JP2008260895A - Polylactic acid-based resin film and method for producing the same - Google Patents

Polylactic acid-based resin film and method for producing the same Download PDF

Info

Publication number
JP2008260895A
JP2008260895A JP2007106256A JP2007106256A JP2008260895A JP 2008260895 A JP2008260895 A JP 2008260895A JP 2007106256 A JP2007106256 A JP 2007106256A JP 2007106256 A JP2007106256 A JP 2007106256A JP 2008260895 A JP2008260895 A JP 2008260895A
Authority
JP
Japan
Prior art keywords
polylactic acid
film
weight
parts
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106256A
Other languages
Japanese (ja)
Other versions
JP5283348B2 (en
Inventor
Yasuyuki Agari
泰幸 上利
Kiyobumi Sakai
清文 酒井
Kunihiko Moriyoshi
邦彦 森芳
Toshio Yoshida
俊夫 吉田
Atsushi Nagata
厚志 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSEI SHIKA KOGYO KK
Daihachi Chemical Industry Co Ltd
Osaka City
Original Assignee
SHINSEI SHIKA KOGYO KK
Daihachi Chemical Industry Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSEI SHIKA KOGYO KK, Daihachi Chemical Industry Co Ltd, Osaka City filed Critical SHINSEI SHIKA KOGYO KK
Priority to JP2007106256A priority Critical patent/JP5283348B2/en
Publication of JP2008260895A publication Critical patent/JP2008260895A/en
Application granted granted Critical
Publication of JP5283348B2 publication Critical patent/JP5283348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film comprising a polylactic acid resin composition and having practical flexibility together with strengths, and a method for producing the same by an inflation method. <P>SOLUTION: The film comprises the polylactic acid resin composition comprising 100 pts.wt. polylactic acid resin, 10-30 pts.wt. benzyl alkyl glycol adipate and 1-5 pts.wt. hydrolysis inhibitor and having 1×10<SP>3</SP>-10×10<SP>3</SP>Pa s at 10 s<SP>-1</SP>shear rate at 180°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生分解性可塑剤を含んだポリ乳酸樹脂組成物からなるフィルム、及びその製造方法に関する。さらに詳しくは、生分解性可塑剤を含んで実用的な柔軟性と強度とを兼ね備えた生分解性のポリ乳酸樹脂組成物からなるフィルム、及びその製造方法に関する。   The present invention relates to a film comprising a polylactic acid resin composition containing a biodegradable plasticizer, and a method for producing the film. More specifically, the present invention relates to a film made of a biodegradable polylactic acid resin composition containing a biodegradable plasticizer and having practical flexibility and strength, and a method for producing the film.

樹脂フィルムの成形方法としてはインフレーション成形、Tダイ式フィルム押出成形、押出ラミネーション成形等が挙げられる。中でもインフレーション成形法は他の成形法と比較して、コンパクトな装置で行え、少量多品種の生産性に優れ、低コストである。また、得られるフィルム形状が袋状(シームレス状)であるため、食品包装用の袋やバッグ等の製造に好適である。
従来、フィルムを製造する時に使用される樹脂としては、柔軟性と強度とを兼ね備えた、ポリエチレン、ポリプロピレン、軟質ポリ塩化ビニル、ポリエチレンテレフタレート等の樹脂が知られており、これらはゴミ袋、包装袋等に使用されている。しかしながら、これらの樹脂は使用後廃棄する際、埋設処理しても自然環境下で殆ど分解されないために、半永久的に地中に残留して、環境を破壊する。また、海洋投棄により海洋生物の生活環境が破壊される。さらに、投棄されたこれらの樹脂類により、景観が損なわれるといった問題が起こっている。
Examples of the resin film molding method include inflation molding, T-die film extrusion molding, and extrusion lamination molding. In particular, the inflation molding method can be performed with a compact apparatus, is superior in productivity for a small variety of products, and is low in cost as compared with other molding methods. Moreover, since the film shape obtained is a bag shape (seamless shape), it is suitable for manufacture of the bag for food packaging, a bag, etc.
Conventionally, as a resin used when manufacturing a film, resins such as polyethylene, polypropylene, soft polyvinyl chloride, and polyethylene terephthalate having both flexibility and strength are known, and these are garbage bags and packaging bags. Etc. are used. However, when these resins are disposed after use, they are hardly decomposed in the natural environment even if they are buried, so that they remain in the ground semipermanently and destroy the environment. In addition, the abandonment of the ocean destroys the living environment of marine life. Furthermore, the problem that the scenery is damaged by these discarded resins has occurred.

このような問題を解決する樹脂として、熱可塑性樹脂で生分解性を有するポリマーである、ポリ乳酸、乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、脂肪族多価アルコールと脂肪族多価カルボン酸とから誘導されるポリエステル等が知られ、種々の用途の製品の開発が行われている。
これらのポリマーの中で、特にポリ乳酸は、動物の体内で数ヶ月から1年以内に100%生分解し、また土壌や海水中のように湿った環境下では数週間で分解を始め、約1年から数年で消滅する。また、その分解生成物は、人体に無害な乳酸、二酸化炭素、及び水であるという特性を有している。
ポリ乳酸は、近年、原料のL−乳酸が発酵法により大量且つ安価に製造されるようになってきたことや、堆肥中での分解速度が速く、カビに対する抵抗性、食品に対する耐着臭性や耐着色性等の優れた特徴を有することにより、その利用分野の拡大が期待されている。
しかしながら、ポリ乳酸は剛性が高いため、農業用マルチフィルム、食品包装用袋、ゴミ袋などのフィルム又は包装材のように、特に柔軟性が要求される用途には適切な樹脂とは言い難い。
As a resin for solving such problems, polylactic acid, a copolymer of lactic acid and other aliphatic hydroxycarboxylic acid, an aliphatic polyhydric alcohol and an aliphatic polyvalent carboxylic acid, which are thermoplastic resins and biodegradable polymers. Polyesters derived from acids are known, and products for various uses have been developed.
Among these polymers, polylactic acid, in particular, biodegrades 100% within a few months to a year within the animal body, and begins to degrade in a few weeks in moist environments such as soil and seawater. It will disappear in 1 to several years. In addition, the decomposition product has characteristics that it is lactic acid, carbon dioxide, and water that are harmless to the human body.
In recent years, polylactic acid has been produced in a large amount and at low cost by the fermentation method of L-lactic acid as a raw material, and has a high decomposition rate in compost, resistance to mold, and odor resistance to foods. It has been expected to expand its application field by having excellent characteristics such as color resistance.
However, since polylactic acid has high rigidity, it is difficult to say that it is an appropriate resin for applications that require flexibility, such as agricultural multi-films, food packaging bags, garbage bags, and other films or packaging materials.

一般に、樹脂を軟質化する技術として、可塑剤の添加や、軟質ポリマーのブレンド等の方法が知られている。
しかし、可塑剤を添加する方法は、樹脂組成物に十分な柔軟性を付与できたとしても、樹脂組成物の溶融粘度が低下し、その結果、インフレーション成形によるフィルム製造が困難になる。加えて、可塑剤を添加する方法では、可塑剤がブリードアウトするといった問題が生じるため、この方法を実用化するにはいくつもの課題を解決しなければならない。
In general, as a technique for softening a resin, methods such as adding a plasticizer and blending soft polymers are known.
However, even if the method of adding a plasticizer can give sufficient flexibility to the resin composition, the melt viscosity of the resin composition decreases, and as a result, film production by inflation molding becomes difficult. In addition, the method of adding a plasticizer has a problem that the plasticizer bleeds out. Therefore, in order to put this method into practical use, several problems must be solved.

