JPWO2014208403A1 - Method for producing polylactic acid resin film - Google Patents

Method for producing polylactic acid resin film Download PDF

Info

Publication number
JPWO2014208403A1
JPWO2014208403A1 JP2015523995A JP2015523995A JPWO2014208403A1 JP WO2014208403 A1 JPWO2014208403 A1 JP WO2014208403A1 JP 2015523995 A JP2015523995 A JP 2015523995A JP 2015523995 A JP2015523995 A JP 2015523995A JP WO2014208403 A1 JPWO2014208403 A1 JP WO2014208403A1
Authority
JP
Japan
Prior art keywords
film
polylactic acid
plasticized film
inflation molding
plasticized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015523995A
Other languages
Japanese (ja)
Inventor
上利 泰幸
泰幸 上利
寛 平野
寛 平野
門多 丈治
丈治 門多
哲周 岡田
哲周 岡田
正容 武藤
正容 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAMURA CHEMICALS CO.,LTD.
Daihachi Chemical Industry Co Ltd
Osaka Municipal Technical Research Institute
Original Assignee
KITAMURA CHEMICALS CO.,LTD.
Daihachi Chemical Industry Co Ltd
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAMURA CHEMICALS CO.,LTD., Daihachi Chemical Industry Co Ltd, Osaka Municipal Technical Research Institute filed Critical KITAMURA CHEMICALS CO.,LTD.
Publication of JPWO2014208403A1 publication Critical patent/JPWO2014208403A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/28Storing of extruded material, e.g. by winding up or stacking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • B29C48/1472Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2467/00Use of polyesters or derivatives thereof as filler
    • B29K2467/04Polyesters derived from hydroxycarboxylic acids
    • B29K2467/046PLA, i.e. polylactic acid or polylactide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

インフレーション成形法で成形され、かつ巻締まりしないポリ乳酸系樹脂可塑化フィルム及びその製造方法を提供することを課題とする。ポリ乳酸100重量部に対して可塑剤10〜30重量部を含有するポリ乳酸系樹脂組成物をインフレーション成形法により成形しポリ乳酸系樹脂可塑化フィルムを製造する方法であって、インフレーション成形の口金吐出後の工程において加熱処理する工程を含むことを特徴とする、ポリ乳酸系樹脂可塑化フィルムの製造方法を提供する。It is an object of the present invention to provide a polylactic acid-based resin plasticized film which is molded by an inflation molding method and does not tighten and a method for producing the same. A method for producing a polylactic acid resin plasticized film by molding a polylactic acid resin composition containing 10 to 30 parts by weight of a plasticizer with respect to 100 parts by weight of polylactic acid by an inflation molding method. Provided is a method for producing a polylactic acid-based resin plasticized film, comprising a step of heat-treating in a step after discharge.

Description

本発明は、可塑剤により柔軟化したポリ乳酸系樹脂の可塑化フィルムを製造する方法に関する。さらに詳しくは、インフレーション成形により成形した後に、室温保管中にも変形しないポリ乳酸系樹脂の可塑化フィルムの製造方法に関するものである。   The present invention relates to a method for producing a plasticized film of a polylactic acid resin softened with a plasticizer. More specifically, the present invention relates to a method for producing a plasticized film of a polylactic acid-based resin that does not deform during storage at room temperature after being formed by inflation molding.

近年、環境意識の高まりのもと、プラスチック製品の廃棄による土壌汚染問題、また、焼却による二酸化炭素増大に起因する地球温暖化問題が注目されている。前者への対策として、種々の生分解樹脂、後者への対策として、焼却しても大気中に新たな二酸化炭素の負荷を与えないバイオマス(植物由来原料)からなる樹脂がさかんに研究、開発されている。   In recent years, with increasing environmental awareness, attention has been focused on soil pollution problems caused by the disposal of plastic products and global warming problems caused by increased carbon dioxide caused by incineration. As a measure against the former, various biodegradable resins, and as a measure against the latter, a resin made of biomass (plant-derived raw material) that does not give a new carbon dioxide load to the atmosphere even if it is incinerated has been extensively researched and developed. ing.

このような問題を解決する樹脂として、特にポリ乳酸の研究、開発がさかんに行われている。ポリ乳酸は、動物の体内で数ヶ月から1年以内に100%生分解し、また土壌や海水中のように湿った環境下では数週間で分解を始め、約1年から数年で消滅する。また、その分解生成物は、人体に無害な乳酸、二酸化炭素、及び水であるという特性を有している。   In particular, polylactic acid has been extensively researched and developed as a resin for solving such problems. Polylactic acid is 100% biodegradable within a few months to one year in the animal body, and begins to degrade in weeks in a moist environment such as soil and seawater, and disappears in about one to several years. . In addition, the decomposition product has characteristics that it is lactic acid, carbon dioxide, and water that are harmless to the human body.

ポリ乳酸は、近年、原料のL−乳酸が発酵法により大量且つ安価に製造されるようになってきたことや、堆肥中での分解速度が速く、カビに対する抵抗性、食品に対する耐着臭性や耐着色性等の優れた特徴を有することにより、その利用分野の拡大が期待されている。   In recent years, polylactic acid has been produced in a large amount and at low cost by the fermentation method of L-lactic acid as a raw material, and has a high decomposition rate in compost, resistance to mold, and odor resistance to foods. It has been expected to expand its application field by having excellent characteristics such as color resistance.

しかしながら、ポリ乳酸は剛性が高いため、農業用マルチフィルム、食品包装用袋、ゴミ袋などの、特に柔軟性が要求される軟質フィルム用途には適切な樹脂とは言い難い。   However, since polylactic acid has high rigidity, it is difficult to say that it is an appropriate resin for soft film applications that require flexibility, such as agricultural multi-films, food packaging bags, and garbage bags.

一般に、樹脂を軟質化する技術として、軟質ポリマーのブレンドや、可塑剤の添加等の方法が知られている。
しかし、軟質ポリマーをブレンドする方法においては、生分解性を考慮すると、ブレンドする樹脂は柔軟性を有する生分解性樹脂に限定される。この様な樹脂としては、例えばポリブチレンサクシネート、ポリエチレンサクシネート、ポリカプロラクトン等が挙げられる。しかし、この方法では、ポリ乳酸に十分な柔軟性(例えば、弾性率が1000MPa以下)を付与するには、軟質ポリマーを多量に添加する必要がある。例えば、ポリブチレンサクシネートは、全体の60重量%以上添加する必要があり、その結果、前述したポリ乳酸の特長を損なってしまう。そのうえ、引っ張った時の伸びも少なく軟質フィルムとしてあまり実用的ではない。
In general, methods for softening a resin include methods such as blending soft polymers and adding a plasticizer.
However, in the method of blending soft polymers, considering the biodegradability, the resin to be blended is limited to a biodegradable resin having flexibility. Examples of such a resin include polybutylene succinate, polyethylene succinate, polycaprolactone, and the like. However, in this method, it is necessary to add a large amount of a soft polymer in order to impart sufficient flexibility (for example, an elastic modulus of 1000 MPa or less) to polylactic acid. For example, polybutylene succinate needs to be added in an amount of 60% by weight or more of the whole, and as a result, the above-described features of polylactic acid are impaired. In addition, it has little elongation when pulled and is not very practical as a flexible film.

一方、可塑剤を添加し柔軟化したフィルムを一般的に可塑化フィルムというが、その可塑剤を添加する方法は、樹脂組成物に十分な柔軟性を付与できたとしても、樹脂組成物の溶融粘度が低下し、その結果、インフレーション成形ができないなど、フィルム成形方法が制限されてしまう。加えて、可塑剤を添加する方法では、可塑剤がブリードアウトするといった問題が生じるため、この方法を実用化するにはいくつもの課題を解決しなければならない。   On the other hand, a film softened by adding a plasticizer is generally referred to as a plasticized film, but the method of adding the plasticizer does not melt the resin composition even if sufficient flexibility can be imparted to the resin composition. As a result, the film forming method is limited, for example, the viscosity is lowered and the inflation molding cannot be performed. In addition, the method of adding a plasticizer has a problem that the plasticizer bleeds out. Therefore, in order to put this method into practical use, several problems must be solved.

可塑化フィルムの成形方法としてはインフレーション成形、Tダイ式フィルム押出成形、押出ラミネーション成形等が挙げられる。中でもインフレーション成形法は他の成形法と比較して、コンパクトな装置で行え、少量多品種の生産性に優れ、低コストである。また、得られるフィルム形状が筒状(シームレス状)であるため、食品包装用の袋やバッグ等の製造に好適である。   Examples of the method for forming the plasticized film include inflation molding, T-die film extrusion molding, and extrusion lamination molding. In particular, the inflation molding method can be performed with a compact apparatus, is superior in productivity for a small variety of products, and is low in cost as compared with other molding methods. Moreover, since the film shape obtained is cylindrical (seamless), it is suitable for manufacturing food packaging bags and bags.

