JPH07278606A - Method for disassembling resin die in isostatic pressing of powder - Google Patents

Method for disassembling resin die in isostatic pressing of powder

Info

Publication number
JPH07278606A
JPH07278606A JP7110594A JP7110594A JPH07278606A JP H07278606 A JPH07278606 A JP H07278606A JP 7110594 A JP7110594 A JP 7110594A JP 7110594 A JP7110594 A JP 7110594A JP H07278606 A JPH07278606 A JP H07278606A
Authority
JP
Japan
Prior art keywords
powder
mold
molding
thermoplastic resin
cip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7110594A
Other languages
Japanese (ja)
Inventor
Noboru Takaku
昇 高久
Kazuo Fujisawa
和郎 藤澤
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7110594A priority Critical patent/JPH07278606A/en
Publication of JPH07278606A publication Critical patent/JPH07278606A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the productivity and greatly reduce the production cost in compacting powder by isostatic pressing by heating a vessel for the powder made of a thermoplastic resin after isostatic pressing and easily releasing the vessel from the compact. CONSTITUTION:A die for compacting powder is made of a thermoplastic resin, and a powder is packed in the die and compacted by isostatic pressing. The die is then heated to soften the resin and released from the compact. In this case, the resin is heated at 50-200 deg.C where the temp. is changed according to the temp. property of the resin material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金における粉体
の成形法の粉末を静水圧プレス(以下CIPと呼ぶ)を
用いて圧縮成形する場合において、熱可塑性樹脂成形型
で粉末を圧縮成形した後の処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method of molding a powder in powder metallurgy, wherein the powder is compression molded using a hydrostatic press (hereinafter referred to as CIP) by a thermoplastic resin molding die. The present invention relates to a processing method after the process.

【0002】[0002]

【従来の技術】金属の加工には溶解金属原料を用いて鍛
造または鋳造をして後、切削等の機械加工を行う方法が
一般的であるが、加工費の低減、歩留り向上等の観点か
ら最終形状に近い製品を直接製造する技術として、粉末
冶金法が有望になってきている。粉末の成形方法として
は、粉末を金型で成形プレスするダイプレス法、射出成
形法、CIP法等がある。ダイプレス法は量産に適し、
射出成形法は小型精密形状に適し、CIP法は均一成形
が可能であり大型製品の成形に適している特徴がある。
2. Description of the Related Art In the processing of metals, a method is generally used in which forging or casting is performed by using a molten metal raw material, and then mechanical processing such as cutting is performed, but from the viewpoint of reducing the processing cost and improving the yield. Powder metallurgy has become promising as a technology for directly manufacturing products close to the final shape. As a powder molding method, there are a die pressing method of molding and pressing the powder with a die, an injection molding method, a CIP method and the like. The die press method is suitable for mass production,
The injection molding method is suitable for small precision shapes, and the CIP method is capable of uniform molding and is suitable for molding large products.

【0003】粉末の成形のCIP法において、粉末を成
形用の型(以下モールドと呼ぶ)に充填した後、液体の
入ったCIP装置にモールドごと装入して加圧成形し、
その後モールドを解体し、粉末成形体を取り出して焼結
処理するのが一般的方法である。従来、CIP成形用の
モールドには、CIP成形時の形状追従性を考慮して粘
弾性および耐磨耗性に優れたウレタンゴムが使用されて
いる。このウレタンゴムのモールドは高価であるが再生
利用が可能なため、モールドを繰り返し使用している。
繰り返し使用および粉末成形体取り出しのためにモール
ドは張り合わせ構造になっており、CIP成形するため
には粉末を充填する前にモールドの張り合わせ、接着・
乾燥、CIP後にはモールドに圧着された粉末成形体を
モールドより取り出す解体作業、そして解体したモール
ドに付着した粉末および粉末成形体の一部の洗浄する作
業等の繰り返し手作業が必要になる。そのため、生産性
が著しく低く、量産には多くの人手がかかること、また
粉末成形品の製造コストが高い等の難点があった。
In the CIP method for molding powder, after the powder is filled in a mold for molding (hereinafter referred to as a mold), the mold is charged into a CIP device containing a liquid and pressure molding is carried out.
After that, the mold is disassembled, and the powder compact is taken out and sintered. Conventionally, a urethane rubber having excellent viscoelasticity and abrasion resistance has been used as a mold for CIP molding in consideration of the shape following property during CIP molding. This urethane rubber mold is expensive but can be reused, so the mold is repeatedly used.
The mold has a laminated structure for repeated use and removal of the powder compact, and for CIP molding, the mold is laminated and bonded before filling with powder.
After the drying and the CIP, repeated manual work such as a disassembling operation for taking out the powder compact pressed against the mold from the mold and a work for washing the powder adhering to the disassembled mold and a part of the powder compact is required. Therefore, the productivity is remarkably low, a large amount of manpower is required for mass production, and the manufacturing cost of the powder molded product is high.

