JPWO2015002197A1 - PTC element and heating module - Google Patents

PTC element and heating module Download PDF

Info

Publication number
JPWO2015002197A1
JPWO2015002197A1 JP2015525237A JP2015525237A JPWO2015002197A1 JP WO2015002197 A1 JPWO2015002197 A1 JP WO2015002197A1 JP 2015525237 A JP2015525237 A JP 2015525237A JP 2015525237 A JP2015525237 A JP 2015525237A JP WO2015002197 A1 JPWO2015002197 A1 JP WO2015002197A1
Authority
JP
Japan
Prior art keywords
mass
ptc element
resistance
base metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015525237A
Other languages
Japanese (ja)
Inventor
健太郎 猪野
健太郎 猪野
武司 島田
武司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2015002197A1 publication Critical patent/JPWO2015002197A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

半導体磁器組成物に卑金属系電極が焼付けにより形成されたPTC素子であって、前記半導体磁器組成物は、BaTiO3型酸化物からなるペロブスカイト構造を有し、前記卑金属系電極は、金属成分としてAl、Niのうち少なくとも一種を主成分とし、かつ、少なくともBを含み、前記半導体磁器組成物の卑金属系電極側に、前記半導体磁器組成物の母相よりも抵抗の小さい低抵抗層が形成されているPTC素子。A PTC element in which a base metal electrode is formed by baking on a semiconductor ceramic composition, the semiconductor ceramic composition has a perovskite structure made of a BaTiO3 type oxide, and the base metal electrode has Al as a metal component, A low resistance layer having at least one of Ni as a main component and containing at least B and having a lower resistance than the parent phase of the semiconductor ceramic composition is formed on the base metal electrode side of the semiconductor ceramic composition. PTC element.

Description

この発明は、正の抵抗温度係数を有する半導体磁器組成物に電極を形成したPTC素子および発熱モジュールに関する。   The present invention relates to a PTC element and a heat generating module in which electrodes are formed on a semiconductor ceramic composition having a positive resistance temperature coefficient.

従来、PTC特性(正の抵抗率温度係数:Positive Temperature Coefficient of resistivity)を示す材料としてBaTiOで表されるペロブスカイト系の組成に様々な半導体化元素を加えた半導体磁器組成物が提案されている。PTC特性とはキュリー点以上の高温になると急激に抵抗値が増大する特性である。PTC特性を持つ半導体磁器組成物は電極が形成されてPTC素子として使用される。Conventionally, a semiconductor porcelain composition in which various semiconducting elements are added to a perovskite-based composition represented by BaTiO 3 has been proposed as a material exhibiting PTC characteristics (Positive Temperature Coefficient of resiliency). . The PTC characteristic is a characteristic in which the resistance value increases rapidly when the temperature becomes higher than the Curie point. A semiconductor ceramic composition having PTC characteristics is used as a PTC element in which an electrode is formed.

特許文献1は、非鉛の半導体磁器組成物と電極を用いたPTC素子について、半導体磁器組成物としてBaTiO50〜85%、CaTiO3〜15%、SrTiO〜50%、SiO1〜2%が好ましいことが記載されている(段落0006参照)。また、電極を形成する方法として、電極または前記電極の部分層は好ましくは金属析出法にて作製される。金属析出法を例示すれば、スパッタリング、蒸着、電解析出、化学析出である。ただし、前記電極は金属ペーストの焼付けによって作製されてもよいと記載されている(段落0007参照)。Patent Document 1 discloses a PTC element using a lead-free semiconductor ceramic composition and an electrode. As the semiconductor ceramic composition, BaTiO 3 50 to 85%, CaTiO 3 3 to 15%, SrTiO 3 to 50%, SiO 2 1 to 1 are used. 2% is preferred (see paragraph 0006). As a method for forming the electrode, the electrode or the partial layer of the electrode is preferably produced by a metal deposition method. Examples of metal deposition methods include sputtering, vapor deposition, electrolytic deposition, and chemical deposition. However, it is described that the electrode may be produced by baking a metal paste (see paragraph 0007).

特許文献2には、一般式ABOで表されるペロブスカイト型構造を有するBaTiO系組成物を主成分とし、Aサイトを構成するBaの一部が、少なくともアルカリ金属元素、Bi、及び希土類元素で置換されると共に、AサイトとBサイトのモル比mが、0.990≦m≦0.999であり、良好な立ち上がり特性を有する半導体セラミックが記載されている(段落0026参照)。また、めっき処理、スパッタ、電極焼付け等により、外部電極を形成し、これによりPTCサーミスタが得られるとの記載がある(段落0069参照)。そして、実施例中では、乾式めっきを施し、NiCr/NiCu/Agの三層構造の外部電極を形成している(段落0079参照)。In Patent Document 2, a Ba m TiO 3 composition having a perovskite structure represented by the general formula A m BO 3 is a main component, and a part of Ba constituting the A site is at least an alkali metal element, Bi And a rare earth element, and the molar ratio m between the A site and the B site is 0.990 ≦ m ≦ 0.999, and a semiconductor ceramic having a good rise characteristic is described (see paragraph 0026). ). In addition, there is a description that an external electrode is formed by plating, sputtering, electrode baking, or the like, thereby obtaining a PTC thermistor (see paragraph 0069). In the examples, dry plating is performed to form an external electrode having a three-layer structure of NiCr / NiCu / Ag (see paragraph 0079).

PTC素子は、その全体の製造コストにおいて、電極の材料コストおよび電極を形成するための製造工程にかかるコストが非常に大きな割合を占める。
電極の形成方法の一つである金属析出法は、半導体磁器組成物と電極の密着性を高めやすく、両者の界面の抵抗(以下、界面抵抗とする。)を小さくし易いという利点がある。界面抵抗が小さくなればPTC素子の抵抗(以下、素子抵抗とする。)も小さくなり、PTC素子の電流効率を向上できる。しかしその反面、金属析出法は製造コストが高いという問題がある。
In the PTC element, the material cost of the electrode and the cost for the manufacturing process for forming the electrode occupy a very large proportion of the entire manufacturing cost.
The metal deposition method, which is one of the electrode forming methods, has the advantages that it is easy to improve the adhesion between the semiconductor ceramic composition and the electrode, and to easily reduce the resistance at the interface between them (hereinafter referred to as interface resistance). If the interface resistance decreases, the resistance of the PTC element (hereinafter referred to as element resistance) also decreases, and the current efficiency of the PTC element can be improved. On the other hand, however, the metal deposition method has a problem of high production costs.

安価に電極を形成する手段として焼付けの方法が採用されることがある。焼付けとは、金属粉末をガラス成分や有機成分中に分散させた電極ペーストを作製し、これを半導体磁器組成物に印刷等で塗布し、加熱して電極ペーストからガラス成分や有機成分を蒸発させて金属成分を残して電極とするものである。   A baking method may be employed as a means for forming the electrode at a low cost. Baking is an electrode paste in which metal powder is dispersed in a glass component or organic component, which is applied to a semiconductor ceramic composition by printing or the like, and heated to evaporate the glass component or organic component from the electrode paste. Thus, the metal component is left to form an electrode.

特許文献3では、少なくとも2つのオーミック電極と、電極の間に配置されたBaTiOのBaの一部がBi−Naで置換された半導体磁器組成物とを有するPTC素子であって、半導体磁器組成物が、組成式を[(Bi−Na)(Ba1−y−θθ1−x]Ti1−z(但し、Rは希土類元素のうち少なくとも一種、AはCa、Srのうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表し、前記x、y、z、θが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010、0≦θ≦0.20を満足し、前記電極と半導体磁器組成物の界面において電極のオーミック成分と半導体磁器組成物が接触していない面積の割合が25%以下としたPTC素子が開示されている。実施例においてこの電極は、金属成分としてAgを主成分とすることが記載されている。In Patent Document 3, a PTC element having at least two ohmic electrodes and a semiconductor ceramic composition in which a part of BaTiO 3 disposed between the electrodes is substituted with Bi-Na, the semiconductor ceramic composition things, a composition formula [(Bi-Na) x ( Ba 1-y-θ R y a θ) 1-x] Ti 1-z M z O 3 ( provided that at least one of R is a rare earth element, a Represents at least one of Ca and Sr, and M represents at least one of Nb, Ta, and Sb), and x, y, z, and θ are 0 <x ≦ 0.30, 0 ≦ y ≦ 0.020, 0 ≦ z ≦ 0.010, 0 ≦ θ ≦ 0.20 is satisfied, and the proportion of the area where the ohmic component of the electrode and the semiconductor ceramic composition are not in contact at the interface between the electrode and the semiconductor ceramic composition is 25% or less A PTC element is disclosed. In the examples, it is described that this electrode is mainly composed of Ag as a metal component.

ところで電極は、金属成分として、Ag、Au、Pt等の元素を主成分とした貴金属系電極ペーストを用いたものと、Al、Ni等の元素を主成分とした卑金属系電極ペーストを用いたものがある。貴金属系電極ペーストを用いれば、酸化しにくいため電極を大気中で焼き付けすることが可能である。しかしながら、貴金属元素は高価であるため、PTC素子のコスト低減の妨げになる。   By the way, the electrode uses a noble metal electrode paste mainly composed of elements such as Ag, Au and Pt as a metal component and a base metal electrode paste mainly composed of elements such as Al and Ni. There is. If a noble metal electrode paste is used, it is difficult to oxidize, so that the electrode can be baked in the atmosphere. However, since the noble metal element is expensive, it hinders the cost reduction of the PTC element.

対して、卑金属系電極ペーストは、金属成分としてAlやNi等を主成分とするため、非常に安価である。但し、酸化しやすいため低抵抗化の妨げになる。
特許文献4には、金属アルミと窒化ホウ素0.1〜10重量%とガラスフリット(ホウ珪酸鉛ガラス)0.01〜5重量%とからなる電子部品の電極が開示されている。この電極材料は、空気中850〜900℃で焼成することにより、セラミック素子に対しオーミック性を有する電極とすることが出来るとしている。
On the other hand, the base metal electrode paste is very inexpensive because it contains Al, Ni or the like as a metal component as a main component. However, it tends to oxidize and hinders a reduction in resistance.
Patent Document 4 discloses an electrode of an electronic component comprising metal aluminum, boron nitride 0.1 to 10% by weight, and glass frit (lead borosilicate glass) 0.01 to 5% by weight. This electrode material can be made into an electrode having ohmic properties with respect to a ceramic element by firing at 850 to 900 ° C. in air.

日本国特表2010−501988号Japan Special Table 2010-501988 国際公開WO2010/067866号International Publication No. WO2010 / 067866 日本国特開2012−169515号Japanese Unexamined Patent Publication No. 2012-169515 日本国特開平3−233805号Japanese Unexamined Patent Publication No. 3-233805

しかし、BaTiO系の半導体磁器組成物にAlやNiを用いた卑金属系電極(以下、単に電極と言うことがある。)を焼付けすると、半導体磁器組成物と電極の界面に隙間ができてしまい、両者がオーミック接触しなくなる。そのため、半導体磁器組成物と電極の界面における単位面積(1cm)辺りの界面抵抗が、例えば10Ωを超えて大きくなるという問題が発生した。界面抵抗が大きくなるとPTC素子の電流効率が低下してしまう。以下、「単位面積(1cm)辺り」の記載は省略し、単に界面抵抗と言う。However, when a base metal electrode using Al or Ni (hereinafter simply referred to as an electrode) is baked on a BaTiO 3 based semiconductor ceramic composition, a gap is formed at the interface between the semiconductor ceramic composition and the electrode. , Both will not make ohmic contact. Therefore, the problem that the interface resistance per unit area (1 cm < 2 >) in the interface of a semiconductor ceramic composition and an electrode becomes large exceeding 10 (ohm), for example occurred. When the interface resistance increases, the current efficiency of the PTC element decreases. Hereinafter, description of “around the unit area (1 cm 2 )” is omitted, and simply referred to as interface resistance.

本発明の目的は、BaTiO型酸化物からなるペロブスカイト構造を有する半導体磁器組成物に卑金属系電極を焼付けで形成したとき、界面抵抗が十分に小さいPTC素子および発熱モジュールを提供することである。An object of the present invention is to provide a PTC element and a heating module having a sufficiently low interface resistance when a base metal electrode is formed by baking on a semiconductor ceramic composition having a perovskite structure made of a BaTiO 3 type oxide.

本発明は、半導体磁器組成物に卑金属系電極が焼付けにより形成されたPTC素子であって、前記半導体磁器組成物は、BaTiO型酸化物からなるペロブスカイト構造を有し、前記卑金属系電極は、金属成分としてAl、Niのうち少なくとも一種を主成分とし、かつ、少なくともBを含み、前記半導体磁器組成物の卑金属系電極側に、前記半導体磁器組成物の母相よりも抵抗の小さい低抵抗層が形成されているPTC素子である。The present invention is a PTC element formed by baking a base metal electrode on a semiconductor ceramic composition, wherein the semiconductor ceramic composition has a perovskite structure made of a BaTiO 3 type oxide, A low-resistance layer containing at least one of Al and Ni as a metal component as a main component and containing at least B, and having a lower resistance than the parent phase of the semiconductor ceramic composition on the base metal electrode side of the semiconductor ceramic composition Is a PTC element formed.

本発明のPTC素子は、前記低抵抗層の厚さは0.1μm以上であることが好ましい。   In the PTC element of the present invention, the thickness of the low resistance layer is preferably 0.1 μm or more.

本発明は、前記低抵抗層の厚さが0.4μm以上で、単位面積(1cm)辺りの素子の界面抵抗が5Ω以下のPTC素子とすることができる。The present invention can provide a PTC element in which the thickness of the low resistance layer is 0.4 μm or more and the interface resistance of the element per unit area (1 cm 2 ) is 5Ω or less.

本発明は、単位面積(1cm)辺りの素子の素子抵抗が10Ω以下のPTC素子とすることができる。In the present invention, a PTC element having an element resistance of 10Ω or less per unit area (1 cm 2 ) can be obtained.

本発明は、表面抵抗が10mΩcm以下のPTC素子とすることができる。   The present invention can provide a PTC element having a surface resistance of 10 mΩcm or less.