一方、軟質ポリマーをブレンドする方法は、生分解性を考慮すると、ブレンドする樹脂は柔軟性を有する生分解性樹脂に限定される。この様な樹脂としては、例えばポリブチレンサクシネート、ポリエチレンサクシネート、ポリカプロラクトン等が挙げられる。例えば、特許文献1及び特許文献2に、ポリ乳酸にこれらの軟質ポリマーをブレンドした樹脂組成物が開示されている。しかし、この方法では、ポリ乳酸に十分な柔軟性(例えば、弾性率が1000MPa以下)を付与するには、軟質ポリマーを多量に添加する必要がある。例えば、ポリブチレンサクシネートは、全体の60重量%以上添加する必要があり、その結果、前述したポリ乳酸の特長を損なってしまう。   On the other hand, in the method of blending soft polymers, considering the biodegradability, the resin to be blended is limited to a biodegradable resin having flexibility. Examples of such a resin include polybutylene succinate, polyethylene succinate, polycaprolactone, and the like. For example, Patent Document 1 and Patent Document 2 disclose resin compositions obtained by blending these soft polymers with polylactic acid. However, in this method, it is necessary to add a large amount of a soft polymer in order to impart sufficient flexibility (for example, an elastic modulus of 1000 MPa or less) to polylactic acid. For example, polybutylene succinate needs to be added in an amount of 60% by weight or more of the whole, and as a result, the above-mentioned features of polylactic acid are impaired.

ポリ乳酸系樹脂をインフレーション成形でフィルム化する方法は、例えば、特許文献3〜5に開示されている。しかし、これらの文献に記載の方法では、ポリ乳酸と他の脂肪族エステルとのアロイを使用しており、ポリ乳酸単独の樹脂のフィルム化ではないため、ポリ乳酸の特性を損なうという問題がある。
このように、現状では、他の樹脂を併用することなく、樹脂としてポリ乳酸のみを使用して、インフレーション成形により、実用的な強度と柔軟性とを兼ね備えたフィルムを製造する方法は開発されていない。
For example, Patent Documents 3 to 5 disclose methods for forming a polylactic acid resin into a film by inflation molding. However, the methods described in these documents use an alloy of polylactic acid and other aliphatic esters, and are not formed into a film of a resin of polylactic acid alone, so that there is a problem that the characteristics of polylactic acid are impaired. .
Thus, at present, a method for producing a film having both practical strength and flexibility by inflation molding using only polylactic acid as a resin without using any other resin has been developed. Absent.

特開平8−245866号公報JP-A-8-245866 特開平9−111107号公報JP-A-9-111107 WO1999/45067号公報WO 1999/45067 特許第3510218号公報Japanese Patent No. 3510218 特開平11−116788号公報JP-A-11-116788

本発明は、ポリ乳酸樹脂組成物からなる実用的な柔軟性と強度とを兼ね備えたフィルム、及びそのインフレーション法による製造方法を提供することを課題とする。   An object of the present invention is to provide a film comprising a polylactic acid resin composition having practical flexibility and strength, and a production method thereof by an inflation method.

本発明者らは、上記課題を解決するために鋭意検討した結果、ポリ乳酸にベンジルアルキルジグリコールアジペート及び加水分解防止剤を特定比率で添加したポリ乳酸樹脂組成物であって、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・sであるものがインフレーション成形に適し、インフレーション成形により実用的な柔軟性と強度とを兼ね備えたフィルムが得られることを見出した。 As a result of diligent studies to solve the above problems, the present inventors are a polylactic acid resin composition in which benzylalkyldiglycol adipate and a hydrolysis inhibitor are added to polylactic acid at a specific ratio, at a temperature of 180 ° C., A film having a melt viscosity of 1 × 10 3 to 10 × 10 3 Pa · s at a shear rate of 10 s -1 is suitable for inflation molding, and a film having practical flexibility and strength can be obtained by inflation molding. I found it.

本発明は、上記知見に基づき完成されたものであり、以下の各項のポリ乳酸系樹脂フィルム、及びその製造方法を提供する。
項1. ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部、及び加水分解防止剤を1〜5重量部含み、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・sであるポリ乳酸樹脂組成物を含むフィルム。
項2. 加水分解防止剤がカルボジイミド化合物である項1記載のフィルム。
項3. 更に、ポリ乳酸樹脂100重量部に対して結晶核剤を0.3〜1重量部含む項1または2記載のフィルム。
項4. 結晶核剤がトリメシン酸系化合物である項3に記載のフィルム。
項5. 引っ張り強度が10〜40MPaであり、引っ張り弾性率が100〜1000MPaであり、且つ破断時伸びが100〜400%である項1〜4の何れかに記載のフィルム。
This invention is completed based on the said knowledge, and provides the polylactic acid-type resin film of the following each item, and its manufacturing method.
Item 1. 100 parts by weight of polylactic acid resin, 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and 1 to 5 parts by weight of hydrolysis inhibitor, melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 is 1 × 10 3 A film comprising a polylactic acid resin composition of ˜10 × 10 3 Pa · s.
Item 2. Item 2. The film according to Item 1, wherein the hydrolysis inhibitor is a carbodiimide compound.
Item 3. Item 3. The film according to Item 1 or 2, further comprising 0.3 to 1 part by weight of a crystal nucleating agent based on 100 parts by weight of the polylactic acid resin.
Item 4. Item 4. The film according to Item 3, wherein the crystal nucleating agent is a trimesic acid compound.
Item 5. Item 5. The film according to any one of Items 1 to 4, wherein the film has a tensile strength of 10 to 40 MPa, a tensile elastic modulus of 100 to 1000 MPa, and an elongation at break of 100 to 400%.

項6. インフレーション成形により成形された項1〜5のいずれかに記載のフィルム。
項7. ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部、及び加水分解防止剤を1〜5重量部含み、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・sであるポリ乳酸樹脂組成物をインフレーション法により成形する、ポリ乳酸系樹脂フィルムの製造方法。
項8. 加水分解防止剤がカルボジイミド化合物である項7記載の方法。
項9. ポリ乳酸組成物に、更に、ポリ乳酸樹脂100重量部に対して結晶核剤が0.3〜1重量部含まれる項7または8記載の方法。
項10. 結晶核剤がトリメシン酸系化合物である項9に記載の方法。
Item 6. Item 6. The film according to any one of Items 1 to 5, which is formed by inflation molding.
Item 7. 100 parts by weight of polylactic acid resin, 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and 1 to 5 parts by weight of hydrolysis inhibitor, melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 is 1 × 10 3 A method for producing a polylactic acid-based resin film, comprising molding a polylactic acid resin composition of ˜10 × 10 3 Pa · s by an inflation method.
Item 8. Item 8. The method according to Item 7, wherein the hydrolysis inhibitor is a carbodiimide compound.
Item 9. Item 9. The method according to Item 7 or 8, wherein the polylactic acid composition further comprises 0.3 to 1 part by weight of a crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin.
Item 10. Item 10. The method according to Item 9, wherein the crystal nucleating agent is a trimesic acid compound.

本発明のフィルムは、ベンジルアルキルジグリコールアジペート及び加水分解防止剤を特定比率で含み、かつ温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・s程度であることにより、ポリ乳酸を基材樹脂としながらも、実用上十分な柔軟性と強度とを兼ね備えたものとなる。また、インフレーション成形により容易に製造することができる。 The film of the present invention contains benzyl alkyl diglycol adipate and a hydrolysis inhibitor at a specific ratio, and has a melt viscosity of about 1 × 10 3 to 10 × 10 3 Pa · s at a temperature of 180 ° C. and a shear rate of 10 s −1 . As a result, while using polylactic acid as a base resin, it has both practically sufficient flexibility and strength. Moreover, it can manufacture easily by inflation molding.