【0004】最近ではウレタンゴムのモールドに代わ
り、特開昭63−16900号公報や特開平1−136
902号公報の粉末成形法で述べられているような各種
熱可塑性樹脂を用いたモールドが挙げられている。熱可
塑性樹脂は事前に必要な形状に成形されており、この熱
可塑性樹脂のモールドに粉末を充填してCIP成形を行
う。CIP成形後、粉末成形体は圧縮され収縮して、ま
た熱可塑性樹脂のモールドも粉末成形体と同様に圧縮変
形しかつ熱可塑性樹脂と粉末成形体が密着している状態
となる。この熱可塑性樹脂のモールドはウレタンゴムの
モールドと異なり使い捨てとなり、モールドの張り合わ
せ、接着・乾燥、解体したモールド洗浄する作業等が不
要となり、生産性が向上するとともに安価な樹脂の使用
による粉末成形品の製造コスト低減の可能性がある。
Recently, in place of the urethane rubber mold, JP-A-63-16900 and JP-A-1-136 are used.
The mold using various thermoplastic resins as described in the powder molding method of the 902 publication is mentioned. The thermoplastic resin is molded in a required shape in advance, and CIP molding is performed by filling the mold of the thermoplastic resin with powder. After the CIP molding, the powder compact is compressed and contracted, and the thermoplastic resin mold is also compressed and deformed in the same manner as the powder compact, and the thermoplastic resin and the powder compact are in close contact with each other. Unlike the urethane rubber mold, this thermoplastic resin mold is a disposable product, eliminating the work of attaching the mold, adhering / drying, and cleaning the disassembled mold, improving productivity and using powdered products made of inexpensive resin. There is a possibility of manufacturing cost reduction.

【0005】しかし、熱可塑性樹脂のモールドに粉末を
充填してCIP成形した場合、モールドが粉末成形体と
圧縮変形しかつ熱可塑性樹脂と粉末成形体が密着して、
モールドと粉末成形体を剥がすことが困難となる。モー
ルドを剥がす場合、ナイフ等で切れ目を入れ引き裂くよ
うに行っているが、モールドと粉末成形体が密着してい
るため千切れたり、密着が強固な部分は手動で剥がすこ
とができないところが生じてしまう。また、ナイフ等で
切れ目を入れ引き裂くため、時によっては粉末成形体を
傷つけてしまい、製品として使用できなくなる場合があ
った。そのため、ウレタンモールドより効率的と思われ
る熱可塑性樹脂でモールドを作っても、モールドの解体
作業が人手で行う必要があり作業効率が極端に悪く、し
かも製品歩留りが低下して、却ってウレタンゴムのモー
ルドより効率が悪くなる問題がある。
However, when the thermoplastic resin mold is filled with powder and subjected to CIP molding, the mold is compressed and deformed with the powder molded body, and the thermoplastic resin and the powder molded body are in close contact with each other.
It becomes difficult to separate the mold and the powder compact. When peeling off the mold, we use a knife etc. to make a cut and tear it, but because the mold and the powder compact are in close contact, it breaks or there is a place where strong adhesion cannot be removed manually. . Further, since a cut is made by a knife or the like and the tear is performed, the powder compact is sometimes damaged and cannot be used as a product. Therefore, even if a mold is made of a thermoplastic resin that seems to be more efficient than the urethane mold, the work of disassembling the mold needs to be done manually, resulting in extremely poor work efficiency, and in addition, the product yield decreases, and rather the urethane rubber There is a problem that it is less efficient than the mold.