本発明のPTC素子は、前記卑金属系電極の半導体磁器組成物側に、Ba酸化物を主体とする反応相が存在することが好ましい。   In the PTC element of the present invention, it is preferable that a reaction phase mainly composed of Ba oxide exists on the semiconductor ceramic composition side of the base metal electrode.

本発明の前記卑金属系電極は、前記Al、Ni、Bの合計を100質量%として、Bを3質量%以上25質量%以下で含むものとすることができる。   The base metal electrode of the present invention may include B in an amount of 3% by mass to 25% by mass with the total of Al, Ni, and B being 100% by mass.

本発明の前記卑金属系電極は、金属成分としてSiを含み、前記Al、Ni、B、Siの合計を100質量%として、Bを3質量%以上25質量%以下、Siを0質量%超26質量%以下で含むものとすることができる。   The base metal electrode of the present invention contains Si as a metal component, the total of Al, Ni, B, and Si is 100% by mass, B is 3% by mass to 25% by mass, and Si is more than 0% by mass 26 It can be included at mass% or less.

本発明の前記卑金属系電極は、前記Al、Ni、B、Siの合計を100質量%として、Alを50質量%以上で含むものとすることができる。   The base metal electrode of the present invention may include Al at 50% by mass or more, with the total of Al, Ni, B, and Si being 100% by mass.

本発明の前記卑金属系電極は、前記Al、Ni、B、Siの合計を100質量%として、Niを5質量%以上40質量%以下で含むものとすることができる。   The base metal electrode according to the present invention may include 5 to 40% by mass of Ni with the total of Al, Ni, B and Si being 100% by mass.

本発明の前記卑金属系電極は、平均粒径が1.2μm以上10μm以下のAl粒子が分散されているものとすることができる。   In the base metal electrode of the present invention, Al particles having an average particle diameter of 1.2 μm or more and 10 μm or less may be dispersed.

本発明の前記半導体磁器組成物は、組成式が[(BiA)(Ba1−y1−x][Ti1−z]O(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.25、0≦y≦0.052、0≦z≦0.01(但し、y+z>0)の範囲を満足する組成とすることができる。The semiconductor ceramic composition of the present invention, the composition formula [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A is Na, Li, among the K At least one, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.25, 0 ≦ y. It can be set as the composition which satisfies the range of <= 0.052, 0 <= z <= 0.01 (however, y + z> 0).

本発明の前記卑金属系電極の焼付けは、大気雰囲気中、720℃以上850℃以下の温度で行うことができる。   The base metal electrode of the present invention can be baked at a temperature of 720 ° C. or higher and 850 ° C. or lower in an air atmosphere.

本発明は、上記の何れかのPTC素子を備え、前記半導体磁器組成物が発熱する発熱モジュールである。   The present invention is a heating module comprising any one of the above PTC elements and generating heat from the semiconductor ceramic composition.

本発明によれば、卑金属系電極を焼付けで形成した場合であっても界面抵抗の小さいPTC素子を提供できる。また、該PTC素子は素子抵抗も同時に小さいPTC素子となり得る。そして、このPTC素子を用いて電流効率に優れた発熱モジュールを提供できる。   According to the present invention, it is possible to provide a PTC element having a low interface resistance even when a base metal electrode is formed by baking. The PTC element can also be a PTC element having a low element resistance. And the heat generating module excellent in current efficiency can be provided using this PTC element.

本発明の一実施形態によるPTC素子の断面のSEM観察写真である。It is a SEM observation photograph of the section of the PTC element by one embodiment of the present invention. 図1の模式図である。It is a schematic diagram of FIG. 図1と同視野でのEDX分析によるAlマッピング画面である。It is Al mapping screen by EDX analysis in the same visual field as FIG. 図3の模式図である。FIG. 4 is a schematic diagram of FIG. 3. 図1と同視野でのEDX分析によるBaマッピング画面である。It is a Ba mapping screen by EDX analysis in the same visual field as FIG. 図5の模式図である。It is a schematic diagram of FIG. 本発明の別の実施形態によるPTC素子の断面のSSRM観察写真である。It is a SSRM observation photograph of the section of the PTC element by another embodiment of the present invention. 図7の模式図である。It is a schematic diagram of FIG. 本発明の一実施形態による発熱モジュールの一例を示す模式図である。It is a schematic diagram which shows an example of the heat generating module by one Embodiment of this invention. 界面抵抗の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of interface resistance.

本発明者らは、Al、Niを用いた卑金属系電極の金属成分としてB(硼素)等の低抵抗助剤を含ませることで、半導体磁器組成物の卑金属系電極側では、母相に対して抵抗が小さい低抵抗層が形成され、これがオーミック接触を改善することになり、よって界面抵抗等を低減できることを知見した。以下、本発明のPTC素子の低抵抗化について説明する。   The present inventors include a low-resistance auxiliary agent such as B (boron) as a metal component of a base metal electrode using Al or Ni, so that the base metal electrode side of the semiconductor ceramic composition is compared with the parent phase. It has been found that a low resistance layer having a low resistance is formed, which improves the ohmic contact, and thus the interface resistance and the like can be reduced. Hereinafter, the reduction in resistance of the PTC element of the present invention will be described.

図1は本発明の一例を示すPTC素子の断面のSEM観察写真であり、図2はその模式図である。図7は同じくPTC素子断面の走査型広がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)による観察写真であり、図8はその模式図である。
図1、2において、1は卑金属系電極、2はBaTiO型酸化物からなるペロブスカイト構造を有する半導体磁器組成物である。卑金属系電極1と半導体磁器組成物2の界面は、図中の左右に引かれた破線部7であり、半導体磁器組成物2の卑金属系電極側には、低抵抗層3が形成されているのが分かる。そして図7、8の抵抗値分布によれば、低抵抗層3の色調は他より濃くなっており母相よりも低抵抗になっているのが分かる。すなわち、本明細書中において、低抵抗層とは半導体磁器組成物の母相と比較して抵抗の小さい部分を形成する層をいうが、その抵抗値は、例えば、1Ω・cm以下である。詳細については後述する。
FIG. 1 is a SEM observation photograph of a cross section of a PTC element showing an example of the present invention, and FIG. 2 is a schematic diagram thereof. FIG. 7 is an observation photograph of a cross section of a PTC element similarly by a scanning spread resistance microscope (SSRM), and FIG. 8 is a schematic view thereof.
1 and 2, reference numeral 1 denotes a base metal electrode, and 2 denotes a semiconductor ceramic composition having a perovskite structure made of a BaTiO 3 type oxide. The interface between the base metal electrode 1 and the semiconductor ceramic composition 2 is a broken line portion 7 drawn to the left and right in the figure, and the low resistance layer 3 is formed on the base metal electrode side of the semiconductor ceramic composition 2. I understand. 7 and 8, it can be seen that the color tone of the low resistance layer 3 is darker than the others, and is lower in resistance than the mother phase. That is, in this specification, the low resistance layer refers to a layer that forms a portion having a smaller resistance compared to the parent phase of the semiconductor ceramic composition, and its resistance value is, for example, 1 Ω · cm or less. Details will be described later.

低抵抗層3は電気抵抗が低く半導体としてのキャリアが多くなっているため、低抵抗層3と卑金属系電極1のショットキー障壁が低くなり、オーミック接触して界面抵抗が小さくなる。低抵抗層3は必ずしも連続的な層である必要はないが、界面全体に広がって形成されていることが好ましく、その厚みは0.1μm以上が良い。0.2μm以上であると低抵抗化が促進されるためより好ましく、さらに好ましくは0.4μm以上であり、最も好ましくは0.5μm以上である。厚みの上限は、B量や焼付け温度により影響を受けるが、3μmを超えて厚くなっても界面抵抗の低減効果はあまり期待できない。これはB等の低抵抗助剤自体が高抵抗であるため、添加量が過剰になると、むしろ絶縁抵抗や熱伝導性の低下等の不都合があるためである。   Since the low-resistance layer 3 has low electrical resistance and a large number of carriers as a semiconductor, the Schottky barrier between the low-resistance layer 3 and the base metal electrode 1 is lowered, and ohmic contact is made to reduce the interface resistance. The low resistance layer 3 is not necessarily a continuous layer, but is preferably formed so as to spread over the entire interface, and its thickness is preferably 0.1 μm or more. If it is 0.2 μm or more, it is more preferable because resistance reduction is promoted, more preferably 0.4 μm or more, and most preferably 0.5 μm or more. The upper limit of the thickness is influenced by the amount of B and the baking temperature, but even if the thickness exceeds 3 μm, the effect of reducing the interface resistance cannot be expected so much. This is because the low resistance auxiliary agent such as B itself has a high resistance, and if the amount added is excessive, there are problems such as a decrease in insulation resistance and thermal conductivity.

また、低抵抗層3が形成される場合、卑金属系電極1には、Baが電極側に拡散してできる反応相4が従来よりも厚く形成される。この反応相4はBaを主成分とする酸化物からなる。また、反応相4は低抵抗層3と電極1との界面にある隙間やAl粒子間の隙間を埋めるように形成されるので、両者の接触面積が大きくなり、界面抵抗が小さくなることに寄与している。さらに反応相4が厚くなると、半導体磁器組成物と電極の密着強度が高くなるという効果もある。尚、反応相の有無は、SEM観察写真から判別がつくものの、形状が不定形でかつ大きさが特定しづらいため定量的には規定していない。但し、低抵抗層が形成されていれば反応相も形成されている。低抵抗層が厚いほど反応相も厚くなる傾向がある。   When the low resistance layer 3 is formed, the base metal electrode 1 is formed with a thicker reaction phase 4 formed by diffusion of Ba to the electrode side than in the prior art. This reaction phase 4 is made of an oxide containing Ba as a main component. Moreover, since the reaction phase 4 is formed so as to fill a gap at the interface between the low-resistance layer 3 and the electrode 1 and a gap between the Al particles, the contact area between the two increases and the interface resistance decreases. doing. Further, when the reaction phase 4 becomes thick, there is an effect that the adhesion strength between the semiconductor ceramic composition and the electrode is increased. The presence or absence of the reaction phase can be discriminated from the SEM observation photograph but is not quantitatively defined because the shape is indefinite and the size is difficult to specify. However, if a low resistance layer is formed, a reaction phase is also formed. The thicker the low resistance layer, the thicker the reaction phase.

低抵抗層が形成されるメカニズムは明確ではないが以下のように考えている。卑金属系電極内にB等の酸化されやすい元素を導入すると、焼付け時にB等が半導体磁器組成物から酸素を奪い結晶構造に酸素欠陥を作る。放出された電子は界面近傍に生成し、これが基で低抵抗層が形成されると考えられる。また、この時できる酸素欠陥はすべて電子を放出するわけではなく、一部はBa等の陽イオンと一緒に半導体磁器組成物から抜けて電極側に移動し、電気的中性を保とうとする。この時に移動したBaが電極側と反応し、反応相を形成すると考えられる。このような作用を持った低抵抗助剤としては、Bが最も好ましいが、上記のメカニズムを発現する元素であれば良く、例えば、Zn、Ca、Sb、Snの少なくとも一種をBと共にあるいは単独で用いても良い。   The mechanism by which the low resistance layer is formed is not clear, but is considered as follows. When an easily oxidizable element such as B is introduced into the base metal electrode, B or the like takes oxygen from the semiconductor porcelain composition during baking and creates an oxygen defect in the crystal structure. The emitted electrons are generated near the interface, and this is considered to form a low resistance layer. In addition, all oxygen defects generated at this time do not emit electrons, and some of the oxygen defects move out of the semiconductor ceramic composition together with cations such as Ba and move to the electrode side to maintain electrical neutrality. It is considered that Ba moved at this time reacts with the electrode side to form a reaction phase. As the low resistance auxiliary agent having such an action, B is most preferable, but any element that exhibits the above mechanism may be used. For example, at least one of Zn, Ca, Sb, and Sn may be used together with B or independently. It may be used.

本発明において卑金属系電極とは、全体の金属成分として、Al、Niのうち少なくとも一種を主成分とするものである。「Al、Niのうち少なくとも一種を主成分とする」とは、AlまたはNiの含有量が50質量%以上であるもの、あるいはAlとNiの含有量の和が50質量%以上であるものをいうが、AlはNiよりも原価が安いので、NiよりもAlが多い電極とすることが好ましく、またAlは、金属表面近傍が酸化層で覆われるため化学的に安定で信頼性に優れ、酸化が内部に進行し難いので大気雰囲気中での焼付けが容易である。この点でもコストを安くすることができる。   In the present invention, the base metal-based electrode is one having as a main component at least one of Al and Ni as a whole metal component. The phrase “having at least one of Al and Ni as a main component” means that the content of Al or Ni is 50% by mass or more, or the sum of the contents of Al and Ni is 50% by mass or more. However, since Al is cheaper than Ni, it is preferable to use an electrode with more Al than Ni, and Al is chemically stable and highly reliable because the vicinity of the metal surface is covered with an oxide layer. Oxidation hardly proceeds to the inside, so that baking in an air atmosphere is easy. In this respect, the cost can be reduced.

