JP2015060999A - Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR - Google Patents

Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2015060999A
JP2015060999A JP2013194724A JP2013194724A JP2015060999A JP 2015060999 A JP2015060999 A JP 2015060999A JP 2013194724 A JP2013194724 A JP 2013194724A JP 2013194724 A JP2013194724 A JP 2013194724A JP 2015060999 A JP2015060999 A JP 2015060999A
Authority
JP
Japan
Prior art keywords
powder
magnet
sintered
insulating layer
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013194724A
Other languages
Japanese (ja)
Inventor
眞人 佐川
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013194724A priority Critical patent/JP2015060999A/en
Publication of JP2015060999A publication Critical patent/JP2015060999A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a large Nd-Fe-B-based magnet, suitable for production of a large Nd-Fe-B-based magnet capable of preventing eddy current loss.SOLUTION: In a method of producing a large Nd-Fe-B-based magnet, a sintering mold has a thin plate for forming an insulator layer composed of ceramic powder not disappearing in the sintering process, and a Nd-Fe-B-based magnet having an insulator layer composed of ceramic powder is produced via the sintering process. The amount of ceramic powder composing the thin plate for forming an insulator layer is equal to or more than the natural filling density of the powder.

Description


本発明は、比較的大型のNd-Fe-B系焼結磁石に関し、渦電流損失が小さいNd-Fe-B系焼結磁石とその製造技術に関する。

The present invention relates to a relatively large Nd—Fe—B based sintered magnet, and relates to a Nd—Fe—B based sintered magnet having a small eddy current loss and a manufacturing technique thereof.

Nd-Fe-B系焼結磁石は、ハイブリッド車や電気自動車のモータ用磁石として、あるいは風力発電機用磁石として、今後ますます需要が拡大すると予想される。これらの比較的大型のNd-Fe-B系焼結磁石を使用する回転機では、運転中に焼結磁石中に発生する渦電流損失を小さくする必要がある。 Nd-Fe-B sintered magnets are expected to increase in demand in the future as magnets for motors in hybrid vehicles and electric vehicles, or as magnets for wind power generators. In a rotating machine using these relatively large Nd—Fe—B sintered magnets, it is necessary to reduce eddy current loss generated in the sintered magnet during operation.


渦電流損失を小さくするため、小さく細分化したユニット磁石を絶縁性接着剤で接着して、所望の大きさのNd-Fe-B系焼結磁石を得る方法が知られている。しかしこの方法は、多数の磁石の製造を必要とするため、製造工程数が増加し、製造費用の増加と原料歩留まりの低下を招く。

In order to reduce eddy current loss, a method is known in which small and finely divided unit magnets are bonded with an insulating adhesive to obtain an Nd—Fe—B sintered magnet having a desired size. However, since this method requires the production of a large number of magnets, the number of production steps increases, leading to an increase in production costs and a reduction in raw material yield.

この問題に対し、所要の大きさと形状を持つNd-Fe-B系焼結磁石を製造した後、その磁石の少なくとも一つの表面に複数のスリットを設けること、及びそのスリットに接着剤などの非導電性物質を充填する方法が提案されている(特許文献1)。この方法では、スリットはダイアモンドカッターなどを用いて機械的に設けられるため、多大の加工費用がかかる。また、機械加工に伴う切削屑の発生は原料歩留まりの低下をきたし、結果として原料費の増大を招く。   In order to solve this problem, after manufacturing an Nd-Fe-B sintered magnet having a required size and shape, a plurality of slits are provided on at least one surface of the magnet, and a non-adhesive such as an adhesive is provided in the slit. A method of filling a conductive substance has been proposed (Patent Document 1). In this method, since the slit is mechanically provided using a diamond cutter or the like, a large processing cost is required. In addition, the generation of cutting scraps associated with machining causes a reduction in raw material yield, resulting in an increase in raw material cost.

また、所要の大きさと形状を持つNd-Fe-B系焼結磁石を製造した後、その磁石の少なくとも一つの表面に機械加工により複数のスリットを設け、これらのスリットにDyやTbの酸化物、フッ化物あるいは酸フッ化物を注入し、高温に加熱する方法が提案されている(特許文献2)。これにより、スリットにおける電気絶縁と、DyやTbの粒界拡散により、Nd-Fe-B系焼結磁石の保磁力を強化できる。なお、この方法では粉末成形体(圧粉体)作製後焼結工程前に、ダイアモンドカッターなどでスリットを入れることによりスリットを持つ焼結体を作製することも提案されている(特許文献2[0025])。 In addition, after manufacturing an Nd-Fe-B sintered magnet having the required size and shape, a plurality of slits are provided by machining on at least one surface of the magnet, and oxides of Dy and Tb are provided in these slits. A method of injecting fluoride or oxyfluoride and heating to high temperature has been proposed (Patent Document 2). Thereby, the coercive force of the Nd—Fe—B based sintered magnet can be enhanced by the electrical insulation in the slit and the grain boundary diffusion of Dy and Tb. In this method, it is also proposed to produce a sintered body having a slit by making a slit with a diamond cutter or the like after the production of the powder compact (green compact) and before the sintering step (Patent Document 2 [ 0025]).

渦電流損失を小さくし、さらには粒界拡散処理を行えるようにするため、空隙形成部材を用いて空隙(スリット)を有するNd-Fe-B系焼結磁石を製造する方法も提案されている(特許文献3)。この方法は、Nd-Fe-B系焼結磁石合金の粉末を空隙形成部材と共に粉末充填容器に充填し、合金粉末を磁界中で配向し、配向後空隙形成部材を除去し、合金粉末を粉末充填容器ごと加熱してNd-Fe-B系磁石合金粉末を焼結する工程とから構成されている(特許文献3、請求項1)。機械加工を必要としないので、簡易かつ低コストである。   In order to reduce eddy current loss and to enable grain boundary diffusion treatment, a method of manufacturing a Nd-Fe-B sintered magnet having voids (slits) using void forming members has also been proposed. (Patent Document 3). In this method, Nd-Fe-B sintered magnet alloy powder is filled in a powder-filled container together with a gap forming member, the alloy powder is oriented in a magnetic field, and after orientation, the gap forming member is removed, and the alloy powder is powdered And heating the entire filled container to sinter the Nd—Fe—B based magnet alloy powder (Patent Document 3, Claim 1). Since machining is not required, it is simple and low cost.

