JPWO2014157645A1 - Laser scanning observation apparatus and laser scanning method - Google Patents

Laser scanning observation apparatus and laser scanning method Download PDF

Info

Publication number
JPWO2014157645A1
JPWO2014157645A1 JP2015508775A JP2015508775A JPWO2014157645A1 JP WO2014157645 A1 JPWO2014157645 A1 JP WO2014157645A1 JP 2015508775 A JP2015508775 A JP 2015508775A JP 2015508775 A JP2015508775 A JP 2015508775A JP WO2014157645 A1 JPWO2014157645 A1 JP WO2014157645A1
Authority
JP
Japan
Prior art keywords
laser
laser light
laser scanning
lens
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508775A
Other languages
Japanese (ja)
Other versions
JP6500774B2 (en
Inventor
輝将 伊藤
敦 福本
史貞 前田
秀弥 中鉢
遊 広野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority claimed from PCT/JP2014/059220 external-priority patent/WO2014157645A1/en
Publication of JPWO2014157645A1 publication Critical patent/JPWO2014157645A1/en
Application granted granted Critical
Publication of JP6500774B2 publication Critical patent/JP6500774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

筐体の一部領域に設けられ、観察対象に接触又は近接するウインドウ部と、前記ウインドウ部を通して前記観察対象にレーザ光を集光する対物レンズと、前記筐体内を導光されてきた前記レーザ光の進行方向を前記ウインドウ部に向けて変更する光路変更素子と、前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記観察対象に集光される際に生じる非点収差を補正する非点収差補正素子と、前記レーザ光が前記観察対象を走査するように、前記レーザ光の前記ウインドウ部への入射方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させる回転機構と、を備え、前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査型観察装置を提供する。  A window portion that is provided in a partial region of the housing and that is in contact with or close to the observation target; an objective lens that focuses laser light on the observation target through the window portion; and the laser that has been guided in the housing An optical path changing element that changes the traveling direction of light toward the window portion, and a non-astigmatism that is provided upstream of the window portion and corrects astigmatism that occurs when the laser light is focused on the observation target. A point aberration correction element, and a rotation mechanism that rotates at least the optical path changing element with a rotation axis perpendicular to the direction of incidence of the laser light on the window portion so that the laser light scans the observation target. The astigmatism correction element includes a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of the condensing position of the laser beam in the observation target. Correcting the difference, to provide a laser-scanning examination apparatus.

Description

本開示は、レーザ走査型観察装置及びレーザ走査方法に関する。   The present disclosure relates to a laser scanning observation apparatus and a laser scanning method.

対象物を高解像度で観察するための技術として、レーザ走査型顕微鏡装置がある。レーザ走査型顕微鏡装置では、レーザ光を対象物に照射し、当該レーザ光を対象物上で走査しながら、その透過光や後方散乱光、蛍光、ラマン散乱光、非線形光学効果によって生じる各種の光等の強度を検出することにより、対象物に関する各種の情報を2次元又は3次元の画像データとして取得することができる。近年、このようなレーザ走査型顕微鏡装置の技術を、被測定者(患者)の体表面に接触させるプローブや、被測定者の体腔内に挿入される内視鏡等に応用し、被測定者(患者)の生体組織をより高解像度で観察しようとする試みが行われている。   As a technique for observing an object with high resolution, there is a laser scanning microscope apparatus. In a laser scanning microscope apparatus, an object is irradiated with laser light, and the laser light is scanned on the object, while transmitting light, backscattered light, fluorescence, Raman scattered light, and various types of light generated by nonlinear optical effects. By detecting the intensity such as, it is possible to acquire various information related to the object as two-dimensional or three-dimensional image data. In recent years, the technique of the laser scanning microscope apparatus has been applied to a probe that is brought into contact with the body surface of a subject (patient), an endoscope that is inserted into the body cavity of the subject, and the like. Attempts have been made to observe biological tissue of (patient) with higher resolution.

ここで、上述したようなレーザ光を走査することによって対象物を観察する顕微鏡装置、内視鏡装置、プローブ等(以下、レーザ走査型観察装置と総称する。)においては、観察対象(例えば生体組織)を広範囲に見渡すことができ、必要に応じて任意の部位を拡大して観察したいという要求がある。すなわち、レーザ走査型観察装置には、広い視野(実視野(FOV:Field Of View))と高い開口数(NA:Numerical Aperture)との両立が求められている。しかしながら、一般的に、広いFOVと高いNAとを両立させるためには、複雑な光学系を構成する必要があり、装置の大型化、高コスト化が懸念される。特に、プローブや内視鏡装置のように、その用途から比較的小型であることが求められる装置では、複雑な光学系を実装することが困難であり、広いFOVと高いNAとを両立させる構成を実現することが困難であった。   Here, in a microscope apparatus, an endoscope apparatus, a probe, etc. (hereinafter collectively referred to as a laser scanning observation apparatus) that observes an object by scanning the laser beam as described above, an observation object (for example, a living body). There is a demand to view a wide range of tissue) and to enlarge and observe any part as necessary. That is, a laser scanning observation apparatus is required to have both a wide field of view (actual field of view (FOV)) and a high numerical aperture (NA). However, in general, in order to achieve both a wide FOV and a high NA, it is necessary to configure a complicated optical system, and there is a concern about an increase in size and cost of the apparatus. In particular, in a device such as a probe or an endoscope device that is required to be relatively small for its application, it is difficult to mount a complicated optical system, and a configuration that achieves both a wide FOV and a high NA. It was difficult to realize.

一方、光の干渉を利用して生体組織の断層画像を得る、いわゆる光コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)の分野では、内視鏡のヘッド部における光学素子に回転機構を設けることにより、ヘッド部の小型化を実現した内視鏡装置が提案されている。例えば、非特許文献1には、内視鏡のヘッド部に設けられたグリンレンズ及びプリズムを鏡筒の長手方向を回転軸方向として回転させながら生体組織に対して低コヒーレンス光を照射することにより、当該生体組織の断層画像を取得することのできるOCTシステムが開示されている。また、例えば、非特許文献2には、非特許文献1と同様にヘッド部に設けられたグリンレンズ及びミラーを鏡筒の長手方向を回転軸方向として回転させて観察画像を得る、OCTを用いた内視鏡装置において、当該ミラーの反射面を、鏡筒の側壁に設けられるデータ取得用(画像撮影用)のウインドウ部において生じ得る非点収差を補正するような形状で形成することにより、より高画質の観察画像を得る技術が開示されている。レーザ走査型観察装置に対して、非特許文献1、2のような光学素子の回転機構を適用することにより、広いFOVを実現できる可能性がある。   On the other hand, in the field of so-called optical coherence tomography (OCT: Optical Coherence Tomography), which obtains a tomographic image of biological tissue using light interference, by providing a rotation mechanism in the optical element in the head portion of the endoscope, An endoscope apparatus that realizes a reduction in the size of the head portion has been proposed. For example, in Non-Patent Document 1, by irradiating a living tissue with low coherence light while rotating a green lens and a prism provided in a head portion of an endoscope with the longitudinal direction of the lens barrel as a rotation axis direction, An OCT system capable of acquiring a tomographic image of the living tissue is disclosed. Further, for example, Non-Patent Document 2 uses OCT, in which, as in Non-Patent Document 1, an observation image is obtained by rotating a grind lens and a mirror provided in the head unit with the longitudinal direction of the lens barrel as the rotation axis direction. In the conventional endoscope apparatus, by forming the reflecting surface of the mirror in a shape that corrects astigmatism that may occur in the data acquisition (image capturing) window provided on the side wall of the lens barrel, A technique for obtaining a higher-quality observation image is disclosed. There is a possibility that a wide FOV can be realized by applying the rotation mechanism of the optical element as described in Non-Patent Documents 1 and 2 to the laser scanning observation apparatus.

このような知見から、内視鏡のヘッド部において光学素子を回転させ、鏡筒の円周方向にレーザ光を走査させることにより、広いFOVを実現する技術が提案されている。例えば、非特許文献3には、光ファイバによって鏡筒内を導光されたレーザ光をグリンレンズによってミラーに集光させ、鏡筒の側面方向に存在する生体組織に光を照射する内視鏡装置において、当該ミラーを鏡筒の長手方向を回転軸方向として回転させることにより、レーザ光を鏡筒の円周方向に走査させて画像データを取得するレーザ走査型内視鏡装置が開示されている。また、例えば、非特許文献4には、光ファイバによって鏡筒内を導光されたレーザ光をグレーティングによって鏡筒の側面方向に回折させ、対物レンズを介して生体組織に光を照射する内視鏡装置において、当該グレーティング及び対物レンズを鏡筒の長手方向を回転軸方向として回転させることにより、レーザ光を鏡筒の円周方向に走査させて画像データを取得するレーザ走査型内視鏡装置が開示されている。   Based on such knowledge, a technique for realizing a wide FOV by rotating an optical element in a head portion of an endoscope and scanning a laser beam in a circumferential direction of the barrel has been proposed. For example, Non-Patent Document 3 discloses an endoscope in which laser light guided in a lens barrel by an optical fiber is condensed on a mirror by a green lens, and light is irradiated to a living tissue existing in the side surface direction of the lens barrel. In the apparatus, there is disclosed a laser scanning endoscope apparatus that acquires image data by scanning a laser beam in a circumferential direction of the lens barrel by rotating the mirror with the longitudinal direction of the lens barrel as a rotation axis direction. Yes. Further, for example, Non-Patent Document 4 discloses an endoscope in which laser light guided in a lens barrel by an optical fiber is diffracted by a grating in the side surface direction of the lens barrel, and light is irradiated to a living tissue via an objective lens. In the mirror apparatus, a laser scanning endoscope apparatus that acquires image data by scanning the laser beam in the circumferential direction of the lens barrel by rotating the grating and the objective lens with the longitudinal direction of the lens barrel as the rotation axis direction. Is disclosed.

Guillermo J. Tearney et al., “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomograhy”, Science 1997 Vol.276 p.2037−2039Guillermo J.M. Teaney et al. "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography", Science 1997 Vol. 276 p. 2037-2039 Jiefeng Xi et al., “High−resolution OCT balloon imaging catheter with astigmatism correction”, OPTICS LETTERS 2009 Vol.34 No.13 p.1943−1945Jiefeng Xi et al. , “High-resolution OCT balloon imaging catalyst with astigmatism correction”, OPTICS LETTERS 2009 Vol. No. 34 13 p. 1943-1945 Gangjun Liu et al., “Rotational multiphoton endoscopy with a 1 μm fiber laser system”, OPTICS LETTERS 2009 Vol.34 No.15 p.2249−2251Gangjun Liu et al. "Rotational multiphoton endoscopy with a 1 μm fiber laser system", OPTICS LETTERS 2009 Vol. No. 34 15 p. 2249-2251 D. Yelin et al., “Large area confocal microscopy”, OPTICS LETTERS 2007 Vol.32 No.9 p.1102−1104D. Yelin et al. , “Large area confocal microscopy”, OPTICS LETTERS 2007 Vol. 32 No. 9 p. 1102-1104

一方、レーザ走査型観察装置においては、所望の部位の画像データをより安定的に取得するために、筐体の一部に設けられる画像データ取得用(画像撮影用)のウインドウ部を観察対象に接触させながら、対物レンズによって当該ウインドウ部を介して観察対象にレーザ光を集光することにより観察を行う使用方法が考えられる。このような使用方法を用いる場合、安全上の観点から、観察対象と接触するウインドウ部には、所定の強度を確保するために、所定の厚さを有することが求められる。   On the other hand, in the laser scanning observation apparatus, in order to acquire image data of a desired part more stably, an image data acquisition (image capturing) window part provided in a part of the casing is used as an observation target. A method of use in which observation is performed by condensing a laser beam on an observation target through the window portion by an objective lens while being brought into contact with each other is conceivable. When using such a usage method, from the viewpoint of safety, the window portion in contact with the observation target is required to have a predetermined thickness in order to ensure a predetermined strength.

ここで、対物レンズによって集光されたレーザ光がウインドウ部を介して観察対象に照射される際に生じる収差について考察すると、対物レンズのNAが高くなるほど、ウインドウ部の厚さが厚くなるほど、当該収差の度合いは大きくなる傾向がある。また、ウインドウ部が内視鏡の鏡筒のような円筒形の筐体の側壁に設けられ、当該筐体の形状に合わせて円筒形状(シリンドリカル形状)を有する場合には、当該ウインドウ部の曲率が小さくなるほど(すなわち、筐体である鏡筒の直径が小さくなるほど)、収差の度合いは更に大きくなると考えられる。特に、シリンドリカル面を有するウインドウ部をレーザ光が通過する際には、光軸上であっても収差(特に非点収差)が生じ、取得される画像データの品質が劣化する恐れがある。   Here, considering the aberration that occurs when the observation target is irradiated with the laser beam condensed by the objective lens, the higher the NA of the objective lens, the thicker the window portion, The degree of aberration tends to increase. In addition, when the window portion is provided on the side wall of a cylindrical housing such as a lens barrel of an endoscope and has a cylindrical shape (cylindrical shape) in accordance with the shape of the housing, the curvature of the window portion It is considered that the degree of aberration is further increased as the lens becomes smaller (that is, as the diameter of the lens barrel as the housing becomes smaller). In particular, when laser light passes through a window portion having a cylindrical surface, aberration (particularly astigmatism) occurs even on the optical axis, and the quality of acquired image data may deteriorate.

更に、レーザ走査型観察装置においては、観察深さ(すなわち、観察対象におけるレーザ光の照射深さ)を変えながらレーザ走査を行うことにより、複数層(レイヤー)の画像を取得したいという要望がある。観察深さが変更されれば、対物レンズ及びウインドウ部を通過する際のレーザ光の収束状態、発散状態も変化するため、収差の度合いも変化する。高画質な観察画像を取得するためには、このような、観察中に光学系が変更されることによって生じる収差の変化も考慮して光学系を設計する必要がある。   Further, in the laser scanning observation apparatus, there is a demand for acquiring images of a plurality of layers (layers) by performing laser scanning while changing the observation depth (that is, the irradiation depth of the laser light on the observation target). . If the observation depth is changed, the convergence state and divergence state of the laser light when passing through the objective lens and the window portion also change, so the degree of aberration also changes. In order to acquire a high-quality observation image, it is necessary to design the optical system in consideration of such a change in aberration caused by changing the optical system during observation.

しかしながら、上記非特許文献1、2に記載の技術は、OCTに関するものであり、NAが比較的低い対物レンズ(例えばNA≒0.1程度)が用いられるため、観察画像の画質において上記のような収差はそれほど大きな問題とならない。それでも、非特許文献2に記載の技術では、ミラーの形状によって収差を補正することにより画質の向上を図っているが、当該方法では、上述したような、例えば観察深さが変更され、収差の度合いが変化した場合に対応することができない。また、非特許文献2及び非特許文献3に記載の技術では、ウインドウ部の詳細な構成については言及されておらず、よって、上記のような安全上の観点からウインドウ部に求められる条件や、ウインドウ部の構成に起因して生じる収差については考慮されていなかった。このように、従来の内視鏡装置においては、NAが比較的高い対物レンズを用いながら、ウインドウ部に所定の厚さを設けることにより安全性を確保することと、収差の影響を抑制することにより高精度な観察を行うこととを両立させることが困難であった。   However, the techniques described in Non-Patent Documents 1 and 2 relate to OCT, and an objective lens having a relatively low NA (for example, NA≈0.1) is used. Aberrations are not a big problem. Nevertheless, in the technique described in Non-Patent Document 2, the image quality is improved by correcting the aberration according to the shape of the mirror. However, in this method, as described above, for example, the observation depth is changed, and the aberration is reduced. It cannot cope with the case where the degree changes. Further, in the technologies described in Non-Patent Document 2 and Non-Patent Document 3, the detailed configuration of the window part is not mentioned, and therefore, the conditions required for the window part from the above safety viewpoint, The aberration caused by the configuration of the window portion has not been taken into consideration. Thus, in a conventional endoscope apparatus, while using an objective lens having a relatively high NA, safety is ensured by providing a predetermined thickness in the window portion, and the influence of aberration is suppressed. Therefore, it is difficult to achieve both high-accuracy observation.

そこで、本開示では、より高精度な観察を行うことが可能な、新規かつ改良されたレーザ走査型観察装置及びレーザ走査方法を提案する。   Therefore, the present disclosure proposes a new and improved laser scanning observation apparatus and laser scanning method capable of performing observation with higher accuracy.

本開示によれば、筐体の一部領域に設けられ、観察対象に接触又は近接するウインドウ部と、前記ウインドウ部を通して前記観察対象にレーザ光を集光する対物レンズと、前記筐体内を導光されてきた前記レーザ光の進行方向を前記ウインドウ部に向けて変更する光路変更素子と、前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記観察対象に集光される際に生じる非点収差を補正する非点収差補正素子と、前記レーザ光が前記観察対象を走査するように、前記レーザ光の前記ウインドウ部への入射方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させる回転機構と、を備え、前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査型観察装置が提供される。   According to the present disclosure, a window portion that is provided in a partial region of the housing and that is in contact with or close to the observation target, an objective lens that focuses the laser light on the observation target through the window portion, and the inside of the housing are guided. An optical path changing element that changes a traveling direction of the laser light that has been emitted toward the window portion, and a non-path that is provided before the window portion and that is generated when the laser light is focused on the observation target. An astigmatism correction element that corrects astigmatism, and at least the optical path changing element at a rotation axis perpendicular to the incident direction of the laser light to the window portion so that the laser light scans the observation object. The astigmatism correction element corresponding to a variation in astigmatism accompanying a change in observation depth, which is a depth of the laser beam condensing position in the observation target. Positive amount to correct the astigmatism, the laser-scanning examination apparatus is provided.

また、本開示によれば、筐体の内部に設けられる光路変更素子にレーザ光を入射することと、前記光路変更素子によって前記筐体内を導光されてきた前記レーザ光の進行方向を変更し、前記筐体の一部領域に設けられ観察対象に接触又は近接するウインドウ部を介して、対物レンズによって集光され、非点収差補正素子によって非点収差が補正された前記レーザ光を前記観察対象に照射することと、前記レーザ光が前記生体組織を走査するように、前記レーザ光の前記観察対象への入射方向である観察方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させることと、を含み、前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査方法が提供される。   Further, according to the present disclosure, laser light is incident on an optical path changing element provided inside the casing, and a traveling direction of the laser light guided in the casing by the optical path changing element is changed. The laser beam focused on by an objective lens and corrected for astigmatism by an astigmatism correction element via a window portion provided in a partial region of the housing and in contact with or close to the observation target is observed. Irradiating the target, and at least the optical path changing element at a rotation axis perpendicular to an observation direction that is an incident direction of the laser light to the observation target so that the laser light scans the living tissue. The astigmatism correction element includes a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of the condensing position of the laser beam in the observation target. Concerned To correct astigmatism, the laser scanning method is provided.

本開示によれば、筐体内で少なくとも光路変更素子が回転することで観察対象に対してレーザ光が走査される。よって、光路変更素子が1回転する間に観察対象にレーザ光が走査される範囲が、FOVとして確保されるため、対物レンズのNAが比較的高い場合であっても広視野が実現される。また、観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正するような、非点収差補正素子が備えられるため、観察深さが変更された場合であっても、非点収差の影響の少ない高精度な観察を行うことが可能となる。   According to the present disclosure, the laser light is scanned with respect to the observation target by rotating at least the optical path changing element in the housing. Therefore, the range in which the laser beam is scanned on the observation target while the optical path changing element rotates once is secured as the FOV, so that a wide field of view is realized even when the NA of the objective lens is relatively high. In addition, since an astigmatism correction element that corrects the astigmatism with a correction amount corresponding to the change in astigmatism accompanying the change in the observation depth is provided, the observation depth is changed. However, it is possible to perform highly accurate observation with less astigmatism.

以上説明したように本開示によれば、より高精度な観察を行うことが可能となる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。   As described above, according to the present disclosure, more accurate observation can be performed. Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.

既存のレーザ走査型内視鏡装置についての、NAとFOVとの関係を示すグラフである。It is a graph which shows the relationship between NA and FOV about the existing laser scanning type endoscope apparatus. 既存のレーザ走査型内視鏡についての、ヘッド部のサイズとNA及びFOVとの関係を示すグラフである。It is a graph which shows the relationship between the size of a head part, NA, and FOV about the existing laser scanning endoscope. 本開示の第1の実施形態に係るレーザ走査型内視鏡装置の一構成例を示す概略図である。1 is a schematic diagram illustrating a configuration example of a laser scanning endoscope apparatus according to a first embodiment of the present disclosure. 図2に示す走査部の構成を模式的に示す概略図である。It is the schematic which shows typically the structure of the scanning part shown in FIG. 本開示の第2の実施形態に係るレーザ走査型内視鏡装置の一構成例を示す概略図である。It is a schematic diagram showing an example of 1 composition of a laser scanning endoscope apparatus concerning a 2nd embodiment of this indication. マルチコア光ファイバの断面の様子を示す概略図である。It is the schematic which shows the mode of the cross section of a multi-core optical fiber. 走査部が対物レンズを複数有する場合のレーザ走査型内視鏡装置の一構成例を示す概略図である。It is the schematic which shows one structural example of the laser scanning type endoscope apparatus in case a scanning part has two or more objective lenses. 光路変更素子が偏光ビームスプリッタである場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case an optical path change element is a polarization beam splitter. 図6Aに示す走査部をy軸を回転軸として180度回転したときの様子を示す概略図である。It is the schematic which shows a mode when the scanning part shown to FIG. 6A rotates 180 degree | times by making the y-axis into a rotating shaft. 光路変更素子がMEMSミラーである場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case an optical path change element is a MEMS mirror. 光路変更素子がMEMSミラーである場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case an optical path change element is a MEMS mirror. 走査部が光路分岐素子を有する場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case a scanning part has an optical path branching element. 走査部が光路分岐素子を有する場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case a scanning part has an optical path branching element. 鏡筒に対するレーザ光の入射位置が固定される場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case the incident position of the laser beam with respect to a lens barrel is fixed. 鏡筒に対するレーザ光の入射位置が固定される場合の走査部の一構成例を示す概略図である。It is the schematic which shows one structural example of the scanning part in case the incident position of the laser beam with respect to a lens barrel is fixed. 走査部が異なる回転軸方向を有する内視鏡の一構成例を示す概略図である。It is the schematic which shows one structural example of the endoscope in which a scanning part has a different rotating shaft direction. 図10Aに示す走査部の構成を模式的に示す概略図である。It is the schematic which shows typically the structure of the scanning part shown to FIG. 10A. 複数の対物レンズが鏡筒の長手方向に配列される変形例に係る内視鏡の一構成例を示す概略図である。It is the schematic which shows the example of 1 structure of the endoscope which concerns on the modification by which a some objective lens is arranged in the longitudinal direction of a lens-barrel. 複数の対物レンズが鏡筒の長手方向に配列される変形例に係る内視鏡の他の構成例を示す概略図である。It is the schematic which shows the other structural example of the endoscope which concerns on the modification by which a some objective lens is arranged in the longitudinal direction of a lens-barrel. 本実施形態に係る収差補正素子の一構成例であるシリンドリカル凹凸レンズペアの構成を示す模式図である。It is a schematic diagram which shows the structure of the cylindrical uneven | corrugated lens pair which is one structural example of the aberration correction element which concerns on this embodiment. 本実施形態に係る収差補正素子の一構成例であるシリンドリカル凹凸レンズペアの構成を示す模式図である。It is a schematic diagram which shows the structure of the cylindrical uneven | corrugated lens pair which is one structural example of the aberration correction element which concerns on this embodiment. 本実施形態に係る収差補正素子の一構成例であるシリンドリカルメニスカスレンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the cylindrical meniscus lens which is one structural example of the aberration correction element which concerns on this embodiment. 本実施形態に係る収差補正素子の一構成例であるシリンドリカル平凸レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the cylindrical plano-convex lens which is one structural example of the aberration correction element which concerns on this embodiment. 本実施形態に係るレーザ走査型内視鏡装置における、観察深さ調整機構について説明するための説明図である。It is explanatory drawing for demonstrating the observation depth adjustment mechanism in the laser scanning endoscope apparatus which concerns on this embodiment. 本実施形態に係るレーザ走査型内視鏡装置における、観察深さ調整機構を用いたレーザ走査方法の一例を示す図である。It is a figure which shows an example of the laser scanning method using the observation depth adjustment mechanism in the laser scanning endoscope apparatus which concerns on this embodiment. 本実施形態に係るレーザ走査型プローブの一構成例を示す側面図である。It is a side view which shows the example of 1 structure of the laser scanning probe which concerns on this embodiment. 図18に示すレーザ走査型プローブにおける光学部材の配置を示す図である。It is a figure which shows arrangement | positioning of the optical member in the laser scanning probe shown in FIG. 図18に示すレーザ走査型プローブにおける光学部材の配置を示す図である。It is a figure which shows arrangement | positioning of the optical member in the laser scanning probe shown in FIG. 図18に示すレーザ走査型プローブにおける光学部材の配置を示す図である。It is a figure which shows arrangement | positioning of the optical member in the laser scanning probe shown in FIG. レーザ走査型プローブの光学系において非点収差に影響を及ぼすパラメータについて説明するための説明図である。It is explanatory drawing for demonstrating the parameter which affects astigmatism in the optical system of a laser scanning probe. 本実施形態において非点収差補正素子として用いられるシリンドリカルメニスカスレンズの光学特性の一例を示すグラフ図である。It is a graph which shows an example of the optical characteristic of the cylindrical meniscus lens used as an astigmatism correction element in this embodiment. 2面の曲面を有する光学部材及び1面の曲面を有する光学部材の非点収差の観察深さ依存性を示すグラフ図である。It is a graph which shows the observation depth dependence of the astigmatism of the optical member which has a curved surface of 2 surfaces, and the optical member which has a curved surface of 1 surface. レーザ走査型プローブに適用される色収差補正素子について説明するための説明図である。It is explanatory drawing for demonstrating the chromatic aberration correction element applied to a laser scanning probe. 色収差補正素子を適用した場合と適用しなかった場合における、蛍光の光ファイバへの集光効率を示すグラフ図である。It is a graph which shows the condensing efficiency of the fluorescence to the optical fiber in the case where a chromatic aberration correction element is applied and the case where it is not applied. 本実施形態に係るレーザ走査型プローブの他の構成例である、手持ち型のレーザ走査型プローブの構成を示す斜視図である。It is a perspective view which shows the structure of the handheld laser scanning probe which is another structural example of the laser scanning probe which concerns on this embodiment. 本実施形態に係るレーザ走査型顕微鏡装置の一構成例を示す概略図である。It is the schematic which shows the example of 1 structure of the laser scanning microscope apparatus which concerns on this embodiment. 本実施形態に係るレーザ走査型観察装置のハードウェア構成を説明するためのブロック図である。It is a block diagram for demonstrating the hardware constitutions of the laser scanning observation apparatus which concerns on this embodiment.

以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

なお、説明は以下の順序で行うものとする。
1.他の構成によるレーザ走査型内視鏡装置についての検討
2.第1の実施形態
3.第2の実施形態
4.変形例
4−1.走査部が複数の対物レンズを有する構成
4−1−1.光路変更素子が偏光ビームスプリッタである構成
4−1−2.光路変更素子がMEMSミラーである構成
4−1−3.走査部が光路分岐素子を有する構成
4−1−4.鏡筒に対するレーザ光の入射位置が固定される構成
4−2.その他の構成
4−2−1.走査部が異なる方向の回転軸を有する構成
4−2−2.複数の対物レンズが鏡筒の長手方向に配列される変形例
5.収差補正素子の構成
5−1.非点収差の補正について
5−1−1.シリンドリカル凹凸レンズペア
5−1−2.シリンドリカルメニスカスレンズ
5−1−3.シリンドリカル平凹レンズ
6.観察深さ調整機構を備える構成
6−1.観察深さ調整機構を利用したレーザ走査
6−2.レーザ走査型プローブ
6−2−1.全体構成
6−2−2.非点収差補正素子
6−2−3.色収差補正素子
6−2−4.レーザ走査型プローブの他の構成例
6−3.レーザ走査型顕微鏡装置
7.ハードウェア構成
8.まとめ
The description will be made in the following order.
1. 1. Examination of laser scanning endoscope apparatus with other configurations 1. First embodiment Second Embodiment 4. Modified example 4-1. Configuration in which scanning unit includes a plurality of objective lenses 4-1-1. Configuration in which the optical path changing element is a polarization beam splitter 4-1-2. Configuration in which optical path changing element is MEMS mirror 4-1-3. Configuration in which scanning unit includes optical path branching element 4-1-4. Configuration in which the incident position of laser light on the lens barrel is fixed 4-2. Other configuration 4-2-1. Configuration in which scanning unit has rotating shafts in different directions 4-2-2. 4. Modification in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel 5. Configuration of aberration correction element 5-1. Correction of astigmatism 5-1-1. Cylindrical uneven lens pair 5-1-2. Cylindrical meniscus lens 5-1-3. Cylindrical plano-concave lens Configuration including observation depth adjustment mechanism 6-1. Laser scanning using observation depth adjustment mechanism 6-2. Laser scanning probe 6-2-1. Overall configuration 6-2-2. Astigmatism correction element 6-2-3. Chromatic aberration correction element 6-2-4. Other configuration examples of laser scanning probe 6-3. 6. Laser scanning microscope apparatus Hardware configuration Summary

以下の説明では、(1.他の構成によるレーザ走査型内視鏡装置についての検討)から(5.収差補正素子の構成)において、本開示の一実施形態に係るレーザ走査型観察装置の一例として、レーザ走査型内視鏡装置を例に挙げて、その構成や取り得る変形例等について説明を行う。ただし、本開示はかかる例に限定されず、本実施形態に係るレーザ走査型観察装置は、レーザ走査型プローブやレーザ走査型顕微鏡装置等、他の構成であってもよい。(1.他の構成によるレーザ走査型内視鏡装置についての検討)から(5.収差補正素子の構成)で説明する諸事項は、レーザ走査型プローブ及びレーザ走査型顕微鏡装置等の他の構成においても同様に適用され得る。なお、レーザ走査型プローブやレーザ走査型顕微鏡装置の具体的な構成の一例については、(6−2.レーザ走査型プローブ)及び(6−3.レーザ走査型顕微鏡装置)で詳しく説明する。   In the following description, an example of a laser scanning observation apparatus according to an embodiment of the present disclosure from (1. Examination of laser scanning endoscope apparatus having other configurations) to (5. Configuration of aberration correction element) will be described. As an example, a laser scanning endoscope apparatus will be described as an example, and its configuration and possible modifications will be described. However, the present disclosure is not limited to such an example, and the laser scanning observation apparatus according to the present embodiment may have other configurations such as a laser scanning probe and a laser scanning microscope apparatus. The matters described in (1. Examination of laser scanning endoscope apparatus with other configurations) to (5. Configuration of aberration correction element) are other configurations such as a laser scanning probe and a laser scanning microscope apparatus. The same applies to the above. An example of a specific configuration of the laser scanning probe or the laser scanning microscope apparatus will be described in detail in (6-2. Laser scanning probe) and (6-3. Laser scanning microscope apparatus).

また、本開示の好適な一実施形態として、レーザ走査型観察装置は、観察対象においてレーザ光が集光される深さである観察深さを調整するための観察深さ調整機構を備えてもよい。レーザ走査型観察装置が、観察深さ調整機構を有することにより、観察対象の深さ方向の情報も取得することが可能となるため、より操作者(ユーザ)の要望に適う、有用な観察が可能となる。そこで、本明細書では、(6.観察深さ調整機構を備える構成)において、観察深さ調整機構を有するレーザ走査型観察装置の構成について詳しく説明する。そして、最後に、(7.ハードウェア構成)で本実施形態に係るレーザ走査型観察装置を実現し得るハードウェア構成の一例について説明を行う。   Further, as a preferred embodiment of the present disclosure, the laser scanning observation apparatus may include an observation depth adjustment mechanism for adjusting an observation depth, which is a depth at which laser light is condensed on an observation target. Good. Since the laser scanning observation apparatus has an observation depth adjustment mechanism, it is possible to acquire information in the depth direction of the observation target, so that useful observation that meets the demands of the operator (user) can be performed. It becomes possible. Therefore, in this specification, the configuration of the laser scanning observation apparatus having the observation depth adjustment mechanism will be described in detail in (6. Configuration including the observation depth adjustment mechanism). Finally, an example of a hardware configuration capable of realizing the laser scanning observation apparatus according to the present embodiment will be described in (7. Hardware configuration).

具体的には、(6.観察深さ調整機構を備える構成)では、まず、(6−1.観察深さ調整機構を利用したレーザ走査)において、観察深さ調整機構を用いることにより実現されるレーザ走査方法について説明する。次いで、(6−2.レーザ走査型プローブ)において、それまで説明した内視鏡とは異なる構成の一例として、観察深さ調整機構を備えるレーザ走査型プローブの構成について説明するとともに、観察深さ調整機構や、観察深さが変更されることに対応した収差補正素子の構成について詳細に説明する。最後に、(6−3.レーザ走査型顕微鏡装置)において、本実施形態に係るレーザ走査型観察装置の更に他の構成の一例として、観察深さ調整機構を備えるレーザ走査型顕微鏡装置の構成について説明する。なお、(6−2.レーザ走査型プローブ)及び(6−3.レーザ走査型顕微鏡装置)で説明するレーザ走査型プローブ及びレーザ走査型顕微鏡装置の構成は、観察深さ調整機構を備える場合の一例に対応するものであるが、レーザ走査型プローブ及びレーザ走査型顕微鏡装置の構成はかかる例に限定されず、観察深さ調整機構は必ずしも設けられなくてもよい。本実施形態に係るレーザ走査型プローブ及びレーザ走査型顕微鏡装置は、本明細書内でレーザ走査型内視鏡装置を例に挙げて説明する各種の構成を取り得る。   Specifically, (6. Configuration including observation depth adjustment mechanism) is realized by using an observation depth adjustment mechanism in (6-1. Laser scanning using observation depth adjustment mechanism). A laser scanning method will be described. Next, in (6-2. Laser scanning probe), the configuration of a laser scanning probe including an observation depth adjusting mechanism will be described as an example of a configuration different from the endoscope described so far, and the observation depth will be described. The configuration of the adjustment mechanism and the aberration correction element corresponding to the observation depth being changed will be described in detail. Finally, in (6-3. Laser scanning microscope apparatus), as an example of still another configuration of the laser scanning observation apparatus according to the present embodiment, a configuration of a laser scanning microscope apparatus including an observation depth adjustment mechanism is described. explain. The configurations of the laser scanning probe and the laser scanning microscope apparatus described in (6-2. Laser scanning probe) and (6-3. Laser scanning microscope apparatus) are the same as those in the case where an observation depth adjustment mechanism is provided. Although it corresponds to an example, the configuration of the laser scanning probe and the laser scanning microscope apparatus is not limited to this example, and the observation depth adjustment mechanism is not necessarily provided. The laser scanning probe and the laser scanning microscope apparatus according to the present embodiment can take various configurations described by taking a laser scanning endoscope apparatus as an example in this specification.

(1.他の構成によるレーザ走査型内視鏡装置についての検討)
まず、本開示をより明確なものとするために、既存の他の構成によるレーザ走査型内視鏡装置について本発明者らが検討した内容について説明する。
(1. Examination of laser scanning endoscope device with other configuration)
First, in order to make the present disclosure clearer, the contents examined by the present inventors for a laser scanning endoscope apparatus having another existing configuration will be described.

レーザ走査型内視鏡装置に求められる性能としては、以下の各性能が挙げられる。すなわち、「1.深達度」、「2.ヘッド部の小型化」、「3.高いNA」、「4.広視野」及び「5.高速スキャン」である。   The performance required for the laser scanning endoscope device includes the following performances. That is, “1. Depth of penetration”, “2. Miniaturization of head”, “3. High NA”, “4. Wide field of view”, and “5. High-speed scanning”.

「1.深達度」は、観察対象である生体組織の深さ方向への観察可能距離を表す指標である。深達度が大きければ、生体組織の表面だけではなくより深い位置まで観察することが可能となるため、生体組織に関するより多くの情報を取得することが可能となる。具体的には、生体組織と対向して配設される対物レンズによる作動距離(生体組織内における対物レンズの焦点までの距離)を大きくすることにより、深達度を大きくすることができる。また、所定の大きさの深達度を有するとともに、その深達度の範囲内で観察深さを変更できるような機構(以下、観察深さ調整機構とも呼称する。)が設けられることが好ましい。観察深さが可変であれば、例えば観察深さを変化させながら観察画像を取得することにより、深さ方向に複数層の画像を得ることができ、より多くの情報を取得することが可能となる。   “1. Depth of penetration” is an index that represents an observable distance in the depth direction of a biological tissue that is an observation target. If the depth of penetration is large, it is possible to observe not only the surface of the living tissue but also a deeper position, so that more information about the living tissue can be acquired. Specifically, the depth of penetration can be increased by increasing the working distance (distance to the focal point of the objective lens in the living tissue) by the objective lens arranged to face the living tissue. In addition, it is preferable to provide a mechanism (hereinafter also referred to as an observation depth adjustment mechanism) that has a depth of a predetermined size and can change the observation depth within the range of the depth of penetration. . If the observation depth is variable, for example, by acquiring the observation image while changing the observation depth, it is possible to obtain an image of a plurality of layers in the depth direction and to acquire more information. Become.

「2.ヘッド部の小型化」は、低侵襲医療の観点から要請されるものである。患者への身体的な負担を考慮すれば、内視鏡の鏡筒先端のヘッド部の直径は、数mm以下であることが望ましい。ただし、当該性能は、内視鏡において特に求められるものである。本実施形態に係るレーザ走査型プローブやレーザ走査型顕微鏡装置であれば、直径が10mm超、あるいはより大型な鏡筒(筐体)が用いられてもよい。   “2. Miniaturization of the head portion” is required from the viewpoint of minimally invasive medical treatment. Considering the physical burden on the patient, it is desirable that the diameter of the head part at the tip of the lens barrel of the endoscope be several mm or less. However, this performance is particularly required in an endoscope. In the case of the laser scanning probe or laser scanning microscope apparatus according to the present embodiment, a lens barrel (housing) having a diameter exceeding 10 mm or larger may be used.

「3.高いNA」は、分解能(解像度)の高い画像を取得するために要求される。高いNAを有する対物レンズを用いることにより、特に深さ方向の分解能の高い画像を取得することができる。OCTの分野であれば対物レンズのNAは0.1程度であってもよいが、レーザ走査型内視鏡として高分解能の画像を取得するためには、対物レンズのNAは、例えば0.5程度以上であることが望ましい。   “3. High NA” is required to acquire an image with high resolution (resolution). By using an objective lens having a high NA, an image with particularly high resolution in the depth direction can be acquired. In the field of OCT, the NA of the objective lens may be about 0.1. However, in order to obtain a high-resolution image as a laser scanning endoscope, the NA of the objective lens is, for example, 0.5. It is desirable that the degree is more than about.

「4.広視野」は、観察対象である生体組織を広範囲に見渡すために要求される。ここでいう視野とは、いわゆる実視野(FOV)のことであってよく、レーザ光が走査(スキャン)されるラインの範囲であってよい。上記の「3.高いNA」と「4.広視野」とを両立させることができれば、広い範囲をスキャンしながら高い分解能の画像を取得することが可能となる。視野としては、例えばFOVが1.0mm程度以上であることが望ましい。   “4. Wide field of view” is required in order to oversee a wide range of biological tissue as an observation target. The field of view here may be a so-called real field of view (FOV), and may be a range of lines in which laser light is scanned. If the above-mentioned “3. High NA” and “4. Wide field of view” can be compatible, an image with high resolution can be acquired while scanning a wide range. As a visual field, it is desirable that FOV is about 1.0 mm or more, for example.

「5.高速スキャン」は、動きのある生体組織を観察するために要求される。スキャンスピード(走査速度)が遅いと、画像データを取得するために長い時間が必要となるため、生体組織の動きを正確に捉えることが困難となるからである。スキャンスピードとしては、例えば、少なくとも1fps(frame per sec)以上、理想的には、一般的なビデオレートと同様の30fps程度であることが望ましい。   “5. High-speed scanning” is required for observing a moving biological tissue. This is because if the scanning speed (scanning speed) is low, it takes a long time to acquire the image data, so that it is difficult to accurately capture the movement of the living tissue. The scan speed is preferably at least 1 fps (frame per sec), for example, and ideally about 30 fps, which is the same as a general video rate.

本発明者らは、上記の5つの性能の観点から、既存のレーザ走査型内視鏡装置について検討を行った。   The present inventors have examined an existing laser scanning endoscope apparatus from the viewpoint of the above five performances.

例えば、Montana State Univ.等の研究グループにより、MEMSミラー(MEMS mirror)方式のレーザ走査型内視鏡装置が開発されている(例えば、Christopher L. Arrasmith et al., “MEMS−based handheld confocal microscope for in−vivo skin imaging” OPTICS EXPRESS 2010 Vol.18 NO.4 p.3805−3819)。これは、レーザ光を走査するためのデバイスとしてMEMSによって形成された小型ミラーを用いることにより、「2.ヘッド部の小型化」と「5.高速スキャン」との両立を実現するものである。   For example, Montana State Univ. Have developed a MEMS mirror type laser scanning endoscope apparatus (see, for example, Christopher L. Arrasmith et al., “MEMS-based handheld confocal microscope in-vivo in-vivo). "OPTICS EXPRESS 2010 Vol.18 NO.4 p.3805-3819). In this case, by using a small mirror formed by MEMS as a device for scanning a laser beam, it is possible to realize both “2. Downsizing of head portion” and “5. High-speed scanning”.

