JP2013182932A - Method for forming electrode of ptc element, and ptc element - Google Patents

Method for forming electrode of ptc element, and ptc element Download PDF

Info

Publication number
JP2013182932A
JP2013182932A JP2012044100A JP2012044100A JP2013182932A JP 2013182932 A JP2013182932 A JP 2013182932A JP 2012044100 A JP2012044100 A JP 2012044100A JP 2012044100 A JP2012044100 A JP 2012044100A JP 2013182932 A JP2013182932 A JP 2013182932A
Authority
JP
Japan
Prior art keywords
electrode
ptc element
semiconductor ceramic
ceramic composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044100A
Other languages
Japanese (ja)
Inventor
Kentaro Ino
健太郎 猪野
Takeshi Shimada
武司 島田
Itaru Ueda
到 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012044100A priority Critical patent/JP2013182932A/en
Publication of JP2013182932A publication Critical patent/JP2013182932A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming an electrode of a PTC element, capable of reducing interface resistance between a PTC element assembly and an electrode, the PTC element being manufactured using a semiconductor porcelain composition in which a part of Ba of BaTiOis substituted with Bi-Na.SOLUTION: A method for forming an electrode of a PTC element includes a step of preparing a semiconductor porcelain composition represented by a composition formula: [(Bi-Na)(BaR)][TiM]O(where R represents at least one selected from among rare earth elements including Y, M represents at least one selected from among Nb, Ta and Sb) while the x, y and z satisfy relationships of 0<x≤0.30, 0≤y≤0.020 and 0≤z≤0.010, coating an electrode paste on the semiconductor porcelain composition, performing heat treatment to remove a binder in the electrode paste, and then performing baking treatment. The baking treatment is performed in a condition at 500°C or above and 700°C or below for 5 minutes or more and 30 minutes or less in a non-oxidizing atmosphere with an oxygen concentration of 2% or less.

Description

この発明は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる、正の抵抗温度係数を有する半導体磁器組成物を有するPTC素子の電極形成方法、及びPTC素子に関する。   The present invention relates to a method for forming an electrode of a PTC element having a semiconductor ceramic composition having a positive resistance temperature coefficient used for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like, and a PTC element.

従来、PTCR特性(正の抵抗率温度係数:Positive Temperature Coefficient of Resistivity)を示す材料としてBaTiOに様々な半導体化元素を加えた半導体磁器組成物が提案されている。本発明では、PTCR特性をジャンプ特性と記して説明する。ジャンプ特性は、結晶粒界に形成された抵抗、つまりショットキー障壁による抵抗が増大するために起こると考えられている。この半導体磁器組成物の特性としては、この抵抗率のジャンプ特性(以下、抵抗温度係数)が高く、かつ室温での抵抗率(以下、室温抵抗率)は低い値で安定したものが要求されている。 Conventionally, semiconductor porcelain compositions obtained by adding various semiconducting elements to BaTiO 3 have been proposed as materials exhibiting PTCR characteristics (Positive Temperature Coefficient of Resistivity). In the present invention, the PTCR characteristic is described as a jump characteristic. The jump characteristic is considered to occur because the resistance formed at the crystal grain boundary, that is, the resistance due to the Schottky barrier increases. As the characteristics of this semiconductor ceramic composition, it is required that the resistivity jump characteristic (hereinafter referred to as resistance temperature coefficient) is high, and the resistivity at room temperature (hereinafter referred to as room temperature resistivity) is stable at a low value. Yes.

これらの半導体磁器組成物は、キュリー点以上の高温になると急激に抵抗値が増大する特性を有するので、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる。一般的な半導体磁器組成物のキュリー温度は120℃前後であるが、用途に応じてキュリー温度をシフトさせることが必要になる。   Since these semiconductor porcelain compositions have the characteristic that the resistance value increases rapidly when the temperature becomes higher than the Curie point, they are used for PTC thermistors, PTC heaters, PTC switches, temperature detectors and the like. The Curie temperature of a general semiconductor ceramic composition is around 120 ° C., but it is necessary to shift the Curie temperature depending on the application.

キュリー温度をシフトさせるために、BaTiOにSrTiOを添加することが提案されているが、キュリー温度は負の方向にのみシフトし、正の方向にはシフトしない。現在、キュリー温度を正の方向にシフトさせる添加元素として知られているのはPbTiOである。しかし、PbTiOは環境汚染を引き起こすPbを含有するため、近年、Pbを使用しない半導体化磁器組成物が要望されている。 In order to shift the Curie temperature, it has been proposed to add SrTiO 3 to BaTiO 3 , but the Curie temperature shifts only in the negative direction and not in the positive direction. Currently, PbTiO 3 is known as an additive element that shifts the Curie temperature in the positive direction. However, since PbTiO 3 contains Pb that causes environmental pollution, a semiconducting porcelain composition that does not use Pb has recently been demanded.

特許文献1では、従来のBaTiO系半導体磁器組成物の問題を解決するため、Pbを使用することなく、キュリー温度を正の方向へシフトすることができるとともに、室温抵抗率を大幅に低下させながらも優れたジャンプ特性を示す半導体磁器組成物が提案されている。具体的には、組成式が[(BiNa)(Ba1−y1−x]TiOで表され、x、yが0<x≦0.2、0<y≦0.02を満足する半導体磁器組成物、又は、組成式が[(BiNa)Ba1−x][Ti1−z]Oで表され、x、zが、0<x≦0.2、0<z≦0.005を満足する半導体磁器組成物が提案されている。 In Patent Document 1, in order to solve the problem of the conventional BaTiO 3 based semiconductor ceramic composition, the Curie temperature can be shifted in the positive direction without using Pb, and the room temperature resistivity is greatly reduced. However, a semiconductor porcelain composition exhibiting excellent jump characteristics has been proposed. Specifically, the composition formula is represented by [(BiNa) x (Ba 1-y R y ) 1-x ] TiO 3 , and x and y are 0 <x ≦ 0.2, 0 <y ≦ 0.02. Or the composition formula is represented by [(BiNa) x Ba 1-x ] [Ti 1-z M z ] O 3 , and x and z are 0 <x ≦ 0.2, Semiconductor porcelain compositions that satisfy 0 <z ≦ 0.005 have been proposed.

図3に示すように、半導体磁器組成物を所定形状に加工したPTC素体1は、正極と負極からなる電極2が形成され、PTC素子10となる。特許文献2では、PTC素体1と電極2の間の界面抵抗の低減に着目し、PTC素体の背反する両端面に、AgにZnを含ませた第1電極層を設けることが提案されている。なお、特許文献2では、図4に示す製造工程でPTC素子を製造している。つまり、Step1で半導体磁器組成物を製造し、step2で電極ペーストを半導体磁器組成物に塗布し、Step3で電極ペースト中のバインダを除去するための大気中熱処理を行い、その後、Step4で大気中にて電極の焼付け処理を行っている。   As shown in FIG. 3, a PTC element body 1 obtained by processing a semiconductor porcelain composition into a predetermined shape is formed with an electrode 2 composed of a positive electrode and a negative electrode to form a PTC element 10. In Patent Document 2, focusing on the reduction of the interface resistance between the PTC element body 1 and the electrode 2, it is proposed to provide a first electrode layer containing Zn in Ag on both opposite sides of the PTC element body. ing. In Patent Document 2, a PTC element is manufactured by the manufacturing process shown in FIG. In other words, the semiconductor ceramic composition is manufactured in Step 1, the electrode paste is applied to the semiconductor ceramic composition in Step 2, the heat treatment in the atmosphere is performed in Step 3 to remove the binder in the electrode paste, and then in Step 4 The electrode is baked.

また特許文献3は、半導体磁器組成物に電極を形成する前や形成後に大気中や酸素中で熱処理することが記載され、経時変化に優れ、かつ室温抵抗が100Ω・cm以下の半導体磁器組成物が得られると記載している。   Patent Document 3 describes that a semiconductor ceramic composition is heat-treated in the air or in oxygen before or after the electrode is formed on the semiconductor ceramic composition, and is excellent in change over time and has a room temperature resistance of 100 Ω · cm or less. Is obtained.

