° C. for 2 hours, and cooled in a furnace. After the sintering, the sintered body was pulled out from the sintering furnace while standing on the mold bottom plate as shown in FIG. In FIG. 11, the partition plate and the side wall of the mold are indicated by broken lines. This shows that after the sintering process, they lose shape. After such a sintering process, the sintered body was lightly bonded to the mold bottom plate, and the sintered body did not fall down with some vibrations and stood on the mold bottom plate stably. All of the five sintered bodies reached a density of 8.4 g / cm 3 , had no deformation or distortion, and had extremely small dimensional and weight variations. The sintered body was heated again to 1200 ° C in Ar gas and then rapidly cooled, and multistage aging of 800 ° C for 30 minutes, 700 ° C for 30 minutes, 600 ° C for 1 hour, 500 ° C for 2 hours, and 400 ° C for 6 hours Treated. The average magnetic properties of the Sm—Co—Fe—Cu—Zr magnet after the multi-stage aging treatment were as follows.
B r = 11.0 kG
H cJ = 6.7 kOe
(BH) max = 29.6 MGOe

Claims (25)

希土類焼結磁石用合金粉末を希土類焼結磁石用焼結モールドに充填し、磁界中配向後、該焼結モールドごと焼結炉に入れて加熱し焼結体を得る希土類焼結磁石の製造法において、
焼結中に該焼結モールドが消耗することを特徴とする希土類焼結磁石製造法。
A method for producing a rare earth sintered magnet in which a rare earth sintered magnet alloy powder is filled into a sintering mold for a rare earth sintered magnet, oriented in a magnetic field, and then put into a sintering furnace together with the sintered mold and heated to obtain a sintered body. In
A method for producing a rare earth sintered magnet, wherein the sintering mold is consumed during sintering.
前記焼結モールドは、内部に焼結中に消耗する仕切り板を有し、複数の焼結体を同時に製造できることを特徴とする請求項1に記載の希土類焼結磁石製造法。 The method for producing a rare earth sintered magnet according to claim 1, wherein the sintered mold has a partition plate that is consumed during sintering, and a plurality of sintered bodies can be produced simultaneously. 前記焼結モールドと前記仕切り板の素材が樹脂であることを特徴とする請求項1又は請求項2のいずれかに記載の希土類焼結磁石製造法。 The method for producing a rare earth sintered magnet according to claim 1, wherein a material of the sintered mold and the partition plate is a resin. 前記樹脂がカンファーであることを特徴とする請求項3に記載の希土類焼結磁石製造法。 The method for producing a rare earth sintered magnet according to claim 3, wherein the resin is camphor. 前記焼結モールドと前記仕切り板の素材が、樹脂と焼結中に消失しない物質(フィラー)との混合物であることを特徴とする請求項1又は請求項2のいずれかに記載の希土類焼結磁石製造法。 3. The rare earth sintering according to claim 1, wherein a material of the sintering mold and the partition plate is a mixture of a resin and a substance (filler) that does not disappear during sintering. Magnet manufacturing method. 前記焼結中に消失しない物質(フィラー)が、モールドを構成する全物質の40体積%以上かつ95体積%以下であることを特徴とする、請求項5に記載の希土類焼結磁石製造方法。 6. The method for producing a rare earth sintered magnet according to claim 5, wherein the substance (filler) that does not disappear during the sintering is 40% by volume or more and 95% by volume or less of all the substances constituting the mold. 前記焼結中に消失しない物質(フィラー)の体積分率が、モールドに充填される希土類合金粉末に接するモールド表面において大きいことを特徴とする、請求項5に記載の希土類焼結磁石製造方法。 6. The method for producing a rare earth sintered magnet according to claim 5, wherein a volume fraction of a substance (filler) that does not disappear during the sintering is large on a mold surface in contact with the rare earth alloy powder filled in the mold. 