また、例えば、Washington Univ.等の研究グループにより、ファイバ先端(Fiber end)スキャン方式のレーザ走査型内視鏡装置が開発されている(例えば、Cameron M. Lee et al., “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide−field, full−color imaging” Journal of BIOPHOTONICS 2010 Vol.3 NO.5−6 p.385−407)。これは、レーザ光を導光する光ファイバの先端を2次元的に移動させて生体組織に対してレーザ光を走査することにより、「2.ヘッド部の小型化」と「5.高速スキャン」との両立を実現するものである。   In addition, for example, Washington Univ. Have developed a fiber end scanning type laser scanning endoscope apparatus (for example, Cameron M. Lee et al., “Scanning fiber endoscopic with high flexures, 1 mm capes). wide-color imaging "Journal of BIOPHOTICS 2010 Vol. 3 NO. 5-6 p. 385-407). This is because the tip of the optical fiber that guides the laser beam is moved two-dimensionally and the living tissue is scanned with the laser beam, so that “2. Miniaturization of the head” and “5. High-speed scanning”. To achieve both.

また、例えば、Mauna Kea Technologies社によって、ファイババンドル(Fiber bundle)接触方式のレーザ走査型内視鏡装置が開発されている。これは、内視鏡の鏡筒内でレーザ光を導光する光ファイバをバンドル(束)状に構成し、ファイババンドルからの射出光によってレーザ光を走査するものである。当該方式では、バンドルの直径のサイズに対応する視野を確保することができるため、「2.ヘッド部の小型化」、「4.広視野」、「5.高速スキャン」を同時に実現することが可能となる。また、同社からは、上記バンドル接触方式のファイババンドルの先端に対物レンズが設けられた構成を有するレーザ走査型内視鏡装置も提案されている。   Further, for example, a fiber bundle contact type laser scanning endoscope apparatus has been developed by Mauna Kea Technologies. In this method, an optical fiber that guides laser light in a lens barrel of an endoscope is configured in a bundle shape, and the laser light is scanned by light emitted from the fiber bundle. In this method, since a field of view corresponding to the size of the bundle diameter can be secured, it is possible to simultaneously realize “2. Head size reduction”, “4. Wide field of view”, and “5. High-speed scanning”. It becomes possible. In addition, the company has also proposed a laser scanning endoscope apparatus having a configuration in which an objective lens is provided at the tip of the bundle contact type fiber bundle.

また、例えば、Fraunhofer Institute for Biomedical Technology(IBMT)等の研究グループにより、アクチュエータ方式のレーザ走査型内視鏡装置が開発されている(例えば、R. Le Harzic et al., “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens” OPTICS EXPRESS 2008 Vol.25 NO.16 p.20588−20596)。これは、対物レンズを含む光学系全体を2次元的に移動させて生体組織に対してレーザ光を走査することにより、「3.高いNA」と「4.広視野」との両立を実現するものである。   In addition, for example, a research group such as Fraunhofer Institute for Biomedical Technology (IBMT) has developed an actuator-type laser scanning endoscope apparatus (for example, R. Le Harzic et al., “Nonlinear optical endoscopy”). a compact two axes piezo scanner and a miniature objective lens "OPTICS EXPRESS 2008 Vol.25 NO.16 p.20588-20596). This achieves both “3. high NA” and “4. wide field of view” by moving the whole optical system including the objective lens two-dimensionally and scanning the living tissue with laser light. Is.

ここで、一般的に、既存の構成によるレーザ走査型内視鏡装置においては、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」を同時に実現することは困難であると考えられる。何故ならば、一般的に高いNAを有するレンズは高い倍率を有するため、そのFOVは低くなってしまうからである。ここで、レーザ走査型顕微鏡装置であれば、鏡筒径が比較的大きく、その内部に大規模な構成を設けることが可能であるため、光学系の設計の自由度が高く、「3.高いNA」と「4.広視野」とを両立させることが可能である。例えば、顕微鏡装置及び内視鏡装置の性能を表す性能指数として、FOV×NAを定義すると、レーザ走査型顕微鏡装置ではFOV×NA=1.0程度のものが存在する。しかしながら、広大な軸外特性を確保しようとすると必然的にレンズ枚数が増えるので、その光学系の構成は大型かつ複雑なものとなり、小型化、低コスト化を実現することは難しい。例えば、鏡筒径に数mm程度のサイズが要求されるレーザ走査型内視鏡装置においては、鏡筒内に複雑な光学系を構成することが難しく、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」を同時に実現することは困難であると考えられる。   Here, in general, in a laser scanning endoscope apparatus having an existing configuration, it is possible to simultaneously realize “2. head size reduction”, “3. high NA”, and “4. wide field of view”. It is considered difficult. This is because a lens having a high NA generally has a high magnification, so that its FOV is low. Here, in the case of a laser scanning microscope apparatus, since the lens barrel diameter is relatively large and a large-scale configuration can be provided therein, the degree of freedom in designing the optical system is high. It is possible to achieve both “NA” and “4. Wide field of view”. For example, if FOV × NA is defined as a performance index representing the performance of the microscope apparatus and the endoscope apparatus, there is a laser scanning microscope apparatus having approximately FOV × NA = 1.0. However, if a large off-axis characteristic is to be ensured, the number of lenses inevitably increases, so that the configuration of the optical system becomes large and complicated, and it is difficult to achieve downsizing and cost reduction. For example, in a laser scanning endoscope apparatus that requires a size of several millimeters for the lens barrel diameter, it is difficult to configure a complicated optical system in the lens barrel, and “2. It is considered difficult to simultaneously realize “3. High NA” and “4. Wide field of view”.

そこで、本発明者らは、上記の各構成を有する既存のレーザ走査型内視鏡装置について、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」の各性能に注目して、ベンチマークを行った。   Accordingly, the present inventors have found that each of the “2. head size reduction”, “3. high NA”, and “4. We focused on performance and benchmarked.

ベンチマークの結果を図1A及び図1Bに示す。図1Aは、既存のレーザ走査型内視鏡装置についての、NAとFOVとの関係を示すグラフである。また、図1Bは、既存のレーザ走査型内視鏡についての、ヘッド部のサイズとNA及びFOVとの関係を示すグラフである。なお、グラフ中に凡例「Rotation」で示す点は、上記非特許文献3、4で示したような、内視鏡のヘッド部において光学素子を回転させることにより、生体組織へのレーザ光の走査を行うレーザ走査型顕微鏡の性能である。   Benchmark results are shown in FIGS. 1A and 1B. FIG. 1A is a graph showing the relationship between NA and FOV for an existing laser scanning endoscope apparatus. FIG. 1B is a graph showing the relationship between the head size, NA, and FOV for an existing laser scanning endoscope. In addition, the point indicated by the legend “Rotation” in the graph is that the scanning of the laser beam to the living tissue is performed by rotating the optical element in the head portion of the endoscope as shown in Non-Patent Documents 3 and 4 above. It is the performance of the laser scanning microscope which performs.

まず、図1Aは、横軸にNAを取り、縦軸にFOVを取り、上記の各構成を有する既存のレーザ走査型内視鏡装置について、その性能をプロットしたものである。図1Aを参照すると、全体的な傾向としてNAとFOVとが相反する関係(反比例の関係)にあることが示されており、上記で考察した通り、「3.高いNA」と「4.広視野」とを両立させることは困難であることが分かる。   First, FIG. 1A plots the performance of an existing laser scanning endoscope apparatus having the above-described configurations, with NA on the horizontal axis and FOV on the vertical axis. Referring to FIG. 1A, it is shown that NA and FOV are in an opposite relationship (inversely proportional relationship) as an overall trend, and as discussed above, “3. High NA” and “4. It can be seen that it is difficult to achieve both “field of view”.

次に、図1Bは、横軸にヘッド部の直径を取り、縦軸に内視鏡装置の性能指数であるFOV×NAを取り、上記の各構成を有する既存のレーザ走査型内視鏡装置について、その性能をプロットしたものである。図1Bを参照すると、ヘッド部の直径を数mm以下にしようとすると、FOV×NAの値は最も高いものでも0.3(mm)程度が限界であることが分かる。   Next, in FIG. 1B, the horizontal axis represents the diameter of the head portion, and the vertical axis represents FOV × NA, which is the figure of merit of the endoscope apparatus. Is a plot of its performance. Referring to FIG. 1B, it can be seen that if the diameter of the head portion is set to several mm or less, the maximum value of FOV × NA is about 0.3 (mm) even if it is the highest.

なお、図1Bを参照すると、今回ベンチマークを行った既存のレーザ走査型内視鏡装置の中で、FOV×NAの値が最も高いレーザ走査型内視鏡装置は、アクチュエータ方式のレーザ走査型内視鏡装置であることが分かる。しかし、アクチュエータ方式のレーザ走査型内視鏡装置は、光学系全体を動かす構成であるため、より広い視野を得ようとすると、すなわち、より広い領域を走査するように光学系を動かそうとすると、走査速度に限界があると考えられる。このように、アクチュエータ方式のレーザ走査型内視鏡装置では、図1Bには表されていないが、「4.広視野」と「5.高速スキャン」とを両立させることが困難である。   Referring to FIG. 1B, among the existing laser scanning endoscope apparatuses that have been benchmarked this time, the laser scanning endoscope apparatus having the highest FOV × NA value is an actuator-type laser scanning endoscope apparatus. It turns out that it is an endoscope apparatus. However, since the actuator-type laser scanning endoscope apparatus is configured to move the entire optical system, if an attempt is made to obtain a wider field of view, that is, an attempt to move the optical system so as to scan a wider area. The scanning speed is considered to be limited. Thus, in the actuator-type laser scanning endoscope apparatus, although not shown in FIG. 1B, it is difficult to achieve both “4. wide field of view” and “5. high-speed scanning”.

以上、既存の他の構成によるレーザ走査型内視鏡装置について本発明者らが検討した内容について説明した。以上の検討結果から、本発明者らは、既存のレーザ走査型内視鏡装置の構成では、「1.深達度」、「2.ヘッド部の小型化」、「3.高いNA」、「4.広視野」及び「5.高速スキャン」を同時に満たすことは困難であるとの知見を得た。その中でも、特に、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」を同時に満たすことは、既存のレーザ走査型内視鏡装置の構成では困難であると考えられた。本発明者らは、上記の各性能の中でも、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」を満たす構成について検討した結果、以下に示す本開示に係るレーザ走査型内視鏡装置に想到した。以下では、本開示に係るレーザ走査型内視鏡装置の好ましい実施形態について説明する。   In the above, the content which the present inventors examined about the laser scanning type endoscope apparatus by other existing structures was demonstrated. From the above examination results, the present inventors, in the configuration of the existing laser scanning endoscope apparatus, “1. Depth of penetration”, “2. Miniaturization of the head”, “3. High NA”, It was found that it was difficult to simultaneously satisfy “4. Wide field of view” and “5. High-speed scanning”. Among them, in particular, it is difficult to satisfy “2. Miniaturization of the head”, “3. High NA” and “4. Wide field of view” at the same time with the configuration of the existing laser scanning endoscope apparatus. it was thought. As a result of examining configurations satisfying “2. Miniaturization of head portion”, “3. High NA”, and “4. Wide field of view” among the above performances, the present inventors disclosed the following disclosure. Such a laser scanning endoscope apparatus has been conceived. Hereinafter, a preferred embodiment of the laser scanning endoscope apparatus according to the present disclosure will be described.

(2.第1の実施形態)
まず、図2及び図3を参照して、本開示の第1の実施形態に係るレーザ走査型内視鏡装置の一構成例について説明する。図2は、本開示の第1の実施形態に係るレーザ走査型内視鏡装置の一構成例を示す概略図である。図3は、図2に示す走査部の構成を模式的に示す概略図である。なお、図2及び図3を含む以下の図面では、本開示に係るレーザ走査型内視鏡装置を構成する各構成部材を支持する支持部材については図示を省略し、また、詳細な説明も省略するが、各構成部材は、以下に説明するレーザ光の伝播や各構成部材の駆動を妨げないように、各種の支持部材によって適宜支持されているものとする。
(2. First Embodiment)
First, a configuration example of the laser scanning endoscope apparatus according to the first embodiment of the present disclosure will be described with reference to FIGS. 2 and 3. FIG. 2 is a schematic diagram illustrating a configuration example of the laser scanning endoscope apparatus according to the first embodiment of the present disclosure. FIG. 3 is a schematic diagram schematically showing the configuration of the scanning unit shown in FIG. In addition, in the following drawings including FIG. 2 and FIG. 3, illustration of the supporting members that support the respective constituent members constituting the laser scanning endoscope apparatus according to the present disclosure is omitted, and detailed description is also omitted. However, each component member is appropriately supported by various support members so as not to hinder the propagation of laser light and the drive of each component member described below.

図2を参照すると、第1の実施形態に係るレーザ走査型内視鏡装置1は、レーザ光源110、ビームスプリッタ120、光ファイバ140、光ファイバ用導光レンズ130、150、内視鏡160、光検出器170、制御部180、出力部190及び入力部195を備える。なお、図2では、簡単のため、レーザ走査型内視鏡装置1が有する機能のうち、レーザ走査による画像データの取得に関する構成のみを図示している。ただし、レーザ走査型内視鏡装置1は、図2に示す構成以外にも、他の公知の内視鏡装置が有する各種の構成を更に有してもよい。   Referring to FIG. 2, the laser scanning endoscope apparatus 1 according to the first embodiment includes a laser light source 110, a beam splitter 120, an optical fiber 140, optical fiber light guiding lenses 130 and 150, an endoscope 160, A photodetector 170, a control unit 180, an output unit 190, and an input unit 195 are provided. In FIG. 2, for the sake of simplicity, only the configuration related to the acquisition of image data by laser scanning is illustrated among the functions of the laser scanning endoscope apparatus 1. However, the laser scanning endoscope apparatus 1 may further include various configurations included in other known endoscope apparatuses in addition to the configuration illustrated in FIG.

第1の実施形態に係るレーザ走査型内視鏡装置1では、レーザ光源110から射出されたレーザ光が、ビームスプリッタ120、光ファイバ用導光レンズ130、光ファイバ140、光ファイバ用導光レンズ150を順に通過し、内視鏡160の内部に導光される。内視鏡160の一部領域は観察対象であるヒト又は動物(以下では、一例として患者とする。)の体腔内に挿入されており、内視鏡160の内部に導光されたレーザ光は観察対象である患者の体腔内の生体組織500に照射される。観察対象である生体組織500にレーザ光が照射されると、生体組織500からは、反射光、散乱光、蛍光、非線形光学効果によって生じる各種の光等、様々な物理的情報又は化学的情報を含んだ光が発せられる。このような、様々な物理的情報又は化学的情報を含んだ生体組織500からの戻り光は、上記の光路を逆に辿って、すなわち、光ファイバ用導光レンズ150、光ファイバ140、光ファイバ用導光レンズ130を順に通過し、ビームスプリッタ120に導光される。ビームスプリッタ120は、生体組織500からの戻り光を光検出器170に導光する。光検出器170によって検出された、戻り光に対応する画像信号に対して、制御部180によって適宜画像信号処理が施されることにより、生体組織500に関する各種の情報が画像データとして取得される。以下、レーザ走査型内視鏡装置1の各構成部材について詳細に説明する。なお、以下の説明では、レーザ光が、レーザ光源110から射出され、内視鏡160の内部を導光され、生体組織500に照射されるまでの光路について、レーザ光源110側を上流側、生体組織500側を下流側とも呼称する。また、レーザ光の光路上に配設される構成部材間の位置関係を説明するために、当該光路においてより上流側のことを前段、より下流側のことを後段とも呼称する。   In the laser scanning endoscope apparatus 1 according to the first embodiment, laser light emitted from the laser light source 110 is converted into a beam splitter 120, an optical fiber light guide lens 130, an optical fiber 140, and an optical fiber light guide lens. The light passes through 150 in order and is guided into the endoscope 160. A partial region of the endoscope 160 is inserted into a body cavity of a human or an animal to be observed (hereinafter referred to as a patient as an example), and laser light guided into the endoscope 160 is Irradiation is performed on the living tissue 500 in the body cavity of the patient to be observed. When the biological tissue 500 to be observed is irradiated with laser light, the biological tissue 500 receives various physical information or chemical information such as reflected light, scattered light, fluorescence, and various kinds of light generated by the nonlinear optical effect. Inclusion light is emitted. The return light from the living tissue 500 including various physical information or chemical information follows the above optical path in reverse, that is, the optical fiber light guide lens 150, the optical fiber 140, and the optical fiber. The light passes through the light guide lens 130 and is guided to the beam splitter 120. The beam splitter 120 guides the return light from the living tissue 500 to the photodetector 170. Various information regarding the living tissue 500 is acquired as image data by appropriately performing image signal processing on the image signal corresponding to the return light detected by the light detector 170 by the control unit 180. Hereinafter, each component of the laser scanning endoscope apparatus 1 will be described in detail. In the following description, laser light is emitted from the laser light source 110, guided through the endoscope 160, and irradiated to the living tissue 500. The tissue 500 side is also referred to as a downstream side. Further, in order to describe the positional relationship between the constituent members arranged on the optical path of the laser beam, the upstream side in the optical path is also referred to as the front stage and the downstream side is also referred to as the rear stage.

レーザ光源110は、観察対象である生体組織500に照射されるレーザ光を射出する。本実施形態においては、レーザ光源110の構成は一意に限定されず、観察対象やレーザ走査型内視鏡装置1の用途に応じて適宜設定されてよい。例えば、レーザ光源110は、固体レーザであってもよく、また半導体レーザであってもよい。また、当該固体レーザ及び半導体レーザの媒体(材料)は、レーザ走査型内視鏡装置1の用途に応じて、所望の波長帯域のレーザ光を射出するように適宜選択されてよい。例えば、レーザ光源110は、人体の生体組織500に対して透過性が比較的高いことが知られている近赤外の波長帯域の光を射出するように、その材料が適宜選択される。   The laser light source 110 emits a laser beam that irradiates the biological tissue 500 that is an observation target. In the present embodiment, the configuration of the laser light source 110 is not limited to a unique one, and may be set as appropriate according to the observation target and the application of the laser scanning endoscope apparatus 1. For example, the laser light source 110 may be a solid laser or a semiconductor laser. Moreover, the medium (material) of the solid-state laser and the semiconductor laser may be appropriately selected so as to emit laser light in a desired wavelength band according to the application of the laser scanning endoscope apparatus 1. For example, the material of the laser light source 110 is appropriately selected so as to emit light in a near-infrared wavelength band that is known to have relatively high permeability to the living body tissue 500 of the human body.

また、例えば、レーザ光源110は、連続発振のレーザ(CWレーザ:Contimuous Wave Laser)を射出してもよいし、パルス発振のレーザ(パルスレーザ)を射出してもよい。レーザ光源110がCWレーザを射出する場合には、例えば、レーザ走査型内視鏡装置1では、1光子共焦点反射や共焦点蛍光等を利用した各種の観察が行われてもよい。また、レーザ光源110がパルスレーザを射出する場合には、例えば、レーザ走査型内視鏡装置1では、多光子励起や非線形光学現象等を利用した各種の観察が行われてもよい。   Further, for example, the laser light source 110 may emit a continuous wave laser (CW laser) or a pulsed laser (pulse laser). When the laser light source 110 emits a CW laser, for example, in the laser scanning endoscope apparatus 1, various observations using one-photon confocal reflection or confocal fluorescence may be performed. When the laser light source 110 emits a pulse laser, for example, the laser scanning endoscope apparatus 1 may perform various observations using multiphoton excitation, nonlinear optical phenomena, or the like.

ビームスプリッタ120は、一方向から入射した光と他方向から入射した光とを互いに異なる方向に導光する。具体的には、ビームスプリッタ120は、レーザ光源110から射出されたレーザ光を光ファイバ用導光レンズ130を介して光ファイバ140に導光する。また、ビームスプリッタ120は、観察対象である生体組織500に照射されたレーザ光による戻り光を光検出器170に導光する。つまり、ビームスプリッタ120は、図2に点線の矢印で示すように、上流側から入射したレーザ光は光ファイバ用導光レンズ130を介して光ファイバ140に導光し、下流側から入射した生体組織500からの戻り光は光検出器170に導光する。   The beam splitter 120 guides light incident from one direction and light incident from the other direction in different directions. Specifically, the beam splitter 120 guides the laser light emitted from the laser light source 110 to the optical fiber 140 via the optical fiber light guide lens 130. Further, the beam splitter 120 guides the return light by the laser light irradiated to the living tissue 500 to be observed to the photodetector 170. That is, the beam splitter 120 guides the laser light incident from the upstream side to the optical fiber 140 via the optical fiber light guiding lens 130 and the biological body incident from the downstream side, as indicated by a dotted arrow in FIG. Return light from the tissue 500 is guided to the photodetector 170.

光ファイバ用導光レンズ130、150は、光ファイバ140の前段及び後段の端部にそれぞれ設けられ、光ファイバ140に光を入射させるとともに、光ファイバ140から射出される光を後段の部材に導光する。具体的には、光ファイバ用導光レンズ130は、レーザ光源110から射出され、ビームスプリッタ120によって導光された光を光ファイバ140に入射させる。また、光ファイバ用導光レンズ130は、光ファイバ140を通過してきた生体組織500からの戻り光をビームスプリッタ120に導光する。   The optical fiber light guiding lenses 130 and 150 are respectively provided at the front and rear end portions of the optical fiber 140, and make the light incident on the optical fiber 140 and guide the light emitted from the optical fiber 140 to the subsequent member. Shine. Specifically, the optical fiber light guide lens 130 causes the light emitted from the laser light source 110 and guided by the beam splitter 120 to enter the optical fiber 140. The optical fiber light guide lens 130 guides the return light from the living tissue 500 that has passed through the optical fiber 140 to the beam splitter 120.

光ファイバ140は、レーザ光源110から射出されたレーザ光を内視鏡160の内部まで導光する導光部材である。光ファイバ140は内視鏡160の内部に延設され、内視鏡160の先端部にあたるヘッド部まで当該レーザ光を導光する。光ファイバ140によって内視鏡160のヘッド部まで導光されたレーザ光は、光ファイバ用導光レンズ150を介して、後述する内視鏡160のヘッド部に設けられる走査部163に導光される。走査部163によって生体組織500にレーザ光が照射され、生じた戻り光が光ファイバ用導光レンズ150によって光ファイバ140に入射される。そして、当該戻り光は、光ファイバ140によって内視鏡160の外部まで導光される。   The optical fiber 140 is a light guide member that guides the laser light emitted from the laser light source 110 to the inside of the endoscope 160. The optical fiber 140 is extended inside the endoscope 160 and guides the laser light to a head portion corresponding to the distal end portion of the endoscope 160. The laser light guided to the head portion of the endoscope 160 by the optical fiber 140 is guided to the scanning portion 163 provided in the head portion of the endoscope 160 described later via the optical fiber light guide lens 150. The The living tissue 500 is irradiated with laser light by the scanning unit 163, and the generated return light is incident on the optical fiber 140 by the optical fiber light guide lens 150. The return light is guided to the outside of the endoscope 160 by the optical fiber 140.

このように、光ファイバ用導光レンズ150は、内視鏡160のヘッド部に設けられ、光ファイバ140を導光してきたレーザ光を走査部163に導光する。また、光ファイバ用導光レンズ150は、走査部163によって生体組織500に照射されたレーザ光の戻り光を光ファイバ140に入射させ、内視鏡160の外部まで導光する。なお、光ファイバ用導光レンズ150は、光ファイバ140を導光してきたレーザ光を、略平行光として走査部163に導光するコリメータレンズとして機能し得る。光ファイバ用導光レンズ150の光軸方向(鏡筒161の長手方向)の位置を調整することにより、後述する、生体組織500に対してレーザ光を集光する対物レンズ165におけるレーザ光の収束状態、発散状態が変化するため、観察深さを変更することができる。このように、光ファイバ用導光レンズ150は、観察深さを調整する観察深さ調整機構の役割を果たすことができる。   As described above, the optical fiber light guiding lens 150 is provided in the head portion of the endoscope 160 and guides the laser light guided through the optical fiber 140 to the scanning unit 163. Further, the optical fiber light guide lens 150 makes the return light of the laser light irradiated to the living tissue 500 by the scanning unit 163 enter the optical fiber 140 and guide it to the outside of the endoscope 160. The optical fiber light guide lens 150 can function as a collimator lens that guides the laser light guided through the optical fiber 140 to the scanning unit 163 as substantially parallel light. By adjusting the position of the optical fiber light guide lens 150 in the optical axis direction (longitudinal direction of the lens barrel 161), the convergence of the laser light in an objective lens 165 that focuses laser light on the living tissue 500, which will be described later, is performed. Since the state and the divergence state change, the observation depth can be changed. Thus, the optical fiber light guide lens 150 can serve as an observation depth adjustment mechanism for adjusting the observation depth.

ここで、本実施形態においては、光ファイバ140の構成は一意に限定されず、観察対象やレーザ走査型内視鏡装置1の用途に応じて適宜設定されてよい。例えば、レーザ走査型内視鏡装置1が共焦点反射を利用した観察を行う場合には、光ファイバ140としてはシングルモード光ファイバが用いられてよい。また、光ファイバ140がシングルモード光ファイバである場合には、例えば、シングルモード光ファイバを複数束ねてバンドルとして用いてもよい。   Here, in the present embodiment, the configuration of the optical fiber 140 is not limited to a unique one, and may be set as appropriate according to the object to be observed and the application of the laser scanning endoscope apparatus 1. For example, when the laser scanning endoscope apparatus 1 performs observation using confocal reflection, a single mode optical fiber may be used as the optical fiber 140. Further, when the optical fiber 140 is a single mode optical fiber, for example, a plurality of single mode optical fibers may be bundled and used as a bundle.

また、例えば、レーザ走査型内視鏡装置1が多光子励起を利用した観察を行う場合には、戻り光のモードに制限がなくなるため、光ファイバ140としてはマルチコア光ファイバやダブルクラッド光ファイバが用いられてよい。また、光ファイバ140がダブルクラッド光ファイバである場合には、例えば、コアでレーザ光(すなわち、励起光)を内視鏡160のヘッド部まで導光し、生体組織500からの戻り光(すなわち、蛍光光)を内部クラッドで内視鏡160の外部まで導光してもよい。このように、光ファイバ140としてダブルクラッド光ファイバを用いることにより、レーザ光及び戻り光のより効率的な導光が可能となる。なお、2光子励起を利用した観察を行う場合における、本実施形態に係るレーザ走査型観察装置の具体的な構成については、下記(6−2.レーザ走査型プローブ)で詳しく説明する。   Further, for example, when the laser scanning endoscope apparatus 1 performs observation using multiphoton excitation, the return light mode is not limited, so that the optical fiber 140 may be a multi-core optical fiber or a double-clad optical fiber. May be used. Further, when the optical fiber 140 is a double clad optical fiber, for example, the core guides laser light (that is, excitation light) to the head portion of the endoscope 160 and returns light from the living tissue 500 (that is, , Fluorescent light) may be guided to the outside of the endoscope 160 by the inner cladding. Thus, by using a double clad optical fiber as the optical fiber 140, more efficient light guide of the laser light and the return light is possible. A specific configuration of the laser scanning observation apparatus according to the present embodiment in the case of performing observation using two-photon excitation will be described in detail in the following (6-2. Laser scanning probe).

また、例えば、光ファイバ140は複数本設けられてもよく、レーザ光を内視鏡160のヘッド部まで導光する光ファイバと、生体組織500からの戻り光を内視鏡160の外部まで導光する光ファイバとが互いに異なる光ファイバによって構成されてもよい。   Further, for example, a plurality of optical fibers 140 may be provided, and an optical fiber that guides laser light to the head portion of the endoscope 160 and return light from the living tissue 500 are guided to the outside of the endoscope 160. The optical fiber that emits light may be constituted by different optical fibers.

なお、レーザ光源110がパルスレーザを射出する場合には、光ファイバ140内で生じる非線形光学効果を抑制するために、光ファイバ140はコア部が大モード面積になっているもの、又は中空コア型のフォトニック結晶光ファイバになっていることが望ましい。また、同じくレーザ光源110がパルスレーザを射出する場合には、光ファイバ140内で生じる分散や当該分散に伴うパルス幅(パルス時間幅)の広がりを考慮して、光ファイバ140の前段に各種の分散補償素子が設けられてもよい。   When the laser light source 110 emits a pulse laser, in order to suppress the nonlinear optical effect generated in the optical fiber 140, the optical fiber 140 has a core portion with a large mode area or a hollow core type. It is desirable to be a photonic crystal optical fiber. Similarly, when the laser light source 110 emits a pulse laser, in consideration of the dispersion generated in the optical fiber 140 and the broadening of the pulse width (pulse time width) associated with the dispersion, various kinds of elements are provided in the front stage of the optical fiber 140. A dispersion compensation element may be provided.

ここで、本実施形態では、装置の構成によっては、光ファイバ140は必ずしも用いられなくてもよい。例えば、本実施形態に係るレーザ走査型プローブやレーザ走査型内視鏡装置1では、光源から、観察対象に対してレーザ光を照射するプローブや内視鏡160までレーザ光を導光する必要があるため、光ファイバ140が好適に用いられ得る。しかしながら、レーザ走査型顕微鏡装置では、例えば当該装置内に設けられるステージに観察対象のサンプルを設置し、当該サンプルに対してレーザ光を照射する構成を取ることができる。従って、本実施形態に係るレーザ走査型顕微鏡装置では、光源からサンプルまでレーザ光を導光する光学系を装置の筐体内に適宜配置することが可能であるため、光ファイバ140は必ずしも用いられなくてもよい。   Here, in the present embodiment, the optical fiber 140 may not necessarily be used depending on the configuration of the apparatus. For example, in the laser scanning probe or the laser scanning endoscope apparatus 1 according to this embodiment, it is necessary to guide the laser light from the light source to the probe or endoscope 160 that irradiates the observation target with the laser light. Therefore, the optical fiber 140 can be preferably used. However, in the laser scanning microscope apparatus, for example, a sample to be observed can be placed on a stage provided in the apparatus and the sample can be irradiated with laser light. Therefore, in the laser scanning microscope apparatus according to the present embodiment, an optical system that guides laser light from the light source to the sample can be appropriately arranged in the housing of the apparatus, and thus the optical fiber 140 is not necessarily used. May be.

内視鏡160は、管状の形状を有し、その先端部であるヘッド部を含む一部領域が患者の体腔内に挿入される。当該ヘッド部によって体腔内の生体組織500にレーザ光が走査されることにより、生体組織500に関する各種の情報が取得される。内視鏡160のヘッド部が有するレーザ走査機能の詳細については、図3を参照して後で説明する。   The endoscope 160 has a tubular shape, and a partial region including a head portion which is a distal end portion thereof is inserted into a body cavity of a patient. By scanning the biological tissue 500 in the body cavity with the laser beam by the head unit, various information regarding the biological tissue 500 is acquired. Details of the laser scanning function of the head portion of the endoscope 160 will be described later with reference to FIG.

ここで、内視鏡160のヘッド部には、上記レーザ走査機能の他にも、他の公知の内視鏡が有する各種の構成が更に設けられてもよい。例えば、内視鏡160のヘッド部には、患者の体腔内を撮影する撮像部、患部に対して各種の処置を行うための処置具、及び撮像部のレンズ等を洗浄するための水や空気を噴出する洗浄ノズル等が設けられていてもよい。内視鏡160は、撮像部によって患者の体腔内の様子をモニタしながら観察対象部位を探索し、当該観察対象部位に対してレーザ走査を行うことができる。ただし、これら撮像部や処置具、洗浄ノズル等の構成は、他の公知の内視鏡が有する構成と同様であるため、以下の説明では、内視鏡160の機能のうち、当該ヘッド部が有するレーザ走査機能について主に説明することとし、その他の機能及び構成については詳細な説明を省略する。   Here, in addition to the laser scanning function, the head portion of the endoscope 160 may be further provided with various configurations of other known endoscopes. For example, the head portion of the endoscope 160 includes an imaging unit that images the inside of the body cavity of the patient, a treatment tool for performing various treatments on the affected part, and water or air for cleaning the lens of the imaging unit. A cleaning nozzle or the like may be provided. The endoscope 160 can search for a site to be observed while monitoring the state in the body cavity of the patient by the imaging unit, and can perform laser scanning on the site to be observed. However, since the configurations of the imaging unit, the treatment tool, the washing nozzle, and the like are the same as the configurations of other known endoscopes, in the following description, the head unit is included in the functions of the endoscope 160. The laser scanning function will be mainly described, and detailed description of other functions and configurations will be omitted.

光検出器170は、光ファイバ140によって内視鏡160の外部に導光された生体組織500からの戻り光を検出する。具体的には、光検出器170は、生体組織500からの戻り光を、その光強度に応じた信号強度を有する画像信号として検出する。例えば、光検出器170は、フォトダイオードや光電子増倍管(PMT:Photo Multiplier Tube)等の受光素子を有してもよい。また、例えば、光検出器170は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の各種の撮像素子を有してもよい。また、戻り光のスペクトル情報を取得する目的で光検出器170の前段に分光素子が設けられてもよい。光検出器170は、生体組織500へのレーザ光の走査により生じた戻り光を、レーザ光の走査順に連続的に(レーザ光がCWレーザである場合)又は断続的に(レーザ光がパルスレーザである場合)検出することができる。光検出器170は、検出した戻り光に対応する画像信号を、制御部180に送信する。   The photodetector 170 detects return light from the living tissue 500 guided to the outside of the endoscope 160 by the optical fiber 140. Specifically, the photodetector 170 detects the return light from the living tissue 500 as an image signal having a signal intensity corresponding to the light intensity. For example, the photodetector 170 may include a light receiving element such as a photodiode or a photomultiplier tube (PMT). Further, for example, the photodetector 170 may include various imaging elements such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS). In addition, a spectroscopic element may be provided in front of the light detector 170 for the purpose of acquiring spectral information of the return light. The light detector 170 converts the return light generated by the scanning of the living tissue 500 with the laser light continuously (when the laser light is a CW laser) or intermittently (the laser light is a pulse laser) in the scanning order of the laser light. Can be detected). The photodetector 170 transmits an image signal corresponding to the detected return light to the control unit 180.

制御部180は、レーザ走査型内視鏡装置1を統合的に制御するとともに、生体組織500に対するレーザ走査の制御及びレーザ走査の結果得られる画像信号に対する各種の画像信号処理を行う。   The control unit 180 controls the laser scanning endoscope apparatus 1 in an integrated manner, and performs laser scanning control on the living tissue 500 and various image signal processing on an image signal obtained as a result of the laser scanning.

制御部180の機能及び構成について詳しく説明する。図2を参照すると、制御部180は、画像信号取得部181、画像信号処理部182、駆動制御部183及び表示制御部184を有する。なお、制御部180における各構成要素の機能は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)等の各種の信号処理回路によって全て行われてもよい。   The function and configuration of the control unit 180 will be described in detail. Referring to FIG. 2, the control unit 180 includes an image signal acquisition unit 181, an image signal processing unit 182, a drive control unit 183, and a display control unit 184. Note that the functions of each component in the control unit 180 may be all performed by various signal processing circuits such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).

画像信号取得部181は、光検出器170から送信される画像信号を取得する。ここで、光検出器170においては、レーザ光の走査順に連続的に又は断続的に戻り光が検出されるため、画像信号取得部181には、当該戻り光に対応する画像信号が、同様にレーザ光の走査順に連続的に又は断続的に送信される。画像信号取得部181は、このようなレーザ光の走査順に連続的に又は断続的に受診した画像信号を、時系列に沿って取得することができる。なお、光検出器170から送信される画像信号がアナログ信号である場合には、画像信号取得部181は、受信した当該画像信号をデジタル信号に変換してもよい。つまり、画像信号取得部181は、アナログ/デジタル変換機能(A/D変換機能)を有してもよい。画像信号取得部181は、デジタル化した画像信号を画像信号処理部182に送信する。   The image signal acquisition unit 181 acquires an image signal transmitted from the photodetector 170. Here, in the photodetector 170, the return light is detected continuously or intermittently in the scanning order of the laser light, so that the image signal corresponding to the return light is similarly received in the image signal acquisition unit 181. It is transmitted continuously or intermittently in the scanning order of the laser light. The image signal acquisition unit 181 can acquire the image signals received in such a laser beam scanning order continuously or intermittently in time series. When the image signal transmitted from the photodetector 170 is an analog signal, the image signal acquisition unit 181 may convert the received image signal into a digital signal. That is, the image signal acquisition unit 181 may have an analog / digital conversion function (A / D conversion function). The image signal acquisition unit 181 transmits the digitized image signal to the image signal processing unit 182.

画像信号処理部182は、受信した画像信号に対して各種の信号処理を行うことにより画像データを生成する。本実施形態においては、生体組織500に走査されたレーザ光に対応する画像信号が、走査された順に連続的に又は断続的に光検出器170によって検出され、画像信号取得部181を介して画像信号処理部182に送信される。画像信号処理部182は、連続的に又は断続的に送信される画像信号に基づいて、生体組織500へのレーザ光の走査に対応した画像データを生成する。また、画像信号処理部182は、レーザ走査型内視鏡装置1の用途に応じて、すなわち、どのような画像データを取得したいかに応じて、当該用途に対応した信号処理を行い画像データを生成してもよい。画像信号処理部182は、一般的なレーザ走査型内視鏡装置が行う各種の画像データ生成処理と同様の処理を行うことにより、画像データを生成することができる。更に、画像信号処理部182は、画像データを生成する際に、ノイズ除去処理や、黒レベルの補正処理、明度(輝度)やホワイトバランスの調整処理等、一般的な画像信号処理において行われる各種の信号処理を行ってもよい。画像信号処理部182は、生成した画像データを駆動制御部183及び表示制御部184に送信する。   The image signal processing unit 182 generates image data by performing various types of signal processing on the received image signal. In the present embodiment, the image signal corresponding to the laser light scanned on the living tissue 500 is detected by the photodetector 170 continuously or intermittently in the scanned order, and the image signal is acquired via the image signal acquisition unit 181. It is transmitted to the signal processing unit 182. The image signal processing unit 182 generates image data corresponding to the scanning of the laser light to the living tissue 500 based on the image signal transmitted continuously or intermittently. Further, the image signal processing unit 182 generates image data by performing signal processing corresponding to the application depending on the application of the laser scanning endoscope apparatus 1, that is, depending on what image data is desired to be acquired. May be. The image signal processing unit 182 can generate image data by performing processing similar to various image data generation processing performed by a general laser scanning endoscope apparatus. Further, the image signal processing unit 182 generates various kinds of image signal processing such as noise removal processing, black level correction processing, brightness (brightness) and white balance adjustment processing, and the like. The signal processing may be performed. The image signal processing unit 182 transmits the generated image data to the drive control unit 183 and the display control unit 184.

駆動制御部183は、内視鏡160のヘッド部におけるレーザ走査機能の駆動を制御することにより、生体組織500へのレーザ走査を行う。具体的には、駆動制御部183は、後述する内視鏡160のヘッド部に設けられる回転機構167及び/又は平行移動機構168の駆動を制御することにより、走査部163を駆動させ、生体組織500へのレーザ走査を行う。ここで、駆動制御部183は、回転機構167及び/又は平行移動機構168の駆動を制御することにより、レーザ走査における走査速度やレーザ照射の間隔等のレーザ走査条件を調整することができる。駆動制御部183は、このようなレーザ走査条件の調整を、入力部195から入力される命令に基づいて行ってもよいし、画像信号処理部182によって生成される画像データに基づいて行ってもよい。駆動制御部183による回転機構167及び/又は平行移動機構168の駆動制御については、内視鏡160の機能及び構成について説明する際に詳しく説明する。   The drive control unit 183 performs laser scanning on the living tissue 500 by controlling the driving of the laser scanning function in the head unit of the endoscope 160. Specifically, the drive control unit 183 drives the scanning unit 163 by controlling the driving of the rotation mechanism 167 and / or the parallel movement mechanism 168 provided in the head unit of the endoscope 160 to be described later, so that the living tissue Laser scanning to 500 is performed. Here, the drive control unit 183 can adjust the laser scanning conditions such as the scanning speed in laser scanning and the interval of laser irradiation by controlling the driving of the rotation mechanism 167 and / or the parallel movement mechanism 168. The drive control unit 183 may adjust the laser scanning condition based on a command input from the input unit 195 or based on image data generated by the image signal processing unit 182. Good. The drive control of the rotation mechanism 167 and / or the translation mechanism 168 by the drive control unit 183 will be described in detail when the function and configuration of the endoscope 160 is described.

表示制御部184は、出力部190におけるデータ表示機能の駆動を制御し、出力部190の表示画面上に各種のデータを表示させる。本実施形態では、表示制御部184は、出力部190の駆動を制御し、出力部190の表示画面上に画像信号処理部182によって生成される画像データを表示させる。   The display control unit 184 controls the driving of the data display function in the output unit 190 and displays various data on the display screen of the output unit 190. In the present embodiment, the display control unit 184 controls the driving of the output unit 190 and displays the image data generated by the image signal processing unit 182 on the display screen of the output unit 190.