国際公開WO2006/118274A1号公報International Publication WO2006 / 118274A1 特開2010−40560号公報JP 2010-40560 A 特開2009−234849号公報JP 2009-234849 A

前記のように、特許文献1の半導体磁器組成物はPbを使用することなくキュリー温度を正の方向にシフトさせ、室温抵抗率を低減しながらも優れたジャンプ特性を示す。しかし特許文献1の半導体磁器組成物を用いたPTC素子は、Pbを使用しない半導体磁器組成物を用いたPTC素子に比べて界面抵抗が高くなる。そのため、特許文献2の電極構造を用いても、特許文献1の半導体磁器組成物では界面抵抗が低減しない。この原因を調べたところ、PTC素体の界面に酸化物層が存在し、この酸化物層が界面抵抗を高くして室温抵抗率と経時変化を大きくする原因であることが明らかになった。この酸化物層は、特許文献3で記載される電極を形成する前の熱処理や、電極形成後の熱処理では無くすことができない。   As described above, the semiconductor ceramic composition of Patent Document 1 shifts the Curie temperature in the positive direction without using Pb, and exhibits excellent jump characteristics while reducing the room temperature resistivity. However, the PTC element using the semiconductor ceramic composition of Patent Document 1 has a higher interface resistance than the PTC element using the semiconductor ceramic composition that does not use Pb. Therefore, even if the electrode structure of Patent Document 2 is used, the interface resistance is not reduced in the semiconductor ceramic composition of Patent Document 1. When this cause was investigated, it became clear that an oxide layer was present at the interface of the PTC element body, and this oxide layer increased the interface resistance and increased the room temperature resistivity and the change with time. This oxide layer cannot be eliminated by the heat treatment before forming the electrode described in Patent Document 3 or the heat treatment after forming the electrode.

そこで、本発明の目的は、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物を用いたPTC素子において、PTC素体と電極の間の界面抵抗を小さくすることが可能なPTC素子の電極形成方法を提供することにある。また、このPTC素子の電極形成方法により得られた、界面抵抗が小さく室温抵抗率と経時変化が小さいPTC素子を提供することにある。 Accordingly, an object of the present invention is to reduce the interfacial resistance between the PTC element body and the electrode in a PTC element using a semiconductor ceramic composition in which a part of BaTiO 3 is replaced with Bi—Na. An object of the present invention is to provide an electrode forming method for a PTC element. Another object of the present invention is to provide a PTC element obtained by this electrode forming method for a PTC element, which has a small interface resistance and a small room temperature resistivity and small change with time.

PTC素体の界面には電極形成前から酸化物層が存在している。電極を形成する際に電極の卑金属が酸化物層中の酸素を取り込むことで酸化物層は除去される。但し、大気中で電極を形成すると卑金属は主に大気中から酸素を取り込んでしまうので酸化物層に対する還元力が弱まり、酸化物層が完全に取り除かれない。そのため界面抵抗を下げることができない。酸化物層は室温抵抗率を高くするばかりでなく、電極が密着力不足で剥がれやすくなるので経時変化が大きくなる原因となる。
そこで本発明では、PTC素体の酸化物層を除去するために非酸素雰囲気で電極を焼き付けることで卑金属成分の雰囲気中からの酸化を抑えて卑金属成分の還元力をより高い状態に保った。その結果、PTC素体の界面の酸化物層を従来よりも削減することができる。これにより界面抵抗を1.0Ω/cm2以下にすることができる。その結果、室温抵抗率と経時変化が小さいPTC素子を実現することができた。
An oxide layer exists at the interface of the PTC element body before the electrode is formed. When the electrode is formed, the base metal of the electrode takes in oxygen in the oxide layer, so that the oxide layer is removed. However, when the electrode is formed in the atmosphere, the base metal mainly takes in oxygen from the atmosphere, so the reducing power on the oxide layer is weakened and the oxide layer is not completely removed. Therefore, the interface resistance cannot be lowered. The oxide layer not only increases the room temperature resistivity, but also causes the change with time to increase because the electrode easily peels off due to insufficient adhesion.
Therefore, in the present invention, the electrode is baked in a non-oxygen atmosphere in order to remove the oxide layer of the PTC element body, thereby suppressing the oxidation of the base metal component from the atmosphere and maintaining the reducing power of the base metal component in a higher state. As a result, the oxide layer at the interface of the PTC element body can be reduced as compared with the prior art. As a result, the interface resistance can be reduced to 1.0 Ω / cm 2 or less. As a result, it was possible to realize a PTC element having a small room temperature resistivity and a change with time.

すなわち本発明は、少なくともBaとTiを含むペロブスカイト系の半導体磁器組成物に、Agと卑金属の合金からなる電極を有するPTC素子の電極形成方法であって、前記半導体磁器組成物は、組成式が[(Bi-Na)(Ba1−y1−x][Ti1−z]O(但し、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表され、前記x、y、zが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010を満足するものであり、電極ペーストを前記半導体磁器組成物に塗布し、前記電極ペースト中のバインダーを除去するための熱処理を行い、その後、焼付け処理を行う工程を有し、前記焼付け処理は、酸素濃度2%以下の非酸化性雰囲気中で500℃以上700℃以下、5分以上30分以下の条件で行うことを特徴とする。 That is, the present invention is a method for forming an electrode of a PTC element having an electrode made of an alloy of Ag and a base metal in a perovskite-based semiconductor ceramic composition containing at least Ba and Ti, wherein the semiconductor ceramic composition has the composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] [Ti 1-z M z] O 3 ( provided that at least one of rare earth element R, including the Y, M is Nb, Ta, At least one of Sb), and x, y, and z satisfy 0 <x ≦ 0.30, 0 ≦ y ≦ 0.020, and 0 ≦ z ≦ 0.010, and electrode paste Is applied to the semiconductor ceramic composition, followed by a heat treatment for removing the binder in the electrode paste, followed by a baking treatment, wherein the baking treatment is a non-oxidizing material having an oxygen concentration of 2% or less. 500 ° C or higher in the atmosphere 00 ° C. or less, and carrying out at least 5 minutes 30 minutes following conditions.

前記熱処理は、大気中で300℃以上400℃以下、10分以上60分以下の条件で行うことが好ましい。   The heat treatment is preferably performed in the atmosphere at a temperature of 300 ° C. to 400 ° C. for 10 minutes to 60 minutes.

前記電極はAgが20質量%以上65質量%以下で残部が卑金属元素からなる組成であることが好ましい。   The electrode preferably has a composition in which Ag is 20% by mass or more and 65% by mass or less and the balance is a base metal element.

前記卑金属はZn、Snから選択される一種以上の元素であることが好ましい。   The base metal is preferably one or more elements selected from Zn and Sn.

前記卑金属がSnである場合、Snが20質量%以上60質量%以下の範囲であることが好ましい。   When the base metal is Sn, it is preferable that Sn is in the range of 20% by mass to 60% by mass.

また本発明は、上記のPTC素子の電極形成方法により製造したPTC素子であって、前記PTC素子は、前記電極と前記半導体磁器組成物の間の界面抵抗が1.0Ω/cm以下であることを特徴とする。 Further, the present invention is a PTC element manufactured by the above electrode forming method for a PTC element, wherein the PTC element has an interface resistance between the electrode and the semiconductor ceramic composition of 1.0 Ω / cm 2 or less. It is characterized by that.

本発明によれば、BaTiOのBaの一部がBi−Naで置換された半導体磁器組成物を用いたPTC素子において、界面抵抗を小さくすることが可能なPTC素子の電極形成方法を提供できる。これにより、経時変化と室温抵抗率が小さいPTC素子を提供できる。 According to the present invention, the PTC element using a semiconductor ceramic composition in which a part of Ba of BaTiO 3 is substituted with Bi-Na, may provide an electrode forming method of a PTC element that can reduce the interfacial resistance . Thereby, a PTC element with a small change with time and room temperature resistivity can be provided.

本願発明の電極の焼付けの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of baking of the electrode of this invention. 界面抵抗の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of interface resistance. PTC素子の一例である。It is an example of a PTC element. 従来の電極の焼付けの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the baking of the conventional electrode. 抵抗温度係数αを説明するための図である。It is a figure for demonstrating resistance temperature coefficient (alpha).