【0006】一方、特開昭63−16900号公報では
熱可塑性樹脂モールドで覆われた加圧成形品は通常後工
程である焼結工程で不活性雰囲気中で300℃以上に加
熱して分解する方法を提示している。この方法では、焼
結工程の処理温度が高温のため焼結処理後に熱可塑性樹
脂のモールドが加圧成形品表面に炭化して付着し、粉末
材料によっては品質上問題となる場合がある。また焼結
処理後に加圧成形品表面に付着した炭化物を、何らかの
方法で除去する必要があり、後処理工程が必要となる。
On the other hand, in Japanese Patent Laid-Open No. 63-16900, a pressure-molded product covered with a thermoplastic resin mold is decomposed by heating at 300 ° C. or more in an inert atmosphere in a sintering process which is usually a post process. The method is presented. In this method, since the processing temperature of the sintering process is high, the mold of the thermoplastic resin is carbonized and adhered to the surface of the pressure-molded product after the sintering process, which may cause a quality problem depending on the powder material. Further, it is necessary to remove the carbide adhering to the surface of the pressure-molded product after the sintering treatment by some method, and a post-treatment step is required.

【0007】[0007]

【発明が解決しようとする課題】以上のように、現状の
熱可塑性樹脂のモールドに粉末を充填し、CIPで成形
して粉末成形体を作る工程でCIP後のモールドを解体
する時、機械的に解体する場合は、解体の時間がかかり
生産性が低く歩留りが悪くなり、一方焼結工程でモール
ドを熱分解する場合は焼結品の品質への問題と表面に付
着した炭化物を除去する後工程が必要となる等の問題を
生じる。本発明はこのような問題点を解消するものであ
って、CIPで成形して粉末成形体を作る工程で、CI
P後圧縮成形された粉末が充填している熱可塑性樹脂の
モールドを加熱することにより、樹脂を軟化させ簡単に
剥離させる方法を提供することを目的とする。
As described above, when the current mold of thermoplastic resin is filled with powder and molded by CIP to make a powder molded body, when the mold after CIP is dismantled, mechanical In the case of disassembling, the disassembling takes time and the productivity is low and the yield is poor. There arises a problem that a process is required. The present invention solves such a problem, and in the process of forming a powder compact by molding with CIP, CI
It is an object of the present invention to provide a method of softening a resin by heating a mold of a thermoplastic resin filled with powder that is compression-molded after P to easily separate the resin.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、熱可塑性樹脂のモールドに粉末を充填し、
CIPで成形して粉末成形体を作る方法において、以下
の構成を要旨とする。即ち、(1)粉末をCIPで成形
するに際し、熱可塑性樹脂で粉末成形用モールドを製作
し、そのモールドに粉末を充填し、CIPで成形して粉
末成形体を作り、この圧縮された粉末成形体を包む熱可
塑性樹脂のモールドを加熱することで、樹脂を軟化させ
粉末成形体より剥離させる粉体のCIP法による軟樹脂
の解体方法である。具体的な加熱条件としては、(2)
CIP後の圧縮された粉末成形体を包む熱可塑性樹脂の
モールドは、50℃以上200℃以下の温度範囲内で加
熱することがよい。
In order to achieve the above object, the present invention is to fill a thermoplastic resin mold with powder,
In the method of forming a powder compact by CIP, the following constitutions are the gist. That is, (1) when molding powder by CIP, a mold for powder molding is produced with a thermoplastic resin, the mold is filled with powder, and molded by CIP to make a powder molded body, and this compressed powder molding is performed. It is a method for disassembling a soft resin by a CIP method of a powder in which a thermoplastic resin mold that wraps a body is heated to soften the resin and separate it from a powder compact. Specific heating conditions are (2)
The thermoplastic resin mold that wraps the compressed powder compact after CIP is preferably heated within a temperature range of 50 ° C. or higher and 200 ° C. or lower.