卑金属系電極に含まれるBは、Al、Ni、Bの合計を100質量%として、3質量%以上25質量%以下が良い。Bが含まれたことにより厚さ0.1μm以上の低抵抗層が形成され得る。さらに3質量%以上とすることで低抵抗層の厚さが0.4μm以上となり、低抵抗層と反応相が十分に形成されることにより、界面抵抗が5Ω以下のPTC素子を得ることができる。尚、下記するようにSiを含んでいても良い。
Bが25質量%を超えると、Bが電極の表層まで染み出して、表面に酸化物層が生成し始めることから電極の表面抵抗が高くなる傾向がある。また素子抵抗も高くなる傾向があるため、上限は25質量%以下が好ましい。より好ましくは5質量%以上17質量%以下であり、このとき界面抵抗が1.5Ω以下で、かつ素子抵抗が約5Ω以下、表面抵抗が10mΩcm以下のPTC素子を得ることができる。さらに5質量%以上10質量%未満であれば、加えて表面抵抗が2mΩcm以下のPTC素子を得ることができる。ここで表面抵抗とは、卑金属系電極そのものの抵抗を測定した値である。表面抵抗を小さくすることで、PTC素子に均一に電界を加えられるという効果がある。
B contained in the base metal electrode is preferably 3% by mass or more and 25% by mass or less, with the total of Al, Ni, and B being 100% by mass. By including B, a low resistance layer having a thickness of 0.1 μm or more can be formed. Further, when the content is 3% by mass or more, the thickness of the low resistance layer is 0.4 μm or more, and the PTC element having an interface resistance of 5Ω or less can be obtained by sufficiently forming the low resistance layer and the reaction phase. . Note that Si may be contained as described below.
When B exceeds 25% by mass, B oozes out to the surface layer of the electrode, and an oxide layer starts to form on the surface, so that the surface resistance of the electrode tends to increase. Further, since the element resistance tends to increase, the upper limit is preferably 25% by mass or less. More preferably, the PTC element has an interface resistance of 1.5Ω or less, an element resistance of about 5Ω or less, and a surface resistance of 10 mΩcm or less. Furthermore, if it is 5 mass% or more and less than 10 mass%, in addition, the PTC element whose surface resistance is 2 mΩcm or less can be obtained. Here, the surface resistance is a value obtained by measuring the resistance of the base metal electrode itself. By reducing the surface resistance, there is an effect that an electric field can be uniformly applied to the PTC element.

また、卑金属系電極は、金属成分としてSiを含み、前記Al、Ni、B、Siの合計を100質量%として、Bを3質量%以上25質量%以下、Siを0質量%超26質量%以下で含むものとすることができる。Siを上記範囲で含むことで耐湿性を向上させることができ、素子抵抗の経時変化、特に高温高湿環境下でのPTC素子の経時変化を小さくできる。また、Siを含むことで溶融しづらいAl粒子が溶融しやすくなり、Al粒子間の界面の接触面積の割合を大きくし界面抵抗の低減にも作用する。Siの含有量は5.0質量%以上20.0質量%以下とすることが好ましく、5.0質量%以上15.0質量%以下とすることがより好ましい。   The base metal electrode contains Si as a metal component, the total of Al, Ni, B, and Si is 100% by mass, B is 3% by mass to 25% by mass, Si is more than 0% by mass and 26% by mass. Can be included below. By containing Si in the above range, the moisture resistance can be improved, and the change over time of the element resistance, particularly the change over time of the PTC element under a high temperature and high humidity environment can be reduced. In addition, the inclusion of Si makes it difficult to melt Al particles that are difficult to melt, increasing the ratio of the contact area of the interface between the Al particles and reducing the interface resistance. The Si content is preferably 5.0% by mass or more and 20.0% by mass or less, and more preferably 5.0% by mass or more and 15.0% by mass or less.

Bは酸化物ではなく、単体金属の形態で添加することが好ましい。Bが酸化物や窒化物など安定な化合物であると、半導体磁器組成物から酸素を奪う能力が発揮できないあるいは酸素を奪う力が弱いため、低抵抗層を形成し難くなる。また、低抵抗層が形成されないと半導体磁器組成物のBaが電極側に移動しづらくなるため、反応相もほとんど形成されないことになる。   B is preferably added in the form of a single metal rather than an oxide. If B is a stable compound such as an oxide or nitride, the ability to deprive oxygen from the semiconductor porcelain composition cannot be exhibited, or the ability to deprive oxygen is weak, making it difficult to form a low resistance layer. Further, if the low resistance layer is not formed, Ba of the semiconductor ceramic composition is difficult to move to the electrode side, so that the reaction phase is hardly formed.

また、卑金属系電極は、Siを含み、Al、Ni、B、Siの合計を100質量%として、Alを50質量%以上とするものが好ましい。電極のコストをさらに小さくできる。   The base metal electrode preferably contains Si, and the total of Al, Ni, B, and Si is 100% by mass, and Al is 50% by mass or more. The cost of the electrode can be further reduced.

また、卑金属系電極は、前記Al、Ni、B、Siの合計を100質量%として、Niを5質量%以上40質量%以下で含むものとすることができる。好ましくは、Alは50質量%以上含み、Niが前記範囲で含まれると、Al粒子の表面の酸化層をNi粒子が低温で除去してAl粒子とNi粒子の合金化を容易にするので、電極焼付け温度を下げることが出来る。ただ、過剰な焼結反応が起こらない程度に焼付時間を調整することが望ましい。Niの量が5質量%以上であれば、上記の効果を十分に得ることができる。また、Niの量が40質量%を超えないようにすれば、電極自体の抵抗が高くなることを回避し易くなり、さらに電極の材料コストが高くなることを抑制できる。Niの量が20質量%以上であれば焼付け温度をさらに下げることができ、具体的には700℃での焼付けが可能となる。   Further, the base metal electrode may contain 5 mass% or more and 40 mass% or less of Ni, with the total of Al, Ni, B, and Si being 100 mass%. Preferably, when Al is contained in an amount of 50% by mass or more and Ni is contained in the above range, the Ni particles remove the oxide layer on the surface of the Al particles at a low temperature to facilitate the alloying of the Al particles and the Ni particles. Electrode baking temperature can be lowered. However, it is desirable to adjust the baking time so that an excessive sintering reaction does not occur. If the amount of Ni is 5% by mass or more, the above effect can be sufficiently obtained. Further, if the amount of Ni does not exceed 40% by mass, it is easy to avoid an increase in the resistance of the electrode itself, and it is possible to suppress an increase in the material cost of the electrode. If the amount of Ni is 20% by mass or more, the baking temperature can be further lowered, and specifically, baking at 700 ° C. becomes possible.

Niが20質量%以下、Bが5質量%以上10質量%以下、Siが5.0質量%以上15.0質量%以下で残部Alの卑金属系電極であれば、界面抵抗が1.5Ω以下、素子抵抗が10Ω以下、表面抵抗が2.0mΩcm以下のPTC素子を得ることができる。   If Ni is 20% by mass or less, B is 5% by mass or more and 10% by mass or less, Si is 5.0% by mass or more and 15.0% by mass or less and the remaining Al is a base metal electrode, the interface resistance is 1.5Ω or less. A PTC element having an element resistance of 10Ω or less and a surface resistance of 2.0 mΩcm or less can be obtained.

卑金属系電極に用いるAl粉末は、平均粒径が1.2μm以上10μm以下のものを好適に用いることができる。なお且つ、メジアン径d30の粒径が0.1μm以上1.2μm未満の粒度分布を持つものを用いることがより好ましい。
卑金属系電極中のAl粒子は、表面に酸化膜が存在するため溶融しにくく、図2に示すように、焼成前の電極ペーストに含まれていた時点での大きさとほぼ同じ大きさで残る。そのためAl粒子間に隙間6ができやすくなり、半導体磁器組成物と電極の間の接触面積が小さくなって界面抵抗が大きくなりやすい。そこで、平均粒径が1.2μm以上10μm以下のAl粒子を用いることが良く、さらに1.2μm未満の小さい粒子を20〜40%程度含ませた粒度分布の電極構造とすることにより、1.2μm以上10μm以下のAl粒子の間に0.1μm以上1.2μm未満の小さなAl粒子が充填される形態となり界面の隙間が少なくなる。そのうえ比較的厚く形成される反応相4の存在により半導体磁器組成物と電極の接触面積の割合が大きくなるので、比較的大きいAl粒子が分散されている電極を形成しても、PTC素子の界面抵抗を小さくすることが容易である。また、同時に電極の密着強度が高くなる。
As the Al powder used for the base metal electrode, those having an average particle diameter of 1.2 μm or more and 10 μm or less can be suitably used. In addition, it is more preferable to use one having a particle size distribution with a median diameter d30 of 0.1 μm or more and less than 1.2 μm.
The Al particles in the base metal electrode are difficult to melt because of the presence of an oxide film on the surface, and as shown in FIG. 2, the Al particles remain approximately the same size as when included in the electrode paste before firing. Therefore, the gap 6 is easily formed between the Al particles, the contact area between the semiconductor ceramic composition and the electrode is reduced, and the interface resistance is easily increased. Therefore, it is preferable to use Al particles having an average particle size of 1.2 μm or more and 10 μm or less, and further by using an electrode structure having a particle size distribution including about 20 to 40% of small particles less than 1.2 μm. A small Al particle of 0.1 μm or more and less than 1.2 μm is filled between 2 μm or more and 10 μm or less of Al particles, and the gap at the interface is reduced. In addition, since the ratio of the contact area between the semiconductor ceramic composition and the electrode increases due to the presence of the reaction phase 4 formed to be relatively thick, the interface of the PTC element can be formed even when an electrode in which relatively large Al particles are dispersed is formed. It is easy to reduce the resistance. At the same time, the adhesion strength of the electrode is increased.

卑金属系電極は、Al粒子とNi粒子が共に分散されているものとする場合、Al粒子よりも平均粒径が小さいNi粒子を用いることが好ましい。Al粒子と半導体磁器組成物の隙間にもNi粒子が充填されるような状態にしやすくなり、界面抵抗を小さくすることに寄与する。例えば、Al粒子の平均粒径が1.2μm以上10μm以下であれば、Ni粒子の平均粒径は0.1μm以上5μm以下とすることが好ましい。
尚、Al粒子は粒子径が小さくなるほど粉塵爆発等のリスクが高くなり取扱いが困難になる。一方、10μmを超えると接触面積の割合が小さくなって界面抵抗を低減し難くなる傾向がある。
When the base metal electrode has Al particles and Ni particles dispersed therein, it is preferable to use Ni particles having an average particle size smaller than that of the Al particles. The gap between the Al particles and the semiconductor ceramic composition is easily filled with Ni particles, which contributes to reducing the interface resistance. For example, if the average particle diameter of Al particles is 1.2 μm or more and 10 μm or less, the average particle diameter of Ni particles is preferably 0.1 μm or more and 5 μm or less.
In addition, the risk of dust explosion increases as the particle size of Al particles decreases, and handling becomes difficult. On the other hand, when it exceeds 10 μm, the ratio of the contact area tends to be small, and it is difficult to reduce the interface resistance.

次に、本発明のPTC素子を得るための好ましい製造方法を説明する。
まず、BaTiO型酸化物からなるペロブスカイト構造を有する半導体磁器組成物を用意し、この半導体磁器組成物に、金属成分としてAl、Niのうち少なくとも一種を主成分とし、かつ、少なくともBを含む卑金属系電極ペーストを印刷等で所望の厚さに塗布し、大気雰囲気中、720℃以上850℃以下の温度で加熱し、卑金属系電極を焼付けする製造方法を採用できる。
Next, the preferable manufacturing method for obtaining the PTC element of this invention is demonstrated.
First, a semiconductor porcelain composition having a perovskite structure made of a BaTiO 3 type oxide is prepared, and a base metal containing at least one of Al and Ni as a main component and containing at least B as a metal component in the semiconductor porcelain composition. A production method can be employed in which a system electrode paste is applied to a desired thickness by printing or the like, heated in an air atmosphere at a temperature of 720 ° C. or more and 850 ° C. or less, and a base metal electrode is baked.

この卑金属系電極は、焼付け温度が720℃程度と低くても、半導体磁器組成物と電極の接合が不十分になることが少なく、且つ界面抵抗の増大を抑制しやすい。
Bは酸化抑制剤としての効果も有するので、Bを添加した卑金属系電極ペーストを用いることで、焼付け温度が850℃程度と高くなっても半導体磁器組成物及び卑金属系電極の酸化を抑えることができ、それにより素子抵抗の小さいPTC素子が得やすくなる。
焼付け温度は、750℃以上830℃以下とすることが好ましく、界面抵抗が5Ω以下で、さらに素子抵抗が10Ω以下のPTC素子を得ることができる。素子抵抗を小さくすることで、電流効率に優れたPTC素子を得ることができる。より好ましくは750℃以上800℃以下である。
Even if the baking temperature is as low as about 720 ° C., the base metal electrode is less likely to have insufficient bonding between the semiconductor ceramic composition and the electrode and can easily suppress an increase in interface resistance.
Since B also has an effect as an oxidation inhibitor, the use of a base metal electrode paste to which B is added suppresses the oxidation of the semiconductor ceramic composition and the base metal electrode even when the baking temperature is as high as about 850 ° C. This makes it easy to obtain a PTC element having a low element resistance.
The baking temperature is preferably 750 ° C. or more and 830 ° C. or less, and a PTC element having an interface resistance of 5Ω or less and an element resistance of 10Ω or less can be obtained. By reducing the element resistance, a PTC element excellent in current efficiency can be obtained. More preferably, it is 750 degreeC or more and 800 degrees C or less.

卑金属系電極の焼付けの時間は、720℃以上850℃以下の温度に晒される時間を10分以上5時間以下とすることがよい。焼付けの時間が10分よりも長ければ、半導体磁器組成物と電極の接合が不十分になって界面抵抗が大きくなることを抑制しやすい。焼付けの時間が5時間を超えると酸化抑制効果が薄れる傾向にあるので、それより短ければ、半導体磁器組成物の酸化を抑えて、素子抵抗の小さいPTC素子を得やすくなる。焼き付け時間は、好ましくは15分以上1時間以下、さらに好ましくは20分以上50分以下である。   As for the baking time of the base metal electrode, the time of exposure to a temperature of 720 ° C. or more and 850 ° C. or less is preferably 10 minutes or more and 5 hours or less. If the baking time is longer than 10 minutes, it is easy to suppress an increase in the interface resistance due to insufficient bonding between the semiconductor ceramic composition and the electrode. If the baking time exceeds 5 hours, the oxidation suppressing effect tends to be reduced. If the baking time is shorter than this, oxidation of the semiconductor ceramic composition is suppressed, and a PTC element having a low element resistance can be easily obtained. The baking time is preferably 15 minutes to 1 hour, more preferably 20 minutes to 50 minutes.