出力部190は、レーザ走査型内視鏡装置1において処理される各種の情報を操作者(ユーザ)に対して出力するための出力インターフェースである。出力部190は、例えば、ディスプレイ装置やモニタ装置等、テキストデータや画像データ等を表示画面上に表示する表示装置によって構成される。本実施形態においては、出力部190は、画像信号処理部182によって生成される画像データを当該表示画面上に表示させる。なお、出力部190は、音声データを音声として出力するスピーカやヘッドホン等の音声出力装置や、各種のデータを紙面に印刷して出力するプリンタ装置等、データの出力機能を有する各種の出力装置を更に有してもよい。   The output unit 190 is an output interface for outputting various types of information processed in the laser scanning endoscope apparatus 1 to an operator (user). The output unit 190 is configured by a display device that displays text data, image data, or the like on a display screen, such as a display device or a monitor device. In the present embodiment, the output unit 190 displays the image data generated by the image signal processing unit 182 on the display screen. Note that the output unit 190 includes various output devices having a data output function, such as a sound output device such as a speaker or a headphone that outputs sound data as sound, and a printer device that prints and outputs various data on paper. Furthermore, you may have.

入力部195は、ユーザがレーザ走査型内視鏡装置1に各種の情報や処理動作に関する命令等を入力するための入力インターフェースである。入力部195は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ及びレバー等、ユーザによって操作される操作手段を有する入力装置によって構成される。本実施形態においては、ユーザは、入力部195から、内視鏡160の動作に関する各種の命令を入力することができる。具体的には、入力部195から入力された命令に応じて、内視鏡160におけるレーザ走査条件が制御されてもよい。また、内視鏡160が有するレーザ走査機能以外の各種の構成、例えば撮像部や処置具、洗浄ノズル等の駆動が、入力部195から入力された命令に応じて制御されてもよい。   The input unit 195 is an input interface for allowing a user to input various information, instructions regarding processing operations, and the like to the laser scanning endoscope apparatus 1. The input unit 195 is configured by an input device having operation means operated by a user, such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever. In the present embodiment, the user can input various commands related to the operation of the endoscope 160 from the input unit 195. Specifically, the laser scanning conditions in the endoscope 160 may be controlled in accordance with a command input from the input unit 195. In addition, various configurations other than the laser scanning function of the endoscope 160, for example, driving of the imaging unit, the treatment tool, the cleaning nozzle, and the like may be controlled in accordance with a command input from the input unit 195.

以上、図2を参照して、本開示の第1の実施形態に係るレーザ走査型内視鏡装置1の概略構成について説明した。次に、図2と併せて図3を参照して、内視鏡160の機能及び構成についてより詳しく説明する。図3は、図2に示す走査部163の構成を模式的に示す概略図である。なお、図3では、簡単のため、内視鏡160が有する機能のうち、レーザ走査機能に関する構成について主に図示している。   The schematic configuration of the laser scanning endoscope apparatus 1 according to the first embodiment of the present disclosure has been described above with reference to FIG. Next, the function and configuration of the endoscope 160 will be described in more detail with reference to FIG. 3 in conjunction with FIG. FIG. 3 is a schematic diagram schematically showing the configuration of the scanning unit 163 shown in FIG. In FIG. 3, for the sake of simplicity, the configuration related to the laser scanning function among the functions of the endoscope 160 is mainly illustrated.

図2及び図3を参照すると、第1の実施形態に係る内視鏡160は、鏡筒(筐体)161、ウインドウ部162、走査部163、回転機構167及び平行移動機構168を有する。   2 and 3, the endoscope 160 according to the first embodiment includes a lens barrel (housing) 161, a window unit 162, a scanning unit 163, a rotation mechanism 167, and a parallel movement mechanism 168.

本実施形態においては、図2に示すように、内視鏡160の一部領域を観察対象である生体組織500に接触させ、当該接触領域に対して走査部163からレーザ光が照射される。そして、走査部163から生体組織500にレーザ光が照射された状態で、走査部163を内視鏡160の挿入方向(鏡筒161の長手方向)を回転軸方向として回転させる、及び/又は走査部163を内視鏡160の挿入方向に平行移動させることにより、生体組織500に対してレーザ光を走査する。なお、以下の説明において、内視鏡160又はその構成部材の生体組織500への「接触」とは、「接触又は近接」を表すものであってもよい。   In the present embodiment, as shown in FIG. 2, a partial region of the endoscope 160 is brought into contact with a living tissue 500 that is an observation target, and laser light is irradiated from the scanning unit 163 to the contact region. Then, the scanning unit 163 is rotated with the insertion direction of the endoscope 160 (longitudinal direction of the lens barrel 161) as the rotation axis direction in a state where the living tissue 500 is irradiated with the laser light from the scanning unit 163, and / or scanning. The living tissue 500 is scanned with laser light by translating the part 163 in the insertion direction of the endoscope 160. In the following description, “contact” of the endoscope 160 or its constituent members to the living tissue 500 may represent “contact or proximity”.

ここで、以下の説明では、図2及び図3に示すように、走査部163の回転によってレーザ走査が行われる方向(紙面垂直方向)をx軸、内視鏡160(鏡筒161)の挿入方向をy軸、x軸及びy軸と互いに垂直な方向をz軸と定義して説明を行う。ここで、図2においては、内視鏡160の走査部163及びその近傍の構成について、鏡筒161の中心軸を通りy−z平面と平行な断面で切断したときの断面図を模式的に示している。また、図3は、図2におけるA−Aでの断面をy軸の正方向から見た様子を示す図である。ただし、図3では、走査部163が上記の回転軸で所定の角度回転した様子を図示している。   Here, in the following description, as shown in FIGS. 2 and 3, the direction in which laser scanning is performed by the rotation of the scanning unit 163 (the direction perpendicular to the paper surface) is the x axis, and the endoscope 160 (lens barrel 161) is inserted. In the description, the direction is defined as the y-axis, and the direction perpendicular to the x-axis and the y-axis is defined as the z-axis. Here, in FIG. 2, a cross-sectional view of the configuration of the scanning unit 163 of the endoscope 160 and the vicinity thereof is schematically shown when cut along a cross section passing through the central axis of the lens barrel 161 and parallel to the yz plane. Show. FIG. 3 is a diagram illustrating a cross section taken along the line AA in FIG. 2 as viewed from the positive direction of the y-axis. However, FIG. 3 illustrates a state in which the scanning unit 163 is rotated by a predetermined angle about the rotation axis.

鏡筒161は、管状の筐体であり、その先端部であるヘッド部には、ウインドウ部162、走査部163、回転機構167及び平行移動機構168等の、レーザ走査機能に関する各種の構成が設けられる。なお、鏡筒161のヘッド部の直径は、例えば数mm程度以下である。本実施形態においては、図2及び図3に示すように、鏡筒161は円筒状の形状を有するが、鏡筒161の断面形状はかかる例に限定されず、管状の筐体であればあらゆる形状であってよい。例えば、鏡筒161の断面形状は任意の多角形であってもよい。ただし、患者への身体的な負担の軽減を考えれば、鏡筒161の断面形状は円形に近い形状であることが好ましく、従って、鏡筒161の断面形状が任意の多角形である場合には、当該多角形は頂点の数ができるだけ多く円形に近い形状であることが好ましい。なお、以下の説明では、内視鏡160及び鏡筒161の長手方向のことを、筐体の長軸方向とも呼称する。   The lens barrel 161 is a tubular casing, and a head portion which is a tip portion thereof is provided with various configurations relating to a laser scanning function such as a window portion 162, a scanning portion 163, a rotating mechanism 167, and a parallel moving mechanism 168. It is done. Note that the diameter of the head portion of the lens barrel 161 is, for example, about several mm or less. In this embodiment, as shown in FIGS. 2 and 3, the lens barrel 161 has a cylindrical shape, but the cross-sectional shape of the lens barrel 161 is not limited to this example, and any tubular casing can be used. It may be a shape. For example, the cross-sectional shape of the lens barrel 161 may be an arbitrary polygon. However, considering the reduction of the physical burden on the patient, the cross-sectional shape of the lens barrel 161 is preferably a nearly circular shape. Therefore, when the cross-sectional shape of the lens barrel 161 is an arbitrary polygon, The polygon preferably has a shape that is as close to a circle as possible with as many vertices as possible. In the following description, the longitudinal direction of the endoscope 160 and the lens barrel 161 is also referred to as the long axis direction of the housing.

また、当該ヘッド部には、撮像部、処置具、洗浄ノズル等のレーザ走査機能以外の各種の機構が設けられてもよい。これらの各種の機構は、鏡筒161の内部に延設されるケーブルやワイヤ(いずれも図示せず。)等により、レーザ走査型内視鏡装置1の装置本体部と電気的、機械的に接続されており、当該装置本体部からの制御によって駆動される。例えば、これらの各種の機構は、ユーザによって入力部195から入力される命令に応じて制御されてもよい。   In addition, the head unit may be provided with various mechanisms other than the laser scanning function such as an imaging unit, a treatment tool, and a cleaning nozzle. These various mechanisms are electrically and mechanically connected to the apparatus main body of the laser scanning endoscope apparatus 1 by a cable, a wire (both not shown) or the like extending inside the lens barrel 161. It is connected and driven by control from the apparatus main body. For example, these various mechanisms may be controlled according to a command input from the input unit 195 by the user.

ウインドウ部162は、鏡筒161の一部領域に設けられ、観察対象である患者の体腔内の生体組織500に接触する。本実施形態においては、ウインドウ部162は、鏡筒161の長手方向と略平行な側壁の一部領域に設けられ、鏡筒161の側壁の形状に則したシリンドリカル面を有する。図2に示すように、光ファイバ140によって鏡筒161内を導光されてきたレーザ光は、ウインドウ部162を介して生体組織500に照射される。また、生体組織500からの戻り光は、ウインドウ部162を介して鏡筒161の内部に入射し、光ファイバ140によって内視鏡160の外部に導光される。従って、ウインドウ部162の材料は、レーザ光源110によって射出されるレーザ光の波長帯域及び生体組織500からの戻り光の波長帯域に対して透明である(透過率が大きい)ことが望ましい。具体的には、ウインドウ部162は、例えば、石英、ガラス、プラスチック等の各種の公知の材料によって構成されてよい。   The window part 162 is provided in a partial region of the lens barrel 161 and contacts the living tissue 500 in the body cavity of the patient to be observed. In the present embodiment, the window portion 162 is provided in a partial region of the side wall substantially parallel to the longitudinal direction of the lens barrel 161 and has a cylindrical surface in accordance with the shape of the side wall of the lens barrel 161. As shown in FIG. 2, the laser light guided through the lens barrel 161 by the optical fiber 140 is irradiated to the living tissue 500 through the window portion 162. Further, the return light from the living tissue 500 enters the inside of the lens barrel 161 through the window portion 162 and is guided to the outside of the endoscope 160 by the optical fiber 140. Therefore, it is desirable that the material of the window portion 162 is transparent (having high transmittance) with respect to the wavelength band of the laser light emitted from the laser light source 110 and the wavelength band of the return light from the living tissue 500. Specifically, the window part 162 may be comprised with various well-known materials, such as quartz, glass, a plastics, for example.

また、上述したように、本実施形態においては、走査部163のy軸を回転軸とした回転及び/又は走査部163のy軸方向への平行移動によって、生体組織500に対してレーザ光を走査する。従って、走査部163以降(生体組織500にレーザ光が照射されるまで)の光学系は、走査部163の回転及び又は平行移動に対して保存されていることが望ましい。ウインドウ部162の形状は、このような、走査部163以降の光学系が、走査部163の回転及び又は平行移動に対して保存される観点から設定されてもよい。   In addition, as described above, in the present embodiment, laser light is emitted to the living tissue 500 by rotating around the y axis of the scanning unit 163 and / or translating the scanning unit 163 in the y axis direction. Scan. Therefore, it is desirable that the optical system after the scanning unit 163 (until the laser beam is applied to the living tissue 500) is stored with respect to the rotation and / or translation of the scanning unit 163. The shape of the window unit 162 may be set from the viewpoint that the optical system after the scanning unit 163 is preserved with respect to the rotation and / or parallel movement of the scanning unit 163.

更に、レーザ走査時にウインドウ部162は生体組織500に接触するため、安全の観点から、ウインドウ部162には所定の強度が求められる。このように、ウインドウ部162の厚さや材料は、ウインドウ部162が生体組織500に接触することを考慮して、患者に危険を及ぼさないように十分な強度を有するように設計される。例えば、ウインドウ部162は、その材料にもよるが、数百μm程度の厚さを有することが望ましい。   Furthermore, since the window portion 162 contacts the living tissue 500 during laser scanning, the window portion 162 is required to have a predetermined strength from the viewpoint of safety. In this way, the thickness and material of the window part 162 are designed to have sufficient strength so as not to pose a risk to the patient in consideration of the window part 162 coming into contact with the living tissue 500. For example, the window portion 162 preferably has a thickness of about several hundred μm although it depends on the material.

なお、図2及び図3に示す例では、ウインドウ部162は、鏡筒161の側壁の形状に則したシリンドリカル面を有しているが、本実施形態はかかる例に限定されない。ウインドウ部162の形状は他の形状、例えば他の各種の曲面やあるいは平面であってもよい。また、図2及び図3に示す例では、ウインドウ部162は、鏡筒161の円周方向(外周方向)の一部領域にのみ設けられているが、本実施形態はかかる例に限定されない。ウインドウ部162は、鏡筒161の円周方向の全領域に鏡筒161の長手方向にある幅を有して設けられてもよい。鏡筒161の円周方向にウインドウ部162が設けられる長さは、レーザ走査時に生体組織500に鏡筒161が押圧される際に互いに接触する領域の面積に応じて適宜設定されてよい。   In the example shown in FIGS. 2 and 3, the window portion 162 has a cylindrical surface conforming to the shape of the side wall of the lens barrel 161, but the present embodiment is not limited to this example. The shape of the window part 162 may be other shapes, for example, other various curved surfaces or planes. In the example shown in FIGS. 2 and 3, the window portion 162 is provided only in a partial region in the circumferential direction (outer circumferential direction) of the lens barrel 161, but the present embodiment is not limited to such an example. The window portion 162 may be provided with a width in the longitudinal direction of the lens barrel 161 in the entire circumferential region of the lens barrel 161. The length in which the window portion 162 is provided in the circumferential direction of the lens barrel 161 may be appropriately set according to the areas of the regions that contact each other when the lens barrel 161 is pressed against the living tissue 500 during laser scanning.

走査部163は、ウインドウ部162を通して生体組織500にレーザ光を照射した状態で、鏡筒161内でウインドウ部162に対して相対的に回転及び/又は平行移動することにより、生体組織500に対して当該レーザ光を走査する。   The scanning unit 163 rotates and / or translates relative to the window unit 162 within the lens barrel 161 in a state in which the living tissue 500 is irradiated with laser light through the window unit 162, thereby moving the scanning unit 163 relative to the living tissue 500. Then, the laser beam is scanned.

走査部163の機能及び構成について詳しく説明する。走査部163は、光路変更素子164、対物レンズ165、収差補正素子166及びハウジング169を有する。   The function and configuration of the scanning unit 163 will be described in detail. The scanning unit 163 includes an optical path changing element 164, an objective lens 165, an aberration correction element 166, and a housing 169.

光路変更素子164は、鏡筒161内を鏡筒161の長手方向に導光してきたレーザ光を、対物レンズ165のレンズ面に導光する。具体的には、光路変更素子164は、光ファイバ140によって鏡筒161内を導光してきたレーザ光を受光し、その光路を変更して対物レンズ165の光軸上に導光する。図2に示す例では、光ファイバ140を導光してきたレーザ光は、光ファイバ用導光レンズ150によって略平行光にコリメートされ、y軸方向に導光され光路変更素子164に入射する。光路変更素子164は、例えば折り曲げミラーであり、光ファイバ用導光レンズ150から導光されたレーザ光を略直角にz軸方向に反射し、自身から見てz軸方向に位置する対物レンズ165に向かって導光する。なお、本実施形態においては、光路変更素子164は折り曲げミラーに限定されず、他の各種の光学素子であってよい。光路変更素子164が他の光学素子である本実施形態の変形例については、下記(4.変形例)で詳しく説明する。   The optical path changing element 164 guides the laser light guided in the longitudinal direction of the lens barrel 161 through the lens barrel 161 to the lens surface of the objective lens 165. Specifically, the optical path changing element 164 receives the laser light guided in the lens barrel 161 by the optical fiber 140, changes the optical path, and guides it on the optical axis of the objective lens 165. In the example shown in FIG. 2, the laser light guided through the optical fiber 140 is collimated into substantially parallel light by the optical fiber light guide lens 150, guided in the y-axis direction, and enters the optical path changing element 164. The optical path changing element 164 is, for example, a bending mirror, and reflects the laser light guided from the optical fiber light guiding lens 150 in the z-axis direction at a substantially right angle, and is located in the z-axis direction when viewed from the objective lens 165. Guide the light toward In the present embodiment, the optical path changing element 164 is not limited to the bending mirror, and may be other various optical elements. A modification of the present embodiment in which the optical path changing element 164 is another optical element will be described in detail below (4. Modification).

対物レンズ165は、鏡筒161の内部に設けられ、ウインドウ部162を通して生体組織500にレーザ光を集光する。具体的には、対物レンズ165は、光路変更素子164から導光されたレーザ光を集光し、ウインドウ部162を通して生体組織500に向かって照射する。また、生体組織500からの戻り光は、ウインドウ部162及び対物レンズ165を介して鏡筒161の内部に入射し、光ファイバ140によって内視鏡160の外部に導光される。従って、対物レンズ165の材料は、レーザ光源110によって射出されるレーザ光の波長帯域及び生体組織500からの戻り光の波長帯域に対して透明である(透過率が大きい)ことが望ましい。具体的には、対物レンズ165は、例えば、石英、ガラス、プラスチック等の各種の公知の材料によって構成されてよい。また、例えば、対物レンズ165は非球面レンズであってよい。また、本実施形態においては、高分解能の画像データを取得するために、対物レンズ165は比較的高いNAを有することが望ましい。例えば、対物レンズ165のNAは0.5以上であってよい。   The objective lens 165 is provided inside the lens barrel 161 and condenses the laser light on the living tissue 500 through the window portion 162. Specifically, the objective lens 165 collects the laser light guided from the optical path changing element 164 and irradiates the living tissue 500 through the window unit 162. Further, the return light from the living tissue 500 is incident on the inside of the lens barrel 161 via the window portion 162 and the objective lens 165 and guided to the outside of the endoscope 160 by the optical fiber 140. Therefore, it is desirable that the material of the objective lens 165 is transparent (having high transmittance) with respect to the wavelength band of the laser light emitted from the laser light source 110 and the wavelength band of the return light from the living tissue 500. Specifically, the objective lens 165 may be made of various known materials such as quartz, glass, and plastic. For example, the objective lens 165 may be an aspheric lens. In the present embodiment, it is desirable that the objective lens 165 has a relatively high NA in order to acquire high-resolution image data. For example, the NA of the objective lens 165 may be 0.5 or more.

なお、図2及び図3に示す例では、対物レンズ165は、走査部163内において光路変更素子164の後段に設けられ、光路変更素子164とともに回転するように構成されているが、対物レンズ165が設けられる位置はかかる位置に限定されない。例えば、対物レンズ165は、走査部163に含まれなくてもよく(すなわち、走査部163の他の構成部材とともに回転しなくてもよく)、光路変更素子164の前段に設けられてもよい。当該構成の場合、対物レンズ165によって集光されたレーザ光が、光路変更素子164によってその進行方向が変更され、ウインドウ部162を透過して生体組織500に対して走査されることになる。ただし、対物レンズ165が光路変更素子164の前段に設けられる場合には、対物レンズ165から光路変更素子164までの距離及び光路変更素子164から生体組織500までの距離を考慮して、比較的作動距離が長い対物レンズ165が用いられることが好ましい。   In the example shown in FIGS. 2 and 3, the objective lens 165 is provided in the rear stage of the optical path changing element 164 in the scanning unit 163 and is configured to rotate together with the optical path changing element 164. The position where is provided is not limited to such a position. For example, the objective lens 165 may not be included in the scanning unit 163 (that is, may not rotate with other components of the scanning unit 163), and may be provided in front of the optical path changing element 164. In the case of this configuration, the traveling direction of the laser light collected by the objective lens 165 is changed by the optical path changing element 164, passes through the window portion 162, and is scanned with respect to the living tissue 500. However, when the objective lens 165 is provided upstream of the optical path changing element 164, the objective lens 165 operates relatively in consideration of the distance from the objective lens 165 to the optical path changing element 164 and the distance from the optical path changing element 164 to the living tissue 500. It is preferable to use an objective lens 165 having a long distance.

収差補正素子166は、ウインドウ部162よりも前段に設けられ、レーザ光が生体組織500に集光される際に生じる収差を補正する。具体的には、収差補正素子166は、レーザ光を生体組織500に照射する際に対物レンズ165及び/又はウインドウ部162に起因して生じる色収差、球面収差、非点収差等の各収差の少なくともいずれかを補正する。例えば、球面収差を補正するための収差補正素子166としては、ウインドウ部162や対物レンズ165の厚み誤差による球面収差を補償する目的で、例えば対物レンズ165とウインドウ部162との間に平行平板が用いられてもよい。ただし、対物レンズ165が非球面レンズである場合には、対物レンズ165自体に球面収差の補正機能が備えられていてもよい。また、例えば、非点収差を補正するための収差補正素子166としては、各種のシリンドリカルレンズやシリンドリカルメニスカスレンズを用いることができる。なお、収差補正素子166の具体的な構成については、下記(5.収差補正素子の構成)で詳細に説明する。   The aberration correction element 166 is provided in front of the window portion 162 and corrects an aberration that occurs when the laser light is focused on the living tissue 500. Specifically, the aberration correction element 166 includes at least each aberration such as chromatic aberration, spherical aberration, and astigmatism caused by the objective lens 165 and / or the window unit 162 when the living tissue 500 is irradiated with laser light. Correct either one. For example, as the aberration correction element 166 for correcting the spherical aberration, for example, a parallel plate is provided between the objective lens 165 and the window portion 162 in order to compensate for the spherical aberration due to the thickness error of the window portion 162 and the objective lens 165. May be used. However, when the objective lens 165 is an aspheric lens, the objective lens 165 itself may be provided with a spherical aberration correction function. For example, as the aberration correction element 166 for correcting astigmatism, various cylindrical lenses and cylindrical meniscus lenses can be used. The specific configuration of the aberration correction element 166 will be described in detail below (5. Configuration of the aberration correction element).

ここで、上記の収差の度合いは、対物レンズ165のNAの値や、ウインドウ部162の形状に影響される。具体的には、対物レンズ165のNAが高くなるほど、ウインドウ部162の構成部材の厚さが大きくなるほど、ウインドウ部162の曲率が小さくなるほど(すなわち、鏡筒161の直径が小さくなるほど)、収差の度合いは大きくなる傾向がある。従って、収差補正素子166としてどのような光学素子を用いるかや、その具体的な構成は、ウインドウ部162及び対物レンズ165の形状及び特性に応じて適宜選択されてよい。   Here, the degree of the aberration is influenced by the NA value of the objective lens 165 and the shape of the window portion 162. Specifically, the higher the NA of the objective lens 165, the greater the thickness of the component of the window portion 162, and the smaller the curvature of the window portion 162 (that is, the smaller the diameter of the lens barrel 161), the more the aberration becomes. The degree tends to increase. Therefore, what optical element is used as the aberration correction element 166 and its specific configuration may be appropriately selected according to the shapes and characteristics of the window portion 162 and the objective lens 165.

なお、上述したように例えばコリメータレンズとして機能する光ファイバ用導光レンズ150によって観察深さが変更される場合には、観察深さの変更に伴う収差の変動を考慮して設計された、非点収差を補正する収差補正素子が好適に適用され得る。また、レーザ走査型内視鏡装置1によって、2光子励起を利用した観察を行う場合には、色収差を補正する収差補正素子が好適に適用され得る。このような、観察深さ調整機構を有する場合や、2光子励起を利用した観察を行う場合における収差補正素子の具体的な構成については、下記(6−2.レーザ走査型プローブ)で詳細に説明する。   As described above, when the observation depth is changed by, for example, the optical fiber light guide lens 150 functioning as a collimator lens, the non-designed lens is designed in consideration of the variation in aberration accompanying the change in the observation depth. An aberration correction element that corrects point aberration can be suitably applied. In addition, when the laser scanning endoscope apparatus 1 performs observation using two-photon excitation, an aberration correction element that corrects chromatic aberration can be suitably applied. The specific configuration of the aberration correction element in the case of having such an observation depth adjusting mechanism or performing observation using two-photon excitation will be described in detail in the following (6-2. Laser scanning probe). explain.

なお、図2及び図3に示す例では、収差補正素子166は、光路変更素子164と対物レンズ165との間に設けられているが、収差補正素子166が設けられる位置はかかる位置に限定されない。収差補正素子166は、光ファイバ140から射出されたレーザ光がウインドウ部162を通過するまでの間であれば任意の位置に設けられてよく、走査部163の一構成部材として回転及び平行移動をしないように構成されてもよい。   2 and 3, the aberration correction element 166 is provided between the optical path changing element 164 and the objective lens 165, but the position where the aberration correction element 166 is provided is not limited to this position. . The aberration correction element 166 may be provided at any position as long as the laser light emitted from the optical fiber 140 passes through the window portion 162, and rotates and translates as a constituent member of the scanning portion 163. It may be configured not to.

また、レーザ光が生体組織500に集光される際に生じる収差を抑制する目的で、対物レンズ165とウインドウ部162との間の空間を、対物レンズ165の屈折率及びウインドウ部162の屈折率と略同一の屈折率を有する液体によって液浸してもよい。当該液体は、例えば、上記条件を満たすオイル等であってよい。ここで、一般的に、生体組織500の屈折率は、空気よりもウインドウ部162の材料として選択され得るガラス等と近い値であることが知られている。従って、対物レンズ165とウインドウ部162との間の空間を所定の屈折率を有する液体で液浸することにより、対物レンズ165からウインドウ部162を介して生体組織500に至るまでの光路上での屈折率の変化、特にウインドウ部162の内面における屈折率差を小さくすることができ、収差の発生を抑制することができる。対物レンズ165とウインドウ部162との間の空間が液浸される場合には、収差補正素子166の構成は、液浸される液体の屈折率等の光学特性を考慮して適宜選択される。なお、当該収差を抑制する目的で、対物レンズ165とウインドウ部162との間の空間に満たされる媒体は、液体に限定されず、上記の屈折率の条件を満たすような公知の各種の材質によって構成された他の媒体であってもよい。   In addition, for the purpose of suppressing the aberration that occurs when the laser light is focused on the living tissue 500, the refractive index of the objective lens 165 and the refractive index of the window portion 162 are set in the space between the objective lens 165 and the window portion 162. And immersion with a liquid having substantially the same refractive index. The liquid may be, for example, oil that satisfies the above conditions. Here, it is generally known that the refractive index of the living tissue 500 is closer to glass or the like that can be selected as the material of the window portion 162 than air. Accordingly, by immersing the space between the objective lens 165 and the window portion 162 with a liquid having a predetermined refractive index, the optical path from the objective lens 165 to the living tissue 500 through the window portion 162 is increased. The change in refractive index, particularly the refractive index difference on the inner surface of the window portion 162 can be reduced, and the occurrence of aberration can be suppressed. When the space between the objective lens 165 and the window portion 162 is immersed, the configuration of the aberration correction element 166 is appropriately selected in consideration of optical characteristics such as the refractive index of the immersed liquid. For the purpose of suppressing the aberration, the medium filled in the space between the objective lens 165 and the window portion 162 is not limited to a liquid, and may be made of various known materials that satisfy the above refractive index conditions. It may be another medium configured.

また、光路変更素子164である折り曲げミラーのレーザ光の反射面を非球面形状にすることにより、光路変更素子164が収差補正機能を有するようにしてもよい。光路変更素子164が収差補正機能を有する場合には、収差補正素子166の構成は、光路変更素子164の当該収差補正機能の性能も考慮して適宜選択される。   Further, the optical path changing element 164 may have an aberration correction function by making the reflection surface of the laser beam of the bending mirror, which is the optical path changing element 164, into an aspherical shape. When the optical path changing element 164 has an aberration correcting function, the configuration of the aberration correcting element 166 is appropriately selected in consideration of the performance of the aberration correcting function of the optical path changing element 164.

ハウジング169は、走査部163の各構成部材を内部の空間に収容する。本実施形態では、ハウジング169は、図2及び図3に示すように、内部に空間を有する略直方体の形状を有し、当該内部空間に光路変更素子164及び収差補正素子166が配設される。また、ハウジング169の鏡筒161の内壁と対向する一面の一部領域には対物レンズ165が配設される。図2に示すように、走査部163に入射したレーザ光は、ハウジング169の内部に設けられた光路変更素子164に入射してその光路が変更され、収差補正素子166を通過して、対物レンズ165を介してハウジング169の外部に導光される。なお、光路変更素子164及び収差補正素子166は、ハウジング169の内部空間において、図示しない支持部材等によってハウジング169に対して固定されているものとする。   The housing 169 accommodates each component of the scanning unit 163 in an internal space. In the present embodiment, as shown in FIGS. 2 and 3, the housing 169 has a substantially rectangular parallelepiped shape having a space inside, and the optical path changing element 164 and the aberration correction element 166 are disposed in the internal space. . An objective lens 165 is disposed in a partial region of one surface of the housing 169 facing the inner wall of the lens barrel 161. As shown in FIG. 2, the laser light incident on the scanning unit 163 enters an optical path changing element 164 provided in the housing 169, the optical path is changed, passes through the aberration correction element 166, and the objective lens The light is guided to the outside of the housing 169 through 165. It is assumed that the optical path changing element 164 and the aberration correcting element 166 are fixed to the housing 169 by a support member (not shown) or the like in the internal space of the housing 169.

回転機構167は、レーザ光が生体組織500を走査するように、対物レンズ165の光軸と直交し対物レンズ165を通らない回転軸で、少なくとも対物レンズ165を鏡筒161内で回転させる。回転機構167は、具体的には、例えば、電磁力、超音波等を動力として駆動する各種のモータや、ピエゾ素子からなるモータ等によって構成されてよい。また、回転機構167は、小型のエアタービンによって構成されてもよい。更には、回転機構167は、カップリング機構を用いて内視鏡160の外部からトルクを伝達する機構によって構成されてもよい。   The rotation mechanism 167 rotates at least the objective lens 165 in the lens barrel 161 with a rotation axis that is orthogonal to the optical axis of the objective lens 165 and does not pass through the objective lens 165 so that the laser light scans the living tissue 500. Specifically, the rotation mechanism 167 may be configured by, for example, various motors that are driven by electromagnetic force, ultrasonic waves, or the like, motors that include piezoelectric elements, and the like. The rotation mechanism 167 may be configured by a small air turbine. Furthermore, the rotation mechanism 167 may be configured by a mechanism that transmits torque from the outside of the endoscope 160 using a coupling mechanism.

図2及び図3に示す例では、回転機構167は、走査部163、すなわち、光路変更素子164、対物レンズ165、収差補正素子166及びハウジング169を一体的に、y軸を回転軸として回転させる。つまり、回転機構167は、対物レンズ165の光軸がウインドウ部162の面上をx軸方向に走査するように、走査部163をy軸を回転軸として回転させる。このように、本実施形態においては、回転機構167が走査部163を1回転させる間に、生体組織500においてx軸方向の1ライン分レーザ光が走査される。従って、当該レーザ光の戻り光を検出することにより、生体組織500のうち回転機構167の回転によりレーザ光が走査されたラインに対応する部分の特性を画像データとして取得することができる。   In the example shown in FIGS. 2 and 3, the rotation mechanism 167 rotates the scanning unit 163, that is, the optical path changing element 164, the objective lens 165, the aberration correction element 166, and the housing 169 integrally with the y axis as the rotation axis. . That is, the rotation mechanism 167 rotates the scanning unit 163 about the y axis as the rotation axis so that the optical axis of the objective lens 165 scans the surface of the window unit 162 in the x axis direction. Thus, in the present embodiment, the laser beam is scanned for one line in the x-axis direction in the living tissue 500 while the rotation mechanism 167 rotates the scanning unit 163 once. Therefore, by detecting the return light of the laser light, it is possible to acquire, as image data, the characteristics of the part of the living tissue 500 corresponding to the line scanned with the laser light by the rotation of the rotation mechanism 167.

平行移動機構168は、少なくとも対物レンズ165を、鏡筒161内で、回転機構167による回転軸の方向に平行移動させる。平行移動機構168は、具体的には、例えば、リニアアクチュエータやピエゾ素子等によって構成されてよい。図2及び図3に示す例では、平行移動機構168は、走査部163、すなわち、光路変更素子164、対物レンズ165、収差補正素子166及びハウジング169を一体的に、y軸方向に平行移動させる。つまり、平行移動機構168は、対物レンズ165の光軸がウインドウ部162の面上をy軸方向に走査するように、走査部163をy軸方向に平行移動させる。ここで、本実施形態においては、走査部163に入射するレーザ光は、光ファイバ用導光レンズ150によって略平行光にコリメートされている。従って、平行移動機構168によって走査部163がy軸方向に平行移動しても、生体組織500に照射されるレーザ光の焦点(フォーカス)が変化しない。   The translation mechanism 168 translates at least the objective lens 165 in the direction of the rotation axis of the rotation mechanism 167 within the lens barrel 161. Specifically, the parallel movement mechanism 168 may be configured by, for example, a linear actuator, a piezoelectric element, or the like. 2 and 3, the translation mechanism 168 translates the scanning unit 163, that is, the optical path changing element 164, the objective lens 165, the aberration correction element 166, and the housing 169 integrally in the y-axis direction. . In other words, the translation mechanism 168 translates the scanning unit 163 in the y-axis direction so that the optical axis of the objective lens 165 scans the surface of the window unit 162 in the y-axis direction. Here, in the present embodiment, the laser light incident on the scanning unit 163 is collimated into substantially parallel light by the optical fiber light guide lens 150. Therefore, even if the scanning unit 163 is translated in the y-axis direction by the translation mechanism 168, the focal point (focus) of the laser light applied to the living tissue 500 does not change.

このように、本実施形態においては、回転機構167が走査部163を回転させることによりx軸方向にレーザ光を走査するとともに、平行移動機構168が走査部163を平行移動させることによりy軸方向にレーザ光を走査する。従って、生体組織500においてx−y平面(x軸とy軸とで規定される平面)上で2次元状にレーザ光が走査される。よって、当該レーザ光の戻り光を検出することにより、生体組織500においてレーザ光が走査された部分の特性を、2次元の画像データとして取得することができる。   As described above, in this embodiment, the rotation mechanism 167 rotates the scanning unit 163 to scan the laser beam in the x-axis direction, and the parallel movement mechanism 168 translates the scanning unit 163 in the y-axis direction. The laser beam is scanned. Accordingly, the laser beam is scanned two-dimensionally on the xy plane (a plane defined by the x axis and the y axis) in the living tissue 500. Therefore, by detecting the return light of the laser light, the characteristics of the portion of the living tissue 500 scanned with the laser light can be acquired as two-dimensional image data.

本実施形態では、回転機構167による走査部163の回転速度によってx軸方向のスキャンスピードが制御され、平行移動機構168による走査部163の平行移動速度によってy軸方向のスキャンスピードが制御される。従って、当該回転速度及び平行移動速度は、画像データのサンプリング周波数等に基づいて適宜設定されてよい。また、平行移動機構168による走査部163の可動範囲(可動距離)によって、取得される画像データの範囲が制御される。従って、当該可動距離は、ウインドウ部162のy軸方向の長さを考慮して、適宜設定されてよい。   In the present embodiment, the scan speed in the x-axis direction is controlled by the rotation speed of the scanning unit 163 by the rotation mechanism 167, and the scan speed in the y-axis direction is controlled by the parallel movement speed of the scanning unit 163 by the translation mechanism 168. Therefore, the rotation speed and the parallel movement speed may be set as appropriate based on the sampling frequency of the image data. Further, the range of image data to be acquired is controlled by the movable range (movable distance) of the scanning unit 163 by the parallel movement mechanism 168. Therefore, the movable distance may be appropriately set in consideration of the length of the window portion 162 in the y-axis direction.

なお、図2及び図3に示す例では、回転機構167及び平行移動機構168は、走査部163、すなわち、光路変更素子164、対物レンズ165、収差補正素子166及びハウジング169を一体的に回転及び平行移動させているが、本実施形態はかかる例に限定されない。例えば、回転機構167及び平行移動機構168は、対物レンズ165及びそのホルダーのみを、レーザ光が生体組織500を走査するように回転及び平行移動させてもよい。回転機構167及び平行移動機構168が対物レンズ165及びそのホルダーのみを回転及び平行移動させる場合には、光路変更素子164は回転及び平行移動せず、回転機構167及び平行移動機構168による対物レンズ165の回転及び平行移動と同期して、レーザ光の光路を動的に変化させることにより、回転及び平行移動する対物レンズ165のレンズ面にレーザ光を導光する構成にしてもよい。また、その場合、収差補正素子166は、例えば、光路変更素子164と対物レンズ165との間に回転及び平行移動しない状態で設けられ、光路変更素子164による光路の動的な変更に同期して、その収差補正機能を動的に変化させる構成にしてもよい。また、例えば、対物レンズ165及び収差補正素子166が、光路変更素子164よりも前段に設けられ、回転機構167及び平行移動機構168は、光路変更素子164のみを回転及び平行移動させてもよい。このように、本実施形態では、走査部163の回転及び/又は平行移動によって、生体組織500に対してレーザ光が走査されればよく、どの光学部材を回転及び/又は平行移動させることによってレーザ光の走査を実現するかは適宜設定されてよい。   In the example shown in FIGS. 2 and 3, the rotation mechanism 167 and the parallel movement mechanism 168 rotate and rotate the scanning unit 163, that is, the optical path changing element 164, the objective lens 165, the aberration correction element 166, and the housing 169 integrally. Although translated, the present embodiment is not limited to this example. For example, the rotation mechanism 167 and the translation mechanism 168 may rotate and translate only the objective lens 165 and its holder so that the laser light scans the living tissue 500. When the rotation mechanism 167 and the translation mechanism 168 rotate and translate only the objective lens 165 and its holder, the optical path changing element 164 does not rotate and translate, and the objective lens 165 by the rotation mechanism 167 and the translation mechanism 168. The laser light may be guided to the lens surface of the objective lens 165 that rotates and translates by dynamically changing the optical path of the laser light in synchronization with the rotation and translation of the objective lens 165. In that case, for example, the aberration correction element 166 is provided between the optical path changing element 164 and the objective lens 165 without being rotated and translated, and is synchronized with the dynamic change of the optical path by the optical path changing element 164. The aberration correction function may be dynamically changed. Further, for example, the objective lens 165 and the aberration correction element 166 may be provided in front of the optical path changing element 164, and the rotating mechanism 167 and the parallel moving mechanism 168 may rotate and translate only the optical path changing element 164. As described above, in this embodiment, the laser light may be scanned with respect to the living tissue 500 by the rotation and / or translation of the scanning unit 163. Whether to perform light scanning may be appropriately set.

また、図2及び図3には図示しないが、内視鏡160には、走査部163をz軸方向に、すなわち対物レンズ165の光軸方向に移動させる光軸方向移動機構が更に設けられてもよい。具体的には、当該光軸方向移動機構は、例えば小型のアクチュエータによって構成される。当該光軸方向移動機構によって走査部163がz軸方向に移動されることにより、対物レンズ165の生体組織500に対する焦点深度(すなわち観察深さ)を変化させることができる。なお、当該光軸方向移動機構も、上記回転機構167及び平行移動機構168と同様、対物レンズ165及びそのホルダーのみをz軸方向に移動させてもよい。また、対物レンズ165を光軸方向に移動させる代わりに、対物レンズ165を可変焦点レンズによって構成することにより対物レンズ165の焦点距離が変更されてもよい。なお、内視鏡160は、ウインドウ部162と生体組織500との相対距離を検出することにより、上記の光軸方向移動機構や可変焦点レンズによる焦点距離の調節を自動的に行うフォーカスサーボ機構を有してもよい。当該光軸方向移動機構や当該可変焦点レンズによる焦点距離の調節機構は、上述したコリメータレンズとして機能する光ファイバ用導光レンズ150と同様に、本実施形態に係る観察深さ調整機構の一例である。   Although not shown in FIGS. 2 and 3, the endoscope 160 is further provided with an optical axis direction moving mechanism that moves the scanning unit 163 in the z-axis direction, that is, in the optical axis direction of the objective lens 165. Also good. Specifically, the optical axis direction moving mechanism is configured by a small actuator, for example. By moving the scanning unit 163 in the z-axis direction by the optical axis direction moving mechanism, the depth of focus (that is, the observation depth) of the objective lens 165 with respect to the living tissue 500 can be changed. Note that the optical axis direction moving mechanism may also move only the objective lens 165 and its holder in the z-axis direction, like the rotating mechanism 167 and the parallel moving mechanism 168. Further, instead of moving the objective lens 165 in the optical axis direction, the focal length of the objective lens 165 may be changed by configuring the objective lens 165 with a variable focus lens. The endoscope 160 includes a focus servo mechanism that automatically adjusts the focal length by the optical axis direction moving mechanism and the variable focus lens by detecting the relative distance between the window portion 162 and the living tissue 500. You may have. The focal length adjustment mechanism using the optical axis direction moving mechanism and the variable focus lens is an example of the observation depth adjustment mechanism according to the present embodiment, similar to the optical fiber light guide lens 150 functioning as the collimator lens described above. is there.