ポリ乳酸系樹脂をインフレーション成形でフィルム化する方法は、例えば、特許文献1〜3(WO1999/45067号公報、特許第3510218号公報、特開平11−116788号公報)に開示されている。しかし、これらの文献に記載の方法では、ポリ乳酸と他の脂肪族エステルとのアロイを使用しており、ポリ乳酸単独の樹脂のフィルム化ではないため、ポリ乳酸の特性を損なうという問題がある。   A method for forming a polylactic acid-based resin into a film by inflation molding is disclosed in, for example, Patent Documents 1 to 3 (WO 1999/45067, JP 3510218, and JP 11-116788). However, the methods described in these documents use an alloy of polylactic acid and other aliphatic esters, and are not formed into a film of a resin of polylactic acid alone, so that there is a problem that the characteristics of polylactic acid are impaired. .

そこで特許文献4(特開2008−260895号公報)において、可塑剤により柔軟化したポリ乳酸を使用し、インフレーション成形により、実用的な強度と柔軟性とを兼ね備えた可塑化フィルムを製造する方法が開示されている。しかし、この文献に記載の方法においても、成形後に室温付近で保管している時に変形して、巻き取ったロールから芯が抜けなくなるなどの問題が存在する。   Therefore, in Patent Document 4 (Japanese Patent Application Laid-Open No. 2008-260895), there is a method of using a polylactic acid softened with a plasticizer and producing a plasticized film having both practical strength and flexibility by inflation molding. It is disclosed. However, even in the method described in this document, there is a problem that the core deforms when stored at around room temperature after molding and the core cannot be removed from the wound roll.

WO1999/45067号公報WO 1999/45067 特許第3510218号公報Japanese Patent No. 3510218 特開平11−116788号公報JP-A-11-116788 特開2008−260895号公報JP 2008-260895 A

本発明の目的は、インフレーション成形法で成形され、かつ巻締まり(芯がロールから抜けにくくなる状態)しないポリ乳酸系樹脂可塑化フィルム及びその製造方法を提供することである。より具体的には、可塑剤により柔軟化したポリ乳酸系樹脂の可塑化フィルムをインフレーション成形機で成形後、室温付近においてロール状で保管しても、芯が抜けなくなることがなく、効率的に生産できるポリ乳酸系樹脂可塑化フィルムの成形方法を提供することにある。   An object of the present invention is to provide a polylactic acid-based resin plasticized film which is molded by an inflation molding method and does not tighten (a state where the core is difficult to come off from the roll) and a method for producing the same. More specifically, a plasticized film of a polylactic acid-based resin softened with a plasticizer is molded with an inflation molding machine and stored in a roll shape near room temperature, so that the core does not come off efficiently. The object is to provide a method for forming a polylactic acid-based resin plasticized film that can be produced.

本発明者らは、上記課題を解決するため鋭意研究を行った結果、巻締まりの現象は、インフレーション成形の立ち上がり部分(口金吐出後のエアーで樹脂を膨らませる部分)で生じた応力が、フィルム巻き取り後も残留しているため、保管中に時間の経過とともにフィルムが変形することに起因しているという知見を得た。さらに、フィルム保管前(フィルム成形中または成形後)に熱処理をすることで、フィルム保管中の変形を抑えることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the phenomenon of tightening is caused by the stress generated at the rising part of inflation molding (the part in which the resin is inflated with air after discharge of the die). Since it remained even after winding, it was found that the film was deformed over time during storage. Furthermore, the present inventors have found that by performing a heat treatment before film storage (during film formation or after film formation), deformation during film storage can be suppressed, and the present invention has been completed.

かくして、本発明によれば下記方法が提供される。
(項1)ポリ乳酸100重量部に対して可塑剤10〜30重量部を含有するポリ乳酸系樹脂組成物をインフレーション成形法により成形してポリ乳酸系樹脂可塑化フィルムを製造する方法であって、インフレーション成形の口金吐出後の工程において加熱処理する工程を含むことを特徴とする、ポリ乳酸系樹脂可塑化フィルムの製造方法。
(項2)前記可塑剤がベンジルアルキルジグリコールアジペートである、項1に記載の製造方法。
(項3)前記加熱処理は、成形したフィルムを40℃より高く、かつ100℃以下である媒体と2〜300秒間接触させる方法である、項1または2に記載の製造方法。
(項4)前記加熱処理は、成形したフィルムを40℃より高く、かつ100℃以下である加熱面と2〜300秒間接触させる方法である、項1または2に記載の製造方法。
(項5)前記加熱処理を、インフレーション成形の口金吐出後から前記可塑化フィルムの最初の巻き取りまでの工程中に行う項1〜4のいずれか1つに記載の製造方法。
(項6)前記加熱処理を、インフレーション成形後、一度、前記可塑化フィルムを巻き取った後に行うことを特徴とする、項1〜5のいずれか1つに記載の製造方法。
(項7)前記可塑化フィルムが、20〜40℃でロール状に維持しても、巻締まりしない可塑化フィルムであることを特徴とする項1〜6のいずれか1つに記載の製造方法。
(項8)前記可塑化フィルムが、20〜40℃でロール状に維持しても、シワの発生及び/又はブロッキングが生じない可塑化フィルムであることを特徴とする項1〜7のいずれか1つに記載の製造方法。
(項9)インフレーション成形法によりポリ乳酸系樹脂可塑化フィルムを製造する方法において、インフレーション成形の口金吐出後の工程に加熱処理する工程を含むことを特徴とする、ポリ乳酸系樹脂可塑化フィルムの巻締まり、シワの発生及び/又はブロッキングの防止方法。
(項10)巻締まりしないことを特徴とするインフレーション成形法により成形されたポリ乳酸系樹脂可塑化フィルム。
Thus, according to the present invention, the following method is provided.
(Item 1) A method for producing a polylactic acid-based resin plasticized film by molding a polylactic acid-based resin composition containing 10 to 30 parts by weight of a plasticizer with respect to 100 parts by weight of polylactic acid by an inflation molding method. A method for producing a polylactic acid-based resin plasticized film comprising a step of heat treatment in a step after discharging a die for inflation molding.
(Item 2) The method according to item 1, wherein the plasticizer is benzyl alkyl diglycol adipate.
(Item 3) The method according to Item 1 or 2, wherein the heat treatment is a method in which the formed film is brought into contact with a medium having a temperature higher than 40 ° C and not higher than 100 ° C for 2 to 300 seconds.
(Item 4) The manufacturing method according to Item 1 or 2, wherein the heat treatment is a method in which a molded film is brought into contact with a heating surface that is higher than 40 ° C and 100 ° C or lower for 2 to 300 seconds.
(Item 5) The manufacturing method according to any one of Items 1 to 4, wherein the heat treatment is performed during a process from discharge of a die for inflation molding to first winding of the plasticized film.
(Item 6) The manufacturing method according to any one of Items 1 to 5, wherein the heat treatment is performed after the plasticized film is wound up once after inflation molding.
(Item 7) The manufacturing method according to any one of Items 1 to 6, wherein the plasticized film is a plasticized film that does not wind even if maintained in a roll shape at 20 to 40 ° C. .
(Item 8) Any one of Items 1 to 7, wherein the plasticized film is a plasticized film that does not generate wrinkles and / or blocking even when maintained in a roll shape at 20 to 40 ° C. The manufacturing method as described in one.
(Item 9) A method for producing a polylactic acid-based resin plasticized film by an inflation molding method, comprising a step of heat treatment in a step after discharge of a die for inflation molding, A method for preventing winding tightening, wrinkle generation and / or blocking.
(Item 10) A polylactic acid-based resin plasticized film molded by an inflation molding method, wherein the film is not tightened.

本発明によれば、巻締まりしないポリ乳酸系樹脂可塑化フィルムをインフレーション成形法により成形する製造方法、及び巻締まりしないポリ乳酸系樹脂可塑化フィルムを提供することができる。より具体的には、可塑剤で柔軟化したポリ乳酸系樹脂の可塑化フィルムをインフレーション成形法で製造した後に、ロール状態のまま室温付近(約20〜約40℃)で保管しても芯が抜けなくなること(巻締まりの発生)がなく、現場において効率的に作業できる。さらに、本発明によれば、可塑化フィルムをロール状態で、約20℃〜約40℃で保管しても、可塑化フィルムのシワの発生やブロッキングを防止することができ、製品品質の低下を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which shape | molds the polylactic acid-type resin plasticized film which is not tightened by an inflation molding method, and the polylactic acid-type resin plasticized film which is not wound can be provided. More specifically, after a plasticized film of a polylactic acid-based resin softened with a plasticizer is produced by an inflation molding method, the core remains even when stored in the roll state at around room temperature (about 20 to about 40 ° C.). There is no possibility that it will not come off (occurrence of tightening), and work can be done efficiently on site. Furthermore, according to the present invention, even when the plasticized film is stored in a roll state at about 20 ° C. to about 40 ° C., it is possible to prevent wrinkling and blocking of the plasticized film, thereby reducing product quality. Can be prevented.

インフレーション成形工程の模式図である。It is a schematic diagram of an inflation molding process. インフレーション成形工程及びフィルムの保管までの流れを示した模式図である。It is the schematic diagram which showed the flow to an inflation shaping | molding process and the storage of a film. 実施例13〜23及び比較例7における加熱処理で用いた熱ロールの模式図である。It is a schematic diagram of the heat roll used by the heat processing in Examples 13-23 and Comparative Example 7.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明において、「巻締まり」とは、成形後のフィルムを芯に巻きつけてロール状とし、ロール状態を維持したときに、フィルムを巻き付けている芯をロールから抜き取ることが困難となる状態を包含する。例えば、フィルムが縮み、フィルムが芯によりきつく巻きつくことにより、ロールの芯がロール状のフィルムと分離しづらくなる状態も、「巻締まり」に含まれる。   In the present invention, “winding tightening” refers to a state in which it is difficult to remove the core around which the film is wound from the roll when the formed film is wound around the core into a roll shape and the roll state is maintained. Include. For example, a state in which the roll core is difficult to separate from the roll-shaped film due to the film shrinking and tightly wound by the core is also included in the “winding tightening”.