電極の厚みは5μm以上50μm以下とすることがよい。5μm以上であれば、塗布むらの発生や、電極の剥がれを抑制しやすくなる。50μm以下とすれば、電極のコストを小さくできる。好ましくは10μm以上35μm以下、より好ましくは12μm以上30μm以下である。   The thickness of the electrode is preferably 5 μm or more and 50 μm or less. If it is 5 micrometers or more, it will become easy to suppress generation | occurrence | production of application | coating nonuniformity and peeling of an electrode. If the thickness is 50 μm or less, the cost of the electrode can be reduced. Preferably they are 10 micrometers or more and 35 micrometers or less, More preferably, they are 12 micrometers or more and 30 micrometers or less.

なお、卑金属系電極ペーストはNiを20質量%以上とすることで焼付け温度を700℃まで下げることができる。   The base metal electrode paste can lower the baking temperature to 700 ° C. by setting Ni to 20% by mass or more.

卑金属系電極の酸化防止やハンダの濡れ性向上のために、第2層目の電極としてAg系等の貴金属電極を、上記卑金属系電極の上に形成することもできる。さらに前記貴金属系電極の上に別の電極を形成する3層以上の電極構造とすることも可能である。   In order to prevent oxidation of the base metal electrode and improve the wettability of the solder, a noble metal electrode such as an Ag-based electrode can be formed on the base metal electrode as the second layer electrode. Furthermore, it is possible to have a three-layer or more electrode structure in which another electrode is formed on the noble metal-based electrode.

次に、半導体磁器組成物の好ましい形態について説明する。
半導体磁器組成物は、BaTiO型酸化物からなるペロブスカイト構造を有しているもので良いが、中でも非鉛系の半導体磁器組成物であることが好ましい。例えば、組成式が[(BiA)(Ba1−y1−x][Ti1−z]O(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.25、0≦y≦0.052、0≦z≦0.01(但し、y+z>0)、の範囲を満足する組成とすることが好ましい。
Next, the preferable form of a semiconductor ceramic composition is demonstrated.
The semiconductor ceramic composition may have a perovskite structure made of a BaTiO 3 type oxide, and among them, a lead-free semiconductor ceramic composition is preferable. For example, at least one of the composition formula [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A is Na, Li, K, R comprises Y At least one of rare earth elements, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.25, 0 ≦ y ≦ 0.052, and 0 ≦ z. It is preferable that the composition satisfies a range of ≦ 0.01 (provided that y + z> 0).

上記の半導体磁器組成物を用いることで、Pbをドーパントとして含む半導体磁器組成物を用いるよりも、抵抗温度係数αが高いPTC素子が得やすくなる。具体的には、素子抵抗が小さい(10Ω以下)PTC素子であっても、抵抗温度係数αが2.5%/℃以上、好ましくは3.5%/℃以上のものが得られる。
Pbをドーパントとして含む半導体磁器組成物は、抵抗温度係数αが小さくなりやすい。これは、推定であるが、焼付けの際に卑金属系電極ペーストが半導体磁器組成物中の粒界層の酸素を奪い、それによって組成物内部に形成されたショットキー障壁が失われやすく抵抗温度係数αが小さくなりやすくなるためと推察される。対して、上記組成の半導体磁器組成物は、半導体磁器組成物中の電極と接している表層の酸素が奪われるのみであり、ジャンプ特性を発現する組成物内部の粒界相の酸素は奪われ難いため、結果高い抵抗温度係数αを維持できる。このようなことから上記組成の半導体磁器組成物を用いることがより好ましく、この点は本発明の検討の過程で得られた新たな知見の一つである。
By using the above-mentioned semiconductor ceramic composition, it becomes easier to obtain a PTC element having a higher resistance temperature coefficient α than using a semiconductor ceramic composition containing Pb as a dopant. Specifically, even a PTC element having a low element resistance (10Ω or less) can be obtained with a resistance temperature coefficient α of 2.5% / ° C. or more, preferably 3.5% / ° C. or more.
A semiconductor ceramic composition containing Pb as a dopant tends to have a low temperature coefficient of resistance α. This is an estimate, but during baking, the base metal electrode paste deprives the grain boundary layer oxygen in the semiconductor porcelain composition, thereby easily losing the Schottky barrier formed inside the composition. It is assumed that α tends to be small. On the other hand, the semiconductor porcelain composition having the above composition is only deprived of oxygen in the surface layer in contact with the electrodes in the semiconductor porcelain composition, and is deprived of oxygen in the grain boundary phase inside the composition exhibiting jump characteristics. As a result, a high resistance temperature coefficient α can be maintained. For these reasons, it is more preferable to use a semiconductor ceramic composition having the above composition, which is one of the new findings obtained in the course of studying the present invention.

以下に、上記半導体磁器組成物の組成式における各元素の限定理由を述べる。
BiやAの添加量xは、0を超え0.25以下とする。xを0超とすることでキュリー温度を130℃以上に高めることができる。
xが0.25を超えてしまうと素子抵抗が大きくなってしまう。また、BiやAの元素は焼結中に蒸発しやすいのでTiサイトに比較してBaサイトの元素のモル数が少なくなる。その結果、半導体磁器組成物がTiリッチになるので、Tiリッチ相が異相となって析出してしまう。焼結中にTiリッチ相の一部は溶融するので歩留まりが悪くなったり、所望の形状の半導体磁器組成物が得られなくなることがある。
The reasons for limiting each element in the composition formula of the semiconductor ceramic composition will be described below.
The addition amount x of Bi or A is more than 0 and not more than 0.25. By setting x to more than 0, the Curie temperature can be increased to 130 ° C. or higher.
If x exceeds 0.25, the element resistance increases. In addition, since Bi and A elements are easily evaporated during sintering, the number of moles of Ba site elements is smaller than that of Ti sites. As a result, since the semiconductor ceramic composition becomes Ti-rich, the Ti-rich phase is deposited as a different phase. Since part of the Ti-rich phase melts during sintering, the yield may deteriorate and a semiconductor ceramic composition having a desired shape may not be obtained.

Rの添加量y、Mの添加量zの少なくとも一方を必須、つまりy+z>0とする。R元素、M元素の添加により抵抗温度係数αを大きくすることができる。ただし、RとMの両方を必須とする必要はなく、少なくともどちらか一方を用いれば良い。   At least one of the addition amount y of R and the addition amount z of M is essential, that is, y + z> 0. The resistance temperature coefficient α can be increased by adding R element and M element. However, both R and M are not necessarily required, and at least one of them may be used.

Rの添加量yの範囲は0以上0.052以下とする(但しy+z>0)。yが0.052を超えるとPTC特性である抵抗温度係数が小さく、耐熱性の良い半導体磁器組成物にならない。また、焼結に必要な温度が高くなり、この温度が焼結炉の耐熱性を超えてしまう可能性があるので製造上好ましくない。RはYを含む希土類(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)から選ばれる少なくとも一種以上の元素であり、特にY、Laが優れたPTC特性を得られるため好ましい。   The range of the addition amount y of R is 0 or more and 0.052 or less (provided that y + z> 0). If y exceeds 0.052, the temperature coefficient of resistance, which is a PTC characteristic, is small, and the semiconductor ceramic composition does not have good heat resistance. Moreover, since the temperature required for sintering becomes high and this temperature may exceed the heat resistance of the sintering furnace, it is not preferable in production. R is at least one element selected from rare earths containing La (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). La is preferable because an excellent PTC characteristic can be obtained.

Mの添加量zの範囲は0以上0.01以下とする(但しy+z>0)。zが0.01を超えると素子抵抗が大きくなる。また、半導体磁器組成物の機械的強度が下がりPTC素子にした際に割れが発生しやすくなってしまうため製造上好ましくない。Mは特にNbが優れたPTC特性を得られるため好ましい。   The range of the addition amount z of M is 0 or more and 0.01 or less (provided that y + z> 0). When z exceeds 0.01, the element resistance increases. Further, since the mechanical strength of the semiconductor ceramic composition is lowered and cracking is likely to occur when the PTC element is formed, it is not preferable in production. M is particularly preferable because Nb can provide excellent PTC characteristics.

BiとAの比は1:1でも良いが、材料の配合時はその比が1:1でも仮焼や焼結の工程によりBiが揮散してBiとAの比にずれが生じ、焼結体では1:1になっていない場合も含む。すなわち、Bi:A=0.78〜1.55:1の範囲で許容でき、この範囲内であれば異相の増大を抑制できるので、室温比抵抗の増大や経時変化を抑制できる。さらに好ましい範囲はBi:A=0.90〜1.2:1である。この範囲とすることで、キュリー温度の向上効果が得られる。   The ratio of Bi to A may be 1: 1, but when the materials are blended, even if the ratio is 1: 1, Bi is volatilized by the calcination or sintering process, causing a deviation in the ratio of Bi to A and sintering. This includes cases where the body is not 1: 1. In other words, Bi: A = 0.78 to 1.55: 1 is acceptable, and if it is within this range, an increase in heterogeneous phase can be suppressed, so that an increase in room temperature resistivity and a change with time can be suppressed. A more preferable range is Bi: A = 0.90 to 1.2: 1. By setting this range, the effect of improving the Curie temperature can be obtained.

なお、本明細書において、各特性値の評価方法は以下の通りである。   In addition, in this specification, the evaluation method of each characteristic value is as follows.

(単位面積あたりの素子抵抗)
半導体磁器組成物の両主面に卑金属系電極を形成してPTC素子とし、両側の卑金属系電極に電流計・電圧計のプローブを接触させて、室温(25℃)で4端子法で素子抵抗を測定した。
この素子抵抗はPTC素子全体の素子抵抗であり、電極で覆われた範囲の面積(cm)を除することで、単位面積(1cm)あたりの素子抵抗を算出できる。
尚、以下の実施例では半導体磁器組成物の厚みを1mm、面積を1cmで評価しているため、素子抵抗の数値を10倍することで室温比抵抗(Ωcm)に換算することができる。
(Element resistance per unit area)
A base metal electrode is formed on both main surfaces of the semiconductor ceramic composition to form a PTC element, and an ammeter / voltmeter probe is brought into contact with the base metal electrode on both sides, and the element resistance is measured at room temperature (25 ° C.) by a four-terminal method. Was measured.
This element resistance is the element resistance of the entire PTC element, and the element resistance per unit area (1 cm 2 ) can be calculated by dividing the area (cm 2 ) of the range covered with the electrodes.
In the following examples, the thickness of the semiconductor porcelain composition is evaluated at 1 mm and the area is 1 cm 2. Therefore, the element resistance value can be converted to room temperature specific resistance (Ωcm) by multiplying by 10.

(単位面積あたりの界面抵抗)
まず、半導体磁器組成物に卑金属系電極を設けて素子抵抗を測定する。その後、電極を一旦剥がし、半導体磁器組成物の厚さを最初の厚さから3/4の厚さにして再度卑金属系電極を設けて素子抵抗を測定する。同様に半導体磁器組成物の厚さを最初の厚さから2/4、1/4の厚さにし、その都度で素子抵抗を測定する。図10に示すように、横軸に半導体磁器組成物の厚み、縦軸に素子抵抗をプロットしたデータを取る。このデータから半導体磁器組成物の厚みと素子抵抗との近似直線を求める。この近似直線をR=a・Δt+Rと表すと(Δt:厚み、R:素子抵抗、a:半導体磁器組成物の抵抗率)、グラフ上で厚みΔtが0の時の抵抗値Rを便宜的に算出することができる。本発明ではこの抵抗値Rを界面抵抗と見なした。この界面抵抗はPTC素子全体の界面抵抗であり、電極で覆われた範囲の面積(cm)を除することで、単位面積(1cm)あたりの界面抵抗を算出できる。
(Interface resistance per unit area)
First, a base metal electrode is provided on the semiconductor ceramic composition, and the element resistance is measured. Thereafter, the electrode is peeled off once, the thickness of the semiconductor ceramic composition is reduced to 3/4 from the initial thickness, a base metal electrode is provided again, and the element resistance is measured. Similarly, the thickness of the semiconductor ceramic composition is reduced to 2/4 and 1/4 of the initial thickness, and the element resistance is measured each time. As shown in FIG. 10, the horizontal axis represents the thickness of the semiconductor ceramic composition, and the vertical axis represents the element resistance plotted. From this data, an approximate straight line between the thickness of the semiconductor ceramic composition and the element resistance is obtained. When this approximate straight line is expressed as R = a · Δt + R 0 (Δt: thickness, R: element resistance, a: resistivity of the semiconductor ceramic composition), the resistance value R 0 when the thickness Δt is 0 on the graph is convenient. Can be calculated automatically. In the present invention, this resistance value R 0 is regarded as the interface resistance. This interface resistance is the interface resistance of the entire PTC element, and the interface resistance per unit area (1 cm 2 ) can be calculated by dividing the area (cm 2 ) in the range covered with the electrodes.

(低抵抗層の厚み)
低抵抗層の厚みは、図1に示すようなSEM観察写真(倍率3000倍)と、図3に示すような同一視野のEDX分析のマッピング(Al)から測定した。EDX分析のマッピング(Al)において、Alが検出されなくなる境界の部位を半導体磁器組成物と電極の界面(図2の点線7で示す)とし、SEM観察写真上において、この界面から半導体磁器組成物の母相側で色調の異なる幅を任意に10点測定し、その平均値を低抵抗層の厚みとした。尚、SEM観察写真では、低抵抗層は母相よりも暗く映り色調が異なる。また反応相も同様の濃淡で映り色調が異なることで判別できる。低抵抗層と反応相は、ほぼ同時に形成されるため、SEM観察写真で母相よりも暗く映る層が半導体磁器組成物の電極側に視認できれば、低抵抗層および反応相の両方の存在を確認できることになる。
(Low resistance layer thickness)
The thickness of the low resistance layer was measured from a SEM observation photograph (magnification 3000 times) as shown in FIG. 1 and a mapping (Al) of EDX analysis of the same visual field as shown in FIG. In mapping (Al) of EDX analysis, a boundary part where Al is not detected is defined as an interface between the semiconductor ceramic composition and the electrode (indicated by a dotted line 7 in FIG. 2). Ten points of widths with different color tones were measured arbitrarily on the matrix side, and the average value was taken as the thickness of the low resistance layer. In the SEM observation photograph, the low resistance layer appears darker than the matrix and has a different color tone. The reaction phase can also be discriminated by the similar shades of shade and different color tone. Since the low-resistance layer and the reaction phase are formed almost simultaneously, if the layer that appears darker than the parent phase is visible on the electrode side of the semiconductor ceramic composition in the SEM observation photograph, the presence of both the low-resistance layer and the reaction phase is confirmed. It will be possible.

