JPWO2014208082A1 - High strength steel material with excellent fatigue characteristics and method for producing the same - Google Patents

High strength steel material with excellent fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JPWO2014208082A1
JPWO2014208082A1 JP2015523862A JP2015523862A JPWO2014208082A1 JP WO2014208082 A1 JPWO2014208082 A1 JP WO2014208082A1 JP 2015523862 A JP2015523862 A JP 2015523862A JP 2015523862 A JP2015523862 A JP 2015523862A JP WO2014208082 A1 JPWO2014208082 A1 JP WO2014208082A1
Authority
JP
Japan
Prior art keywords
steel material
less
fatigue
strength steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015523862A
Other languages
Japanese (ja)
Other versions
JP6210112B2 (en
Inventor
孝一 中島
孝一 中島
長谷 和邦
和邦 長谷
遠藤 茂
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2014208082A1 publication Critical patent/JPWO2014208082A1/en
Application granted granted Critical
Publication of JP6210112B2 publication Critical patent/JP6210112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

板厚30mm以上の厚鋼板に関し、疲労特性に優れた高強度鋼材およびその製造方法を提供する。成分組成が、質量%で、C:0.10〜0.20%、Si:0.50%以下、Mn:1.0〜2.0%、P:0.030%以下、S:0.0005〜0.0040%、Sol.Al:0.002〜0.07%、Ca:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなり、金属組織が、主相のフェライトと、第2相のベイナイトおよび疑似パーライトである疲労特性に優れた高強度鋼材。A high-strength steel material excellent in fatigue characteristics and a method for producing the same are provided for a thick steel plate having a thickness of 30 mm or more. The component composition is mass%, C: 0.10 to 0.20%, Si: 0.50% or less, Mn: 1.0 to 2.0%, P: 0.030% or less, S: 0.00. 0005-0.0040%, Sol. Al: 0.002 to 0.07%, Ca: 0.0005 to 0.0050%, consisting of the balance Fe and inevitable impurities, the metal structure is ferrite of the main phase, bainite of the second phase and High-strength steel material with excellent fatigue properties that is pseudo-pearlite.

Description

本発明は、板厚30mm以上50mm以下の厚鋼板に関し、船舶、海洋構造物、橋梁、建築物、タンクなど構造安全性が強く求められる溶接構造物に好適な、疲労亀裂発生および疲労亀裂進展の抵抗性に優れた高強度鋼材およびその製造方法に関するものである。   The present invention relates to a thick steel plate having a thickness of 30 mm or more and 50 mm or less, and is suitable for welded structures such as ships, marine structures, bridges, buildings, tanks, and the like that are strongly required for structural safety, and is suitable for fatigue crack generation and fatigue crack propagation. The present invention relates to a high-strength steel material excellent in resistance and a method for producing the same.

船舶、海洋構造物、橋梁、タンクなどの構造物に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることに加えて、常時稼働における繰返し荷重や、風、地震等に起因する繰返し震動に対して、構造物の構造安全性を有しなければならない。   Steel materials used in ships, offshore structures, bridges, tanks, and other structures have excellent mechanical properties such as strength and toughness and weldability, as well as repeated loads, wind, and earthquakes during normal operation. The structure must have structural safety against repeated vibration caused by the above.

繰返し荷重や繰返し震動に対しては疲労特性に優れていることが要求される。特に、部材の破断といった終局的な破壊を防止するためには、鋼材の有する疲労亀裂の発生と進展を抑制することが効果的と考える。   Excellent fatigue characteristics are required for repeated loads and vibrations. In particular, it is considered effective to suppress the occurrence and progress of fatigue cracks of steel materials in order to prevent ultimate failure such as member breakage.

一般的な溶接構造物の場合、溶接止端部は応力集中部になりやすく、溶接による引張残留応力も作用するため疲労亀裂の発生源となることが多い。その防止策として、溶接止端部をなめ付け溶接したり、ショットピーニングにより圧縮残留応力を導入することが知られている。   In the case of a general welded structure, the weld toe portion tends to be a stress concentration portion, and tensile residual stress due to welding also acts, so that it often becomes a source of fatigue cracks. As a preventive measure, it is known to sew and weld a weld toe or to introduce compressive residual stress by shot peening.

しかしながら、溶接構造物には多数の溶接止端部があり、またコスト的にも負担が大きい。このため、これらの方法は工業的な規模での実施には不適当で、溶接構造物の耐疲労特性の向上は、使用される鋼材自体の疲労特性の向上により図られることが多い。   However, the welded structure has a large number of weld toes and is expensive. For this reason, these methods are unsuitable for implementation on an industrial scale, and the improvement of the fatigue resistance characteristics of the welded structure is often achieved by improving the fatigue characteristics of the steel material itself used.

非特許文献1は、限られた成分の鋼でラボスケールの特殊な熱処理を繰り返して製造した2種類の鋼材の疲労亀裂伝播挙動を論じたものである。本文献には、軟質相(ビッカース硬度:148)中に硬質相(ビッカース硬度:565、相の分率:36.4%、相の平均サイズ:149μm)を均一分散させた鋼材Aと、硬質相(ビッカース硬度:546、相の分率:39.2%)で軟質相(ビッカース硬度:149)を網目状に取り囲んだ鋼材Bとの、疲労亀裂伝播性を調べた結果、鋼材Bの方が疲労亀裂伝播速度が大きく低減することが詳細な考察とともに述べられている。   Non-Patent Document 1 discusses the fatigue crack propagation behavior of two types of steel materials manufactured by repeatedly performing special heat treatments on a lab scale with steel of limited components. This document describes a steel material A in which a hard phase (Vickers hardness: 565, phase fraction: 36.4%, average phase size: 149 μm) is uniformly dispersed in a soft phase (Vickers hardness: 148), and a hard phase As a result of investigating the fatigue crack propagation property with the steel material B in which the soft phase (Vickers hardness: 149) is surrounded by a mesh with a phase (Vickers hardness: 546, phase fraction: 39.2%), the steel material B However, it is stated that the fatigue crack propagation speed is greatly reduced along with detailed considerations.

特許文献1には、金属組織を硬質部の素地とこの素地に分散した軟質部とからなり、この2部分の硬度差がビッカース硬度で150以上であることを特徴とする疲労亀裂進展抑制効果を有する鋼板が記載されている。   Patent Document 1 has a fatigue crack progress suppressing effect characterized in that a metal structure is composed of a hard part base and a soft part dispersed in the base, and the hardness difference between the two parts is 150 or more in terms of Vickers hardness. The steel plate which has is described.

特許文献2には、金属組織がフェライトと硬質第二相とを含む組織からなり、かつ、鋼板表面に平行な断面組織における前記硬質第二相が、面積分率:20〜80%、ビッカース硬度:250〜800、平均円相当径:10〜200μmで、且つ、硬質第二相間の最大間隔:500μm以下であることを特徴とする疲労強度に優れた厚鋼板が記載されている。   In Patent Document 2, the metal structure is composed of a structure including ferrite and a hard second phase, and the hard second phase in a cross-sectional structure parallel to the steel sheet surface has an area fraction of 20 to 80%, Vickers hardness. : A thick steel plate having excellent fatigue strength, characterized in that the average equivalent circle diameter is 250 to 800, the average equivalent circle diameter is 10 to 200 μm, and the maximum distance between the hard second phases is 500 μm or less.

特許文献3には、金属組織が面積率で60〜85%のベイナイト組織、合計で0〜5%のマルテンサイト組織とパーライト組織、残部がフェライト組織であることを特徴とする耐疲労亀裂進展性に優れた鋼板が記載されている。   Patent Document 3 discloses fatigue crack resistance, characterized in that the metal structure is a bainite structure with an area ratio of 60 to 85%, a total of 0 to 5% martensite structure and pearlite structure, and the balance is a ferrite structure. Are described.

特許第2962134号公報Japanese Patent No. 2962134 特許第3860763号公報Japanese Patent No. 3860763 特許第4466196号公報Japanese Patent No. 4466196

H.SUZUKI AND A.J.MCEVILY :Metallurgical Transactions A, Volume 10A, P475〜481, 1979H.SUZUKI AND A.J.MCEVILY: Metallurgical Transactions A, Volume 10A, P475〜481, 1979

しかしながら、非特許文献1に記載された鋼は5段階の熱処理を必要とするものであり、工業製品規模で工程生産を行うにはコストや生産性の観点から現実的でない。また、疲労亀裂伝播特性と相反して延性が低下しており、このような鋼を構造物へ適用することはできない。   However, the steel described in Non-Patent Document 1 requires five stages of heat treatment, and it is not realistic from the viewpoint of cost and productivity to perform process production on an industrial product scale. In addition, the ductility is reduced contrary to the fatigue crack propagation characteristics, and such steel cannot be applied to structures.