以下、本発明を詳細に説明する。
(I)フィルム
本発明のフィルムは、ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部程度、及び加水分解防止剤を1〜5重量部程度含み、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・s程度であるポリ乳酸樹脂組成物を含むフィルムである。
Hereinafter, the present invention will be described in detail.
(I) Film The film of the present invention contains 100 parts by weight of a polylactic acid resin, about 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and about 1 to 5 parts by weight of a hydrolysis inhibitor, at a temperature of 180 ° C., shear The film includes a polylactic acid resin composition having a melt viscosity of about 1 × 10 3 to 10 × 10 3 Pa · s at a speed of 10 s −1 .

ポリ乳酸樹脂
ポリ乳酸の原料モノマーは特に限定されず、L−乳酸、D−乳酸、DL−乳酸、それらの混合物、及び乳酸の環状2量体であるラクタイドなどの公知のモノマーを挙げることができる。ポリ乳酸は複数種のモノマーを重合させたものであってもよい。乳酸は、砂糖、スターチ等の再生可能な資源を発酵することにより得られる点で、生分解性脂肪族ポリエステル樹脂の中でも有用な原料である。
ポリ乳酸の重量平均分子量は、1万〜100万程度が好ましく、3万〜60万程度がより好ましく、5万〜40万程度が更に好ましい。重量平均分子量が前記範囲であれば、機械的強度が十分であり、かつ加工性に優れる。本発明において重量平均分子量はゲルパーミエーションクロマトグラフィーにより測定した値である。具体的には、ゲルパーミエーションクロマトグラフィーは、東ソー株式会社製HLC−8020を使用し、カラムは同社のKF803L×1及びKF806L×2を直列に連結して使用し、解析は同社のAS-802を使用して流速1ml/分間の条件で行い、分子量既知のポリスチレンを標準試料に用いて測定を行った。
このようなポリ乳酸の具体例として、三井化学株式会社製「レイシア」シリーズ、ユニチカ株式会社製「テラマック」シリーズ等が挙げられる。
The raw material monomer of the polylactic acid resin polylactic acid is not particularly limited, and examples thereof include known monomers such as L-lactic acid, D-lactic acid, DL-lactic acid, mixtures thereof, and lactide which is a cyclic dimer of lactic acid. . Polylactic acid may be obtained by polymerizing a plurality of types of monomers. Lactic acid is a useful raw material among biodegradable aliphatic polyester resins in that it can be obtained by fermenting renewable resources such as sugar and starch.
The weight average molecular weight of polylactic acid is preferably about 10,000 to 1,000,000, more preferably about 30,000 to 600,000, and still more preferably about 50,000 to 400,000. When the weight average molecular weight is in the above range, the mechanical strength is sufficient and the processability is excellent. In the present invention, the weight average molecular weight is a value measured by gel permeation chromatography. Specifically, the gel permeation chromatography uses HLC-8020 manufactured by Tosoh Corporation, the column uses KF803L × 1 and KF806L × 2 of the company connected in series, and the analysis is performed by AS-802 of the company. Was measured using a polystyrene with a known molecular weight as a standard sample.
Specific examples of such polylactic acid include “Lacia” series manufactured by Mitsui Chemicals, Inc., “Teramac” series manufactured by Unitika Ltd., and the like.

ベンジルアルキルジグリコールアジペート
ベンジルアルキルジグリコールアジペートは可塑剤としての効果がある。ベンジルアルキルジグリコールアジペートのアルキル基は、直鎖状又は分岐鎖状のいずれであってもよいが、直鎖状が好ましい。また、アルキル基の炭素数は1〜20が好ましく、1〜8がより好ましく、1〜4がさらにより好ましい。特に直鎖状の炭素数1〜4のアルキル基を有する、ベンジルメチルジグリコールアジペート、ベンジルエチルジグリコールアジペート、ベンジルn-プロピルジグリコールアジペート、及びベンジルn-ブチルジグリコールアジペートが好ましい。
ベンジルアルキルジグリコールアジペートの含有量はポリ乳酸樹脂100重量部に対して10〜30重量部程度が好ましく、12〜28重量部程度がより好ましく、15〜26重量部程度がさらにより好ましい。上記範囲であれば、実用上十分な柔軟性を有するフィルムが得られ、かつインフレーション成形に適した強度の樹脂組成物が得られる。
Benzyl alkyl diglycol adipate Benzyl alkyl diglycol adipate is effective as a plasticizer. The alkyl group of benzylalkyldiglycol adipate may be either linear or branched, but is preferably linear. Moreover, 1-20 are preferable, as for carbon number of an alkyl group, 1-8 are more preferable, and 1-4 are still more preferable. Particularly preferred are benzyl methyl diglycol adipate, benzyl ethyl diglycol adipate, benzyl n-propyl diglycol adipate, and benzyl n-butyl diglycol adipate having a linear alkyl group having 1 to 4 carbon atoms.
The content of benzyl alkyl diglycol adipate is preferably about 10 to 30 parts by weight, more preferably about 12 to 28 parts by weight, and still more preferably about 15 to 26 parts by weight with respect to 100 parts by weight of the polylactic acid resin. If it is the said range, the film which has a practically sufficient softness | flexibility will be obtained, and the resin composition of the intensity | strength suitable for inflation molding will be obtained.

加水分解防止剤
加水分解防止剤としては、ポリエステル樹脂の加水分解防止剤として公知の化合物を制限なく使用できる。このような加水分解防止剤としては、カルボジイミド化合物、オキソゾリン系化合物およびイソシアネート化合物などが挙げられる。中でも好ましいのはカルボジイミド化合物である。
カルボジイミド化合物は、ポリ乳酸系樹脂の末端カルボン酸と架橋反応することにより、ポリ乳酸系樹脂の加水分解を抑制する効果を示す。カルボジイミド化合物としては、分子内に1個以上のカルボジイミド基を有する限り、特に制限はなく、従来公知の方法に従って、例えば、イソシアナート化合物より脱炭酸反応で合成されたものを使用することができる。又、市販されているものを使用してもよい。
As a hydrolysis inhibitor, a compound known as a hydrolysis inhibitor for polyester resins can be used without limitation. Examples of such hydrolysis inhibitors include carbodiimide compounds, oxozoline compounds, and isocyanate compounds. Of these, carbodiimide compounds are preferred.
The carbodiimide compound exhibits an effect of suppressing hydrolysis of the polylactic acid resin by performing a crosslinking reaction with the terminal carboxylic acid of the polylactic acid resin. The carbodiimide compound is not particularly limited as long as it has one or more carbodiimide groups in the molecule. For example, a carbodiimide compound synthesized by a decarboxylation reaction from an isocyanate compound according to a conventionally known method can be used. Moreover, you may use what is marketed.

このようなカルボジイミド化合物は、下記一般式(1)の基本構造を有するものである。
−(N=C=N−R−)n− (1)

(上記式(1)において、nは1以上の整数を示す。また、Rは、脂肪族、脂環族、芳香族から選ばれる有機系結合単位を示す。)
Such a carbodiimide compound has a basic structure represented by the following general formula (1).
-(N = C = N-R-) n- (1)

(In the above formula (1), n represents an integer of 1 or more. R represents an organic bond unit selected from aliphatic, alicyclic, and aromatic.)