特開2000−295804号公報JP 2000-295804 A 特開2007−053351号公報JP 2007-053351 A 国際公開WO2010/052862号International Publication WO2010 / 052862

従来技術にはいくつかの問題点がある。
ダイアモンドカッターなどを用いる機械加工でスリットを作製する方法(特許文献1,2)は、機械加工に多大の経費がかかるだけでなくて、切削屑の発生のため原料歩留まりが低下し、原料費の増大を招く。
焼結前の粉末成形体に機械加工してスリットを形成するなら(特許文献2)、機械加工時間を短縮でき機械加工費を軽減できる。しかし焼結前の粉末成形体は脆いので、加工中に欠けたり破損したりする損失が大きい。また、機械加工中に粉末成形体の酸化が進み、焼結後の焼結磁石としての磁石特性の低下を招きやすい。
There are several problems with the prior art.
The method of producing slits by machining using a diamond cutter or the like (Patent Documents 1 and 2) not only costs a lot of machining, but also reduces the yield of raw materials due to the generation of cutting waste. Incurs an increase.
If the slit is formed by machining the powder compact before sintering (Patent Document 2), the machining time can be shortened and the machining cost can be reduced. However, since the powder compact before sintering is brittle, there is a great loss of chipping or breakage during processing. In addition, oxidation of the powder compact proceeds during machining, which tends to cause a decrease in magnet characteristics as a sintered magnet after sintering.

空隙形成部材を用いる方法(特許文献3)は、上記の欠点を克服できる。しかし、Nd-Fe-B系焼結磁石合金の粉末を空隙形成部材と共に粉末充填容器に充填し、合金粉末を磁界中で配向し、その後、空隙を完全に残して、空隙形成部材を機械的に引き抜いて、除去することは容易ではない。 The method using the air gap forming member (Patent Document 3) can overcome the above drawbacks. However, Nd-Fe-B sintered magnet alloy powder is filled in a powder-filled container together with a gap forming member, the alloy powder is oriented in a magnetic field, and then the gap is completely left, leaving the gap forming member mechanical. It is not easy to pull out and remove.

空隙形成部材を焼結温度より低い温度で液化または気化する物質で作製し、焼結開始前に空隙形成部材を除去する方法も提案されている(特許文献3[0015])。この方法は、空隙形成部材を機械的に引き抜く困難を回避できる。しかし、空隙形成部材を焼結が始まる前に除去する方法には共通して大きい問題がある。 空隙形成部材をスリット中に何も存在しない状態で粉末成形体の焼結過程を進めると、焼結中の収縮過程でスリット幅の不均一化や、スリットの曲り、あるいはスリットの閉塞を招く恐れがある。このような不良品を生む危険を孕む工程は大量生産技術としては採用すべきではない。焼結はいつも均一に進むとは限らず、焼結台板との摩擦や重力の効果によりスリットが閉塞される危険がある。不良品を生む危険性をもった製造方法は、量産技術として避けなければならない。 There has also been proposed a method in which a void forming member is made of a material that is liquefied or vaporized at a temperature lower than the sintering temperature, and the void forming member is removed before the sintering is started (Patent Document 3 [0015]). This method can avoid the difficulty of mechanically pulling out the gap forming member. However, there is a common big problem in the method of removing the void forming member before the sintering starts. Proceeding the sintering process of the powder compact without any gap forming member in the slit may cause uneven slit width, bending of the slit, or clogging of the slit during the shrinkage process during sintering. There is. Such a process that entails the risk of producing defective products should not be adopted as mass production technology. Sintering does not always proceed uniformly, and there is a risk that the slits may be clogged due to friction with the sintering base plate and the effect of gravity. Manufacturing methods with the risk of producing defective products must be avoided as mass production technology.

本発明が解決しようとする課題は、従来法の上記の問題点を解消し、焼結工程において大きく変形したり閉塞したりすることなく、かつ渦電流の発生を効率よく抑止できる絶縁物層を有する、新しいNd-Fe-B系磁石製造方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems of the conventional method, and to provide an insulator layer that can efficiently suppress the generation of eddy current without greatly deforming or blocking in the sintering process. It is to provide a new Nd—Fe—B magnet manufacturing method.

上記課題を解決するためになされた本発明に係るNd-Fe-B系磁石製造方法は、(1)焼結モールドにNd-Fe-B系磁石合金の粉末を充填する工程と、(2)該Nd-Fe-B系磁石合金粉末を磁界中で配向する工程と、(3)該Nd-Fe-B系磁石合金粉末を該焼結モールドごと加熱して、該Nd-Fe-B系磁石合金粉末を焼結する工程と、をこの順で行う該Nd-Fe-B系磁石製造方法において、
該焼結モールドが該焼結過程で消失しないセラミック粉末で構成される絶縁物層形成薄板を有しており、該焼結過程を経て、セラミック粉末で構成される絶縁物層を有するNd-Fe-B系磁石を製造することを特徴とする。
The Nd—Fe—B based magnet manufacturing method according to the present invention made to solve the above problems includes (1) a step of filling a sintered mold with a powder of Nd—Fe—B based magnet alloy, and (2) A step of orienting the Nd-Fe-B-based magnet alloy powder in a magnetic field; and (3) heating the Nd-Fe-B-based magnet alloy powder together with the sintered mold to produce the Nd-Fe-B-based magnet. In the method for producing an Nd-Fe-B magnet, in which the step of sintering the alloy powder is performed in this order,
The sintered mold has an insulating layer forming thin plate composed of ceramic powder that does not disappear during the sintering process, and after the sintering process, Nd-Fe having an insulating layer composed of ceramic powder -Manufacturing B magnets.