前記樹脂が焼結中に消失しない物質(フィラー)として、BN若しくはBCあるいは、希土類の酸化物、希土類のフッ化物、希土類の酸フッ化物、又はそれらの混合物を用いることを特徴とする請求項5から請求項7のいずれか1項に記載の希土類焼結磁石製造法。BN or B 4 C or rare earth oxide, rare earth fluoride, rare earth oxyfluoride, or a mixture thereof is used as a substance (filler) in which the resin does not disappear during sintering. The method for producing a rare earth sintered magnet according to any one of claims 5 to 7. 合金粉末充填中および粉末の磁界配向中において、前記焼結モールドの側面及び底面を外部から保持するモールド支持箱を用いることを特徴とする請求項1から請求項8のいずれか1項に記載の希土類焼結磁石製造法。 9. The mold support box for holding a side surface and a bottom surface of the sintered mold from the outside during filling of the alloy powder and during magnetic field orientation of the powder is used. Rare earth sintered magnet manufacturing method. 前記モールド支持箱は、焼結時には磁界配向方向と平行な側面を除去することを特徴とする請求項9に記載の希土類焼結磁石製造法。 The method for producing a rare earth sintered magnet according to claim 9, wherein the mold support box has a side surface parallel to a magnetic field orientation direction removed during sintering. 焼結を水素が存在する雰囲気で行うことを特徴とする請求項1から請求項10のいずれか1項に記載の希土類焼結磁石製造法。 The method for producing a rare earth sintered magnet according to any one of claims 1 to 10, wherein the sintering is performed in an atmosphere containing hydrogen. その内部に充填された希土類焼結磁石用合金粉末を磁界中で配向させ、その後焼結炉に入れて加熱し焼結体を得る希土類焼結磁石の製造法において用いられ、
焼結炉で焼結中に消耗することを特徴とする希土類焼結磁石用焼結モールド。
The rare earth sintered magnet alloy powder filled therein is oriented in a magnetic field, and then used in a method for producing a rare earth sintered magnet to be heated in a sintering furnace to obtain a sintered body,
A sintering mold for rare earth sintered magnets, which is consumed during sintering in a sintering furnace.
内部に焼結中に消耗する仕切り板を有し、希土類磁石合金粉末を保持する複数の空洞を有する請求項12に記載の希土類焼結磁石用焼結モールド。 The sintered mold for a rare earth sintered magnet according to claim 12, further comprising: a partition plate that is consumed during sintering, and a plurality of cavities that hold the rare earth magnet alloy powder. 素材が樹脂である請求項12若しくは請求項13に記載の希土類焼結磁石用焼結モールド。 The sintered mold for rare earth sintered magnet according to claim 12 or 13, wherein the material is a resin. 前記樹脂がカンファーであることを特徴とする請求項14に記載の希土類焼結磁石用焼結モールド。 The sintered mold for rare earth sintered magnet according to claim 14, wherein the resin is camphor. 素材が、樹脂と焼結中に消失しない物質(フィラー)との混合物であることを特徴とする請求項12若しくは請求項13に記載の希土類焼結磁石用焼結モールド。 14. The rare earth sintered magnet sintering mold according to claim 12, wherein the material is a mixture of a resin and a substance (filler) that does not disappear during sintering. 前記樹脂が焼結中に消失しない物質(フィラー)が、BN若しくはBC、希土類の酸化物、希土類のフッ化物、希土類の酸フッ化物、又はそれらの混合物であることを特徴とする請求項16に記載の希土類焼結磁石用焼結モールド。The material (filler) in which the resin does not disappear during sintering is BN or B 4 C, rare earth oxide, rare earth fluoride, rare earth oxyfluoride, or a mixture thereof. 16. A sintered mold for rare earth sintered magnets according to 16. 前記仕切り版の厚さが1mm以下、0.1mm以上であることを特徴とする請求項13から請求項17のいずれか1項に記載の希土類焼結磁石用焼結モールド。 The sintered mold for a rare earth sintered magnet according to any one of claims 13 to 17, wherein the partition plate has a thickness of 1 mm or less and 0.1 mm or more. 前記希土類磁石合金粉末を保持する複数の空洞の底がないか、あるいは底に穴があいていることを特徴とする、請求項13から請求項18のいずれか1項に記載の希土類焼結磁石用焼結モールド。 