特許文献1、2についても、熱間圧延の前後に熱処理を適用するため、工程生産上の効率性の面で望ましくない。例えば、特許文献2では、厚肉材の特性向上のため、拡散熱処理−熱間圧延―2相域熱処理を実施している。   Also in Patent Documents 1 and 2, since heat treatment is applied before and after hot rolling, it is not desirable in terms of efficiency in process production. For example, in Patent Document 2, diffusion heat treatment-hot rolling-two-phase region heat treatment is performed in order to improve the characteristics of a thick material.

特許文献3では、比較的板厚の小さい15mm板厚材を対象としており、板厚30mm以上の厚肉材には対応していない。厚肉材の強度確保のためにはCなどの合金元素添加が必要である。しかしながら、特許文献3ではC量が最大0.1%であり厚肉化した場合の強度不足が懸念される。   In Patent Document 3, a 15 mm thick material having a relatively small thickness is targeted, and a thick material having a thickness of 30 mm or more is not supported. In order to ensure the strength of the thick material, it is necessary to add an alloying element such as C. However, in Patent Document 3, the maximum amount of C is 0.1%, and there is a concern about insufficient strength when the thickness is increased.

また、上記の何れの発明も、疲労亀裂発生と疲労亀裂進展のいずれかの改善を図っており、両特性を兼ね備えた鋼板の検討はなされていない。疲労亀裂発生の抑制は、疲労強度の増大、すなわち母鋼板の降伏応力を増大することで向上する。しかしながら、高強度鋼ほど疲労亀裂先端での応力集中が大きくなり疲労亀裂進展が助長される。   In any of the above-described inventions, either improvement of fatigue crack generation or fatigue crack growth is attempted, and a steel plate having both characteristics has not been studied. The suppression of the occurrence of fatigue cracks is improved by increasing the fatigue strength, that is, increasing the yield stress of the base steel plate. However, the higher the strength of the steel, the greater the stress concentration at the tip of the fatigue crack, which promotes fatigue crack growth.

そこで、本発明は、板厚30mm以上50mm以下の厚鋼板に関し、疲労亀裂発生および疲労亀裂進展の抵抗性に優れた鋼材およびその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the steel material excellent in the resistance of fatigue crack generation | occurrence | production and fatigue crack progress, and its manufacturing method regarding the thick steel plate of plate thickness 30mm or more and 50mm or less.

本発明者らは、上記課題の達成に向けて鋭意研究を重ね、板厚30mm以上50mm以下の厚鋼板でも優れた疲労特性を有する高強度厚鋼板について以下の知見を得た。   The inventors of the present invention have made extensive studies to achieve the above-mentioned problems, and have obtained the following knowledge about high-strength thick steel sheets having excellent fatigue characteristics even with thick steel sheets having a thickness of 30 mm to 50 mm.

1.板厚30mmを超える厚鋼板について、耐疲労亀裂発生および耐疲労亀裂進展性の両特性を同時に向上するには、主相のフェライトと、第2相のベイナイトおよび疑似パーライトで構成される混合組織とすることが重要である。このような組織は、適切な条件範囲で製造することにより実現できる。本発明では、C量を0.10%以上含有することで、第2相の面積分率増加による高強度化を安定的に達成できる。   1. In order to simultaneously improve both the fatigue crack initiation and fatigue crack growth characteristics of thick steel plates exceeding 30 mm thick, a mixed structure composed of ferrite of the main phase, bainite of the second phase and pseudo-pearlite; It is important to. Such a structure can be realized by manufacturing within an appropriate range of conditions. In the present invention, by containing 0.10% or more of C, it is possible to stably achieve high strength by increasing the area fraction of the second phase.

2.さらに、高強度厚肉材において、疲労特性を確保するため、Ca添加による硫化物制御が有効に作用する。Caは、CaSを形成することによりSを固定し、MnSとの複合介在物を生成する。MnSが単独で存在する場合は、圧延時に伸長され破壊の起点になる。しかしながら、CaSをMnSとの複合介在物とすることで母相に微細分散し、疲労亀裂発生および疲労亀裂進展の抵抗性が向上する。
本発明は、上記知見にさらに検討を加えてなされたものであり、その要旨は次のとおりである。
2. Furthermore, in a high-strength thick material, sulfide control by Ca addition works effectively in order to ensure fatigue characteristics. Ca fixes S by forming CaS, and produces | generates a composite inclusion with MnS. When MnS is present alone, it is elongated during rolling and becomes a starting point of fracture. However, by using CaS as a complex inclusion with MnS, fine dispersion is achieved in the parent phase, and resistance to fatigue crack initiation and fatigue crack growth is improved.
The present invention has been made by further studying the above knowledge, and the gist thereof is as follows.

[1] 成分組成が、質量%で、C:0.10〜0.20%、Si:0.50%以下、Mn:1.0〜2.0%、P:0.030%以下、S:0.0005〜0.0040%、Sol.Al:0.002〜0.07%、Ca:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなり、金属組織が、主相のフェライトと、第2相のベイナイトおよび疑似パーライトである疲労特性に優れた高強度鋼材。   [1] Component composition is mass%, C: 0.10 to 0.20%, Si: 0.50% or less, Mn: 1.0 to 2.0%, P: 0.030% or less, S : 0.0005 to 0.0040%, Sol. Al: 0.002 to 0.07%, Ca: 0.0005 to 0.0050%, consisting of the balance Fe and inevitable impurities, the metal structure is ferrite of the main phase, bainite of the second phase and High-strength steel material with excellent fatigue properties that is pseudo-pearlite.

[2] 成分組成が、さらに、質量%で、Ti:0.003〜0.03%、Nb:0.005〜0.05%の中から選ばれる一種または二種を含有することを特徴とする[1]に記載の疲労特性に優れた高強度鋼材。   [2] The component composition further includes one or two kinds selected from Ti: 0.003 to 0.03% and Nb: 0.005 to 0.05% by mass%. The high-strength steel material excellent in fatigue characteristics as described in [1].

[3] 成分組成が、さらに、質量%で、Cr:0.1〜0.5%、Mo:0.02〜0.3%、V:0.01〜0.08%、Cu:0.1〜0.6%、Ni:0.1〜0.5%の中から選ばれる一種以上を含有することを特徴とする[1]または[2]に記載の疲労特性に優れた高強度鋼材。   [3] The component composition is further mass%, Cr: 0.1 to 0.5%, Mo: 0.02 to 0.3%, V: 0.01 to 0.08%, Cu: 0.00. The high strength steel material having excellent fatigue properties according to [1] or [2], comprising at least one selected from 1 to 0.6% and Ni: 0.1 to 0.5% .

[4] 成分組成が、さらに、O:0.0040%以下を含有し、かつ下記式(1)を満たすことを特徴とする[1]乃至[4]の何れかに記載の疲労特性に優れた高強度鋼材。   [4] The component composition further includes O: 0.0040% or less, and satisfies the following formula (1): Excellent fatigue properties according to any one of [1] to [4] High strength steel.

0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式(1)中のCa、O、Sは各成分の含有量(質量%)を表す。
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, S in Formula (1) represents content (mass%) of each component.

[5] [1]乃至[4]の何れかに記載の成分組成を有する鋼素材を、950〜1250℃に加熱後、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点−60℃以上の温度域から600℃以下350℃以上の温度域まで5℃/s以上の冷却速度で加速冷却することを特徴とする疲労特性に優れた高強度鋼材の製造方法。[5] [1] or a steel material having a chemical composition according to any one of [4], after heating to: 950 ° C., subjected to cumulative rolling reduction of 50% or more rolling at Ar 3 point or more, Ar 3 A method for producing a high-strength steel material having excellent fatigue characteristics, characterized by accelerated cooling at a cooling rate of 5 ° C / s or higher from a temperature range of -60 ° C or higher to a temperature range of 600 ° C or lower and 350 ° C or higher.

[6]前記冷却速度は、前記[1]乃至[3]の何れかに記載の成分組成を有する鋼素材のCCT図における冷却曲線がフェライト変態ノーズにかかるときの冷却速度以下であることを特徴とする[5]に記載の疲労特性に優れた高強度鋼材の製造方法。   [6] The cooling rate is equal to or lower than the cooling rate when the cooling curve in the CCT diagram of the steel material having the component composition described in any of [1] to [3] is applied to the ferrite transformation nose. The method for producing a high-strength steel material having excellent fatigue properties as described in [5].