以下、本発明のPTC素子とその製造方法について説明する。
図1は本発明の製造方法のフローチャートの一例である。Step1で上記組成の半導体磁器組成物を製造する。その後、step2で電極ペーストを半導体磁器組成物に塗布する。Step3で電極ペースト中のバインダを除去するための大気中熱処理を行う。大気中熱処理での熱処理温度は、300℃~400℃の温度で行うことが好ましい。さらにその後、Step4で、非酸化性雰囲気中で電極の焼付け処理を行う。この製造工程により、上記組成の半導体磁器組成物を用いた界面抵抗が小さいPTC素子を製造することができる。
Hereinafter, the PTC element of the present invention and the manufacturing method thereof will be described.
FIG. 1 is an example of a flowchart of the manufacturing method of the present invention. In Step 1, a semiconductor ceramic composition having the above composition is manufactured. Then, electrode paste is apply | coated to a semiconductor ceramic composition by step2. In Step 3, heat treatment in air is performed to remove the binder in the electrode paste. The heat treatment temperature in the air heat treatment is preferably 300 ° C. to 400 ° C. Thereafter, in Step 4, the electrode is baked in a non-oxidizing atmosphere. By this manufacturing process, a PTC element having a low interface resistance using the semiconductor ceramic composition having the above composition can be manufactured.

本発明のPTC素子に用いる半導体磁器組成物は、組成式が[(Bi-Na)(Ba1−y1−x][Ti1−z]O(但し、Rは希土類元素(Yを含む)のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表され、前記x、yが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010を満足するものである。
ここでxの範囲を0を超え0.30以下とすることでキュリー温度を130℃〜200℃にすることができる。xが0.30を超えてしまうと異相ができ易くなるため好ましくない。また、yの範囲を0以上0.020以下、zの範囲を0以上0.010以下とすることで室温抵抗率を小さくすることが出来る。x=0の半導体磁器組成物であると、そもそも界面抵抗がそれほど大きくならないため、経時変化の低減効果を十分に活用することができない。y+z=0であると、室温抵抗率が100Ω・cmに近くなりヒーター素子としての効率が比較的悪くなるため、y+z>0とすることが好ましい。yが0.020、zが0.010以下とする。両者がこの数値を超えると室温抵抗率が高くなるためヒーター素子としての効率が低くなり好ましくない。
The semiconductor ceramic composition for use in the PTC device of the present invention, the composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] [Ti 1-z M z] O 3 ( where, R represents At least one of rare earth elements (including Y), M is represented by at least one of Nb, Ta, and Sb), and x and y are 0 <x ≦ 0.30, 0 ≦ y ≦ 0.020, 0 ≦ z ≦ 0.010 is satisfied.
Here, the Curie temperature can be set to 130 ° C. to 200 ° C. by setting the range of x to exceed 0 and not more than 0.30. If x exceeds 0.30, a different phase is easily formed, which is not preferable. The room temperature resistivity can be reduced by setting the range of y to 0 to 0.020 and the range of z to 0 to 0.010. If x = 0, the interface resistance does not increase so much in the first place, and the effect of reducing changes with time cannot be fully utilized. When y + z = 0, the room temperature resistivity is close to 100 Ω · cm, and the efficiency as a heater element is relatively poor. Therefore, it is preferable to satisfy y + z> 0. It is assumed that y is 0.020 and z is 0.010 or less. If both values exceed this value, the room temperature resistivity becomes high, so the efficiency as a heater element becomes low, which is not preferable.

本発明のPTC素子に用いる半導体磁器組成物と電極の接合では、AgやAu、Ptなどの貴金属のみからなる電極を用いると界面抵抗が大きくなってしまう。この界面抵抗を小さくするには、貴金属にZnやSnなどの卑金属が含まれる組成の電極を用いることが有効である。すなわち、PTC素体の界面にできる酸化物層の酸素が電極中の卑金属により還元されることで酸化物層が減り、PTC素体と電極がオーミック接触する。この結果、界面抵抗が低減する。   In joining the semiconductor ceramic composition used for the PTC element of the present invention and an electrode, if an electrode made of only a noble metal such as Ag, Au, or Pt is used, the interface resistance increases. In order to reduce the interface resistance, it is effective to use an electrode having a composition in which a noble metal contains a base metal such as Zn or Sn. That is, oxygen in the oxide layer formed at the interface of the PTC element body is reduced by the base metal in the electrode, whereby the oxide layer is reduced and the PTC element body and the electrode are in ohmic contact. As a result, the interface resistance is reduced.

卑金属電極の酸化による経時変化を防ぐためにAgなどの貴金属をカバー電極としてさらに用いることもできる。   A precious metal such as Ag can be further used as the cover electrode in order to prevent a change with time due to oxidation of the base metal electrode.

本発明のPTC素体は700℃超の高温にさらすと酸化されて抵抗が増加してしまう問題があるため、電極の焼付け温度は700℃以下が望ましい。卑金属元素の成分としては融点が200〜500℃のものが優れたオーミック特性が得られることが分かっており、ZnやSnなどの元素が卑金属成分として適している。
また、電極中のAgの比率が65質量%を超えてしまうとZnやSnなどの卑金属成分が少なくなり、酸化物層が十分に除去できないため好ましくない。また、Agの比率が20質量%未満となると、逆に卑金属の割合が増えすぎて経時変化が大きくなるため好ましくない。
Since the PTC element body of the present invention has a problem that when it is exposed to a high temperature exceeding 700 ° C., the resistance increases, the baking temperature of the electrode is desirably 700 ° C. or less. It has been found that a base metal element having a melting point of 200 to 500 ° C. provides excellent ohmic characteristics, and elements such as Zn and Sn are suitable as the base metal component.
Further, if the Ag ratio in the electrode exceeds 65% by mass, base metal components such as Zn and Sn are reduced, and the oxide layer cannot be sufficiently removed, which is not preferable. On the other hand, when the Ag ratio is less than 20% by mass, the ratio of the base metal is excessively increased and the change with time increases, which is not preferable.

卑金属成分としてSnを用いる場合は、電極中の割合を60質量%以下とすることが好ましい。60質量%を超えてしまうと経時変化が大きくなるため好ましくない。   When using Sn as a base metal component, it is preferable that the ratio in an electrode shall be 60 mass% or less. If it exceeds 60% by mass, the change with time increases, which is not preferable.

電極ペースト中のバインダーを除去するための熱処理は、大気中で300℃以上400℃以下、10分以上60分以下の条件で行うことが好ましい。300℃未満での保持や保持時間が10分未満だと電極ペースト中の有機成分が十分に分解されず電極の密着を阻害するため好ましくない。また400℃を超える熱処理や、60分よりも長い時間の熱処理では卑金属の酸化が始まってしまい、酸化物層を十分に除去できなくなるため好ましくない。一般的な電極ペーストの有機バインダー量は0.1質量%以上30質量%以下であり、上記の条件で熱処理することで電極ペーストからバインダを十分に除去できる。   The heat treatment for removing the binder in the electrode paste is preferably performed in the air at a temperature of 300 ° C. or higher and 400 ° C. or lower and 10 minutes or longer and 60 minutes or shorter. When the temperature is less than 300 ° C. and the retention time is less than 10 minutes, the organic components in the electrode paste are not sufficiently decomposed and the adhesion of the electrode is hindered. Further, heat treatment exceeding 400 ° C. or heat treatment longer than 60 minutes is not preferable because base metal oxidation starts and the oxide layer cannot be sufficiently removed. The amount of organic binder in a general electrode paste is 0.1% by mass or more and 30% by mass or less, and the binder can be sufficiently removed from the electrode paste by heat treatment under the above conditions.