比較的大型のNd-Fe-B系焼結磁石を使用する回転機では、運転中に焼結磁石中に発生する渦電流損失を小さくする必要がある。絶縁物層とは、Nd-Fe-B系焼結磁石を実質的に細分化し、渦電流の発生を防止するための領域である。本発明の絶縁物層は、セラミック粉末で構成されている。 In a rotating machine that uses a relatively large Nd—Fe—B sintered magnet, it is necessary to reduce the eddy current loss generated in the sintered magnet during operation. The insulator layer is a region for substantially subdividing the Nd—Fe—B based sintered magnet to prevent the generation of eddy currents. The insulator layer of the present invention is composed of ceramic powder.

セラミック粉末としては、Nd-Fe-B焼結磁石の焼結温度900〜1100℃において蒸発しないセラミック粉末が選ばれる。好適なセラミック粉末は、アルミナ、ジルコニア、酸化チタン、マグネシア、黒鉛、チタン酸バリウム、希土類酸化物、希土類フッ化物、希土類酸フッ化物、アルカリ金属のフッ化物、アルカリ土類金属のフッ化物などである。セラミック粉末として、タルク、マイカなどの扁平粉、ホウ酸アルミニウムなどの針状粉、炭素粉末、硫酸バリウムなどの無定形粉、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、チタン酸カリウムウィスカーのどの針状粉、炭素繊維、アルミナ繊維などの繊維状物質なども好適である。 A ceramic powder that does not evaporate at a sintering temperature of 900 to 1100 ° C. of the Nd—Fe—B sintered magnet is selected as the ceramic powder. Suitable ceramic powders are alumina, zirconia, titanium oxide, magnesia, graphite, barium titanate, rare earth oxide, rare earth fluoride, rare earth oxyfluoride, alkali metal fluoride, alkaline earth metal fluoride, etc. . As ceramic powder, flat powder such as talc and mica, needle-like powder such as aluminum borate, carbon powder, amorphous powder such as barium sulfate, aluminum borate whisker, calcium carbonate whisker, potassium titanate whisker needle powder Also suitable are fibrous materials such as carbon fibers and alumina fibers.

セラミック粉末には、Nd-Fe-B系磁石の焼結過程で変化しないセラミック粉末の他、焼結過程で変性するセラミック粉末であっても、その変性後も絶縁性粉末としての性質を保っている場合はここでいうセラミック粉末に含まれる。すなわち該焼結過程経過後のセラミック粉末には、当初のセラミック粉末が変性した変性物質も含まれる。変性するセラミック粉末の例としては、当初Ca(OH)を用いると焼結後CaOに変性する場合である。 In addition to ceramic powders that do not change during the sintering process of Nd-Fe-B magnets, ceramic powders retain their properties as insulating powders even after modification, even if they are modified during the sintering process. If included, it is included in the ceramic powder referred to here. That is, the ceramic powder after the sintering process includes a modified substance obtained by modifying the original ceramic powder. An example of the ceramic powder to be modified is a case where initially Ca (OH) 2 is used and then modified to CaO after sintering.

多くの金属粉末は、蒸気圧は十分低いが、電気導電性であるので絶縁物層を形成する目的には不適切である。しかし、セラミック粉末に金属粉末を添加して、焼結工程後に、金属粉末同士が連結されない範囲で、セラミック粉末に金属粉末が添加されるのであれば、焼結後に絶縁層が形成されるので問題はない。金属粉末を添加することにより形成される絶縁物層の電気絶縁性が確保される範囲内において、セラミック粉末に金属粉末を混合することは許容される。 Many metal powders have a sufficiently low vapor pressure, but are electrically conductive and thus unsuitable for the purpose of forming an insulating layer. However, if the metal powder is added to the ceramic powder and the metal powder is added to the ceramic powder within the range in which the metal powder is not connected after the sintering process, an insulating layer is formed after the sintering. There is no. It is allowed to mix the metal powder with the ceramic powder as long as the electrical insulation of the insulating layer formed by adding the metal powder is ensured.

本発明に係る絶縁物層形成薄板は、セラミック粉末で構成されている。セラミック粉末で構成された絶縁物層形成薄板を有する焼結モールドにNd-Fe-B系磁石合金粉末を充填して、磁界配向し、焼結するということは、Nd-Fe-B系磁石合金粉末の充填、配向、焼結の工程で、絶縁物層形成のための空間がセラミック粉末で構成されているということである。絶縁物形成薄板がセラミック粉末で構成されているとは、Nd-Fe-B系磁石合金粉末の焼結モールドへの充填、配向、焼結過程で、安定して絶縁物層が形成されるために必要なだけ、絶縁物形成薄板がセラミック粉末を保持しているということである。 The insulator layer forming thin plate according to the present invention is made of ceramic powder. Nd-Fe-B based magnet alloy is filled with Nd-Fe-B magnet alloy powder in a sintering mold having an insulating layer forming thin plate made of ceramic powder, magnetic field orientation and sintering. In the powder filling, orientation, and sintering processes, the space for forming the insulating layer is made of ceramic powder. An insulator-forming thin plate is made of ceramic powder because an insulator layer is stably formed during filling, orientation, and sintering of Nd-Fe-B magnet alloy powder into a sintering mold. This means that the insulator-forming sheet holds ceramic powder as much as necessary.