[7] 前記加速冷却の後、さらに、Ac点以下の温度で焼戻し処理することを特徴とする[5]または[6]に記載の疲労特性に優れた高強度鋼材の製造方法。[7] The method for producing a high-strength steel material having excellent fatigue characteristics according to [5] or [6], further comprising tempering at a temperature of Ac 1 point or less after the accelerated cooling.

本発明によれば、耐疲労亀裂発生および耐疲労亀裂進展性に優れた鋼材およびその製造方法が得られる。例え、応力集中部や溶接部等から疲労亀裂が経年的に発生したとしても、その後の伝播を遅らせて、鋼構造物の安全性を高めることが可能で産業上極めて有用である。   According to the present invention, a steel material excellent in fatigue crack resistance and fatigue crack growth resistance and a method for producing the same can be obtained. For example, even if fatigue cracks occur over time from stress-concentrated parts or welded parts, it is possible to delay the subsequent propagation and enhance the safety of the steel structure, which is extremely useful industrially.

図1は、鋼素材のCCT図(連続冷却変態図)を示す模式図である。FIG. 1 is a schematic diagram showing a CCT diagram (continuous cooling transformation diagram) of a steel material.

本発明の成分組成、製造条件および金属組織の規定について詳細に説明する。   The composition of the present invention, the production conditions and the definition of the metal structure will be described in detail.

1.成分組成について
以下に、本発明の成分組成について説明する。なお、成分組成における%は、全て質量%とする。
1. About component composition Below, the component composition of this invention is demonstrated. In addition,% in a component composition shall be mass% altogether.

C:0.10〜0.20%
Cは、構造用鋼として必要な強度を得るために0.10%以上の含有量が必要である。しかしながら、0.20%を超えて含有すると、溶接性を害するのでC量は0.10〜0.20%の範囲とする。好ましくは0.10〜0.18%の範囲である。より好ましくは0.11〜0.17%の範囲である。
C: 0.10 to 0.20%
C must have a content of 0.10% or more in order to obtain the strength required for structural steel. However, if the content exceeds 0.20%, the weldability is impaired, so the C content is in the range of 0.10 to 0.20%. Preferably it is 0.10 to 0.18% of range. More preferably, it is 0.11 to 0.17% of range.

Si:0.50%以下
Siは脱酸元素として有益な元素であり、0.01%以上の含有でその効果を発揮する。しかし、0.50%を超えて含有すると母材および溶接熱影響部の靭性が顕著に低下するするとともに溶接性が著しく低下する。このため、Si量は0.50%以下とする。好ましくは0.05〜0.40%の範囲である。
Si: 0.50% or less Si is an element useful as a deoxidizing element, and exhibits its effect when contained in an amount of 0.01% or more. However, if the content exceeds 0.50%, the toughness of the base metal and the weld heat-affected zone is remarkably lowered and the weldability is remarkably lowered. For this reason, the amount of Si shall be 0.50% or less. Preferably it is 0.05 to 0.40% of range.

Mn:1.0〜2.0%
Mnは、母材強度を確保する観点から添加する。しかしながら、1.0%未満の含有ではその効果が十分でない。また、2.0%を超えて含有すると、過剰に焼入性を高め、熱影響部の靭性を著しく低下させる。このため、Mn量は1.0〜2.0%の範囲とする。好ましくは1.0〜1.8%の範囲である。より好ましくは1.0〜1.6%の範囲である。
Mn: 1.0-2.0%
Mn is added from the viewpoint of securing the strength of the base material. However, if the content is less than 1.0%, the effect is not sufficient. Moreover, when it contains exceeding 2.0%, hardenability will be raised excessively and the toughness of a heat affected zone will be reduced remarkably. For this reason, the amount of Mn shall be 1.0 to 2.0% of range. Preferably it is 1.0 to 1.8% of range. More preferably, it is 1.0 to 1.6% of range.

P:0.030%以下
Pは、0.030%を超えて含有すると、母材および熱影響部の靱性を著しく低下させる。このため、P量は0.030%以下とする。好ましくは0.02%以下である。
P: 0.030% or less When P exceeds 0.030%, the toughness of the base material and the heat-affected zone is significantly reduced. Therefore, the P content is 0.030% or less. Preferably it is 0.02% or less.

S:0.0005〜0.0040%
Sは、所要のCaSあるいはMnSを生成するために0.0005%以上必要であり、0.0040%を超えて含有すると母材の靱性を劣化させる。したがって、S量は、0.0005〜0.0040%の範囲とする。好ましくは0.001〜0.0035%の範囲である。より好ましくは0.001〜0.0030%の範囲である。
S: 0.0005 to 0.0040%
S is required to be 0.0005% or more in order to produce required CaS or MnS. If it exceeds 0.0040%, the toughness of the base material is deteriorated. Therefore, the S content is in the range of 0.0005 to 0.0040%. Preferably it is 0.001 to 0.0035% of range. More preferably, it is 0.001 to 0.0030% of range.

Sol.Al:0.002〜0.07%
Sol.Alは、鋼の脱酸上0.002%以上が必要であり、0.01%以上含有することが好ましい。しかしながら、0.07%を超えて含有すると母材の靱性を低下させる。したがって、Sol.Al量は、0.002〜0.07%の範囲とする。好ましくは0.005〜0.07%の範囲である。より好ましくは0.01〜0.06%の範囲である。
Sol. Al: 0.002 to 0.07%
Sol. Al is required to be 0.002% or more in view of deoxidation of steel, and is preferably contained in an amount of 0.01% or more. However, if it exceeds 0.07%, the toughness of the base material is lowered. Therefore, Sol. The Al content is in the range of 0.002 to 0.07%. Preferably it is 0.005 to 0.07% of range. More preferably, it is 0.01 to 0.06% of range.

Ca:0.0005〜0.0050%
Caは、CaSを形成することによりSを化学的に固定し、MnSとの複合介在物を生成する。MnSが単独で存在する場合は、圧延時に伸長され破壊の起点になる。しかしながら、MnSとの複合介在物とすることで母相に微細分散し、疲労亀裂発生の抵抗性が向上する。このような効果を発揮させるには少なくとも0.0005%以上含有する必要がある。しかしながら、0.0050%を超えて含有しても効果が飽和する。このため、Ca量は、0.0005〜0.0050%の範囲とする。好ましくは0.001〜0.0040%の範囲である。より好ましくは0.001〜0.0030%の範囲である。
Ca: 0.0005 to 0.0050%
Ca forms CaS to chemically fix S and generate complex inclusions with MnS. When MnS is present alone, it is elongated during rolling and becomes a starting point of fracture. However, a composite inclusion with MnS finely disperses in the parent phase and improves the resistance to fatigue cracking. In order to exhibit such an effect, it is necessary to contain at least 0.0005% or more. However, even if the content exceeds 0.0050%, the effect is saturated. For this reason, Ca amount is taken as 0.0005 to 0.0050% of range. Preferably it is 0.001 to 0.0040% of range. More preferably, it is 0.001 to 0.0030% of range.

以上が本発明の基本化学成分であり、残部はFe及び不可避的不純物からなる。更に、強度、靭性を高める目的でTi、Nbの中から選ばれる一種以上を選択元素として含有してもよい。   The above is the basic chemical component of the present invention, and the balance consists of Fe and inevitable impurities. Furthermore, you may contain 1 or more types chosen from Ti and Nb as a selection element in order to improve intensity | strength and toughness.

Ti:0.003〜0.03%
靭性をより向上させるために、Tiを含有することができる。Tiは圧延前の加熱時に、TiNを生成し、オーステナイト粒径を微細化し、靭性を向上させる。その含有量が、0.003%未満ではその効果が十分でなく、0.03%を超えて含有しても効果が飽和する。このため、Tiを含有する場合は、Ti量は0.003〜0.03%の範囲とすることが好ましい。
Ti: 0.003 to 0.03%
In order to further improve toughness, Ti can be contained. Ti generates TiN during heating before rolling, refines the austenite grain size, and improves toughness. If the content is less than 0.003%, the effect is not sufficient, and even if the content exceeds 0.03%, the effect is saturated. For this reason, when it contains Ti, it is preferable to make Ti amount into the range of 0.003-0.03%.