本実施形態では、これらの観察深さ調整機構を用いることにより、生体組織500へのz軸方向のレーザ光の走査を行うことが可能となる。よって、上述した回転機構167及び平行移動機構168による走査部163の駆動と、観察深さ調整機構の駆動とを組み合わせることにより、生体組織500を3次元的にレーザ光で走査することができ、その戻り光を検出することにより、生体組織500の特性を3次元の画像データとして取得することが可能となる。従って、例えば深さ方向に複数層の画像を撮影しながら、観察したい部位(例えば患部)を探索する等、ユーザにとってより利便性の高い観察が実現される。   In the present embodiment, by using these observation depth adjustment mechanisms, it is possible to scan the living tissue 500 with laser light in the z-axis direction. Therefore, by combining the driving of the scanning unit 163 by the rotation mechanism 167 and the parallel movement mechanism 168 and the driving of the observation depth adjustment mechanism, the living tissue 500 can be scanned three-dimensionally with the laser beam, By detecting the return light, the characteristics of the living tissue 500 can be acquired as three-dimensional image data. Therefore, for example, a more convenient observation for the user is realized, such as searching for a site (for example, an affected part) to be observed while taking a plurality of layers of images in the depth direction.

以上、図2及び図3を参照して、本開示の第1の実施形態に係るレーザ走査型内視鏡装置1の概略構成について説明した。以上説明したように、第1の実施形態に係るレーザ走査型内視鏡装置1によれば、鏡筒161内において対物レンズ165がy軸を回転軸として回転することによって、ウインドウ部162を介して生体組織500に対してx軸方向にレーザ光が走査される。このように、対物レンズ165が回転することでレーザ光が走査されることにより、レーザ走査型内視鏡装置1における視野(FOV)は、対物レンズ165の軸外特性によって制限されない。従って、レーザ走査型内視鏡装置1では、対物レンズ165が回転中にウインドウ部162と対向する範囲(すなわち、x軸方向にレーザ光が走査される範囲)がFOVとして確保されるため、対物レンズ165のNAが比較的高い場合であっても広視野が実現される。また、第1の実施形態に係るレーザ走査型内視鏡装置1の内視鏡160に設けられるウインドウ部162は、所定の厚さを有して形成されるため、ウインドウ部162が生体組織に接触する際の安全性が確保される。更に、第1の実施形態に係るレーザ走査型内視鏡装置1によれば、ウインドウ部162よりも前段に、レーザ光が生体組織に集光される際に生じる収差を補正する収差補正素子166が設けられる。ここで、収差補正素子166の収差補正性能は、対物レンズ165及び/又はウインドウ部162に起因して生じる収差を補正するように、対物レンズ165及びウインドウ部162の特性や形状に応じて適宜設定されてよい。従って、レーザ走査型内視鏡装置1では、NAが比較的高い対物レンズを用いながら、ウインドウ部に所定の厚さを設けることにより安全性を確保することと、収差の影響を抑制することにより高品質な画像を取得することを両立させることが可能となる。   The schematic configuration of the laser scanning endoscope apparatus 1 according to the first embodiment of the present disclosure has been described above with reference to FIGS. 2 and 3. As described above, according to the laser scanning endoscope apparatus 1 according to the first embodiment, the objective lens 165 rotates around the y axis as the rotation axis in the lens barrel 161, thereby allowing the objective lens 165 to rotate via the window portion 162. Thus, the laser beam is scanned with respect to the living tissue 500 in the x-axis direction. Thus, the field of view (FOV) in the laser scanning endoscope apparatus 1 is not limited by the off-axis characteristics of the objective lens 165 by scanning the laser beam by the rotation of the objective lens 165. Accordingly, in the laser scanning endoscope apparatus 1, the range facing the window portion 162 while the objective lens 165 is rotating (that is, the range in which the laser beam is scanned in the x-axis direction) is secured as the FOV. A wide field of view is realized even when the NA of the lens 165 is relatively high. Moreover, since the window part 162 provided in the endoscope 160 of the laser scanning endoscope apparatus 1 according to the first embodiment is formed with a predetermined thickness, the window part 162 is formed on a living tissue. Safety when contacting is ensured. Furthermore, according to the laser scanning endoscope apparatus 1 according to the first embodiment, the aberration correction element 166 that corrects the aberration generated when the laser light is focused on the living tissue before the window unit 162. Is provided. Here, the aberration correction performance of the aberration correction element 166 is appropriately set according to the characteristics and shape of the objective lens 165 and the window portion 162 so as to correct aberrations caused by the objective lens 165 and / or the window portion 162. May be. Therefore, in the laser scanning endoscope apparatus 1, while using an objective lens having a relatively high NA, safety is ensured by providing a predetermined thickness in the window portion, and the influence of aberration is suppressed. It becomes possible to simultaneously obtain a high-quality image.

また、第1の実施形態に係るレーザ走査型内視鏡装置1においては、ウインドウ部162を生体組織500に接触させてレーザ光を走査するため、対物レンズ165を生体組織500に近接させることができるため、比較的高いNAを有する対物レンズ165を用いた場合であっても、生体組織500のより深い部位まで観察可能な画像データを、より高い解像度で、より安定的に取得することができる。   Further, in the laser scanning endoscope apparatus 1 according to the first embodiment, the objective lens 165 is brought close to the living tissue 500 in order to scan the laser light by bringing the window portion 162 into contact with the living tissue 500. Therefore, even when the objective lens 165 having a relatively high NA is used, image data that can be observed up to a deeper part of the living tissue 500 can be acquired more stably at a higher resolution. .

ここで、第1の実施形態に係るレーザ走査型内視鏡装置1におけるFOV×NAの概算値を算出してみる。上述したように、レーザ走査型内視鏡装置1のFOVは、走査部163の回転によって生体組織500においてx軸方向にレーザ光が走査される範囲であるため、ウインドウ部162の円周方向の長さのうち生体組織500と接している長さだと考えることができる。従って、FOVは、以下の数式(1)で算出される。   Here, an approximate value of FOV × NA in the laser scanning endoscope apparatus 1 according to the first embodiment will be calculated. As described above, the FOV of the laser scanning endoscope apparatus 1 is a range in which the laser light is scanned in the x-axis direction in the living tissue 500 by the rotation of the scanning unit 163. It can be considered that the length is in contact with the living tissue 500. Therefore, FOV is calculated by the following formula (1).

FOV=π×(ウインドウ部162の外径)×(生体組織500との接触角度/360°)
…(1)
FOV = π × (outer diameter of window portion 162) × (contact angle with living tissue 500/360 °)
... (1)

なお、数式(1)での「接触角度」とは、ウインドウ部162の円周方向の長さのうち生体組織500と接している長さに対応する、鏡筒161のx−z平面で切断した断面(すなわち、図3に示す鏡筒161の断面)の円における中心角のことである。   In addition, the “contact angle” in the mathematical formula (1) is cut along the xz plane of the lens barrel 161 corresponding to the length in the circumferential direction of the window portion 162 that is in contact with the living tissue 500. It is the central angle in the circle of the cross section (that is, the cross section of the lens barrel 161 shown in FIG. 3).

ここで、例えば、ウインドウ部162の外径が鏡筒161の直径と等しく、5(mm)であったとする。また、例えば、生体組織500との接触角度が60°であったとする。これらの値を、上記数式(1)に代入すると、レーザ走査型内視鏡装置1のFOVは、FOV≒2.6(mm)と算出される。従って、例えば、NAが0.5の対物レンズ165を用いたとすると、レーザ走査型内視鏡装置1の性能を示す指標FOV×NAは、FOV×NA=2.6×0.5=1.3となる。上記(1.他の構成によるレーザ走査型内視鏡装置についての検討)で説明したように、既存のレーザ走査型内視鏡におけるFOV×NAの値は最も高いものでも0.3(mm)程度であり、また、レーザ走査型顕微鏡におけるFOV×NAの値も1.0(mm)程度である。従って、第1の実施形態に係るレーザ走査型内視鏡装置1は、「3.高いNA」及び「4.広視野」という性能に関して、既存のレーザ走査型内視鏡及び既存のレーザ走査型顕微鏡よりも高い性能を有するものであるといえる。このように、レーザ走査型内視鏡装置1においては、対物レンズ165を回転させることにより、「2.ヘッド部の小型化」、「3.高いNA」及び「4.広視野」が同時に実現される。すなわち、レーザ走査型内視鏡装置1においては、高い解像度と広い視野とを確保することができる。従って、レーザ走査のライン間隔やサンプリングレートを制御することにより、生体組織を広範囲に見渡したり、必要に応じて所望の部位を拡大してより高い解像度で観察したりすることができ、効率的な生体組織の観察が実現される。   Here, for example, it is assumed that the outer diameter of the window portion 162 is equal to the diameter of the lens barrel 161 and is 5 (mm). For example, it is assumed that the contact angle with the living tissue 500 is 60 °. By substituting these values into Equation (1), the FOV of the laser scanning endoscope apparatus 1 is calculated as FOV≈2.6 (mm). Therefore, for example, if the objective lens 165 with NA of 0.5 is used, the index FOV × NA indicating the performance of the laser scanning endoscope apparatus 1 is FOV × NA = 2.6 × 0.5 = 1. 3 As described in the above (1. Examination of laser scanning endoscope apparatus with other configuration), the FOV × NA value of the existing laser scanning endoscope is 0.3 (mm) even if it is the highest. The value of FOV × NA in a laser scanning microscope is also about 1.0 (mm). Therefore, the laser scanning endoscope apparatus 1 according to the first embodiment relates to the performances of “3. high NA” and “4. wide field of view”, the existing laser scanning endoscope and the existing laser scanning type. It can be said that it has higher performance than a microscope. As described above, in the laser scanning endoscope apparatus 1, by rotating the objective lens 165, “2. Head size reduction”, “3. High NA” and “4. Wide field of view” are realized simultaneously. Is done. That is, in the laser scanning endoscope apparatus 1, a high resolution and a wide field of view can be ensured. Therefore, by controlling the line interval and the sampling rate of laser scanning, it is possible to look over the living tissue over a wide range, or to enlarge the desired part as necessary and observe it with higher resolution. Observation of living tissue is realized.

また、レーザ走査型内視鏡装置1に、上述した光軸方向移動機構のような、対物レンズ165の生体組織500への焦点深度を制御する機構を設けることにより、「1.深達度」についても所定の性能を達成することができる。   Further, by providing the laser scanning endoscope apparatus 1 with a mechanism for controlling the focal depth of the objective lens 165 to the living tissue 500, such as the optical axis direction moving mechanism described above, “1. Depth of penetration”. The predetermined performance can also be achieved.

更に、レーザ走査型内視鏡装置1における「5.高速スキャン性能」について考えてみる。レーザ走査型内視鏡装置1におけるレーザ光のスキャンスピードは、回転機構167による走査部163の回転速度によって決定される。ここで、走査部163に求められる回転速度を概算してみる。例えば、1フレームの画像データが(x×y)=(500(pixel)×500(pixel))であるとすると、スキャンスピード1fpsを実現するためには、1秒間に500ライン、レーザ光を走査する必要がある。従って、スキャンスピード1fpsを実現するために走査部163に求められる回転速度は、500×60×1=30000(rpm)である。これは、回転機構167が各種のモータによって構成されるとすれば十分実現可能な回転数であり、レーザ走査型内視鏡装置1においては、少なくとも1fps程度のスキャンスピードは実現可能であるといえる。   Further, consider “5. High-speed scanning performance” in the laser scanning endoscope apparatus 1. The scanning speed of the laser light in the laser scanning endoscope apparatus 1 is determined by the rotational speed of the scanning unit 163 by the rotation mechanism 167. Here, the rotation speed required for the scanning unit 163 will be roughly estimated. For example, assuming that one frame of image data is (x × y) = (500 (pixel) × 500 (pixel)), in order to realize a scanning speed of 1 fps, 500 lines are scanned with laser light per second. There is a need to. Therefore, the rotation speed required for the scanning unit 163 to realize the scan speed of 1 fps is 500 × 60 × 1 = 30000 (rpm). This is a rotation speed sufficiently realizable if the rotation mechanism 167 is constituted by various motors. In the laser scanning endoscope apparatus 1, it can be said that a scan speed of at least about 1 fps can be realized. .

なお、上記では対物レンズ165が非球面レンズである場合について説明したが、本実施形態はかかる例に限定されない。例えば、対物レンズ165は、グリンレンズ、回折光学素子、ホログラム、位相変調器等、非球面レンズと同等の光学的機能を持つ他の光学素子であってもよい。   Although the case where the objective lens 165 is an aspherical lens has been described above, the present embodiment is not limited to such an example. For example, the objective lens 165 may be another optical element having an optical function equivalent to that of the aspherical lens, such as a green lens, a diffractive optical element, a hologram, and a phase modulator.

また、スキャンスピードを向上させる観点から、回転機構167による高速回転を実現するために、対物レンズ165の材料としては、より比重の軽い材料が用いられることが好ましい。   Further, from the viewpoint of improving the scanning speed, it is preferable to use a material having a lighter specific gravity as the material of the objective lens 165 in order to realize high-speed rotation by the rotation mechanism 167.

また、対物レンズ165の代わりに、レーザ光を集光するとともに光路を変更することが可能な、反射型対物レンズや自由曲面ミラー、プリズム等の各種の光学素子が用いられてもよい。対物レンズ165の代わりに、レーザ光を集光するとともに光路を変更することが可能な光学素子が用いられる場合、光路変更素子164は必ずしも設けられなくてもよい。   Further, instead of the objective lens 165, various optical elements such as a reflective objective lens, a free-form surface mirror, and a prism capable of condensing laser light and changing the optical path may be used. When an optical element capable of condensing laser light and changing the optical path is used instead of the objective lens 165, the optical path changing element 164 is not necessarily provided.

また、レーザ光源110と対物レンズ165との間には、ガルバノミラー等の光偏光デバイスとリレーレンズ光学系によって構成される、一般的に用いられ得るレーザ走査機構が別途設けられてもよい。   In addition, a laser scanning mechanism that can be generally used may be provided between the laser light source 110 and the objective lens 165, which is configured by an optical polarization device such as a galvano mirror and a relay lens optical system.

また、上記では生体組織500にレーザ光をy軸方向に走査するための手段として、平行移動機構168が設けられる場合について説明したが、本実施形態はかかる例に限定されない。例えば、平行移動機構168は設けられなくてもよく、回転機構167による走査部163の回転により、x軸方向の1ライン分の画像データが取得されてもよい。生体組織500へのレーザ光の照射では、レーザ光は所定の広がりを有して生体組織500に照射されるため、x軸方向の1ライン分の走査しかされない場合であっても、y軸方向に所定の幅を有する画像データが取得される。あるいは、平行移動機構168が設けられない場合には、内視鏡160自体の体腔内への挿入動作又は体腔内からの引き抜き動作によって、レーザ光のy軸方向への走査が実現されてもよい。なお、下記(6−2.レーザ走査型プローブ)で説明するレーザ走査型プローブ5のような手持ち型のレーザ走査型プローブであれば、当該レーザ走査型プローブ自体を観察対象であるヒトや動物の体表面上でy軸方向に移動させることによりy軸方向へのレーザ走査を行ってもよい。また、下記(6−3.レーザ走査型顕微鏡)で説明するレーザ走査型顕微鏡装置6のように、観察対象が載置されるステージ880が設けられる場合であれば、当該ステージ880をy軸方向に移動させることによりy軸方向へのレーザ走査を行ってもよい。このように、平行移動機構168が設けられない場合であっても、筐体(より詳細には観察対象に対してレーザ光を照射するウインドウ部)又は観察対象をy軸方向に移動させながら観察対象にレーザ光を照射することにより、y軸方向へのレーザ走査を行うことが可能となる。   In the above description, the case where the parallel movement mechanism 168 is provided as a means for scanning the living tissue 500 in the y-axis direction has been described. However, the present embodiment is not limited to such an example. For example, the parallel movement mechanism 168 may not be provided, and image data for one line in the x-axis direction may be acquired by the rotation of the scanning unit 163 by the rotation mechanism 167. When the living tissue 500 is irradiated with the laser light, the laser light is irradiated to the living tissue 500 with a predetermined spread, so even if only one line of scanning in the x-axis direction is scanned, the y-axis direction. Image data having a predetermined width is acquired. Alternatively, when the translation mechanism 168 is not provided, the scanning of the laser light in the y-axis direction may be realized by the insertion operation of the endoscope 160 itself into the body cavity or the extraction operation from the body cavity. . In the case of a hand-held laser scanning probe such as the laser scanning probe 5 described below (6-2. Laser scanning probe), the laser scanning probe itself is used for the human or animal to be observed. Laser scanning in the y-axis direction may be performed by moving the body surface in the y-axis direction. Further, in the case where a stage 880 on which an observation target is placed is provided as in a laser scanning microscope apparatus 6 described below (6-3. Laser scanning microscope), the stage 880 is moved in the y-axis direction. The laser scanning in the y-axis direction may be performed by moving to the position. As described above, even when the translation mechanism 168 is not provided, observation is performed while moving the casing (more specifically, the window unit that irradiates the observation target with laser light) or the observation target in the y-axis direction. By irradiating the target with laser light, laser scanning in the y-axis direction can be performed.

(3.第2の実施形態)
次に、図4Aを参照して、本開示の第2の実施形態に係るレーザ走査型内視鏡装置の一構成例について説明する。図4Aは、本開示の第2の実施形態に係るレーザ走査型内視鏡装置の一構成例を示す概略図である。
(3. Second embodiment)
Next, with reference to FIG. 4A, a configuration example of the laser scanning endoscope apparatus according to the second embodiment of the present disclosure will be described. FIG. 4A is a schematic diagram illustrating a configuration example of a laser scanning endoscope apparatus according to the second embodiment of the present disclosure.

図4Aを参照すると、第2の実施形態に係るレーザ走査型内視鏡装置2は、レーザ光源110、ビームスプリッタ120、光変調器230、光ファイババンドル240、光ファイバ用導光レンズ130、150、内視鏡160、光検出器170、制御部280、出力部190及び入力部195を備える。なお、図4Aでは、簡単のため、レーザ走査型内視鏡装置2が有する機能のうち、レーザ走査による画像データの取得に関する構成のみを図示している。ただし、レーザ走査型内視鏡装置2は、図4Aに示す構成以外にも、他の公知の内視鏡装置が有する各種の構成を更に有してもよい。   Referring to FIG. 4A, a laser scanning endoscope apparatus 2 according to the second embodiment includes a laser light source 110, a beam splitter 120, an optical modulator 230, an optical fiber bundle 240, and optical fiber light guide lenses 130 and 150. , Endoscope 160, photodetector 170, control unit 280, output unit 190, and input unit 195. In FIG. 4A, for the sake of simplicity, only the configuration relating to the acquisition of image data by laser scanning is illustrated among the functions of the laser scanning endoscope apparatus 2. However, the laser scanning endoscope apparatus 2 may further include various configurations included in other known endoscope apparatuses in addition to the configuration illustrated in FIG. 4A.

ここで、本開示の第2の実施形態に係るレーザ走査型内視鏡装置2は、第1の実施形態に係るレーザ走査型内視鏡装置1に対して、光変調器230が新たに設けられ、光ファイバ140及び制御部180の代わりに、光ファイババンドル240及び制御部280が設けられたものであり、その他の構成については、第1の実施形態に係るレーザ走査型内視鏡装置1と同様の構成を備える。従って、以下の第2の実施形態に係るレーザ走査型内視鏡装置2の構成についての説明では、第1の実施形態に係るレーザ走査型内視鏡装置1と相違する構成について主に説明を行い、重複する構成については詳細な説明を省略する。   Here, in the laser scanning endoscope apparatus 2 according to the second embodiment of the present disclosure, an optical modulator 230 is newly provided with respect to the laser scanning endoscope apparatus 1 according to the first embodiment. The optical fiber bundle 240 and the control unit 280 are provided instead of the optical fiber 140 and the control unit 180, and the laser scanning endoscope apparatus 1 according to the first embodiment is provided for other configurations. It has the same configuration as. Therefore, in the description of the configuration of the laser scanning endoscope apparatus 2 according to the second embodiment below, the configuration that is different from the laser scanning endoscope apparatus 1 according to the first embodiment will be mainly described. Detailed description of the overlapping configuration will be omitted.

図4Aを参照すると、本開示の第2の実施形態に係るレーザ走査型内視鏡装置2は、図2に示す第1の実施形態に係るレーザ走査型内視鏡装置1に対して、ビームスプリッタ120と光ファイバ用導光レンズ130との間に、光変調器230を備える。また、レーザ走査型内視鏡装置2は、レーザ走査型内視鏡装置1の光ファイバ140の代わりに光ファイババンドル240を備える。   Referring to FIG. 4A, the laser scanning endoscope apparatus 2 according to the second embodiment of the present disclosure has a beam compared to the laser scanning endoscope apparatus 1 according to the first embodiment illustrated in FIG. 2. An optical modulator 230 is provided between the splitter 120 and the optical fiber light guide lens 130. The laser scanning endoscope apparatus 2 includes an optical fiber bundle 240 instead of the optical fiber 140 of the laser scanning endoscope apparatus 1.

光変調器230は、レーザ光源110、ビームスプリッタ120を介して入力されたレーザ光を、例えば数MHz〜数GHzの互いに異なる周波数で強度変調し多重化させた状態で励起させる。そして、互いに異なる変調を施したレーザ光を、光ファイバ用導光レンズ130を介して光ファイババンドル240に向かって入射させる。   The optical modulator 230 excites the laser light input via the laser light source 110 and the beam splitter 120 in a state where the intensity is modulated and multiplexed at different frequencies of several MHz to several GHz, for example. Then, laser beams subjected to different modulations are incident on the optical fiber bundle 240 through the optical fiber light guide lens 130.

光ファイババンドル240は、複数の光ファイバが束状にまとめられたものであり、図4Aに示す例では、光ファイバ241、242、243を有する。複数の光ファイバ241、242、243を有することにより、図2に示すように、生体組織500上において、複数の光ファイバ241、242、243に対応する複数のスポットにレーザ光が順に照射される。このように、互いに異なる複数のスポットにレーザ光が照射されることにより、いわば、狭い領域において複数のレーザ走査が行われることとなる。複数のスポットに照射されたレーザ光の戻り光は、複数の光ファイバ241、242、243によって逆方向に導光され、光検出器170によって検出される。なお、本明細書において、生体組織500にレーザ光が照射される「スポット」とは、レーザ光が照射される所定の広がりを持った領域のことを意味するものである。   The optical fiber bundle 240 is a bundle of a plurality of optical fibers. In the example illustrated in FIG. 4A, the optical fiber bundle 240 includes optical fibers 241, 242, and 243. By having the plurality of optical fibers 241, 242, and 243, as shown in FIG. 2, laser light is sequentially irradiated onto a plurality of spots corresponding to the plurality of optical fibers 241, 242, and 243 on the living tissue 500. . Thus, by irradiating a plurality of different spots with laser light, a plurality of laser scans are performed in a narrow region. The return light of the laser light applied to the plurality of spots is guided in the reverse direction by the plurality of optical fibers 241, 242, and 243 and detected by the photodetector 170. Note that in this specification, the “spot” where the living tissue 500 is irradiated with laser light means a region having a predetermined spread where the laser light is irradiated.

このように、本実施形態においては、光路変更素子164にレーザ光の光束が入射され、対物レンズ165は、生体組織500の互いに異なる複数のスポットに、当該レーザ光の光束を集光する。ここで、対物レンズ165を通過するレーザ光は、基本的には光軸上に集光されることが望ましいが、光軸外の領域が全く使えない訳ではない。従って、対物レンズ165における光軸外の領域(例えば、数10μm程度の領域)を利用して、レーザ光の光束を対物レンズ165に入射させ、生体組織500の互いに異なる複数のスポットに照射させる走査方法が可能となる。   As described above, in this embodiment, the light beam of the laser light is incident on the optical path changing element 164, and the objective lens 165 focuses the light beam of the laser light on a plurality of spots different from each other in the living tissue 500. Here, it is desirable that the laser light passing through the objective lens 165 is basically focused on the optical axis, but the region outside the optical axis cannot be used at all. Therefore, using a region outside the optical axis (for example, a region of about several tens of μm) in the objective lens 165, a laser beam is incident on the objective lens 165, and a plurality of different spots on the living tissue 500 are irradiated. A method becomes possible.

ここで、レーザ走査型内視鏡装置2は、第1の実施形態に係るレーザ走査型内視鏡装置1の制御部180の代わりに制御部280を備える。制御部280は、制御部180の構成に対して、画像信号取得部181の代わりに画像信号取得部(光復調部)281を有する。画像信号取得部(光復調部)281は、画像信号取得部181が有する機能に加えて、光検出器170から送信される画像信号を復調する機能を有する。ここで、画像信号取得部(光復調部)281は、光変調器230でのレーザ光の変調方法に対応する方法で画像信号を復調することができる。本実施形態においては、上述したように、光変調器230がレーザ光を周波数変調し、複数のスポットに対応する信号を多重化させるため、画像信号取得部(光復調部)281は、当該レーザ光による戻り光を当該周波数変調に対応した方法で復調させる。従って、画像信号取得部(光復調部)281は、生体組織500の複数のスポットに照射されたレーザ光の戻り光について、各スポットからの戻り光に対応する画像信号を選択的に分離して取得することができる。   Here, the laser scanning endoscope apparatus 2 includes a control unit 280 instead of the control unit 180 of the laser scanning endoscope apparatus 1 according to the first embodiment. The control unit 280 has an image signal acquisition unit (light demodulation unit) 281 instead of the image signal acquisition unit 181 with respect to the configuration of the control unit 180. In addition to the function of the image signal acquisition unit 181, the image signal acquisition unit (light demodulation unit) 281 has a function of demodulating the image signal transmitted from the photodetector 170. Here, the image signal acquisition unit (light demodulation unit) 281 can demodulate the image signal by a method corresponding to the laser light modulation method in the optical modulator 230. In the present embodiment, as described above, since the optical modulator 230 frequency-modulates the laser light and multiplexes signals corresponding to a plurality of spots, the image signal acquisition unit (optical demodulation unit) 281 includes the laser The return light by light is demodulated by a method corresponding to the frequency modulation. Therefore, the image signal acquisition unit (light demodulation unit) 281 selectively separates the image signal corresponding to the return light from each spot with respect to the return light of the laser light irradiated to the plurality of spots of the living tissue 500. Can be acquired.

ここで、生体組織500上においてレーザ光が照射される複数のスポットは、例えばy軸方向に沿って配置される。生体組織500上のスポットをこのように配置し、各スポットにレーザ光を順に照射しながら、回転機構167によって走査部163を回転させることにより、走査部163の1度の回転により、x軸方向の複数のラインを同時に走査することが可能となる。上述したように、画像信号取得部(光復調部)281は、各スポットからの戻り光に対応する画像信号を選択的に分離して取得することができるため、レーザ走査型内視鏡装置2では、走査部163の1度の回転によって複数の走査ラインに関する画像情報を取得することができる。ここで、第1の実施形態に係るレーザ走査型内視鏡装置1では、走査部163を1度回転させることにより1ラインしか走査することができなかったため、複数のラインを走査するためには、走査部163の回転と走査部163(又は内視鏡160自体)のy軸方向への平行移動とを繰り返し行う必要があった。しかし、第2の実施形態に係るレーザ走査型内視鏡装置2では、第1の実施形態に係るレーザ走査型内視鏡装置1と同等の画像データを取得するために必要な走査部163の回転数をより小さくすることができ、回転機構167が有するモータ等の駆動機構の小型化や消費電力の低減を実現することが可能となる。   Here, the plurality of spots irradiated with the laser light on the living tissue 500 are arranged, for example, along the y-axis direction. By arranging the spots on the living tissue 500 in this way and rotating the scanning unit 163 by the rotation mechanism 167 while sequentially irradiating each spot with laser light, the rotation of the scanning unit 163 causes the x-axis direction to rotate. It is possible to simultaneously scan a plurality of lines. As described above, the image signal acquisition unit (light demodulation unit) 281 can selectively separate and acquire the image signal corresponding to the return light from each spot, and thus the laser scanning endoscope apparatus 2. Then, the image information regarding a plurality of scanning lines can be acquired by one rotation of the scanning unit 163. Here, in the laser scanning endoscope apparatus 1 according to the first embodiment, since only one line can be scanned by rotating the scanning unit 163 once, in order to scan a plurality of lines. The rotation of the scanning unit 163 and the parallel movement of the scanning unit 163 (or the endoscope 160 itself) in the y-axis direction have to be repeated. However, in the laser scanning endoscope apparatus 2 according to the second embodiment, the scanning unit 163 necessary for acquiring image data equivalent to that of the laser scanning endoscope apparatus 1 according to the first embodiment. The number of rotations can be further reduced, and the drive mechanism such as a motor included in the rotation mechanism 167 can be reduced in size and power consumption can be reduced.

以上、図4Aを参照して、本開示の第2の実施形態に係るレーザ走査型内視鏡装置2の概略構成について説明した。以上説明したように、第2の実施形態に係るレーザ走査型内視鏡装置2によれば、上述した第1の実施形態に係るレーザ走査型内視鏡装置によって得られる効果に加えて、以下の効果を得られる。すなわち、レーザ走査型内視鏡装置2においては、光路変更素子164にレーザ光の光束が入射され、対物レンズ165は、生体組織500の互いに異なる複数のスポットに、当該レーザ光の光束を集光する。ここで、当該光束を構成するレーザ光は、互いに異なる変調を施したレーザ光であってよく、レーザ走査型内視鏡装置2は、これらのレーザ光に対する復調機能を有することにより、各スポットからの戻り光に対応する画像信号を選択的に分離して取得することができる。従って、レーザ走査型内視鏡装置2では、走査部163が1回転する間に、複数のスポットに照射されるレーザ光による複数のラインを走査することが可能となる。よって、走査部163の回転数が比較的小さくても、高いスキャンスピードを得ることができる。   The schematic configuration of the laser scanning endoscope apparatus 2 according to the second embodiment of the present disclosure has been described above with reference to FIG. 4A. As described above, according to the laser scanning endoscope apparatus 2 according to the second embodiment, in addition to the effects obtained by the laser scanning endoscope apparatus according to the first embodiment described above, The effect of. That is, in the laser scanning endoscope apparatus 2, a laser beam is incident on the optical path changing element 164, and the objective lens 165 focuses the laser beam on a plurality of different spots of the living tissue 500. To do. Here, the laser light that constitutes the light beam may be laser light that has been modulated differently, and the laser scanning endoscope apparatus 2 has a demodulation function for these laser light, so The image signal corresponding to the return light can be selectively separated and acquired. Therefore, in the laser scanning endoscope apparatus 2, it is possible to scan a plurality of lines by the laser light irradiated to a plurality of spots while the scanning unit 163 rotates once. Therefore, a high scanning speed can be obtained even if the rotational speed of the scanning unit 163 is relatively small.

例えば、上記(2.第1の実施形態)で考察したように、1フレームの画像データが(x×y)=(500(pixel)×500(pixel))であるとする。第1の実施形態に係るレーザ走査型内視鏡装置1では、スキャンスピード1fpsを実現するために、30000(rpm)程度の走査部163の回転数が必要であった。しかし、例えば、第2の実施形態に係るレーザ走査型内視鏡装置2におけるスポット数が5つであれば、スキャンスピード1fpsを実現するために必要な走査部163の回転数はこの1/5で済むため、6000(rpm)程度でよいことになる。従って、第2の実施形態に係るレーザ走査型内視鏡装置2によれば、上述したように、より少ない回転数で第1の実施形態に係るレーザ走査型内視鏡装置1と同等の画像データと同等の情報を得ることが可能となるため、回転機構167が有するモータ等の駆動機構の小型化や消費電力の低減を実現することが可能となる。   For example, as discussed in (2. First Embodiment), it is assumed that one frame of image data is (x × y) = (500 (pixel) × 500 (pixel)). In the laser scanning endoscope apparatus 1 according to the first embodiment, the number of rotations of the scanning unit 163 of about 30000 (rpm) is necessary to realize a scanning speed of 1 fps. However, for example, if the number of spots in the laser scanning endoscope apparatus 2 according to the second embodiment is 5, the number of rotations of the scanning unit 163 necessary to realize the scan speed of 1 fps is 1/5. Therefore, about 6000 (rpm) is sufficient. Therefore, according to the laser scanning endoscope apparatus 2 according to the second embodiment, as described above, an image equivalent to the laser scanning endoscope apparatus 1 according to the first embodiment with a smaller number of rotations. Since information equivalent to data can be obtained, it is possible to reduce the size of a drive mechanism such as a motor included in the rotation mechanism 167 and reduce power consumption.

なお、上記では光変調器230は、レーザ光に対して振幅変調による周波数多重化を施していたが、本実施形態はかかる例に限定されない。例えば、光変調器230によるレーザ光の変調処理は、時分割の強度変調や周波数変調であってもよい。光変調器230による変調処理は、復調処理により各スポットからの戻り光に対応する画像信号を選択的に分離して取得することができれば、どのような処理であってもよい。   In the above description, the optical modulator 230 performs frequency multiplexing by amplitude modulation on the laser light, but the present embodiment is not limited to such an example. For example, the laser beam modulation processing by the optical modulator 230 may be time-division intensity modulation or frequency modulation. The modulation process by the optical modulator 230 may be any process as long as the image signal corresponding to the return light from each spot can be selectively separated and acquired by the demodulation process.

また、第2の実施形態においては、対物レンズ165における光軸外の領域がレーザ光の走査に用いられるため、対物レンズ165としては、回折限界に近い、視野がなるべく広くなるように設計されたものであることが好ましい。   In the second embodiment, since the region outside the optical axis of the objective lens 165 is used for scanning the laser beam, the objective lens 165 is designed to have a field of view as wide as possible, which is close to the diffraction limit. It is preferable.

また、上記の例では、光ファイババンドル240を用いることにより、生体組織500の複数のスポットにレーザ光を照射することが実現されているが、第2の実施形態はかかる例に限定されない。第2の実施形態では、他の方法によってレーザ光の複数の照射スポットが形成されてもよい。例えば、複数のコアを有するマルチコア光ファイバを用いて、当該マルチコア光ファイバの各コアによってレーザ光を導光することにより、1本の光ファイバによって生体組織500の複数のスポットにレーザ光を照射することも可能である。   Further, in the above example, by using the optical fiber bundle 240, it is realized that a plurality of spots of the living tissue 500 are irradiated with laser light. However, the second embodiment is not limited to such an example. In the second embodiment, a plurality of laser light irradiation spots may be formed by other methods. For example, by using a multi-core optical fiber having a plurality of cores, the laser light is guided by each core of the multi-core optical fiber, so that a plurality of spots of the living tissue 500 are irradiated with the single optical fiber. It is also possible.

マルチコア光ファイバの一例を図4Bに示す。図4Bは、マルチコア光ファイバの断面の様子を示す概略図である。図4Bを参照すると、マルチコア光ファイバ340は、複数のコア341が内部クラッド342及び外部クラッド343によって覆われて構成される。マルチコア光ファイバ340の各コア341によってレーザ光を導光することにより、上述した光ファイババンドル240を用いた場合と同様の効果を得ることができる。   An example of a multi-core optical fiber is shown in FIG. 4B. FIG. 4B is a schematic diagram illustrating a cross-sectional state of the multi-core optical fiber. Referring to FIG. 4B, the multi-core optical fiber 340 includes a plurality of cores 341 covered with an inner cladding 342 and an outer cladding 343. By guiding laser light through the cores 341 of the multi-core optical fiber 340, the same effect as that obtained when the optical fiber bundle 240 described above is used can be obtained.

例えば、複数のコア341は、マルチコア光ファイバ340の断面において、等間隔で1列に配列されることが好ましい。また、マルチコア光ファイバ340は、コア341の配列方向がレーザ光の回転走査方向に対して垂直になるように(すなわち、コア341の配列方向がy軸方向と平行になるように)配置されることが好ましい。これにより、y軸方向に等間隔に並んだ複数のスポットにおいて生体組織500にレーザ光が照射されることとなるため、走査部163の回転により、x軸方向に複数のラインを同時に走査することが可能となる。   For example, the plurality of cores 341 are preferably arranged in a line at equal intervals in the cross section of the multi-core optical fiber 340. The multi-core optical fiber 340 is arranged so that the arrangement direction of the cores 341 is perpendicular to the rotational scanning direction of the laser light (that is, the arrangement direction of the cores 341 is parallel to the y-axis direction). It is preferable. As a result, the living tissue 500 is irradiated with laser light at a plurality of spots arranged at equal intervals in the y-axis direction. Therefore, the scanning unit 163 rotates to simultaneously scan a plurality of lines in the x-axis direction. Is possible.

なお、図4Bに示す例では、マルチコア光ファイバ340は、ダブルクラッドのマルチコア光ファイバであるが、第2の実施形態はかかる例に限定されず、マルチコア光ファイバ340としてはシングルクラッドのマルチコア光ファイバが用いられてもよい。ただし、ダブルクラッドのマルチコア光ファイバを用いることにより、上述したように、例えば2光子励起を利用した観察を行う場合に、観察対象からの戻り光である蛍光の光ファイバへの集光効率を向上させることが可能となる。   In the example shown in FIG. 4B, the multi-core optical fiber 340 is a double-clad multi-core optical fiber, but the second embodiment is not limited to this example, and the multi-core optical fiber 340 is a single-clad multi-core optical fiber. May be used. However, by using a double-clad multi-core optical fiber, as described above, for example, when performing observation using two-photon excitation, the light collection efficiency of fluorescent light that is return light from the observation target is improved. It becomes possible to make it.

(4.変形例)
次に、本開示の第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2のいくつかの変形例について説明する。なお、以下の第1及び第2の実施形態の変形例についての説明では、第1の実施形態に係るレーザ走査型内視鏡装置1を例に挙げて主に説明を行うが、以下に説明する変形例と同様の構成は、第2の実施形態に係るレーザ走査型内視鏡装置2にも適用することが可能である。また、以下に示す変形例と同様の構成は、下記(6−2.レーザ走査型プローブ)及び下記(6−3.レーザ走査型顕微鏡装置)で説明する、本実施形態に係るレーザ走査型プローブ及びレーザ走査型顕微鏡装置に対しても、可能な範囲で適用することが可能である。
(4. Modifications)
Next, several modified examples of the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments of the present disclosure will be described. In the following description of modifications of the first and second embodiments, the laser scanning endoscope apparatus 1 according to the first embodiment will be mainly described as an example, but the following description will be given. The same configuration as that of the modified example can also be applied to the laser scanning endoscope apparatus 2 according to the second embodiment. In addition, the same configuration as that of the following modification example is described in the following (6-2. Laser scanning probe) and the following (6-3. Laser scanning microscope apparatus). The present invention can be applied to a laser scanning microscope apparatus as far as possible.

(4−1.走査部が複数の対物レンズを有する構成)
上記(2.第1の実施形態)及び(3.第2の実施形態)で説明したレーザ走査型内視鏡装置1、2では、走査部163が対物レンズ165を1つ有していた。しかし、本実施形態はかかる例に限定されず、走査部163は対物レンズ165を複数有してもよい。
(4-1. Configuration in which the scanning unit has a plurality of objective lenses)
In the laser scanning endoscope apparatuses 1 and 2 described in (2. First embodiment) and (3. Second embodiment), the scanning unit 163 has one objective lens 165. However, the present embodiment is not limited to such an example, and the scanning unit 163 may include a plurality of objective lenses 165.

図5を参照して、そのような走査部が対物レンズを複数有する場合のレーザ走査型内視鏡装置の一構成例について説明する。図5は、走査部が対物レンズを複数有する場合のレーザ走査型内視鏡装置の一構成例を示す概略図である。なお、図5では、レーザ走査型内視鏡装置のうち、内視鏡の部分だけを主に図示し、その他の部分については図示を省略している。   With reference to FIG. 5, a configuration example of a laser scanning endoscope apparatus in the case where such a scanning unit includes a plurality of objective lenses will be described. FIG. 5 is a schematic diagram illustrating a configuration example of a laser scanning endoscope apparatus when the scanning unit includes a plurality of objective lenses. In FIG. 5, in the laser scanning endoscope apparatus, only the endoscope portion is mainly illustrated, and the other portions are not illustrated.

図5を参照すると、本変形例に係る内視鏡360は、鏡筒161、ウインドウ部162、走査部363、回転機構167及び平行移動機構168を有する。なお、これらの構成のうち、鏡筒161、ウインドウ部162、回転機構167及び平行移動機構168については、図2及び図3を参照して説明した各構成部材と同様であるため、以下では走査部363の構成について主に説明することとし、これらの構成については詳細な説明を省略する。また、図5においては、内視鏡360の走査部363及びその近傍の構成について、鏡筒161の中心軸を通りy−z平面と平行な断面で切断したときの断面図を模式的に示している。   Referring to FIG. 5, an endoscope 360 according to this modification includes a lens barrel 161, a window unit 162, a scanning unit 363, a rotation mechanism 167, and a parallel movement mechanism 168. Of these configurations, the lens barrel 161, the window portion 162, the rotation mechanism 167, and the parallel movement mechanism 168 are the same as the components described with reference to FIGS. The configuration of the unit 363 will be mainly described, and detailed description thereof will be omitted. In addition, FIG. 5 schematically shows a cross-sectional view of the configuration of the scanning unit 363 of the endoscope 360 and the vicinity thereof when the cross section passes through the central axis of the lens barrel 161 and is parallel to the yz plane. ing.

走査部363は、光路変更素子364、1対の対物レンズ365、366、1対の収差補正素子367、368及びハウジング369を有する。   The scanning unit 363 includes an optical path changing element 364, a pair of objective lenses 365 and 366, a pair of aberration correction elements 367 and 368, and a housing 369.