〈フィルム〉
(可塑化フィルム)
まず、本発明の可塑化フィルムについて説明する。
<the film>
(Plasticized film)
First, the plasticized film of the present invention will be described.

本発明の好ましい態様において、可塑化フィルムとは、ポリ乳酸を可塑剤により柔軟化させたポリ乳酸系樹脂組成物を、インフレーション成形により得たフィルムである。前記可塑化フィルムの引っ張り弾性率は、実用面から100〜1500MPa程度が好ましく、100〜1000MPa程度がより好ましく、110〜800MPa程度がさらにより好ましい。加えて、前記可塑化フィルムの破断時伸びは、実用面から20〜400%程度が好ましく、100〜375%程度がより好ましく、150〜350%程度がさらにより好ましい。引っ張り弾性率が上記範囲であれば、フィルムが十分な柔軟性を有し、上記破断時伸びの範囲であれば、実用上十分な自由度を有するフィルムとなり、かつ実用的なフィルムの形状安定性が得られる。フィルムの厚みは、用途によって異なるが、通常5〜500μm程度とすることができる。   In a preferred embodiment of the present invention, the plasticized film is a film obtained by inflation molding a polylactic acid resin composition obtained by softening polylactic acid with a plasticizer. The tensile modulus of the plasticized film is preferably about 100 to 1500 MPa, more preferably about 100 to 1000 MPa, and still more preferably about 110 to 800 MPa from a practical aspect. In addition, the elongation at break of the plasticized film is preferably about 20 to 400%, more preferably about 100 to 375%, and still more preferably about 150 to 350% from the practical aspect. If the tensile elastic modulus is in the above range, the film has sufficient flexibility, and if it is in the above elongation range at break, the film has a practically sufficient degree of freedom, and is practical in shape stability. Is obtained. Although the thickness of a film changes with uses, it can be normally set to about 5-500 micrometers.

(引っ張り弾性率)
前記のフィルムの引っ張り弾性率は、JIS規格(JIS K7127)に基づいて、万能試験機(オートグラフ;SIMADZU製AG−1)を用いて、引っ張り速度200mm/分で引っ張り、測定した値である。
(Tensile modulus)
The tensile elastic modulus of the film is a value measured by pulling at a pulling speed of 200 mm / min using a universal testing machine (Autograph; AG-1 manufactured by SIMADZU) based on JIS standard (JIS K7127).

(破断時伸び)
前記のフィルムの破断時伸びは、JIS規格(JIS K7127)に基づいて、万能試験機(オートグラフ;SIMADZU社製AG−1)を用いて、引っ張り速度200mm/分で引っ張り、測定した値である。
(Elongation at break)
The elongation at break of the film is a value measured by pulling at a pulling speed of 200 mm / min using a universal testing machine (autograph; AG-1 manufactured by SIMADZU) based on JIS standard (JIS K7127). .

〈ポリ乳酸系樹脂組成物〉
続いて、前記ポリ乳酸系樹脂組成物について説明する。
<Polylactic acid resin composition>
Next, the polylactic acid resin composition will be described.

(ポリ乳酸)
本発明に用いる前記ポリ乳酸について、原料モノマーは特に限定されず、L−乳酸、D−乳酸、DL−乳酸、それらの混合物、及び乳酸の環状2量体であるラクタイドなどの公知のモノマーを挙げることができる。前記ポリ乳酸は単一のモノマーを重合させたものでもよく、また複数種のモノマーを重合させたものであってもよく、得られる可塑化フィルムを所望の物性とするために適宜選択してよい。乳酸は、砂糖、スターチ等の再生可能な資源を発酵することにより得られる点で、生分解性脂肪族ポリエステル樹脂の中でも有用な原料である。
(Polylactic acid)
For the polylactic acid used in the present invention, the raw material monomer is not particularly limited, and examples thereof include known monomers such as L-lactic acid, D-lactic acid, DL-lactic acid, mixtures thereof, and lactide which is a cyclic dimer of lactic acid. be able to. The polylactic acid may be one obtained by polymerizing a single monomer, or may be one obtained by polymerizing a plurality of types of monomers, and may be appropriately selected in order to obtain the desired plasticized film. . Lactic acid is a useful raw material among biodegradable aliphatic polyester resins in that it can be obtained by fermenting renewable resources such as sugar and starch.

本発明のひとつの態様において、ポリ乳酸の重量平均分子量は、特に限定されないが、加工性及び/又は成形後のフィルムの物性等の観点から、1万〜100万程度が好ましく、3万〜60万程度がより好ましく、5万〜40万程度が更に好ましい。重量平均分子量が前記範囲であるポリ乳酸は、機械的強度が十分であり、かつ加工性に優れるため好ましく用いることができる。なお、本発明において重量平均分子量はゲルパーミエーションクロマトグラフィーにより測定した値である。具体的には、ゲルパーミエーションクロマトグラフィーは、東ソー株式会社製HLC−8120GPCを使用し、カラムは同社のTSKgel G4000Hxl×1を使用し、解析は同社のGPC−8020modelIIを使用して流速1ml/分の条件で行い、分子量既知のポリスチレンを標準試料に用いて測定を行う。   In one embodiment of the present invention, the weight average molecular weight of the polylactic acid is not particularly limited, but is preferably about 10,000 to 1,000,000 from the viewpoint of processability and / or physical properties of the film after molding, etc. About 10,000 is more preferable, and about 50,000 to 400,000 is more preferable. Polylactic acid having a weight average molecular weight in the above range is preferably used because it has sufficient mechanical strength and excellent workability. In the present invention, the weight average molecular weight is a value measured by gel permeation chromatography. Specifically, the gel permeation chromatography uses HLC-8120GPC manufactured by Tosoh Corporation, the column uses TSKgel G4000Hxl × 1 of the company, and the analysis uses GPC-8020 model II of the company, and the flow rate is 1 ml / min. Measurement is performed using polystyrene having a known molecular weight as a standard sample.

(可塑剤)
本発明に用いる前記可塑剤は、ポリ乳酸用の可塑剤であれば特に限定されず、通常この分野で用いられる種々の可塑剤(例えば、クエン酸エステル、グリセリンの脂肪酸エステル、グリコールの脂肪酸エステル、又は脂肪族二塩基酸エステルなど)を用いてもよい。前記可塑剤は、例えば、ポリ乳酸系樹脂組成物の溶融粘度を適度な値とする観点から、脂肪族二塩基酸エステルが好ましく、ベンジルアルキルジグリコールアジペートを含むアジピン酸エステル系可塑剤を用いることが特に好ましい。前記ベンジルアルキルジグリコールアジペートのアルキル基は、直鎖状又は分岐鎖状のいずれであってもよいが、直鎖状が好ましい。また、アルキル基の炭素数は1〜20が好ましく、1〜8がより好ましく、1〜4がさらにより好ましい。特に直鎖状の炭素数1〜4のアルキル基を有する、ベンジルメチルジグリコールアジペート、ベンジルエチルジグリコールアジペート、ベンジルn−プロピルジグリコールアジペート、及びベンジルn−ブチルジグリコールアジペートなどが好ましい。
(Plasticizer)
The plasticizer used in the present invention is not particularly limited as long as it is a plasticizer for polylactic acid. Various plasticizers usually used in this field (for example, citric acid ester, fatty acid ester of glycerin, fatty acid ester of glycol, Alternatively, an aliphatic dibasic acid ester or the like may be used. The plasticizer is preferably an aliphatic dibasic acid ester, for example, from the viewpoint of setting the melt viscosity of the polylactic acid resin composition to an appropriate value, and an adipate ester plasticizer containing benzylalkyldiglycol adipate is used. Is particularly preferred. The alkyl group of the benzylalkyldiglycol adipate may be either linear or branched, but is preferably linear. Moreover, 1-20 are preferable, as for carbon number of an alkyl group, 1-8 are more preferable, and 1-4 are still more preferable. Particularly preferred are benzyl methyl diglycol adipate, benzyl ethyl diglycol adipate, benzyl n-propyl diglycol adipate, and benzyl n-butyl diglycol adipate having a linear alkyl group having 1 to 4 carbon atoms.

本発明のひとつの態様において、前記可塑剤の含有量はポリ乳酸樹脂100重量部に対して10〜30重量部程度が好ましく、12〜28重量部程度がより好ましく、15〜26重量部程度がさらにより好ましい。上記範囲であれば、実用上十分な柔軟性を有するフィルムが得られ、かつインフレーション成形に適した強度の樹脂組成物が得られる。   In one embodiment of the present invention, the content of the plasticizer is preferably about 10 to 30 parts by weight, more preferably about 12 to 28 parts by weight, and more preferably about 15 to 26 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Even more preferred. If it is the said range, the film which has a practically sufficient softness | flexibility will be obtained, and the resin composition of the intensity | strength suitable for inflation molding will be obtained.