絶縁物層形成薄板が保持すべきセラミック粉末の量の一つの目安は、その粉末の自然充填密度である。粉末の自然充填密度とは、粉末をある空間に自然に落下させて充填したときに示す見かけ密度をいう。粉末の自然充填密度は通常その粉末を構成する物質の理論密度の20〜40%程度である。ある空間が自然充填密度の粉末で構成されているとき、その空間は粉末によって支配され、その空間を囲む固体物質が、移動したり、収縮したりしようとすると、その空間にあらかじめ充填された粉末により、その移動や収縮が抑えられる。粉末をある空間に自然落下により充填した後、粉末に振動やタッピングを加えることにより、粉末の見かけ密度は40%以上に上昇する。充填された粉末に圧縮力を加えると、粉末の見かけ密度はさらに上昇して、50%以上にもなる。 One measure of the amount of ceramic powder that the insulator layered sheet should hold is the natural packing density of the powder. The natural packing density of the powder means an apparent density that is shown when the powder is naturally dropped and filled in a certain space. The natural packing density of the powder is usually about 20 to 40% of the theoretical density of the substance constituting the powder. When a space is composed of powder with a natural packing density, the space is dominated by the powder, and when the solid material surrounding the space tries to move or contract, the powder pre-filled in the space Therefore, the movement and contraction can be suppressed. After the powder is filled into a space by natural dropping, the apparent density of the powder is increased to 40% or more by adding vibration or tapping to the powder. When compressive force is applied to the filled powder, the apparent density of the powder is further increased to 50% or more.

絶縁物形成薄板において、セラミック粉末は樹脂によって固められている。樹脂が粉末を構成する粒子同士を接着するだけの場合、絶縁物形成薄板に含まれている樹脂の量は極めて少量である。樹脂が粉末に含まれる空間をすべて満たす場合、樹脂の量は、体積比で、100%から、上述した絶縁物形成薄板中におけるセラミック粉末の見かけ密度を減じた数値になる。これらの樹脂成分は、焼結工程中にほとんどすべて蒸発したり分解したりして消失するが、絶縁物形成薄板が置かれていた空間は、絶縁物層形成薄板に含まれていた、高温でも消失しない粉末により支配され続ける。すなわち、焼結工程において、絶縁物層形成薄板に含まれていたセラミック粉末は、焼結モールドに充填されたNd-Fe-B系磁石合金粉末の焼結収縮の際に、所定の幅の絶縁物層を所定の位置に安定して形成する役割を果たす。 In the insulator-forming thin plate, the ceramic powder is hardened with resin. When the resin simply bonds the particles constituting the powder, the amount of the resin contained in the insulator-forming thin plate is extremely small. When the resin fills the entire space contained in the powder, the amount of the resin is a value obtained by subtracting the apparent density of the ceramic powder in the insulator-forming thin plate from 100% by volume ratio. These resin components are almost completely evaporated and decomposed during the sintering process, but the space where the insulator-forming thin plate is placed is contained in the insulator layer-forming thin plate, even at high temperatures. Continue to be dominated by powder that does not disappear. That is, in the sintering process, the ceramic powder contained in the insulating layer forming thin plate is insulated with a predetermined width during the sintering shrinkage of the Nd-Fe-B magnet alloy powder filled in the sintering mold. It plays a role of stably forming a physical layer at a predetermined position.

絶縁物形成薄板はセラミック粉末と樹脂の混合物を型に入れて固める方法が採用される。このとき、セラミック粉末の量をできるだけ多くすることにより、焼結時における樹脂分解成分と、Nd-Fe-B合金粉末との反応が抑えられて、良質のNd-Fe-B焼結磁石が作りやすくなる。典型的な組成は、セラミック粉末と樹脂との体積比で60:40である。セラミック粉末としてアルミナ粉末を使用し、樹脂としてポリビニルアルコールを使用するとき、アルミナ粉末の絶縁物形成薄板に占める比率は、重量比で84%、セラミック粉末としてDyの酸化物を使用するときは、セラミック粉末分の割合は重量比で91%にもなる。これらの典型的な例における、セラミック粉末の量は、上述した、圧縮された粉末の見かけ密度(50%以上)を越えている。絶縁物形成薄板中におけるセラミック粉末の密度は、上述した、その粉末の自然充填された状態の見かけ密度以上で、上限は、セラミック粉末を固めて形状を保持することができる90%程度までの見かけ密度である。 For the insulator-forming thin plate, a method is adopted in which a mixture of ceramic powder and resin is placed in a mold and hardened. At this time, by increasing the amount of ceramic powder as much as possible, the reaction between the resin decomposition component during sintering and the Nd-Fe-B alloy powder is suppressed, and a high-quality Nd-Fe-B sintered magnet is produced. It becomes easy. A typical composition is 60:40 by volume ratio of ceramic powder to resin. When alumina powder is used as the ceramic powder and polyvinyl alcohol is used as the resin, the ratio of the alumina powder to the insulator-forming thin plate is 84% by weight, and when the oxide of Dy is used as the ceramic powder, ceramic The proportion of powder is 91% by weight. In these typical examples, the amount of ceramic powder exceeds the apparent density (more than 50%) of the compressed powder as described above. The density of the ceramic powder in the insulator-forming thin plate is equal to or higher than the apparent density of the powder as described above, and the upper limit is about 90%, which can hold the shape by solidifying the ceramic powder. Density.

空隙形成部材が樹脂のみで構成されている(特許文献3[0015])と、何も存在しないスリットを残したまま焼結過程を進めることになり、焼結中の収縮過程でスリットの幅の不均一化や、曲り、スリットの閉塞を招く危険性がある。絶縁物層形成薄板をセラミック粉末で構成するならば、焼結過程でセラミック粉末を固めている樹脂が消耗したとしても、セラミック粉末は絶縁物層内に留まり、焼結中の収縮過程でNd-Fe-B系磁石の絶縁物層の幅の不均一化や、絶縁物層の消失を招く危険を排除できる。   If the gap forming member is made of resin only (Patent Document 3 [0015]), the sintering process proceeds with leaving no slit, and the width of the slit is reduced during the shrinking process during sintering. There is a risk of causing unevenness, bending, and clogging of the slit. If the insulating layer forming thin plate is composed of ceramic powder, even if the resin that hardens the ceramic powder is consumed during the sintering process, the ceramic powder stays in the insulating layer, and Nd- The risk of non-uniform width of the insulator layer of the Fe-B magnet and loss of the insulator layer can be eliminated.