(低抵抗化の確認手段)
また、低抵抗層が低抵抗化していることの確認手段は、走査型広がり抵抗顕微鏡(Bruker AXS社製:NanoScope IVa AFM Dimension 3100)を用いて評価した。この手法によれば、半導体磁器組成物と電極の界面を導電性探針で走査することにより、抵抗値の分布を二次元的に計測することができ抵抗を可視化することができる。具体的には電気抵抗値の高低が色の濃淡で表れたマッピング像が得られ、色の濃い部分が低抵抗となっていることから、母相(厚さ方向に見て、表面から少なくとも5μm程度の深さ)と低抵抗層の色調(濃淡)の違いで視認することができる。
(Confirmation of low resistance)
Moreover, the confirmation means that the low-resistance layer is reducing in resistance was evaluated using a scanning spreading resistance microscope (manufactured by Bruker AXS: NanoScope IVa AFM Dimension 3100). According to this method, by scanning the interface between the semiconductor ceramic composition and the electrode with a conductive probe, the resistance value distribution can be measured two-dimensionally and the resistance can be visualized. Specifically, a mapping image is obtained in which the electrical resistance value is represented by the color shading, and the dark portion has a low resistance, so that the parent phase (at least 5 μm from the surface when viewed in the thickness direction). It can be visually recognized by the difference in color tone (shading) of the low resistance layer.

(表面抵抗)
表面抵抗は、卑金属系電極そのものの抵抗を測定した値である。形成された電極の平面方向の抵抗Rwを4端子法で測定し、長さL、電極の幅W、そしてSEM観察で測定した電極厚みTより抵抗率(=Rw×(W×T)/L)に換算した。なお、本実施例では、Wを1cm、Lを1cmとし、Tは0.0025cmを狙いとした。但し、電極の厚みTは一定値にすることが難しいため、都度測定した。なお、単位のmΩcmの最初のmはミリ(10−3)を示す。
(Surface resistance)
The surface resistance is a value obtained by measuring the resistance of the base metal electrode itself. The resistance Rw in the planar direction of the formed electrode is measured by the four-terminal method, and the resistivity (= Rw × (W × T) / L) from the length L, the electrode width W, and the electrode thickness T measured by SEM observation. ). In this embodiment, W is 1 cm, L is 1 cm, and T is 0.0025 cm. However, since it was difficult to make the electrode thickness T constant, it was measured each time. The first m of the unit mΩcm represents millimeter (10 −3 ).

(キュリー温度)
室温での室温比抵抗の2倍の抵抗を示す温度をキュリー温度とした。
(Curie temperature)
The temperature showing a resistance twice the room temperature specific resistance at room temperature was defined as the Curie temperature.

(抵抗温度係数α)
抵抗温度係数αは、260℃まで昇温しながら抵抗−温度特性を測定して算出した。
尚、抵抗温度係数αは次式で定義される。
α=(lnR−lnR)×100/(T−T
は260℃の時の室温比抵抗、TはRを示す温度、Tはキュリー温度、RはTにおける室温比抵抗である。
経時変化は15%以下であることが好ましく、さらには10%以下であることが好ましい。
(Resistance temperature coefficient α)
The temperature coefficient of resistance α was calculated by measuring resistance-temperature characteristics while raising the temperature to 260 ° C.
The resistance temperature coefficient α is defined by the following equation.
α = (lnR 1 −lnR c ) × 100 / (T 1 −T c )
R 1 is a room temperature specific resistance at 260 ° C., T 1 is a temperature indicating R 1 , T c is a Curie temperature, and R c is a room temperature specific resistance at T c .
The change with time is preferably 15% or less, more preferably 10% or less.

(経時変化)
電極の信頼性試験として高温高湿試験により評価した。80℃、95%RHの条件で1000時間放置する前と後の素子抵抗の変化を測定した。
(change over time)
The reliability test of the electrode was evaluated by a high temperature and high humidity test. The change in element resistance before and after leaving for 1000 hours at 80 ° C. and 95% RH was measured.

(電極の金属成分比率)
Al、Ni、B、Siの合計を100質量%とし、各元素の占める割合を求めた。測定には電子線マイクロアナライザ(島津製作所製:EPMA1610)を用いた。測定条件として加速電圧を15kV、電流を100nA、ビーム径を10μmとし、5点の平均値を求めた。
(Metal component ratio of electrode)
The sum of Al, Ni, B, and Si was set to 100% by mass, and the ratio of each element was determined. For the measurement, an electron beam microanalyzer (manufactured by Shimadzu Corporation: EPMA1610) was used. As measurement conditions, the acceleration voltage was 15 kV, the current was 100 nA, the beam diameter was 10 μm, and an average value of five points was obtained.

次に、実施例により本発明を更に詳細に説明する。ただし本発明は以下の実施例によって何ら限定されるものではない。   Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1:No.1−1)
平均粒径が5μmの球形状のAl粒子を100質量部として、それに対しガラスフリットを10質量部、Bを10質量部添加し、有機バインダー、有機溶剤を添加して卑金属系電極ペーストとした。
Bは酸化物ではなく、単体金属のB粒子を用いた。B粒子は平均粒径が1μm以下のものを用いた。
卑金属系電極ペースト中のAl比率、B比率は表1のNo.1−1に示すとおりである。
基板となる半導体磁器組成物として、10mm×10mm(板面寸法)×1.00mm(厚み寸法)の板状に加工したものを用いた。
スクリーン印刷で半導体磁器組成物の両面に上記の卑金属系電極ペーストを塗布した。塗布した電極ペーストを150℃で乾燥後、大気中、昇温を30℃/分、775℃で10分間保持し、降温を30℃/分で行い、焼付け電極を形成したPTC素子を得た。電極で覆われた範囲の面積は1cm、電極の厚さは約25μmとなった。
(Example 1: No. 1-1)
100 parts by mass of spherical Al particles having an average particle diameter of 5 μm were added, 10 parts by mass of glass frit and 10 parts by mass of B were added thereto, and an organic binder and an organic solvent were added to obtain a base metal electrode paste.
B was not an oxide but a single metal B particle. B particles having an average particle diameter of 1 μm or less were used.
The Al ratio and B ratio in the base metal electrode paste are No. 1 in Table 1. As shown in 1-1.
A semiconductor ceramic composition used as a substrate was processed into a plate shape of 10 mm × 10 mm (plate surface dimension) × 1.00 mm (thickness dimension).
The base metal electrode paste was applied to both sides of the semiconductor ceramic composition by screen printing. After drying the applied electrode paste at 150 ° C., the temperature was raised in air at 30 ° C./min and maintained at 775 ° C. for 10 minutes, and the temperature was lowered at 30 ° C./min to obtain a PTC element on which a baked electrode was formed. The area covered by the electrode was 1 cm 2 , and the electrode thickness was about 25 μm.

実施例で用いた半導体磁器組成物は以下のようにして製造した。
BaCO、TiO、Laの原料粉末を準備し、(Ba0.994La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間、大気中において仮焼し、第1の仮焼粉を用意した。
The semiconductor ceramic composition used in the examples was produced as follows.
Raw material powders of BaCO 3 , TiO 2 , and La 2 O 3 were prepared, blended so as to be (Ba 0.994 La 0.006 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare a first calcined powder.

NaCO、Bi、TiOの原料粉末を準備し、Bi0.5Na0.5TiOとなるように秤量配合し、エタノール中で混合した。得られた混合原料粉末を、800℃で2時間、大気中において仮焼し、第2の仮焼粉を用意した。Raw material powders of Na 2 CO 3 , Bi 2 O 3 and TiO 2 were prepared, weighed and blended so as to be Bi 0.5 Na 0.5 TiO 3, and mixed in ethanol. The obtained mixed raw material powder was calcined in the atmosphere at 800 ° C. for 2 hours to prepare a second calcined powder.

用意した第1の仮焼粉(Ba0.994La0.006)TiOと第2の仮焼粉Bi0.5Na0.5TiOをモル比で73:7となるように配合して、[(Bi0.5Na0.50.0875(Ba0.994La0.0060.9125]TiOの組成となし、これに純水を媒体としてポットミルにより、混合仮焼粉の平均粒径が1.0μm〜2.0μmになるまで混合、粉砕した後、乾燥させた。次いで1150℃で4時間熱処理をして第3の仮焼粉を得た。得られた仮焼粉にYを1.0モル%加え、純水を媒体としてポットミルにより、平均粒径が1.0μm〜2.0μmになるまで混合、粉砕した後、乾燥させて混合仮焼粉末を得た。該混合仮焼粉の粉砕粉にPVAを10質量%添加し、混合した後、造粒装置によって造粒した。得られた造粒粉を一軸プレス装置で成形し成形体とした。この成形体を700℃で脱バインダー後、酸素濃度0.01%(100ppm)の窒素雰囲気中にて1400℃で4時間保持し、その後徐冷して50mm×25mm×4mmの焼結体を得た。The prepared first calcined powder (Ba 0.994 La 0.006 ) TiO 3 and the second calcined powder Bi 0.5 Na 0.5 TiO 3 are mixed at a molar ratio of 73: 7. [(Bi 0.5 Na 0.5 ) 0.0875 (Ba 0.994 La 0.006 ) 0.9125 ] TiO 3 , and this is mixed and calcined by a pot mill using pure water as a medium. The powder was mixed and pulverized until the average particle size of the powder became 1.0 μm to 2.0 μm, and then dried. Subsequently, it heat-processed at 1150 degreeC for 4 hours, and obtained the 3rd calcined powder. After adding 1.0 mol% of Y 2 O 3 to the obtained calcined powder, mixing and pulverizing it with a pot mill using pure water as a medium until the average particle diameter becomes 1.0 μm to 2.0 μm, and then drying it. A mixed calcined powder was obtained. 10% by mass of PVA was added to the pulverized powder of the mixed calcined powder, mixed, and granulated by a granulator. The obtained granulated powder was molded with a uniaxial press machine to obtain a molded body. After debinding the molded body at 700 ° C., it was held at 1400 ° C. for 4 hours in a nitrogen atmosphere having an oxygen concentration of 0.01% (100 ppm) and then gradually cooled to obtain a sintered body of 50 mm × 25 mm × 4 mm. It was.

尚、上記製造方法は一例であってこれに捕らわれない。例えば、第1、第2の仮焼粉を得ることなく原料粉末を一括で混合し、粉砕、乾燥後、熱処理して仮焼粉(上記第3の仮焼粉相当)を得て、これにYを添加し、その後は上記と同様に製造するなどしても良い。In addition, the said manufacturing method is an example and is not caught by this. For example, the raw material powders are mixed at once without obtaining the first and second calcined powders, pulverized, dried and then heat treated to obtain a calcined powder (corresponding to the third calcined powder above). Y 2 O 3 may be added and then manufactured in the same manner as described above.

また、界面抵抗を測定するために、上記の焼結体を加工して板面寸法が10mm×10mm、厚み寸法が1.00mm、0.75mm、0.50mm、0.25mmの板状に加工した半導体磁器組成物の焼結体をそれぞれ用意し、同様にしてそれぞれPTC素子を作製した。   In addition, in order to measure the interface resistance, the above sintered body is processed into a plate shape having a plate surface size of 10 mm × 10 mm and a thickness of 1.00 mm, 0.75 mm, 0.50 mm, and 0.25 mm. Each sintered body of the prepared semiconductor ceramic composition was prepared, and a PTC element was produced in the same manner.

図1は、PTC素子の半導体磁器組成物と電極の境界部をSEMにより観察した結果である。図2はその模式図である。図3は図1と同一視野のAlのEDX(エネルギー分散型X線分光法)によるマッピング像、図4は図3の模式図、図5は図1と同一視野のBaのEDXマッピング像、図6は図5の模式図である。
Alが検出されなくなる部位を卑金属電極1と半導体磁器組成物2の界面(図2、図4に点線7で示す。)とし、この界面から半導体磁器組成物2側では色調の異なる低抵抗層3が、卑金属電極1側にも色調の異なる不定形のBaが浸透した反応相4が形成されていることが分かる。Baの浸透度合いは明確ではないが図6でドットで示される程度に生じていると考えている。
FIG. 1 shows the result of observing the boundary between the semiconductor ceramic composition of the PTC element and the electrode by SEM. FIG. 2 is a schematic diagram thereof. 3 is a mapping image of Al by EDX (energy dispersive X-ray spectroscopy) having the same field of view as FIG. 1, FIG. 4 is a schematic diagram of FIG. 3, FIG. 5 is an EDX mapping image of Ba having the same field of view as FIG. 6 is a schematic diagram of FIG.
A portion where Al is not detected is defined as an interface between the base metal electrode 1 and the semiconductor ceramic composition 2 (indicated by a dotted line 7 in FIGS. 2 and 4), and the low resistance layer 3 having a different color tone on the semiconductor ceramic composition 2 side from this interface. However, it can be seen that the reaction phase 4 is formed on the base metal electrode 1 side. The degree of penetration of Ba is not clear, but is considered to have occurred to the extent indicated by dots in FIG.

図3のAlのマッピングより、図1の卑金属電極1において主に球状に見えている部位(図2の5の部分)がAlであることがわかる。Al粒子は電極ペースト中に含有された時点での形状を焼成後の電極中でほぼ保っているが、大きな粒子の間に比較的小さな粒子が入り込んでおり、界面近傍では粒子片が介在している。なお、図1において、Al粒子の間の黒く見える部位(図2の6の部分)は電極内部の空隙である。   From the mapping of Al in FIG. 3, it can be seen that the portion (the portion indicated by 5 in FIG. 2) that looks mainly spherical in the base metal electrode 1 in FIG. 1 is Al. Al particles keep almost the same shape in the electrode after firing when they are contained in the electrode paste, but relatively small particles have entered between the large particles, and there are particles in the vicinity of the interface. Yes. In FIG. 1, the portions that appear black between the Al particles (portion 6 in FIG. 2) are voids inside the electrodes.