(加水分解防止剤)
本発明のポリ乳酸樹脂組成物は、必須ではないが、さらに、加水分解防止剤を含んでいてもよい。
前記加水分解防止剤としては、ポリエステル樹脂の加水分解防止剤として公知の化合物を制限なく使用できる。このような加水分解防止剤としては、例えば、カルボジイミド化合物、オキソゾリン系化合物およびイソシアネート化合物などが挙げられる。中でも好ましいのはカルボジイミド化合物である。
(Hydrolysis inhibitor)
The polylactic acid resin composition of the present invention is not essential, but may further contain a hydrolysis inhibitor.
As the hydrolysis inhibitor, a compound known as a hydrolysis inhibitor for polyester resins can be used without limitation. Examples of such hydrolysis inhibitors include carbodiimide compounds, oxozoline compounds, and isocyanate compounds. Of these, carbodiimide compounds are preferred.

前記カルボジイミド化合物は、ポリ乳酸系樹脂の末端カルボン酸と架橋反応することにより、好ましくは、ポリ乳酸系樹脂の加水分解を抑制する効果を示す。カルボジイミド化合物としては、分子内に1個以上のカルボジイミド基を有する限り、特に制限はなく、従来公知の方法に従って、例えば、イソシアナート化合物より脱炭酸反応で合成されたものを使用することができる。又、市販されているものを使用してもよい。   The carbodiimide compound preferably exhibits an effect of suppressing hydrolysis of the polylactic acid resin by crosslinking reaction with the terminal carboxylic acid of the polylactic acid resin. The carbodiimide compound is not particularly limited as long as it has one or more carbodiimide groups in the molecule. For example, a carbodiimide compound synthesized by a decarboxylation reaction from an isocyanate compound according to a conventionally known method can be used. Moreover, you may use what is marketed.

本発明のひとつの態様において、前記カルボジイミド化合物は、下記一般式(1)の基本構造を有するものである。
−(N=C=N−R−)− (1)
(上記式(1)において、nは1以上の整数を示す。また、Rは、置換基を有していてもよい脂肪族(例えば、直鎖又は分岐状のアルカン、アルケン、アルキン等)、脂環族(例えば、単環、二環又は多環のシクロアルカン、スピロ環等)、又は芳香族(例えば、単環又は多環のベンゼン系芳香族、フラン、チオフェン、ピロール又はイミダゾール等の複素芳香族等)等の有機系結合単位を示す。)
In one embodiment of the present invention, the carbodiimide compound has a basic structure represented by the following general formula (1).
-(N = C = N-R-) n- (1)
(In the above formula (1), n represents an integer of 1 or more. Also, R represents an aliphatic group that may have a substituent (for example, a linear or branched alkane, alkene, alkyne, etc.), Alicyclic (eg, monocyclic, bicyclic or polycyclic cycloalkane, spiro ring, etc.) or aromatic (eg, monocyclic or polycyclic benzene aromatic, furan, thiophene, pyrrole, imidazole, etc. (Organic bond unit such as aromatic)

より具体的には、分子内にカルボジイミド基を1個有するモノカルボジイミド化合物(上記式(1)においてnが1である化合物)としては、ジイソプロピルカルボジイミド、ジシクロヘキシルカルボジイミド、ジオクチルカルボジイミド等の脂肪族又は脂環族モノカルボジイミド、ジフェニルカルボジイミド等の芳香族モノカルボジイミド等を例示することができる。   More specifically, the monocarbodiimide compound having one carbodiimide group in the molecule (the compound in which n is 1 in the above formula (1)) is an aliphatic or alicyclic ring such as diisopropylcarbodiimide, dicyclohexylcarbodiimide, dioctylcarbodiimide and the like. Examples thereof include aromatic monocarbodiimides such as aromatic monocarbodiimides and diphenylcarbodiimides.

さらに、分子内に2個以上のカルボジイミド基を有するポリカルボジイミドの合成におけるイソシアナート化合物(上記式(1)においてnが2以上である化合物)としては、1,3−フェニレンジイソシアナート、1,4−フェニレンジイソシアナート、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、テトラメチルキシリレンジイソシアナート、4,4’−ジフェニルメタンジイソシアナート、4,4’−ジフェニルジメチルメタンジイソシアナート等の芳香族ジイソシアナート;1,4−シクロヘキサンジイソシアナート、1−メチル−2,4−シクロヘキサンジイソシアナート、1−メチル−2,6−シクロヘキサンジイソシアナート、イソホロンジイソシアナート、4,4’−ジシクロヘキシルメタンジイソシアナート、ヘキサメチレンジイソシアナート等の脂肪族又は脂環族ジイソシアナート等が例示される。ポリカルボジイミドは、末端に残存するイソシアナート基の全て、又は一部が封止されているものでよく、かかる封止剤としては、シクロヘキシルイソシアナート、フェニルイソシアナート、トリルイソシアナート等のモノイソシアナート化合物;水酸基、アミノ基等の活性水素を有する化合物等が例示される。   Furthermore, as an isocyanate compound (a compound in which n is 2 or more in the above formula (1)) in the synthesis of a polycarbodiimide having two or more carbodiimide groups in the molecule, 1,3-phenylene diisocyanate, 1, 4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane Aromatic diisocyanates such as diisocyanates; 1,4-cyclohexane diisocyanate, 1-methyl-2,4-cyclohexane diisocyanate, 1-methyl-2,6-cyclohexane diisocyanate, isophorone diisocyanate , 4,4'-dicyclohexylmethane Soshianato, aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, and the like. Polycarbodiimide may have all or part of the isocyanate group remaining at the end sealed, and as such a sealing agent, monoisocyanate such as cyclohexyl isocyanate, phenyl isocyanate, tolyl isocyanate, etc. Compound: Compounds having active hydrogen such as hydroxyl group and amino group are exemplified.

上記カルボジイミド化合物の中でも、得られる樹脂組成物から成形される成形品の耐加水分解性改善の観点から、分子内に2個以上のカルボジイミド基を有するポリカルボジイミドが好ましく、また、ポリ乳酸系樹脂との相溶性、及び得られる樹脂組成物から成形される成形品の耐加水分解安定性の点から、脂肪族又は脂環族カルボジイミド、脂肪族又は脂環族ジイソシアナートから得られるポリカルボジイミドが好ましい。そのようなポリカルボジイミド化合物の具体例として日清紡績株式会社製カルボジライトLA−1、HMV−15CAなどが挙げられる。
加水分解防止剤は1種を単独で、又は複数種を混合して用いることができる。
Among the carbodiimide compounds, polycarbodiimide having two or more carbodiimide groups in the molecule is preferable from the viewpoint of improving hydrolysis resistance of a molded product molded from the obtained resin composition. From the viewpoint of the compatibility of the above and the hydrolysis resistance of the molded product molded from the resulting resin composition, an aliphatic or alicyclic carbodiimide, a polycarbodiimide obtained from an aliphatic or alicyclic diisocyanate is preferable. . Specific examples of such a polycarbodiimide compound include Carbodilite LA-1 and HMV-15CA manufactured by Nisshinbo Industries, Ltd.
The hydrolysis inhibitor can be used alone or in combination of two or more.

本発明のひとつの態様において、加水分解防止剤の含有量は、ポリ乳酸樹脂100重量部に対して、0.1〜5重量部程度が好ましく、0.5〜3重量部程度がより好ましく、1〜2重量部程度がさらにより好ましい。加水分解防止剤の添加量が上記範囲であれば、分子量の低下による粘度低下が防止され、円滑にインフレーション成形を行うことができる。また、過剰な架橋反応による粘度増大が防止され、円滑にインフレーション成形を行うことができる。   In one embodiment of the present invention, the content of the hydrolysis inhibitor is preferably about 0.1 to 5 parts by weight, more preferably about 0.5 to 3 parts by weight, with respect to 100 parts by weight of the polylactic acid resin. About 1-2 parts by weight is even more preferable. When the addition amount of the hydrolysis inhibitor is within the above range, a decrease in viscosity due to a decrease in molecular weight is prevented, and inflation molding can be performed smoothly. Further, an increase in viscosity due to an excessive crosslinking reaction is prevented, and inflation molding can be performed smoothly.

(その他の添加剤)
本発明のポリ乳酸系樹脂組成物には、必要に応じて、生分解性樹脂組成物に通常添加されるその他の成分を、本発明の効果を損なわない範囲で添加することができる。このような成分として、例えば、結晶核剤、改質剤、香料、抗菌剤、顔料、染料、耐熱剤、酸化防止剤、耐候剤、滑剤、帯電肪止剤、安定剤、充填剤、強化剤、アンチブロッキング剤、難燃剤、木粉、でんぷん等が挙げられる。
(Other additives)
If necessary, other components usually added to the biodegradable resin composition can be added to the polylactic acid resin composition of the present invention as long as the effects of the present invention are not impaired. Examples of such components include crystal nucleating agents, modifiers, fragrances, antibacterial agents, pigments, dyes, heat-resistant agents, antioxidants, weathering agents, lubricants, antistatic agents, stabilizers, fillers, and reinforcing agents. , Antiblocking agents, flame retardants, wood flour, starch and the like.

〈可塑化フィルムの製造方法〉
次に、本発明の前記可塑化フィルムの製造方法について具体的に説明する。
<Method for producing plasticized film>
Next, the method for producing the plasticized film of the present invention will be specifically described.