電極の焼付けを行う条件について説明する。酸素濃度2%以下の非酸化性雰囲気で500℃以上700℃以下の条件で5分以上30分以下で保持して電極を焼付けることでPTC素体の界面の酸化物層を削減し、室温抵抗率と経時変化を低減することができる。焼付け時の温度が500℃未満だったり、保持時間が5分未満だと十分な密着強度が得られない。また、焼付け温度が700℃より高いか、保持時間が30分を超えると、卑金属成分が雰囲気中の極僅かな酸素を取り込んでしまい酸化物層に対する還元力が小さくなるので前記同様に室温抵抗率が高くなってしまう。   The conditions for electrode baking will be described. The oxide layer at the interface of the PTC element body is reduced by baking the electrode by holding it in a non-oxidizing atmosphere with an oxygen concentration of 2% or less under conditions of 500 ° C. or more and 700 ° C. or less for 5 minutes or more and 30 minutes or less. Resistivity and change with time can be reduced. If the temperature during baking is less than 500 ° C. or the holding time is less than 5 minutes, sufficient adhesion strength cannot be obtained. Also, if the baking temperature is higher than 700 ° C. or the holding time exceeds 30 minutes, the base metal component takes in a very small amount of oxygen in the atmosphere and the reducing power on the oxide layer is reduced, so that the room temperature resistivity is the same as described above. Becomes higher.

次に、この発明に用いる半導体磁器組成物、及びこのPTC素子を得るための製造方法の一例を説明する。半導体磁器組成物の製造方法において、組成式[(Bi−Na)(Ba1−y1−x][Ti1−z]Oの製造に際して、(BaR)TiMO仮焼粉からなる各仮焼粉(以下、BaT仮焼粉)と(Bi−Na)TiO仮焼粉からなる仮焼粉(以下、BNT仮焼粉)を別々に用意する。その後、上記BaT仮焼粉とBNT仮焼粉を適宜混合した混合仮焼粉を用いて成形体を製造する。このようにBaT仮焼粉とBNT仮焼粉を別途用意し、これらを混合した混合仮焼粉を成形して焼結する製造方法(以下、分割仮焼法)を採用することが好ましい。 Next, an example of a semiconductor ceramic composition used in the present invention and a manufacturing method for obtaining this PTC element will be described. The method of manufacturing a semiconductor ceramic composition, in the production of the composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] [Ti 1-z M z] O 3, (BaR) TiMO 3 Provisional Each calcined powder composed of calcined powder (hereinafter referred to as BaT calcined powder) and calcined powder composed of (Bi-Na) TiO 3 calcined powder (hereinafter referred to as BNT calcined powder) are prepared separately. Then, a molded object is manufactured using the mixed calcined powder which mixed the said BaT calcined powder and BNT calcined powder suitably. Thus, it is preferable to employ a manufacturing method (hereinafter, divided calcining method) in which BaT calcined powder and BNT calcined powder are separately prepared, and mixed calcined powder obtained by mixing these is formed and sintered.

BaT仮焼粉とBNT仮焼粉はそれぞれの原料粉末をそれぞれに応じた適正温度で仮焼することで得られる。例えば、BNT仮焼粉の原料粉は、通常TiO、Bi、NaCOが用いられるが、Biは、これらの原料粉の中では融点が最も低いので焼成による揮散がより生じ易い。そこでBiがなるべく揮散しないで、かつNaの過反応が無いように700℃以上950℃以下の比較的低温で仮焼きする。保持時間は0.5時間以上10時間以下が好ましい。一旦、BNT仮焼粉となした後は、BNT粉自体の融点は高い温度で安定するので、BaT仮焼粉と混合してもより高い温度で焼成できる。このように分割仮焼法の利点はBiの揮散とNaの過反応を抑え、秤量値に対しBi−Naの組成ずれの小さいBNT仮焼粉にできることにある。対して、BaT仮焼粉は、900℃以上1300℃以下で、BNT仮焼粉よりも高い温度で仮焼きする。保持時間は0.5時間以上が好ましい。 BaT calcined powder and BNT calcined powder are obtained by calcining each raw material powder at an appropriate temperature according to each. For example, TiO 2 , Bi 2 O 3 , and Na 2 CO 3 are usually used as the raw material powder for BNT calcined powder, but Bi 2 O 3 has the lowest melting point among these raw material powders, and thus volatilizes by firing. Is more likely to occur. Therefore, the Bi is calcined at a relatively low temperature of 700 ° C. or more and 950 ° C. or less so that Bi is not volatilized as much as possible and there is no overreaction of Na. The holding time is preferably 0.5 hours or more and 10 hours or less. Once the BNT calcined powder is formed, the melting point of the BNT powder itself is stabilized at a high temperature, so that even when mixed with the BaT calcined powder, it can be fired at a higher temperature. As described above, the advantage of the divided calcining method is that the volatilization of Bi and the overreaction of Na are suppressed, and a BNT calcined powder having a small composition deviation of Bi-Na with respect to the measured value can be obtained. On the other hand, the BaT calcined powder is calcined at a temperature of 900 ° C. to 1300 ° C. and higher than the BNT calcined powder. The holding time is preferably 0.5 hours or more.

分割仮焼法を用いることにより、BNT仮焼粉のBiの揮散が抑制され、Bi−Naの組成ずれを極力防止してBiとNaのモル比率Bi/Naを精度良く制御することができ、それら仮焼粉を混合して、成形、焼結することにより、室温における抵抗率が低く、キュリー温度のバラツキが抑制された半導体磁器組成物が得られる。但し、分割仮焼法は必ずしも用いる必要はない。BiとNaの比は1:1を基本とするが、一括混合法等により仮焼工程などにおいて、Biが揮散してBiとNaの比にずれが生じたものでもよい。すなわち、Bi/Na比が配合時は1:1であるが、焼結体では1:1になっていない場合なども、この発明の組成物に含まれる。   By using the divided calcining method, the volatilization of Bi in the BNT calcined powder is suppressed, the compositional deviation of Bi-Na can be prevented as much as possible, and the molar ratio Bi / Na Bi / Na can be accurately controlled. By mixing, calcining and sintering these calcined powders, a semiconductor porcelain composition having a low resistivity at room temperature and a suppressed Curie temperature variation can be obtained. However, the split calcination method is not necessarily used. The ratio of Bi to Na is basically 1: 1, but it may be one in which Bi is volatilized and the ratio of Bi to Na is shifted in a calcining process or the like by a batch mixing method or the like. That is, the Bi / Na ratio is 1: 1 at the time of blending, but the case of not being 1: 1 in the sintered body is also included in the composition of the present invention.

仮焼粉の粉砕粉にPVAを10質量%添加し、混合した後、造粒装置によって造粒した。成形は1軸プレス装置で行い、400℃以上700℃以下、0.1時間以上12時間以下で脱バインダ後、焼結温度1200℃以上1450℃以下、焼結時間は2時間以上6時間以下の条件で焼結し焼結体を得る。得られた焼結体を切削して所定形状のPTC素体とする。   10% by mass of PVA was added to the pulverized powder of the calcined powder, mixed, and granulated by a granulator. Molding is performed with a single-screw press machine, and after binder removal at 400 ° C. to 700 ° C. for 0.1 hours to 12 hours, the sintering temperature is 1200 ° C. to 1450 ° C., and the sintering time is 2 hours to 6 hours. Sintering is performed under conditions to obtain a sintered body. The obtained sintered body is cut into a PTC body having a predetermined shape.

電極を焼付ける際の温度条件は、前記の説明のとおりである。   The temperature conditions for baking the electrodes are as described above.

電極の厚みは5〜30μm程度であれば良い。また、本発明はPTC素体に直接形成する電極のみを規定しているが、卑金属電極の酸化防止や、ハンダの濡れ性向上のために第2層目の電極(カバー電極)としてAg電極などを用いることもできる。また、さらに3層以上の電極構造とすることも可能である。   The thickness of the electrode may be about 5 to 30 μm. Further, the present invention defines only the electrode directly formed on the PTC element body, but an Ag electrode or the like is used as the second layer electrode (cover electrode) for preventing oxidation of the base metal electrode and improving the wettability of the solder. Can also be used. Further, an electrode structure having three or more layers can be formed.