Nb:0.005〜0.05%
強度を向上させるために、Nbを含有することができる。その含有量が0.005%未満ではその効果が十分でなく、0.05%を超えると靭性を低下させる。このため、Nbを含有する場合は、その量は0.005〜0.05%の範囲とすることが好ましい。より好ましくは0.003〜0.030%の範囲である。
Nb: 0.005 to 0.05%
In order to improve the strength, Nb can be contained. If the content is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the toughness is lowered. For this reason, when it contains Nb, it is preferable to make the quantity into 0.005 to 0.05% of range. More preferably, it is 0.003 to 0.030% of range.

本発明の高強度鋼材は、上記組成に加えて、さらに、強度を向上させる目的でCr、Mo、V、Cu、Niの中から選ばれる一種以上を選択元素として含有してもよい。   In addition to the above composition, the high-strength steel material of the present invention may further contain one or more selected from Cr, Mo, V, Cu, and Ni as selective elements for the purpose of improving the strength.

Cr:0.1〜0.5%
Crは、0.1%未満ではその効果が不十分で、0.5%を超えて含有すると溶接性が低下する。このため、Crを含有する場合は、Cr量は0.1〜0.5%の範囲とすることが好ましい。より好ましくは0.1〜0.4%の範囲である。
Cr: 0.1 to 0.5%
If Cr is less than 0.1%, the effect is insufficient, and if it exceeds 0.5%, the weldability is lowered. For this reason, when it contains Cr, it is preferable to make Cr amount into the range of 0.1 to 0.5%. More preferably, it is 0.1 to 0.4% of range.

Mo:0.02〜0.3%
Moは、0.02%未満ではその効果が不十分で、0.3%を超えて含有すると溶接性が著しく低下する。このため、Moを含有する場合は、Mo量は0.02〜0.3%の範囲とすることが好ましい。より好ましくは0.02〜0.20%の範囲である。
Mo: 0.02-0.3%
If Mo is less than 0.02%, its effect is insufficient, and if it exceeds 0.3%, the weldability is remarkably lowered. For this reason, when it contains Mo, it is preferable to make Mo amount into the range of 0.02-0.3%. More preferably, it is 0.02 to 0.20% of range.

V:0.01〜0.08%
Vは、0.01%未満ではその効果が不十分で、0.08%を超えて含有すると著しく靭性が低下する。このため、Vを含有する場合は、V量は0.01〜0.08%の範囲とすることが好ましい。より好ましくは0.01〜0.07%の範囲である。
V: 0.01 to 0.08%
If V is less than 0.01%, the effect is insufficient, and if it exceeds 0.08%, the toughness is remarkably lowered. For this reason, when it contains V, it is preferable to make V amount into the range of 0.01 to 0.08%. More preferably, it is 0.01 to 0.07% of range.

Cu:0.1〜0.6%
Cuは、0.1%未満ではその効果が十分でなく、0.6%を超えて含有するとCu割れの懸念が高まる。このため、Cuを含有する場合は、Cu量は0.1〜0.6%の範囲とすることが好ましい。より好ましくは0.1〜0.3%の範囲である。
Cu: 0.1 to 0.6%
If Cu is less than 0.1%, the effect is not sufficient, and if it exceeds 0.6%, the concern about Cu cracking increases. For this reason, when it contains Cu, it is preferable to make Cu amount into the range of 0.1 to 0.6%. More preferably, it is 0.1 to 0.3% of range.

Ni:0.1〜0.5%
Niの含有量が0.1%未満ではその効果が十分でなく、0.5%を超えて含有すると鋼材コストの上昇が著しい。このため、Niを含有する場合は、Ni量は0.1〜0.5%の範囲とすることが好ましい。より好ましくは0.1〜0.4%の範囲である。
Ni: 0.1 to 0.5%
If the Ni content is less than 0.1%, the effect is not sufficient. If the Ni content exceeds 0.5%, the cost of the steel material is significantly increased. For this reason, when it contains Ni, it is preferable to make Ni amount into the range of 0.1 to 0.5%. More preferably, it is 0.1 to 0.4% of range.

本発明の高強度鋼材は、上記成分組成のほかに、Oを0.0040%以下とすることが好ましい。   The high-strength steel material of the present invention preferably contains O in an amount of 0.0040% or less in addition to the above component composition.

O:0.0040%以下
Oは0.0040%を超えて含有すると靭性が劣化するため0.0040%以下とする。
O: 0.0040% or less If O exceeds 0.0040%, the toughness deteriorates, so the content is made 0.0040% or less.

本発明の高強度鋼材は、さらに、下記式(1)を満たすことが好ましい。   The high-strength steel material of the present invention preferably further satisfies the following formula (1).

0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式中のCa、O、Sは各成分の含有量(質量%)を表す。
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, and S in the formula represent the content (% by mass) of each component.

Ca、OおよびSは、上記式(Ca−(0.18+130×Ca)×O)/1.25/Sが、0超え0.8以下の関係を満足するように含有させる必要がある。この場合には、CaS上にMnSが析出した複合硫化物の形態となる。MnSが単独で存在する場合は、圧延時に伸長され破壊の起点になる。しかしながら、CaSをMnSとの複合介在物とすることで母相に微細分散し、疲労亀裂の発生を抑制する。(Ca−(0.18+130×Ca)×O)/1.25/Sの値が0.8を超えると、MnSは生成せず、OとSがCa酸硫化物として全て晶出する。このため、そのサイズが粗大となって、母相/介在物界面の応力集中が大きくなって疲労強度を確保し難くなる。(Ca−(0.18+130×Ca)×O)/1.25/Sが0以下の場合には、CaSが晶出しないために、SはMnS単独の形態で析出し、このMnSが鋼板製造時の圧延で伸長されて微細分散が維持されない。したがって、(Ca−(0.18+130×Ca)×O)/1.25/Sは0超え0.8以下の範囲とする。   Ca, O, and S must be contained so that the above formula (Ca− (0.18 + 130 × Ca) × O) /1.25/S satisfies the relationship of 0 to 0.8. In this case, it becomes the form of the composite sulfide in which MnS is deposited on CaS. When MnS is present alone, it is elongated during rolling and becomes a starting point of fracture. However, by using CaS as a complex inclusion with MnS, fine dispersion is performed in the parent phase, thereby suppressing the occurrence of fatigue cracks. When the value of (Ca− (0.18 + 130 × Ca) × O) /1.25/S exceeds 0.8, MnS is not generated, and O and S are all crystallized as Ca oxysulfide. For this reason, the size becomes coarse, and the stress concentration at the matrix / inclusion interface becomes large, and it becomes difficult to ensure the fatigue strength. When (Ca− (0.18 + 130 × Ca) × O) /1.25/S is 0 or less, since CaS does not crystallize, S precipitates in the form of MnS alone, and this MnS is produced in the steel sheet. It is stretched by rolling at the time and fine dispersion is not maintained. Therefore, (Ca− (0.18 + 130 × Ca) × O) /1.25/S is set to a range of 0 to 0.8.

2.金属組織について
引張強さ510MPa以上の高強度化を図るために、金属組織は、実質的にフェライトとベイナイトおよび疑似パーライトとの混合組織とする。実質的にフェライトとベイナイトおよび疑似パーライトとの混合組織とは、これらの合計の面積分率が95%以上であり、残部として、マルテンサイト、島状マルテンサイト、残留オーステナイト等を1種または2種以上を面積分率で5%以下含有する組織である。
2. Metal structure In order to increase the tensile strength of 510 MPa or more, the metal structure is substantially a mixed structure of ferrite, bainite, and pseudopearlite. Substantially the mixed structure of ferrite, bainite and pseudo-pearlite has a total area fraction of 95% or more, and the balance is one or two of martensite, island martensite, retained austenite, etc. This is a structure containing 5% or less of the above by area fraction.

なお、主相とは面積分率で50%を超える組織であり、主相のフェライトは、フェライトの面積分率が55%以上であることが好ましい。また、第2相とは面積分率が50%未満の組織である。   The main phase is a structure having an area fraction exceeding 50%, and the ferrite of the main phase preferably has an area fraction of ferrite of 55% or more. The second phase is a structure having an area fraction of less than 50%.