図7はSSRMの抵抗マッピング像である。色の濃い部分が抵抗が低く、色の薄い部分が抵抗が高いことを示している。図7から卑金属電極1と半導体磁器組成物2の界面7から半導体磁器組成物2側に色の濃い層が形成されていることが明確に分かる。即ち、この層は内部の母相よりも濃い色調となっており低抵抗化された低抵抗層3と言える。尚、この低抵抗層3は図1のSEM観察像で見られた低抵抗層3と一致していることを確認した。   FIG. 7 is a resistance mapping image of SSRM. A dark portion indicates a low resistance, and a light portion indicates a high resistance. FIG. 7 clearly shows that a deep color layer is formed on the semiconductor ceramic composition 2 side from the interface 7 between the base metal electrode 1 and the semiconductor ceramic composition 2. That is, this layer has a darker tone than the internal matrix and can be said to be a low-resistance layer 3 with reduced resistance. In addition, it confirmed that this low resistance layer 3 was in agreement with the low resistance layer 3 seen by the SEM observation image of FIG.

次に、得られたPTC素子について電極の金属成分中のAl比率(質量%)、Ni比率(質量%)、B比率(質量%)、Si比率(質量%)、低抵抗層の厚み(μm)、界面抵抗(Ω)、素子抵抗(Ω)、表面抵抗(mΩ・cm)、キュリー温度(℃)、抵抗温度係数α(%/℃)及び経時変化(%)を測定した。なお、界面抵抗以外の特性は、厚さが1.00mmの半導体磁器組成物を用いて測定した。得られた評価結果を表1に示す。   Next, for the obtained PTC element, the Al ratio (mass%), Ni ratio (mass%), B ratio (mass%), Si ratio (mass%) in the metal component of the electrode, the thickness of the low resistance layer (μm) ), Interface resistance (Ω), element resistance (Ω), surface resistance (mΩ · cm), Curie temperature (° C.), resistance temperature coefficient α (% / ° C.), and change with time (%). The properties other than the interface resistance were measured using a semiconductor ceramic composition having a thickness of 1.00 mm. The obtained evaluation results are shown in Table 1.

本実施例では、低抵抗層の厚みは0.5μm、反応相も存在しており、界面抵抗は1.1Ω、素子抵抗は4.9Ω、表面抵抗は0.9mΩ・cm、キュリー温度は160℃、抵抗温度係数αは4.1%/℃、経時変化は12.5%であった。よって、界面抵抗と素子抵抗と共に低抵抗化の効果がみられ、且つPTC特性も満足するものであった。
尚、卑金属系電極の組成をEPMAにより測定したところ、表1に示すAl、Ni、B、Siの比率(質量%)となった。また、以下の実施例および比較例においても、表中のAl、Ni、B、Siの比率はEPMAによる測定値を示している。この値は電極ペースト中での夫々の含有比率と同じであった。
In this example, the thickness of the low resistance layer is 0.5 μm, and there is a reaction phase, the interface resistance is 1.1Ω, the element resistance is 4.9Ω, the surface resistance is 0.9 mΩ · cm, and the Curie temperature is 160. The resistance temperature coefficient α was 4.1% / ° C., and the change with time was 12.5%. Therefore, the effect of lowering the resistance as well as the interface resistance and the element resistance was observed, and the PTC characteristics were also satisfied.
When the composition of the base metal electrode was measured by EPMA, the ratio (mass%) of Al, Ni, B, and Si shown in Table 1 was obtained. Also in the following examples and comparative examples, the ratios of Al, Ni, B, and Si in the tables indicate measured values by EPMA. This value was the same as each content ratio in the electrode paste.

(実施例2:No.1−2〜1−9)
No.1−2〜1−9では、No.1−1に対してAlの一部をSiに置き換え、かつ、Bの添加量を変えた電極を形成した。
平均粒径が5μmの球形状のAl粒子と平均粒径が5μmのSi粒子を、質量比で92:8になるように混合し、その合計値を100質量部として、それに対しガラスフリットを10質量部、Bをそれぞれ3質量部、5質量部、7.5質量部、10質量部、12.5質量部、15質量部、20質量部、25質量部として添加した。
卑金属系電極とした後の金属成分を測定したところ、Al比率、B比率、Si比率は表1のNo.1−2〜1−9に示すとおりである。なお、上述の通り卑金属系電極ペースト中のAl比率、B比率、Si比率は表1に示す値と同じであった。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表1に示す。
(Example 2: No. 1-2 to 1-9)
No. In 1-2 to 1-9, no. With respect to 1-1, an electrode was formed in which a part of Al was replaced with Si, and the addition amount of B was changed.
Spherical Al particles having an average particle diameter of 5 μm and Si particles having an average particle diameter of 5 μm are mixed at a mass ratio of 92: 8, and the total value is 100 parts by mass. Mass parts and B were added as 3 parts by mass, 5 parts by mass, 7.5 parts by mass, 10 parts by mass, 12.5 parts by mass, 15 parts by mass, 20 parts by mass, and 25 parts by mass, respectively.
When the metal component after the base metal electrode was measured, the Al ratio, B ratio, and Si ratio were No. 1 in Table 1. As shown in 1-2 to 1-9. As described above, the Al ratio, B ratio, and Si ratio in the base metal electrode paste were the same as the values shown in Table 1.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 1.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表1によれば、B比率が3質量%以上のNo.1−3〜1−9のPTC素子は、低抵抗層が0.4μm以上の厚さがあり、界面抵抗は5Ω以下であった。
また、B比率が5質量%以上17質量%以下のNo.1−4〜1−8のPTC素子は、界面抵抗が1.5Ω以下、素子抵抗も約5Ω以下であった。また、同PTC素子は、表面抵抗が10mΩcm以下である。さらに、B比率が5質量%以上10質量%以下のNo.1−4〜1−5のPTC素子は、表面抵抗が2mΩcm以下であった。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 1, the B ratio is 3% by mass or more. In the PTC elements 1-3 to 1-9, the low resistance layer had a thickness of 0.4 μm or more, and the interface resistance was 5Ω or less.
Moreover, No. B ratio is 5 mass% or more and 17 mass% or less. The PTC elements of 1-4 to 1-8 had an interface resistance of 1.5Ω or less and an element resistance of about 5Ω or less. The PTC element has a surface resistance of 10 mΩcm or less. Furthermore, the B ratio is 5% by mass or more and 10% by mass or less. The surface resistance of the PTC elements 1-4 to 1-5 was 2 mΩcm or less.

(比較例1:No.1−10)
Bが添加されていない卑金属系電極を形成した。
実施例1と同様のAl粒子92質量部に対しSi粒子を8質量部の割合で加えて100質量部とし、そこにガラスフリット10質量部を加えて卑金属系電極ペーストとした。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表1に示す。
この例では、低抵抗層は確認できなかった。反応相は確認されたが、反応相の厚みはBを添加した場合と比べて略1/5以下程度と少なかった。また、界面抵抗は12Ωと非常に大きく、素子抵抗も15.5Ωと大きかった。
(Comparative Example 1: No. 1-10)
A base metal electrode to which B was not added was formed.
Si particles were added at a rate of 8 parts by mass with respect to 92 parts by mass of Al particles as in Example 1 to give 100 parts by mass, and 10 parts by mass of glass frit was added thereto to obtain a base metal electrode paste.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 1.
In this example, the low resistance layer could not be confirmed. Although the reaction phase was confirmed, the thickness of the reaction phase was about 1/5 or less as compared with the case where B was added. Further, the interface resistance was as large as 12Ω and the element resistance was as large as 15.5Ω.

(比較例2:No.1−11、1−12)
Bの添加物としてB、及びHBOを用いて卑金属系電極を形成した。
実施例1と同様のAl粒子92質量部に対しSiを8質量部の割合で加えて100質量部とし、そこにB、またはHBOを10質量部、ガラスフリット10質量部を加えてペーストとした。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた結果を表1に示す。
この例では、No.1−11、No.1−12ともに低抵抗層は確認できなかった。但し、反応相は確認された。しかしながら、界面抵抗はそれぞれ23.4Ω、13.7Ωと非常に大きく、素子抵抗も26.2Ω、16.9Ωと大きかった。
(Comparative Example 2: No. 1-11, 1-12)
Base metal electrodes were formed using B 2 O 3 and H 3 BO 3 as additives for B.
Si was added at a rate of 8 parts by mass to 92 parts by mass of Al particles as in Example 1 to make 100 parts by mass, and there were 10 parts by mass of B 2 O 3 or H 3 BO 3 and 10 parts by mass of glass frit. To make a paste.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained results are shown in Table 1.
In this example, no. 1-11, No. 1 A low resistance layer could not be confirmed in both 1-12. However, the reaction phase was confirmed. However, the interfacial resistances were very large, 23.4Ω and 13.7Ω, respectively, and the element resistances were also large, 26.2Ω and 16.9Ω.

Figure 2015002197
Figure 2015002197

(実施例3:No.2−1〜2−5)
焼付けの温度を変えて卑金属系電極を形成した。
平均粒径が5μmの球形状のAl粒子と平均粒径が5μmのSi粒子を、質量比で92:8になるように混合し、その合計値を100質量部として、それに対しガラスフリットを10質量部、Bを10質量部として添加した。
半導体磁器組成物として、10mm×10mm(板面寸法)×1.00mm(厚み寸法)の板状に加工したものを用いた。また、界面抵抗を測定するために、10mm×10mm×0.75mm、10mm×10mm×0.50mm、10mm×10mm×0.25mmの板状に加工した半導体磁器組成物も用意した。
スクリーン印刷で半導体磁器組成物の両面に上記の卑金属系電極ペーストを塗布した。塗布した卑金属系電極ペーストを150℃で乾燥後、大気中、昇温を30℃/分、保持温度を725℃、750℃、775℃、800℃、825℃、850℃と変え、10分間保持し、降温を30℃/分で行い、焼付けて電極を形成したPTC素子を得た。電極で覆われた範囲の面積は1cm、電極の厚さは約25μmとなった。上記板厚の半導体磁器組成物についても同様にして夫々PTC素子とした。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表2に示す。
(Example 3: No. 2-1 to 2-5)
Base metal electrodes were formed by changing the baking temperature.
Spherical Al particles having an average particle diameter of 5 μm and Si particles having an average particle diameter of 5 μm are mixed at a mass ratio of 92: 8, and the total value is 100 parts by mass. Part by mass and B were added as 10 parts by mass.
A semiconductor ceramic composition processed into a plate shape of 10 mm × 10 mm (plate surface dimension) × 1.00 mm (thickness dimension) was used. Further, in order to measure the interface resistance, a semiconductor ceramic composition processed into a plate shape of 10 mm × 10 mm × 0.75 mm, 10 mm × 10 mm × 0.50 mm, 10 mm × 10 mm × 0.25 mm was also prepared.
The base metal electrode paste was applied to both sides of the semiconductor ceramic composition by screen printing. After the applied base metal electrode paste is dried at 150 ° C., the temperature is raised in the air at 30 ° C./min, and the holding temperature is changed to 725 ° C., 750 ° C., 775 ° C., 800 ° C., 825 ° C., 850 ° C. and held for 10 minutes Then, the temperature was lowered at 30 ° C./min and baked to obtain a PTC element in which an electrode was formed. The area covered by the electrode was 1 cm 2 , and the electrode thickness was about 25 μm. Each of the above-mentioned semiconductor ceramic compositions having a plate thickness was similarly made into a PTC element.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 2.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表2によれば、焼付けの温度を725℃としたNo.2−1は、低抵抗層が0.2μmと薄く、界面抵抗が6.8Ωである。焼付け温度が750℃以上のNo.2−2〜2−5は低抵抗層の厚みが0.4μm以上あり、界面抵抗は5Ω以下となった。加えて、焼付け温度が830℃以下のNo.2−2〜2−4では素子抵抗が10Ω以下であった。
以上より、焼付け温度は750℃以上830℃以下がより好ましいと言える。尚、焼付の温度が850℃を超えると半導体磁器組成物そのものが酸化されて高抵抗となり好ましくないことが分かっている。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 2, the baking temperature was 725 ° C. 2-1 has a low resistance layer as thin as 0.2 μm and an interface resistance of 6.8Ω. The baking temperature is 750 ° C. or higher. In 2-2 to 2-5, the thickness of the low resistance layer was 0.4 μm or more, and the interface resistance was 5Ω or less. In addition, no. In 2-2 to 2-4, the element resistance was 10Ω or less.
From the above, it can be said that the baking temperature is more preferably 750 ° C. or higher and 830 ° C. or lower. It has been found that if the baking temperature exceeds 850 ° C., the semiconductor ceramic composition itself is oxidized and becomes high resistance.

Figure 2015002197
Figure 2015002197

(実施例4:No.3−1〜3−8)
卑金属系電極としてSi量を変えたものを作製した。
上記実施例と同様のAl粒子とSi粒子を用い、それぞれAlとSiの質量比率でそれぞれ98:2、96:4、94:6、88:12、84:16、80:20、76:24、72:28となるように混合した。その合計値を100質量部として、それに対しガラスフリットを10質量部、Bを10質量部として添加した。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表3に示す。
(Example 4: Nos. 3-1 to 3-8)
A base metal electrode having a different amount of Si was prepared.
The same Al particles and Si particles as in the above example were used, and the mass ratios of Al and Si were 98: 2, 96: 4, 94: 6, 88:12, 84:16, 80:20, and 76:24, respectively. 72:28. The total value was 100 parts by mass, and 10 parts by mass of glass frit and 10 parts by mass of B were added thereto.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 3.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表3によれば、Si比率が1.8〜21.8質量%のNo.3−1〜3−7では、界面抵抗が5Ω以下、素子抵抗が10Ω以下、表面抵抗が10mΩcm以下のものが得られた。また、Si比率が5.5質量%〜21.8質量%のNo.3−3〜3−7は、経時変化が10%以下となり、少ないSi量でも経時変化の低減効果がみられる。
尚、Si比率が25.5質量%のNo.3−8では、表面抵抗が10mΩcmを超えたが、素子抵抗、界面抵抗は小さいPTC素子が得られている。
以上より、Siは経時変化の抑制効果もあり、低抵抗化も考慮すると5.0質量%以上15.0質量%以下がより好ましいと言える。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 3, No. with Si ratio of 1.8-21.8 mass%. In 3-1 to 3-7, an interface resistance of 5Ω or less, an element resistance of 10Ω or less, and a surface resistance of 10 mΩcm or less were obtained. In addition, No. having a Si ratio of 5.5% by mass to 21.8% by mass. In 3-3 to 3-7, the change with time is 10% or less, and the effect of reducing the change with time is seen even with a small amount of Si.
In addition, No. whose Si ratio is 25.5 mass%. In 3-8, although the surface resistance exceeded 10 mΩcm, a PTC element with small element resistance and interface resistance was obtained.
From the above, it can be said that Si also has an effect of suppressing change with time, and is preferably 5.0% by mass or more and 15.0% by mass or less in consideration of lowering resistance.