焼結モールドと絶縁物層形成薄板とは、同じ素材から一体成形で作製することが望ましい。樹脂としては、ポリビニルアルコール(PVA)、固形パラフィンあるいはカンファーを含む樹脂などの蒸発しやすく、蒸気がNd-Fe-B系磁石合金粉末と反応しにくい樹脂が好ましい。 It is desirable that the sintered mold and the insulating layer forming thin plate be manufactured from the same material by integral molding. As the resin, a resin that easily evaporates, such as polyvinyl alcohol (PVA), a resin containing solid paraffin, or camphor, and the vapor hardly reacts with the Nd—Fe—B based magnet alloy powder is preferable.

絶縁物層形成薄板は、厚さ1mm以下、できれば0.5mm以下で、かつ0.05mm以上であることが望ましい。   It is desirable that the insulating layer forming thin plate has a thickness of 1 mm or less, preferably 0.5 mm or less, and 0.05 mm or more.

上述した方法で作製した絶縁物層をもつNd-Fe-B系焼結磁石を磁石埋め込み型モータや発電機のロータに形成された穴に挿入して樹脂で固定して使用するときは、焼結後、焼結体の絶縁層に特別な処理を加える必要はない。しかし、モータや発電機に上述した絶縁物層をもつ磁石を組み込んで運転するときなど、磁石に応力がかかることが予想される用途には、これらの磁石の絶縁物層を機械的に強化することが望ましい。このような場合には、モータや発電機の運転中にセラミック粉末で構成された絶縁物層を起点として磁石に亀裂が入って、事故が発生する可能性がある。このような事故を防止するため、本発明の方法で絶縁物層をもつNd-Fe-B系磁石を製造したあと、絶縁物層にエポキシ樹脂などの樹脂又は接着剤を注入して、絶縁物層の機械的強度を高めておくことが望ましい。   When using an Nd-Fe-B sintered magnet with an insulator layer produced by the above-mentioned method and inserting it into a hole formed in the rotor of an embedded magnet motor or generator and fixing it with resin, After the sintering, it is not necessary to apply special treatment to the insulating layer of the sintered body. However, for applications where stress is expected to be applied to the magnet, such as when a motor or generator is installed with a magnet having the above-described insulator layer, the insulator layer of these magnets is mechanically strengthened. It is desirable. In such a case, there is a possibility that an accident may occur due to a crack in the magnet starting from an insulator layer made of ceramic powder during operation of the motor or generator. In order to prevent such an accident, after manufacturing an Nd-Fe-B magnet having an insulator layer by the method of the present invention, a resin such as an epoxy resin or an adhesive is injected into the insulator layer, and the insulator It is desirable to increase the mechanical strength of the layer.

Nd-Fe-B系焼結磁石の製造工程において、その焼結過程で消失しないセラミック粉末で構成される絶縁物層形成薄板を使用することにより、焼結中の収縮過程で製品が大きく変形したり、不完全な絶縁層が形成されたりすることなしに、絶縁物層をもつ高性能Nd-Fe-B系焼結磁石を安定して、かつ安価に製造できる。   In the manufacturing process of Nd-Fe-B sintered magnets, the use of an insulating layer forming thin plate made of ceramic powder that does not disappear during the sintering process greatly deforms the product during the shrinkage process during sintering. In addition, a high-performance Nd-Fe-B sintered magnet having an insulating layer can be manufactured stably and inexpensively without an incomplete insulating layer being formed.

絶縁物層は、大型のNd-Fe-B系焼結磁石中に渦電流が発生するのを防止し、それらを使用するモータや発電機中に発生する渦電流損失を最小化するのに有効である。   Insulator layer is effective in preventing eddy currents in large Nd-Fe-B sintered magnets and minimizing eddy current loss in motors and generators that use them. It is.


Nd-Fe-B系焼結磁石製造の3つのステップを示す第1の例の図Diagram of the first example showing the three steps of Nd-Fe-B sintered magnet production Nd-Fe-B系焼結磁石製造の3つのステップを示す第2の例の図Diagram of the second example showing the three steps of Nd-Fe-B sintered magnet production Nd-Fe-B系焼結磁石製造の3つのステップを示す第3の例の図Diagram of the third example showing the three steps of manufacturing a Nd-Fe-B sintered magnet


本発明の実施例を以下に示すが、本発明は実施例に限定されるわけではない。また、各実施例において、焼結用モールドは個別的に試作したが、大量生産の場合は射出成形法、真空成形法、あるいは圧空成形法により多数製作されるべきことは当然である。

Examples of the present invention are shown below, but the present invention is not limited to the examples. In each of the examples, the sintering molds were individually made as prototypes. However, in the case of mass production, it is natural that a large number of them should be manufactured by an injection molding method, a vacuum molding method, or a pressure molding method.

希土類焼結磁石としてはNd-Fe-B焼結磁石の他にSm-Co系焼結磁石がある。以下の実施例はNd-Fe-B焼結磁石の結果であるが、本発明の技術はSm-Co系焼結磁石にも適用できる。 As rare earth sintered magnets, there are Sm—Co based sintered magnets in addition to Nd—Fe—B sintered magnets. The following examples are the results of Nd—Fe—B sintered magnets, but the technique of the present invention can also be applied to Sm—Co based sintered magnets.