(混練)
上記成分を所望の割合で混合した後、該混合物を130〜250℃程度、好ましくは140〜200℃程度の温度で、二軸押出機を用い混練し成形材料を作成すればよい。二軸押出機における吐出量は小型二軸押出機であれば1〜20kg/時間程度、好ましくは2〜10kg/時間程度とすればよい。
(Kneading)
After mixing the above components in a desired ratio, the mixture may be kneaded at a temperature of about 130 to 250 ° C., preferably about 140 to 200 ° C., using a twin screw extruder to produce a molding material. In the case of a small twin screw extruder, the discharge amount in the twin screw extruder may be about 1 to 20 kg / hour, preferably about 2 to 10 kg / hour.

(成形)
上記方法で作成した成形材料は、インフレーション成形法によりフィルムに成形するのに適している。本発明の好ましい態様においては、上記成形材料をインフレーション成形法によりフィルムに成形する。インフレーション成形法は、少量多品種の製造に適しており、また筒状で得られるためフィルムを容易に袋状とすることができる等の利点を有している。
(Molding)
The molding material prepared by the above method is suitable for molding into a film by an inflation molding method. In a preferred embodiment of the present invention, the molding material is formed into a film by an inflation molding method. The inflation molding method is suitable for manufacturing a small variety of products, and has an advantage that the film can be easily formed into a bag shape because it is obtained in a cylindrical shape.

インフレーション成形の方法は、公知方法、自体公知の方法又はそれらに準じる方法に従って行われてよい。具体的には、インフレーション成形法としては、通常、ホッパーから添加した成形材料を押出機中で溶融し、この溶融した物を、リングダイ、サーキュラーダイ、又は丸型ダイ等のインフレーション成形用のダイの口金(図1の1)から押出し、これを空気流によって膨張(図1の2)させた後、合掌状の形状に配置されたガイド板(図1の3)で扁平にして、ロール状に巻き取ることにより(図1の5)、筒状の成形体(フィルム)が製造できる。インフレーション成形時のポリ乳酸樹脂組成物の温度は、それが溶融する温度であればよく特に限定されないが、通常140〜200℃程度とすればよく、150〜180℃程度がより好ましい。   The inflation molding method may be performed according to a known method, a method known per se, or a method analogous thereto. Specifically, as an inflation molding method, a molding material added from a hopper is usually melted in an extruder, and the melted product is used as a die for inflation molding such as a ring die, a circular die, or a round die. 1 was extruded from the base (1 in FIG. 1), expanded by air flow (2 in FIG. 1), then flattened with a guide plate (3 in FIG. 1) arranged in a palm shape, and rolled. By winding up (5 of FIG. 1), a cylindrical molded body (film) can be manufactured. The temperature of the polylactic acid resin composition at the time of inflation molding is not particularly limited as long as it is a temperature at which the polylactic acid resin composition melts. However, it is usually about 140 to 200 ° C, and more preferably about 150 to 180 ° C.

(膨張比)
本発明のインフレーション成形の膨張比は、フィルム成形において一般的に用いられる比であればよく、1.2〜5であることが好ましく、1.5〜4であることがより好ましく、1.8〜3であることが特に好ましい。膨張比は成形機の樹脂吐出部の温度および空気吹き込み量を調整することで、制御できる。
膨張比は下記式で求められる。
膨張比(BUR)=巻き取ったフィルムの幅/ダイの口径
(Expansion ratio)
The expansion ratio of the inflation molding of the present invention may be a ratio generally used in film molding, preferably 1.2 to 5, more preferably 1.5 to 4, and 1.8. It is especially preferable that it is ~ 3. The expansion ratio can be controlled by adjusting the temperature of the resin discharge part of the molding machine and the air blowing amount.
The expansion ratio is obtained by the following formula.
Expansion ratio (BUR) = Wound film width / Die diameter

(加熱処理)
本発明の好ましい態様において、前記可塑化フィルムの製造方法は、インフレーション成形の口金(図1の1)吐出後の工程において、可塑化フィルムを加熱処理する工程を含む。
(Heat treatment)
In a preferred embodiment of the present invention, the method for producing a plasticized film includes a step of heat-treating the plasticized film in a step after discharging a die for inflation molding (1 in FIG. 1).

前記加熱処理は、インフレーション成形中または成形後のどちらか一方、または両方で行われてよい。インフレーション成形中とは、成形機の口金吐出後から最初にフィルムを巻き取るまでの間をいう(図1の2〜5)。また、インフレーション成形後とは、最初にフィルムを巻き取った後から保管場所へ移動させるまでの間のことをいう。具体的には、最初に巻き取ったロールからフィルムを引き出して2番目のロールに巻き取るまでの間(図2の7)、または最初に巻き取ったロール状のフィルムをそのまま抜き出して保管場所まで運ぶまでの間(図2の5と9を直接結ぶ矢印)のことをいう。   The heat treatment may be performed either during or after inflation molding, or both. Inflation molding refers to the period from the discharge of the die of the molding machine to the first winding of the film (2 to 5 in FIG. 1). The term “after inflation molding” refers to the period from when the film is first wound up to when it is moved to a storage location. Specifically, during the period from when the film is drawn out from the first roll taken up to the second roll (7 in FIG. 2), or the first roll-like film is taken out as it is to the storage location. It means the time until it is carried (the arrow directly connecting 5 and 9 in FIG. 2).

加熱処理の方法としては、フィルムを十分に加熱処理することができれば、特に限定されない。具体的には、例えば、フィルムと特定の温度範囲の媒体もしくは加熱面とを特定時間接触させることで行われてよい。前記媒体もしくは加熱面の温度としては、保管中の可塑化フィルムの巻締まりを防止する観点及び製造効率の観点等から、40℃より高く、かつ100℃以下であることが好ましく、50〜90℃が更に好ましく、60〜85℃が特に好ましい。フィルムを媒体もしくは加熱面と接触させる時間は、保管中の可塑化フィルムの巻締まりを防止する観点及び製造効率の観点等から、2〜300秒が好ましく、5〜120秒が更に好ましく、10秒〜90秒が特に好ましい。フィルムを媒体もしくは加熱面と接触させる回数は特に限定されない。1回でもよく、複数回であってもよい。複数回の場合は接触時間の合計が上記時間の範囲内であればよい。
この範囲内であれば、フィルム成形直後の残留応力を充分に減らすことができ、室温付近で保存中のフィルムが変形することはない。
The heat treatment method is not particularly limited as long as the film can be sufficiently heat treated. Specifically, for example, it may be performed by bringing a film and a medium in a specific temperature range or a heating surface into contact with each other for a specific time. The temperature of the medium or the heating surface is preferably higher than 40 ° C. and not higher than 100 ° C. from the viewpoint of preventing the tightening of the plasticized film during storage and the viewpoint of production efficiency, and is preferably 50 to 90 ° C. Is more preferable, and 60 to 85 ° C. is particularly preferable. The time for bringing the film into contact with the medium or the heating surface is preferably 2 to 300 seconds, more preferably 5 to 120 seconds, and more preferably 10 seconds from the viewpoint of preventing the tightening of the plasticized film during storage and the viewpoint of production efficiency. -90 seconds are particularly preferred. The number of times the film is brought into contact with the medium or the heating surface is not particularly limited. One time may be sufficient and multiple times may be sufficient. In the case of multiple times, the total contact time may be within the above time range.
Within this range, the residual stress immediately after film formation can be sufficiently reduced, and the film being stored will not be deformed near room temperature.

媒体もしくは加熱面の加熱手段としては蒸気、電気、誘電発熱、赤外線など、一般的に用いられている手段であれば特に限定されない。装置の規模および安全性を考慮して適宜選択すれば良い。   The heating means for the medium or the heating surface is not particularly limited as long as it is a commonly used means such as steam, electricity, dielectric heat generation, infrared rays or the like. What is necessary is just to select suitably considering the scale and safety | security of an apparatus.

(媒体)
本発明の加熱処理で用いられる媒体は、フィルムを十分に加熱することができれば特に限定されず、種々の媒体を用いてよい。具体的には、例えば、空気、不活性ガス(窒素、ヘリウム、ネオン、アルゴンなど)、及び水などが挙げられる。加熱効率及びコスト面から、好ましくは空気及び/又は水である。
(Medium)
The medium used in the heat treatment of the present invention is not particularly limited as long as the film can be sufficiently heated, and various media may be used. Specifically, air, an inert gas (nitrogen, helium, neon, argon, etc.), water, etc. are mentioned, for example. Air and / or water are preferred from the viewpoint of heating efficiency and cost.