【0009】[0009]

【作用】以下に本発明を詳細に説明する。熱可塑性樹脂
としては、ポリエチレン、ポリ塩化ビニル、アセチルセ
ルロース、ポロプロピレン、ナイロン等が適している。
熱可塑性樹脂のモールドはブロー成形か、熱可塑性樹脂
シートを加熱し軟化させて金型に真空引きして密着させ
る真空成形する方法で製作する。このように製作された
モールドに粉末を充填した後、装入口を密閉してCIP
成形を行う。図2はCIP成形後のモールド4と粉末成
形体5の密着状態を示したもので、CIP成形の加圧時
に粉末が装入されたモールドは、圧縮されクリープ変形
を起こし粉末成形体に密着し、その後の除圧時でもモー
ルドは膨張が少なく元に復元することはない。CIP成
形後に粉末成形体は通常、焼結処理を行うため、モール
ドを除去する必要があるが、粉末成形体に強固に密着し
ているため剥がすことが困難となる。モールドを剥がす
場合、ナイフ等で切れ目を入れ引き裂くように行ってい
るが、モールドと成形体が密着しているため千切れた
り、密着が強固な部分は手動で剥がすことができないと
ころが生じてしまう。
The present invention will be described in detail below. As the thermoplastic resin, polyethylene, polyvinyl chloride, acetyl cellulose, polypropylene, nylon and the like are suitable.
The thermoplastic resin mold is manufactured by blow molding or by vacuum molding in which a thermoplastic resin sheet is heated and softened to be vacuumed and closely attached to a mold. After filling the mold manufactured in this way with powder, the charging port is sealed and CIP is performed.
Perform molding. FIG. 2 shows a close contact state between the mold 4 and the powder compact 5 after the CIP molding. The mold charged with the powder at the time of pressurizing the CIP compact is compressed and causes creep deformation to adhere to the powder compact. , Even after depressurization, the mold does not expand so much that it does not return to its original shape. Since the powder compact is usually subjected to a sintering treatment after CIP molding, it is necessary to remove the mold, but it is difficult to peel it off because it is firmly adhered to the powder compact. When the mold is peeled off, a cut is made with a knife or the like so that the mold is peeled off. However, since the mold and the molded body are in close contact with each other, the mold may be torn off, or a part with strong adhesion cannot be manually peeled off.

【0010】そこで、CIP成形後、粉末成形体ととも
に圧縮された熱可塑性樹脂のモールドが塑性変形する温
度以上まで加熱し軟化させる。加熱し軟化したモールド
の一部を引っ張れば簡単に剥離させることが可能であ
る。この加熱する温度であるが、温度が低ければ熱可塑
性樹脂は軟化せず剥離させることはできず、また温度が
高ければ熱可塑性樹脂は軟化しすぎて粉末成形体に融着
して引っ張ると千切れて簡単に剥がすことができない状
態になる。即ち、熱可塑性樹脂を加熱軟化して剥がすに
は最適な加熱温度範囲があり、この温度範囲は熱可塑性
樹脂によって異なってくる。熱可塑性樹脂として、ポリ
エチレン、ポリ塩化ビニル、アセチルセルロース、ポロ
プロピレン、ナイロン等であれば、50℃以上200℃
以下の温度範囲で加熱すれば、熱可塑性樹脂成形型は千
切れず一体となって簡単に剥離させることが可能とな
る。
Therefore, after CIP molding, the thermoplastic resin mold compressed together with the powder compact is heated to a temperature at which it is plastically deformed or above to be softened. If a part of the heated and softened mold is pulled, it can be easily peeled off. This heating temperature is such that if the temperature is low, the thermoplastic resin does not soften and cannot be peeled off, and if the temperature is high, the thermoplastic resin is too soft and melts on the powder compact to pull it off. It becomes cut and cannot be easily removed. That is, there is an optimum heating temperature range for softening and peeling the thermoplastic resin by heating, and this temperature range varies depending on the thermoplastic resin. If the thermoplastic resin is polyethylene, polyvinyl chloride, acetyl cellulose, polypropylene, nylon, etc., 50 ° C or more and 200 ° C or more
By heating in the temperature range below, the thermoplastic resin molding die can be integrated and easily peeled without breaking.