評価方法については以下の通りである。
(抵抗温度係数α)
抵抗温度係数αは、恒温槽で260℃まで昇温しながら抵抗−温度特性を測定して算出した。
尚、抵抗温度係数αは次式で定義される。
α=(lnR−lnR)×100/(T−T
なお図5に示すように、Rは最大抵抗率、TはRを示す温度、Tはキュリー温度、RはTにおける抵抗率である。ここでTは抵抗率が室温抵抗率の2倍となる温度とした。
The evaluation method is as follows.
(Resistance temperature coefficient α)
The resistance temperature coefficient α was calculated by measuring the resistance-temperature characteristics while raising the temperature to 260 ° C. in a thermostatic bath.
The resistance temperature coefficient α is defined by the following equation.
α = (lnR 1 −lnR c ) × 100 / (T 1 −T c )
As shown in FIG. 5, R 1 is the maximum resistivity, T 1 is the temperature indicating R 1 , T c is the Curie temperature, and R c is the resistivity at T c . Here, Tc is a temperature at which the resistivity becomes twice the resistivity at room temperature.

(室温抵抗率R25
室温抵抗率R25は、25℃、4端子法で測定した。
(Room temperature resistivity R 25 )
The room temperature resistivity R 25 was measured by a four-terminal method at 25 ° C.

(経時変化)
通電試験はアルミフィン付きのヒーターに組み込み、風速4m/sで冷却しながら13Vを印加して500時間行った。通電試験後の25℃での室温抵抗率を測定し、通電試験前と500時間通電後の室温抵抗率の差を通電試験前の室温抵抗率で除して抵抗変化率(%)を求め、経時変化を調べた。
よって、経時変化率は次式で定義される。
{(500時間通電した時の室温抵抗率)−(初期室温抵抗率)}/(初期室温抵抗率)×100(%)
(change over time)
The energization test was carried out for 500 hours by applying 13V while cooling at a wind speed of 4 m / s while being incorporated in a heater with aluminum fins. The room temperature resistivity at 25 ° C. after the energization test was measured, and the resistance change rate (%) was obtained by dividing the difference between the room temperature resistivity before the energization test and after 500 hours energization by the room temperature resistivity before the energization test, The change with time was examined.
Therefore, the rate of change with time is defined by the following equation.
{(Room temperature resistivity when energized for 500 hours) − (initial room temperature resistivity)} / (initial room temperature resistivity) × 100 (%)

(界面抵抗)
PTC素体と電極の間の界面抵抗は直接には測定できないので以下のように定義した。まず、両端面に電極を設けたそれぞれ厚みの異なる複数のPTC素子を用意し、25℃におけるそれぞれの半導体磁器組成物の抵抗値を測定し、図2に示すように、横軸にPTC素体の厚み、縦軸に抵抗値をプロットしたデータを取る。このデータから厚みと抵抗値との間の近似直線を求め、室温25℃の近似直線の厚みが0の時の抵抗値を便宜上求め、この厚み0の時の抵抗値を素子の両面に形成した電極面積の半分の値で割って界面における界面抵抗(Ω/cm)と定義した。図2において近似直線の傾きが単位厚さあたりのPTC素体の抵抗値を示しており、縦軸の切片(x=0の時のyの値)がPTC素体1と電極2の間の界面抵抗を示しているものと見なした。
(Interface resistance)
Since the interface resistance between the PTC element body and the electrode cannot be measured directly, it was defined as follows. First, a plurality of PTC elements having different thicknesses provided with electrodes on both end faces are prepared, and the resistance values of the respective semiconductor ceramic compositions at 25 ° C. are measured. As shown in FIG. The data obtained by plotting the thickness and the resistance value on the vertical axis are taken. An approximate straight line between the thickness and the resistance value is obtained from this data, the resistance value when the thickness of the approximate straight line at room temperature of 25 ° C. is 0 is obtained for convenience, and the resistance value when the thickness is 0 is formed on both surfaces of the element. The interface resistance (Ω / cm 2 ) at the interface was defined by dividing by half the value of the electrode area. In FIG. 2, the slope of the approximate straight line indicates the resistance value of the PTC element body per unit thickness, and the vertical axis intercept (value of y when x = 0) is between the PTC element body 1 and the electrode 2. It was considered to indicate interfacial resistance.

抵抗温度係数αは、数値が高いほどジャンプ特性に優れており用途は広がる。例えば、抵抗温度係数αが5%/℃以上あればセンサ用途やヒータ用途などのPTC素子として十分利用できる。また、室温抵抗率は、車載用の補助ヒータ等では100Ω・cm以下の低い値で安定していることが望ましい。それ以上であれば1000Ω・cm程度までは例えば蒸気発生モジュールなどに、1000Ω・cm以上では高い耐電圧の要求されるハイブリッド車、電気自動車用のヒータや発熱モジュール等の用途に利用できる。キュリー温度は、PTC素子の用途に応じてふさわしい温度があるので、例えば130℃〜200℃程度の温度幅があると様々な用途に適用可能である。経時変化は小さいほど望ましいが、上記した13Vで500時間通電したときの室温抵抗率の経時変化が10%以下であれば実用上問題ないレベルである。
以下の発明では、車載用の補助ヒータ等での用途を目的に、室温抵抗率R25が100Ω・cm以下、抵抗温度係数αが5%/℃以上、界面抵抗が1.0Ω/cm以下であり、13Vで500時間通電したときの室温抵抗率の経時変化が10%以下の特性値を目標値とした。
The higher the numerical value of the temperature coefficient of resistance α, the better the jump characteristics and the wider the application. For example, if the temperature coefficient of resistance α is 5% / ° C. or more, it can be sufficiently used as a PTC element for sensor use or heater use. The room temperature resistivity is desirably stable at a low value of 100 Ω · cm or less in an in-vehicle auxiliary heater or the like. If it is higher than that, it can be used for applications such as a steam generating module up to about 1000 Ω · cm, for example, a heater for a hybrid vehicle, an electric vehicle, and a heat generating module that require high withstand voltage at 1000 Ω · cm or higher. Since the Curie temperature has a temperature suitable for the use of the PTC element, for example, a temperature range of about 130 ° C. to 200 ° C. is applicable to various uses. The smaller the change over time, the better. However, if the change over time in the room temperature resistivity when energized at 13 V for 500 hours is 10% or less, there is no practical problem.
In the following invention, the room temperature resistivity R 25 is 100 Ω · cm or less, the temperature coefficient of resistance α is 5% / ° C. or more, and the interface resistance is 1.0 Ω / cm 2 or less for the purpose of use in an in-vehicle auxiliary heater or the like. The characteristic value with a time-dependent change of room temperature resistivity when energized at 13 V for 500 hours was 10% or less was set as a target value.

(実施例1)
分割仮焼法を用いて以下の半導体磁器組成物を得た。BaCO、TiO、Laの原料粉末を準備し、(Ba0.994La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BaT仮焼粉を用意した。
Example 1
The following semiconductor porcelain compositions were obtained using the division calcination method. Raw material powders of BaCO 3 , TiO 2 , and La 2 O 3 were prepared, blended so as to be (Ba 0.994 La 0.006 ) TiO 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BaT calcined powder.

NaCO、Bi、TiOの原料粉末を準備し、Bi0.5Na0.5TiOとなるように秤量配合し、エタノール中で混合した。得られた混合原料粉末を、800℃で2時間大気中で仮焼し、BNT仮焼粉を用意した。 Raw material powders of Na 2 CO 3 , Bi 2 O 3 and TiO 2 were prepared, weighed and blended so as to be Bi 0.5 Na 0.5 TiO 3, and mixed in ethanol. The obtained mixed raw material powder was calcined in the air at 800 ° C. for 2 hours to prepare BNT calcined powder.

用意したBaT仮焼粉とBNT仮焼粉をモル比で73:7となるように配合し、純水を媒体としてポットミルにより、混合仮焼粉の中心粒径が1.0μm〜2.0μmになるまで混合、粉砕した後、乾燥させた。該混合仮焼粉の粉砕粉にPVAを10質量%添加し、混合した後、造粒装置によって造粒した。得られた造粒粉を一軸プレス装置で成形し成形体となした。この成形体を700℃、1時間で脱バインダー後、酸素濃度0.01%(100ppm)の窒素雰囲気中にて1360℃で4時間保持し、その後に炉内で徐冷し、焼結体を得た。   The prepared BaT calcined powder and BNT calcined powder are blended in a molar ratio of 73: 7, and the center particle size of the mixed calcined powder is 1.0 μm to 2.0 μm by a pot mill using pure water as a medium. After mixing and pulverizing until dry, it was dried. 10% by mass of PVA was added to the pulverized powder of the mixed calcined powder, mixed, and granulated by a granulator. The obtained granulated powder was molded with a uniaxial press machine to obtain a molded body. This molded body was debindered at 700 ° C. for 1 hour, held in a nitrogen atmosphere with an oxygen concentration of 0.01% (100 ppm) at 1360 ° C. for 4 hours, and then gradually cooled in a furnace to obtain a sintered body. Obtained.