分子内にカルボジイミド基を1個有するモノカルボジイミド化合物(上記式(1)においてnが1である化合物)としては、ジイソプロピルカルボジイミド、ジシクロヘキシルカルボジイミド、ジオクチルカルボジイミド等の脂肪族又は脂環族モノカルボジイミド、ジフェニルカルボジイミド等の芳香族モノカルボジイミド等を例示することができる。
分子内に2個以上のカルボジイミド基を有するポリカルボジイミドの合成におけるイソシアナート化合物(上記式(1)においてnが2以上である化合物)としては、1,3−フェニレンジイソシアナート、1,4−フェニレンジイソシアナート、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、テトラメチルキシリレンジイソシアナート、4,4’−ジフェニルメタンジイソシアナート、4,4’−ジフェニルジメチルメタンジイソシアナート等芳香族ジイソシアナート;1,4−シクロヘキサンジイソシアナート、1−メチル−2,4−シクロヘキサンジイソシアナート、1−メチル−2,6−シクロヘキサンジイソシアナート、イソホロンジイソシアナート、4,4’−ジシクロヘキシルメタンジイソシアナート、ヘキサメチレンジイソシアナート等の脂肪族又は脂環族ジイソシアナート等が例示される。ポリカルボジイミドは、末端に残存するイソシアナート基の全て、又は一部が封止されているものでよく、かかる封止剤としては、シクロヘキシルイソシアナート、フェニルイソシアナート、トリルイソシアナート等のモノイソシアナート化合物;水酸基、アミノ基等の活性水素を有する化合物等が例示される。
Monocarbodiimide compounds having one carbodiimide group in the molecule (compounds where n is 1 in the above formula (1)) include aliphatic or alicyclic monocarbodiimides such as diisopropylcarbodiimide, dicyclohexylcarbodiimide, dioctylcarbodiimide, and diphenylcarbodiimide. Aromatic monocarbodiimide and the like can be exemplified.
As an isocyanate compound (a compound in which n is 2 or more in the above formula (1)) in the synthesis of a polycarbodiimide having two or more carbodiimide groups in the molecule, 1,3-phenylene diisocyanate, 1,4- Phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate Aromatic diisocyanates such as narate; 1,4-cyclohexane diisocyanate, 1-methyl-2,4-cyclohexane diisocyanate, 1-methyl-2,6-cyclohexane diisocyanate, isophorone diisocyanate, 4, 4'-dicyclohexylmethane diisocyanate Aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, and the like. Polycarbodiimide may have all or part of the isocyanate group remaining at the end sealed, and as such a sealing agent, monoisocyanate such as cyclohexyl isocyanate, phenyl isocyanate, tolyl isocyanate, etc. Compound: Compounds having active hydrogen such as hydroxyl group and amino group are exemplified.

上記カルボジイミド化合物の中でも、得られる樹脂組成物から成形される成形品の耐加水分解性改善の観点から、分子内に2個以上のカルボジイミド基を有するポリカルボジイミドが好ましく、また、ポリ乳酸系樹脂との相溶性、及び得られる樹脂組成物から成形される成形品の耐加水分解安定性の点から、脂肪族又は脂環族カルボジイミド、脂肪族又は脂環族ジイソシアナートから得られるポリカルボジイミドが好ましい。そのようなポリカルボジイミド化合物の具体例として日清紡績株式会社製カルボジライトLA-1が挙げられる。
加水分解防止剤は1種を単独で、又は複数種を混合して用いることができる。
加水分解防止剤の含有量は、ポリ乳酸樹脂100重量部に対して、1〜5重量部程度が好ましく、2〜5重量部程度がより好ましく、3〜4重量部程度がさらにより好ましい。加水分解防止剤の添加量が上記範囲であれば、分子量の低下による粘度低下が防止され、円滑にインフレーション成形を行うことができる。また、過剰な架橋反応による粘度増大が防止され、円滑にインフレーション成形を行うことができる。
Among the carbodiimide compounds, polycarbodiimide having two or more carbodiimide groups in the molecule is preferable from the viewpoint of improving hydrolysis resistance of a molded product molded from the obtained resin composition. From the viewpoint of the compatibility of the above and the hydrolysis resistance of the molded product molded from the resulting resin composition, an aliphatic or alicyclic carbodiimide, a polycarbodiimide obtained from an aliphatic or alicyclic diisocyanate is preferable. . A specific example of such a polycarbodiimide compound is Carbodilite LA-1 manufactured by Nisshinbo Industries, Ltd.
The hydrolysis inhibitor can be used alone or in combination of two or more.
The content of the hydrolysis inhibitor is preferably about 1 to 5 parts by weight, more preferably about 2 to 5 parts by weight, and still more preferably about 3 to 4 parts by weight with respect to 100 parts by weight of the polylactic acid resin. When the addition amount of the hydrolysis inhibitor is within the above range, a decrease in viscosity due to a decrease in molecular weight is prevented, and inflation molding can be performed smoothly. Further, an increase in viscosity due to an excessive crosslinking reaction is prevented, and inflation molding can be performed smoothly.

結晶核剤
ポリ乳酸樹脂組成物には、さらに、結晶核剤が含まれていてもよい。結晶核剤は、ポリ乳酸樹脂組成物に添加される結晶核剤として公知の化合物を制限なく使用できる。このような結晶核剤として、代表的には、トリメシン酸トリアミド化合物が挙げられる。
トリメシン酸トリアミド化合物は、一般式(2)
−(CONHR (2)

(式中、Rはトリメシン酸から全てのカルボキシル基を除いて得られる残基を表す。3個のRは、同一又は異なって、炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基を1〜3個有していてもよいシクロヘキシル基、又は炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基を表す。)
で表される。
The crystal nucleating agent polylactic acid resin composition may further contain a crystal nucleating agent. As the crystal nucleating agent, a known compound can be used without limitation as a crystal nucleating agent added to the polylactic acid resin composition. A typical example of such a crystal nucleating agent is a trimesic acid triamide compound.
The trimesic acid triamide compound has the general formula (2)
R 1- (CONHR 2 ) 3 (2)

(In the formula, R 1 represents a residue obtained by removing all carboxyl groups from trimesic acid. Three R 2 s are the same or different and are linear or branched having 1 to 4 carbon atoms. (It represents a cyclohexyl group optionally having 1 to 3 alkyl groups, or a linear or branched alkyl group having 1 to 4 carbon atoms.)
It is represented by

トリメシン酸トリアミド化合物はどのような方法で製造されたものであってもよく、例えば、トリメシン酸又はその酸クロライドと、炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基を有していてもよいシクロヘキシルアミン、又は炭素数1〜4の直鎖状若しくは分岐鎖状のアルキルアミンとをアミド化することにより得ることができる。   The trimesic acid triamide compound may be produced by any method, for example, having trimesic acid or an acid chloride thereof and a linear or branched alkyl group having 1 to 4 carbon atoms. It can be obtained by amidating cyclohexylamine, which may be used, or a linear or branched alkylamine having 1 to 4 carbon atoms.