1対の対物レンズ365、366は、走査部363の鏡筒161の内壁と対向する位置に設けられる。また、1対の対物レンズ365、366は、例えば、図5に示すように、走査部363において互いに対向する位置に設けられる。つまり、1対の対物レンズ365、366は、y軸の正方向から見たときに走査部363において対称な位置、すなわち、180度回転した位置に配置されてよい。1対の対物レンズ365、366をこのように配置することにより、図5に示すように、一方の対物レンズ365がz軸の負方向に位置してウインドウ部162と対向しているとき、他方の対物レンズ366はz軸の正方向に位置して鏡筒161の内壁と対向する。   The pair of objective lenses 365 and 366 are provided at positions facing the inner wall of the lens barrel 161 of the scanning unit 363. Further, the pair of objective lenses 365 and 366 are provided at positions facing each other in the scanning unit 363, for example, as shown in FIG. In other words, the pair of objective lenses 365 and 366 may be disposed at a symmetrical position in the scanning unit 363 when viewed from the positive direction of the y-axis, that is, a position rotated by 180 degrees. By arranging the pair of objective lenses 365 and 366 in this manner, as shown in FIG. 5, when one objective lens 365 is positioned in the negative direction of the z-axis and faces the window portion 162, the other The objective lens 366 is located in the positive z-axis direction and faces the inner wall of the lens barrel 161.

光路変更素子364には、光ファイバ140から射出され光ファイバ用導光レンズ150によって略平行光にコリメートされたレーザ光が入射される。光路変更素子364は、入射したレーザ光を、少なくともウインドウ部162と対向している方の対物レンズ365、366に向かって入射させるように、当該レーザ光の光路を変更する。例えば、光路変更素子364は、ビームスプリッタの機能を有し、入射されたレーザ光を2つに分離し、分離したレーザ光を対物レンズ365、366に向かってそれぞれ導光してもよい。また、光路変更素子364は、走査部363の回転と同期して光路の方向を動的に変化させることができる光学素子であり、ウインドウ部162と対向している方の対物レンズ365、366に向かってレーザ光を導光してもよい。なお、走査部363のように、複数の対物レンズを有する走査部の具体的な構成例については、図6A、図6B、図7A、図7B、図8A及び図8Bを参照して後で詳しく説明する。   Laser light emitted from the optical fiber 140 and collimated into substantially parallel light by the optical fiber light guide lens 150 is incident on the optical path changing element 364. The optical path changing element 364 changes the optical path of the laser light so that the incident laser light enters at least the objective lenses 365 and 366 facing the window portion 162. For example, the optical path changing element 364 may have a beam splitter function, separate the incident laser light into two, and guide the separated laser light toward the objective lenses 365 and 366, respectively. The optical path changing element 364 is an optical element that can dynamically change the direction of the optical path in synchronization with the rotation of the scanning unit 363. Laser light may be guided toward the head. Note that a specific configuration example of a scanning unit having a plurality of objective lenses like the scanning unit 363 will be described in detail later with reference to FIGS. 6A, 6B, 7A, 7B, 8A, and 8B. explain.

1対の収差補正素子367、368は、1対の対物レンズ365、366の前段にそれぞれ配設される。収差補正素子367、368の機能は、図2を参照して説明した収差補正素子166と同様であり、レーザ光が生体組織500に集光される際に生じる収差を補正する機能を有する。なお、図5に示す例では、1対の収差補正素子367、368は、光路変更素子364と1対の対物レンズ365、366との間にそれぞれ配設されているが、1対の収差補正素子367、368が配設される位置はかかる例に限定されず、光ファイバ140から射出されたレーザ光がウインドウ部162を通過するまでの間であればどこに設けられてもよい。   The pair of aberration correction elements 367 and 368 are disposed in front of the pair of objective lenses 365 and 366, respectively. The functions of the aberration correction elements 367 and 368 are the same as those of the aberration correction element 166 described with reference to FIG. In the example shown in FIG. 5, the pair of aberration correction elements 367 and 368 are disposed between the optical path changing element 364 and the pair of objective lenses 365 and 366, respectively. The positions where the elements 367 and 368 are disposed are not limited to this example, and may be provided anywhere as long as the laser light emitted from the optical fiber 140 passes through the window portion 162.

ハウジング369は、走査部363の各構成部材を内部の空間に収容する。本変形例では、ハウジング369は、図5に示すように、内部に空間を有する略直方体の形状を有し、当該内部空間に光路変更素子364及び1対の収差補正素子367、368が配設される。また、ハウジング369の鏡筒161の内壁と対向する面であって、ハウジング369において互いに対向する面の一部領域には1対の対物レンズ365、366が配設される。このように、1対の対物レンズ365、366は、図5に示すように、ハウジング369において互いにレンズ面が対向するように設けられる。なお、光路変更素子364及び1対の収差補正素子367、368は、ハウジング369の内部空間において、図示しない支持部材等によってハウジング369に対して固定されているものとする。   The housing 369 accommodates each component of the scanning unit 363 in an internal space. In the present modification, as shown in FIG. 5, the housing 369 has a substantially rectangular parallelepiped shape having a space inside, and an optical path changing element 364 and a pair of aberration correction elements 367 and 368 are disposed in the internal space. Is done. In addition, a pair of objective lenses 365 and 366 are disposed in a part of the surface of the housing 369 facing the inner wall of the lens barrel 161 and facing each other in the housing 369. As described above, the pair of objective lenses 365 and 366 are provided in the housing 369 so that the lens surfaces thereof face each other as shown in FIG. It is assumed that the optical path changing element 364 and the pair of aberration correction elements 367 and 368 are fixed to the housing 369 by a support member (not shown) or the like in the internal space of the housing 369.

本変形例においても、第1の実施形態と同様、回転機構(図示せず。)によって、走査部363がハウジング369ごとy軸を回転軸として回転することができる。また、第1の実施形態と同様、平行移動機構(図示せず。)によって、走査部363がハウジング369ごとy軸方向に平行移動することができる。このように、本変形例においては、回転機構による走査部363のy軸を回転軸とした回転により生体組織500に対してレーザ光がx軸方向に走査され、平行移動機構による走査部363のy軸方向への平行移動により生体組織500に対してレーザ光がy軸方向に走査される。   Also in the present modification, the scanning unit 363 can rotate together with the housing 369 about the y axis as a rotation axis by a rotation mechanism (not shown) as in the first embodiment. Further, similarly to the first embodiment, the scanning unit 363 can translate in the y-axis direction together with the housing 369 by a translation mechanism (not shown). As described above, in this modification, the laser light is scanned in the x-axis direction with respect to the living tissue 500 by the rotation of the scanning unit 363 by the rotation mechanism about the y axis, and the scanning unit 363 of the parallel movement mechanism The laser beam is scanned in the y-axis direction with respect to the living tissue 500 by the parallel movement in the y-axis direction.

以上、図5を参照して、本開示の第1及び第2の実施形態の変形例として、走査部363が複数の対物レンズ365、366を有する構成について説明した。本変形例によれば、走査部363が1回転する間に、対物レンズ365によるレーザ光の走査と対物レンズ366によるレーザ光の走査とが行われる。従って、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2と比べて、走査部363が1回転する間に取得される情報量を増加させることができるため、更なるスキャンスピードの高速化が実現される。あるいは、より少ない走査部363の回転数で、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2と同等の情報量を有する画像データを取得することが可能となる。   The configuration in which the scanning unit 363 includes the plurality of objective lenses 365 and 366 has been described above as a modification of the first and second embodiments of the present disclosure with reference to FIG. 5. According to this modification, scanning of the laser beam by the objective lens 365 and scanning of the laser beam by the objective lens 366 are performed while the scanning unit 363 rotates once. Therefore, compared to the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments, the amount of information acquired during one rotation of the scanning unit 363 can be increased. Higher scanning speed is realized. Alternatively, image data having the same amount of information as the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments can be acquired with a smaller number of rotations of the scanning unit 363.

なお、図5に示す例では、走査部363が1対の対物レンズ365、366を有し、また、それら1対の対物レンズ365、366は、y軸の正方向から見たときに走査部363において対称な位置、すなわち、180度回転した位置に配置される場合について説明したが、本変形例はかかる例に限定されない。走査部363は2つより多くの対物レンズを有してもよいし、複数の対物レンズの配置位置も、鏡筒161の長手方向の略同一な位置において、鏡筒161の内壁と対向して、鏡筒161の外周方向に沿って所定の間隔で配設されれば、あらゆる位置に配設されてよい。以下では、図6A、図6B、図7A、図7B、図8A、図8B、図9A及び図9Bを参照して、複数の対物レンズを有する走査部において、対物レンズの配置数や配置位置が図5に示す例とは異なる場合について説明する。   In the example shown in FIG. 5, the scanning unit 363 includes a pair of objective lenses 365 and 366, and the pair of objective lenses 365 and 366 is the scanning unit when viewed from the positive direction of the y axis. Although the case where it arrange | positions in the symmetrical position in 363, ie, the position rotated 180 degree | times was demonstrated, this modification is not limited to this example. The scanning unit 363 may have more than two objective lenses, and the arrangement positions of the plurality of objective lenses are opposed to the inner wall of the lens barrel 161 at substantially the same position in the longitudinal direction of the lens barrel 161. As long as they are arranged at predetermined intervals along the outer peripheral direction of the lens barrel 161, they may be arranged at any position. In the following, referring to FIGS. 6A, 6B, 7A, 7B, 8A, 8B, 9A, and 9B, in the scanning unit having a plurality of objective lenses, the number and arrangement positions of the objective lenses are as follows. A case different from the example shown in FIG. 5 will be described.

(4−1−1.光路変更素子が偏光ビームスプリッタである構成)
図6A及び図6Bを参照して、走査部が対物レンズを複数有する構成の具体的な構成例として、光路変更素子が偏光ビームスプリッタである構成について説明する。図6Aは、光路変更素子が偏光ビームスプリッタである場合の走査部の一構成例を示す概略図である。図6Bは、図6Aに示す走査部をy軸を回転軸として180度回転したときの様子を示す概略図である。なお、図6A及び図6Bでは、簡単のため、本変形例に係るレーザ走査型内視鏡装置の構成のうち、走査部及びその近傍の構成についてのみ主に図示している。また、図6A及び図6Bは、走査部及びその近傍の構成について、鏡筒の中心軸を通りy−z平面と平行な断面で切断したときの断面図を示している。
(4-1-1. Configuration in which the optical path changing element is a polarization beam splitter)
With reference to FIGS. 6A and 6B, a configuration in which the optical path changing element is a polarization beam splitter will be described as a specific configuration example of the configuration in which the scanning unit includes a plurality of objective lenses. FIG. 6A is a schematic diagram illustrating a configuration example of a scanning unit when the optical path changing element is a polarization beam splitter. FIG. 6B is a schematic diagram illustrating a state when the scanning unit illustrated in FIG. 6A is rotated 180 degrees about the y-axis. 6A and 6B, for the sake of simplicity, only the configuration of the scanning unit and the vicinity thereof is mainly illustrated in the configuration of the laser scanning endoscope apparatus according to the present modification. FIGS. 6A and 6B are cross-sectional views of the configuration of the scanning unit and the vicinity thereof, taken along a cross section passing through the central axis of the barrel and parallel to the yz plane.

図6A及び図6Bを参照すると、本変形例に係る走査部370は、偏光ビームスプリッタ372、1/4波長板373、ミラー374、1対の対物レンズ375、376、1対の収差補正素子377、378及びハウジング379を有する。また、図6Aに示す構成例においては、走査部370の前段、すなわち、光ファイバから射出されたレーザ光が走査部370に入射する直前に、偏光変調素子371が更に設けられる。なお、図6A及び図6Bに示す実線及び破線の矢印はレーザ光の光路を示す。   6A and 6B, the scanning unit 370 according to this modification includes a polarization beam splitter 372, a quarter-wave plate 373, a mirror 374, a pair of objective lenses 375 and 376, and a pair of aberration correction elements 377. 378 and a housing 379. In the configuration example shown in FIG. 6A, a polarization modulation element 371 is further provided before the scanning unit 370, that is, immediately before the laser light emitted from the optical fiber enters the scanning unit 370. 6A and 6B, solid and broken arrows indicate the optical path of laser light.

1対の対物レンズ375、376は、図5に示す例と同様、y軸方向から見たときに走査部370において対称な位置、すなわち、180度回転した位置に配置される。つまり、図6Aに示すように、一方の対物レンズ375がz軸の負方向に位置してウインドウ部162と対向しているとき、他方の対物レンズ376はz軸の正方向に位置して鏡筒161の内壁と対向している。また、1対の収差補正素子377、378は、1対の対物レンズ375、376の前段にそれぞれ配置される。収差補正素子377、378の機能は、図2を参照して説明した収差補正素子166と同様であり、レーザ光が生体組織500に集光される際に生じる収差を補正する機能を有する。   As in the example shown in FIG. 5, the pair of objective lenses 375 and 376 are arranged at symmetrical positions in the scanning unit 370 when viewed from the y-axis direction, that is, positions rotated by 180 degrees. That is, as shown in FIG. 6A, when one objective lens 375 is positioned in the negative z-axis direction and faces the window portion 162, the other objective lens 376 is positioned in the positive z-axis direction and mirrored. It faces the inner wall of the cylinder 161. In addition, the pair of aberration correction elements 377 and 378 are arranged in front of the pair of objective lenses 375 and 376, respectively. The functions of the aberration correction elements 377 and 378 are the same as those of the aberration correction element 166 described with reference to FIG. 2 and have a function of correcting aberrations that occur when the laser light is focused on the living tissue 500.

偏光変調素子371は、入射したレーザ光の偏光方向を変更する機能を有する。具体的には、偏光変調素子371は、入射したレーザ光のうち所定の偏光方向を有するレーザ光のみを通過させる機能を有していてもよい。本変形例であれば、偏光変調素子371には、前段の光ファイバ(図示せず。)から射出されたレーザ光が入射され、偏光変調素子371は、当該レーザ光のうち、所定の偏光方向を有するレーザ光のみを通過させ、走査部370に入射させる。   The polarization modulation element 371 has a function of changing the polarization direction of the incident laser light. Specifically, the polarization modulation element 371 may have a function of passing only laser light having a predetermined polarization direction among incident laser light. In the present modification, laser light emitted from a preceding optical fiber (not shown) is incident on the polarization modulation element 371, and the polarization modulation element 371 has a predetermined polarization direction out of the laser light. Only the laser beam having the light beam is allowed to enter and enter the scanning unit 370.

偏光変調素子371を通過したレーザ光は、走査部370に入射し、更に偏光ビームスプリッタ372に入射する。偏光ビームスプリッタ372は、所定の偏光方向を有するレーザ光の光路を変更する機能を有する。具体的には、偏光ビームスプリッタ372は、入射したレーザ光が有する偏光方向に応じてその光路を変更させる。図6Aに示す例では、偏光ビームスプリッタ372は、偏光変調素子371を通過したレーザ光の光路を略90度変化させ、z軸の負方向に配設された収差補正素子377及び対物レンズ375に入射させるように調整されている。偏光ビームスプリッタ372によって光路を変更されたレーザ光は、収差補正素子377及び対物レンズ375を通過し、ウインドウ部162を介して生体組織500に照射される。   The laser light that has passed through the polarization modulation element 371 enters the scanning unit 370 and then enters the polarization beam splitter 372. The polarization beam splitter 372 has a function of changing the optical path of laser light having a predetermined polarization direction. Specifically, the polarization beam splitter 372 changes the optical path according to the polarization direction of the incident laser light. In the example shown in FIG. 6A, the polarization beam splitter 372 changes the optical path of the laser light that has passed through the polarization modulation element 371 by approximately 90 degrees, and is applied to the aberration correction element 377 and the objective lens 375 disposed in the negative z-axis direction. It is adjusted to make it enter. The laser light whose optical path has been changed by the polarization beam splitter 372 passes through the aberration correction element 377 and the objective lens 375 and is irradiated onto the living tissue 500 through the window portion 162.

ハウジング379は、走査部370の各構成部材を内部の空間に収容する。本変形例では、ハウジング379は、図6Aに示すように、内部に空間を有する略直方体の形状を有し、当該内部空間に偏光ビームスプリッタ372、1/4波長板373、ミラー374及び1対の収差補正素子377、378が配設される。また、ハウジング379の鏡筒161の内壁と対向する面であって、ハウジング379において互いに対向する面の一部領域には1対の対物レンズ375、376が配設される。なお、偏光ビームスプリッタ372、1/4波長板373、ミラー374及び1対の収差補正素子377、378は、ハウジング379の内部空間において、図示しない支持部材等によってハウジング379に対して固定されているものとする。   The housing 379 accommodates each component of the scanning unit 370 in an internal space. In this modification, the housing 379 has a substantially rectangular parallelepiped shape having a space inside, as shown in FIG. 6A, and a polarization beam splitter 372, a quarter wavelength plate 373, a mirror 374 and a pair in the internal space. Aberration correction elements 377 and 378 are arranged. Further, a pair of objective lenses 375 and 376 are disposed in a part of the surface of the housing 379 facing the inner wall of the lens barrel 161 and facing each other in the housing 379. The polarization beam splitter 372, the quarter wavelength plate 373, the mirror 374, and the pair of aberration correction elements 377 and 378 are fixed to the housing 379 by a support member (not shown) or the like in the internal space of the housing 379. Shall.

本変形例においても、第1の実施形態と同様、回転機構(図示せず。)によって、走査部370がハウジング379ごとy軸を回転軸として回転することができる。また、第1の実施形態と同様、平行移動機構(図示せず。)によって、走査部370がハウジング379ごとy軸方向に平行移動することができる。このように、本変形例においては、回転機構による走査部370のy軸を回転軸とした回転により生体組織500に対してレーザ光がx軸方向に走査され、平行移動機構による走査部370のy軸方向への平行移動により生体組織500に対してレーザ光がy軸方向に走査される。   Also in this modified example, as in the first embodiment, the scanning unit 370 can rotate together with the housing 379 about the y axis as a rotation axis by a rotation mechanism (not shown). Similarly to the first embodiment, the scanning unit 370 can be translated in the y-axis direction together with the housing 379 by a translation mechanism (not shown). Thus, in this modification, the laser beam is scanned in the x-axis direction with respect to the living tissue 500 by the rotation of the scanning unit 370 by the rotation mechanism about the y axis, and the scanning unit 370 of the parallel movement mechanism The laser beam is scanned in the y-axis direction with respect to the living tissue 500 by the parallel movement in the y-axis direction.

図6Bは、走査部370が、図6Aの状態からy軸を回転軸として180度回転したときの様子を示している。走査部370がy軸を回転軸として180度回転しているため、収差補正素子377及び対物レンズ375と収差補正素子378及び対物レンズ376との位置関係、並びに偏光ビームスプリッタ372も180度回転している。つまり、図6Bに示す状態では、収差補正素子378及び対物レンズ376が、ウインドウ部162と対向している。   FIG. 6B shows a state when the scanning unit 370 rotates 180 degrees from the state of FIG. 6A with the y axis as the rotation axis. Since the scanning unit 370 is rotated 180 degrees about the y axis, the positional relationship between the aberration correction element 377 and the objective lens 375 and the aberration correction element 378 and the objective lens 376, and the polarization beam splitter 372 also rotate 180 degrees. ing. That is, in the state illustrated in FIG. 6B, the aberration correction element 378 and the objective lens 376 are opposed to the window portion 162.

図6Bに示す状態では、偏光ビームスプリッタ372は、y軸の負方向から偏光変調素子371を通過して入射したレーザ光を、そのままの光路で、すなわち、y軸の正方向に通過させるように調整されている。あるいは、偏光ビームスプリッタ372が図6Aに示す状態から180度回転して図6Bに示す状態にあるときに、入射したレーザ光をy軸の正方向に通過させるように、偏光変調素子371の特性が走査部370の回転と同期して動的に変更されてもよい。   In the state shown in FIG. 6B, the polarization beam splitter 372 passes the laser beam incident through the polarization modulation element 371 from the negative y-axis direction through the optical path as it is, that is, in the positive y-axis direction. It has been adjusted. Alternatively, when the polarization beam splitter 372 is rotated 180 degrees from the state shown in FIG. 6A and is in the state shown in FIG. May be dynamically changed in synchronization with the rotation of the scanning unit 370.

偏光ビームスプリッタ372のy軸の正方向には、1/4波長板373及びミラー374がこの順に設けられており、偏光ビームスプリッタ372を通過した光は、1/4波長板373を通過した後にミラー374によって反射され、再度1/4波長板373を通過して、偏光ビームスプリッタ372にy軸の正方向から入射する。この一連の光路において、レーザ光は1/4波長板373を2度通過することにより、その偏光方向が変化している。偏光ビームスプリッタ372は、y軸の正方向から入射した、偏光方向が変化されたレーザ光の光路を略90度変化させ、z軸の負方向に位置する収差補正素子378及び対物レンズ376に入射させるように調整されている。偏光ビームスプリッタ372によって光路を変更されたレーザ光は、収差補正素子377及び対物レンズ375を通過し、ウインドウ部162を介して生体組織500に照射される。   A quarter wavelength plate 373 and a mirror 374 are provided in this order in the positive direction of the y-axis of the polarization beam splitter 372, and light that has passed through the polarization beam splitter 372 passes through the quarter wavelength plate 373. The light is reflected by the mirror 374, passes through the quarter-wave plate 373 again, and enters the polarizing beam splitter 372 from the positive direction of the y-axis. In this series of optical paths, the laser beam passes through the quarter-wave plate 373 twice, so that its polarization direction is changed. The polarization beam splitter 372 changes the optical path of the laser beam, which is incident from the positive direction of the y axis and whose polarization direction is changed, by approximately 90 degrees, and is incident on the aberration correction element 378 and the objective lens 376 that are positioned in the negative direction of the z axis. It has been adjusted to let The laser light whose optical path has been changed by the polarization beam splitter 372 passes through the aberration correction element 377 and the objective lens 375 and is irradiated onto the living tissue 500 through the window portion 162.

以上、図6A及び図6Bを参照して説明したように、本変形例においては、レーザ光の偏光方向を制御する偏光変調素子371と、レーザ光の偏光方向に応じてその光路を制御する偏光ビームスプリッタ372とを組み合わせることにより、走査部370の回転と同期して、ウインドウ部162と対向している対物レンズ375又は対物レンズ376の方向に、レーザ光を導光することができる。従って、走査部370が1回転する間に、対物レンズ375を介した生体組織500へのレーザ光の走査と、対物レンズ376を介した生体組織500へのレーザ光の走査とを両方行うことができ、より効率的なレーザ光の走査が可能となる。   As described above with reference to FIGS. 6A and 6B, in this modification, the polarization modulation element 371 that controls the polarization direction of the laser light, and the polarization that controls the optical path according to the polarization direction of the laser light. By combining with the beam splitter 372, the laser beam can be guided in the direction of the objective lens 375 or the objective lens 376 facing the window unit 162 in synchronization with the rotation of the scanning unit 370. Therefore, while the scanning unit 370 rotates once, both the scanning of the laser light to the living tissue 500 via the objective lens 375 and the scanning of the laser light to the living tissue 500 via the objective lens 376 can be performed. Therefore, more efficient laser beam scanning is possible.

(4−1−2.光路変更素子がMEMSミラーである構成)
次に、図7A及び図7Bを参照して、走査部が対物レンズを複数有する構成の具体的な構成例として、光路変更素子がMEMSミラーである構成について説明する。図7A及び図7Bは、光路変更素子がMEMSミラーである場合の走査部の一構成例を示す概略図である。なお、図7A及び図7Bでは、簡単のため、本開示に係るレーザ走査型内視鏡装置の構成のうち、走査部及びその近傍の構成についてのみ主に図示している。また、図7Aは、走査部及びその近傍の構成について、鏡筒の中心軸を通りx−z平面と平行な断面で切断したときの断面図を示している。また、図7Bは、走査部及びその近傍の構成について、走査部の対物レンズの中心を通りy−z平面と平行な断面で切断したときの断面図を示している。なお、図7Aは、図7Aに示すB−B断面での断面図に対応している。
(4-1-2. Configuration in which optical path changing element is MEMS mirror)
Next, a configuration in which the optical path changing element is a MEMS mirror will be described as a specific configuration example of a configuration in which the scanning unit includes a plurality of objective lenses with reference to FIGS. 7A and 7B. 7A and 7B are schematic diagrams illustrating a configuration example of a scanning unit when the optical path changing element is a MEMS mirror. 7A and 7B, for the sake of simplicity, only the configuration of the scanning unit and the vicinity thereof is mainly illustrated in the configuration of the laser scanning endoscope apparatus according to the present disclosure. FIG. 7A is a cross-sectional view of the configuration of the scanning unit and the vicinity thereof, taken along a cross section that passes through the central axis of the barrel and is parallel to the xz plane. FIG. 7B is a cross-sectional view of the configuration of the scanning unit and its vicinity when the scanning unit is cut by a cross section that passes through the center of the objective lens of the scanning unit and is parallel to the yz plane. 7A corresponds to the cross-sectional view taken along the line BB in FIG. 7A.

図7A及び図7Bを参照すると、走査部380は、MEMSミラー381、1対の対物レンズ382、383、1対の収差補正素子384、385及びハウジング386を有する。なお、図7A及び図7Bに示す実線の矢印はレーザ光の光路を示す。   7A and 7B, the scanning unit 380 includes a MEMS mirror 381, a pair of objective lenses 382 and 383, a pair of aberration correction elements 384 and 385, and a housing 386. 7A and 7B indicate the optical path of the laser beam.

図7Aに示す例では、1対の対物レンズ382、383の配置位置が、図5、図6A及び図6Bに示す例とは異なっている。すなわち、図7Aに示す例では、1対の対物レンズ382、383は、y軸方向から見たときに走査部380において、180度回転した位置には配置されず、180度よりも小さい所定の角度を有して配置されている。また、1対の収差補正素子384、385は、1対の対物レンズ382、383の前段にそれぞれ配置される。収差補正素子384、385の機能は、図2を参照して説明した収差補正素子166と同様であり、レーザ光が前記生体組織に集光される際に生じる収差を少なくとも補正する機能を有する。ただし、本変形例においても、対物レンズ382、383及び収差補正素子384、385の配置位置は、図5、図6A及び図6Bと同様、y軸方向から見たときに走査部380において180度回転した位置であってもよい。   In the example shown in FIG. 7A, the arrangement positions of the pair of objective lenses 382 and 383 are different from the examples shown in FIGS. 5, 6A, and 6B. That is, in the example shown in FIG. 7A, the pair of objective lenses 382 and 383 is not arranged at a position rotated by 180 degrees in the scanning unit 380 when viewed from the y-axis direction, and is a predetermined value smaller than 180 degrees. It is arranged with an angle. In addition, the pair of aberration correction elements 384 and 385 are disposed in front of the pair of objective lenses 382 and 383, respectively. The functions of the aberration correction elements 384 and 385 are the same as those of the aberration correction element 166 described with reference to FIG. 2, and have at least a function of correcting aberrations that occur when laser light is focused on the living tissue. However, also in this modification, the arrangement positions of the objective lenses 382 and 383 and the aberration correction elements 384 and 385 are 180 degrees in the scanning unit 380 when viewed from the y-axis direction, as in FIGS. It may be a rotated position.

MEMSミラー381は、MEMSによって形成されたミラーであり、入射したレーザ光の反射方向を動的に制御することができる。具体的には、MEMSミラー381は、入射したレーザ光を反射させる反射面の角度及び形状の少なくともいずれかを動的に変化させることにより、当該レーザ光の光路を動的に変化させることができる。例えば、MEMSミラー381は、鏡筒161の内径の略中心に配設される。MEMSミラー381の角度及び表面の形状は、前段の光ファイバ(図示せず。)から射出されたレーザ光を鏡筒161の径方向に導光し、当該レーザ光が鏡筒161の円周方向に沿って観察対象を走査するように(すなわち、x軸方向に観察対象を走査するように)導光するように動的に制御されている。   The MEMS mirror 381 is a mirror formed by MEMS, and can dynamically control the reflection direction of incident laser light. Specifically, the MEMS mirror 381 can dynamically change the optical path of the laser light by dynamically changing at least one of the angle and shape of the reflection surface that reflects the incident laser light. . For example, the MEMS mirror 381 is disposed substantially at the center of the inner diameter of the lens barrel 161. The angle and surface shape of the MEMS mirror 381 are such that the laser light emitted from the preceding optical fiber (not shown) is guided in the radial direction of the lens barrel 161, and the laser light is in the circumferential direction of the lens barrel 161. The observation light is dynamically controlled so as to be guided so as to scan along the observation line (that is, to scan the observation object in the x-axis direction).

ここで、本変形例においては、図7A及び図7Bに示すように、ハウジング386は、円筒の内部がより径の小さい円筒状にくり抜かれた、コップ状の形状を有する。そして、ハウジング386の内部の空間に収差補正素子384、385が配設され、ハウジング386の鏡筒161の内壁と対向する面(すなわち、円筒の外周面)の一部領域に、対物レンズ382、383が、ハウジング386の外周に沿って所定の間隔で配設される。更に、MEMSミラー381は、ハウジング386の内部には配設されず、コップ形状の凹部にハウジング386と離隔して配設される。なお、収差補正素子384、385は、ハウジング386の内部空間において、図示しない支持部材等によってハウジング386に対して固定されているものとする。   Here, in this modified example, as shown in FIGS. 7A and 7B, the housing 386 has a cup shape in which the inside of the cylinder is hollowed out into a cylindrical shape having a smaller diameter. The aberration correction elements 384 and 385 are disposed in the space inside the housing 386, and an objective lens 382, a partial region of a surface of the housing 386 that faces the inner wall of the lens barrel 161 (that is, the outer peripheral surface of the cylinder), 383 are arranged along the outer periphery of the housing 386 at a predetermined interval. Further, the MEMS mirror 381 is not disposed inside the housing 386 but is disposed in a cup-shaped recess so as to be separated from the housing 386. The aberration correction elements 384 and 385 are fixed to the housing 386 by a support member (not shown) or the like in the internal space of the housing 386.

本変形例においても、第1の実施形態と同様、回転機構(図示せず。)によって、走査部380がハウジング386ごとy軸を回転軸として回転することができる。ここで、本変形例においては、上記のように、MEMSミラー381はハウジング386と離隔して配設されるため、走査部380が回転してもMEMSミラー381は回転しない。本変形例においては、光路変更素子であるMEMSミラー381は走査部380とともに回転せず、走査部380の回転と同期して、その反射面の角度や表面の形状を変化させ、ウインドウ部162と対向している対物レンズ382、383の方向にレーザ光の光路を変更させる。つまり、MEMSミラー381によってレーザ光の光路を変更することにより、生体組織500におけるレーザ光の走査を行う。例えば、図7Aに示す状態から走査部380が所定の角度回転し、収差補正素子385及び対物レンズ383がウインドウ部162と対向する位置に来たときには、MEMSミラー381は、その角度や表面の形状を変化させ、レーザ光の光路を収差補正素子385及び対物レンズ383に入射するように変更させる。   Also in the present modification, the scanning unit 380 can rotate together with the housing 386 about the y axis as a rotation axis by a rotation mechanism (not shown) as in the first embodiment. Here, in the present modification, as described above, the MEMS mirror 381 is disposed apart from the housing 386, so the MEMS mirror 381 does not rotate even when the scanning unit 380 rotates. In this modification, the MEMS mirror 381 that is an optical path changing element does not rotate with the scanning unit 380, and changes the angle of the reflecting surface and the shape of the surface in synchronization with the rotation of the scanning unit 380, and the window 162 The optical path of the laser beam is changed in the direction of the objective lenses 382 and 383 facing each other. In other words, the laser light is scanned in the living tissue 500 by changing the optical path of the laser light by the MEMS mirror 381. For example, when the scanning unit 380 is rotated by a predetermined angle from the state shown in FIG. Is changed so that the optical path of the laser light is incident on the aberration correction element 385 and the objective lens 383.

また、本変形例においても、第1の実施形態と同様、平行移動機構(図示せず。)によって、走査部380がハウジング386ごとy軸方向に平行移動することができる。走査部380がy軸方向に平行移動する場合には、MEMSミラー381は、走査部380と一緒に平行移動してもよい。このように、本変形例においては、MEMSミラー381の反射面の角度や形状の動的な制御によるレーザ光の光路の偏光により生体組織500に対してレーザ光がx軸方向に走査され、平行移動機構による走査部370(及びMEMSミラー381)のy軸方向への平行移動により生体組織500に対してレーザ光がy軸方向に走査される。   Also in this modified example, the scanning unit 380 can be translated in the y-axis direction together with the housing 386 by a translation mechanism (not shown), as in the first embodiment. When the scanning unit 380 is translated in the y-axis direction, the MEMS mirror 381 may be translated together with the scanning unit 380. As described above, in this modification, the laser light is scanned in the x-axis direction with respect to the living tissue 500 by the polarization of the optical path of the laser light by the dynamic control of the angle and shape of the reflection surface of the MEMS mirror 381 and parallel. The laser beam is scanned in the y-axis direction with respect to the living tissue 500 by the parallel movement of the scanning unit 370 (and the MEMS mirror 381) in the y-axis direction by the moving mechanism.

ただし、MEMSミラー381は、走査部380のy軸方向の平行移動に伴って平行移動しなくてもよい。つまり、MEMSミラー381は、走査部380のy軸を回転軸とする回転及びy軸方向への平行移動に対して、その位置が不変であってもよい。MEMSミラー381が走査部380とともに回転せず、平行移動もしない場合であっても、MEMSミラー381が、走査部380の回転及び平行移動と同期して、その反射面の角度や表面の形状を変化させ、ウインドウ部162と対向している対物レンズ382、383の方向にレーザ光の光路を変更させることにより、生体組織500に対するレーザ光の走査を行うことができる。   However, the MEMS mirror 381 may not move in parallel with the parallel movement of the scanning unit 380 in the y-axis direction. That is, the position of the MEMS mirror 381 may be unchanged with respect to the rotation of the scanning unit 380 with the y axis as the rotation axis and the parallel movement in the y axis direction. Even when the MEMS mirror 381 does not rotate with the scanning unit 380 and does not translate, the MEMS mirror 381 synchronizes with the rotation and translation of the scanning unit 380 to change the angle of the reflection surface and the shape of the surface. By changing and changing the optical path of the laser light in the direction of the objective lenses 382 and 383 facing the window portion 162, the living tissue 500 can be scanned with the laser light.

なお、MEMSミラー381は、ハウジング386のコップ形状の凹部において、図示しない支持部材等によって、上述した駆動を妨げないように支持されているものとする。例えば、MEMSミラー381は、支持部材によって、ハウジング386のコップ形状の凹部の底面の略中心(ハウジング386の回転軸に対応する部分)と接続されていてもよい。そして、当該支持部材に、ハウジング386の回転をキャンセルする機構が設けられることにより、ハウジング386が回転してもMEMSミラー381は回転しない構成を実現できる。   It is assumed that the MEMS mirror 381 is supported in a cup-shaped recess of the housing 386 by a support member (not shown) so as not to prevent the above-described driving. For example, the MEMS mirror 381 may be connected to the approximate center (the portion corresponding to the rotation axis of the housing 386) of the bottom surface of the cup-shaped recess of the housing 386 by a support member. Then, by providing the support member with a mechanism for canceling the rotation of the housing 386, a configuration in which the MEMS mirror 381 does not rotate even when the housing 386 rotates can be realized.

以上、図7A及び図7Bを参照して説明したように、本変形例においては、MEMSミラー381における反射面の条件(反射面の角度、形状等)を動的に変化させることにより、生体組織500に対してレーザ光を走査する。MEMSミラー381の制御によりレーザ光の走査が制御されるため、より自由度の高いレーザ走査が実現できる。   As described above with reference to FIGS. 7A and 7B, in this modification, the living tissue is changed by dynamically changing the conditions (such as the angle and shape of the reflecting surface) of the reflecting surface in the MEMS mirror 381. 500 is scanned with laser light. Since the scanning of the laser beam is controlled by controlling the MEMS mirror 381, laser scanning with a higher degree of freedom can be realized.

なお、MEMSミラー381は、光の反射方向を動的に変更可能な光偏向デバイス(光偏向素子)の一例であり、MEMSミラー381の代わりに他の光偏向デバイスを用いた場合であっても、上述した構成と同様の構成を実現することができ、同様の効果を得ることができる。また、本変形例では、回転機構は設けられなくてもよい。例えば、鏡筒内においてレーザ光の光路上に、対物レンズ、収差補正素子、MEMSミラーをこの順に設ける。鏡筒の外壁の、鏡筒の長手方向においてMEMSミラーの配設位置に対応する部位にウインドウ部を設け、対物レンズ及び収差補正素子を通過してMEMSミラーに入射したレーザ光が、当該ウインドウ部を介して観察対象である生体組織をx軸方向に走査するように、MEMSミラーの反射面の条件を動的に制御する。このような構成により、鏡筒内の構成部材を回転させなくても、観察対象に対するレーザ光のx軸方向の走査を実現することができる。   The MEMS mirror 381 is an example of an optical deflection device (optical deflection element) that can dynamically change the reflection direction of light, and even when another optical deflection device is used instead of the MEMS mirror 381. A configuration similar to the configuration described above can be realized, and a similar effect can be obtained. In this modification, the rotation mechanism may not be provided. For example, an objective lens, an aberration correction element, and a MEMS mirror are provided in this order on the optical path of the laser beam in the lens barrel. A window portion is provided at a portion of the outer wall of the lens barrel corresponding to the position where the MEMS mirror is disposed in the longitudinal direction of the lens barrel, and the laser light that has passed through the objective lens and the aberration correction element and is incident on the MEMS mirror is The condition of the reflecting surface of the MEMS mirror is dynamically controlled so that the biological tissue to be observed is scanned in the x-axis direction via the. With such a configuration, it is possible to realize scanning of the observation target in the x-axis direction with respect to the observation target without rotating the constituent members in the lens barrel.

(4−1−3.走査部が光路分岐素子を有する構成)
次に、図8A及び図8Bを参照して、走査部が対物レンズを複数有する構成の具体的な構成例として、走査部が光路分岐素子を有する構成について説明する。図8A及び図8Bは、走査部が光路分岐素子を有する場合の走査部の一構成例を示す概略図である。なお、図8A及び図8Bでは、簡単のため、本開示に係るレーザ走査型内視鏡装置の構成のうち、走査部及びその近傍の構成についてのみ主に図示している。また、図8Aは、走査部及びその近傍の構成について、鏡筒の中心軸を通りy−z平面と平行な断面で切断したときの断面図を示している。また、図8Bは、走査部及びその近傍の構成について、図8Aに示すC−C断面で切断したときの断面図を示している。
(4-1-3. Configuration in which scanning section has optical path branching element)
Next, with reference to FIGS. 8A and 8B, a configuration in which the scanning unit includes an optical path branching element will be described as a specific configuration example of a configuration in which the scanning unit includes a plurality of objective lenses. 8A and 8B are schematic diagrams illustrating a configuration example of the scanning unit when the scanning unit includes an optical path branching element. 8A and 8B, for the sake of simplicity, only the configuration of the scanning unit and the vicinity thereof is mainly illustrated in the configuration of the laser scanning endoscope apparatus according to the present disclosure. FIG. 8A is a cross-sectional view of the configuration of the scanning unit and the vicinity thereof, taken along a cross section that passes through the central axis of the lens barrel and is parallel to the yz plane. 8B is a cross-sectional view of the configuration of the scanning unit and the vicinity thereof, taken along the line CC shown in FIG. 8A.

図8A及び図8Bを参照すると、走査部390は、光路分岐素子391、レンズ392、レンズアレイ393、光路変更素子394a、394b、394c、394d、対物レンズ395a、395b、395c、395d、収差補正素子396a、396b、396c、396d及びハウジング397を有する。このように、本変形例に係る走査部390は、4つの対物レンズ395a、395b、395c、395dを有する。また、図8Bに示すように、4つの対物レンズ395a、395b、395c、395dは、y軸方向から見たときに走査部390において、90度ずつ回転した位置に配置される。   8A and 8B, the scanning unit 390 includes an optical path branching element 391, a lens 392, a lens array 393, optical path changing elements 394a, 394b, 394c, 394d, objective lenses 395a, 395b, 395c, 395d, an aberration correcting element. 396a, 396b, 396c, 396d and a housing 397. As described above, the scanning unit 390 according to this modification includes the four objective lenses 395a, 395b, 395c, and 395d. Further, as shown in FIG. 8B, the four objective lenses 395a, 395b, 395c, and 395d are arranged at positions rotated by 90 degrees in the scanning unit 390 when viewed from the y-axis direction.

また、これらの対物レンズ395a、395b、395c、395dの前段には収差補正素子396a、396b、396c、396d及び光路変更素子394a、394b、394c、394dがそれぞれ配置される。収差補正素子396a、396b、396c、396dの機能は、図2を参照して説明した収差補正素子166と同様であり、レーザ光が前記生体組織に集光される際に生じる収差を少なくとも補正する機能を有する。また、図8A及び図8Bに示す例では、光路変更素子394a、394b、394c、394dは例えば折り曲げミラーであり、図2を参照して説明した光路変更素子164と同様の機能を有する。すなわち、光路変更素子394a、394b、394c、394dは、走査部390に入射したレーザ光を対物レンズ395a、395b、395c、395dのレンズ面に導光する。   In addition, aberration correction elements 396a, 396b, 396c, and 396d and optical path changing elements 394a, 394b, 394c, and 394d are disposed in front of these objective lenses 395a, 395b, 395c, and 395d, respectively. The functions of the aberration correction elements 396a, 396b, 396c, and 396d are the same as those of the aberration correction element 166 described with reference to FIG. 2, and at least correct the aberration that occurs when the laser light is focused on the living tissue. It has a function. In the example shown in FIGS. 8A and 8B, the optical path changing elements 394a, 394b, 394c, and 394d are, for example, bending mirrors, and have the same function as the optical path changing element 164 described with reference to FIG. That is, the optical path changing elements 394a, 394b, 394c, and 394d guide the laser light incident on the scanning unit 390 to the lens surfaces of the objective lenses 395a, 395b, 395c, and 395d.