【0011】図1は本発明を実施する装置を模式的に示
した説明図であり、CIP成形後の圧縮成形された熱可
塑性樹脂のモールドを熱処理炉で加熱しているものであ
る。図において、1は熱処理炉の炉壁で、2は加熱手段
として電気ヒーターを炉壁1の内側に設置し、所定の炉
温になるように温度を電気ヒーター2で制御している。
3は圧縮成形された熱可塑性樹脂のモールドであり、熱
処理炉で加熱される。熱可塑性樹脂のモールド3は炉壁
1に設けた装入口(図示せず)より炉内に装入し、所定
の温度に加熱された後、炉壁1に設けた排出口(図示せ
ず)より炉外に取り出し、軟化したモールドの一部を引
っ張りモールドと粉末成形体を剥離させる。
FIG. 1 is an explanatory view schematically showing an apparatus for carrying out the present invention, in which a compression-molded thermoplastic resin mold after CIP molding is heated in a heat treatment furnace. In the figure, 1 is a furnace wall of a heat treatment furnace, 2 is an electric heater as a heating means installed inside the furnace wall 1, and the temperature is controlled by the electric heater 2 so as to reach a predetermined furnace temperature.
Reference numeral 3 is a compression molded thermoplastic resin mold which is heated in a heat treatment furnace. The thermoplastic resin mold 3 is charged into the furnace through a charging port (not shown) provided in the furnace wall 1, heated to a predetermined temperature, and then an outlet (not shown) provided in the furnace wall 1. Then, the softened mold is pulled out of the furnace and a part of the softened mold is pulled to separate the mold and the powder compact.

【0012】[0012]

【実施例】【Example】

〔実施例1〕熱可塑性樹脂としてポリエチレンを用い
て、図3に示すような自動車エンジン部品であるコネク
ティングロット6の粉末焼結材が成形できる熱可塑性樹
脂のモールドをブロー成形にて製造した。このブロー成
形した型の厚みは約1mmで、この型の上部より中にチタ
ン粉末90%と60Al−40V合金粉末10%を混合
した粉末を振動させながら装入し、装入が終了した後ウ
レタンゴムで栓をして密閉した。その後、粉末が充填さ
れたモールド樹脂をCIPの溶媒の中に入れ、4000
kg/cm2 の静止圧力を約5分間かけ混合粉末を成形し、
除圧してCIPより取り出した。
Example 1 Using polyethylene as a thermoplastic resin, a thermoplastic resin mold capable of molding a powder sintered material of a connecting lot 6 which is an automobile engine part as shown in FIG. 3 was manufactured by blow molding. The thickness of the blow-molded mold was about 1 mm, and a powder containing 90% titanium powder and 10% 60Al-40V alloy powder mixed in from the upper part of the mold was vibrated and charged, and after the charging was completed, urethane was used. Sealed with a rubber stopper. After that, the mold resin filled with the powder is put in the solvent of CIP, and 4000
A static pressure of kg / cm 2 is applied for about 5 minutes to form a mixed powder,
The pressure was removed and the product was taken out from the CIP.

【0013】CIP成形後は粉末が充填されたモールド
の体積は約60%に圧縮され、モールドは粉末成形体に
強固に密着して手では容易に剥がすことはできない状態
になっている。そこで先ず粉末装入口のウレタンゴムの
栓を取り、モールドを熱処理炉に入れ大気雰囲気下で1
00℃に10分間加熱した後に取り出し、直ちに装入口
部分を左右に引っ張ったところモールド全体が粉末成形
体から簡単に剥離させることができた。
After CIP molding, the volume of the powder-filled mold is compressed to about 60%, and the mold is firmly adhered to the powder compact and cannot be easily peeled off by hand. Therefore, first remove the urethane rubber stopper at the powder charging port, put the mold in a heat treatment furnace, and
After heating at 00 ° C. for 10 minutes and taking out and immediately pulling the inlet part to the left and right, the entire mold could be easily separated from the powder compact.

【0014】モールドはブロー成形で作り全体が一体化
しているが、ブロー成形用金型は左右に2分割され成形
時に合わさるようになっているため、コネクティングロ
ット用熱可塑性樹脂型の側面内側全体に金型合わせ面の
細い溝が入っており、加熱し軟化した時に装入口部分を
左右に引っ張った時、この溝に沿って全体が簡単に剥が
れる。
The mold is made by blow molding and the whole is integrated, but since the mold for blow molding is divided into two parts on the left and right to be fitted together at the time of molding, the entire side surface inside of the thermoplastic resin mold for the connecting lot is formed. There is a thin groove on the die mating surface, and when the loading part is pulled to the left or right when heated and softened, the entire part easily peels along this groove.

【0015】チタンは酸化雰囲気では非常に活性な金属
であるが、加熱温度は100℃と低温であり酸化等の品
質上の問題は全くなかった。CIP成形後の粉末成形品
はその後、真空の状態で1250℃に120分間加熱し
て焼結処理し、焼結金属製品を製造した。
Titanium is a metal which is very active in an oxidizing atmosphere, but the heating temperature is as low as 100 ° C., and there was no quality problem such as oxidation. The powder molded product after CIP molding was then heated at 1250 ° C. for 120 minutes in a vacuum state and sintered to produce a sintered metal product.