Figure 2015002197
Figure 2015002197

(実施例5:No.4−1〜4−6)
卑金属系電極としてNiを添加したものを作製した。
平均粒径が5μmの球形状のAl粒子と、平均粒径が5μmのSi粒子と、平均粒径が0.2μmのNi粒子を、質量比率でそれぞれ82.8:7.2:10、73.6:6.4:20、64.4:5.6:30、55.2:4.8:40、27.6:2.4:70、9.2:0.8:90として混合し、その合計値を100質量部として、それに対しBを10質量部として添加した。ガラスフリットは0質量部とした。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表4に示す。
(Example 5: No. 4-1 to 4-6)
A base metal electrode added with Ni was prepared.
Spherical Al particles having an average particle diameter of 5 μm, Si particles having an average particle diameter of 5 μm, and Ni particles having an average particle diameter of 0.2 μm are 82.8: 7.2: 10, 73 by mass ratio, respectively. 6: 6.4: 20, 64.4: 5.6: 30, 55.2: 4.8: 40, 27.6: 2.4: 70, 9.2: 0.8: 90 And the total value was made into 100 mass parts, and B was added as 10 mass parts with respect to it. The glass frit was 0 part by mass.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 4.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表4によれば、何れのPTC素子とも、界面抵抗は2.5Ω以下と小さい値であった。No.4−1では最も低い抵抗値を示した。また、特にNi比率が5質量%以上、20質量%以下のNo.4−1、4−2では、界面抵抗が1Ω以下、素子抵抗が5Ω以下、表面抵抗が2.0mΩcm以下のPTC素子が得られた。
以上より、少量のNi添加により界面抵抗の低抵抗化の効果が上がるため、Ni比率は20質量%以下がより好ましいと言える。
また本実施例から、ガラスフリットの添加は必ずしも必要でなく、焼付け温度が800℃を超える場合に添加することが望ましいと考えている。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 4, the interface resistance of all PTC elements was a small value of 2.5Ω or less. No. 4-1 showed the lowest resistance value. In particular, the Ni ratio is 5 mass% or more and 20 mass% or less. In 4-1 and 4-2, PTC elements having an interface resistance of 1Ω or less, an element resistance of 5Ω or less, and a surface resistance of 2.0 mΩcm or less were obtained.
From the above, it can be said that the Ni ratio is more preferably 20% by mass or less because the effect of lowering the interface resistance is increased by adding a small amount of Ni.
Further, from this example, it is considered that glass frit is not necessarily added, and it is desirable to add it when the baking temperature exceeds 800 ° C.

(No.4−7〜4−9)
卑金属系電極としてNiを添加し、かつ、B量を変えたものを作製した。
No.4−7〜4−12は、平均粒径が5μmの球形状のAl粒子と、平均粒径が5μmのSi粒子と、平均粒径が0.2μmのNi粒子を、質量比率で55.2:4.8:40として混合し、その合計値を100質量部として、それに対しBをそれぞれ5.0、7.5、12.5質量部として添加した。ガラスフリットは0質量部とした。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表4に併記する。
(No. 4-7 to 4-9)
As a base metal electrode, Ni was added and the amount of B was changed.
No. 4-7 to 4-12 are 55.2 in terms of mass ratio of spherical Al particles having an average particle diameter of 5 μm, Si particles having an average particle diameter of 5 μm, and Ni particles having an average particle diameter of 0.2 μm. : 4.8: 40, the total value was 100 parts by mass, and B was added thereto as 5.0, 7.5, and 12.5 parts by mass, respectively. The glass frit was 0 part by mass.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are also shown in Table 4.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表4によれば、何れのPTC素子とも、界面抵抗は1.0Ω以下、素子抵抗が5Ω以下と小さい値のPTC素子が得られた。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 4, with any PTC element, a PTC element having a low interface resistance of 1.0Ω or less and an element resistance of 5Ω or less was obtained.

(No.4−10〜4−12)
No.4−9で作製した卑金属系電極ペーストを用い、焼付け温度を変えて作製した。得られた評価結果を表4に併記する。
(No. 4-10 to 4-12)
No. Using the base metal electrode paste prepared in 4-9, the baking temperature was changed. The obtained evaluation results are also shown in Table 4.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表4によれば、何れのPTC素子とも、界面抵抗は1.0Ω以下、素子抵抗が5Ω以下と小さい値のPTC素子が得られた。焼付け温度を700℃まで下げたNo.4−12のPTC素子でも同等の界面抵抗、素子抵抗である。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 4, with any PTC element, a PTC element having a low interface resistance of 1.0Ω or less and an element resistance of 5Ω or less was obtained. The baking temperature was lowered to 700 ° C. 4-12 PTC elements have equivalent interface resistance and element resistance.

Figure 2015002197
Figure 2015002197

(実施例6:No.5−1〜5−8)
半導体磁器組成物の組成についてx、yの比率を変えたものを作製した。
No.5−1〜5−4ではy=0.006、z=0とし、No.1−5に対してxの値をそれぞれ0.02、0.14、0.18、0.2とし、No.5−5〜5−7ではx=0.0875、z=0とし、yの値を0.003、0.048、0.05とした半導体磁器組成物を作製した。電極はNo.1−5と同様のものを形成した。以下の例も同様である。それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表5に示す。
(Example 6: No. 5-1 to 5-8)
What changed the ratio of x and y about the composition of the semiconductor ceramic composition was produced.
No. In 5-1 to 5-4, y = 0.006 and z = 0. The values of x with respect to 1-5 are 0.02, 0.14, 0.18, and 0.2, respectively. In 5-5 to 5-7, x = 0.0875, z = 0, and the value of y was 0.003, 0.048, 0.05. The electrode is no. The same as 1-5 was formed. The same applies to the following examples. Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 5.

また、No.5−8は、No.1−5に対して半導体化元素として希土類元素を用いずに(y=0)、Tiサイトの一部をTaとし、組成式のzの値を0.009とした。
この例ではBaCO、TiO、及びTa原料粉末を準備し、Ba(Ti0.991Ta0.009)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、第1の仮焼粉を用意した。
第2の仮焼粉の作製は、実施例1と同様に行った。また、その後の第1の仮焼粉と第2の仮焼粉の混合、成形、焼結、電極形成によるPTC素子の製造および評価方法は、実施例1と同様の方法で行った。得られた評価結果を表5に示す。
No. No. 5-8 is No.5. In contrast to 1-5, a rare earth element was not used as a semiconducting element (y = 0), a part of the Ti site was Ta, and the value of z in the composition formula was 0.009.
In this example, BaCO 3 , TiO 2 , and Ta 2 O 5 raw material powders were prepared, blended so as to be Ba (Ti 0.991 Ta 0.009 ) O 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare a first calcined powder.
The second calcined powder was produced in the same manner as in Example 1. Moreover, the manufacturing and evaluation method of the PTC element by the subsequent mixing, molding, sintering, and electrode formation of the first calcined powder and the second calcined powder were performed in the same manner as in Example 1. The obtained evaluation results are shown in Table 5.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表5の結果より、何れのPTC素子とも界面抵抗は全て5Ω以下であった。表面抵抗も2.0mΩcm以下、抵抗温度係数αが2.5%/℃以上のPTC素子が得られている。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
From the results shown in Table 5, the interface resistances of all the PTC elements were all 5Ω or less. A PTC element having a surface resistance of 2.0 mΩcm or less and a temperature coefficient of resistance α of 2.5% / ° C. or more is obtained.

Figure 2015002197
Figure 2015002197

(実施例7:No.6−1〜6−4)
卑金属系電極で用いるAl粒子の粒子径を変えたものを作製した。
No.6−1では平均粒子径が3.8μmのAl粒子を、No.6−2では平均粒子径が2.5μmのAl粒子を、No.6−3,6−4では平均粒子径が1.5μmのAl粒子をそれぞれ用いた。これらのAl粒子とSi粒子を、質量比率で92:8になるように混合し、その合計値を100質量部として、それに対しガラスフリットを10質量部、Bを10質量部として添加した。また、No.6−4は焼付け温度を750℃と変えた。
それ以外のPTC素子の作製方法や評価方法は、実施例1と同様の方法で行った。得られた評価結果を表6に示す。
(Example 7: No. 6-1 to 6-4)
What changed the particle diameter of the Al particle used with a base metal system electrode was produced.
No. In Example 6-1, Al particles having an average particle diameter of 3.8 μm are designated as No. 6-1. In No. 6-2, Al particles having an average particle size of 2.5 μm were obtained as In 6-3 and 6-4, Al particles having an average particle diameter of 1.5 μm were used. These Al particles and Si particles were mixed at a mass ratio of 92: 8, and the total value was 100 parts by mass, and 10 parts by mass of glass frit and 10 parts by mass of B were added thereto. No. 6-4 changed baking temperature to 750 degreeC.
Other methods for producing and evaluating the PTC element were performed in the same manner as in Example 1. Table 6 shows the obtained evaluation results.

何れのPTC素子も母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。
表6によれば、両方とも界面抵抗は1Ω以下、素子抵抗が5Ω以下、表面抵抗も10.0mΩcm以下のPTC素子が得られている。
Al粒子を小さくすることで、表面抵抗は高くなる傾向がある。
It was confirmed that any PTC element had a low resistance layer having a resistance smaller than that of the parent phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed.
According to Table 6, both PTC elements having an interface resistance of 1Ω or less, an element resistance of 5Ω or less, and a surface resistance of 10.0 mΩcm or less are obtained.
By reducing the Al particles, the surface resistance tends to increase.

Figure 2015002197

(実施例8:No.7−1)
半導体磁器組成物としてPb入りの半導体磁器組成物を用いた。
Pb入りの半導体磁器組成物として、組成式が(Ba0.83Pb0.17)TiOで表されるものとした。それ以外のPTC素子の作製方法や評価方法は、No.1−5と同様の方法で行った。得られた評価結果を表7に示す。
母相よりも抵抗が小さい低抵抗層があることを確認できた。また、低抵抗層の厚さに相応する反応相の存在も確認された。抵抗温度係数が小さいという難点があるものの、素子抵抗、界面抵抗、表面抵抗は全て低い値を示した。
Figure 2015002197
Figure 2015002197

(Example 8: No. 7-1)
A semiconductor ceramic composition containing Pb was used as the semiconductor ceramic composition.
As a semiconductor ceramic composition containing Pb, the composition formula is represented by (Ba 0.83 Pb 0.17 ) TiO 3 . Other methods for producing and evaluating the PTC element are described in No. The same method as in 1-5 was performed. Table 7 shows the obtained evaluation results.
It was confirmed that there was a low resistance layer having a lower resistance than that of the mother phase. The presence of a reaction phase corresponding to the thickness of the low resistance layer was also confirmed. Although there was a problem that the temperature coefficient of resistance was small, the element resistance, interface resistance, and surface resistance all showed low values.
Figure 2015002197

(発熱モジュール)
図9は、本発明の一実施形態に係る発熱モジュール(PTCヒータ)の模式図である。
上述のPTC素子を、図9に示すように金属製の放熱フィン21a、21b、21cに挟み込んで固定し、発熱モジュール20を構成することができる。PTC素子11は半導体磁器組成物の基体1aと卑金属系電極2a、2b、2cからなり、電極2a、2cはそれぞれ正極側の電力供給電極20a、20cに熱的および電気的に密着され、他方の面に形成した電極2bは負極側の電力供給電極20bに熱的および電気的に密着される。また、電力供給電極20a、20b、20cはそれぞれ放熱フィン21a、21b、21cと熱的に接続している。なお、絶縁層2dは電力供給電極20aと電力供給電極20cの間に設けられ、両者を電気的に絶縁している。PTC素子11で生じた熱は電極2a、2b、2c、電力供給電極20a、20b、20c、放熱フィン21a、21b、21cの順に伝わり、主に放熱フィン21a、21b、21cから雰囲気中に放出される。
(Heat generation module)
FIG. 9 is a schematic diagram of a heat generating module (PTC heater) according to an embodiment of the present invention.
As shown in FIG. 9, the heat generating module 20 can be configured by sandwiching and fixing the PTC element described above between metal radiation fins 21 a, 21 b, and 21 c. The PTC element 11 is composed of a base 1a of a semiconductor ceramic composition and base metal electrodes 2a, 2b, 2c, and the electrodes 2a, 2c are in thermal and electrical contact with the positive power supply electrodes 20a, 20c, respectively, The electrode 2b formed on the surface is thermally and electrically in close contact with the power supply electrode 20b on the negative electrode side. Further, the power supply electrodes 20a, 20b, and 20c are thermally connected to the radiation fins 21a, 21b, and 21c, respectively. The insulating layer 2d is provided between the power supply electrode 20a and the power supply electrode 20c, and electrically insulates them. The heat generated in the PTC element 11 is transmitted in the order of the electrodes 2a, 2b, 2c, the power supply electrodes 20a, 20b, 20c, and the radiation fins 21a, 21b, 21c, and is mainly released from the radiation fins 21a, 21b, 21c into the atmosphere. The

電源30cを、電力供給電極20aと電力供給電極20bの間、または電力供給電極20cと電力供給電極20bの間に接続すれば消費電力は小さくなり、電力供給電極20aおよび電力供給電極20cの両方と電力供給電極20bの間に接続すれば消費電力は大きくなる。つまり、消費電力を2段階に変更することができる。こうして発熱モジュール20は、電源30cの負荷状況や、希望する加熱の緩急の度合いに応じて加熱能力を切り替えできる。この加熱能力切り替え可能な発熱モジュール20を電源30cに接続することで加熱装置30を構成することができる。なお、電源30cは直流電源である。発熱モジュール20の電力供給電極20aと電力供給電極20cはそれぞれ別のスイッチ30a、30bを介して電源30cの一方の電極に並列接続され、電力供給電極20bは共通端子として電源30cの他方の電極に接続される。スイッチ30a、30bの何れか一方のみを導通させれば加熱能力を小さくして電源30cの負荷を軽くすることができ、両方を導通すれば加熱能力を大きくすることができる。   If the power supply 30c is connected between the power supply electrode 20a and the power supply electrode 20b, or between the power supply electrode 20c and the power supply electrode 20b, the power consumption is reduced, and both the power supply electrode 20a and the power supply electrode 20c If it connects between the electric power supply electrodes 20b, power consumption will become large. That is, the power consumption can be changed in two stages. Thus, the heat generating module 20 can switch the heating capacity according to the load condition of the power source 30c and the desired degree of heating. The heating device 30 can be configured by connecting the heating module 20 capable of switching the heating capacity to the power source 30c. The power supply 30c is a DC power supply. The power supply electrode 20a and the power supply electrode 20c of the heat generating module 20 are connected in parallel to one electrode of the power supply 30c via separate switches 30a and 30b, respectively, and the power supply electrode 20b is connected to the other electrode of the power supply 30c as a common terminal. Connected. If only one of the switches 30a and 30b is made conductive, the heating capacity can be reduced to reduce the load of the power source 30c, and if both are made conductive, the heating capacity can be increased.