ハウジング397は、走査部390の各構成部材を内部の空間に収容する。本変形例では、ハウジング397は、図8A及び図8Bに示すように、内部に空間を有する略直方体の形状を有し、当該内部空間に光路分岐素子391、レンズ392、レンズアレイ393、光路変更素子394a、394b、394c、394d及び収差補正素子396a、396b、396c、396dが配設される。また、ハウジング397の鏡筒161の内壁と対向する4面の一部領域には、対物レンズ395a、395b、395c、395dがそれぞれ配設される。なお、光路分岐素子391、レンズ392、レンズアレイ393、光路変更素子394a、394b、394c、394d及び収差補正素子396a、396b、396c、396d、ハウジング397の内部空間において、図示しない支持部材等によってハウジング397に対して固定されているものとする。   The housing 397 accommodates each component of the scanning unit 390 in an internal space. In this modification, the housing 397 has a substantially rectangular parallelepiped shape having a space inside as shown in FIGS. 8A and 8B. Elements 394a, 394b, 394c, 394d and aberration correction elements 396a, 396b, 396c, 396d are provided. In addition, objective lenses 395a, 395b, 395c, and 395d are disposed in partial areas of four surfaces facing the inner wall of the lens barrel 161 of the housing 397, respectively. The optical path branching element 391, the lens 392, the lens array 393, the optical path changing elements 394a, 394b, 394c, 394d and the aberration correcting elements 396a, 396b, 396c, 396d, and the housing 397 are housed by a support member (not shown). 397 is fixed.

本変形例においては、図8Aに示すように、光ファイバ(図示せず。)によって鏡筒161内を導光してきたレーザ光は、光ファイバ用導光レンズ150によって略平行光にコリメートされ、ハウジング397の一側に設けられた光路分岐素子391に入射する。光路分岐素子391は、ビームスプリッタの一種であり、入射したレーザ光を複数の光路に分岐することができる。例えば、光路分岐素子391は、回折格子によって入射したレーザ光を複数の光路に分岐してもよい。本変形例では、光路分岐素子391は、入射したレーザ光を4つの光路に分岐する。   In this modification, as shown in FIG. 8A, the laser light guided through the lens barrel 161 by an optical fiber (not shown) is collimated into substantially parallel light by the optical fiber light guide lens 150. The light enters the optical path branching element 391 provided on one side of the housing 397. The optical path branch element 391 is a kind of beam splitter, and can split incident laser light into a plurality of optical paths. For example, the optical path branching element 391 may branch the laser light incident by the diffraction grating into a plurality of optical paths. In this modification, the optical path branching element 391 branches the incident laser light into four optical paths.

4つの光路に分岐されたレーザ光は、レンズ392を介してレンズアレイ393に集光される。レンズアレイ393は、分岐されたレーザ光と同数のレンズがアレイ状に配列されたものであり、分岐されたそれぞれのレーザ光がレンズアレイ393を構成する各レンズによって略平行光にコリメートされ、光路変更素子394a、394b、394c、394dにそれぞれ入射する。光路変更素子394a、394b、394c、394dは、入射した光を、対応する収差補正素子396a、396b、396c、396d及び対物レンズ395a、395b、395c、395dにそれぞれ導光する。   The laser light branched into the four optical paths is condensed on the lens array 393 via the lens 392. In the lens array 393, the same number of lenses as the branched laser light are arranged in an array, and each branched laser light is collimated into substantially parallel light by each lens constituting the lens array 393, and the optical path The light enters the change elements 394a, 394b, 394c, and 394d, respectively. The optical path changing elements 394a, 394b, 394c, 394d guide the incident light to the corresponding aberration correction elements 396a, 396b, 396c, 396d and the objective lenses 395a, 395b, 395c, 395d, respectively.

本変形例においても、第1の実施形態と同様、回転機構(図示せず。)によって、走査部390がハウジング397ごとy軸を回転軸として回転することができる。また、第1の実施形態と同様、平行移動機構(図示せず。)によって、走査部390がハウジング397ごとy軸方向に平行移動することができる。このように、本変形例においては、回転機構による走査部390のy軸を回転軸とした回転により生体組織500に対してレーザ光がx軸方向に走査され、平行移動機構による走査部390のy軸方向への平行移動により生体組織500に対してレーザ光がy軸方向に走査される。   Also in the present modification, the scanning unit 390 can rotate together with the housing 397 about the y axis as a rotation axis by a rotation mechanism (not shown) as in the first embodiment. Similarly to the first embodiment, the scanning unit 390 can be translated in the y-axis direction together with the housing 397 by a translation mechanism (not shown). As described above, in this modification, the laser light is scanned in the x-axis direction with respect to the living tissue 500 by the rotation of the scanning unit 390 by the rotation mechanism about the y axis, and the scanning unit 390 of the parallel movement mechanism Laser light is scanned in the y-axis direction with respect to the living tissue 500 by parallel movement in the y-axis direction.

以上、図8A及び図8Bを参照して説明したように、本変形例においては、走査部390に入射したレーザ光が、光路分岐素子391によって複数、例えば4つのレーザ光に分岐される。そして、分岐されたレーザ光のそれぞれが、光路変更素子394a、394b、394c、394dによって、対物レンズ395a、395b、395c、395dのそれぞれに向かって導光される。本変形例においては、この状態で走査部390がy軸を回転軸として回転することにより、走査部390が1回転する間に、生体組織500にはウインドウ部162を介して4回レーザ光が走査されることとなる。従って、走査部390の1度の回転によって走査されるライン数を増加させることができるため、より効率的なレーザ走査が可能となる。   As described above with reference to FIGS. 8A and 8B, in this modification, the laser light incident on the scanning unit 390 is branched into a plurality of, for example, four laser lights by the optical path branching element 391. Then, each of the branched laser beams is guided toward the objective lenses 395a, 395b, 395c, and 395d by the optical path changing elements 394a, 394b, 394c, and 394d. In this modification, the scanning unit 390 rotates about the y-axis as the rotation axis in this state, and thus the living tissue 500 is irradiated with laser light four times via the window unit 162 while the scanning unit 390 rotates once. It will be scanned. Accordingly, the number of lines to be scanned can be increased by one rotation of the scanning unit 390, so that more efficient laser scanning can be performed.

(4−1−4.鏡筒に対するレーザ光の入射位置が固定される構成)
次に、図9A及び図9Bを参照して、走査部が対物レンズを複数有する構成の具体的な構成例として、鏡筒に対するレーザ光の入射位置が固定される構成について説明する。図9A及び図9Bは、鏡筒に対するレーザ光の入射位置が固定される場合の走査部の一構成例を示す概略図である。なお、図9A及び図9Bでは、簡単のため、本開示に係るレーザ走査型内視鏡装置の構成のうち、走査部及びその近傍の構成についてのみ主に図示している。また、図9Aは、走査部及びその近傍の構成について、鏡筒の中心軸を通りy−z平面と平行な断面で切断したときの断面図を示している。また、図9Bは、走査部及びその近傍の構成をy軸の負方向から(レーザ光が入射する方向から)見た様子を示している。ただし、図9Bでは、走査部がy軸を回転軸として所定の角度回転した様子を図示し、対物レンズについては走査部のハウジングを透過して図示している。
(4-1-4. Configuration in which the incident position of laser light on the lens barrel is fixed)
Next, with reference to FIG. 9A and FIG. 9B, a configuration in which the incident position of the laser beam with respect to the lens barrel is fixed will be described as a specific configuration example of the configuration in which the scanning unit includes a plurality of objective lenses. 9A and 9B are schematic diagrams illustrating a configuration example of the scanning unit when the incident position of the laser beam with respect to the lens barrel is fixed. 9A and 9B, for the sake of simplicity, only the configuration of the scanning unit and the vicinity thereof is mainly illustrated in the configuration of the laser scanning endoscope apparatus according to the present disclosure. FIG. 9A is a cross-sectional view of the configuration of the scanning unit and the vicinity thereof, taken along a cross section that passes through the central axis of the barrel and is parallel to the yz plane. FIG. 9B shows a state in which the configuration of the scanning unit and the vicinity thereof is viewed from the negative y-axis direction (from the direction in which the laser light is incident). However, FIG. 9B illustrates a state in which the scanning unit is rotated by a predetermined angle about the y axis as a rotation axis, and the objective lens is illustrated through the housing of the scanning unit.

図9A及び図9Bを参照すると、走査部350は、入射ウインドウ部351a、351b、351c、351d、光路変更素子352a、352b、352c、352d、対物レンズ353a、353b、353c、353d、収差補正素子354a、354b、354c、354d及びハウジング355を有する。このように、本変形例に係る走査部350は、4つの対物レンズ353a、353b、353c、353dを有する。また、図9Bに示すように、4つの対物レンズ353a、353b、353c、353dは、y軸方向から見たときに走査部350において、90度ずつ回転した位置に配置される。   Referring to FIGS. 9A and 9B, the scanning unit 350 includes an incident window unit 351a, 351b, 351c, 351d, an optical path changing element 352a, 352b, 352c, 352d, an objective lens 353a, 353b, 353c, 353d, and an aberration correction element 354a. 354b, 354c, 354d and a housing 355. As described above, the scanning unit 350 according to this modification includes the four objective lenses 353a, 353b, 353c, and 353d. Further, as shown in FIG. 9B, the four objective lenses 353a, 353b, 353c, and 353d are arranged at positions rotated 90 degrees in the scanning unit 350 when viewed from the y-axis direction.

また、これらの対物レンズ353a、353b、353c、353dの前段には収差補正素子354a、354b、354c、354d及び光路変更素子352a、352b、352c、352dがそれぞれ配置される。収差補正素子354a、354b、354c、354dの機能は、図2を参照して説明した収差補正素子166と同様であり、レーザ光が前記生体組織に集光される際に生じる収差を少なくとも補正する機能を有する。また、図9A及び図9Bに示す例では、光路変更素子352a、352b、352c、352dは例えば折り曲げミラーであり、図2を参照して説明した光路変更素子164と同様の機能を有する。すなわち、光路変更素子352a、352b、352c、352dは、走査部350に入射したレーザ光を対物レンズ353a、353b、353c、353dのレンズ面に導光する。   In addition, aberration correction elements 354a, 354b, 354c, and 354d and optical path changing elements 352a, 352b, 352c, and 352d are disposed in front of these objective lenses 353a, 353b, 353c, and 353d, respectively. The functions of the aberration correction elements 354a, 354b, 354c, and 354d are the same as those of the aberration correction element 166 described with reference to FIG. 2, and at least correct the aberration that occurs when the laser light is focused on the living tissue. It has a function. In the example shown in FIGS. 9A and 9B, the optical path changing elements 352a, 352b, 352c, and 352d are, for example, bending mirrors, and have the same function as the optical path changing element 164 described with reference to FIG. That is, the optical path changing elements 352a, 352b, 352c, 352d guide the laser light incident on the scanning unit 350 to the lens surfaces of the objective lenses 353a, 353b, 353c, 353d.

ハウジング355は、走査部350の各構成部材を内部の空間に収容する。本変形例では、ハウジング355は、図9A及び図9Bに示すように、内部に空間を有する略直方体の形状を有し、当該内部空間に光路変更素子352a、352b、352c、352d、及び収差補正素子354a、354b、354c、354dが配設される。また、ハウジング397の鏡筒161の内壁と対向する4面の一部領域には、対物レンズ353a、353b、353c、353dがそれぞれ配設される。なお、光路変更素子352a、352b、352c、352d及び収差補正素子354a、354b、354c、354dは、ハウジング355の内部空間において、図示しない支持部材等によってハウジング355に対して固定されているものとする。   The housing 355 accommodates each component of the scanning unit 350 in an internal space. In this modification, the housing 355 has a substantially rectangular parallelepiped shape having a space inside as shown in FIGS. 9A and 9B, and the optical path changing elements 352a, 352b, 352c, 352d, and aberration correction are provided in the internal space. Elements 354a, 354b, 354c, and 354d are disposed. In addition, objective lenses 353 a, 353 b, 353 c, and 353 d are disposed in partial areas of the four surfaces of the housing 397 facing the inner wall of the lens barrel 161. The optical path changing elements 352a, 352b, 352c, and 352d and the aberration correction elements 354a, 354b, 354c, and 354d are fixed to the housing 355 in the internal space of the housing 355 by a support member (not shown). .

ハウジング355のy軸の負方向に位置する面には、光路変更素子352a、352b、352c、352dと対向する位置に、入射ウインドウ部351a、351b、351c、351dがそれぞれ形成される。ここで、ハウジング355は、入射するレーザ光の波長帯域において当該レーザ光を透過しない材料によって形成されており、入射ウインドウ部351a、351b、351c、351dは、当該レーザ光を透過する材料によって形成される。従って、本変形例においては、図9Aに示すように、y軸の負方向から入射して走査部350に照射されたレーザ光は、ハウジング355の入射ウインドウ部351a、351b、351c、351dを通過して、ハウジング355内部の光路変更素子352a、352b、352c、352dに入射する。ここで、図9Aでは、光ファイバ(図示せず。)によって鏡筒161内を導光してきたレーザ光が、光ファイバ用導光レンズ(図示せず。)によって略平行光にコリメートされた後段の様子を図示している。   Incident window portions 351a, 351b, 351c, and 351d are formed on the surface of the housing 355 in the negative direction of the y-axis at positions facing the optical path changing elements 352a, 352b, 352c, and 352d, respectively. Here, the housing 355 is formed of a material that does not transmit the laser light in the wavelength band of the incident laser light, and the incident window portions 351a, 351b, 351c, and 351d are formed of a material that transmits the laser light. The Therefore, in this modification, as shown in FIG. 9A, the laser light incident from the negative direction of the y-axis and applied to the scanning unit 350 passes through the incident window portions 351a, 351b, 351c, and 351d of the housing 355. Then, it enters the optical path changing elements 352a, 352b, 352c, 352d inside the housing 355. Here, in FIG. 9A, the laser light guided through the lens barrel 161 by the optical fiber (not shown) is collimated into substantially parallel light by the optical fiber light guide lens (not shown). This is illustrated.

また、本変形例においても、第1の実施形態と同様、回転機構(図示せず。)によって、走査部350がハウジング355ごとy軸を回転軸として回転することができる。また、第1の実施形態と同様、平行移動機構(図示せず。)によって、走査部350がハウジング355ごとy軸方向に平行移動することができる。このように、本変形例においては、回転機構による走査部350のy軸を回転軸とした回転により生体組織500に対してレーザ光がx軸方向に走査され、平行移動機構による走査部350のy軸方向への平行移動により生体組織500に対してレーザ光がy軸方向に走査される。   Also in this modified example, as in the first embodiment, the scanning unit 350 can rotate together with the housing 355 about the y axis as a rotation axis by a rotation mechanism (not shown). Further, similarly to the first embodiment, the scanning unit 350 can be translated in the y-axis direction together with the housing 355 by a translation mechanism (not shown). As described above, in this modification, the laser beam is scanned in the x-axis direction with respect to the living tissue 500 by the rotation of the scanning unit 350 by the rotation mechanism about the y axis, and the scanning unit 350 of the parallel movement mechanism Laser light is scanned in the y-axis direction with respect to the living tissue 500 by parallel movement in the y-axis direction.

また、本変形例においては、レーザ光が入射する位置は、鏡筒161に対して固定されている。つまり、鏡筒161に対してレーザ光の光軸が所定の位置に保たれた状態で、走査部350がy軸を回転軸として回転する又はy軸方向に平行移動する。ここで、上述したように、走査部350のハウジング355には、光路変更素子352a、352b、352c、352dと対向する位置に、入射ウインドウ部351a、351b、351c、351dがそれぞれ形成されている。従って、図9Bに示すように、走査部350が回転して、ハウジング355におけるレーザ光の照射スポットSの領域内に入射ウインドウ部351a、351b、351c、351dが位置したタイミングで、対応する入射ウインドウ部351a、351b、351c、351dからレーザ光がハウジング355の内部に入射し、走査が行われる。   In this modification, the position where the laser beam is incident is fixed with respect to the lens barrel 161. That is, the scanning unit 350 rotates around the y axis as a rotation axis or translates in the y axis direction with the optical axis of the laser beam maintained at a predetermined position with respect to the lens barrel 161. Here, as described above, the incident window portions 351a, 351b, 351c, and 351d are formed in the housing 355 of the scanning unit 350 at positions facing the optical path changing elements 352a, 352b, 352c, and 352d, respectively. Therefore, as shown in FIG. 9B, the scanning unit 350 rotates and the corresponding incident window is positioned at the timing when the incident window portions 351a, 351b, 351c, and 351d are positioned in the region of the laser light irradiation spot S in the housing 355. Laser light enters the housing 355 from the portions 351a, 351b, 351c, and 351d, and scanning is performed.

ここで、本変形例においては、図9Bに示すように、レーザ光が複数の入射ウインドウ部351a、351dに同時に照射する場合が考えられる。この場合、入射ウインドウ部351aから入射したレーザ光と、入射ウインドウ部351dから入射したレーザ光とが同時に生体組織500に照射されると、生体組織500の互いに異なる2箇所に同時にレーザ光が照射されることとなり、当該2箇所からの戻り光が同時に検出されてしまうため、レーザ走査として好ましくない。従って、ハウジング355に照射されるレーザ光のビーム径(図9Bに示す照射スポットSを表す円の直径に相当)、入射ウインドウ部351a、351b、351c、351dのサイズ、及び入射ウインドウ部351a、351b、351c、351dが設けられる間隔等は、互いに異なる入射ウインドウ部351a、351b、351c、351dから入射したレーザ光が同時に生体組織500に照射されることを避けるように設計されてよい。例えば、レーザ光のビーム径は、入射ウインドウ部351a、351b、351c、351dのサイズの約1.5倍であってよい。   Here, in this modification, as shown in FIG. 9B, a case where a plurality of incident window portions 351a and 351d are simultaneously irradiated with laser light can be considered. In this case, when the living tissue 500 is simultaneously irradiated with the laser light incident from the incident window portion 351a and the laser light incident from the incident window portion 351d, the laser light is simultaneously irradiated to two different portions of the biological tissue 500. As a result, the return light from the two locations is detected at the same time, which is not preferable for laser scanning. Accordingly, the beam diameter of the laser light irradiated on the housing 355 (corresponding to the diameter of a circle representing the irradiation spot S shown in FIG. 9B), the sizes of the incident window portions 351a, 351b, 351c, 351d, and the incident window portions 351a, 351b. , 351c, 351d may be designed such that the living tissue 500 is not simultaneously irradiated with laser light incident from different incident window portions 351a, 351b, 351c, 351d. For example, the beam diameter of the laser light may be about 1.5 times the size of the incident window portions 351a, 351b, 351c, and 351d.

以上、図9A及び図9Bを参照して説明したように、本変形例においては、鏡筒161に対してレーザ光の入射位置が固定された状態で、当該レーザ光が走査部350に入射する。そして、ハウジング355のレーザ光が入射する面には、それぞれ異なる位置であって、ハウジング355内部に設けられる光路変更素子352a、352b、352c、352dに対応する位置に、入射ウインドウ部351a、351b、351c、351dが形成される。この状態で走査部350がy軸を回転軸として回転することにより、入射ウインドウ部351a、351b、351c、351dのいずれかから入射したレーザ光によって、生体組織500へのレーザ走査が行われる。従って、本変形例においては、走査部350が1回転する間に、生体組織500にはウインドウ部162を介して4回レーザ光が走査されることとなる。従って、走査部390の1度の回転によって走査されるライン数を増加させることができるため、より効率的なレーザ走査が可能となる。また、レーザ走査における上記の効率(走査部350が1回転する間に4回レーザ走査される)は、図8A及び図8Bに示した走査部390におけるレーザ走査の効率と同程度であるが、図9A及び図9Bに示したように、本変形例に係る走査部350は、走査部390よりも少ない構成部材によって構成され得る。従って、本変形例では、レーザ走査において、より簡易な構成で、図8A及び図8Bに示した走査部390と同程度の効率を実現することができる。   As described above with reference to FIGS. 9A and 9B, in the present modification, the laser light is incident on the scanning unit 350 while the incident position of the laser light is fixed with respect to the lens barrel 161. . In addition, incident window portions 351a, 351b, 352b, 352c, 352d are provided at different positions on the surface of the housing 355 where the laser beam is incident, corresponding to the optical path changing elements 352a, 352b, 352c, 352d provided inside the housing 355. 351c and 351d are formed. In this state, the scanning unit 350 rotates about the y axis as a rotation axis, whereby laser scanning of the living tissue 500 is performed by laser light incident from any of the incident window units 351a, 351b, 351c, and 351d. Therefore, in this modification, the living tissue 500 is scanned with the laser beam four times through the window 162 while the scanning unit 350 makes one rotation. Accordingly, the number of lines to be scanned can be increased by one rotation of the scanning unit 390, so that more efficient laser scanning can be performed. Further, the above-described efficiency in laser scanning (the laser scanning is performed four times while the scanning unit 350 rotates once) is similar to the efficiency of the laser scanning in the scanning unit 390 shown in FIGS. 8A and 8B. As illustrated in FIGS. 9A and 9B, the scanning unit 350 according to the present modification can be configured with fewer components than the scanning unit 390. Therefore, in this modification, in laser scanning, the efficiency comparable to that of the scanning unit 390 shown in FIGS. 8A and 8B can be realized with a simpler configuration.

以上、図6A、図6B、図7A、図7B、図8A、図8B、図9A及び図9Bを参照して、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2の変形例として、走査部が複数の対物レンズを有する変形例の具体的な構成例について説明した。以上説明したように、本変形例においては、走査部が複数の対物レンズを有することにより、走査部が1回転する間に、複数の対物レンズによる複数のラインのレーザ走査を行うことが可能となる。従って、走査部の1度の回転によって走査可能なライン数を増加させることができるため、より効率的なレーザ走査が可能となる。   The laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments have been described above with reference to FIGS. 6A, 6B, 7A, 7B, 8A, 8B, 9A, and 9B. As a modification of the above, a specific configuration example of the modification in which the scanning unit has a plurality of objective lenses has been described. As described above, in the present modification, the scanning unit includes a plurality of objective lenses, so that it is possible to perform laser scanning of a plurality of lines with a plurality of objective lenses while the scanning unit rotates once. Become. Therefore, since the number of lines that can be scanned can be increased by one rotation of the scanning unit, more efficient laser scanning is possible.

(4−2.その他の構成)
次に、本開示の第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2の他の変形例について説明する。
(4-2. Other configurations)
Next, other modifications of the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments of the present disclosure will be described.

(4−2−1.走査部が異なる方向の回転軸を有する構成)
図10A及び図10Bを参照して、走査部が異なる回転軸方向を有する変形例の一構成例について説明する。図10Aは、走査部が異なる回転軸方向を有する内視鏡の一構成例を示す概略図である。図10Bは、図10Aに示す走査部の構成を模式的に示す概略図である。なお、図10Bは、図10AにおけるD−Dでの断面をz軸方向から見た様子を示す図である。ただし、図10Bでは、走査部がy軸を回転軸として所定の角度回転した様子を図示している。ここで、本変形例は、図2及び図4Aに示す第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2と、内視鏡の構成が異なるものであり、その他の構成についてはレーザ走査型内視鏡装置1、2と同様であってよい。従って、以下の本変形例についての説明では、相違点である内視鏡の構成について主に説明するものとし、図10Aにおいても、レーザ走査型内視鏡の構成のうち内視鏡の構成について主に図示している。
(4-2-1. Configuration in which the scanning unit has rotation axes in different directions)
With reference to FIGS. 10A and 10B, a configuration example of a modified example in which the scanning unit has different rotation axis directions will be described. FIG. 10A is a schematic diagram illustrating a configuration example of an endoscope in which a scanning unit has different rotation axis directions. FIG. 10B is a schematic diagram schematically illustrating the configuration of the scanning unit illustrated in FIG. 10A. FIG. 10B is a diagram showing a cross section taken along the line DD in FIG. 10A as viewed from the z-axis direction. However, FIG. 10B illustrates a state in which the scanning unit is rotated by a predetermined angle about the y axis as a rotation axis. Here, the present modification is different from the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments shown in FIGS. 2 and 4A in the configuration of the endoscope. The configuration may be the same as that of the laser scanning endoscope apparatuses 1 and 2. Therefore, in the following description of this modification, the configuration of the endoscope which is a difference will be mainly described, and also in FIG. 10A, the configuration of the endoscope among the configurations of the laser scanning endoscope. Mainly illustrated.

図10Aを参照すると、本変形例に係る内視鏡400は、鏡筒161、ウインドウ部162、光ファイバ140、光ファイバ用導光レンズ150、回転機構167、平行移動機構168、光路変更素子410、走査部420及び回転部材430を有する。なお、鏡筒161、ウインドウ部162、光ファイバ140、光ファイバ用導光レンズ150、回転機構167及び平行移動機構168の機能については、図2を参照して説明した各構成部材とほぼ同様であるため、詳細な説明は省略する。ただし、本変形例においては、ウインドウ部162は、鏡筒161の側壁ではなく、鏡筒161の長手方向の先端部に、鏡筒161の長手方向と略垂直な面を有して設けられる。すなわち、本変形例に係る内視鏡400は、鏡筒161の長手方向における一端(先端部)を生体組織500に接触させた状態でレーザ走査を行う。なお、本変形例においては、ウインドウ部162の形状は、球面又はシリンドリカル面等の曲面であってもよいし、平面であってもよい。図10A及び図10Bに示す例では、ウインドウ部162は、所定の曲率を有する曲面を有している。   Referring to FIG. 10A, an endoscope 400 according to this modification includes a lens barrel 161, a window portion 162, an optical fiber 140, an optical fiber light guide lens 150, a rotation mechanism 167, a parallel movement mechanism 168, and an optical path changing element 410. And a scanning unit 420 and a rotating member 430. The functions of the lens barrel 161, the window 162, the optical fiber 140, the optical fiber light guide lens 150, the rotation mechanism 167, and the parallel movement mechanism 168 are substantially the same as those of the constituent members described with reference to FIG. Therefore, detailed description is omitted. However, in the present modification, the window portion 162 is provided not at the side wall of the lens barrel 161 but at a front end portion in the longitudinal direction of the lens barrel 161 with a surface substantially perpendicular to the longitudinal direction of the lens barrel 161. That is, the endoscope 400 according to this modification performs laser scanning in a state where one end (tip portion) in the longitudinal direction of the lens barrel 161 is in contact with the living tissue 500. In the present modification, the shape of the window portion 162 may be a curved surface such as a spherical surface or a cylindrical surface, or may be a flat surface. In the example shown in FIGS. 10A and 10B, the window portion 162 has a curved surface having a predetermined curvature.

本変形例においては、光ファイバ140によって鏡筒161内を導光してきたレーザ光は、光ファイバ用導光レンズ150によって略平行光にコリメートされ、鏡筒161内をy軸方向に導光される。内視鏡400のヘッド部には、光路変更素子410が設けられており、光路変更素子410に入射した当該レーザ光は、その光路がz軸方向に変更され、走査部420に入射される。光路変更素子410は、レーザ光の光路を変更することができる光学素子であればどのような光学素子であってもよく、例えば折り曲げミラーであってよい。   In this modification, the laser light guided in the lens barrel 161 by the optical fiber 140 is collimated into substantially parallel light by the optical fiber light guide lens 150 and guided in the y-axis direction through the lens barrel 161. The The head portion of the endoscope 400 is provided with an optical path changing element 410, and the laser light incident on the optical path changing element 410 is changed in the z-axis direction and is incident on the scanning unit 420. The optical path changing element 410 may be any optical element as long as it can change the optical path of the laser beam, and may be a bending mirror, for example.

走査部420は、光路変更素子421、対物レンズ422、収差補正素子423及びハウジング424を有する。なお、光路変更素子421、対物レンズ422、収差補正素子423及びハウジング424の機能及び構成は、第1及び第2の実施形態に係る走査部163が有する光路変更素子164、対物レンズ165、収差補正素子166及びハウジング169の機能及び構成と同様であるため、詳細な説明は省略する。ただし、本実施形態においては、走査部420は、内視鏡400の先端に設けられたウインドウ部162と対物レンズ422とが対向し、対物レンズ422によってウインドウ部162を介して生体組織500にレーザ光が集光されるように配置される。つまり、図10Aに示すように、光路変更素子410によってz軸方向に光路を変更され、走査部420に入射したレーザ光は、走査部420内の光路変更素子421によってその光路がy軸方向に変更され、収差補正素子423及び対物レンズ422を順に通過して生体組織500に照射される。   The scanning unit 420 includes an optical path changing element 421, an objective lens 422, an aberration correction element 423, and a housing 424. The functions and configurations of the optical path changing element 421, the objective lens 422, the aberration correcting element 423, and the housing 424 are the same as those of the optical path changing element 164, objective lens 165, and aberration correction included in the scanning unit 163 according to the first and second embodiments. Since the function and configuration of the element 166 and the housing 169 are the same, detailed description thereof is omitted. However, in the present embodiment, the scanning unit 420 is configured such that the window unit 162 provided at the distal end of the endoscope 400 and the objective lens 422 are opposed to each other, and the living tissue 500 is laser-transmitted by the objective lens 422 via the window unit 162. It arrange | positions so that light may be condensed. That is, as shown in FIG. 10A, the optical path is changed in the z-axis direction by the optical path changing element 410, and the laser light incident on the scanning unit 420 is changed in the y-axis direction by the optical path changing element 421 in the scanning unit 420. The biological tissue 500 is irradiated through the aberration correction element 423 and the objective lens 422 in this order.

また、本変形例においては、走査部420は、回転部材430を介して回転機構167と機械的に接続されており、回転機構167によって、z軸を回転軸として回転する。走査部420から生体組織500にレーザ光を照射した状態で、z軸を回転軸として走査部420がを回転することにより、内視鏡400の先端部分において、生体組織500に対してx軸方向にレーザ光を走査することができる。また、本変形例においては、平行移動機構168は走査部420をz軸方向に平行移動させる。従って、本変形例においては、生体組織500に対して、x−z平面におけるレーザ走査が行われる。   In the present modification, the scanning unit 420 is mechanically connected to the rotation mechanism 167 via the rotation member 430, and rotates about the z axis as the rotation axis by the rotation mechanism 167. The scanning unit 420 rotates around the z axis as a rotation axis in a state where the scanning unit 420 irradiates the living tissue 500 with laser light, so that the distal end portion of the endoscope 400 is in the x-axis direction with respect to the living tissue 500. The laser beam can be scanned. In this modification, the translation mechanism 168 translates the scanning unit 420 in the z-axis direction. Therefore, in this modification, laser scanning in the xz plane is performed on the living tissue 500.

ここで、回転部材430は、複数のシャフト431、432によって構成される。シャフト431は、鏡筒161内で鏡筒161の長手方向に沿って延設され、その一端は回転機構167に接続されている。そして、シャフト431は、回転機構167によってy軸を回転軸として回転する。シャフト431の他端には歯車(ギア)機構が設けられており、同じくギア機構が設けられているシャフト432の一端と、ギア機構を噛み合わせて連結される。シャフト432は、鏡筒161内で鏡筒161の長手方向と略90度の方向であるz軸方向に延設され、その一端は上述のようにギア機構を介してシャフト431と連結され、他端は走査部420と接続されている。回転機構167及び回転部材430がこのように連結されることにより、回転機構167によるy軸を回転軸とした回転運動が、最終的にz軸を回転軸とした回転運動として走査部420に伝達される。従って、回転機構167は、走査部420をz軸を回転軸として回転させることが可能となる。   Here, the rotating member 430 includes a plurality of shafts 431 and 432. The shaft 431 extends along the longitudinal direction of the lens barrel 161 in the lens barrel 161, and one end thereof is connected to the rotation mechanism 167. The shaft 431 is rotated by the rotation mechanism 167 using the y axis as a rotation axis. A gear (gear) mechanism is provided at the other end of the shaft 431, and is connected to one end of a shaft 432, which is also provided with a gear mechanism, by meshing the gear mechanism. The shaft 432 extends in the z-axis direction, which is approximately 90 degrees from the longitudinal direction of the lens barrel 161, in the lens barrel 161, and one end of the shaft 432 is connected to the shaft 431 via the gear mechanism as described above. The end is connected to the scanning unit 420. By connecting the rotation mechanism 167 and the rotation member 430 in this way, the rotation motion about the y axis as the rotation axis by the rotation mechanism 167 is finally transmitted to the scanning unit 420 as the rotation motion about the z axis as the rotation axis. Is done. Therefore, the rotation mechanism 167 can rotate the scanning unit 420 about the z axis as a rotation axis.

なお、本変形例においては、回転機構167及び回転部材430の構成はかかる例に限定されず、走査部420をz軸を回転軸として回転させることができればどのような構成であってもよい。   In this modification, the configurations of the rotation mechanism 167 and the rotation member 430 are not limited to this example, and any configuration may be used as long as the scanning unit 420 can be rotated about the z axis as a rotation axis.

以上、図10A及び図10Bを参照して、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2の変形例として、走査部が異なる回転軸方向を有する変形例の一構成例について説明した。本変形例によれば、ウインドウ部162が、鏡筒161の長手方向の先端部に、鏡筒161の長手方向と略垂直な面を有して設けられる。そして、鏡筒161の先端部を接触させた部位に対してレーザ走査が行われる。従って、例えば、観察対象部位が、鏡筒161の側壁を接触させることが困難であるような体腔内の奥まった凹部に存在する場合であっても、レーザ走査による観察を行うことが可能となる。   As described above, with reference to FIGS. 10A and 10B, as a modification of the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments, a modification in which the scanning unit has different rotation axis directions. The configuration example has been described. According to this modification, the window portion 162 is provided at the distal end portion in the longitudinal direction of the lens barrel 161 with a surface substantially perpendicular to the longitudinal direction of the lens barrel 161. Then, laser scanning is performed on the part where the tip of the lens barrel 161 is brought into contact. Therefore, for example, even when the site to be observed exists in a recessed portion in the body cavity where it is difficult to contact the side wall of the lens barrel 161, observation by laser scanning can be performed. .

なお、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2のように鏡筒161の側壁にウインドウ部162が設けられる内視鏡160と、本変形例のように鏡筒161の先端部にウインドウ部162が設けられる内視鏡400とは、例えば、同一の装置本体部に対して取り換え可能であってもよい。内視鏡として、鏡筒161の側壁にウインドウ部162が設けられる構成を用いるか、鏡筒161の先端部にウインドウ部162が設けられる構成を用いるかは、観察対象部位の形状等に応じて、ユーザによって適宜選択されてよい。   An endoscope 160 in which a window portion 162 is provided on the side wall of the lens barrel 161 as in the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments, and a mirror as in this modification. The endoscope 400 in which the window portion 162 is provided at the distal end portion of the cylinder 161 may be replaceable with respect to the same apparatus main body portion, for example. Whether to use a configuration in which the window portion 162 is provided on the side wall of the lens barrel 161 or a configuration in which the window portion 162 is provided at the distal end portion of the lens barrel 161 is used as an endoscope according to the shape of the observation target site, etc. , May be appropriately selected by the user.

(4−2−2.複数の対物レンズが鏡筒の長手方向に配列される変形例)
上記(4−1.走査部が複数の対物レンズを有する構成)で説明した変形例では、複数の対物レンズが、鏡筒161の長手方向の略同一な位置において、鏡筒161の円周方向に沿って並んで配設される場合について説明した。しかし、本実施形態はかかる例に限定されない。例えば、複数の対物レンズが、鏡筒161の長手方向に沿って並んで配設されてもよい。
(4-2-2. Modification in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel)
In the modification described in (4-1. Configuration in which the scanning unit includes a plurality of objective lenses), the plurality of objective lenses are arranged in the circumferential direction of the lens barrel 161 at substantially the same position in the longitudinal direction of the lens barrel 161. The case where they are arranged side by side has been described. However, the present embodiment is not limited to such an example. For example, a plurality of objective lenses may be arranged side by side along the longitudinal direction of the lens barrel 161.

図11を参照して、このような、複数の対物レンズが鏡筒の長手方向に配列される変形例について説明する。図11は、複数の対物レンズが鏡筒の長手方向に配列される変形例に係る内視鏡の一構成例を示す概略図である。   With reference to FIG. 11, a modified example in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel will be described. FIG. 11 is a schematic diagram illustrating a configuration example of an endoscope according to a modification example in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel.

図11を参照すると、本変形例に係る内視鏡450は、鏡筒161と、ウインドウ部162と、回転機構167と、平行移動機構168と、走査部460と、を有する。なお、鏡筒161、ウインドウ部162、回転機構167及び平行移動機構168の機能については、図2を参照して説明した各構成部材と同様であるため、詳細な説明は省略する。また、図11では簡単のため図示を省略しているが、内視鏡450は、図2に示す内視鏡160が有する光ファイバ140及び光ファイバ用導光レンズ150と同様の構成を有している。当該光ファイバによって鏡筒161内を導光してきたレーザ光が、当該光ファイバ用導光レンズによって略平行光にコリメートされ、鏡筒161内をy軸方向に導光され、走査部460に入射することとなる。   Referring to FIG. 11, an endoscope 450 according to this modification includes a lens barrel 161, a window unit 162, a rotation mechanism 167, a parallel movement mechanism 168, and a scanning unit 460. The functions of the lens barrel 161, the window portion 162, the rotation mechanism 167, and the parallel movement mechanism 168 are the same as those of the constituent members described with reference to FIG. Although not shown in FIG. 11 for simplicity, the endoscope 450 has the same configuration as the optical fiber 140 and the optical fiber light guide lens 150 included in the endoscope 160 shown in FIG. ing. The laser light guided through the lens barrel 161 by the optical fiber is collimated into substantially parallel light by the optical fiber light guide lens, guided through the lens barrel 161 in the y-axis direction, and incident on the scanning unit 460. Will be.

本変形例に係る走査部460は、収差補正素子461と、第1の光路変更素子463と、第2の光路変更素子464と、第1の対物レンズ465と、第2の対物レンズ466と、が、ハウジング469内に格納されて構成される。図11に示すように、本変形例では、第1の対物レンズ465及び第2の対物レンズ466が、鏡筒161の長手方向に沿って、略同一の方向を向いて(すなわち、鏡筒161の円周方向において略同一の位置に)並んで配設される。そして、第1の対物レンズ465及び第2の対物レンズ466のそれぞれに対応するように第1の光路変更素子463及び第2の光路変更素子464が設けられる。なお、収差補正素子461及びハウジング469の機能及び構成は、図2に示す収差補正素子166及びハウジング169の機能及び構成とそれぞれ同様であるため、詳細な説明は省略する。また、第1の対物レンズ465及び第2の対物レンズ466の各々の機能及び構成は、図2に示す対物レンズ165の機能及び構成と同様であるため、詳細な説明は省略する。   The scanning unit 460 according to this modification includes an aberration correction element 461, a first optical path changing element 463, a second optical path changing element 464, a first objective lens 465, a second objective lens 466, Is housed in the housing 469. As shown in FIG. 11, in this modification, the first objective lens 465 and the second objective lens 466 are directed in substantially the same direction along the longitudinal direction of the lens barrel 161 (that is, the lens barrel 161). Are arranged side by side in substantially the same position in the circumferential direction. A first optical path changing element 463 and a second optical path changing element 464 are provided so as to correspond to the first objective lens 465 and the second objective lens 466, respectively. The functions and configurations of the aberration correction element 461 and the housing 469 are the same as those of the aberration correction element 166 and the housing 169 shown in FIG. The functions and configurations of the first objective lens 465 and the second objective lens 466 are the same as the functions and configuration of the objective lens 165 shown in FIG.

第1の光路変更素子463は、例えばビームスプリッタであり、鏡筒161内を導光されてきたレーザ光の一部を後段の第2の光路変更素子464に導光するとともに、一部を自身に対応して設けられた第1の対物レンズ465に向かって導光する。第2の光路変更素子464は例えば折り曲げミラーであり、前段の第1の光路変更素子463を透過してきたレーザ光を自身に対応して設けられた第2の対物レンズ466に向かって導光する。第1の光路変更素子463及び第2の光路変更素子464によって光路を変更されたレーザ光は、第1の対物レンズ465及び第2の対物レンズ466をそれぞれ通過し、ウインドウ部162を介して観察対象である生体組織(図示せず。)に照射される。このように、本変形例では、y軸方向における互いに異なる2つのスポットで、レーザ光が生体組織に照射されることとなる。本変形例においても、図2に示す内視鏡160の走査部163と同様に、走査部460は、回転機構167によってy軸方向を回転軸方向として回転され、平行移動機構168によってy軸方向に平行移動される。従って、本変形例に係る内視鏡450では、走査部460が1回転する間に、y軸方向における複数のスポット(図11に示す例では2つのスポット)に照射されるレーザ光によって複数のラインを走査することが可能となる。   The first optical path changing element 463 is, for example, a beam splitter, and guides a part of the laser light guided in the lens barrel 161 to the second optical path changing element 464 in the subsequent stage and a part thereof. The light is guided toward the first objective lens 465 provided corresponding to the above. The second optical path changing element 464 is, for example, a bending mirror, and guides the laser light transmitted through the first optical path changing element 463 in the preceding stage toward the second objective lens 466 provided corresponding to the second optical path changing element 464. . The laser beams whose optical paths are changed by the first optical path changing element 463 and the second optical path changing element 464 pass through the first objective lens 465 and the second objective lens 466, respectively, and are observed through the window portion 162. The target living tissue (not shown) is irradiated. As described above, in the present modification, the living tissue is irradiated with the laser light at two different spots in the y-axis direction. Also in this modified example, similarly to the scanning unit 163 of the endoscope 160 illustrated in FIG. 2, the scanning unit 460 is rotated by the rotation mechanism 167 with the y-axis direction as the rotation axis direction, and the translation mechanism 168 is rotated in the y-axis direction. Translated to. Therefore, in the endoscope 450 according to the present modification, a plurality of laser beams are irradiated to a plurality of spots in the y-axis direction (two spots in the example illustrated in FIG. 11) while the scanning unit 460 rotates once. The line can be scanned.