板厚30mm以上50mm以下の厚肉材について高強度化と疲労特性の向上を図るためには、第2相としてベイナイトと疑似パーライトを合計で、面積分率で15%以上分散することが望ましい。面積分率で15%以上とすることで母材の強度、疲労強度の向上が期待される。なお、疑似パーライトとは、炭化物とフェライト相が層状に分散するパーライト(ラメラー状パーライト)に対して、ラメラー形状が崩れて炭化物が湾曲したり、塊状に分散する、塊状炭化物を主体とした組織であり、一部ラメラー状炭化物を含むこと(炭化物全量に対して面積分率で40%以下)もある。炭化物の形態が塊状の場合、ラメラー状の場合に対して母相/第2相界面での応力集中が低下し、疲労亀裂発生が抑制され疲労強度が向上すると考えられる。   In order to increase the strength and improve the fatigue characteristics of a thick material having a plate thickness of 30 mm or more and 50 mm or less, it is desirable to disperse bainite and pseudo pearlite as the second phase in an area fraction of 15% or more in total. By setting the area fraction to 15% or more, the strength of the base material and the fatigue strength are expected to be improved. In addition, pseudo pearlite is a structure mainly composed of massive carbides in which the lamellar shape collapses and the carbides are curved or dispersed in lumps, whereas pearlite (lamellar pearlites) in which the carbide and ferrite phases are dispersed in layers. There are also some lamellar carbides (40% or less in area fraction with respect to the total amount of carbides). When the carbide is in the form of a lump, it is considered that the stress concentration at the interface between the parent phase and the second phase is reduced as compared with the lamellar shape, the occurrence of fatigue cracks is suppressed, and the fatigue strength is improved.

3.製造方法について
上記した組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。なお、経済性の観点から転炉法による製鋼プロセスと連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。その後、性能所望の形状に圧延する。以下、本発明の製造条件を示す。
3. About the production method Steel having the above composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and a steel material such as a slab is formed by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable to do. The melting method and the casting method are not limited to the methods described above. From the viewpoint of economy, it is desirable to cast a steel piece by a steelmaking process by a converter method and a continuous casting process. Then, the performance is rolled into a desired shape. The production conditions of the present invention are shown below.

本発明において規定される鋼の温度条件は、鋼片あるいは鋼板板厚方向の平均温度を指すものとする。板厚方向の平均温度は、板厚、表面温度および冷却条件などから、シミュレーション計算などにより求められる。たとえば、差分法を用い、板厚方向の温度分布を計算することにより、板厚方向の平均温度を求めることができる。   The steel temperature condition defined in the present invention refers to the average temperature in the steel slab or steel plate thickness direction. The average temperature in the plate thickness direction is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature in the plate thickness direction can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.

(1)加熱温度:950〜1250℃
熱間圧延を行うにあたり、鋼片を完全にオーステナイト化する必要があるため、加熱温度を950℃以上とする。一方、1250℃を超える温度まで鋼片を加熱すると、オーステナイト粒の粗大化がはじまり、靱性に悪影響を及ぼすことから、加熱温度は、950〜1250℃の範囲とする。靭性の観点から、好ましい加熱温度の範囲は1000℃〜1100℃である。
(1) Heating temperature: 950 to 1250 ° C
In performing hot rolling, since it is necessary to completely austenite the steel slab, the heating temperature is set to 950 ° C. or higher. On the other hand, if the steel slab is heated to a temperature exceeding 1250 ° C., coarsening of austenite grains starts and adversely affects toughness, so the heating temperature is set to a range of 950 to 1250 ° C. From the viewpoint of toughness, a preferable heating temperature range is 1000 ° C to 1100 ° C.

(2)Ar点以上での累積圧下率:50%以上
圧延においては、結晶粒を微細に維持して靭性を向上させるため、Ar点以上の温度域で加工歪を導入する。累積圧下率については、50%以上とすることにより、変態後のフェライト結晶粒が十分微細化して靭性向上が図られる。従って、圧延中の累積圧下率をAr点以上で50%以上とする。なお、Ar点は、下記式(2)で求められる。
Ar3=910-310[%C]-80[%Mn]-20[%Cu]-55[%Ni]-15[%Cr]-80[%Mo] (2)
ここで、各元素記号は、各元素の含有量(質量%)を意味し、含有しない場合は0とする。
熱間圧延温度がフェライト変態開始温度を下回った場合、圧下中にフェライトを生成して強度が低下するため、熱間圧延終了温度は少なくともAr点以上とする。
(2) Cumulative rolling reduction at 3 or more points of Ar: 50% or more In rolling, work strain is introduced in a temperature range of 3 or more points of Ar in order to maintain fine crystal grains and improve toughness. By setting the cumulative reduction ratio to 50% or more, the ferrite crystal grains after transformation are sufficiently refined, and toughness is improved. Accordingly, the cumulative rolling reduction during rolling is set to 50% or more at Ar 3 points or more. Incidentally, Ar 3 point is calculated by the following formula (2).
Ar 3 = 910-310 [% C] -80 [% Mn] -20 [% Cu] -55 [% Ni] -15 [% Cr] -80 [% Mo] (2)
Here, each element symbol means content (mass%) of each element, and is set to 0 when not contained.
When the hot rolling temperature is lower than the ferrite transformation start temperature, ferrite is generated during the reduction and the strength is lowered. Therefore, the hot rolling end temperature is set to at least Ar 3 points or more.

(3)冷却開始温度:Ar点−60℃以上
冷却開始温度が低すぎると、加速冷却の前段階でフェライト生成量が高くなり強度が低下する。このためAr−60℃以上の温度から冷却を開始する。
(3) Cooling start temperature: Ar 3 points −60 ° C. or more If the cooling start temperature is too low, the ferrite generation amount increases and the strength decreases in the stage before accelerated cooling. For this reason, cooling is started from a temperature of Ar 3 −60 ° C. or higher.

(4)冷却速度:5℃/s以上
熱間圧延に引き続き加速冷却を実施する。冷却速度を5℃/s以上とすることにより、組織が粗大化することなく細粒組織が得られ、目標とする優れた強度、靱性および疲労特性を得ることができる。冷却速度が5℃/s未満では、組織が粗大化するとともにフェライト分率が大きくなってしまい、目標とする母材強度、疲労強度、耐疲労亀裂進展性が得られない。また、冷却速度の上限としては、上記の成分組成を有する鋼素材のCCT図における冷却曲線がフェライト変態ノーズにかかるときの冷却速度以下であることが好ましい。冷却速度がフェライト変態ノーズにかかる冷却速度超えでは、ベイナイト分率が高くなってしまい、目標の耐疲労亀裂進展性、母材の延性および靭性が得られない。所望の組織を得るため、この冷却速度範囲内で板厚は好ましくは30mm〜50mmである。
(4) Cooling rate: 5 ° C./s or more Accelerated cooling is performed following hot rolling. By setting the cooling rate to 5 ° C./s or more, a fine-grained structure can be obtained without coarsening the structure, and excellent excellent strength, toughness and fatigue characteristics can be obtained. If the cooling rate is less than 5 ° C./s, the structure becomes coarse and the ferrite fraction becomes large, and the target base material strength, fatigue strength, and fatigue crack growth resistance cannot be obtained. Moreover, as an upper limit of a cooling rate, it is preferable that it is below the cooling rate when the cooling curve in the CCT figure of the steel raw material which has said component composition starts to a ferrite transformation nose. If the cooling rate exceeds the cooling rate applied to the ferrite transformation nose, the bainite fraction becomes high, and the target fatigue crack resistance, ductility and toughness of the base material cannot be obtained. In order to obtain a desired structure, the plate thickness is preferably 30 mm to 50 mm within this cooling rate range.

なお、CCT図(連続冷却変態図)は、上記成分組成を有する鋼材からφ8×12mmの円柱形サンプルを複数個採取し、熱間加工再現試験装置にて圧延に対応する加工と種々の冷却速度での冷却パターンにて加工熱処理し、同時に試験片の膨張を測定して変態温度を調査する通常の方法にて作成する。図1に示すような、得られたCCT図のフェライト変態ノーズ(フェライト変態が起こる領域のうち、最も冷却速度が速い側)を通る一定冷却速度の曲線(CCT図は横軸(時間)が対数のため曲線となる。)の冷却速度を求める。本発明では、CCT図における冷却曲線がフェライト変態ノーズにかかるときの冷却速度以下5℃/s以上の冷却速度で冷却することにより、擬似パーライトが生成し、疲労強度が向上する。   The CCT diagram (continuous cooling transformation diagram) shows a plurality of φ8 × 12mm cylindrical samples taken from steel materials having the above composition, and processes corresponding to rolling and various cooling rates using a hot-working reproduction test device. It is prepared by the usual method of examining the transformation temperature by measuring the expansion of the test piece at the same time by performing the heat treatment with the cooling pattern in FIG. As shown in FIG. 1, a constant cooling rate curve passing through the ferrite transformation nose of the obtained CCT diagram (the fastest cooling rate in the ferrite transformation region) (the horizontal axis (time) is logarithmic in the CCT diagram) Therefore, the cooling rate is obtained. In the present invention, pseudo pearlite is generated and the fatigue strength is improved by cooling at a cooling rate of 5 ° C./s or less when the cooling curve in the CCT diagram is applied to the ferrite transformation nose.