得られた焼結体(40mm×25mm×4mm)を、10mm×10mm×1mm、10mm×10mm×0.75mm、10mm×10mm×0.50mm、10mm×10mm×0.25mmの板状に加工して試験用のPTC素体を4種類作製した。次に、電極材料の金属成分を100質量%としたときAgとZnの質量%を50:50とした電極ペーストを作製し、スクリーン印刷でPTC素体の10mm×10mmの面にそれぞれ塗布した。さらにカバー電極としてAgペーストを重ねてスクリーン印刷でそれぞれ塗布した。塗布した電極を150℃で乾燥後、大気中、350℃で30分保持して熱処理を行い、その後、酸素濃度0.01%(100ppm)の窒素中雰囲気で昇温速度24℃/分、600℃で10分保持し、降温速度24℃/分の条件で焼き付けて電極を形成した。300℃以上の温度にPTC素子が晒される時間は34分であった。なお、上記電極ペーストには、上記金属成分100質量%に対し、ガラスフリットを3質量%、有機バインダー25質量%を一律に添加した電極材料とした。以下の実施例、比較例でも同様とし金属成分の影響について評価した。   The obtained sintered body (40 mm × 25 mm × 4 mm) was processed into a plate shape of 10 mm × 10 mm × 1 mm, 10 mm × 10 mm × 0.75 mm, 10 mm × 10 mm × 0.50 mm, 10 mm × 10 mm × 0.25 mm. Thus, four types of test PTC bodies were prepared. Next, an electrode paste in which the mass percentage of Ag and Zn was 50:50 when the metal component of the electrode material was 100 mass% was produced and applied to the 10 mm × 10 mm surface of the PTC element body by screen printing. Furthermore, Ag paste was applied as a cover electrode and applied by screen printing. The coated electrode is dried at 150 ° C. and then heat-treated in the air at 350 ° C. for 30 minutes. Thereafter, the temperature rise rate is 24 ° C./min, 600 in a nitrogen atmosphere with an oxygen concentration of 0.01% (100 ppm). The electrode was formed by holding at 10 ° C. for 10 minutes and baking at a temperature drop rate of 24 ° C./min. The time during which the PTC element was exposed to a temperature of 300 ° C. or higher was 34 minutes. The electrode paste was prepared by uniformly adding 3% by mass of glass frit and 25% by mass of organic binder to 100% by mass of the metal component. The same applies to the following examples and comparative examples, and the influence of metal components was evaluated.

得られた結果を表1に示す。
その結果、室温抵抗率R25は35.1Ω・cm、キュリー温度161℃、抵抗温度係数αは6.1%/℃、界面抵抗は0.20Ω/cm、経時変化は6.5%であった。
The obtained results are shown in Table 1.
As a result, the room temperature resistivity R 25 was 35.1 Ω · cm, the Curie temperature was 161 ° C., the resistance temperature coefficient α was 6.1% / ° C., the interface resistance was 0.20 Ω / cm 2 , and the change with time was 6.5%. there were.

(実施例2〜11)
実施例2〜11は、電極形成の条件を変えた例である。実施例2〜5では大気中での熱処理条件を、実施例6〜11では熱処理後の非酸化性雰囲気での焼付け条件を変えた。電極の形成条件を変えた以外の半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例1と同様の方法で行った。得られた結果を表1に示す。
実施例2〜11の結果は、室温抵抗率R25、抵抗温度係数α、界面抵抗、および経時変化ともに目的の特性値を満足するものであった。
(Examples 2 to 11)
Examples 2 to 11 are examples in which the conditions for electrode formation were changed. In Examples 2 to 5, the heat treatment conditions in the atmosphere were changed, and in Examples 6 to 11, the baking conditions in the non-oxidizing atmosphere after the heat treatment were changed. The semiconductor porcelain composition production method, electrode formation method, and evaluation method other than changing the electrode formation conditions were also the same as in Example 1. The obtained results are shown in Table 1.
In the results of Examples 2 to 11, the room temperature resistivity R 25 , the temperature coefficient of resistance α, the interface resistance, and the change with time satisfy the target characteristic values.

(比較例1〜9)
比較例1〜9は、電極の形成条件を本発明の範囲外とした例である。電極の形成条件を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例1と同様の方法で行った。得られた結果を表1に示す。
実施例3、6、7と比較例5から、電極焼付け時の酸素濃度が2%よりも高くなると界面抵抗が1.0Ω/cmを超え、経時変化が10%超になっていることが分かる。また、実施例3、8〜11と比較例6〜9より、電極焼付け時の温度が500℃よりも低かったり、700℃よりも高い場合や、焼付時間が5分より短かったり、30分よりも長くなると、界面抵抗が1.0Ω/cmを超え、経時変化が10%超になっていることが分かる。
さらに、実施例1〜5と比較例1〜4の結果から、大気中での熱処理温度が300℃以下だったり420℃以上の場合や、熱処理時間が10分より短かったり60分よりも長かったりすると、界面抵抗が1.0Ω/cmを超え、経時変化が10%超になっていることが分かる。
電極の焼付けにおいて上記の温度や保持時間の範囲から外れてしまうと、脱バインダーのための熱処理の好ましい範囲から外れた時よりも経時変化がさらに悪くなるため、電極の焼付けの温度条件は非常に重要である。
(Comparative Examples 1-9)
Comparative Examples 1 to 9 are examples in which the electrode formation conditions are outside the scope of the present invention. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Example 1 except that the electrode formation conditions were changed. The obtained results are shown in Table 1.
From Examples 3, 6, and 7 and Comparative Example 5, it was found that when the oxygen concentration during electrode baking was higher than 2%, the interface resistance exceeded 1.0 Ω / cm 2 and the change with time exceeded 10%. I understand. Moreover, from Example 3, 8-11, and Comparative Examples 6-9, when the temperature at the time of electrode baking is lower than 500 degreeC, higher than 700 degreeC, baking time is shorter than 5 minutes, or from 30 minutes As the length increases, the interfacial resistance exceeds 1.0 Ω / cm 2 and the change with time exceeds 10%.
Furthermore, from the results of Examples 1 to 5 and Comparative Examples 1 to 4, the heat treatment temperature in the atmosphere was 300 ° C. or lower, or 420 ° C. or higher, or the heat treatment time was shorter than 10 minutes or longer than 60 minutes. Then, it can be seen that the interface resistance exceeds 1.0 Ω / cm 2 and the change with time is more than 10%.
If the temperature of the electrode is out of the range of the above-mentioned temperature and holding time, the change over time is worse than when it is out of the preferable range of the heat treatment for debinding. is important.

(実施例12〜16)
実施例12〜16は、半導体磁器組成物の組成を変えた例である。半導体磁器組成物の組成を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例3と同様の方法で行った。得られた結果を表2に示す。
実施例12〜16の結果は、室温抵抗率R25、抵抗温度係数α、界面抵抗、および経時変化ともに目的の特性値を満足するものであった。
(Examples 12 to 16)
Examples 12 to 16 are examples in which the composition of the semiconductor ceramic composition was changed. Except for changing the composition of the semiconductor ceramic composition, the production method of the semiconductor ceramic composition, the electrode formation method, and the evaluation method were also performed in the same manner as in Example 3. The obtained results are shown in Table 2.
In the results of Examples 12 to 16, the room temperature resistivity R 25 , the temperature coefficient of resistance α, the interface resistance, and the change with time satisfy the target characteristic values.