(加熱面)
本発明の加熱処理で用いられる加熱面とは、特定の温度範囲に保持された、一定の面積を有する物体である。加熱面は平面または曲面のいずれであってもよい。なお、一定の面積とは、フィルムを十分に加熱することができれば特に限定されない。また、加熱効率の観点から、加熱面は、フィルムと接触する表面が平滑化されていることが好ましい。
加熱面の材質は、フィルムを十分に加熱することができれば特に限定されず、種々の材質を用いてよい。具体的には、例えば、鉄、銅、チタン、又はニッケルなどの金属、ステンレス、炭素鋼などの合金、セラミック、樹脂、ゴムおよびガラスなどが挙げられる。加熱効率及びコスト面などの点から、好ましくは銅又は炭素鋼である。
(Heating surface)
The heating surface used in the heat treatment of the present invention is an object having a certain area that is maintained in a specific temperature range. The heating surface may be either a flat surface or a curved surface. The fixed area is not particularly limited as long as the film can be sufficiently heated. Further, from the viewpoint of heating efficiency, it is preferable that the heating surface has a smooth surface in contact with the film.
The material of the heating surface is not particularly limited as long as the film can be sufficiently heated, and various materials may be used. Specific examples include metals such as iron, copper, titanium, and nickel, alloys such as stainless steel and carbon steel, ceramics, resins, rubbers, and glass. From the viewpoint of heating efficiency and cost, copper or carbon steel is preferred.

本発明のひとつの態様において、加熱面は、特に限定されないが、具体的には例えば、金属板(合金板を含む)、セラミック板、樹脂板、金属ロール(合金ロールを含む)、セラミックロール、樹脂ロール、ゴムロールなどが挙げられる。   In one embodiment of the present invention, the heating surface is not particularly limited. Specifically, for example, a metal plate (including an alloy plate), a ceramic plate, a resin plate, a metal roll (including an alloy roll), a ceramic roll, A resin roll, a rubber roll, etc. are mentioned.

本発明の別のひとつの態様において、加熱面として金属ロールを用いる。金属ロールの材料としては、一般に用いられているものであれば特に限定されず、銅、炭素鋼、ステンレス、チタンあるいは電鋳法で製造されたニッケルなどが挙げられる。また、金属ロールの表面は、ハードクロムメッキ、ニッケルメッキ、非晶質クロムメッキなど、あるいはセラミック溶射等の表面処理が施されていてもよい。   In another embodiment of the present invention, a metal roll is used as the heating surface. The material for the metal roll is not particularly limited as long as it is generally used, and examples thereof include copper, carbon steel, stainless steel, titanium, nickel produced by electroforming, and the like. The surface of the metal roll may be subjected to a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.

なお、本発明における上記加熱処理後、前記可塑化フィルムを冷却する工程は、あってもなくてよい。本発明のひとつの態様において、図2の5又は図2の8における前記可塑化フィルムの温度が約50℃以下、フィルムの品質維持の観点から、好ましくは約40℃以下、より好ましくは約30℃以下であればよい。   In addition, the process which cools the said plasticization film after the said heat processing in this invention does not need to exist. In one embodiment of the present invention, the temperature of the plasticized film in 5 of FIG. 2 or 8 of FIG. 2 is about 50 ° C. or less, preferably about 40 ° C. or less, more preferably about 30 from the viewpoint of maintaining the quality of the film. It should just be below ℃.

本発明の特に好ましい態様は、ポリ乳酸100重量部及び可塑剤10〜30重量部を含有するポリ乳酸系樹脂組成物をインフレーション成形法により成形し、ポリ乳酸樹脂可塑化フィルムを製造する製造方法において、インフレーション成形の口金吐出後の工程に加熱処理工程が含まれる、ポリ乳酸樹脂可塑化フィルムの製造方法に関する。ポリ乳酸、可塑剤、及び加熱処理方法については、上記の通りであってよい。この態様において、製造方法に加熱処理が含まれることで、得られたポリ乳酸樹脂可塑化フィルムを約20〜約40℃でロール状態のまま維持しても、前記可塑化フィルムの巻締まり、シワの発生、ブロッキング等が抑制される。ロール状態に維持される期間は特に限定されないが、例えば、通常1か月以上、品質維持の観点から半年以上、より好ましくは1年以上であってよい。   A particularly preferred embodiment of the present invention is a method for producing a polylactic acid resin plasticized film by molding a polylactic acid resin composition containing 100 parts by weight of polylactic acid and 10 to 30 parts by weight of a plasticizer by an inflation molding method. The present invention also relates to a method for producing a polylactic acid resin plasticized film, wherein a heat treatment step is included in a step after discharging a die for inflation molding. The polylactic acid, the plasticizer, and the heat treatment method may be as described above. In this embodiment, the heat treatment is included in the production method, so that even if the obtained polylactic acid resin plasticized film is maintained in a roll state at about 20 to about 40 ° C., the plasticized film is tightly wound and wrinkled. Occurrence, blocking, etc. are suppressed. Although the period maintained in a roll state is not particularly limited, it may be, for example, usually one month or more, half a year or more from the viewpoint of quality maintenance, more preferably one year or more.

また、本発明の別の好ましい態様は、インフレーション成形法により成形されたポリ乳酸系樹脂可塑化フィルムを、約20℃〜約40℃においてロール状で保管する際に、前記可塑化フィルムの巻締まり、シワの発生及び/又はブロッキングを防止する方法に関する。具体的には、保管前に前記可塑化フィルムを加熱処理する。ポリ乳酸系樹脂可塑化フィルム、及び加熱処理の実施方法は、上記と同様であってよい。   In another preferred embodiment of the present invention, when the polylactic acid-based resin plasticized film molded by the inflation molding method is stored in a roll form at about 20 ° C. to about 40 ° C., the plastic film is tightened. The present invention relates to a method for preventing generation of wrinkles and / or blocking. Specifically, the plasticized film is heat-treated before storage. The method for carrying out the polylactic acid resin plasticized film and the heat treatment may be the same as described above.

以下、実施例を示して本発明をより詳しく説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in more detail, this invention is not limited to these.

(1)材料
ポリ乳酸:Ingeo Biopolymer 4043D
(NatureWorks LLC社製;L体95.75wt%:D体4.25wt%)
可塑剤:DAIFATTY−101
(大八化学工業株式会社製;ベンジルアルキルジグリコールアジペート含有アジピン酸エステル組成物)
結晶核剤:エコプロモート(日産化学工業株式会社製;フェニルホスホン酸亜鉛)
加水分解防止剤:カルボジライトHMV−15CA(日清紡ケミカル社製)
(1) Material polylactic acid: Ingeo Biopolymer 4043D
(Manufactured by NatureWorks LLC; L-form 95.75 wt%: D-form 4.25 wt%)
Plasticizer: DAIFACTY-101
(Daihachi Chemical Industry Co., Ltd .; benzyl alkyl diglycol adipate-containing adipic acid ester composition)
Crystal nucleating agent: Eco Promote (Nissan Chemical Industries, Ltd .; zinc phenylphosphonate)
Hydrolysis inhibitor: Carbodilite HMV-15CA (Nisshinbo Chemical Co., Ltd.)

(2)フィルム抜き取り易さ(巻締まりの有無)の評価方法
外径8cmで長さ34cmの円柱状である紙製の芯に、フィルムを50m巻き取り、フィルムのロールを作成した。そのロールを抜き取らずに30〜35℃で24時間保管した後、紙製の芯をロールから抜き取る時の取り易さを下記基準により評価した。
○ 巻き取った形状のまま容易にロールから芯が抜き取れた
× ロールの形を崩さなければ芯を抜き取れなかった
(2) Evaluating Method for Easily Pulling Out Film (Presence of Tightening) The film was wound up by 50 m on a paper-made paper core having an outer diameter of 8 cm and a length of 34 cm, and a roll of film was prepared. After storing the roll at 30 to 35 ° C. for 24 hours without removing the roll, the ease with which the paper core was removed from the roll was evaluated according to the following criteria.
○ The core was easily removed from the roll in the wound shape. × The core could not be removed without breaking the roll shape.

(3)樹脂組成物の混練
下記表1に示す比率で、ポリ乳酸に各成分を混合し、二軸押出機(東芝機械株式会社製TEM−37BS)を用いて混練温度を150℃に設定し、混練を行い、成形材料を得た。
(3) Kneading of resin composition Each component was mixed with polylactic acid at the ratio shown in Table 1 below, and the kneading temperature was set to 150 ° C using a twin screw extruder (TEM-37BS manufactured by Toshiba Machine Co., Ltd.). And kneading to obtain a molding material.