上記炭素数1〜4の直鎖状又は分岐鎖状のアルキル基を有していてもよいシクロヘキシルアミンの具体例としては、シクロヘキシルアミン、2−メチルシクロヘキシルアミン、3−メチルシクロヘキシルアミン、4−メチルシクロヘキシルアミン、2−エチルシクロヘキシルアミン、3−エチルシクロヘキシルアミン、4−エチルシクロヘキシルアミン、2−n−プロピルシクロヘキシルアミン、3−n−プロピルシクロヘキシルアミン、4−n−プロピルシクロヘキシルアミン、2−iso−プロピルシクロヘキシルアミン、3−iso−プロピルシクロヘキシルアミン、4−iso−プロピルシクロヘキシルアミン、2−n−ブチルシクロヘキシルアミン、3−n−ブチルシクロヘキシルアミン、4−n−ブチルシクロヘキシルアミン、2−iso−ブチルシクロヘキシルアミン、3−iso−ブチルシクロヘキシルアミン、4−iso−ブチルシクロヘキシルアミン、2−sec−ブチルシクロヘキシルアミン、3−sec−ブチルシクロヘキシルアミン、4−sec−ブチルシクロヘキシルアミン、2−tert−ブチルシクロヘキシルアミン、3−tert−ブチルシクロヘキシルアミン、4−tert−ブチルシクロヘキシルアミン、2,3−ジメチルシクロヘキシルアミン、2,4−ジメチルシクロヘキシルアミン、2,5−ジメチルシクロヘキシルアミン、2,6−ジメチルシクロヘキシルアミン、2,3,4−トリメチルシクロヘキシルアミン、2,3,5−トリメチルシクロヘキシルアミン、2,3,6−トリメチルシクロヘキシルアミン、2,4,6−トリメチルシクロヘキシルアミン、3,4,5−トリメチルシクロヘキシルアミン等が挙げられる。炭素数1〜4の直鎖状又は分岐鎖状のアルキルアミンの具体例としては、メチルアミン、エチルアミン、n−プロピルアミン、iso−プロピルアミン、n−ブチルアミン、iso−ブチルアミン、sec−ブチルアミン、tert−ブチルアミンが挙げられる。   Specific examples of the cyclohexylamine optionally having a linear or branched alkyl group having 1 to 4 carbon atoms include cyclohexylamine, 2-methylcyclohexylamine, 3-methylcyclohexylamine, 4-methyl. Cyclohexylamine, 2-ethylcyclohexylamine, 3-ethylcyclohexylamine, 4-ethylcyclohexylamine, 2-n-propylcyclohexylamine, 3-n-propylcyclohexylamine, 4-n-propylcyclohexylamine, 2-iso-propyl Cyclohexylamine, 3-iso-propylcyclohexylamine, 4-iso-propylcyclohexylamine, 2-n-butylcyclohexylamine, 3-n-butylcyclohexylamine, 4-n-butylcyclohexylamine, -Iso-butylcyclohexylamine, 3-iso-butylcyclohexylamine, 4-iso-butylcyclohexylamine, 2-sec-butylcyclohexylamine, 3-sec-butylcyclohexylamine, 4-sec-butylcyclohexylamine, 2-tert -Butylcyclohexylamine, 3-tert-butylcyclohexylamine, 4-tert-butylcyclohexylamine, 2,3-dimethylcyclohexylamine, 2,4-dimethylcyclohexylamine, 2,5-dimethylcyclohexylamine, 2,6-dimethyl Cyclohexylamine, 2,3,4-trimethylcyclohexylamine, 2,3,5-trimethylcyclohexylamine, 2,3,6-trimethylcyclohexylamine, 2,4,6-trimethyl Chill cyclohexylamine, 3,4,5-trimethyl cyclohexylamine, and the like. Specific examples of the linear or branched alkylamine having 1 to 4 carbon atoms include methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, tert -Butylamine is mentioned.

上記トリメシン酸トリアミド化合物のなかでも、ポリ乳酸系樹脂の結晶化速度向上に特に優れる点で、一般式(3)

Figure 2008260895
(式中、Rは、一般式(2)におけると同義である。Rは、炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基を表す。kは0又は1〜3の整数を表す。)
で表されるシクロヘキサン環を有するトリアミド化合物が好ましい。 Among the above trimesic acid triamide compounds, the compound represented by the general formula (3) is particularly excellent in improving the crystallization speed of the polylactic acid resin.
Figure 2008260895
(In the formula, R 1 has the same meaning as in General Formula (2). R 8 represents a linear or branched alkyl group having 1 to 4 carbon atoms. K is 0 or 1 to 3. Represents an integer.)
The triamide compound which has a cyclohexane ring represented by these is preferable.

この中でも、特にトリメシン酸トリシクロヘキシルアミド、トリメシン酸トリ(2−メチルシクロヘキシルアミド)、トリメシン酸トリ(3−メチルシクロヘキシルアミド)、トリメシン酸トリ(4−メチルシクロヘキシルアミド)、トリメシン酸トリ(2,3−ジメチルシクロヘキシルアミド)が好ましく、特に、トリメシン酸トリシクロヘキシルアミド、トリメシン酸トリ(2−メチルシクロヘキシルアミド)が好ましい。   Among these, in particular, trimesic acid tricyclohexylamide, trimesic acid tri (2-methylcyclohexylamide), trimesic acid tri (3-methylcyclohexylamide), trimesic acid tri (4-methylcyclohexylamide), trimesic acid tri (2,3 -Dimethylcyclohexylamide) is preferable, and trimesic acid tricyclohexylamide and trimesic acid tri (2-methylcyclohexylamide) are particularly preferable.

このようなトリメシン酸トリアミド化合物からなる結晶核剤の具体例として新日本理化株式会社製核剤エヌジェスター TF−1が挙げられる。
結晶核剤は、1種を単独で、又は2種以上を混合して用いることができる。
結晶核剤の含有量はポリ乳酸樹脂100重量部に対して0.3〜1重量部程度が好ましく、0.5〜0.8重量部程度がより好ましく、0.6〜0.7重量部程度がさらにより好ましい。結晶核剤の添加量が上記範囲であれば、成形時に十分に結晶化するため、十分なフィルム強度が得られる。また、透明性が良好で、かつ柔軟性に優れたフィルムが得られる。
As a specific example of the crystal nucleating agent comprising such a trimesic acid triamide compound, there is a nucleating agent NJESTER TF-1 manufactured by Shin Nippon Rika Co., Ltd.
A crystal nucleating agent can be used individually by 1 type or in mixture of 2 or more types.
The content of the crystal nucleating agent is preferably about 0.3 to 1 part by weight, more preferably about 0.5 to 0.8 part by weight, and still more preferably about 0.6 to 0.7 part by weight with respect to 100 parts by weight of the polylactic acid resin. If the amount of the crystal nucleating agent is within the above range, the film is sufficiently crystallized at the time of molding, so that sufficient film strength can be obtained. Also, a film having good transparency and excellent flexibility can be obtained.

その他の添加剤
ポリ乳酸組成物には、必要に応じて、生分解性樹脂組成物に通常添加されるその他の成分を、本発明の効果を損なわない範囲で添加することができる。このような成分として、例えば改質剤、香料、抗菌剤、顔料、染料、耐熱剤、酸化防止剤、耐候剤、滑剤、帯電肪止剤、安定剤、充填剤、強化剤、アンチブロッキング剤、難燃剤、木粉、でんぷん等が挙げられる。
Other additives Other components that are usually added to the biodegradable resin composition can be added to the polylactic acid composition as necessary, as long as the effects of the present invention are not impaired. Examples of such components include modifiers, fragrances, antibacterial agents, pigments, dyes, heat resistance agents, antioxidants, weathering agents, lubricants, antistatic agents, stabilizers, fillers, reinforcing agents, antiblocking agents, Examples include flame retardants, wood flour, and starch.

溶融粘度
ポリ乳酸組成物の溶融粘度は、1×103〜10×103Pa・s程度であり、1×103〜5×103Pa・s程度が好ましく、1.5×103〜4×103Pa・s程度がより好ましい。
本発明において溶融粘度は、温度180℃、せん断速度10s-1における溶融粘度であり、パラレルプレート型レオメーター(パールフィジカ〔Paar Physica〕社製MCR300)を用いて実施例に記載した方法で測定した値である。
溶融粘度が上記範囲であれば、インフレーション成形性が良好になる。また、溶融粘度が余りに高いポリ乳酸組成物は、ポリ乳酸の分子量を大きくしなければ得られないところ、そのような大きな分子量のポリ乳酸は製造し難いため、溶融粘度の上限にも制限がある。
樹脂組成物の成分の種類及びその配合比率を上記説明した範囲から選択し、フィルム製造時の樹脂組成物の混練条件を後述する範囲から選択することにより、上記溶融粘度を有するフィルムが得られる。
The melt viscosity of the polylactic acid composition is about 1 × 10 3 to 10 × 10 3 Pa · s, preferably about 1 × 10 3 to 5 × 10 3 Pa · s, 1.5 × 10 3 to 4 × About 10 3 Pa · s is more preferable.
In the present invention, the melt viscosity is a melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 , and was measured by the method described in the examples using a parallel plate rheometer (MCR300 manufactured by Paar Physica). Value.
If the melt viscosity is in the above range, the inflation moldability will be good. In addition, a polylactic acid composition having an excessively high melt viscosity cannot be obtained unless the molecular weight of the polylactic acid is increased. However, since it is difficult to produce such a polylactic acid having a large molecular weight, the upper limit of the melt viscosity is also limited. .
The film having the above melt viscosity can be obtained by selecting the kind of the component of the resin composition and the blending ratio thereof from the above-described range and selecting the kneading conditions of the resin composition during film production from the range described below.