【0016】〔実施例2〕熱可塑性樹脂としてポリ塩化
ビニルを用いて、同じコネクティングロット用の熱可塑
性樹脂のモールドの片面を真空成形法にて製造し、左右
の面を合わせて、この合わせ面を超音波にて接着しモー
ルドをつくった。型の厚みは約1mmで、この型の上部よ
り中にチタン粉末90%と60Al−40V合金粉末1
0%を混合した粉末を振動させながら装入し、装入が終
了した後ウレタンゴムで栓をして密閉した。
[Example 2] Using polyvinyl chloride as a thermoplastic resin, one side of a thermoplastic resin mold for the same connecting lot was manufactured by a vacuum forming method, and the left and right surfaces were joined to form a mating surface. Was ultrasonically bonded to form a mold. The thickness of the mold is about 1mm, 90% titanium powder and 60Al-40V alloy powder 1 in the upper part of the mold.
The powder mixed with 0% was charged while vibrating, and after the charging was completed, it was sealed with a urethane rubber stopper.

【0017】その後は実施例1と同様に4000kg/cm
2 の静止圧力を約5分間かけ混合粉末をCIP成形し
て、粉末装入口のウレタンゴムの栓を取り、圧縮された
モールドを熱処理炉に入れ大気雰囲気下で120℃に1
0分間加熱した後に取り出し、直ちに装入口部分を左右
に引っ張ったところモールド全体が粉末成形体から簡単
に剥離させることができた。剥離は超音波接着した左右
の合わせ面から全体が一体となって剥がれる状態であ
る。その後も実施例1と同様に真空の状態で1250℃
に120分間加熱して焼結処理し、焼結金属製品を製造
した。
Thereafter, as in Example 1, 4000 kg / cm
Apply a static pressure of 2 for about 5 minutes to CIP-mold the mixed powder, remove the urethane rubber plug at the powder inlet, put the compressed mold in a heat treatment furnace, and set the temperature to 120 ° C in the atmosphere.
After heating for 0 minutes and taking out and immediately pulling the charging port part to the left and right, the entire mold could be easily peeled from the powder compact. Peeling is a state in which the entire body is peeled off from the left and right mating surfaces that are ultrasonically bonded together. After that, in the same vacuum state as in Example 1, 1250 ° C.
And then sintered for 120 minutes to produce a sintered metal product.

【0018】従来のウレタンゴムモールドを使用してい
た場合、先ずモールドを張り合わせて接着・乾燥させた
後に、その中に粉末を充填してCIP成形を行う。CI
P処理後、モールドに圧着された粉末成形体をモールド
より取り出す解体作業、そして解体したモールドに付着
した粉末および粉末成形体の一部を洗浄する作業等の繰
り返し手作業が必要であり、1つのモールドは1日に1
回程度しか使用できない状態である。そのため生産量を
多くするには高価なウレタンゴムモールドを多く用意す
る必要があり、また人手もかかっていた。
When a conventional urethane rubber mold is used, the molds are first stuck together, adhered and dried, and then powder is filled therein to perform CIP molding. CI
After P treatment, repetitive manual work such as dismantling work for taking out the powder compact pressed against the mold from the mold and washing the powder adhering to the disassembled mold and a part of the powder compact is required. Mold 1 per day
It is in a state where it can be used only about once. Therefore, in order to increase the production amount, it was necessary to prepare many expensive urethane rubber molds, and it also took manpower.

【0019】しかし上記実施例によれば、熱可塑性樹脂
のモールドを使用することで、モールド組み立て、洗
浄、乾燥の各工程が不要になり、また熱可塑性樹脂のモ
ールドは使い捨てとなるが安価な樹脂の使用が可能なた
め製品当たりのモールド費用は大幅な削減が可能であ
る。従来に比べると、作業の効率化と安価なモールドの
使用により粉末成形作業にかかる費用が80%もの減少
となった。
According to the above embodiment, however, the use of the thermoplastic resin mold eliminates the steps of mold assembling, washing and drying, and the thermoplastic resin mold is a disposable but inexpensive resin. Since it can be used, the molding cost per product can be significantly reduced. Compared with the past, the cost of powder molding work has been reduced by as much as 80% due to the efficiency of work and the use of inexpensive molds.