(4)フィルムの成形
(実施例1)
成形材料Aをインフレーション成形機(吉井鉄工株式会社製、YEI−S45−60−R)でシリンダー設定温度160℃の条件にて溶融し、膨張比(BUR)2にて、厚さ50μmで潰した時の幅が30cmの筒状のフィルムを成形し、加熱処理として図2の4d部分で80℃の温水に60秒間通したフィルムを上記評価方法により評価した。その結果を表2に示す。
(比較例1)
加熱処理を行わない以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例2)
成形材料AをBに変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(比較例2)
加熱処理を行わない以外は、実施例2と同様の操作および評価を行った。その結果を表2に示す。
(実施例3)
成形材料AをCに変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(比較例3)
加熱処理を行わない以外は、実施例3と同様の操作および評価を行った。その結果を表2に示す。
(実施例4)
成形材料AをDに変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(比較例4)
加熱処理を行わない以外は、実施例4と同様の操作および評価を行った。その結果を表2に示す。
(実施例5)
フィルムを温水に通す時間を60秒から5秒に変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例6)
フィルムを温水に通す時間を60秒から10秒に変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例7)
フィルムを温水に通す時間を60秒から30秒に変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例8)
フィルムを温水に通す時間を60秒から90秒に変更した以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例9)
温水の温度を80℃から60℃へ、ならびに、フィルムを温水に通す時間を60秒から30秒とした以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例10)
フィルムを温水に通す時間を30秒から60秒とした以外は、実施例9と同様の操作および評価を行った。その結果を表2に示す。
(実施例11)
温水の温度を80℃から70℃へ、ならびに、フィルムを温水に通す時間を60秒から30秒とした以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(実施例12)
フィルムを温水に通す時間を30秒から60秒とした以外は、実施例11と同様の操作および評価を行った。その結果を表2に示す。
(実施例13)
加熱処理としてフィルムを温水に通すことから、図3に示した複数の熱ロールと接触させることにした以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
図3のロール10〜19の温度は誘電発熱により60℃に調節して、フィルムは5m/分の速度で通した。この場合の加熱処理は60℃で60秒間行ったものとした。
なお、本実施例で用いた図3のロールは、株式会社ムサシノキカイ製の多層押出・キャスト・延伸テスト装置の縦延伸機に設置されたキャスト装置側から1番目〜10番目のロールを用いた。
(実施例14)
ロールの温度を60℃から80℃へ、ならびに、フィルムを通す速度を5m/分から10m/分とした以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例15)
ロールの温度を60℃から80℃とした以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例16)
ロールの温度を60℃から90℃へ、ならびに、フィルムを通す速度を5m/分から10m/分とした以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例17)
ロールの温度を60℃から90℃とした以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例18)
成形材料AからDに変更した以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例19)
ロールの温度を60℃から80℃へ、ならびに、フィルムを通す速度を5m/分から10m/分とした以外は、実施例18と同様の操作および評価を行った。その結果を表2に示す。
(実施例20)
ロールの温度を60℃から80℃とした以外は、実施例18と同様の操作および評価を行った。その結果を表2に示す。
(実施例21)
成形材料AからEへ変更し、ロールの温度を60℃から80℃とした以外は、実施例13と同様の操作および評価を行った。その結果を表2に示す。
(実施例22)
ロールの温度を80℃から90℃へ、ならびに、フィルムを通す速度を5m/分から10m/分とした以外は、実施例21と同様の操作および評価を行った。その結果を表2に示す。
(実施例23)
ロールの温度を80℃から90℃とした以外は、実施例21と同様の操作および評価を行った。その結果を表2に示す。
(比較例5)
成形材料AからEに変更した以外は、比較例1と同様の操作および評価を行った。その結果を表2に示す。
(比較例6)
温水の温度を80℃から40℃へ、ならびに、フィルムを温水に通す時間を60秒から120秒とした以外は、実施例1と同様の操作および評価を行った。その結果を表2に示す。
(比較例7)
ロールの温度を60℃から40℃へ、ならびに、フィルムを通す速度を5m/分から1.66m/分とした以外は、実施例18と同様の操作および評価を行った。その結果を表2に示す。
(4) Molding of film (Example 1)
The molding material A was melted with an inflation molding machine (YEI-S45-60-R, manufactured by Yoshii Iron Works Co., Ltd.) at a cylinder set temperature of 160 ° C., and crushed at a expansion ratio (BUR) of 2 with a thickness of 50 μm. A cylindrical film having a time width of 30 cm was formed, and a film that was passed through 80 ° C. warm water for 60 seconds at 4d in FIG. 2 as a heat treatment was evaluated by the above evaluation method. The results are shown in Table 2.
(Comparative Example 1)
The same operation and evaluation as in Example 1 were performed except that the heat treatment was not performed. The results are shown in Table 2.
(Example 2)
The same operation and evaluation as in Example 1 were performed except that the molding material A was changed to B. The results are shown in Table 2.
(Comparative Example 2)
The same operation and evaluation as in Example 2 were performed except that the heat treatment was not performed. The results are shown in Table 2.
(Example 3)
Except that the molding material A was changed to C, the same operation and evaluation as in Example 1 were performed. The results are shown in Table 2.
(Comparative Example 3)
The same operation and evaluation as in Example 3 were performed except that the heat treatment was not performed. The results are shown in Table 2.
Example 4
The same operation and evaluation as in Example 1 were performed except that the molding material A was changed to D. The results are shown in Table 2.
(Comparative Example 4)
The same operation and evaluation as in Example 4 were performed except that the heat treatment was not performed. The results are shown in Table 2.
(Example 5)
The same operation and evaluation as in Example 1 were performed except that the time for passing the film through warm water was changed from 60 seconds to 5 seconds. The results are shown in Table 2.
(Example 6)
The same operation and evaluation as in Example 1 were performed except that the time for passing the film through warm water was changed from 60 seconds to 10 seconds. The results are shown in Table 2.
(Example 7)
The same operation and evaluation as in Example 1 were performed except that the time for passing the film through warm water was changed from 60 seconds to 30 seconds. The results are shown in Table 2.
(Example 8)
The same operation and evaluation as in Example 1 were performed except that the time for passing the film through warm water was changed from 60 seconds to 90 seconds. The results are shown in Table 2.
Example 9
The same operation and evaluation as in Example 1 were performed except that the temperature of the hot water was changed from 80 ° C. to 60 ° C. and the time for passing the film through the hot water was changed from 60 seconds to 30 seconds. The results are shown in Table 2.
(Example 10)
The same operation and evaluation as in Example 9 were performed except that the time for passing the film through warm water was changed from 30 seconds to 60 seconds. The results are shown in Table 2.
(Example 11)
The same operation and evaluation as in Example 1 were performed except that the temperature of the hot water was changed from 80 ° C. to 70 ° C. and the time for passing the film through the hot water was changed from 60 seconds to 30 seconds. The results are shown in Table 2.
(Example 12)
The same operation and evaluation as in Example 11 were performed except that the time for passing the film through warm water was changed from 30 seconds to 60 seconds. The results are shown in Table 2.
(Example 13)
Since the film was passed through warm water as the heat treatment, the same operation and evaluation as in Example 1 were performed except that the film was brought into contact with the plurality of heat rolls shown in FIG. The results are shown in Table 2.
The temperature of rolls 10 to 19 in FIG. 3 was adjusted to 60 ° C. by dielectric heat generation, and the film was passed at a speed of 5 m / min. The heat treatment in this case was performed at 60 ° C. for 60 seconds.
In addition, the roll of FIG. 3 used by the present Example used the 1st-10th roll from the cast apparatus side installed in the longitudinal stretch machine of the multilayer extrusion, cast, and extending | stretching test apparatus by Musashinokikai.
(Example 14)
The same operation and evaluation as in Example 13 were performed except that the temperature of the roll was changed from 60 ° C. to 80 ° C. and the speed of passing the film was changed from 5 m / min to 10 m / min. The results are shown in Table 2.
(Example 15)
The same operation and evaluation as in Example 13 were performed except that the temperature of the roll was changed from 60 ° C to 80 ° C. The results are shown in Table 2.
(Example 16)
The same operation and evaluation as in Example 13 were performed except that the temperature of the roll was changed from 60 ° C. to 90 ° C. and the speed of passing the film was changed from 5 m / min to 10 m / min. The results are shown in Table 2.
(Example 17)
The same operation and evaluation as in Example 13 were performed except that the roll temperature was changed from 60 ° C to 90 ° C. The results are shown in Table 2.
(Example 18)
The same operation and evaluation as in Example 13 were performed except that the molding material A was changed to D. The results are shown in Table 2.
(Example 19)
The same operation and evaluation as in Example 18 were performed except that the temperature of the roll was changed from 60 ° C. to 80 ° C. and the speed of passing the film was changed from 5 m / min to 10 m / min. The results are shown in Table 2.
(Example 20)
The same operation and evaluation as in Example 18 were performed except that the temperature of the roll was changed from 60 ° C to 80 ° C. The results are shown in Table 2.
(Example 21)
The same operation and evaluation as in Example 13 were performed except that the molding material A was changed to E and the roll temperature was changed from 60 ° C to 80 ° C. The results are shown in Table 2.
(Example 22)
The same operation and evaluation as in Example 21 were performed except that the temperature of the roll was changed from 80 ° C. to 90 ° C. and the speed of passing the film was changed from 5 m / min to 10 m / min. The results are shown in Table 2.
(Example 23)
The same operation and evaluation as in Example 21 were performed except that the roll temperature was changed from 80 ° C to 90 ° C. The results are shown in Table 2.
(Comparative Example 5)
The same operation and evaluation as in Comparative Example 1 were performed except that the molding material A was changed to E. The results are shown in Table 2.
(Comparative Example 6)
The same operation and evaluation as in Example 1 were performed except that the temperature of the hot water was changed from 80 ° C. to 40 ° C. and the time for passing the film through the hot water was changed from 60 seconds to 120 seconds. The results are shown in Table 2.
(Comparative Example 7)
The same operation and evaluation as in Example 18 were performed except that the temperature of the roll was changed from 60 ° C. to 40 ° C. and the speed of passing the film was changed from 5 m / min to 1.66 m / min. The results are shown in Table 2.

実施例1〜23と比較例1〜5との比較で、加熱処理によって、室温保管による巻締まりの現象を防止できることを確認した。また、実施例1〜23より、加熱処理はフィルムの熱媒体との接触又は加熱面との接触のどちらでも効果があることが確認された。 In comparison between Examples 1 to 23 and Comparative Examples 1 to 5, it was confirmed that the phenomenon of tightening due to room temperature storage could be prevented by heat treatment. Moreover, from Examples 1 to 23, it was confirmed that the heat treatment was effective in either contact with the heat medium of the film or contact with the heating surface.