組成(重量分率)が31.5%Nd, 0.99%B, 0.1%Cu, 0.25%Al, 残部Fe であるストリップキャスト合金に水素を吸蔵させて水素解砕を行いNd-Fe-B焼結磁石用合金粗粉末を得た。この粗粉末を窒素ガスによるジェットミルにより粉砕してNd-Fe-B焼結磁石用合金微粉末を作製した。この微粉末の粒子サイズをレーザー回折・散乱法により測定した。平均粒径はD50=5.2μmであった。この微粉末に、潤滑剤としてステアリン酸亜鉛粉末を0.1重量%添加して、ミキサーで攪拌混合した。以下、この微粉末を用いて焼結磁石の作製を行った。

For Nd-Fe-B sintered magnets, hydrogen is crushed by absorbing hydrogen in a strip cast alloy with a composition (weight fraction) of 31.5% Nd, 0.99% B, 0.1% Cu, 0.25% Al, and the balance Fe. A coarse alloy powder was obtained. The coarse powder was pulverized by a jet mill using nitrogen gas to produce a fine alloy powder for Nd-Fe-B sintered magnet. The particle size of the fine powder was measured by a laser diffraction / scattering method. The average particle size was D 50 = 5.2 μm. To this fine powder, 0.1% by weight of zinc stearate powder as a lubricant was added and stirred and mixed with a mixer. Hereinafter, a sintered magnet was produced using this fine powder.


図1(A),図2(A)および図3(A)のような3種類の焼結モールドを作製した。図1(A)の焼結モールドは、左右から交互に絶縁物層が切り込んでいる直方体形状のNd-Fe-B焼結磁石を製造するための焼結モールドである。図2(A)の焼結モールドは、絶縁物層が渦巻き状である直方体形状のNd-Fe-B焼結磁石を製造するための焼結モールドである。図3(A)の焼結モールドは、左右から交互に絶縁物層が切り込んでいる、円弧状に曲げられたセグメント形状のNd-Fe-B焼結磁石を製造するための焼結モールドである。

Three types of sintered molds as shown in FIGS. 1 (A), 2 (A) and 3 (A) were produced. The sintered mold of FIG. 1 (A) is a sintered mold for manufacturing a rectangular parallelepiped Nd—Fe—B sintered magnet in which insulator layers are alternately cut from the left and right. The sintered mold of FIG. 2 (A) is a sintered mold for producing a rectangular parallelepiped Nd—Fe—B sintered magnet having a spiral insulator layer. The sintered mold of FIG. 3 (A) is a sintered mold for producing a segment-shaped Nd—Fe—B sintered magnet bent in an arc shape, in which insulating layers are alternately cut from the left and right. .


図1(A)、図2(A)、図3(A)の焼結モールドに対応するキャビティーをもつ組立鋳型をポリテトラフルオロエチレンで作製した。また、平均粒径5μmのアルミナ粉末84gとポリビニルアルコール(PVA)16gを85℃の水100gが入ったビーカーに投入してよく撹拌してアルミナ粉末のスラリーを作製した。
ポリテトラフルオロエチレン製組立鋳型にアルミナ粉末スラリーを注入したあと、全体を100℃に加熱して水分をできる限り蒸発させた。室温まで冷却したあと、ポリテトラフルオロエチレン製組立鋳型から、アルミナ粉末がPVAによって固められた焼結モールドを取り出した。これらの焼結モールドにおいて、絶縁物層形成薄板および底板部ならびに側方部の厚さはすべて0.5mmであった。

An assembly mold having a cavity corresponding to the sintered mold of FIGS. 1 (A), 2 (A), and 3 (A) was made of polytetrafluoroethylene. Further, 84 g of alumina powder having an average particle size of 5 μm and 16 g of polyvinyl alcohol (PVA) were put into a beaker containing 100 g of water at 85 ° C. and stirred well to prepare an alumina powder slurry.
After injecting the alumina powder slurry into the polytetrafluoroethylene assembly mold, the whole was heated to 100 ° C. to evaporate water as much as possible. After cooling to room temperature, the sintered mold in which the alumina powder was hardened by PVA was taken out from the polytetrafluoroethylene assembly mold. In these sintered molds, the thicknesses of the insulating layer forming thin plate, the bottom plate portion, and the side portions were all 0.5 mm.


このようにして作製された3種類の焼結モールドに、それぞれ、モールドの機械的強度を補強するために、樹脂(POM)製の、焼結モールド支持箱を取り付けた。
先に説明した潤滑剤入りNd-Fe-B焼結磁石微粉末を、充填密度が3.2g/cmになるまで、焼結モールド全体に均一に充填した。この状態を図1(B)、図2(B)、図3(B)に示した。
その後、焼結モールド上部に3mmの厚さの黒鉛板で作られた蓋を取り付けた。粉末が充填され蓋をされた焼結モールドを、焼結モールド支持箱を取り付けたまま磁界配向用コイルの中に入れ、絶縁物層形成薄板に垂直な方向に5Tのパルス磁界を印加した。磁界配向後、焼結モールド支持箱を取り外した。

In order to reinforce the mechanical strength of the mold, the sintered mold support box made of resin (POM) was attached to the three types of sintered molds thus produced.
The above-described Nd—Fe—B sintered magnet fine powder containing lubricant was uniformly filled throughout the sintering mold until the filling density became 3.2 g / cm 3 . This state is shown in FIGS. 1B, 2B, and 3B.
Thereafter, a lid made of a graphite plate having a thickness of 3 mm was attached to the upper part of the sintering mold. The sintered mold filled with powder and covered was placed in a magnetic field orientation coil with the sintered mold support box attached, and a 5 T pulse magnetic field was applied in a direction perpendicular to the insulating layer forming thin plate. After magnetic field orientation, the sintered mold support box was removed.