フィルムの特性
<引っ張り強度>
本発明のフィルムの引っ張り強度は、10〜40MPa程度が好ましく、15〜35MPa程度がより好ましく、18〜27MPa程度がさらにより好ましい。
本発明において、フィルムの引っ張り強度は、JIS規格(JIS K 7127)に基づいて、万能試験機(オートグラフ;株式会社ミネベア製AL-B)を用いて、引っ張り速度10mm/分で引っ張り、測定した値である。
上記の引張り強度の範囲であれば、切れたり破れたりし難く、かつ柔軟性のあるフィルムとなる。
樹脂組成物の成分の種類及びその配合比率を上記説明した範囲から選択することにより、上記引っ張り強度を有するフィルムが得られる。
Film characteristics
<Tensile strength>
The tensile strength of the film of the present invention is preferably about 10 to 40 MPa, more preferably about 15 to 35 MPa, and even more preferably about 18 to 27 MPa.
In the present invention, the tensile strength of the film was measured based on the JIS standard (JIS K 7127) by using a universal testing machine (Autograph; AL-B manufactured by Minebea Co., Ltd.) at a tensile rate of 10 mm / min. Value.
If it is the range of said tensile strength, it will be hard to cut | disconnect or torn and it will become a flexible film.
A film having the tensile strength can be obtained by selecting the types of the components of the resin composition and the mixing ratio thereof from the above-described range.

<引っ張り弾性率>
本発明のフィルムの引っ張り弾性率は、100〜1000MPa程度が好ましく、100〜800MPa程度がより好ましく、110〜650MPa程度がさらにより好ましい。
本発明において、フィルムの引っ張り弾性率は、JIS規格(JIS K 7127)に基づいて、万能試験機(オートグラフ;株式会社ミネベア製AL-B)を用いて、引っ張り速度10mm/分で引っ張り、測定した値である。
引っ張り弾性率が上記範囲であれば、袋として使用としたときに、伸びすぎないため内容物の位置を固定することができ、また袋の下の面の凹凸の影響を受けて内容物に悪影響を与えるということがない。また、引っ張り弾性率が上記範囲であれば、フィルムが十分な柔軟性を有する。
樹脂組成物の成分の種類及びその配合比率を上記説明した範囲から選択することにより、上記引っ張り弾性率を有するフィルムが得られる。
<Tensile modulus>
The tensile elastic modulus of the film of the present invention is preferably about 100 to 1000 MPa, more preferably about 100 to 800 MPa, and even more preferably about 110 to 650 MPa.
In the present invention, the tensile elastic modulus of the film is measured by pulling at a pulling speed of 10 mm / min using a universal testing machine (Autograph; AL-B manufactured by Minebea Co., Ltd.) based on JIS standard (JIS K 7127). It is the value.
If the tensile elastic modulus is in the above range, the position of the contents can be fixed when used as a bag because it does not stretch too much, and the contents are adversely affected by the unevenness of the lower surface of the bag. Never give. Moreover, if a tensile elasticity modulus is the said range, a film has sufficient softness | flexibility.
By selecting the type of the component of the resin composition and the blending ratio thereof from the above-described range, a film having the tensile elastic modulus can be obtained.

<破断時伸び>
本発明のフィルムの破断時伸びは、100〜400%程度が好ましく、125〜375%程度がより好ましく、150〜350%程度がさらにより好ましい。
本発明において、フィルムの破断時伸びは、JIS規格(JIS K 7127)に基づいて、万能試験機(オートグラフ;株式会社ミネベア製AL-B)を用いて、引っ張り速度10mm/分で引っ張り、測定した値である。
上記破断時伸びの範囲であれば、実用上十分な自由度を有するフィルムとなり、かつ実用的なフィルムの形状安定性が得られる。
本発明のフィルムは、生分解性を有することを特徴としているが、さらに上記の引っ張り強度、引っ張り弾性率、及び破断時伸びを有するときは、柔軟性、強度および破断時伸びのバランスに一層優れたものとなる。
<Elongation at break>
The elongation at break of the film of the present invention is preferably about 100 to 400%, more preferably about 125 to 375%, and still more preferably about 150 to 350%.
In the present invention, the elongation at break of the film is measured by pulling at a pulling speed of 10 mm / min using a universal testing machine (Autograph; AL-B manufactured by Minebea Co., Ltd.) based on JIS standard (JIS K 7127). It is the value.
If it is the range of the said elongation at the time of a fracture | rupture, it will become a film which has practically sufficient freedom degree, and the shape stability of a practical film will be acquired.
The film of the present invention is characterized by having biodegradability, but when it has the above-described tensile strength, tensile elastic modulus, and elongation at break, it is further excellent in the balance of flexibility, strength, and elongation at break. It will be.

厚み
フィルムの厚みは、用途によって異なるが、通常10〜500μm程度とすることができる。
The thickness of the thick film varies depending on the application, but can usually be about 10 to 500 μm.

(II)フィルムの製造方法
本発明のポリ乳酸系樹脂組成物フィルムの製造方法は、ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部、及び加水分解防止剤を1〜5重量部含み、温度180℃、せん断速度10s-1の溶融粘度が1×103〜10×103Pa・sであるポリ乳酸樹脂組成物をインフレーション法により成形する方法である。
本発明方法によれば、実用的な柔軟性と強度とを兼ね備えたポリ乳酸系樹脂フィルムが得られる。
インフレーション成形に供する樹脂組成物は、上記成分を混合した後、150〜250℃程度、好ましくは160〜200℃程度の温度で、小型二軸押出機を用い、吐出量が1〜20kg/時間程度、好ましくは2〜10kg/時間程度混練すればよい。
インフレーション成形時のポリ乳酸樹脂組成物の温度は、それが溶融する温度であればよく特に限定されないが、通常140〜200℃程度とすればよく、150〜180℃程度がより好ましい。
(II) Film Production Method The polylactic acid resin composition film production method of the present invention comprises 100 parts by weight of polylactic acid resin, 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and 1 to 1 part of hydrolysis inhibitor. In this method, a polylactic acid resin composition containing 5 parts by weight, having a melt viscosity of 1 × 10 3 to 10 × 10 3 Pa · s at a temperature of 180 ° C. and a shear rate of 10 s −1 is molded by an inflation method.
According to the method of the present invention, a polylactic acid resin film having practical flexibility and strength can be obtained.
After mixing the above components, the resin composition used for inflation molding is about 150 to 250 ° C., preferably about 160 to 200 ° C., using a small twin screw extruder, and the discharge rate is about 1 to 20 kg / hour. The kneading is preferably performed at about 2 to 10 kg / hour.
The temperature of the polylactic acid resin composition at the time of inflation molding is not particularly limited as long as it is a temperature at which it melts. Usually, it may be about 140 to 200 ° C, and more preferably about 150 to 180 ° C.

以下、実施例を示して本発明をより詳しく説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in more detail, this invention is not limited to these.