複数のスポットへのレーザ光の照射によって得られる光学的な信号を区別するために、波長、角度又は偏光等を時間的に変調させたレーザ光を第1の光路変更素子463に入射させ、当該レーザ光の変調に応じて第1の光路変更素子463でのレーザ光の透過及び反射を制御してもよい。このような制御に用いられ得る第1の光路変更素子463としては、例えば、ダイクロイックミラー(波長に応じてレーザ光を分離する光学素子の一例)、ボリュームホログラフィック回折素子(角度に応じてレーザ光を分離する光学素子の一例)又は偏光ビームスプリッタ(偏光に応じてレーザ光を分離する光学素子の一例)等の光学素子が挙げられる。また、生体組織における観察深さが変化しないように、第1の光路変更素子463及び第2の光路変更素子464に入射するレーザ光は、できるだけ平行光に近いものであることが望ましい。   In order to distinguish an optical signal obtained by irradiating a plurality of spots with laser light, laser light whose wavelength, angle, polarization, or the like is temporally modulated is incident on the first optical path changing element 463, and The transmission and reflection of the laser light at the first optical path changing element 463 may be controlled in accordance with the modulation of the laser light. Examples of the first optical path changing element 463 that can be used for such control include a dichroic mirror (an example of an optical element that separates laser light according to wavelength), a volume holographic diffraction element (laser light according to angle), and the like. And an optical element such as a polarization beam splitter (an example of an optical element that separates laser light in accordance with polarization). Moreover, it is desirable that the laser light incident on the first optical path changing element 463 and the second optical path changing element 464 is as close to parallel light as possible so that the observation depth in the living tissue does not change.

ここで、図2に示す内視鏡160では、y軸方向にレーザ光を走査する際に、平行移動機構168によって走査部163をy軸方向に移動させていた。従って、y軸方向の視野をより広くしようとする場合には、走査部163のy軸方向へのストロークを大きくしなくてはならない。ストロークが大きい場合に、走査部163を高速駆動させながら走査部163の光学系の位置精度を高精度に保つためには、平行移動機構168の軸ガイドや送り機構等に求められる機械的な剛性等、各部材に対する要求精度が一層高いものとなる。一方、本変形例によれば、第1の対物レンズ465及び第2の対物レンズ466がy軸方向に並んで設けられることにより、y軸方向における複数のスポットに対してレーザ光を照射することが可能となる。従って、平行移動機構168による走査部460のストロークを大きくすることなく、y軸方向の視野をより広くすることができる。なお、本変形例に係る構成は、特に、y軸方向の視野が対物レンズの開口サイズよりも広い場合に好適に適用され得る。   Here, in the endoscope 160 shown in FIG. 2, when the laser beam is scanned in the y-axis direction, the scanning unit 163 is moved in the y-axis direction by the parallel movement mechanism 168. Therefore, in order to increase the field of view in the y-axis direction, the stroke of the scanning unit 163 in the y-axis direction must be increased. In order to keep the position accuracy of the optical system of the scanning unit 163 with high accuracy while driving the scanning unit 163 at a high speed when the stroke is large, mechanical rigidity required for the axis guide, the feed mechanism, etc. Thus, the required accuracy for each member becomes higher. On the other hand, according to the present modification, the first objective lens 465 and the second objective lens 466 are provided side by side in the y-axis direction, so that a plurality of spots in the y-axis direction are irradiated with laser light. Is possible. Therefore, the field of view in the y-axis direction can be further widened without increasing the stroke of the scanning unit 460 by the translation mechanism 168. The configuration according to the present modification can be suitably applied particularly when the field in the y-axis direction is wider than the aperture size of the objective lens.

図12に、図11に示す本変形例に係る内視鏡の他の構成例を示す。図12は、複数の対物レンズが鏡筒の長手方向に配列される変形例に係る内視鏡の他の構成例を示す概略図である。図12を参照すると、本変形例に係る内視鏡470は、鏡筒161と、ウインドウ部162と、回転機構167と、平行移動機構168と、走査部480と、を有する。また、走査部480は、収差補正素子461と、第1の光路変更素子463と、第2の光路変更素子464と、第1の対物レンズ465と、第2の対物レンズ466と、が、ハウジング469内に格納されて構成される。図12を参照すると、本変形例に係る内視鏡470は、第1の対物レンズ465と、第2の対物レンズ466とが、鏡筒161の長手方向に沿って配設されるとともに、略180度異なる方向を向いて(すなわち、鏡筒161の円周方向において略180度回転した位置に)配設される。その他の構成については、図11を参照して説明した内視鏡450と同様であるため、詳細な説明は省略する。   FIG. 12 shows another configuration example of the endoscope according to the present modification example shown in FIG. FIG. 12 is a schematic diagram illustrating another configuration example of an endoscope according to a modification example in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel. Referring to FIG. 12, an endoscope 470 according to the present modification includes a lens barrel 161, a window unit 162, a rotation mechanism 167, a parallel movement mechanism 168, and a scanning unit 480. The scanning unit 480 includes an aberration correction element 461, a first optical path changing element 463, a second optical path changing element 464, a first objective lens 465, and a second objective lens 466. It is stored in 469 and configured. Referring to FIG. 12, an endoscope 470 according to this modification includes a first objective lens 465 and a second objective lens 466 arranged along the longitudinal direction of the lens barrel 161 and substantially the same. They are arranged in directions different by 180 degrees (that is, at positions rotated approximately 180 degrees in the circumferential direction of the lens barrel 161). Other configurations are the same as those of the endoscope 450 described with reference to FIG. 11, and thus detailed description thereof is omitted.

図12に示す内視鏡470では、走査部480の回転の位相に基づいて、第1の対物レンズ465及び第2の対物レンズ466のいずれによってレーザ光が生体組織に照射されているかを区別することができるため、走査部480の回転に同期させて、生体組織からの戻り光を検出することにより、上述したような信号を区別するためのレーザ光の変調を行う必要はなくなる。   In the endoscope 470 shown in FIG. 12, based on the rotation phase of the scanning unit 480, it is distinguished whether the living tissue is irradiated with the laser light by the first objective lens 465 or the second objective lens 466. Therefore, by detecting the return light from the living tissue in synchronization with the rotation of the scanning unit 480, it is not necessary to perform the modulation of the laser light for distinguishing the signals as described above.

以上、図11及び図12を参照して、複数の対物レンズが鏡筒の長手方向に配列される変形例について説明した。以上説明したように、本変形例では、第1の対物レンズ465及び第2の対物レンズ466がy軸方向に並んで設けられることにより、y軸方向における複数のスポットに対してレーザ光を照射することが可能となる。従って、平行移動機構168による走査部460のストロークを大きくすることなく、y軸方向の視野をより広くすることができる。また、図11及び図12に示すように、本変形例では、第1の対物レンズ465及び第2の対物レンズ466は略同一の方向を向いて配設されてもよいし、互いに異なる方向を向いて配設されてもよい。なお、第1の対物レンズ465及び第2の対物レンズ466の配設位置は図11及び図12に示す例に限定されず、複数の対物レンズが鏡筒161の長手方向に沿って螺旋状に配設されてもよい。   The modification example in which a plurality of objective lenses are arranged in the longitudinal direction of the lens barrel has been described above with reference to FIGS. 11 and 12. As described above, in the present modification, the first objective lens 465 and the second objective lens 466 are provided side by side in the y-axis direction, so that a plurality of spots in the y-axis direction are irradiated with laser light. It becomes possible to do. Therefore, the field of view in the y-axis direction can be further widened without increasing the stroke of the scanning unit 460 by the translation mechanism 168. Further, as shown in FIGS. 11 and 12, in the present modification, the first objective lens 465 and the second objective lens 466 may be disposed in substantially the same direction, or may be in different directions. It may be arranged facing. The arrangement positions of the first objective lens 465 and the second objective lens 466 are not limited to the examples shown in FIGS. 11 and 12, and a plurality of objective lenses are spirally formed along the longitudinal direction of the lens barrel 161. It may be arranged.

また、本変形例では、収差補正素子461として、下記(6−2−2.非点収差補正素子)で説明するような、非点収差の補正量を動的に変更可能な非点収差補正素子(後述する能動非点収差補正素子)が用いられてもよい。能動非点収差補正素子を用いて、走査部460、480の回転に同期して当該能動非点収差補正素子による補正量を適宜調整することにより、複数の対物レンズの相対アライメント誤差等によって生じる収差の影響を軽減することができる。   In this modification, astigmatism correction that can dynamically change the correction amount of astigmatism as described in the following (6-2-2. Astigmatism correction element) is used as the aberration correction element 461. An element (an active astigmatism correction element described later) may be used. By using the active astigmatism correction element and adjusting the correction amount by the active astigmatism correction element in synchronization with the rotation of the scanning units 460 and 480, aberrations caused by relative alignment errors of a plurality of objective lenses, etc. Can reduce the effects of

(5.収差補正素子の構成)
次に、図2及び図3に示す収差補正素子166の具体的な構成について説明する。上記(2.第1の実施形態)で説明したように、本実施形態に係る収差補正素子166は、レーザ光が生体組織500に集光される際に生じる収差を補正する。このような収差として、例えば、色収差、球面収差、コマ収差及び非点収差等がある。
(5. Configuration of aberration correction element)
Next, a specific configuration of the aberration correction element 166 shown in FIGS. 2 and 3 will be described. As described above (2. First Embodiment), the aberration correction element 166 according to the present embodiment corrects aberrations that occur when laser light is focused on the living tissue 500. Examples of such aberration include chromatic aberration, spherical aberration, coma and astigmatism.

これらの収差のうち、色収差については、本実施形態のように生体組織を観察する場合であれば、例えば近赤外光のように特定の波長帯域を有するレーザ光が用いられることが多いため、当該色収差の影響は比較的小さいと考えられる。また、例えばウインドウ部162に起因して生じる球面収差については、対物レンズ165を非球面レンズとし、当該非球面レンズの曲率、厚さ、非球面係数等の光学特性を調整することにより、当該球面収差をほぼ補正することが可能である。従って、以下では、収差の中でも、対物レンズ165及びウインドウ部162に起因する非点収差を補正するための収差補正素子166の具体的な構成について主に説明する。ただし、本実施形態においては、色収差を補正する素子や球面収差を補正する素子が、非点収差を補正する素子とは別に更に設けられても構わない。例えば、蛍光観察など、励起光(生体組織500への照射光)と生体信号光(生体組織500からの戻り光)の波長帯域が異なる場合には、当該戻り光がファイバに効率よく導かれるように、色収差を補正する素子が別途配設されることが望ましい。また、例えば、ウインドウ部や生体組織の厚みによる球面収差を補正するために、上述した対物レンズ165の光学特性を調整することと併せて、球面収差補正素子が別途配設されてもよい。   Among these aberrations, for chromatic aberration, laser light having a specific wavelength band, such as near infrared light, is often used when observing living tissue as in this embodiment. The influence of the chromatic aberration is considered to be relatively small. For spherical aberration caused by the window 162, for example, the objective lens 165 is an aspheric lens, and the spherical surface is adjusted by adjusting optical characteristics such as curvature, thickness, aspheric coefficient, etc. of the aspheric lens. It is possible to substantially correct the aberration. Therefore, in the following, a specific configuration of the aberration correction element 166 for correcting astigmatism caused by the objective lens 165 and the window unit 162 among aberrations will be mainly described. However, in the present embodiment, an element for correcting chromatic aberration and an element for correcting spherical aberration may be further provided separately from the element for correcting astigmatism. For example, when the wavelength bands of excitation light (light irradiated to the biological tissue 500) and biological signal light (return light from the biological tissue 500) are different, such as in fluorescence observation, the return light is efficiently guided to the fiber. In addition, it is desirable to separately provide an element for correcting chromatic aberration. For example, in order to correct the spherical aberration due to the thickness of the window part or the living tissue, a spherical aberration correction element may be separately provided in addition to adjusting the optical characteristics of the objective lens 165 described above.

なお、上記(2.第1の実施形態)で説明したように、本実施形態に係るレーザ走査型観察装置には、観察深さを変更するための観察深さ調整機構が設けられてもよい。このような観察深さ調整機構が設けられるレーザ走査型観察装置においては、観察深さの変更に伴う収差の変動を考慮して設計された、非点収差を補正する収差補正素子が好適に適用され得る。また、上記のように、レーザ走査型内視鏡装置1によって、2光子励起等の蛍光を利用した観察を行う場合や、複数の異なる波長のレーザ光を用いた観察には、色収差を補正する収差補正素子が好適に適用され得る。このような、観察深さ調整機構を有する場合や、2光子励起を利用した観察を行う場合における収差補正素子の具体的な構成については、下記(6−2.レーザ走査型プローブ)で詳細に説明する。   As described in (2. First embodiment), the laser scanning observation apparatus according to this embodiment may be provided with an observation depth adjustment mechanism for changing the observation depth. . In a laser scanning observation apparatus provided with such an observation depth adjustment mechanism, an aberration correction element that corrects astigmatism, which is designed in consideration of aberration fluctuations accompanying changes in observation depth, is preferably applied. Can be done. Further, as described above, the chromatic aberration is corrected when the laser scanning endoscope apparatus 1 performs observation using fluorescence such as two-photon excitation or when observation is performed using a plurality of laser beams having different wavelengths. An aberration correction element can be suitably applied. The specific configuration of the aberration correction element in the case of having such an observation depth adjusting mechanism or performing observation using two-photon excitation will be described in detail in the following (6-2. Laser scanning probe). explain.

(5−1.非点収差の補正について)
非点収差を補正するための収差補正素子の具体的な構成例について説明する。非点収差補正用の収差補正素子の具体的に構成について説明するに先立ち、本発明者らが非点収差について検討した内容について説明する。
(5-1. Correction of astigmatism)
A specific configuration example of an aberration correction element for correcting astigmatism will be described. Prior to describing the specific configuration of the aberration correction element for correcting astigmatism, the contents of the study by the present inventors regarding astigmatism will be described.

上記(2.第1の実施形態)で説明したように、対物レンズ165及びウインドウ部162に起因して生じる収差の度合いは、対物レンズ165のNAの値や、ウインドウ部162の形状に影響される。具体的には、対物レンズ165のNAが高くなるほど、ウインドウ部162の構成部材の厚さが大きくなるほど、ウインドウ部162の曲率が小さくなるほど(すなわち、鏡筒161の直径(外径)が小さくなるほど)、当該収差の度合いは大きくなる傾向がある。   As described in (2. First Embodiment) above, the degree of aberration caused by the objective lens 165 and the window portion 162 is affected by the NA value of the objective lens 165 and the shape of the window portion 162. The Specifically, the higher the NA of the objective lens 165, the greater the thickness of the component of the window portion 162, and the smaller the curvature of the window portion 162 (that is, the smaller the diameter (outer diameter) of the lens barrel 161). ), The degree of the aberration tends to increase.

本発明者らは、上記の3つのパラメータ(対物レンズ165のNA、ウインドウ部162の厚さ、鏡筒161の直径)を変化させながら、光線追跡シミュレーションを繰り返し行うことにより、当該3つのパラメータと非点収差の度合いとの関係をより詳細に調査し、非点収差を補正するための構成について検討を行った。なお、ここで言う非点収差とは、図2及び図3に示すx軸方向の焦点距離とy軸方向の焦点距離との差を意味する。   The present inventors repeatedly perform a ray tracing simulation while changing the above three parameters (the NA of the objective lens 165, the thickness of the window portion 162, and the diameter of the lens barrel 161). The relationship with the degree of astigmatism was investigated in more detail, and a configuration for correcting astigmatism was studied. The astigmatism referred to here means the difference between the focal length in the x-axis direction and the focal length in the y-axis direction shown in FIGS.

上記の検討の結果、非点収差の度合いは、上記深さ方向の距離の光学距離(媒体の屈折率と深さ方向の距離との積)の2乗に比例して大きくなり、対物レンズ165のNAの2乗に比例して大きくなるとの知見が得られた。また、鏡筒161の直径(すなわち、ウインドウ部162の外径)が小さくなるほど非点収差の度合いが大きくなることが確認された。   As a result of the above examination, the degree of astigmatism increases in proportion to the square of the optical distance of the distance in the depth direction (the product of the refractive index of the medium and the distance in the depth direction), and the objective lens 165 The knowledge that it increases in proportion to the square of NA is obtained. Further, it has been confirmed that the degree of astigmatism increases as the diameter of the lens barrel 161 (that is, the outer diameter of the window portion 162) decreases.

上記知見に鑑み、本発明者らは、非点収差を補正するための構成について検討を行った。以下に、図13A、図13B、図14及び図15を参照して、上記検討の結果本発明者らが想到した収差補正素子の具体的な構成例について説明する。ここで、上述したように非球面レンズである対物レンズ165の光学特性を調整して球面収差を補正する場合、例えば、球面収差のうち、x軸方向又はy軸方向のいずれかの方向の成分を最小化するように、対物レンズ165の光学特性のパラメータを調整することができる。そこで、本発明者らは、シリンドリカル形状を有するウインドウ部162を平行平板とみなすことができる方向である、図2及び図3に示すy軸方向(すなわち、y−z平面)における球面収差については、対物レンズ165の光学特性を調整することにより補正を行い、x−z平面における球面収差については、非点収差を補正するための構成で併せて補正を行うことを考えた。従って、以下に示す収差補正素子の具体的な構成例は、非点収差を補正するとともに、x−z平面における球面収差を補正する機能を有する構成の一例である。   In view of the above findings, the present inventors have studied a configuration for correcting astigmatism. Hereinafter, with reference to FIG. 13A, FIG. 13B, FIG. 14, and FIG. 15, a specific configuration example of the aberration correction element conceived by the present inventors as a result of the above examination will be described. Here, when the spherical aberration is corrected by adjusting the optical characteristics of the objective lens 165 that is an aspheric lens as described above, for example, the component of the spherical aberration in either the x-axis direction or the y-axis direction. The parameters of the optical characteristics of the objective lens 165 can be adjusted so as to minimize. Therefore, the inventors of the present invention are not limited to the spherical aberration in the y-axis direction (that is, the yz plane) shown in FIGS. 2 and 3, which is a direction in which the window portion 162 having a cylindrical shape can be regarded as a parallel plate. It was considered that correction was performed by adjusting the optical characteristics of the objective lens 165, and that spherical aberration in the xz plane was corrected together with a configuration for correcting astigmatism. Therefore, a specific configuration example of the aberration correction element described below is an example of a configuration having a function of correcting astigmatism and correcting spherical aberration in the xz plane.

なお、以下に示す図13A−図15は、図2及び図3に示す内視鏡160の走査部163及びその近傍の様子を図示したものに対応する。具体的には、図13A−図15では、図2及び図3に示す構成のうち、ウインドウ部162、光路変更素子164、対物レンズ165、収差補正素子166及び生体組織500を主に図示するとともに、収差補正素子166の構成をより具体的に図示している。なお、図13A−図15に示すウインドウ部162、光路変更素子164及び対物レンズ165の機能及び構成は、図2及び図3を参照して説明したこれらの構成部材の機能及び構成と同様であるため、以下では、これらの構成部材についての詳細な説明は省略し、収差補正素子166の具体的な構成について主に説明する。また、以下の収差補正素子166の具体的な構成についての説明においては、光路変更素子164が折り曲げミラーであり、対物レンズ165が非球面レンズである場合について説明する。なお、下記に示す収差補正素子の具体的な各構成は、図5−図10Bに示した各収差補正素子としても適用可能である。   13A to 15 shown below correspond to the illustration of the scanning unit 163 of the endoscope 160 shown in FIGS. 2 and 3 and the state of the vicinity thereof. Specifically, FIGS. 13A to 15 mainly illustrate the window 162, the optical path changing element 164, the objective lens 165, the aberration correcting element 166, and the living tissue 500 in the configuration shown in FIGS. The configuration of the aberration correction element 166 is illustrated more specifically. The functions and configurations of the window portion 162, the optical path changing element 164, and the objective lens 165 shown in FIGS. 13A to 15 are the same as the functions and configurations of these components described with reference to FIGS. Therefore, in the following, detailed description of these components will be omitted, and the specific configuration of the aberration correction element 166 will be mainly described. In the following description of the specific configuration of the aberration correction element 166, the case where the optical path changing element 164 is a bending mirror and the objective lens 165 is an aspherical lens will be described. In addition, each concrete structure of the aberration correction element shown below is applicable also as each aberration correction element shown to FIGS. 5-10B.

(5−1−1.シリンドリカル凹凸レンズペア)
図13A及び図13Bを参照して、非点収差及びx−z平面における球面収差を補正するための収差補正素子の一構成例であるシリンドリカル凹凸レンズペアについて説明する。図13A及び図13Bは、本実施形態に係る収差補正素子166の一構成例であるシリンドリカル凹凸レンズペアの構成を示す模式図である。なお、図13Aは、図2に示す内視鏡160の走査部163及びその近傍を、z軸の正方向から見た様子を図示している。また、図13Bは、図2に示す内視鏡160の走査部163及びその近傍を、y軸の正方向から見た様子を図示している。ただし、図13Aでは、光路変更素子164を透過して対物レンズ165を図示している。また、図13A及び図13Bでは、簡単のため、レーザ光の光束を表す直線は、説明に必要な直線のみを主に図示している。
(5-1-1. Cylindrical concave-convex lens pair)
With reference to FIGS. 13A and 13B, a cylindrical concavo-convex lens pair, which is one configuration example of an aberration correction element for correcting astigmatism and spherical aberration in the xz plane, will be described. FIG. 13A and FIG. 13B are schematic views illustrating the configuration of a cylindrical concave / convex lens pair which is an example of the configuration of the aberration correction element 166 according to the present embodiment. FIG. 13A illustrates a state in which the scanning unit 163 of the endoscope 160 illustrated in FIG. 2 and the vicinity thereof are viewed from the positive direction of the z-axis. FIG. 13B illustrates a state in which the scanning unit 163 of the endoscope 160 illustrated in FIG. 2 and the vicinity thereof are viewed from the positive direction of the y-axis. However, in FIG. 13A, the objective lens 165 is illustrated through the optical path changing element 164. In FIG. 13A and FIG. 13B, for the sake of simplicity, only the straight lines necessary for the explanation are mainly shown as the straight lines representing the laser beam.

図13Aを参照すると、本構成例においては、光路変更素子164の前段に、シリンドリカル凹凸レンズペア620が配設される。シリンドリカル凹凸レンズペア620は、凹レンズ面を有する凹シリンドリカルレンズ621と、凸レンズ面を有する凸シリンドリカルレンズ622と、から構成される。シリンドリカル凹凸レンズペア620は、図2及び図3に示す収差補正素子166に対応するものであり、非点収差及びx−z平面における球面収差を補正するための収差補正素子である。本実施形態においては、シリンドリカル凹凸レンズペア620は、図13Aに示すように、光路変更素子164の前段、すなわち対物レンズ165よりも前段に配設される。   Referring to FIG. 13A, in this configuration example, a cylindrical concave / convex lens pair 620 is disposed in front of the optical path changing element 164. The cylindrical concave / convex lens pair 620 includes a concave cylindrical lens 621 having a concave lens surface and a convex cylindrical lens 622 having a convex lens surface. The cylindrical concave / convex lens pair 620 corresponds to the aberration correction element 166 shown in FIGS. 2 and 3, and is an aberration correction element for correcting astigmatism and spherical aberration in the xz plane. In the present embodiment, the cylindrical concave / convex lens pair 620 is disposed upstream of the optical path changing element 164, that is, upstream of the objective lens 165, as shown in FIG. 13A.

凹シリンドリカルレンズ621は、一面が平面、当該一面と対向する他面が凹形状のシリンドリカル面を有する。そして、図13Aに示すように、平面を有する面がy軸の負方向、すなわち、レーザ光が入射する方向を向き、凹形状のシリンドリカル面を有する面がy軸の負方向を向くように配設される。また、凹シリンドリカルレンズ621は、z軸方向がシリンドリカル面の円筒の軸方向になるように配設される。   The concave cylindrical lens 621 has a cylindrical surface in which one surface is flat and the other surface facing the one surface is concave. Then, as shown in FIG. 13A, the plane having a flat surface faces the negative direction of the y-axis, that is, the direction in which the laser light enters, and the surface having the concave cylindrical surface faces the negative direction of the y-axis. Established. The concave cylindrical lens 621 is disposed so that the z-axis direction is the cylindrical axial direction of the cylindrical surface.

凸シリンドリカルレンズ622は、一面が平面、当該一面と対向する他面が凸形状のシリンドリカル面を有する。そして、図13Aに示すように、凸形状のシリンドリカル面を有する面がy軸の負方向、すなわち、レーザ光が入射する方向を向き、平面を有する面がy軸の正方向を向くように配設される。すなわち、凹シリンドリカルレンズ621及び凸シリンドリカルレンズ622は、凸シリンドリカルレンズ622の凸形状のシリンドリカル面と、凹シリンドリカルレンズ621の凹形状のシリンドリカル面とが対向するように配設される。また、凸シリンドリカルレンズ622は、z軸方向がシリンドリカル面の円筒の軸方向になるように配設される。   The convex cylindrical lens 622 has a cylindrical surface in which one surface is a flat surface and the other surface facing the one surface is a convex shape. Then, as shown in FIG. 13A, the surface having a convex cylindrical surface is oriented in the negative direction of the y axis, that is, the direction in which the laser light is incident, and the surface having a flat surface is oriented in the positive direction of the y axis. Established. That is, the concave cylindrical lens 621 and the convex cylindrical lens 622 are disposed so that the convex cylindrical surface of the convex cylindrical lens 622 and the concave cylindrical surface of the concave cylindrical lens 621 face each other. Further, the convex cylindrical lens 622 is arranged so that the z-axis direction is the cylindrical axial direction of the cylindrical surface.

図13A及び図13Bを参照すると、レーザ光の光束が直線で図示されている。また、略平行光にコリメートされy軸方向を導光されてきたレーザ光が、シリンドリカル凹凸レンズペア620を通過し、光路変更素子164によってz軸方向にその光路を変更され、対物レンズ165、ウインドウ部162を順に通過して生体組織500に照射される様子が図示されている。このように、本構成例においては、入射したレーザ光は、凹シリンドリカルレンズ621の平面、凹形状のシリンドリカル面、凸シリンドリカルレンズ622の凸形状のシリンドリカル面、平面を順に通過して、光路変更素子164に入射する。シリンドリカル凹凸レンズペア620を図13Aに示すように配設することにより、非点収差及びx−z平面における球面収差を補正することができる。なお、シリンドリカル凹凸レンズペア620は、回転機構(図示せず。)及び/又は平行移動機構(図示せず。)によって、当該走査部とともに回転及び/又は平行移動する。   Referring to FIGS. 13A and 13B, the light beam of the laser beam is illustrated by a straight line. Further, the laser light collimated into substantially parallel light and guided in the y-axis direction passes through the cylindrical concave / convex lens pair 620, and its optical path is changed in the z-axis direction by the optical path changing element 164, and the objective lens 165, window A state in which the living tissue 500 is irradiated through the part 162 in order is illustrated. As described above, in this configuration example, the incident laser light sequentially passes through the plane of the concave cylindrical lens 621, the concave cylindrical surface, the convex cylindrical surface of the convex cylindrical lens 622, and the plane, thereby changing the optical path changing element. 164 is incident. By arranging the cylindrical uneven lens pair 620 as shown in FIG. 13A, astigmatism and spherical aberration in the xz plane can be corrected. The cylindrical concavo-convex lens pair 620 is rotated and / or translated together with the scanning unit by a rotation mechanism (not shown) and / or a translation mechanism (not shown).

ここで、シリンドリカル凹凸レンズペア620の光学特性(例えば、材質、厚さ、シリンドリカル面の曲率等)や具体的な構成は、入射するレーザ光の波長帯域、対物レンズ165の光学特性及びウインドウ部162の光学特性等に応じて適宜設定されてよい。例えば、非点収差及びx−z平面における球面収差を最小化するように、凹シリンドリカルレンズ621のシリンドリカル面及び凸シリンドリカルレンズ622のシリンドリカル面の曲率や、双方の曲率の大小関係、凹シリンドリカルレンズ621及び凸シリンドリカルレンズ622の光軸方向(y軸方向)の厚さ、並びに凹シリンドリカルレンズ621と凸シリンドリカルレンズ622との間隔等が調整されてよい。   Here, the optical characteristics (for example, material, thickness, curvature of the cylindrical surface, etc.) and the specific configuration of the cylindrical concave / convex lens pair 620 include the wavelength band of the incident laser light, the optical characteristics of the objective lens 165, and the window portion 162. It may be set appropriately according to the optical characteristics of For example, in order to minimize astigmatism and spherical aberration in the xz plane, the curvature of the cylindrical surface of the concave cylindrical lens 621 and the curvature of the cylindrical surface of the convex cylindrical lens 622, the magnitude relationship between the curvatures of both, the concave cylindrical lens 621 The thickness of the convex cylindrical lens 622 in the optical axis direction (y-axis direction), the interval between the concave cylindrical lens 621 and the convex cylindrical lens 622, and the like may be adjusted.

(5−1−2.シリンドリカルメニスカスレンズ)
図14を参照して、非点収差及びx−z平面における球面収差を補正するための収差補正素子の一構成例であるシリンドリカルメニスカスレンズについて説明する。図14は、本実施形態に係る収差補正素子166の一構成例であるシリンドリカルメニスカスレンズの構成を示す模式図である。なお、図14は、図2に示す内視鏡160の走査部163及びその近傍を、y軸の正方向から見た様子を図示している。また、図14では、簡単のため、レーザ光の光束を表す直線は、説明に必要な直線のみを主に図示している。
(5-1-2. Cylindrical meniscus lens)
With reference to FIG. 14, a cylindrical meniscus lens which is one configuration example of an aberration correction element for correcting astigmatism and spherical aberration in the xz plane will be described. FIG. 14 is a schematic diagram illustrating a configuration of a cylindrical meniscus lens that is one configuration example of the aberration correction element 166 according to the present embodiment. FIG. 14 illustrates a state in which the scanning unit 163 of the endoscope 160 illustrated in FIG. 2 and the vicinity thereof are viewed from the positive direction of the y-axis. In FIG. 14, for the sake of simplicity, only the straight lines necessary for explanation are mainly shown as the straight lines representing the laser light flux.

図14を参照すると、本構成例においては、対物レンズ165とウインドウ部162の間に、シリンドリカルメニスカスレンズ630が配設される。シリンドリカルメニスカスレンズ630は、図2及び図3に示す収差補正素子166に対応するものであり、非点収差及びx−z平面における球面収差を補正する機能を有する収差補正素子である。   Referring to FIG. 14, in this configuration example, a cylindrical meniscus lens 630 is disposed between the objective lens 165 and the window portion 162. The cylindrical meniscus lens 630 corresponds to the aberration correction element 166 shown in FIGS. 2 and 3 and is an aberration correction element having a function of correcting astigmatism and spherical aberration in the xz plane.

シリンドリカルメニスカスレンズ630は、両面にシリンドリカル面を有するメニスカスレンズである。図14に示すように、シリンドリカルメニスカスレンズ630における両面のシリンドリカル面は、同じ方向を円筒の軸方向とするように形成され、また、両面のシリンドリカル面の曲率は同じ符号を有する。本構成例においては、図14に示すように、シリンドリカルメニスカスレンズ630は、当該シリンドリカル面の円筒の軸方向が、y軸方向、すなわち、ウインドウ部162のシリンドリカル面の円筒の軸方向と同じ方向になるように配設される。ただし、シリンドリカルメニスカスレンズ630は、そのシリンドリカル面の曲率が、ウインドウ部162のシリンドリカル面の曲率と逆の符号を有するように配設される。また、図14に示す例では、シリンドリカルメニスカスレンズ630の両面のシリンドリカル面は、対物レンズ165と対向するシリンドリカル面の曲率が、ウインドウ部162と対向するシリンドリカル面の曲率よりも大きくなるように形成されている。   The cylindrical meniscus lens 630 is a meniscus lens having cylindrical surfaces on both sides. As shown in FIG. 14, the cylindrical surfaces on both sides of the cylindrical meniscus lens 630 are formed so that the same direction is the axial direction of the cylinder, and the curvatures of the cylindrical surfaces on both sides have the same sign. In the present configuration example, as shown in FIG. 14, in the cylindrical meniscus lens 630, the cylindrical axial direction of the cylindrical surface is in the y-axis direction, that is, in the same direction as the cylindrical axial direction of the cylindrical surface of the window portion 162. It arrange | positions so that it may become. However, the cylindrical meniscus lens 630 is disposed such that the curvature of the cylindrical surface has a sign opposite to the curvature of the cylindrical surface of the window portion 162. In the example shown in FIG. 14, the cylindrical surfaces on both sides of the cylindrical meniscus lens 630 are formed such that the curvature of the cylindrical surface facing the objective lens 165 is larger than the curvature of the cylindrical surface facing the window portion 162. ing.

図14を参照すると、レーザ光の光束が直線で図示されている。また、略平行光にコリメートされy軸方向を導光されてきたレーザ光が、光路変更素子164によってz軸方向にその光路を変更され、対物レンズ165、シリンドリカルメニスカスレンズ630、ウインドウ部162を順に通過して生体組織500に照射される様子が図示されている。このように、本構成例においては、シリンドリカルメニスカスレンズ630を、対物レンズ165とウインドウ部162の間に配設することにより、非点収差及びx−z平面における球面収差を補正することができる。なお、シリンドリカルメニスカスレンズ630は、回転機構(図示せず。)及び/又は平行移動機構(図示せず。)によって、当該走査部とともに回転及び/又は平行移動する。   Referring to FIG. 14, the laser light beam is shown as a straight line. Further, the laser beam collimated by the substantially parallel light and guided in the y-axis direction is changed in the optical path by the optical path changing element 164 in the z-axis direction, and the objective lens 165, the cylindrical meniscus lens 630, and the window part 162 are sequentially changed. The state of passing through and irradiating the living tissue 500 is shown. As described above, in this configuration example, the cylindrical meniscus lens 630 is disposed between the objective lens 165 and the window portion 162, whereby astigmatism and spherical aberration in the xz plane can be corrected. The cylindrical meniscus lens 630 rotates and / or translates together with the scanning unit by a rotation mechanism (not shown) and / or a translation mechanism (not shown).

ここで、シリンドリカルメニスカスレンズ630の光学特性(例えば、材質、厚さ、シリンドリカル面の曲率等)や具体的な構成は、入射するレーザ光の波長帯域、対物レンズ165の光学特性及びウインドウ部162の光学特性等に応じて適宜設定されてよい。例えば、図14に示す例では、シリンドリカルメニスカスレンズ630は、対物レンズ165と対向するシリンドリカル面の曲率が、ウインドウ部162と対向するシリンドリカル面の曲率よりも大きくなるように形成されているが、両者の曲率の関係はかかる例に限定されない。シリンドリカルメニスカスレンズ630の両面のシリンドリカル面の曲率は、非点収差及びx−z平面における球面収差等の高次収差を最小化するように、その値や大小関係が調整されてよい。   Here, the optical characteristics (for example, material, thickness, curvature of the cylindrical surface, etc.) and specific configuration of the cylindrical meniscus lens 630 include the wavelength band of the incident laser light, the optical characteristics of the objective lens 165, and the window 162. It may be set appropriately according to the optical characteristics and the like. For example, in the example shown in FIG. 14, the cylindrical meniscus lens 630 is formed such that the curvature of the cylindrical surface facing the objective lens 165 is larger than the curvature of the cylindrical surface facing the window 162. The curvature relationship is not limited to this example. The values and magnitude relationships of the curvatures of the cylindrical surfaces on both sides of the cylindrical meniscus lens 630 may be adjusted so as to minimize high-order aberrations such as astigmatism and spherical aberration in the xz plane.

なお、上述したように、非点収差の度合いは、観察深さ方向の光学距離(媒体の屈折率と深さ方向の距離との積)に応じて変化する。以上説明したシリンドリカル凹凸レンズペア620及びシリンドリカルメニスカスレンズ630のように、少なくとも2面にシリンドリカル面を有するレンズ系を用いる場合には、その両面の曲面の曲率や形状等を適宜調整することにより、観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正するような非点収差補正素子を実現することが可能となる。従って、本実施形態に係るレーザ走査型観察装置が観察深さ調整機構を備える場合には、非点収差を補正するための非点収差補正素子として、以上説明したシリンドリカル凹凸レンズペア620やシリンドリカルメニスカスレンズ630に例示されるような構成が好適に適用され得る。このような、非点収差の観察深さ依存性を考慮した非点収差補正素子の詳細については、下記(6−2−2.非点収差補正素子)で詳しく説明する。   As described above, the degree of astigmatism varies depending on the optical distance in the observation depth direction (the product of the refractive index of the medium and the distance in the depth direction). When using a lens system having cylindrical surfaces on at least two surfaces, such as the cylindrical concave / convex lens pair 620 and the cylindrical meniscus lens 630 described above, observation is performed by appropriately adjusting the curvature and shape of curved surfaces on both surfaces. It is possible to realize an astigmatism correction element that corrects the astigmatism with a correction amount corresponding to the fluctuation of astigmatism accompanying a change in depth. Therefore, when the laser scanning observation apparatus according to the present embodiment includes an observation depth adjustment mechanism, the cylindrical concave / convex lens pair 620 and the cylindrical meniscus described above are used as astigmatism correction elements for correcting astigmatism. A configuration as exemplified by the lens 630 can be suitably applied. Details of the astigmatism correction element in consideration of the dependency of astigmatism on the observation depth will be described in detail in (6-2-2. Astigmatism correction element) below.

(5−1−3.シリンドリカル平凹レンズ)
図15を参照して、非点収差及びx−z平面における球面収差を補正するための収差補正素子の一構成例であるシリンドリカル平凸レンズについて説明する。図15は、本実施形態に係る収差補正素子166の一構成例であるシリンドリカル平凸レンズの構成を示す模式図である。なお、図15は、図2に示す内視鏡160の走査部163及びその近傍を、y軸の正方向から見た様子を図示している。また、図15では、簡単のため、レーザ光の光束を表す直線は、説明に必要な直線のみを主に図示している。
(5-1-3. Cylindrical plano-concave lens)
With reference to FIG. 15, a cylindrical plano-convex lens which is one configuration example of an aberration correction element for correcting astigmatism and spherical aberration in the xz plane will be described. FIG. 15 is a schematic diagram showing a configuration of a cylindrical plano-convex lens which is a configuration example of the aberration correction element 166 according to the present embodiment. FIG. 15 illustrates a state in which the scanning unit 163 of the endoscope 160 illustrated in FIG. 2 and the vicinity thereof are viewed from the positive direction of the y axis. In FIG. 15, for the sake of simplicity, only the straight lines necessary for explanation are mainly shown as the straight lines representing the laser light flux.

図15を参照すると、本構成例においては、対物レンズ165とウインドウ部162の間に、シリンドリカル平凸レンズ640が配設される。シリンドリカル平凸レンズ640は、図2及び図3に示す収差補正素子166に対応するものであり、非点収差及びx−z平面における球面収差を補正する機能を有する収差補正素子である。   Referring to FIG. 15, in this configuration example, a cylindrical plano-convex lens 640 is disposed between the objective lens 165 and the window portion 162. The cylindrical plano-convex lens 640 corresponds to the aberration correction element 166 shown in FIGS. 2 and 3 and is an aberration correction element having a function of correcting astigmatism and spherical aberration in the xz plane.

シリンドリカル平凸レンズ640は、一面にシリンドリカル面を有し、当該一面と対向する他面に平面を有するレンズである。図15に示すように、シリンドリカル平凸レンズ640は、平面が対物レンズ165と対向し、シリンドリカル面がウインドウ部162と対向するように配設される。また、シリンドリカル平凸レンズ640は、当該シリンドリカル面の円筒の軸方向が、y軸方向、すなわち、ウインドウ部162のシリンドリカル面の円筒の軸方向と同じ方向になるように配設される。また、図15に示すように、シリンドリカル平凸レンズ640は、ウインドウ部162に近接されて配設される。   The cylindrical plano-convex lens 640 is a lens having a cylindrical surface on one surface and a flat surface on the other surface facing the one surface. As shown in FIG. 15, the cylindrical plano-convex lens 640 is disposed so that the plane faces the objective lens 165 and the cylindrical surface faces the window portion 162. The cylindrical plano-convex lens 640 is arranged so that the cylindrical axis direction of the cylindrical surface is the same as the y-axis direction, that is, the axial direction of the cylindrical surface cylinder of the window portion 162. Further, as shown in FIG. 15, the cylindrical plano-convex lens 640 is disposed close to the window portion 162.