上述したNd-Fe-B焼結磁石用合金微粉末が充填された焼結モールドを、蓋をしたまま、厚さ3mmのステンレス板(焼結台板)の上に乗せて焼結炉に入れた。全体を真空排気後、焼結炉の昇温を開始した。昇温開始と同時に焼結炉内に水素を導入し、水素圧力を約1Paに維持するように、ポンプ排気速度と水素導入量を調整しつつ、3℃/分の昇温速度で500℃まで昇温した。水素圧力1Paの雰囲気中、500℃で1時間保持したあと水素の供給を止めた。ターボ分子ポンプで排気しながら、5℃/分の昇温速度で800℃まで昇温し、800℃で1時間保持したあと、再び5℃/分の昇温速度で1050℃まで昇温した。1050℃で2時間保持したあと加熱をやめ、炉の中で室温まで冷却した。

Place the sintering mold filled with the above-mentioned Nd-Fe-B sintered magnet alloy fine powder on a stainless steel plate (sintering base plate) with a thickness of 3 mm and put it in the sintering furnace. It was. After the whole was evacuated, the temperature of the sintering furnace was increased. Hydrogen is introduced into the sintering furnace at the same time as the heating starts, and the pump exhaust rate and the hydrogen introduction rate are adjusted so that the hydrogen pressure is maintained at about 1 Pa. The temperature rose. The supply of hydrogen was stopped after holding at 500 ° C. for 1 hour in an atmosphere of 1 Pa of hydrogen pressure. While evacuating with a turbo molecular pump, the temperature was raised to 800 ° C. at a heating rate of 5 ° C./min, held at 800 ° C. for 1 hour, and then again raised to 1050 ° C. at a heating rate of 5 ° C./min. After holding at 1050 ° C. for 2 hours, heating was stopped and cooled to room temperature in a furnace.


焼結炉から焼結体を焼結台板ごと静かに取り出した。図1(A),図2(A)及び図3(A)の焼結モールドから作製された焼結体は、それぞれ図1(C),図2(C)および図3(C)のように、歪みがなく、均一な幅で形成された絶縁物層を有していた。いずれの焼結体も、外形に歪みがない上質な焼結体であった。形成された絶縁物層の幅は約0.4mmで、アルミナ粉末で構成されていた。焼結モールドの外周部と底部は崩壊していたが、一部のアルミナ粉末が焼結体周辺に散逸していた。

The sintered body was gently taken out of the sintering furnace together with the sintered base plate. The sintered bodies produced from the sintering molds of FIGS. 1 (A), 2 (A) and 3 (A) are as shown in FIGS. 1 (C), 2 (C) and 3 (C), respectively. In addition, the insulating layer has a uniform width and no distortion. All the sintered bodies were high-quality sintered bodies having no distortion in the outer shape. The formed insulating layer had a width of about 0.4 mm and was composed of alumina powder. Although the outer peripheral part and the bottom part of the sintered mold were collapsed, some alumina powder was dissipated around the sintered body.


焼結体の密度はいずれも7.54g/cmに達していた。これらの焼結体を真空中で800℃に加熱し、1時間保持したあと室温まで急冷し、その後また真空中で500℃まで加熱して、1時間保持したあと室温まで急冷した。このような熱処理を施した焼結体から、磁極面7mm角で、磁化方向5mm厚さの試料を切り出して、パルス磁化測定器で磁気測定を行った。その結果、どの焼結体から取った試料も、磁気特性がよく揃っており、つぎのような特性を持っていた。
Br=14.1kG
HcJ=12.4kOe
(BH)max=48MGOe

The density of each sintered body reached 7.54 g / cm 3 . These sintered bodies were heated to 800 ° C. in a vacuum, held for 1 hour, then rapidly cooled to room temperature, and then again heated to 500 ° C. in a vacuum, held for 1 hour, and then rapidly cooled to room temperature. A sample having a magnetic pole surface of 7 mm square and a magnetization direction of 5 mm was cut out from the sintered body subjected to such heat treatment, and magnetic measurement was performed using a pulse magnetization measuring instrument. As a result, the samples taken from all the sintered bodies had the same magnetic characteristics and had the following characteristics.
B r = 14.1kG
H cJ = 12.4kOe
(BH) max = 48MGOe


図1(A)の焼結モールドにおいて、その外周部および底部は焼結黒鉛を加工して作製し、絶縁物層形成薄板を実施例1と同じようにアルミナ粉末とPVAを水中に撹拌させたスラリーを固める方法で作製した。ただしアルミナ粉末とPVAの重量比は91対9とした。焼結モールド各部の厚さは、外周部および底板部を2mm、絶縁領域形成薄板を0.5mmとした。

In the sintered mold of FIG. 1 (A), the outer peripheral part and the bottom part were produced by processing sintered graphite, and the alumina layer and PVA were stirred in water in the same manner as in Example 1 for the insulating layer forming thin plate. It was produced by a method of hardening the slurry. However, the weight ratio of alumina powder to PVA was 91: 9. The thickness of each part of the sintered mold was 2 mm for the outer peripheral portion and the bottom plate portion, and 0.5 mm for the insulating region forming thin plate.


この焼結モールドに、実施例1と同じNd-Fe-B焼結磁石合金微粉末を実施例1と同じ方法で充填し、磁界中配向を施して、実施例1と同じ条件で焼結した。その結果、絶縁物層を有する焼結体が、絶縁物層の歪みもなく、かつ外形の歪みもなく作製できた。絶縁物層はアルミナ粉末で構成されていた。焼結体の磁石特性は実施例1と同じように評価して、実施例1と同じように極めて良好であることを確認した。

This sintered mold was filled with the same Nd—Fe—B sintered magnet alloy fine powder as in Example 1 in the same manner as in Example 1, and subjected to orientation in a magnetic field, and sintered under the same conditions as in Example 1. . As a result, a sintered body having an insulator layer could be produced without distortion of the insulator layer and without distortion of the outer shape. The insulator layer was composed of alumina powder. The magnet characteristics of the sintered body were evaluated in the same manner as in Example 1 and confirmed to be very good as in Example 1.