The rare earth sintered magnet according to any one of claims 13 to 18, wherein the plurality of cavities for holding the rare earth magnet alloy powder have no bottom or have holes in the bottom. Sintered mold. 底なしモールドにおいて、底台板として焼結磁石と接着性のある素材を用いることを特徴とする請求項19に記載の希土類焼結磁石用焼結モールド。 The sintered mold for rare earth sintered magnet according to claim 19, wherein the bottomless mold uses a material having adhesiveness to the sintered magnet as a base plate. 前記仕切り板が複数あり、該仕切り板が長方形若しくは正方形の平板状であり、該仕切り板によって形成される空洞が直方体であり、該直方体の空洞の該仕切り板の面に垂直な方向の長さが該仕切り板の縦もしくは横の辺の長さの長い方の寸法の3分の1より小さいことを特徴とする請求項13から請求項20のいずれか1項に記載の希土類焼結磁石用焼結モールド。 There are a plurality of the partition plates, the partition plates are rectangular or square flat plates, the cavity formed by the partition plates is a rectangular parallelepiped, and the length of the cavity of the rectangular parallelepiped in the direction perpendicular to the surface of the partition plate The rare earth sintered magnet according to any one of claims 13 to 20, wherein is smaller than one third of the dimension of the longer side of the vertical or horizontal side of the partition plate. Sintered mold. 前記仕切り板が複数あり、該仕切り板は湾曲していない平面形状であり、その平面形状は正方形でも長方形でもなく、該仕切り板によって形成される空洞は湾曲していない平面で構成される立体であるが、その断面は正方形でも長方形でもなく、該空洞の該仕切り板の面に垂直な方向の長さが該仕切り板の面の最長の長さの3分の1より小さいことを特徴とする請求項13から請求項20のいずれか1項に記載の希土類焼結磁石用焼結モールド。 There are a plurality of the partition plates, the partition plates have a flat shape that is not curved, the planar shape is neither square nor rectangular, and the cavity formed by the partition plates is a solid composed of a flat surface that is not curved. The cross section is neither square nor rectangular, and the length of the cavity in the direction perpendicular to the surface of the partition plate is smaller than one third of the longest length of the surface of the partition plate. The sintered mold for rare earth sintered magnet according to any one of claims 13 to 20. 前記仕切り板の形状が湾曲した平板状であることを特徴とする請求項13から請求項20のいずれか1項に記載の希土類焼結磁石用焼結モールド。 The sintered mold for a rare earth sintered magnet according to any one of claims 13 to 20, wherein the partition plate has a curved plate shape. 前記仕切り板を5枚以上有し、多数の薄肉焼結体を同時に製造する際に用いられる請求項21から請求項23のいずれか1項に記載の希土類焼結磁石用焼結モールド。 The sintered mold for a rare earth sintered magnet according to any one of claims 21 to 23, wherein the sintered mold has at least five partition plates and is used when a large number of thin sintered bodies are simultaneously manufactured. 射出成形法、真空成形法あるいは圧空成形法によって前記仕切り板と共に一体で製造されることを特徴とする請求項12ないし請求項24のいずれか1項に記載の希土類焼結磁石用焼結モールド。 25. The sintered mold for a rare earth sintered magnet according to any one of claims 12 to 24, wherein the sintered mold is integrally formed with the partition plate by an injection molding method, a vacuum molding method or a pressure forming method.
JP2015528369A 2013-07-24 2014-07-22 Rare earth sintered magnet manufacturing method Active JP6425251B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013167039 2013-07-24
JP2013167039 2013-07-24
JP2014121019 2014-06-11
JP2014121019 2014-06-11
PCT/JP2014/070284 WO2015012412A1 (en) 2013-07-24 2014-07-22 Process for producing rare earth sintered magnet and sintering mold for rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JPWO2015012412A1 true JPWO2015012412A1 (en) 2017-03-02
JP6425251B2 JP6425251B2 (en) 2018-11-21