(5)冷却停止温度:600〜350℃
冷却停止温度を600℃以下350℃以上とすることにより、熱間圧延およびそれに続く冷却によって得られた所望の組織を形成することができる。冷却停止温度が600℃より高いとベイナイトや疑似パーライトの分散量が不十分となり、350℃より低いと延性・靭性を確保することが難しくなる。冷却停止温度としては、550℃以下400℃以上がさらに好ましい。
(5) Cooling stop temperature: 600-350 ° C
By setting the cooling stop temperature to 600 ° C. or lower and 350 ° C. or higher, a desired structure obtained by hot rolling and subsequent cooling can be formed. If the cooling stop temperature is higher than 600 ° C, the amount of bainite or pseudopearlite dispersed becomes insufficient, and if it is lower than 350 ° C, it becomes difficult to ensure ductility and toughness. The cooling stop temperature is more preferably 550 ° C. or lower and 400 ° C. or higher.

(6)焼戻し温度:Ac点以下
鋼材の形状補正や延性、靭性の向上が必要な場合、加速冷却後にAc点未満で焼戻すことができる。焼戻し温度がAc点を超えると島状マルテンサイトが生成し、靭性が劣化する。なお、Ac点は下記式(3)で求められる。
Ac1=723-11[%Mn]+29[%Si]-17[%Ni]+17[%Cr] (3)
ここで、各元素記号は、各元素の含有量(質量%)を意味し、含有しない場合は0とする。
(6) Tempering temperature: Ac 1 point or less When the shape correction, ductility, and toughness of the steel material are required, tempering can be performed at less than Ac 1 point after accelerated cooling. When the tempering temperature exceeds 1 Ac, island-shaped martensite is generated and the toughness deteriorates. In addition, Ac 1 point is calculated | required by following formula (3).
Ac 1 = 723-11 [% Mn] +29 [% Si] -17 [% Ni] +17 [% Cr] (3)
Here, each element symbol means content (mass%) of each element, and is set to 0 when not contained.

表1に示す成分組成の鋼片について、表2に示す製造条件で板厚30〜50mmの供試鋼を作製し、得られた鋼板の金属組織観察、機械的性質および疲労強度、疲労亀裂進展特性を調査した。なお、CCT図(連続冷却変態図)における冷却曲線がフェライト変態ノーズにかかるときの冷却速度は、表1に示す成分組成を有する鋼材からφ10×12mmの円柱形サンプルを複数個採取し、熱間加工再現試験装置にて圧延に対応する加工と種々の冷却速度での冷却パターンにて加工熱処理し、同時に試験片の膨張を測定して変態温度を調査する通常の方法にて作成して求めた。   For steel slabs having the composition shown in Table 1, specimen steels having a thickness of 30 to 50 mm were produced under the production conditions shown in Table 2, and the metal structure observation, mechanical properties and fatigue strength, fatigue crack growth of the obtained steel plates were obtained. The characteristics were investigated. In addition, the cooling rate when the cooling curve in the CCT diagram (continuous cooling transformation diagram) is applied to the ferrite transformation nose is obtained by collecting a plurality of φ10 × 12 mm cylindrical samples from steel materials having the composition shown in Table 1. It was created and obtained by the usual method of investigating the transformation temperature by measuring the expansion of the test piece at the same time by processing and heat treatment with processing corresponding to rolling and cooling patterns at various cooling rates in the processing reproduction test equipment .

Figure 2014208082
Figure 2014208082

Figure 2014208082
Figure 2014208082

組織観察は、任意の箇所から採取した試料を研磨したサンプルを用いて、3%ナイタール腐食液によりエッチングした圧延方向断面(L断面)の板厚1/4位置にて実施した。また、光学顕微鏡観察により、フェライト、ベイナイト、疑似パーライトの面積率を測定した。これらの値は1サンプルについて5視野で実施し、それらの総視野での平均値として求めた。   The structure observation was performed at a thickness 1/4 position of the cross section in the rolling direction (L cross section) etched with a 3% nital etchant using a sample obtained by polishing a sample collected from an arbitrary location. Moreover, the area ratio of ferrite, bainite, and pseudo pearlite was measured by observation with an optical microscope. These values were carried out for 5 samples per sample, and were obtained as an average value over the total field of view.

引張特性は、圧延方向と直角方向(C方向)に採取した、全厚×標点間距離200mmの試験片(NKV1号試験片)を用いてNK船級K編の規定に準拠して引張試験を実施し、引張特性を求めた。   Tensile properties were measured in the direction perpendicular to the rolling direction (C direction) using a test piece (NKV1 test piece) with a total thickness of 200 mm between the gauge points in accordance with the provisions of NK class K. And tensile properties were determined.

靭性は、2mmVノッチシャルピー衝撃試験片(NKV4号試験片)を板厚1/4位置より、圧延方向に平行に採取し、NK船級K編の規定に準拠してシャルピー衝撃試験を実施し、試験温度−40℃での3本の平均値(vE−40(J))で評価した。   As for toughness, a 2 mm V notch Charpy impact test piece (NKV4 test piece) was sampled in parallel to the rolling direction from the 1/4 thickness position, and a Charpy impact test was conducted in accordance with the provisions of NK classification K. The evaluation was performed using the average value (vE-40 (J)) of three samples at a temperature of -40 ° C.

疲労強度は、φ12mm×標点間距離24mmの丸棒引張試験片を用いて100万回繰返し応力負荷時の値で評価した。試験片は、JIS Z2273に準拠して、板厚50mm材は板厚1/4位置、板厚30mm材は板厚1/2位置から採取した。   Fatigue strength was evaluated using a round bar tensile test piece having a diameter of φ12 mm × distance between gauges of 24 mm, and a value at a stress load of 1 million times. In accordance with JIS Z2273, the test piece was sampled from a position where the plate thickness was 50 mm and the thickness of the plate was 30 mm, and from the position where the plate thickness was 30 mm.

疲労亀裂進展特性は、ASTM E647に準拠して、板厚25mmのCT試験片を用いてC方向に亀裂が進展する時の疲労亀裂進展試験にて調査した。試験片は、板厚50mm材は板厚1/4位置、板厚30mm材は板厚1/2位置から採取した。試験条件は、応力比0.1、室温大気中にて行い、応力拡大係数範囲(ΔK)で25MPa・m1/2のときの疲労亀裂進展速度を評価した。The fatigue crack growth characteristics were investigated in a fatigue crack growth test when a crack propagates in the C direction using a CT test piece having a plate thickness of 25 mm in accordance with ASTM E647. The specimens were sampled from a 1/4 thickness position for a 50 mm thick material and from a 1/2 thickness position for a 30 mm thick material. The test conditions were a stress ratio of 0.1 and room temperature atmosphere, and the fatigue crack growth rate was evaluated when the stress intensity factor range (ΔK) was 25 MPa · m 1/2 .

試験結果を表3に示す。   The test results are shown in Table 3.

Figure 2014208082
Figure 2014208082

試験結果は、降伏応力YS:390N/mm以上、引張強さTS:510N/mm以上、伸び:19%以上、vE−40:100J以上、疲労強度:340Mpa以上、疲労亀裂進展速度:1.0×10−7(m/cycle)以下を合否の判定基準とした。The test results are: Yield stress YS: 390 N / mm 2 or more, Tensile strength TS: 510 N / mm 2 or more, Elongation: 19% or more, vE-40: 100 J or more, Fatigue strength: 340 Mpa or more, Fatigue crack growth rate: 1 0.0 × 10 −7 (m / cycle) or less was determined as a pass / fail criterion.

表3から、本発明例であるNo.1−1〜8−1ではいずれも降伏応力YSが390N/mm以上、引張強さTSが510N/mm以上で優れた母材特性を有していることが確認された。また、本発明鋼は、疲労強度が340MPa以上、疲労亀裂進展速度が1.0×10−7(m/cycle)以下で疲労特性にも優れている。一方、化学成分や製造条件が本発明の範囲を外れる比較例であるNo.9−1〜12−1は、上記のいずれか1つ以上の特性が劣っている。From Table 3, No. 1 is an example of the present invention. In 1-1 to 8-1, it was confirmed that the yield stress YS was 390 N / mm 2 or more and the tensile strength TS was 510 N / mm 2 or more, and excellent base material characteristics were obtained. In addition, the steel of the present invention has excellent fatigue properties with a fatigue strength of 340 MPa or more and a fatigue crack growth rate of 1.0 × 10 −7 (m / cycle) or less. On the other hand, No. which is a comparative example in which chemical components and production conditions are outside the scope of the present invention. 9-1 to 12-1 are inferior in any one or more of the above characteristics.