(1)材料
ポリ乳酸:三井化学株式会社製レイシアH-400
可塑剤:ベンジルメチルジグリコールアジペート
(大八化学工業株式会社製 SN0213)
加水分解防止剤:カルボジイミド系変性イソシアネート
(日清紡績株式会社製カルボジライトLA-1)
結晶核剤:新日本理化株式会社製核剤エヌジェスターTF−1
(1) Materials <br/> Polylactic acid: Lacia H-400 manufactured by Mitsui Chemicals, Inc.
Plasticizer: benzyl methyl diglycol adipate
(SN0213 manufactured by Daihachi Chemical Industry Co., Ltd.)
Hydrolysis inhibitor: Carbodiimide modified isocyanate
(Nisshinbo Co., Ltd. Carbodilite LA-1)
Crystal nucleating agent: New Japan Rika Co., Ltd. nucleating agent NJester TF-1

(2)フィルムの作製方法
混練方法
後掲の表1に示す比率で、ポリ乳酸に各成分を混合し、二軸押出機を用いて混練温度を160℃に設定し、混練を行った。ここで、実施例1〜5、及び比較例3〜6では、あらかじめ、室温でミキサーを用いて各成分を混合した後、二軸押出機に投入したが、比較例2では、各成分をそのまま二軸押出機に投入した。
(2) Film production method
Kneading method Each component was mixed with polylactic acid at the ratio shown in Table 1 below, and kneading was performed at a kneading temperature of 160 ° C. using a twin screw extruder. Here, in Examples 1 to 5 and Comparative Examples 3 to 6, each component was mixed in advance using a mixer at room temperature and then charged into a twin-screw extruder. In Comparative Example 2, each component was left as it was. It put into the twin screw extruder.

溶融粘度の測定
前記混練方法で混練した樹脂組成物をパラレルプレート型レオメーター(パールフィジカ〔Paar Physica〕社製MCR300)を用いて測定した。具体的には、パラレルプレート型レオメーターの測定位置に各々の樹脂組成物を置き、210℃で融解した後、直径25mmのパラレルプレートを隙間が1mmになるべくセットし、パラレルプレート全体の温度を210℃から80℃まで、2℃/分の速度で降温しながら、温度180℃、せん断速度10s-1における溶融粘度を測定した。
(180℃で0.5秒間に5回測定した平均値)
Measurement of melt viscosity The resin composition kneaded by the kneading method was measured using a parallel plate rheometer (MCR300 manufactured by Paar Physica). Specifically, each resin composition is placed at the measurement position of a parallel plate rheometer, melted at 210 ° C., and then a parallel plate with a diameter of 25 mm is set so that the gap is 1 mm. The melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 was measured while lowering the temperature from 0 ° C. to 80 ° C. at a rate of 2 ° C./min.
(Average value measured 5 times in 0.5 seconds at 180 ° C)

成形方法
上記の方法で作製した種々の成形材料を、インフレーション成形機(吉井鉄工(株)製YEI-S45-60-R)を用いて、バレル温度を170℃に設定して、フィルムに成形した。
フィルム成形性の評価
各例のインフレーション成形について、成形時の状態を以下の基準で評価した。
○:成形性良好、即ちきれいに成形できた。
△:成形可能、即ちフィルムを引き出せるが、柔軟性が悪く歪な形となった。
×:成形不可能、即ちフィルムを引き出せなかった。
各例の成分の配合比率、溶融粘度、及び成形性評価の結果を表1に示す。
Molding method Various molding materials prepared by the above method were molded into a film using an inflation molding machine (YEI-S45-60-R manufactured by Yoshii Tekko Co., Ltd.) at a barrel temperature of 170 ° C. .
Evaluation of Film Formability For inflation molding in each example, the state during molding was evaluated according to the following criteria.
○: Good moldability, that is, it was able to be molded neatly.
(Triangle | delta): It can shape | mold, ie, a film can be pulled out, but it became a distorted form because of poor flexibility.
X: Molding was impossible, that is, the film could not be pulled out.
Table 1 shows the blending ratio of components in each example, the melt viscosity, and the results of moldability evaluation.

Figure 2008260895
Figure 2008260895

溶融粘度は、実施例1〜5及び比較例6では、1×103〜10×103MPaの間の値であった。
実施例1〜5、並びに比較例1及び6では、厚さ40〜200μmのフィルムが成形でき、特に実施例1〜5の成形性が良好であった。一方、比較例1では、かろうじて成形可能であり、比較例2〜5はフィルム成形出来なかった。
In Examples 1 to 5 and Comparative Example 6, the melt viscosity was a value between 1 × 10 3 and 10 × 10 3 MPa.
In Examples 1 to 5 and Comparative Examples 1 and 6, films having a thickness of 40 to 200 μm could be formed, and the moldability of Examples 1 to 5 was particularly good. On the other hand, Comparative Example 1 was barely moldable, and Comparative Examples 2 to 5 could not be film-formed.

フィルムの物性評価
次に、実施例1〜5、並びに比較例1及び6により得られたフィルムについて、引っ張り強度、引っ張り弾性率、破断時伸びを評価した。
引っ張り強度、引っ張り弾性率、破断時伸びは、万能試験機(オートグラフ)として(株)ミネベア製AL-Bを用い、JIS規格(JIS K 7127)に従い、JIS K 6781で指定された形状のダンベル型試験片を引っ張り速度10mm/分で引っ張り、評価した。
物性評価の結果を表2に示す。表2中、MDはインフレーションの筒の長手方向への引っ張り方向を表し、TDはインフレーションの筒の周方向への引っ張り方向を表す。
Evaluation of Physical Properties of Film Next, the tensile strength, tensile elastic modulus, and elongation at break were evaluated for the films obtained in Examples 1 to 5 and Comparative Examples 1 and 6.
The tensile strength, tensile modulus, and elongation at break are dumbbells specified by JIS K 6781 according to JIS standard (JIS K 7127) using AL-B manufactured by Minebea Co., Ltd. as a universal testing machine (autograph). The mold specimen was pulled at a pulling speed of 10 mm / min for evaluation.
The results of physical property evaluation are shown in Table 2. In Table 2, MD represents the pulling direction of the inflation tube in the longitudinal direction, and TD represents the pulling direction of the inflation tube in the circumferential direction.

Figure 2008260895
Figure 2008260895

実施例1〜4により得られたフィルムは、実用的な引っ張り強度(10〜40MPa)、及び弾性率(100〜1000MPa)を兼ね備えた上に、破断時伸びも比較例1及び6が20%前後であるのと比べて、100%以上と飛躍的に伸びる結果となった。   The films obtained in Examples 1 to 4 have practical tensile strength (10 to 40 MPa) and elastic modulus (100 to 1000 MPa), and the elongation at break is about 20% in Comparative Examples 1 and 6. Compared to that, it has increased dramatically to over 100%.

本発明のフィルムは、インフレーション成形により容易に製造できるものであり、実用的な柔軟性と強度とを兼ね備えているため、農業用マルチフィルム、食品包装用袋、ゴミ袋等として好適に使用できる。   The film of the present invention can be easily produced by inflation molding and has practical flexibility and strength, and therefore can be suitably used as an agricultural multi-film, a food packaging bag, a garbage bag, and the like.

Claims (10)

ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部、及び加水分解防止剤を1〜5重量部含み、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・sであるポリ乳酸樹脂組成物を含むフィルム。 100 parts by weight of polylactic acid resin, 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and 1 to 5 parts by weight of hydrolysis inhibitor, melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 is 1 × 10 3 A film comprising a polylactic acid resin composition of ˜10 × 10 3 Pa · s. 加水分解防止剤がカルボジイミド化合物である請求項1記載のフィルム。   The film according to claim 1, wherein the hydrolysis inhibitor is a carbodiimide compound. 更に、ポリ乳酸樹脂100重量部に対して結晶核剤を0.3〜1重量部含む請求項1または2記載のフィルム。   Furthermore, the film of Claim 1 or 2 which contains 0.3-1 weight part of crystal nucleating agents with respect to 100 weight part of polylactic acid resin. 結晶核剤がトリメシン酸系化合物である請求項3に記載のフィルム。   The film according to claim 3, wherein the crystal nucleating agent is a trimesic acid compound. 引っ張り強度が10〜40MPaであり、引っ張り弾性率が100〜1000MPaであり、且つ破断時伸びが100〜400%である請求項1〜4の何れかに記載のフィルム。   The film according to any one of claims 1 to 4, wherein the film has a tensile strength of 10 to 40 MPa, a tensile modulus of 100 to 1000 MPa, and an elongation at break of 100 to 400%. インフレーション成形により成形された請求項1〜5のいずれかに記載のフィルム。   The film according to any one of claims 1 to 5, which is formed by inflation molding. ポリ乳酸樹脂を100重量部、ベンジルアルキルジグリコールアジペートを10〜30重量部、及び加水分解防止剤を1〜5重量部含み、温度180℃、せん断速度10s-1における溶融粘度が1×103〜10×103Pa・sであるポリ乳酸樹脂組成物をインフレーション法により成形する、ポリ乳酸系樹脂フィルムの製造方法。 100 parts by weight of polylactic acid resin, 10 to 30 parts by weight of benzyl alkyl diglycol adipate, and 1 to 5 parts by weight of hydrolysis inhibitor, melt viscosity at a temperature of 180 ° C. and a shear rate of 10 s −1 is 1 × 10 3 A method for producing a polylactic acid-based resin film, comprising molding a polylactic acid resin composition of ˜10 × 10 3 Pa · s by an inflation method. 加水分解防止剤がカルボジイミド化合物である請求項7記載の方法。   The method according to claim 7, wherein the hydrolysis inhibitor is a carbodiimide compound. ポリ乳酸組成物に、更に、ポリ乳酸樹脂100重量部に対して結晶核剤が0.3〜1重量部含まれる請求項7または8記載の方法。   The method according to claim 7 or 8, wherein the polylactic acid composition further comprises 0.3 to 1 part by weight of a crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin. 結晶核剤がトリメシン酸系化合物である請求項9に記載の方法。   The method according to claim 9, wherein the crystal nucleating agent is a trimesic acid-based compound.
JP2007106256A 2007-04-13 2007-04-13 Polylactic acid resin film and method for producing the same Active JP5283348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106256A JP5283348B2 (en) 2007-04-13 2007-04-13 Polylactic acid resin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106256A JP5283348B2 (en) 2007-04-13 2007-04-13 Polylactic acid resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008260895A true JP2008260895A (en) 2008-10-30
JP5283348B2 JP5283348B2 (en) 2013-09-04

Family

ID=39983618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106256A Active JP5283348B2 (en) 2007-04-13 2007-04-13 Polylactic acid resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5283348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166906A (en) * 2012-02-14 2013-08-29 Konno:Kk Flexible polylactic acid-based resin composition
JP2014001320A (en) * 2012-06-19 2014-01-09 Kao Corp Stretched film comprising polylactic acid resin composition
WO2014061644A1 (en) 2012-10-19 2014-04-24 ダイセルポリマー株式会社 Cellulose ester composition
WO2014208403A1 (en) * 2013-06-27 2014-12-31 地方独立行政法人 大阪市立工業研究所 Process for manufacturing polylactic acid-based resin film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118513A (en) * 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc Lactic acid polymer composition
WO2003042302A1 (en) * 2001-11-15 2003-05-22 New Japan Chemical Co., Ltd. Lactic acid polymer composition and molded object thereof
JP2003183419A (en) * 2001-12-14 2003-07-03 Unitika Ltd Biodegradable synthetic paper and method for producing the same
JP2005023091A (en) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd Biodegradable resin composition
JP2006124446A (en) * 2004-10-27 2006-05-18 C I Kasei Co Ltd Production method of polylactic acid film presenting satin-like appearance
JP2006321988A (en) * 2005-04-20 2006-11-30 Toray Ind Inc Resin composition and molded product made therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118513A (en) * 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc Lactic acid polymer composition
WO2003042302A1 (en) * 2001-11-15 2003-05-22 New Japan Chemical Co., Ltd. Lactic acid polymer composition and molded object thereof
JP2003183419A (en) * 2001-12-14 2003-07-03 Unitika Ltd Biodegradable synthetic paper and method for producing the same
JP2005023091A (en) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd Biodegradable resin composition
JP2006124446A (en) * 2004-10-27 2006-05-18 C I Kasei Co Ltd Production method of polylactic acid film presenting satin-like appearance
JP2006321988A (en) * 2005-04-20 2006-11-30 Toray Ind Inc Resin composition and molded product made therefrom

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166906A (en) * 2012-02-14 2013-08-29 Konno:Kk Flexible polylactic acid-based resin composition
JP2014001320A (en) * 2012-06-19 2014-01-09 Kao Corp Stretched film comprising polylactic acid resin composition
WO2014061644A1 (en) 2012-10-19 2014-04-24 ダイセルポリマー株式会社 Cellulose ester composition
CN104736623A (en) * 2012-10-19 2015-06-24 大赛璐塑料株式会社 Cellulose ester composition
KR20150073962A (en) * 2012-10-19 2015-07-01 다이셀폴리머 주식회사 Cellulose ester composition
JP5798640B2 (en) * 2012-10-19 2015-10-21 ダイセルポリマー株式会社 Cellulose ester composition
US10494503B2 (en) 2012-10-19 2019-12-03 Daicel Polymer Ltd. Cellulose ester composition
KR102088941B1 (en) 2012-10-19 2020-03-13 다이셀폴리머 주식회사 Cellulose ester composition
US11274187B2 (en) 2012-10-19 2022-03-15 Daicel Polymer Ltd. Cellulose ester composition
WO2014208403A1 (en) * 2013-06-27 2014-12-31 地方独立行政法人 大阪市立工業研究所 Process for manufacturing polylactic acid-based resin film
CN105339155A (en) * 2013-06-27 2016-02-17 地方独立行政法人大阪市立工业研究所 Process for manufacturing polylactic acid-based resin film
JPWO2014208403A1 (en) * 2013-06-27 2017-02-23 地方独立行政法人 大阪市立工業研究所 Method for producing polylactic acid resin film

Also Published As

Publication number Publication date
JP5283348B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4687129B2 (en) Aliphatic polyester resin composition and molded article thereof
JP5942447B2 (en) Polyester resin composition, film formed from the resin composition, and bag formed from the film
WO1999045067A1 (en) Polylactic acid composition and film thereof
JP2006206868A (en) Aliphatic polyester composition and molded product of the same
JP6866722B2 (en) Resin composition and resin molded products molded using it
JP3891692B2 (en) Biodegradable bubble sheet
JP6874294B2 (en) A polyester resin composition, a film formed by molding the resin composition, and a bag formed by molding the film.
JP4313076B2 (en) Biodegradable polyester film and method for producing the same
JP5283348B2 (en) Polylactic acid resin film and method for producing the same
JP2005281678A (en) Aliphatic polyester resin composition and its molded product
JP4414415B2 (en) Biodegradable resin composition and biodegradable film
KR101412516B1 (en) Biodegradable resin composition including polylactic acid and method for manufacturing thereof
JP2007002128A (en) Polylactic acid based resin composition, its molded product and manufacturing method
JP6880597B2 (en) A resin composition, a film formed by molding the resin composition, and a bag formed by molding the film.
JP4184108B2 (en) Multilayer film comprising biodegradable resin and method for producing the same
JP7251250B2 (en) Resin composition for film molding and film made of the resin composition
JP5095487B2 (en) Crystalline polylactic acid resin composition and molded article comprising the same
JP2008195784A (en) Polyester-based resin composition and molded article thereof
JP5140523B2 (en) Polylactic acid film and method for producing the same
JP4356372B2 (en) Polyester resin composition and molded article thereof
JP2013028701A (en) Method of manufacturing resin composition
JP2004352987A (en) Biodegradable film with improved water vapor barrier property, and method for controlling water vapor barrier property
JP2011127132A (en) Aliphatic polyester resin composition and molded product thereof
WO2014208403A1 (en) Process for manufacturing polylactic acid-based resin film
JP5935565B2 (en) Resin composition and molded product formed by molding the resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350