(比較例10〜12)
比較例10〜12は半導体磁器組成物の組成を本発明の範囲外とした例である。半導体磁器組成物の組成を本発明の範囲外とした以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例3と同様の方法で行った。得られた結果を表2に示す。
実施例12〜14、比較例10の結果から、xの範囲が0.3を超えてしまうと室温抵抗率が100Ω・cmを超えてしまうことが分かる。また、実施例15、16と比較例11より、yの値が0.020を超えてしまうと抵抗温度係数αが5.0を下回ってしまうことが分かる。
(Comparative Examples 10-12)
Comparative Examples 10 to 12 are examples in which the composition of the semiconductor ceramic composition was out of the scope of the present invention. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were performed in the same manner as in Example 3 except that the composition of the semiconductor ceramic composition was out of the scope of the present invention. The obtained results are shown in Table 2.
From the results of Examples 12 to 14 and Comparative Example 10, it can be seen that if the range of x exceeds 0.3, the room temperature resistivity exceeds 100 Ω · cm. Further, from Examples 15 and 16 and Comparative Example 11, it can be seen that if the value of y exceeds 0.020, the temperature coefficient of resistance α falls below 5.0.

(実施例17)
実施例17は半導体化元素として希土類元素を用いずにTiの一部をTaで置換した例である。分割仮焼法を用いて次のようにして半導体磁器組成物を得た。
BaCO、TiO、Taの原料粉末を準備し、Ba(Ti0.991Ta0.009)Oとなるように配合し、純水で混合した。得られた混合原料粉末を900℃で4時間大気中で仮焼し、BaT仮焼粉を用意した。
(Example 17)
Example 17 is an example in which a part of Ti is replaced with Ta without using a rare earth element as a semiconducting element. A semiconductor porcelain composition was obtained as follows using the division calcination method.
Raw material powders of BaCO 3 , TiO 2 , and Ta 2 O 5 were prepared, blended so as to be Ba (Ti 0.991 Ta 0.009 ) O 3, and mixed with pure water. The obtained mixed raw material powder was calcined in the atmosphere at 900 ° C. for 4 hours to prepare BaT calcined powder.

BNT仮焼粉の作製において、熱処理温度を400℃とした以外は半導体磁器組成物の製造方法や電極形成方法、評価方法は実施例1と同様にしてPTC素子とした。得られた結果を表2に示す。
室温抵抗率R25は83.4Ω・cm、キュリー温度は158℃、抵抗温度係数αは7.2%/℃、界面抵抗は0.54Ω/cm、経時変化は7.5%で目的の特性を満足するものであった。
In the production of the BNT calcined powder, the manufacturing method of the semiconductor ceramic composition, the electrode formation method, and the evaluation method were the same as in Example 1 except that the heat treatment temperature was 400 ° C. The obtained results are shown in Table 2.
The room temperature resistivity R 25 is 83.4 Ω · cm, the Curie temperature is 158 ° C., the resistance temperature coefficient α is 7.2% / ° C., the interface resistance is 0.54 Ω / cm 2 , and the change over time is 7.5%. The characteristics were satisfied.

(実施例18〜19)
実施例18〜19はTa置換の量を変えた例である。それ以外の半導体磁器組成物の製造方法や電極形成方法、評価方法は実施例17と同様の方法で行った。得られた結果を表2に示す。
実施例18、19の結果は、室温抵抗率R25、キュリー温度、抵抗温度係数α、界面抵抗、および経時変化ともに目的の特性値を満足するものであった。
(Examples 18 to 19)
Examples 18 to 19 are examples in which the amount of Ta substitution was changed. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Example 17. The obtained results are shown in Table 2.
As a result of Examples 18 and 19, the room temperature resistivity R 25 , the Curie temperature, the resistance temperature coefficient α, the interface resistance, and the change with time satisfy the target characteristic values.

(比較例13)
比較例13はTa置換の量を本発明の範囲外とした例である。それ以外の半導体磁器組成物の製造方法や電極形成方法、評価方法は実施例17と同様の方法で行った。得られた結果を表2に示す。
実施例17〜19、比較例12の結果より、Tiの置換量zが0.010を超えてしまうと室温抵抗率R25が目的の100Ω・cmを超えてしまい、目的の特性値を満足できなくなってしまうことが分かる。半導体化するためにTiの一部をTaで置換しているが、置換量が増えるにしたがって抵抗が単調に減少しないのは異相が増えているためであると考えられる。
但し、上述した比較例10〜12は、経時変化だけをとると満足できる値を示している。これらの例については、界面抵抗の値が1.0Ω/cm以下であることが経時変化の低減に寄与していると考えられ、経時変化低減の作用効果は必ずしも半導体磁器組成物の組成のみに関与しているものではないと言える。従って、経時変化の低減効果だけを目的とする場合は、上記比較例10〜12は実施例あるいは参考例とも言える。
(Comparative Example 13)
Comparative Example 13 is an example in which the amount of Ta substitution is outside the scope of the present invention. Other semiconductor ceramic composition production methods, electrode formation methods, and evaluation methods were the same as in Example 17. The obtained results are shown in Table 2.
From the results of Examples 17 to 19 and Comparative Example 12, if the substitution amount z of Ti exceeds 0.010, the room temperature resistivity R 25 exceeds the target 100 Ω · cm, and the target characteristic value can be satisfied. I understand that it will disappear. To make a semiconductor, a part of Ti is replaced with Ta. However, the reason why the resistance does not decrease monotonously as the amount of replacement increases is considered to be because the number of different phases increases.
However, Comparative Examples 10 to 12 described above show satisfactory values when only changes with time are taken. In these examples, the interface resistance value of 1.0 Ω / cm 2 or less is considered to contribute to the reduction of the change over time, and the effect of the reduction of the change over time is not necessarily limited to the composition of the semiconductor ceramic composition. It can be said that it is not involved in. Therefore, when the purpose is only to reduce the change over time, the comparative examples 10 to 12 can be said to be examples or reference examples.

(実施例20〜25)
実施例20〜25は電極成分の組成を変えた例である。電極成分の組成と熱処理温度を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例1と同様の方法で行った。得られた結果を表3に示す。
実施例20〜25の結果は、室温抵抗率R25、抵抗温度係数α、界面抵抗、および経時変化ともに目的の特性値を満足するものであった。
(Examples 20 to 25)
Examples 20 to 25 are examples in which the composition of the electrode components was changed. Except for changing the composition of the electrode components and the heat treatment temperature, the production method of the semiconductor ceramic composition, the electrode formation method, and the evaluation method were also performed in the same manner as in Example 1. The obtained results are shown in Table 3.
In the results of Examples 20 to 25, the room temperature resistivity R 25 , the temperature coefficient of resistance α, the interface resistance, and the change with time satisfy the target characteristic values.

(比較例13〜15)
比較例13〜15は電極成分の組成を本発明の範囲外とした例である。電極成分の組成を変えた以外は半導体磁器組成物の製造方法や電極の形成方法、評価方法も実施例20と同様の方法で行った。得られた結果を表3に示す。
実施例20〜22、比較例13、14より、電極のAgの比率が20〜65質量%でオーミック電極成分のZnの比率は35質量%以上80質量%以下であれば目的の特性を満足できることが分かる。また、実施例24〜25及び比較例15より、オーミック成分のSnの割合は60質量%を超えてしまうと界面抵抗が1.0Ω/cmを超えてしまうことが分かる。
(Comparative Examples 13-15)
Comparative Examples 13 to 15 are examples in which the composition of the electrode components is outside the scope of the present invention. A method for producing a semiconductor ceramic composition, a method for forming an electrode, and an evaluation method were also performed in the same manner as in Example 20 except that the composition of the electrode component was changed. The obtained results are shown in Table 3.
From Examples 20 to 22 and Comparative Examples 13 and 14, if the Ag ratio of the electrode is 20 to 65 mass% and the Zn ratio of the ohmic electrode component is 35 mass% or more and 80 mass% or less, the target characteristics can be satisfied. I understand. Moreover, from Examples 24 to 25 and Comparative Example 15, it can be seen that when the proportion of Sn as an ohmic component exceeds 60% by mass, the interface resistance exceeds 1.0 Ω / cm 2 .