表4に示す成分組成の鋼片について、表5に示す製造条件で板厚30〜50mmの供試鋼を作製し、得られた鋼板の金属組織観察、機械的性質および疲労強度、疲労亀裂進展特性を調査した。なお、CCT図(連続冷却変態図)における冷却曲線がフェライト変態ノーズにかかるときの冷却速度は、表4に示す成分組成を有する鋼材からφ10×12mmの円柱形サンプルを複数個採取し、熱間加工再現試験装置にて圧延に対応する加工と種々の冷却速度での冷却パターンにて加工熱処理し、同時に試験片の膨張を測定して変態温度を調査する通常の方法にて作成して求めた。   About the steel slab of the component composition shown in Table 4, sample steel with a plate thickness of 30 to 50 mm was produced under the manufacturing conditions shown in Table 5, and the metal structure observation, mechanical properties and fatigue strength, fatigue crack growth of the obtained steel plate The characteristics were investigated. The cooling rate when the cooling curve in the CCT diagram (continuous cooling transformation diagram) is applied to the ferrite transformation nose was obtained by collecting a plurality of φ10 × 12 mm cylindrical samples from steel materials having the composition shown in Table 4 It was created and obtained by the usual method of investigating the transformation temperature by measuring the expansion of the test piece at the same time by processing and heat treatment with processing corresponding to rolling and cooling patterns at various cooling rates in the processing reproduction test equipment .

Figure 2014208082
Figure 2014208082

Figure 2014208082
Figure 2014208082

組織観察は、任意の箇所から採取した試料を研磨したサンプルを用いて、3%ナイタール腐食液によりエッチングした圧延方向断面(L断面)の板厚1/4位置にて実施した。また、光学顕微鏡観察により、フェライト、ベイナイト、疑似パーライトの面積率を測定した。これらの値は1サンプルについて5視野で実施し、それらの総視野での平均値として求めた。   The structure observation was performed at a thickness 1/4 position of the cross section in the rolling direction (L cross section) etched with a 3% nital etchant using a sample obtained by polishing a sample collected from an arbitrary location. Moreover, the area ratio of ferrite, bainite, and pseudo pearlite was measured by observation with an optical microscope. These values were carried out for 5 samples per sample, and were obtained as an average value over the total field of view.

引張特性は、圧延方向と直角方向(C方向)に採取した、全厚×標点間距離200mmの試験片(NKV1号試験片)を用いて、NK船級K編の規定に準拠して引張試験を実施し、引張特性を求めた。   Tensile properties were measured in the direction perpendicular to the rolling direction (C direction) using a test piece (NKV1 test piece) with a total thickness of 200 mm between the gauge points in accordance with the provisions of NK class K. And tensile properties were determined.

靭性は、2mmVノッチシャルピー衝撃試験片(NKV4号試験片)を板厚1/4位置より、圧延方向に平行に採取し、NK船級K編の規定に準拠してシャルピー衝撃試験を実施し、試験温度−40℃での3本の平均値(vE-40(J))で評価した。   As for toughness, a 2 mm V notch Charpy impact test piece (NKV4 test piece) was sampled in parallel to the rolling direction from the 1/4 thickness position, and a Charpy impact test was conducted in accordance with the provisions of NK classification K. The evaluation was carried out using the average value (vE-40 (J)) of three at a temperature of -40 ° C.

疲労強度は、φ12mm×標点間距離24mmの丸棒引張試験片を用いて100万回繰返し応力負荷時の値で評価した。試験片は、JIS Z2273に準拠して、板厚50mm材は板厚1/4位置、板厚30mm材は板厚1/2位置から採取した。   Fatigue strength was evaluated using a round bar tensile test piece having a diameter of φ12 mm × distance between gauges of 24 mm, and a value at a stress load of 1 million times. In accordance with JIS Z2273, the test piece was sampled from a position where the plate thickness was 50 mm and the thickness of the plate was 30 mm, and from the position where the plate thickness was 30 mm.

疲労亀裂進展特性は、ASTM E647に準拠して、板厚25mmのCT試験片を用いてC方向に亀裂が進展する時の疲労亀裂進展試験にて調査した。試験片は、板厚50mm材は板厚1/4位置、板厚30mm材は板厚1/2位置から採取した。試験条件は、応力比0.1、室温大気中にて行い、応力拡大係数範囲(ΔK)で25MPa・m1/2のときの疲労亀裂進展速度を評価した。The fatigue crack growth characteristics were investigated in a fatigue crack growth test when a crack propagates in the C direction using a CT test piece having a plate thickness of 25 mm in accordance with ASTM E647. The specimens were sampled from a 1/4 thickness position for a 50 mm thick material and from a 1/2 thickness position for a 30 mm thick material. The test conditions were a stress ratio of 0.1 and room temperature atmosphere, and the fatigue crack growth rate was evaluated when the stress intensity factor range (ΔK) was 25 MPa · m 1/2 .

試験結果を表6に示す。   The test results are shown in Table 6.

Figure 2014208082
Figure 2014208082

試験結果は、降伏応力YS:390N/mm以上、引張強さTS:510N/mm以上、伸び:19%以上、vE−40:100J以上、疲労強度:340Mpa以上、疲労亀裂進展速度:8.5×10−8(m/cycle)以下を合否の判定基準とした。The test results are: Yield stress YS: 390 N / mm 2 or more, Tensile strength TS: 510 N / mm 2 or more, Elongation: 19% or more, vE-40: 100 J or more, Fatigue strength: 340 Mpa or more, Fatigue crack growth rate: 8 .Times.10.sup.- 8 (m / cycle) or less was determined as a pass / fail criterion.

表6から、本発明例であるNo.1−2〜8−2ではいずれも降伏応力YSが390N/mm以上、引張強さTSが510N/mm以上で優れた母材特性を有していることが確認された。また、本発明鋼は、疲労強度が340MPa以上、疲労亀裂進展速度が8.5×10−8(m/cycle)以下で疲労特性にも優れている。式(1)が0超え0.8以下であることにより、耐疲労亀裂進展性により優れた高強度鋼材が得られるといえる。一方、化学成分や製造条件が本発明の範囲を外れる比較例であるNo.9−2〜16−2は、上記のいずれか1つ以上の特性が劣っている。From Table 6, No. which is an example of the present invention. In 1-2 to 2-2, it was confirmed that the yield stress YS was 390 N / mm 2 or more and the tensile strength TS was 510 N / mm 2 or more and excellent base material characteristics were obtained. In addition, the steel of the present invention has a fatigue strength of 340 MPa or more, a fatigue crack growth rate of 8.5 × 10 −8 (m / cycle) or less, and excellent fatigue characteristics. It can be said that when the formula (1) is greater than 0 and less than or equal to 0.8, a high-strength steel material superior in fatigue crack growth resistance can be obtained. On the other hand, No. which is a comparative example in which chemical components and production conditions are outside the scope of the present invention. 9-2 to 16-2 are inferior in any one or more of the above characteristics.