Claims (6)

(1)焼結モールドにNd-Fe-B系磁石合金の粉末を充填する工程と、
(2)該Nd-Fe-B系磁石合金粉末を磁界中で配向する工程と、
(3)該Nd-Fe-B系磁石合金粉末を該焼結モールドごと加熱して、該Nd-Fe-B系磁石合金粉末を焼結する工程と、
をこの順で行う該Nd-Fe-B系磁石製造方法において、
該焼結モールドが該焼結過程で消失しないセラミック粉末で構成される絶縁物層形成薄板を有しており、
該焼結過程を経て、セラミック粉末で構成される絶縁物層を有するNd-Fe-B系磁石を製造するNd-Fe-B系磁石製造方法。
(1) filling the sintered mold with Nd-Fe-B magnet alloy powder;
(2) a step of orienting the Nd—Fe—B based magnet alloy powder in a magnetic field;
(3) heating the Nd-Fe-B magnet alloy powder together with the sintering mold to sinter the Nd-Fe-B magnet alloy powder;
In the Nd-Fe-B based magnet manufacturing method for performing in this order,
The sintered mold has an insulating layer forming thin plate composed of ceramic powder that does not disappear during the sintering process,
A Nd-Fe-B magnet production method for producing an Nd-Fe-B magnet having an insulating layer composed of ceramic powder through the sintering process.
前記絶縁物層形成薄板を構成する前記セラミック粉末の量は、その粉末の自然充填密度以上である請求項1に記載のNd-Fe-B系磁石製造方法。 2. The method for producing an Nd—Fe—B magnet according to claim 1, wherein an amount of the ceramic powder constituting the insulating layer forming thin plate is equal to or higher than a natural packing density of the powder. 前記絶縁物層形成薄板を構成する前記セラミック粉末は樹脂で固められていることを特徴とする請求項1又は請求項2に記載のNd-Fe-B系磁石製造方法。 The method for producing an Nd-Fe-B magnet according to claim 1 or 2, wherein the ceramic powder constituting the insulating layer forming thin plate is hardened with a resin. 前記セラミック粉末に、絶縁物層の電気絶縁性が確保される範囲内の金属粉末を混合したことを特徴とする請求項1から請求項3のいずれか1項に記載のNd-Fe-B系磁石製造方法。 The Nd-Fe-B system according to any one of claims 1 to 3, wherein the ceramic powder is mixed with a metal powder within a range in which electrical insulation of the insulating layer is ensured. Magnet manufacturing method. 前記焼結モールドと前記絶縁物層形成薄板は、一体成形されたものであることを特徴とする請求項1から請求項4のいずれか1項に記載のNd-Fe-B系磁石製造方法。   The method for producing an Nd-Fe-B magnet according to any one of claims 1 to 4, wherein the sintered mold and the insulating layer forming thin plate are integrally formed. 前記セラミック粉末で構成される絶縁物層を有するNd-Fe-B系磁石を製造後、前記セラミック粉末で構成される絶縁物層に他の絶縁物質を追加注入することを特徴とする請求項1から請求項4のいずれか1項に記載のNd-Fe-B系磁石製造方法。
2. The method according to claim 1, wherein after the Nd-Fe-B magnet having the insulating layer composed of the ceramic powder is manufactured, another insulating material is additionally injected into the insulating layer composed of the ceramic powder. The method for producing a Nd-Fe-B magnet according to any one of claims 1 to 4.
JP2013194724A 2013-09-20 2013-09-20 Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR Pending JP2015060999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194724A JP2015060999A (en) 2013-09-20 2013-09-20 Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194724A JP2015060999A (en) 2013-09-20 2013-09-20 Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2015060999A true JP2015060999A (en) 2015-03-30

Family

ID=52818272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194724A Pending JP2015060999A (en) 2013-09-20 2013-09-20 Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2015060999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585106A (en) * 2018-12-18 2019-04-05 宁波铄腾新材料有限公司 A kind of super large block rare-earth permanent magnet and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585106A (en) * 2018-12-18 2019-04-05 宁波铄腾新材料有限公司 A kind of super large block rare-earth permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6439876B2 (en) Magnet particle and magnet molded body using the same
JP4923152B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP6105047B2 (en) PERMANENT MAGNET, MOTOR, GENERATOR, CAR, AND PERMANENT MAGNET MANUFACTURING METHOD
WO2010052862A1 (en) Method for producing rare earth sintered magnet and powder container for rare earth sintered magnet production
JP5125818B2 (en) Magnetic compact and manufacturing method thereof
JP2011228667A (en) Permanent magnet and method of manufacturing permanent magnet
JP6105046B2 (en) PERMANENT MAGNET, MOTOR, GENERATOR, CAR, AND PERMANENT MAGNET MANUFACTURING METHOD
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
JP6613730B2 (en) Rare earth magnet manufacturing method
JP5969750B2 (en) Rare earth permanent magnet manufacturing method
JPWO2015140836A1 (en) Permanent magnets, motors, and generators
JP4981182B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2009283568A (en) Magnet molded body and its method for manufacturing
JP2015060999A (en) Nd-Fe-B-BASED SINTERED MAGNET HAVING INSULATOR LAYER AND PRODUCTION METHOD THEREFOR
WO2017046826A1 (en) Permanent magnet and dynamo electric machine
US10923254B2 (en) Permanent magnet, motor, and generator
US10892091B2 (en) Permanent magnet, motor, and generator
JP2010206046A (en) Magnet molding and method of making the same
JP2017022375A (en) permanent magnet
JP6606027B2 (en) Rotating electric machine and vehicle
JP5878325B2 (en) Method for manufacturing permanent magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
WO2023106008A1 (en) Method for producing rare earth iron sintered magnet, apparatus for producing rare earth iron sintered magnet, and rare earth iron sintered magnet
JP2009224378A (en) Magnet molding