【0020】一方焼結工程で熱可塑性樹脂型を熱分解す
る場合は焼結品の品質への問題と表面に付着した炭化物
を除去する後工程が必要となる等の問題がある。チタン
のように真空焼結をしなければならない材料には適用が
できず、また焼結工程で熱可塑性樹脂を熱分解し品質上
問題ない材料でも、熱処理炉内を不活性ガス雰囲気に
し、焼結後に表面に付着した炭化物を除去する設備が必
要となる。しかし上記実施例によれば、低温で加熱・解
体するため大気雰囲気下で加熱が可能であり、しかも粉
末に品質上の問題がなくどの粉末にでも熱可塑性樹脂が
適用可能となる。
On the other hand, when the thermoplastic resin mold is pyrolyzed in the sintering step, there are problems such as a quality problem of the sintered product and a post-process for removing the carbide adhering to the surface. It cannot be applied to materials that need to be vacuum-sintered, such as titanium, and even materials that are not detrimental to quality due to thermal decomposition of the thermoplastic resin during the sintering process should be burned in an inert gas atmosphere in the heat treatment furnace. Equipment is required to remove the carbide adhering to the surface after binding. However, according to the above-mentioned examples, since heating / disassembling is performed at a low temperature, it is possible to heat in an air atmosphere, and there is no quality problem in the powder, and the thermoplastic resin can be applied to any powder.

【0021】[0021]

【発明の効果】本発明によれば、粉末をCIP処理して
成形体にしてから焼結品を作る場合、CIP処理後に粉
末成形体から熱可塑性樹脂のモールドを剥がす工程にお
いて、低温の熱処理でモールドを品質に問題なく簡単に
モールドを剥がすことができて、組み立て、洗浄処理が
不要となって、モールド処理時間が著しく短縮され生産
性が飛躍的に増大するとともに粉末成形作業費用が大幅
に削減可能となる。しかも、本発明によれば低温で熱処
理しモールドを完全に除去するため粉末成形品に悪い影
響を与えず、鉄粉はもとより活性なチタン粉末やセラミ
ックス粉末等、粉末の種類に関係なく使用が可能であ
る。
According to the present invention, when a powder is CIP-treated into a compact and then a sintered product is produced, a low-temperature heat treatment is performed in the step of peeling the thermoplastic resin mold from the powder compact after the CIP treatment. The mold can be easily peeled off without any quality problem, assembly and cleaning processes are not required, the mold processing time is significantly shortened, the productivity is dramatically increased, and the powder molding work cost is greatly reduced. It will be possible. Moreover, according to the present invention, since the mold is completely removed by heat treatment at a low temperature, the powder molded product is not adversely affected, and it can be used regardless of the type of powder such as active titanium powder or ceramic powder as well as iron powder. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の一例を模式的に示す説
明図。
FIG. 1 is an explanatory view schematically showing an example of an apparatus for carrying out the present invention.

【図2】CIP成形後のモールドと粉末成形体の密着上
状態を示す図。
FIG. 2 is a view showing a state in which a mold after CIP molding and a powder compact are in close contact with each other.

【図3】実施例で製造したコネクティングロットを示す
図。
FIG. 3 is a diagram showing a connecting lot manufactured in Examples.

【符号の説明】[Explanation of symbols]