Claims (7)

成分組成が、質量%で、C:0.10〜0.20%、Si:0.50%以下、Mn:1.0〜2.0%、P:0.030%以下、S:0.0005〜0.0040%、Sol.Al:0.002〜0.07%、Ca:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなり、金属組織が、主相のフェライトと、第2相のベイナイトおよび疑似パーライトである疲労特性に優れた高強度鋼材。   The component composition is mass%, C: 0.10 to 0.20%, Si: 0.50% or less, Mn: 1.0 to 2.0%, P: 0.030% or less, S: 0.00. 0005-0.0040%, Sol. Al: 0.002 to 0.07%, Ca: 0.0005 to 0.0050%, consisting of the balance Fe and inevitable impurities, the metal structure is ferrite of the main phase, bainite of the second phase and High-strength steel material with excellent fatigue properties that is pseudo-pearlite. 成分組成が、さらに、質量%で、Ti:0.003〜0.03%、Nb:0.005〜0.05%の中から選ばれる一種または二種を含有することを特徴とする請求項1に記載の疲労特性に優れた高強度鋼材。   The component composition further contains one or two kinds selected from Ti: 0.003 to 0.03% and Nb: 0.005 to 0.05% by mass%. 1. A high-strength steel material excellent in fatigue characteristics as described in 1. 成分組成が、さらに、質量%で、Cr:0.1〜0.5%、Mo:0.02〜0.3%、V:0.01〜0.08%、Cu:0.1〜0.6%、Ni:0.1〜0.5%の中から選ばれる一種以上を含有することを特徴とする請求項1または請求項2に記載の疲労特性に優れた高強度鋼材。   In addition, the component composition is, in mass%, Cr: 0.1 to 0.5%, Mo: 0.02 to 0.3%, V: 0.01 to 0.08%, Cu: 0.1 to 0 The high-strength steel material excellent in fatigue characteristics according to claim 1 or 2, characterized by containing at least one selected from .6% and Ni: 0.1 to 0.5%. 成分組成が、さらに、O:0.0040%以下を含有し、かつ下記式(1)を満たすことを特徴とする請求項1乃至3の何れかに記載の疲労特性に優れた高強度鋼材。
0<(Ca−(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式(1)中のCa、O、Sは各成分の含有量(質量%)を表す。
The component composition further contains O: 0.0040% or less and satisfies the following formula (1): The high-strength steel material excellent in fatigue characteristics according to any one of claims 1 to 3.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0.8 (1)
However, Ca, O, S in Formula (1) represents content (mass%) of each component.
請求項1乃至4の何れかに記載の成分組成を有する鋼素材を、950〜1250℃に加熱後、Ar点以上で累積圧下率50%以上の圧延を行い、Ar点-60℃以上の温度域から600℃以下350℃以上の温度域まで5℃/s以上の冷却速度で加速冷却することを特徴とする疲労特性に優れた高強度鋼材の製造方法。A steel material having the component composition according to any one of claims 1 to 4 is heated to 950 to 1250 ° C, and then rolled at an Ar 3 point or higher and a cumulative reduction ratio of 50% or higher, Ar 3 point to -60 ° C or higher. A method for producing a high-strength steel material having excellent fatigue properties, characterized by accelerated cooling at a cooling rate of 5 ° C./s or more from a temperature range of 600 ° C. to 350 ° C. 前記冷却速度は、前記請求項1乃至4の何れかに記載の成分組成を有する鋼素材のCCT図における冷却曲線がフェライト変態ノーズにかかるときの冷却速度以下であることを特徴とする請求項5に記載の疲労特性に優れた高強度鋼材の製造方法。   The said cooling rate is below the cooling rate when the cooling curve in the CCT figure of the steel raw material which has the component composition in any one of the said Claim 1 thru | or 4 applies to a ferrite transformation nose. A method for producing a high-strength steel material having excellent fatigue properties as described in 1. 前記加速冷却の後、さらに、Ac点以下の温度で焼戻し処理することを特徴とする請求項5または6に記載の疲労特性に優れた高強度鋼材の製造方法。The method for producing a high-strength steel material having excellent fatigue characteristics according to claim 5 or 6, further comprising tempering at a temperature of Ac 1 point or less after the accelerated cooling.
JP2015523862A 2013-06-25 2014-06-24 High strength steel material with excellent fatigue characteristics and method for producing the same Active JP6210112B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013132309 2013-06-25
JP2013132309 2013-06-25
JP2013132308 2013-06-25
JP2013132308 2013-06-25
PCT/JP2014/003380 WO2014208082A1 (en) 2013-06-25 2014-06-24 High-strength steel material having excellent fatigue properties, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2014208082A1 true JPWO2014208082A1 (en) 2017-02-23
JP6210112B2 JP6210112B2 (en) 2017-10-11

Family

ID=52141441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523862A Active JP6210112B2 (en) 2013-06-25 2014-06-24 High strength steel material with excellent fatigue characteristics and method for producing the same

Country Status (4)

Country Link
JP (1) JP6210112B2 (en)
KR (1) KR101791324B1 (en)
CN (1) CN105229190B (en)
WO (1) WO2014208082A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222548B (en) * 2016-07-25 2017-11-10 武汉钢铁有限公司 The low yield strength ratio structural steel for bridge and its production method of normalizing rolling
JP7144173B2 (en) * 2018-04-06 2022-09-29 株式会社神戸製鋼所 Steel sheet with excellent base material toughness and surface properties and its manufacturing method
CN111304530B (en) * 2020-02-26 2021-08-17 江苏省沙钢钢铁研究院有限公司 Large-thickness high-toughness steel plate and production method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995730A (en) * 1995-10-02 1997-04-08 Nkk Corp Production of building steel for low temperature use
JPH09291310A (en) * 1996-04-26 1997-11-11 Nkk Corp Production of steel material for earthquake-proof building
JPH1072643A (en) * 1996-07-02 1998-03-17 Nippon Steel Corp High damping alloy and its production
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP2007023328A (en) * 2005-07-14 2007-02-01 Kobe Steel Ltd Method for manufacturing steel sheet with low yield ratio, high strength and high toughness
US20100258219A1 (en) * 2007-12-04 2010-10-14 Posco High-Strength Steel Sheet with Excellent Low Temperature Toughness and Manufacturing Method Thereof
JP2010236046A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness, high tensile strength and excellent strength-elongation balance, and method for manufacturing the same
JP2011094214A (en) * 2009-10-30 2011-05-12 Kobe Steel Ltd Cold-formed square steel tube having excellent earthquake resistance
JP2012102393A (en) * 2010-10-12 2012-05-31 Jfe Steel Corp Non-heat-treated, low-yield-ratio, high-tensile thick steel plate and method for producing the same
JP2012184500A (en) * 2011-02-15 2012-09-27 Jfe Steel Corp High tensile strength steel sheet having excellent low temperature toughness in weld heat-affected zone, and method for producing the same
WO2012133558A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669300B2 (en) * 2005-02-16 2011-04-13 新日本製鐵株式会社 Steel wire rod excellent in cold forgeability after spheroidizing treatment and method for producing the same
JP5061420B2 (en) * 2005-03-15 2012-10-31 Jfeスチール株式会社 Manufacturing method of high-tensile hot-rolled steel sheet
JP6056236B2 (en) * 2011-10-28 2017-01-11 Jfeスチール株式会社 Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP5668668B2 (en) * 2011-11-04 2015-02-12 新日鐵住金株式会社 Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP5842574B2 (en) * 2011-11-28 2016-01-13 Jfeスチール株式会社 Manufacturing method of steel for large heat input welding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995730A (en) * 1995-10-02 1997-04-08 Nkk Corp Production of building steel for low temperature use
JPH09291310A (en) * 1996-04-26 1997-11-11 Nkk Corp Production of steel material for earthquake-proof building
JPH1072643A (en) * 1996-07-02 1998-03-17 Nippon Steel Corp High damping alloy and its production
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP2007023328A (en) * 2005-07-14 2007-02-01 Kobe Steel Ltd Method for manufacturing steel sheet with low yield ratio, high strength and high toughness
US20100258219A1 (en) * 2007-12-04 2010-10-14 Posco High-Strength Steel Sheet with Excellent Low Temperature Toughness and Manufacturing Method Thereof
JP2010236046A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness, high tensile strength and excellent strength-elongation balance, and method for manufacturing the same
JP2011094214A (en) * 2009-10-30 2011-05-12 Kobe Steel Ltd Cold-formed square steel tube having excellent earthquake resistance
JP2012102393A (en) * 2010-10-12 2012-05-31 Jfe Steel Corp Non-heat-treated, low-yield-ratio, high-tensile thick steel plate and method for producing the same
JP2012184500A (en) * 2011-02-15 2012-09-27 Jfe Steel Corp High tensile strength steel sheet having excellent low temperature toughness in weld heat-affected zone, and method for producing the same
WO2012133558A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same

Also Published As

Publication number Publication date
JP6210112B2 (en) 2017-10-11
CN105229190A (en) 2016-01-06
CN105229190B (en) 2019-07-09
WO2014208082A1 (en) 2014-12-31
KR101791324B1 (en) 2017-10-27
KR20150140391A (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JPWO2013089156A1 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP6210112B2 (en) High strength steel material with excellent fatigue characteristics and method for producing the same
JP5369585B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP7163889B2 (en) Manufacturing method for wear-resistant steel with excellent fatigue resistance
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5796369B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5369584B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP2012036499A (en) High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP5870525B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP2011195944A (en) Method for producing steel excellent in fatigue-crack propagation resistant characteristic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6210112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250