この加熱装置30によれば電源30cに特別な機構を持たせなくても、PTC素子11を一定温度に維持することができる。つまり、大きな抵抗温度係数を有する基体1aがキュリー温度付近まで加熱されると、基体1aの抵抗値が急激に上昇しPTC素子11に流れる電流が小さくなり、自動的にそれ以上加熱されなくなる。また、PTC素子11の温度がキュリー温度付近から低下すると再び素子に電流が流れ、PTC素子11が加熱される。このようなサイクルを繰り返してPTC素子11の温度、ひいては発熱モジュール20全体の温度を一定にすることができるので、電源30cの位相や振幅を調整する回路、さらには温度検出機構や目標温度との比較機構、加熱電力調整回路なども不要である。
この加熱装置30は、放熱フィン21a〜21cの間に空気を流して空気を暖めたり、放熱フィン21a〜21cの間に水などの液体を通す金属管を接続して液体を温めたりすることができる。このときもPTC素子11が一定温度に保たれるので、安全な加熱装置30とすることができる。
このような発熱モジュールは一例であって、上記電極は2つにして単純化すること等の変更や修正を加えることができる。
According to the heating device 30, the PTC element 11 can be maintained at a constant temperature without providing the power supply 30c with a special mechanism. That is, when the substrate 1a having a large resistance temperature coefficient is heated to the vicinity of the Curie temperature, the resistance value of the substrate 1a rapidly increases, the current flowing through the PTC element 11 decreases, and the substrate 1a is not automatically heated any further. Further, when the temperature of the PTC element 11 decreases from around the Curie temperature, a current flows again to the element, and the PTC element 11 is heated. By repeating such a cycle, the temperature of the PTC element 11 and thus the temperature of the heat generating module 20 as a whole can be made constant. Therefore, a circuit for adjusting the phase and amplitude of the power supply 30c, as well as the temperature detection mechanism and the target temperature. A comparison mechanism and a heating power adjustment circuit are also unnecessary.
The heating device 30 may flow air between the radiation fins 21a to 21c to warm the air, or connect a metal tube through which a liquid such as water passes between the radiation fins 21a to 21c to warm the liquid. it can. Also at this time, since the PTC element 11 is maintained at a constant temperature, a safe heating device 30 can be obtained.
Such a heat generating module is an example, and changes and modifications such as simplification with two electrodes can be added.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本願は、2013年7月2日付で出願された日本国特許出願(2013−139001)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (2013-139001) for which it applied on July 2, 2013, The whole is used by reference. Also, all references cited herein are incorporated as a whole.

1:卑金属系電極
2:半導体磁器組成物
3:低抵抗層
4:反応相
5:Al粒子
6:空隙
11:PTC素子
20:発熱モジュール
20a、20b、20c:電力供給電極
21a、21b、21c:放熱フィン
30a、30b:スイッチ
30c:電源
1: Base metal electrode 2: Semiconductor porcelain composition 3: Low resistance layer 4: Reaction phase 5: Al particles 6: Air gap 11: PTC element 20: Heat generating modules 20a, 20b, 20c: Power supply electrodes 21a, 21b, 21c: Radiating fins 30a, 30b: switch 30c: power supply

Claims (14)

半導体磁器組成物に卑金属系電極が焼付けにより形成されたPTC素子であって、
前記半導体磁器組成物は、BaTiO型酸化物からなるペロブスカイト構造を有し、
前記卑金属系電極は、金属成分としてAl、Niのうち少なくとも一種を主成分とし、かつ、少なくともBを含み、
前記半導体磁器組成物の卑金属系電極側に、前記半導体磁器組成物の母相よりも抵抗の小さい低抵抗層が形成されていることを特徴とするPTC素子。
A PTC element in which a base metal electrode is formed on a semiconductor ceramic composition by baking,
The semiconductor ceramic composition has a perovskite structure made of a BaTiO 3 type oxide,
The base metal electrode includes, as a metal component, at least one of Al and Ni as a main component, and at least B.
A PTC element, wherein a low resistance layer having a resistance smaller than that of a parent phase of the semiconductor ceramic composition is formed on a base metal electrode side of the semiconductor ceramic composition.
前記低抵抗層の厚さが0.1μm以上であることを特徴とする請求項1に記載のPTC素子。   The PTC element according to claim 1, wherein the low resistance layer has a thickness of 0.1 μm or more. 前記低抵抗層の厚さが0.4μm以上で、単位面積(1cm)辺りの素子の界面抵抗が5Ω以下であることを特徴とする請求項1または2に記載のPTC素子。3. The PTC element according to claim 1, wherein the thickness of the low resistance layer is 0.4 μm or more, and the interface resistance of the element per unit area (1 cm 2 ) is 5Ω or less. 単位面積(1cm)辺りの素子の素子抵抗が10Ω以下であることを特徴とする請求項1〜3の何れか1項に記載のPTC素子。The element resistance of the element around unit area (1 cm < 2 >) is 10 ohms or less, The PTC element in any one of Claims 1-3 characterized by the above-mentioned. 表面抵抗が10mΩcm以下であることを特徴とする請求項1〜4の何れか1項に記載のPTC素子。   5. The PTC element according to claim 1, wherein the surface resistance is 10 mΩcm or less. 前記卑金属系電極の半導体磁器組成物側に、Ba酸化物を主体とする反応相が存在することを特徴とする請求項1〜5の何れか1項に記載のPTC素子。   The PTC element according to claim 1, wherein a reaction phase mainly composed of Ba oxide is present on the semiconductor ceramic composition side of the base metal electrode. 前記卑金属系電極は、前記Al、Ni、Bの合計を100質量%として、Bを3質量%以上25質量%以下で含む組成であることを特徴とする請求項1〜6の何れか1項に記載のPTC素子。   The said base metal type electrode is a composition which contains B in 3 mass% or more and 25 mass% or less by making the sum total of said Al, Ni, and B into 100 mass%. A PTC element according to 1. 前記卑金属系電極は、金属成分としてSiを含み、前記Al、Ni、B、Siの合計を100質量%として、Bを3質量%以上25質量%以下、Siを0質量%超26質量%以下で含むことを特徴とする請求項7に記載のPTC素子。   The base metal electrode contains Si as a metal component, the total of Al, Ni, B, and Si is 100% by mass, B is 3% by mass to 25% by mass, Si is more than 0% by mass and 26% by mass or less. The PTC element according to claim 7, comprising: 前記卑金属系電極は、前記Al、Ni、B、Siの合計を100質量%として、Alを50質量%以上で含むことを特徴とする請求項7または8に記載のPTC素子。   9. The PTC element according to claim 7, wherein the base metal electrode includes Al in an amount of 50 mass% or more, with the total of Al, Ni, B, and Si being 100 mass%. 前記卑金属系電極は、前記Al、Ni、B、Siの合計を100質量%として、Niを5質量%以上40質量%以下で含むことを特徴とする請求項7〜9の何れか1項に記載のPTC素子。   10. The base metal electrode according to claim 7, wherein the base metal electrode includes 5% by mass to 40% by mass of Ni, with the total of Al, Ni, B, and Si being 100% by mass. The PTC element described. 前記卑金属系電極は、平均粒径が1.2μm以上10μm以下のAl粒子が分散されていることを特徴とする請求項1〜10の何れか1項に記載のPTC素子。   11. The PTC element according to claim 1, wherein Al particles having an average particle diameter of 1.2 μm to 10 μm are dispersed in the base metal electrode. 前記半導体磁器組成物は、
組成式が[(BiA)(Ba1−y1−x][Ti1−z]O(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.25、0≦y≦0.052、0≦z≦0.01(但し、y+z>0)の範囲を満足する組成であることを特徴とする請求項1〜11の何れか1項に記載のPTC素子。
The semiconductor porcelain composition is
Rare earth elements containing at least one, R represents Y of composition formula [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A is Na, Li, K At least one of them, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.25, 0 ≦ y ≦ 0.052, 0 ≦ z ≦ 0. The PTC element according to claim 1, wherein the PTC element has a composition satisfying a range of 0.01 (where y + z> 0).
前記卑金属系電極の焼付けは、大気雰囲気中、720℃以上850℃以下の温度で行ったものであることを特徴とする請求項1〜12の何れか1項に記載のPTC素子。   The PTC element according to any one of claims 1 to 12, wherein the base metal electrode is baked at a temperature of 720 ° C or higher and 850 ° C or lower in an air atmosphere. 請求項1〜13の何れか1項に記載のPTC素子を備え、前記半導体磁器組成物が発熱することを特徴とする発熱モジュール。
A heat generating module comprising the PTC element according to claim 1, wherein the semiconductor ceramic composition generates heat.
JP2015525237A 2013-07-02 2014-07-01 PTC element and heating module Pending JPWO2015002197A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013139001 2013-07-02
JP2013139001 2013-07-02
PCT/JP2014/067548 WO2015002197A1 (en) 2013-07-02 2014-07-01 Ptc element and heat-generating module

Publications (1)

Publication Number Publication Date
JPWO2015002197A1 true JPWO2015002197A1 (en) 2017-02-23

Family

ID=52143770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015525237A Pending JPWO2015002197A1 (en) 2013-07-02 2014-07-01 PTC element and heating module

Country Status (5)

Country Link
EP (1) EP3018662A1 (en)
JP (1) JPWO2015002197A1 (en)
KR (1) KR20160042402A (en)
CN (1) CN105359227A (en)
WO (1) WO2015002197A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115422A1 (en) * 2014-01-28 2017-03-23 日立金属株式会社 PTC element and heating module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360501A (en) * 1986-09-01 1988-03-16 株式会社村田製作所 Positive characteristic thermistor
JPH03233805A (en) 1990-02-08 1991-10-17 Nichicon Corp Electrode of electronic part
JPH04211101A (en) * 1991-02-25 1992-08-03 Tdk Corp Voltage nonlinear resistor element
JP2699716B2 (en) * 1991-10-15 1998-01-19 株式会社村田製作所 Positive thermistor element
JP2005167113A (en) * 2003-12-05 2005-06-23 Murata Mfg Co Ltd Ptc thermistor and electrode paste therefor
DE102006041054A1 (en) 2006-09-01 2008-04-03 Epcos Ag heating element
JP5327554B2 (en) 2008-12-12 2013-10-30 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
JP5765611B2 (en) 2011-02-16 2015-08-19 日立金属株式会社 PTC element and heating module
KR20140089334A (en) * 2011-10-03 2014-07-14 히다찌긴조꾸가부시끼가이사 Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module

Also Published As

Publication number Publication date
WO2015002197A1 (en) 2015-01-08
KR20160042402A (en) 2016-04-19
CN105359227A (en) 2016-02-24
EP3018662A1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2013051486A1 (en) Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module
CN101636798B (en) Laminated positive temperature coefficient thermistor
JPWO2012176696A1 (en) Ruthenium oxide powder, composition for thick film resistor and thick film resistor using the same
KR102170477B1 (en) Paste composition for thermoelectric device, thermoelectric device and prepareing method using the same
CN107077970A (en) Chip-shaped ceramic semiconductors electronic unit
JP5765611B2 (en) PTC element and heating module
JP5803906B2 (en) PTC element and heating element module
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
WO2015002197A1 (en) Ptc element and heat-generating module
JP5626204B2 (en) Semiconductor porcelain composition, heating element and heating module
JP2012046372A (en) Ptc element and heat generating module
JP2015213116A (en) Ptc device and exothermic module
WO2015115422A1 (en) Ptc element and heating module
TW201319006A (en) Semiconductor ceramic, and ptc thermistor using same
JP2012004496A (en) Ptc element and heat generating module
JP2013182932A (en) Method for forming electrode of ptc element, and ptc element
JP5263668B2 (en) Semiconductor porcelain composition
JP2012224537A (en) Sintered body for ptc element, method for producing the same, the ptc element, and heat generating module
JP2014123603A (en) Method for manufacturing ptc device, ptc device, and exothermic module
JP6108563B2 (en) INORGANIC MATERIAL PASTE FOR ELECTRONIC PARTS, RESISTOR, DIELECTRIC, AND PROCESS FOR PRODUCING THE SAME
JP2014123604A (en) Ptc element and heat generation module
JP2012001416A (en) Ptc element and exothermic module
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2012036032A (en) Semiconductor ceramic composition, method for producing the same, and ptc element and heat generating module
JP2013144637A (en) Method for manufacturing semiconductor porcelain composition