本発明は、ポリ乳酸系可塑化フィルムをインフレーション成形により容易に効率的に製造できる方法であり、本発明で製造されたフィルムは農業用マルチフィルム、食品包装用袋、ゴミ袋等として好適に使用できる。   The present invention is a method by which a polylactic acid-based plasticized film can be easily and efficiently produced by inflation molding, and the film produced in the present invention is suitably used as an agricultural multi-film, a food packaging bag, a garbage bag, etc. it can.

1 インフレーション成形における口金
2 インフレーション成形において膨張した可塑化フィルム
3 ガイド板
4a 引き伸ばされている可塑化フィルム
4b 引き伸ばされている可塑化フィルム
4c 引き伸ばされている可塑化フィルム
4d 引き伸ばされている可塑化フィルム
5 巻き取られたロール状の可塑化フィルム
6 ロール状の可塑化フィルム
7 再巻き取り中に引き伸ばされている可塑化フィルム
8 再巻き取りされたロール状の可塑化フィルム
9 保管庫に保管されているロール状の可塑化フィルム
DESCRIPTION OF SYMBOLS 1 Base in inflation molding 2 Plasticized film expanded in inflation molding 3 Guide plate 4a Stretched plasticized film 4b Stretched plasticized film 4c Stretched plasticized film 4d Stretched plasticized film 5 Rolled-up plasticized film 6 Rolled plasticized film 7 Plasticized film stretched during rewinding 8 Rolled plasticized film 9 Rewinded and stored in storage Rolled plasticized film

Claims (10)

ポリ乳酸100重量部に対して可塑剤10〜30重量部を含有するポリ乳酸系樹脂組成物をインフレーション成形法により成形してポリ乳酸系樹脂可塑化フィルムを製造する方法であって、インフレーション成形の口金吐出後の工程において加熱処理する工程を含むことを特徴とする、ポリ乳酸系樹脂可塑化フィルムの製造方法。   A method for producing a polylactic acid-based resin plasticized film by molding a polylactic acid-based resin composition containing 10 to 30 parts by weight of a plasticizer with respect to 100 parts by weight of polylactic acid by an inflation molding method. A method for producing a polylactic acid-based resin plasticized film, comprising a step of heat treatment in a step after discharging the die. 前記可塑剤がベンジルアルキルジグリコールアジペートである、請求項1に記載の製造方法。   The manufacturing method of Claim 1 whose said plasticizer is benzyl alkyl diglycol adipate. 前記加熱処理は、成形したフィルムを40℃より高く、かつ100℃以下である媒体と2〜300秒間接触させる方法である、請求項1または2に記載の製造方法。   The said heat processing is a manufacturing method of Claim 1 or 2 which is a method of making the shape | molded film contact the medium which is higher than 40 degreeC and 100 degrees C or less for 2 to 300 seconds. 前記加熱処理は、成形したフィルムを40℃より高く、かつ100℃以下である加熱面と2〜300秒間接触させる方法である、請求項1または2に記載の製造方法。   The said heat processing is a manufacturing method of Claim 1 or 2 which is a method of making the shape | molded film contact the heating surface which is higher than 40 degreeC and is 100 degrees C or less for 2 to 300 seconds. 前記加熱処理を、インフレーション成形の口金吐出後から前記可塑化フィルムの最初の巻き取りまでの工程中に行う請求項1〜4のいずれか1つに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the heat treatment is performed during a process from discharging a die for inflation molding to first winding of the plasticized film. 前記加熱処理を、インフレーション成形後、一度、前記可塑化フィルムを巻き取った後に行うことを特徴とする、請求項1〜5のいずれか1つに記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment is performed after winding the plasticized film once after inflation molding. 前記可塑化フィルムが、20〜40℃でロール状に維持しても、巻締まりしない可塑化フィルムであることを特徴とする請求項1〜6のいずれか1つに記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein the plasticized film is a plasticized film that is not wound even if maintained in a roll shape at 20 to 40 ° C. 前記可塑化フィルムが、20〜40℃でロール状に維持しても、シワの発生及び/又はブロッキングが生じない可塑化フィルムであることを特徴とする請求項1〜7のいずれか1つに記載の製造方法。   The plasticized film according to any one of claims 1 to 7, wherein the plasticized film is a plasticized film that does not generate wrinkles and / or blocking even when maintained in a roll shape at 20 to 40 ° C. The manufacturing method as described. インフレーション成形法によりポリ乳酸系樹脂可塑化フィルムを製造する方法において、インフレーション成形の口金吐出後の工程に加熱処理する工程を含むことを特徴とする、ポリ乳酸系樹脂可塑化フィルムの巻締まり、シワの発生及び/又はブロッキングの防止方法。   In the method for producing a polylactic acid-based resin plasticized film by an inflation molding method, the step after the die discharge of the inflation molding includes a heat treatment step, Generation and / or blocking prevention method. 巻締まりしないことを特徴とするインフレーション成形法により成形されたポリ乳酸系樹脂可塑化フィルム。   A polylactic acid-based resin plasticized film formed by an inflation molding method, characterized by not being tightened.
JP2015523995A 2013-06-27 2014-06-17 Method for producing polylactic acid resin film Pending JPWO2014208403A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013135100 2013-06-27
JP2013135100 2013-06-27
PCT/JP2014/066037 WO2014208403A1 (en) 2013-06-27 2014-06-17 Process for manufacturing polylactic acid-based resin film

Publications (1)

Publication Number Publication Date
JPWO2014208403A1 true JPWO2014208403A1 (en) 2017-02-23

Family

ID=52141745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523995A Pending JPWO2014208403A1 (en) 2013-06-27 2014-06-17 Method for producing polylactic acid resin film

Country Status (4)

Country Link
JP (1) JPWO2014208403A1 (en)
CN (1) CN105339155A (en)
TW (1) TW201510006A (en)
WO (1) WO2014208403A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561604B (en) * 2021-08-16 2023-03-31 中国科学院长春应用化学研究所 Polylactic acid-based multifunctional multilayer composite agricultural mulching film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263931A (en) * 2004-03-17 2005-09-29 Asahi Kasei Life & Living Corp Inorganic filler-loaded matte film
JP2008260895A (en) * 2007-04-13 2008-10-30 Osaka City Polylactic acid-based resin film and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816164A4 (en) * 2003-11-25 2008-01-02 Asahi Kasei Life & Living Corp Matte film
JP5145695B2 (en) * 2006-11-09 2013-02-20 東レ株式会社 Method for producing polylactic acid resin film
TWI455966B (en) * 2007-09-10 2014-10-11 Teijin Ltd Film
CN102171278B (en) * 2008-10-02 2015-01-21 日东电工株式会社 Polylactic acid-based film or sheet
CN101722654B (en) * 2008-10-28 2012-12-19 上海自然盾新材料科技有限公司 Method for preparing polylactic acid-based resin film by liquid phase medium heat conduction double-membrane soaking method
CN101767465B (en) * 2008-12-29 2013-02-13 佛山塑料集团股份有限公司 Method for preparing thermoplastic resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263931A (en) * 2004-03-17 2005-09-29 Asahi Kasei Life & Living Corp Inorganic filler-loaded matte film
JP2008260895A (en) * 2007-04-13 2008-10-30 Osaka City Polylactic acid-based resin film and method for producing the same

Also Published As

Publication number Publication date
CN105339155A (en) 2016-02-17
WO2014208403A1 (en) 2014-12-31
TW201510006A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP2004002683A (en) Biodegradable resin composition and molded product thereof
JP3891692B2 (en) Biodegradable bubble sheet
JP4005339B2 (en) Biodegradable garbage bag
JP2002327107A (en) Polylactic acid-based film and method for producing the same
JP4313076B2 (en) Biodegradable polyester film and method for producing the same
JPWO2013038770A1 (en) the film
JP2006212897A (en) Manufacturing method of polylactic acid type molded product
JP2008169239A (en) Polyester film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP2013155223A (en) Polylactic acid-based film
WO2014208403A1 (en) Process for manufacturing polylactic acid-based resin film
JP4626137B2 (en) Polylactic acid resin stretched film and method for producing the same
JP5283348B2 (en) Polylactic acid resin film and method for producing the same
JP4146625B2 (en) Biodegradable soft film
JP3860163B2 (en) Aliphatic polyester resin composition and film
JP2009079188A (en) Polylactic acid resin composition
JP2006335904A (en) Polylactic acid-based oriented film
JP2002348445A (en) Biodegradable plastic packaging band and method for producing the same
JP2008266369A (en) Polylactic acid film
JP2008195784A (en) Polyester-based resin composition and molded article thereof
JP2004352987A (en) Biodegradable film with improved water vapor barrier property, and method for controlling water vapor barrier property
JP4926594B2 (en) Method for producing heat-shrinkable material made of polylactic acid and heat-shrinkable material made of polylactic acid produced by the method
JPH11209595A (en) Method of shape-memorizing biodegradable shape-memory polymer molding product and its shape restoration
JP2010059215A (en) Biodegradable resin sheet
JP2005002165A (en) Biodegradable resin composition, agricultural mulching film and method for inhibiting biodegradability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204