(比較例16、17)
比較例16、17はBNTの量を0とし、比較例16では電極焼付け時の酸素濃度0.01%に、比較例17では21%(大気中)で行った例である。BNTを加えない以外の製造方法、評価方法は実施例19と同様の方法で行った。得られた結果を表3に示す。
得られた界面抵抗の値は比較例16、17でほとんど同じ値であり、BNTが入っていないPTC素体では非酸化性雰囲気で焼き付ける効果が少ないことが分かる。また、キュリー温度が130℃未満と低いために、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などの用途で実用に供し得ない。
(Comparative Examples 16 and 17)
In Comparative Examples 16 and 17, the amount of BNT was set to 0. In Comparative Example 16, the oxygen concentration was 0.01% during electrode baking, and in Comparative Example 17 was 21% (in the atmosphere). Production methods and evaluation methods other than adding BNT were the same as in Example 19. The obtained results are shown in Table 3.
The values of the obtained interface resistance are almost the same in Comparative Examples 16 and 17, and it can be seen that the PTC element body containing no BNT has little effect of baking in a non-oxidizing atmosphere. Further, since the Curie temperature is as low as 130 ° C., it cannot be put to practical use in applications such as a PTC thermistor, a PTC heater, a PTC switch, and a temperature detector.

本発明により得られるPTC素子は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに最適である。また、PTC素子を構成要素とする発熱モジュールに利用することが出来る。   The PTC element obtained by the present invention is most suitable for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like. Moreover, it can utilize for the heat generating module which uses a PTC element as a component.

10:PTC素子、
1:半導体磁器組成物(PTC素体)、
2:電極
10: PTC element,
1: Semiconductor porcelain composition (PTC body),
2: Electrode

Claims (6)

少なくともBaとTiを含むペロブスカイト系の半導体磁器組成物に、Agと卑金属の合金からなる電極を有するPTC素子の電極形成方法であって、
前記半導体磁器組成物は、組成式が[(Bi-Na)(Ba1−y1−x][Ti1−z]O(但し、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)と表され、前記x、y、zが、0<x≦0.30、0≦y≦0.020、0≦z≦0.010を満足するものであり、
電極ペーストを前記半導体磁器組成物に塗布し、前記電極ペースト中のバインダーを除去するための熱処理を行い、その後、焼付け処理を行う工程を有し、
前記焼付け処理は、酸素濃度2%以下の非酸化性雰囲気中で500℃以上700℃以下、5分以上30分以下の条件で行うことを特徴とするPTC素子の電極形成方法。
A method for forming an electrode of a PTC element having an electrode made of an alloy of Ag and a base metal in a perovskite-based semiconductor ceramic composition containing at least Ba and Ti,
The semiconductor ceramic composition, a composition formula [(Bi-Na) x ( Ba 1-y R y) 1-x] [Ti 1-z M z] O 3 ( where, R represents a rare earth element including Y At least one of them, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.30, 0 ≦ y ≦ 0.020, and 0 ≦ z ≦ 0. 010 is satisfied,
Applying the electrode paste to the semiconductor ceramic composition, performing a heat treatment to remove the binder in the electrode paste, and then performing a baking process;
The electrode forming method for a PTC element, wherein the baking treatment is performed in a non-oxidizing atmosphere having an oxygen concentration of 2% or less under conditions of 500 ° C. or higher and 700 ° C. or lower and 5 minutes or longer and 30 minutes or shorter.
前記熱処理は、大気中で300℃以上400℃以下、10分以上60分以下の条件で行うことを特徴とする請求項1に記載のPTC素子の電極形成方法。 2. The method for forming an electrode of a PTC element according to claim 1, wherein the heat treatment is performed in air at a temperature of 300 ° C. to 400 ° C. for 10 minutes to 60 minutes. 前記電極はAgが20質量%以上65質量%以下で残部が卑金属からなる組成であることを特徴とする請求項1又は2に記載のPTC素子の電極形成方法。 3. The method for forming an electrode of a PTC element according to claim 1, wherein the electrode has a composition in which Ag is 20% by mass or more and 65% by mass or less and the balance is a base metal. 前記卑金属は、Zn、Snから選択される一種以上の元素であることを特徴とする請求項3に記載のPTC素子の電極形成方法。 The method for forming an electrode of a PTC element according to claim 3, wherein the base metal is one or more elements selected from Zn and Sn. 前記卑金属がSnである場合、Snが20質量%以上60質量%以下の範囲であることを特徴とする請求項4に記載のPTC素子の電極形成方法。 5. The electrode forming method for a PTC element according to claim 4, wherein when the base metal is Sn, Sn is in a range of 20 mass% to 60 mass%. 請求項1乃至請求項5のいずれかに記載のPTC素子の電極形成方法により製造したPTC素子であって、
前記PTC素子は、前記電極と前記半導体磁器組成物の間の界面抵抗が1.0Ω/cm以下であることを特徴とするPTC素子。
A PTC element manufactured by the electrode forming method for a PTC element according to any one of claims 1 to 5,
The PTC element is characterized in that an interface resistance between the electrode and the semiconductor ceramic composition is 1.0 Ω / cm 2 or less.
JP2012044100A 2012-02-29 2012-02-29 Method for forming electrode of ptc element, and ptc element Pending JP2013182932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044100A JP2013182932A (en) 2012-02-29 2012-02-29 Method for forming electrode of ptc element, and ptc element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044100A JP2013182932A (en) 2012-02-29 2012-02-29 Method for forming electrode of ptc element, and ptc element

Publications (1)

Publication Number Publication Date
JP2013182932A true JP2013182932A (en) 2013-09-12

Family

ID=49273407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044100A Pending JP2013182932A (en) 2012-02-29 2012-02-29 Method for forming electrode of ptc element, and ptc element

Country Status (1)

Country Link
JP (1) JP2013182932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115460A (en) * 2013-12-11 2015-06-22 コーア株式会社 Resistive element and manufacturing method therefor
EP2966050A1 (en) * 2014-07-03 2016-01-13 TDK Corporation Semiconductor ceramic composition and ptc thermistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115460A (en) * 2013-12-11 2015-06-22 コーア株式会社 Resistive element and manufacturing method therefor
EP2966050A1 (en) * 2014-07-03 2016-01-13 TDK Corporation Semiconductor ceramic composition and ptc thermistor
CN105321641A (en) * 2014-07-03 2016-02-10 Tdk株式会社 Semiconductor ceramic composition and PTC thermistor
US9472326B2 (en) 2014-07-03 2016-10-18 Tdk Corporation Semiconductor ceramic composition and PTC thermistor
KR101782326B1 (en) 2014-07-03 2017-09-27 티디케이가부시기가이샤 Semiconductor ceramic composition and ptc thermistor
CN105321641B (en) * 2014-07-03 2018-05-25 Tdk株式会社 Semiconductive ceramic composition and PTC thermal resistors

Similar Documents

Publication Publication Date Title
JP5099011B2 (en) Barium titanate-based semiconductor ceramic composition and PTC element using the same
JP5228915B2 (en) Semiconductor porcelain composition and method for producing the same
JP5757239B2 (en) Semiconductor porcelain composition and method for producing the same, PTC element and heating module
JP5251119B2 (en) Semiconductor porcelain composition
WO2013157650A1 (en) Method for producing semiconductor ceramic composition
WO2013051486A1 (en) Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module
JPWO2007097462A1 (en) Semiconductor porcelain composition
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5590494B2 (en) Manufacturing method of semiconductor ceramic composition-electrode assembly
JP5765611B2 (en) PTC element and heating module
JP2013182932A (en) Method for forming electrode of ptc element, and ptc element
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
JP5626204B2 (en) Semiconductor porcelain composition, heating element and heating module
JP2012046372A (en) Ptc element and heat generating module
JP2005145809A (en) Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JP2012004496A (en) Ptc element and heat generating module
JP2016184694A (en) Semiconductor ceramic composition and ptc thermistor
JP2012209292A (en) Positive thermistor
JP3823876B2 (en) Voltage-dependent nonlinear resistor
JP2012001416A (en) Ptc element and exothermic module
JP2014123603A (en) Method for manufacturing ptc device, ptc device, and exothermic module
JP2015213116A (en) Ptc device and exothermic module
JP2013079160A (en) Ceramic composition for ptc thermistor, and ptc thermistor
JP2014123604A (en) Ptc element and heat generation module