1 炉壁 2 ヒーター 3 CIP成形後の圧縮成形された熱可塑性樹脂のモー
ルド 4 モールド 5 粉末成形体 6 コネクティングロット
DESCRIPTION OF SYMBOLS 1 Furnace wall 2 Heater 3 Mold of thermoplastic resin compression-molded after CIP molding 4 Mold 5 Powder compact 6 Connecting lot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末を静水圧プレスで成形するに際し、
熱可塑性樹脂を使用して粉末成形の型を製作し、その熱
可塑性樹脂成形型に粉末を充填し、静水圧プレスで成形
して粉末成形体を作り、この圧縮された粉末成形体を包
む熱可塑性樹脂の型を加熱することで、樹脂を軟化させ
粉末成形体より剥離させることを特徴とする粉体の静水
圧成形における樹脂型の解体方法。
1. When the powder is molded by a hydrostatic press,
A powder molding die is manufactured using a thermoplastic resin, the thermoplastic resin molding die is filled with powder, and the powder is molded by an isostatic press to make a powder molding, and the heat that wraps the compressed powder molding A method for disassembling a resin mold in hydrostatic molding of powder, characterized in that the resin is softened by heating the mold of the plastic resin and peeled from the powder molded body.
【請求項2】 静水圧プレス後の圧縮された粉末成形体
を包む熱可塑性樹脂の型を、50℃以上200℃以下の
温度範囲内で加熱することを特徴とする請求項1記載の
粉体の静水圧成形における樹脂型の解体方法。
2. The powder according to claim 1, wherein the mold of the thermoplastic resin enclosing the compressed powder compact after isostatic pressing is heated within a temperature range of 50 ° C. or higher and 200 ° C. or lower. Method for disassembling resin mold in hydrostatic molding.
JP7110594A 1994-04-08 1994-04-08 Method for disassembling resin die in isostatic pressing of powder Withdrawn JPH07278606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7110594A JPH07278606A (en) 1994-04-08 1994-04-08 Method for disassembling resin die in isostatic pressing of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7110594A JPH07278606A (en) 1994-04-08 1994-04-08 Method for disassembling resin die in isostatic pressing of powder

Publications (1)

Publication Number Publication Date
JPH07278606A true JPH07278606A (en) 1995-10-24

Family

ID=13450947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7110594A Withdrawn JPH07278606A (en) 1994-04-08 1994-04-08 Method for disassembling resin die in isostatic pressing of powder

Country Status (1)

Country Link
JP (1) JPH07278606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012412A1 (en) * 2013-07-24 2015-01-29 Ndfeb株式会社 Process for producing rare earth sintered magnet and sintering mold for rare earth sintered magnet
WO2019054303A1 (en) * 2017-09-14 2019-03-21 東邦チタニウム株式会社 Production method for titanium or titanium alloy green compact
JP2020029598A (en) * 2018-08-23 2020-02-27 東邦チタニウム株式会社 Method for manufacturing green compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012412A1 (en) * 2013-07-24 2015-01-29 Ndfeb株式会社 Process for producing rare earth sintered magnet and sintering mold for rare earth sintered magnet
WO2019054303A1 (en) * 2017-09-14 2019-03-21 東邦チタニウム株式会社 Production method for titanium or titanium alloy green compact
JPWO2019054303A1 (en) * 2017-09-14 2020-10-29 東邦チタニウム株式会社 Manufacturing method of titanium or titanium alloy green compact
JP2020029598A (en) * 2018-08-23 2020-02-27 東邦チタニウム株式会社 Method for manufacturing green compact

Similar Documents

Publication Publication Date Title
NO156157B (en) PROCEDURE FOR THE REMOVAL OF THE CONTAINER MATERIAL FROM A HEAT PRESSURE COMPACT BODY OF METAL AND / OR NON-METAL COMPOSITION POWDER.
JPS61273298A (en) Molding method for powder
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
JPH07278606A (en) Method for disassembling resin die in isostatic pressing of powder
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
US4094053A (en) Forging process
CN109852836B (en) Preparation method of aluminum alloy casting
JP4271817B2 (en) Electric sintering die
CN209906873U (en) Equipment for manufacturing planar lithium target assembly
KR100709452B1 (en) forming method for skin material by a powder slush molding
USRE32117E (en) Forging process
JP2000254930A (en) Manufacture of synthetic resin molding by powder slush molding process
JPS624843A (en) Production of fiber-reinforced composite metallic material
JPS62287002A (en) Powder molding method
JP2001096585A (en) Method for production of hollow object
JPH02274504A (en) Manufacture of ceramic product having hollow part
JPH05195014A (en) Method for hot-forging aluminum alloy powder
RU2151025C1 (en) Method of manufacturing hot-deformed articles from powder materials
JPS62270702A (en) Manufacture of sintered alloy product
JPH05192935A (en) Method for molding insulator
JPH06330104A (en) Production of core for production member having hollow part and production of member having hollow part
JPH1158457A (en) Injection molding machine
JPH02182802A (en) Method and device producing metallic sintered member
JPH04301002A (en) Method for compacting powder
JPH0825420A (en) Molds for thermosetting resin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703