Family

ID=52393441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528369A Active JP6425251B2 (en) 2013-07-24 2014-07-22 Rare earth sintered magnet manufacturing method

Country Status (2)

Country Link
JP (1) JP6425251B2 (en)
WO (1) WO2015012412A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078183A (en) * 2016-11-09 2018-05-17 Tdk株式会社 Method for manufacturing rare earth magnet
JP7143817B2 (en) * 2019-05-24 2022-09-29 株式会社村田製作所 Laminated coil parts
CN117198672A (en) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 Manufacturing process method of injection molding neodymium-iron-boron magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008476A (en) * 2003-06-18 2005-01-13 Kureha Chem Ind Co Ltd High temperature heated metallic compact support member and its manufacturing method
JP2006265601A (en) * 2005-03-23 2006-10-05 Tdk Corp Vessel for sintering rare earth magnet and method for producing rare earth magnet using the same
JP2007180373A (en) * 2005-12-28 2007-07-12 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2007239032A (en) * 2006-03-09 2007-09-20 Tdk Corp Sintering vessel and method for producing rare earth magnet
JP2007290248A (en) * 2006-04-25 2007-11-08 Murata Mfg Co Ltd Manufacturing method of three-dimensional structure
JP2007313835A (en) * 2006-05-29 2007-12-06 Mitsubishi Materials Corp Composite porous body and its manufacturing method
JP2008251762A (en) * 2007-03-30 2008-10-16 Tdk Corp Method of manufacturing rare earth sintered magnet
JP2009049202A (en) * 2007-08-20 2009-03-05 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB SINTERED MAGNET

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278606A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Method for disassembling resin die in isostatic pressing of powder
JP4578062B2 (en) * 2003-04-09 2010-11-10 太盛工業株式会社 Method for manufacturing powder sintered compact, method for manufacturing sintered material molded body, sintered material molded body, and mold apparatus for powder injection molding
JP2008265157A (en) * 2007-04-20 2008-11-06 Hiroshima Univ Manufacturing method for powder sintered body, male die for molding powder sintered body, and female die for molding powder sintered body
JP4903758B2 (en) * 2008-08-04 2012-03-28 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet and mold for manufacturing NdFeB-based sintered magnet
CN102209999A (en) * 2008-11-06 2011-10-05 因太金属株式会社 Method for producing rare earth sintered magnet and powder container for rare earth sintered magnet production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008476A (en) * 2003-06-18 2005-01-13 Kureha Chem Ind Co Ltd High temperature heated metallic compact support member and its manufacturing method
JP2006265601A (en) * 2005-03-23 2006-10-05 Tdk Corp Vessel for sintering rare earth magnet and method for producing rare earth magnet using the same
JP2007180373A (en) * 2005-12-28 2007-07-12 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2007239032A (en) * 2006-03-09 2007-09-20 Tdk Corp Sintering vessel and method for producing rare earth magnet
JP2007290248A (en) * 2006-04-25 2007-11-08 Murata Mfg Co Ltd Manufacturing method of three-dimensional structure
JP2007313835A (en) * 2006-05-29 2007-12-06 Mitsubishi Materials Corp Composite porous body and its manufacturing method
JP2008251762A (en) * 2007-03-30 2008-10-16 Tdk Corp Method of manufacturing rare earth sintered magnet
JP2009049202A (en) * 2007-08-20 2009-03-05 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB SINTERED MAGNET

Also Published As

Publication number Publication date
WO2015012412A1 (en) 2015-01-29
JP6425251B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5690141B2 (en) Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
JP4391980B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP4391897B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
KR101601583B1 (en) Rare-earth permanent magnet, rare-earth permanent magnet manufacturing method, and rare-earth permanent magnet manufacturing device
US20160104571A1 (en) Sintered magnet production mold, and sintered magnet production method using the same
WO2015012412A1 (en) Process for producing rare earth sintered magnet and sintering mold for rare earth sintered magnet
JP4819103B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP6780707B2 (en) Rare earth magnet manufacturing method
JP4819104B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP6067841B2 (en) Sintered magnet manufacturing method
JP2017028141A (en) Sintered magnet production method
JP5568106B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2018082168A (en) Method for manufacturing rare earth magnet
JP6733507B2 (en) Rare earth magnet manufacturing method
WO2018038170A1 (en) Rare earth sintered magnet and manufacturing method therefor
JP2011216641A (en) Method of manufacturing rare earth bond magnet
JP2012099520A (en) Manufacturing method for r-t-b-based magnetic powder
WO2019163766A1 (en) Method for producing rare earth magnet
JP4561432B2 (en) Method for producing RTB-based sintered magnet
JP2015060999A (en) Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR
JP2004027313A (en) Method and apparatus for granulating powder
JP2018078190A (en) Method for manufacturing rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6425251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150