図15を参照すると、レーザ光の光束が直線で図示されている。また、略平行光にコリメートされy軸方向を導光されてきたレーザ光が、光路変更素子(図示せず。)によってz軸方向にその光路を変更され、対物レンズ165、シリンドリカル平凸レンズ640、ウインドウ部162を順に通過して生体組織500に照射される様子が図示されている。このように、本構成例においては、シリンドリカル平凸レンズ640を、対物レンズ165とウインドウ部162の間の位置であって、ウインドウ部162に近接する位置に配設することにより、非点収差及びx−z平面における球面収差を補正することができる。なお、シリンドリカル平凸レンズ640は、回転機構(図示せず。)及び/又は平行移動機構(図示せず。)によって、当該走査部とともに回転及び/又は平行移動する。   Referring to FIG. 15, the light beam of the laser beam is illustrated by a straight line. Further, the laser light collimated by the substantially parallel light and guided in the y-axis direction is changed in the z-axis direction by an optical path changing element (not shown), and an objective lens 165, a cylindrical plano-convex lens 640, A state in which the living tissue 500 is irradiated through the window part 162 in order is illustrated. As described above, in the present configuration example, the cylindrical plano-convex lens 640 is disposed at a position between the objective lens 165 and the window portion 162 and close to the window portion 162, so that astigmatism and x Spherical aberration in the −z plane can be corrected. The cylindrical plano-convex lens 640 rotates and / or translates together with the scanning unit by a rotation mechanism (not shown) and / or a translation mechanism (not shown).

ここで、シリンドリカル平凸レンズ640の光学特性(例えば、材質、厚さ、シリンドリカル面の曲率等)や具体的な構成は、入射するレーザ光の波長帯域、対物レンズ165の光学特性及びウインドウ部162の光学特性等に応じて適宜設定されてよい。例えば、シリンドリカル平凸レンズ640のz軸方向の厚さや、シリンドリカル面の曲率、ウインドウ部162との近接距離等は、非点収差及びx−z平面における球面収差を最小化するように、その値が調整されてよい。   Here, the optical characteristics (for example, material, thickness, curvature of the cylindrical surface, etc.) and specific configuration of the cylindrical plano-convex lens 640 include the wavelength band of the incident laser beam, the optical characteristics of the objective lens 165, and the window 162. It may be set appropriately according to the optical characteristics and the like. For example, the thickness of the cylindrical plano-convex lens 640 in the z-axis direction, the curvature of the cylindrical surface, the proximity distance to the window portion 162, and the like are such that astigmatism and spherical aberration in the xz plane are minimized. May be adjusted.

以上、図13A−図15を参照して、図2及び図3に示す収差補正素子166の具体的な構成例について説明した。ここで、上記では、図2及び図3に示す第1の実施形態に係る構成を例に挙げて、収差補正素子166の具体的な構成例について説明したが、上記説明した収差補正素子が適用される構成は、かかる例に限定されない。上記説明した収差補正素子である、シリンドリカル凹凸レンズペア620、シリンドリカルメニスカスレンズ630及びシリンドリカル平凸レンズ640は、上記(3.第2の実施形態)で説明した第2の実施形態や、上記(4.変形例)で説明した各変形例に係る構成における収差補正素子として適用可能である。また、本実施形態に係る収差補正素子は上記説明した構成に限定されず、各種のレンズ、屈折率マッチング用の媒体等、公知の光学部材によって構成される任意の構成であってもよい。また、上記の説明では、収差の中でも球面収差と非点収差を補正する収差補正素子の具体的な構成について説明したが、本実施形態に係る収差補正素子はかかる例に限定されない。本実施形態に係る収差補正素子は、他の種類の収差を補正するための構成を有してもよく、また、互いに異なる種類の収差を補正するための複数の構成が組み合わされたものであってもよい。また、本実施形態に係る収差補正素子の構成を設計する際には、上記説明した光学特性以外にも、対物レンズのz軸方向のシフトに伴う収差の変化や、高次の収差(例えば4回対称の高次非点収差)等を考慮して、設計することが望ましい。   The specific configuration example of the aberration correction element 166 shown in FIGS. 2 and 3 has been described above with reference to FIGS. 13A to 15. Here, the specific configuration example of the aberration correction element 166 has been described above by taking the configuration according to the first embodiment shown in FIGS. 2 and 3 as an example. However, the above-described aberration correction element is applied. The configuration to be performed is not limited to such an example. The above-described aberration correction element, which is the cylindrical concave / convex lens pair 620, the cylindrical meniscus lens 630, and the cylindrical plano-convex lens 640, is the second embodiment described in the above (3. Second Embodiment) or the above (4. It can be applied as an aberration correction element in the configuration according to each modification described in (Modification). In addition, the aberration correction element according to the present embodiment is not limited to the above-described configuration, and may be an arbitrary configuration configured by known optical members such as various lenses and a refractive index matching medium. In the above description, the specific configuration of the aberration correction element that corrects spherical aberration and astigmatism among aberrations has been described. However, the aberration correction element according to the present embodiment is not limited to this example. The aberration correction element according to the present embodiment may have a configuration for correcting other types of aberration, and may be a combination of a plurality of configurations for correcting different types of aberration. May be. Further, when designing the configuration of the aberration correction element according to the present embodiment, in addition to the optical characteristics described above, a change in aberration due to the shift of the objective lens in the z-axis direction and higher-order aberrations (for example, 4 It is desirable to design in consideration of rotationally symmetric high-order astigmatism.

(6.観察深さ調整機構を備える構成)
本実施形態に係るレーザ走査型観察装置には、観察深さを変更するための観察深さ調整機構が設けられてもよい。レーザ走査型観察装置が観察深さ調整機構を有することにより、観察対象に対して深さ方向にもレーザ走査を行うことが可能となるため、よりユーザの要望に適う、有用な観察が実現される。
(6. Configuration with observation depth adjustment mechanism)
The laser scanning observation apparatus according to the present embodiment may be provided with an observation depth adjustment mechanism for changing the observation depth. Since the laser scanning observation device has an observation depth adjustment mechanism, it is possible to perform laser scanning in the depth direction with respect to the observation target, thereby realizing useful observation that better meets the needs of the user. The

観察深さ調整機構としては、例えば、光ファイバからの射出光を略平行光にして走査部に導光するコリメータレンズ(図2に示す光ファイバ用導光レンズ150に対応)の光軸方向への移動機構、対物レンズの光軸方向への移動機構、対物レンズを可変焦点レンズによって構成することによる焦点距離調節機構、筐体内における光ファイバの端部の位置の光軸方向への移動機構等が挙げられる。また、観察対象と接触するウインドウ部に、それぞれ厚さが異なる領域を複数設け、観察対象に接触させる領域を変更することにより、観察深さが変更されてもよい。   As the observation depth adjustment mechanism, for example, in the optical axis direction of a collimator lens (corresponding to the optical fiber light guide lens 150 shown in FIG. 2) that makes the light emitted from the optical fiber substantially parallel and guides it to the scanning unit. Movement mechanism, movement mechanism of the objective lens in the optical axis direction, focal length adjustment mechanism by configuring the objective lens with a variable focus lens, movement mechanism of the end position of the optical fiber in the housing in the optical axis direction, etc. Is mentioned. In addition, the observation depth may be changed by providing a plurality of regions each having a different thickness in the window portion that is in contact with the observation target and changing the region that is in contact with the observation target.

一方で、観察深さが変更された場合には、対物レンズやウインドウ部におけるレーザ光の収束状態、発散状態が変化するため、レーザ光が観察対象に集光する際の非点収差の度合いも変化する。従って、本実施形態では、レーザ走査型観察装置が観察深さ調整機構を有する場合に、観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正するような、非点収差補正素子が好適に設けられる。   On the other hand, when the observation depth is changed, the convergence state and divergence state of the laser light in the objective lens and the window portion change, so the degree of astigmatism when the laser light is focused on the observation target is also increased. Change. Therefore, in this embodiment, when the laser scanning observation apparatus has an observation depth adjustment mechanism, the astigmatism is corrected with a correction amount corresponding to the fluctuation of astigmatism accompanying the change in the observation depth. An astigmatism correction element is preferably provided.

以下では、観察深さ調整機構を利用したレーザ走査方法や、観察深さが変更されることに対応した非点収差補正素子が搭載されたレーザ走査型観察装置の構成について、詳細に説明する。なお、以下では、上述した第1の実施形態と同様に、観察対象に対して単一のスポットにレーザ光が照射される場合におけるレーザ走査型観察装置の構成について説明する。ただし、以下に示す各構成はかかる例に限定されず、第2の実施形態と同様に、例えば光ファイババンドルやマルチコア光ファイバを用いることにより、観察対象に対して複数のスポットにレーザ光が照射されるように構成されてもよい。また、以下に示す各構成は、上記(4.変形例)で説明した各変形例に示す構成とも、可能な範囲で互いに組み合わせて用いられてもよい。   Hereinafter, the laser scanning method using the observation depth adjustment mechanism and the configuration of the laser scanning observation apparatus equipped with the astigmatism correction element corresponding to the change of the observation depth will be described in detail. In the following, as in the first embodiment described above, the configuration of the laser scanning observation apparatus when a single spot is irradiated with laser light on the observation target will be described. However, each configuration shown below is not limited to such an example, and similarly to the second embodiment, for example, by using an optical fiber bundle or a multicore optical fiber, a plurality of spots are irradiated with laser light on an observation target. It may be configured to be. In addition, the following configurations may be used in combination with the configurations described in each of the modified examples described in (4. Modified Examples) as much as possible.

(6−1.観察深さ調整機構を利用したレーザ走査)
図16及び図17を参照して、本実施形態に係るレーザ走査型内視鏡装置における、観察深さ調整機構を用いたレーザ走査方法について説明する。図16は、本実施形態に係るレーザ走査型内視鏡装置における、観察深さ調整機構について説明するための説明図である。図17は、本実施形態に係るレーザ走査型内視鏡装置における、観察深さ調整機構を用いたレーザ走査方法の一例を示す図である。
(6-1. Laser scanning using observation depth adjustment mechanism)
A laser scanning method using an observation depth adjustment mechanism in the laser scanning endoscope apparatus according to the present embodiment will be described with reference to FIGS. FIG. 16 is an explanatory diagram for explaining an observation depth adjustment mechanism in the laser scanning endoscope apparatus according to the present embodiment. FIG. 17 is a diagram illustrating an example of a laser scanning method using an observation depth adjustment mechanism in the laser scanning endoscope apparatus according to the present embodiment.

ここで、図16に示すレーザ走査型内視鏡装置は、図2に示すレーザ走査型内視鏡装置1に対応するものであり、既に説明したレーザ走査型内視鏡装置1と略同様の構成を有する。従って、以下の図16及び図17を参照した説明では、上述したレーザ走査型内視鏡装置1と重複する構成については詳細な説明を省略し、主に観察深さ調整機構について説明を行う。なお、図16では、本実施形態に係るレーザ走査型内視鏡装置の構成のうち、内視鏡に対応する部分を主に図示している。   Here, the laser scanning endoscope apparatus shown in FIG. 16 corresponds to the laser scanning endoscope apparatus 1 shown in FIG. 2, and is substantially the same as the laser scanning endoscope apparatus 1 already described. It has a configuration. Therefore, in the following description with reference to FIG. 16 and FIG. 17, detailed description of the configuration overlapping with the laser scanning endoscope apparatus 1 described above will be omitted, and the observation depth adjustment mechanism will be mainly described. FIG. 16 mainly illustrates a portion corresponding to the endoscope in the configuration of the laser scanning endoscope apparatus according to the present embodiment.

図16を参照すると、本実施形態に係るレーザ走査型内視鏡装置3の内視鏡660は、鏡筒661の内部に、コリメータレンズ650、色収差補正素子670、走査部663、回転機構667及び平行移動機構668が配置されて構成される。なお、図16に示す例では、回転機構667及び平行移動機構668を一体的な部材として図示しているが、これらは別々の部材として鏡筒661内に配置されてもよい。   Referring to FIG. 16, an endoscope 660 of the laser scanning endoscope apparatus 3 according to the present embodiment includes a collimator lens 650, a chromatic aberration correction element 670, a scanning unit 663, a rotation mechanism 667, and a lens barrel 661. A parallel movement mechanism 668 is arranged. In the example illustrated in FIG. 16, the rotation mechanism 667 and the parallel movement mechanism 668 are illustrated as integral members, but they may be disposed in the lens barrel 661 as separate members.

鏡筒661の一端にはファイバコネクタ645を介して光ファイバ641が接続される。レーザ光源(図示せず。)から射出されたレーザ光が、光ファイバ641によって鏡筒661の内部に導光される。光ファイバ641によって鏡筒661内に導光された光は、鏡筒661内を長手方向(y軸方向)に進み、コリメータレンズ650及び色収差補正素子670を通過して、走査部663に入射する。   An optical fiber 641 is connected to one end of the lens barrel 661 via a fiber connector 645. Laser light emitted from a laser light source (not shown) is guided into the barrel 661 by an optical fiber 641. The light guided into the lens barrel 661 by the optical fiber 641 travels in the lens barrel 661 in the longitudinal direction (y-axis direction), passes through the collimator lens 650 and the chromatic aberration correction element 670, and enters the scanning unit 663. .

走査部663は、ハウジング669内に非点収差補正素子666、光路変更素子664及び対物レンズ665が格納されて構成されており、鏡筒661の他端に設けられる回転機構667によって、y軸方向を回転軸方向として一体的に回転可能に構成される。走査部663に入射した光は、非点収差補正素子666を通過し、光路変更素子664によってその進行方向を略垂直な方向(鏡筒661の径方向(z軸方向))に変更され、対物レンズ665を通過してハウジング669の外部に導光される。鏡筒661の側壁の一部であって、対物レンズ665と対向する部位には、少なくともレーザ光及びその戻り光に対応する波長帯域の光を透過させる材質によって形成されるウインドウ部662が設けられており、対物レンズ665によって集光された光は、ウインドウ部662を通過して鏡筒661の外部に照射される。ウインドウ部662を観察対象(例えば生体組織)に接触させることにより、レーザ光が観察対象に照射されることとなる。   The scanning unit 663 is configured by storing an astigmatism correction element 666, an optical path changing element 664, and an objective lens 665 in a housing 669, and a rotation mechanism 667 provided at the other end of the lens barrel 661 causes a y-axis direction. Are configured to be integrally rotatable with respect to the rotation axis direction. The light incident on the scanning unit 663 passes through the astigmatism correction element 666, and its traveling direction is changed to a substantially vertical direction (the radial direction of the lens barrel 661 (z-axis direction)) by the optical path changing element 664. The light passes through the lens 665 and is guided to the outside of the housing 669. A part of the side wall of the lens barrel 661 and a portion facing the objective lens 665 is provided with a window portion 662 formed of a material that transmits at least light in a wavelength band corresponding to laser light and its return light. The light condensed by the objective lens 665 passes through the window portion 662 and is irradiated to the outside of the lens barrel 661. By bringing the window portion 662 into contact with an observation target (for example, a living tissue), the laser light is irradiated onto the observation target.

回転機構667によって走査部663がy軸方向を回転軸として回転することにより、レーザ光が観察対象に対してx軸方向に走査される。また、平行移動機構668によって走査部163がy軸方向に平行移動することにより、レーザ光が観察対象に対してy軸方向に走査される。図16では図示を省略しているが、レーザ走査型内視鏡装置3には、図2に示すレーザ光源110、ビームスプリッタ120、光ファイバ用導光レンズ130、光検出器170、制御部180、出力部190及び入力部195に対応する構成が備えられており、レーザ走査による戻り光に基づいて観察対象の画像を取得することができる。なお、図16に示す光ファイバ641、鏡筒661、ウインドウ部662、ハウジング669、光路変更素子664、対物レンズ665、回転機構667及び平行移動機構668は、図2に示すこれらの構成部材と同様の機能を有するものであってよいため、詳細な説明は省略する。   As the scanning unit 663 rotates about the y-axis direction as a rotation axis by the rotation mechanism 667, the laser light is scanned in the x-axis direction with respect to the observation target. Further, the scanning unit 163 is translated in the y-axis direction by the translation mechanism 668, whereby the laser light is scanned in the y-axis direction with respect to the observation target. Although not shown in FIG. 16, the laser scanning endoscope apparatus 3 includes the laser light source 110, the beam splitter 120, the optical fiber light guide lens 130, the photodetector 170, and the control unit 180 shown in FIG. The configuration corresponding to the output unit 190 and the input unit 195 is provided, and an image to be observed can be acquired based on the return light by the laser scanning. Note that the optical fiber 641, the lens barrel 661, the window 662, the housing 669, the optical path changing element 664, the objective lens 665, the rotation mechanism 667, and the translation mechanism 668 shown in FIG. 16 are the same as those shown in FIG. The detailed description is omitted.

非点収差補正素子666は、レーザ光が観察対象に集光される際に生じる非点収差を補正する。非点収差補正素子666は、観察深さの変更に伴う非点収差の変動に対応した補正量を呈するように設計される。また、色収差補正素子670は、例えば戻り光として観察対象から発せられた蛍光を検出する際に、レーザ光と蛍光との波長の違いによって生じる色収差を補正する。色収差補正素子670が設けられることにより、光ファイバ641の端部面への蛍光の集光効率を向上させることができる。これら非点収差補正素子666及び色収差補正素子670の具体的な構成については、下記(6−2.レーザ走査型プローブ)で詳しく説明する。   The astigmatism correction element 666 corrects astigmatism generated when the laser light is focused on the observation target. The astigmatism correction element 666 is designed to exhibit a correction amount corresponding to the fluctuation of astigmatism accompanying the change in observation depth. Further, the chromatic aberration correcting element 670 corrects chromatic aberration caused by the difference in wavelength between the laser light and the fluorescence when detecting fluorescence emitted from the observation object as return light, for example. By providing the chromatic aberration correction element 670, it is possible to improve the light collection efficiency of the fluorescence onto the end surface of the optical fiber 641. Specific configurations of the astigmatism correction element 666 and the chromatic aberration correction element 670 will be described in detail in the following (6-2. Laser scanning probe).

なお、非点収差補正素子666及び色収差補正素子670は、図2に示す収差補正素子166に対応するものである。図2では、代表的に1つの収差補正素子166を図示していたが、本実施形態では、図16に示すように、異なる種類の収差を補正するための収差補正素子が複数設けられてもよい。また、図2に示す例では、収差補正素子166が光路変更素子164と対物レンズ165との間に設けられていたが、図16に示すように、非点収差補正素子666及び色収差補正素子670が、光路変更素子664よりも前段に設けられる場合であっても、光学的には同様の収差補正効果を得ることができる。なお、非点収差補正素子666には、非点収差を補正するというその目的上、光路変更素子164との相対的な位置関係が変化しないことが求められるため、非点収差補正素子666は光路変更素子164とともに回転及び/又は平行移動するように配置され得る。一方、色収差補正素子670は、主に対物レンズ165において生じ得る色収差が補正された蛍光が光ファイバ641に導光されるように、コリメータレンズ650と対物レンズ665との間に配置され得る。   The astigmatism correction element 666 and the chromatic aberration correction element 670 correspond to the aberration correction element 166 shown in FIG. In FIG. 2, one aberration correction element 166 is shown as a representative. However, in this embodiment, as shown in FIG. 16, a plurality of aberration correction elements for correcting different types of aberrations may be provided. Good. In the example shown in FIG. 2, the aberration correction element 166 is provided between the optical path changing element 164 and the objective lens 165, but astigmatism correction element 666 and chromatic aberration correction element 670 are shown in FIG. However, even when the optical path changing element 664 is provided before the optical path changing element 664, the same aberration correction effect can be optically obtained. The astigmatism correction element 666 is required to have a relative positional relationship with the optical path changing element 164 that does not change for the purpose of correcting astigmatism. It may be arranged to rotate and / or translate with the changing element 164. On the other hand, the chromatic aberration correction element 670 can be disposed between the collimator lens 650 and the objective lens 665 so that the fluorescent light whose chromatic aberration that may occur mainly in the objective lens 165 is corrected is guided to the optical fiber 641.

コリメータレンズ650は、図2に示す光ファイバ用導光レンズ150に対応するものである。コリメータレンズ650は、光ファイバ641からの射出光を略平行光にして後段の部材に対して導光する。また、コリメータレンズ650を光軸方向(y軸方向)に移動させることにより、対物レンズ665におけるレーザ光の集光状態、発散状態を変化させ、観察深さを変更することができる。   The collimator lens 650 corresponds to the optical fiber light guide lens 150 shown in FIG. The collimator lens 650 converts the emitted light from the optical fiber 641 into substantially parallel light and guides it to a subsequent member. Further, by moving the collimator lens 650 in the optical axis direction (y-axis direction), the focusing state and the diverging state of the laser light in the objective lens 665 can be changed, and the observation depth can be changed.

レーザ走査型内視鏡装置3には、コリメータレンズ650をy軸方向に移動させる移動機構(図示せず。)が更に設けられてよく、コリメータレンズ650及び当該移動機構によって、観察深さ調整機構が構成され得る。当該観察深さ調整機構によって観察深さが変更されることにより、観察対象の深さ方向(z軸方向)にもレーザ光を走査することが可能となる。従って、走査部663の回転及び平行移動と同期してコリメータレンズ650の移動が制御されることにより、観察対象に対する3次元のレーザ走査を行うことができる。なお、コリメータレンズ650を移動させる移動機構の具体的な構成は、平行移動機構668と同様であってよい。例えば、当該移動機構は、リニアアクチュエータやピエゾ素子等によって構成され得る。   The laser scanning endoscope apparatus 3 may be further provided with a moving mechanism (not shown) for moving the collimator lens 650 in the y-axis direction. An observation depth adjusting mechanism is provided by the collimator lens 650 and the moving mechanism. Can be configured. By changing the observation depth by the observation depth adjustment mechanism, it is possible to scan the laser beam also in the depth direction (z-axis direction) of the observation target. Accordingly, the movement of the collimator lens 650 is controlled in synchronization with the rotation and parallel movement of the scanning unit 663, so that three-dimensional laser scanning can be performed on the observation target. The specific configuration of the moving mechanism that moves the collimator lens 650 may be the same as that of the parallel moving mechanism 668. For example, the moving mechanism can be configured by a linear actuator, a piezoelectric element, or the like.

ここで、観察深さ調整機構を備える場合には、走査部663の回転(すなわち、x軸方向へのレーザ走査)と観察深さの変更(すなわち、z軸方向へのレーザ走査)とを協調して制御することにより、より高精度な観察を行うことが可能となる。図17を参照して、このような、走査部663の回転と観察深さの変更とを協調して制御するレーザ走査方法について説明する。   Here, when the observation depth adjustment mechanism is provided, the rotation of the scanning unit 663 (that is, laser scanning in the x-axis direction) and the change of the observation depth (that is, laser scanning in the z-axis direction) are coordinated. Thus, it becomes possible to perform more accurate observation. With reference to FIG. 17, a laser scanning method for controlling the rotation of the scanning unit 663 and the change of the observation depth in a coordinated manner will be described.

図17は、内視鏡660をy軸方向から見た場合において、観察対象である生体組織500に対して、ウインドウ部662が接触している様子を図示している。図17では、鏡筒661や走査部663等の図示を省略し、走査部663の回転に伴うレーザ光の走査の軌道(スキャン軌道)R1、R2を、円によって概略的に表している。図17に示すように、互いに異なる観察深さにおけるスキャン軌道R1、R2は、半径の異なる2つの円として表現され得る。   FIG. 17 illustrates a state in which the window 662 is in contact with the living tissue 500 that is the observation target when the endoscope 660 is viewed from the y-axis direction. In FIG. 17, the illustration of the lens barrel 661, the scanning unit 663, and the like is omitted, and the scanning trajectories (scanning trajectories) R1 and R2 of the laser light accompanying the rotation of the scanning unit 663 are schematically represented by circles. As shown in FIG. 17, the scan trajectories R1 and R2 at different observation depths can be expressed as two circles having different radii.

レーザ走査型内視鏡装置3では、走査部663の回転によりx軸方向へのレーザ走査が行われる。従って、生体組織500に対するx軸方向へのレーザ光の走査は、実際には、x軸方向に沿った直線的な走査ではなく、図17に示すような円弧に沿ったレーザ走査であり得る。この状態で走査部663を平行移動させ、y軸方向へのレーザ走査を行った場合には、当該円弧に沿った断面画像が得られることとなる。しかしながら、観察対象や観察の目的によっては、x軸方向と略平行な断面を観察したい場合も考えられる。   In the laser scanning endoscope apparatus 3, laser scanning in the x-axis direction is performed by the rotation of the scanning unit 663. Therefore, the scanning of the laser beam in the x-axis direction with respect to the living tissue 500 may actually be a laser scanning along an arc as shown in FIG. 17 instead of a linear scanning along the x-axis direction. In this state, when the scanning unit 663 is translated and laser scanning is performed in the y-axis direction, a cross-sectional image along the arc is obtained. However, depending on the object to be observed and the purpose of observation, it may be possible to observe a cross section substantially parallel to the x-axis direction.

このような要望に対して、本実施形態では、観察深さ調整機構を用いて走査部663が1回転する最中に観察深さを動的に変化させることにより、x軸方向に沿った直線的なレーザ光の走査を実現することができる。具体的には、図17に示すように、走査部663の回転と同期して、スキャン軌道R1からスキャン軌道R2、更にスキャン軌道R2からスキャン軌道R1にスキャン軌道を連続的に変化させることにより、生体組織500における観察深さがx軸と略平行となるように、観察深さ調整機構の駆動を制御する。このような制御を行うことにより、略一定の観察深さにおいてx軸方向へのレーザ走査を行うことが可能となるため、走査部663の平行移動によるy軸方向へのレーザ走査とを組み合わせることにより、生体組織500における平面状の断面を観察することが可能となる。   In response to such a demand, in the present embodiment, the observation depth is dynamically changed during one rotation of the scanning unit 663 using the observation depth adjustment mechanism, so that a straight line along the x-axis direction is obtained. Laser beam scanning can be realized. Specifically, as shown in FIG. 17, in synchronization with the rotation of the scanning unit 663, by continuously changing the scan trajectory from the scan trajectory R1 to the scan trajectory R2, and further from the scan trajectory R2 to the scan trajectory R1, The driving of the observation depth adjustment mechanism is controlled so that the observation depth in the living tissue 500 is substantially parallel to the x axis. By performing such control, it becomes possible to perform laser scanning in the x-axis direction at a substantially constant observation depth. Therefore, combining with laser scanning in the y-axis direction by parallel movement of the scanning unit 663 is combined. Thus, it is possible to observe a planar cross section in the living tissue 500.

以上、図16及び図17を参照して、本実施形態に係るレーザ走査型内視鏡装置3における、観察深さ調整機構を用いたレーザ走査方法について説明した。本実施形態では、観察深さ調整機構を用いて、走査部663の回転と観察深さの変更とを協調して制御することにより、生体組織500に対して略一定の観察深さにおける直線的なレーザ走査を行うことが可能となる。これにより、ユーザの要望に応じて、観察対象の平面状の断面を観察することが可能となるため、ユーザの利便性をより向上させることができる。また、レーザ走査型内視鏡装置3は、観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正するような、非点収差補正素子666を備える。従って、観察深さが変更された場合であっても、高精度な観察を行うことが可能となる。   The laser scanning method using the observation depth adjustment mechanism in the laser scanning endoscope apparatus 3 according to this embodiment has been described above with reference to FIGS. 16 and 17. In the present embodiment, the observation depth adjustment mechanism is used to coordinately control the rotation of the scanning unit 663 and the change of the observation depth, so that the living tissue 500 is linear at a substantially constant observation depth. It is possible to perform laser scanning. Thereby, since it becomes possible to observe the planar cross section of observation object according to a user's request, a user's convenience can be improved more. Further, the laser scanning endoscope apparatus 3 includes an astigmatism correction element 666 that corrects the astigmatism with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth. Therefore, even when the observation depth is changed, high-precision observation can be performed.

(6−2.レーザ走査型プローブ)
以上説明してきたレーザ走査型内視鏡装置3は、内視鏡660の鏡筒661の内部に、当該鏡筒661の長手方向を回転軸方向として回転可能な走査部663が設けられ、鏡筒661の側壁に設けられたウインドウ部662を介してレーザ光を観察対象に照射する構成を有していた。しかしながら、本実施形態では、より一般的に、円筒形の筐体の内部に走査部663や他の光学部材が配置され、当該筐体の側壁の少なくとも一部領域にウインドウ部が設けられた、レーザ走査型プローブが構成されてもよい。上述してきたレーザ走査型内視鏡装置3の内視鏡660に対応する部分は、当該レーザ走査型プローブの一適用例であり、当該レーザ走査型プローブを直接、又は、既存の内視鏡の鏡筒の先端部に格納して、被測定者の体腔内に挿入したものであるとみなすことができる。また、このようにレーザ走査型プローブがレーザ走査型内視鏡装置に適用される場合には、例えば円筒形の筐体の直径が略10(mm)以下であることが求められるが、本実施形態では、レーザ走査型プローブをより大型(例えば筐体の直径が略10(mm)超)に構成し、観察対象であるヒトや動物の体表面に接触させて、体表面から所定の深さにおける生体組織を観察する用途に用いられてもよい。
(6-2. Laser scanning probe)
The laser scanning endoscope apparatus 3 described above is provided with a scanning unit 663 that is rotatable inside the barrel 661 of the endoscope 660 with the longitudinal direction of the barrel 661 as the rotation axis direction. The observation target is irradiated with laser light through a window portion 662 provided on the side wall of 661. However, in this embodiment, more generally, the scanning unit 663 and other optical members are arranged inside a cylindrical housing, and a window portion is provided in at least a partial region of the side wall of the housing. A laser scanning probe may be configured. The portion corresponding to the endoscope 660 of the laser scanning endoscope apparatus 3 described above is an application example of the laser scanning probe, and the laser scanning probe is directly or directly connected to an existing endoscope. It can be considered that it was stored in the tip of the lens barrel and inserted into the body cavity of the measurement subject. Further, when the laser scanning probe is applied to the laser scanning endoscope apparatus as described above, for example, the diameter of the cylindrical housing is required to be approximately 10 (mm) or less. In the embodiment, the laser scanning probe is configured to be larger (for example, the housing has a diameter of more than about 10 (mm)), and is brought into contact with the body surface of a human or animal to be observed to have a predetermined depth from the body surface. It may be used for the purpose of observing a living tissue.

ここでは、このような、本実施形態に係るレーザ走査型プローブの一構成例について説明する。なお、以下では、本実施形態に係るレーザ走査型プローブの一例として、2光子励起を利用した観察を好適に行うレーザ走査型プローブの構成について説明する。2光子励起を利用することにより、観察対象の表面だけではなく深さ方向の情報を取得することができる。また、励起光(レーザ光)を照射することによって発せられる蛍光を検出することにより観察対象の情報を得ることができるため、OCT、光音響、共焦点反射等の他の散乱や吸収を可視化する光イメージング技術では得られない、観察対象に対するより詳細な分子レベルの知見を得ることができる。更に、励起光として近赤外光を用いることにより、例えば観察対象であるヒトへのダメージを低減することが可能となる。   Here, a configuration example of such a laser scanning probe according to the present embodiment will be described. Hereinafter, as an example of the laser scanning probe according to the present embodiment, a configuration of a laser scanning probe that suitably performs observation using two-photon excitation will be described. By using two-photon excitation, it is possible to acquire not only the surface of the observation target but also information in the depth direction. In addition, since information of an observation target can be obtained by detecting fluorescence emitted by irradiating excitation light (laser light), other scattering and absorption such as OCT, photoacoustic, and confocal reflection are visualized. It is possible to obtain more detailed molecular-level knowledge about the observation object that cannot be obtained by optical imaging technology. Further, by using near-infrared light as excitation light, it is possible to reduce damage to a human being, for example, an observation target.

(6−2−1.レーザ走査型プローブの構成)
図18−図22を参照して、本実施形態に係るレーザ走査型プローブの構成について説明する。図18は、本実施形態に係るレーザ走査型プローブの一構成例を示す側面図である。図18では、レーザ走査型プローブを構成する筐体を透過して、当該筐体内部に配置される構成部材を図示している。図19−図21は、図18に示すレーザ走査型プローブにおける光学部材の配置を示す図である。
(6-2-1. Configuration of Laser Scanning Probe)
The configuration of the laser scanning probe according to the present embodiment will be described with reference to FIGS. FIG. 18 is a side view showing a configuration example of the laser scanning probe according to the present embodiment. In FIG. 18, constituent members that pass through the casing that constitutes the laser scanning probe and are arranged inside the casing are illustrated. 19 to 21 are diagrams showing the arrangement of optical members in the laser scanning probe shown in FIG.

図18を参照すると、本実施形態に係るレーザ走査型プローブ4は、円筒形の筐体731内に、コリメータレンズ720、色収差補正素子740、走査部733及び回転機構737及び平行移動機構738が配置されて構成される。なお、図18に示すレーザ走査型プローブ4は、筐体731を内視鏡の鏡筒とみなせば、図16に示す内視鏡660と略同様の構成を有する。従って、以下の図18を参照した説明では、上述したレーザ走査型内視鏡装置3と重複する構成については詳細な説明を省略する。   Referring to FIG. 18, in the laser scanning probe 4 according to the present embodiment, a collimator lens 720, a chromatic aberration correction element 740, a scanning unit 733, a rotation mechanism 737, and a parallel movement mechanism 738 are arranged in a cylindrical housing 731. Configured. Note that the laser scanning probe 4 shown in FIG. 18 has substantially the same configuration as the endoscope 660 shown in FIG. 16 if the casing 731 is regarded as a barrel of the endoscope. Therefore, in the following description with reference to FIG. 18, detailed description of the same configuration as that of the above-described laser scanning endoscope apparatus 3 is omitted.

筐体731の一端にはファイバコネクタ765を介して光ファイバ710が接続される。レーザ光源(図示せず。)から射出されたレーザ光が、光ファイバ710によって筐体731の内部に導光される。光ファイバ710によって筐体731内に導光された光は、筐体731内を長手方向(y軸方向)に進み、コリメータレンズ720及び色収差補正素子740を通過して、走査部733に入射する。   An optical fiber 710 is connected to one end of the housing 731 via a fiber connector 765. Laser light emitted from a laser light source (not shown) is guided into the housing 731 by the optical fiber 710. The light guided into the housing 731 by the optical fiber 710 travels in the housing 731 in the longitudinal direction (y-axis direction), passes through the collimator lens 720 and the chromatic aberration correction element 740, and enters the scanning unit 733. .

走査部733は、ハウジング739内に非点収差補正素子736、光路変更素子734及び対物レンズ735が格納されて構成されており、筐体731の他端に設けられる回転機構737によって、y軸方向を回転軸方向として一体的に回転可能に構成される。走査部733に入射した光は、非点収差補正素子736を通過し、光路変更素子734によってその進行方向を略垂直な方向(筐体731の径方向(z軸方向))に変更され、対物レンズ735及び球面収差補正素子745を通過してハウジング739の外部に導光される。筐体731の側壁の一部であって、対物レンズ735と対向する部位には、少なくともレーザ光及びその戻り光に対応する波長帯域の光を透過させる材質によって形成されるウインドウ部732が形成されており、対物レンズ735によって集光された光は、ウインドウ部732を通過して筐体731の外部に照射される。ウインドウ部732を観察対象(例えば生体組織500)に接触させることにより、レーザ光が観察対象に照射されることとなる。   The scanning unit 733 is configured by storing an astigmatism correction element 736, an optical path changing element 734, and an objective lens 735 in a housing 739, and a y-axis direction by a rotation mechanism 737 provided at the other end of the housing 731. Are configured to be integrally rotatable with respect to the rotation axis direction. The light incident on the scanning unit 733 passes through the astigmatism correction element 736, and the traveling direction thereof is changed to a substantially vertical direction (the radial direction of the housing 731 (z-axis direction)) by the optical path changing element 734. The light passes through the lens 735 and the spherical aberration correction element 745 and is guided to the outside of the housing 739. A window portion 732 formed of a material that transmits at least laser light and light in a wavelength band corresponding to the return light is formed in a part of the side wall of the housing 731 and facing the objective lens 735. The light collected by the objective lens 735 passes through the window portion 732 and is irradiated to the outside of the housing 731. By bringing the window unit 732 into contact with the observation target (for example, the living tissue 500), the laser light is irradiated onto the observation target.

回転機構737によって走査部733がy軸方向を回転軸として回転することにより、レーザ光が観察対象に対してx軸方向に走査される。また、平行移動機構738によって走査部733がy軸方向に平行移動することにより、レーザ光が観察対象に対してy軸方向に走査される。図18では図示を省略しているが、レーザ走査型プローブ4には、図2に示すレーザ光源110、ビームスプリッタ120、光ファイバ用導光レンズ130、光検出器170、制御部180、出力部190及び入力部195に対応する構成が備えられており、レーザ走査による戻り光に基づいて生体組織500の画像を取得することができる。なお、図18に示す例では、回転機構737及び平行移動機構738を一体的な部材として図示しているが、これらは別々の部材として筐体731内に配置されてもよい。また、図18に示す光ファイバ710、ウインドウ部732、ハウジング739、光路変更素子734、対物レンズ735、回転機構737及び平行移動機構738は、図2に示すこれらの構成部材と同様の機能を有するものであってよいため、詳細な説明は省略する。   When the scanning unit 733 is rotated about the y-axis direction as a rotation axis by the rotation mechanism 737, the laser light is scanned in the x-axis direction with respect to the observation target. Further, when the scanning unit 733 is translated in the y-axis direction by the parallel movement mechanism 738, the laser light is scanned in the y-axis direction with respect to the observation target. Although not shown in FIG. 18, the laser scanning probe 4 includes the laser light source 110, the beam splitter 120, the optical fiber light guiding lens 130, the photodetector 170, the control unit 180, and the output unit shown in FIG. A configuration corresponding to 190 and the input unit 195 is provided, and an image of the living tissue 500 can be acquired based on return light by laser scanning. In the example illustrated in FIG. 18, the rotation mechanism 737 and the parallel movement mechanism 738 are illustrated as integral members, but they may be disposed in the housing 731 as separate members. Further, the optical fiber 710, the window portion 732, the housing 739, the optical path changing element 734, the objective lens 735, the rotation mechanism 737, and the parallel movement mechanism 738 shown in FIG. 18 have the same functions as those components shown in FIG. Since it may be a thing, detailed description is abbreviate | omitted.

ここで、コリメータレンズ720は、図16に示すコリメータレンズ650に対応するものである。レーザ走査型プローブ4においても、上記(6−1.観察深さ調整機構を利用したレーザ走査)で説明したレーザ走査型内視鏡装置3と同様に、コリメータレンズ720をy軸方向に移動させる移動機構(図示せず。)が更に設けられてよく、当該移動機構によってコリメータレンズ720をy軸方向に移動させることにより、観察深さが変更されてよい。   Here, the collimator lens 720 corresponds to the collimator lens 650 shown in FIG. In the laser scanning probe 4 as well, the collimator lens 720 is moved in the y-axis direction in the same manner as the laser scanning endoscope apparatus 3 described in (6-1. Laser scanning using observation depth adjusting mechanism). A moving mechanism (not shown) may be further provided, and the observation depth may be changed by moving the collimator lens 720 in the y-axis direction by the moving mechanism.

また、非点収差補正素子736及び色収差補正素子740は、図16に示す非点収差補正素子666及び色収差補正素子670にそれぞれ対応するものである。非点収差補正素子736は、観察深さの変更に伴う非点収差の変動に対応するように設計される。また、色収差補正素子740は、例えば2光子励起を用いた観察において、レーザ光と戻り光である蛍光との波長の違いによって生じる色収差を補正することにより、蛍光の光ファイバ710への集光効率を向上させる。   The astigmatism correction element 736 and the chromatic aberration correction element 740 correspond to the astigmatism correction element 666 and the chromatic aberration correction element 670 shown in FIG. The astigmatism correction element 736 is designed to cope with fluctuations in astigmatism accompanying changes in the observation depth. Further, the chromatic aberration correcting element 740 corrects the condensing efficiency of the fluorescence onto the optical fiber 710 by correcting the chromatic aberration caused by the difference in wavelength between the laser light and the fluorescence that is the return light, for example, in observation using two-photon excitation. To improve.

また、球面収差補正素子745は、対物レンズ735によって生じ得る球面収差を補正するために設けられる。図18に示す例では、球面収差補正素子745は平行平板であるが、球面収差補正素子745の具体的な構成はかかる例に限定されない。球面収差補正素子745の形状や材質等、光学特性を決定し得るパラメータは、対物レンズ735の光学特性に応じて、その球面収差を補正し得るように適宜設計されてよい。また、対物レンズ735が非球面レンズである場合には、対物レンズ735自体に球面収差の補正機能が備えられていてもよく、球面収差補正素子745は設けられなくてもよい。   The spherical aberration correction element 745 is provided to correct spherical aberration that may be caused by the objective lens 735. In the example shown in FIG. 18, the spherical aberration correction element 745 is a parallel plate, but the specific configuration of the spherical aberration correction element 745 is not limited to this example. Parameters that can determine the optical characteristics such as the shape and material of the spherical aberration correction element 745 may be appropriately designed according to the optical characteristics of the objective lens 735 so that the spherical aberration can be corrected. When the objective lens 735 is an aspheric lens, the objective lens 735 itself may be provided with a spherical aberration correction function, and the spherical aberration correction element 745 may not be provided.

また、2光子励起を利用した観察を行うことに対応して、光ファイバ710としては、ダブルクラッド光ファイバが好適に用いられる。光ファイバ710がダブルクラッド光ファイバである場合には、例えば、コアでレーザ光(すなわち、励起光)を筐体731内まで導光し、生体組織500からの戻り光である蛍光を内部クラッドで筐体731の外部まで導光することができるため、光ファイバ710への蛍光の集光効率を向上させることができる。   In response to performing observation using two-photon excitation, a double-clad optical fiber is preferably used as the optical fiber 710. When the optical fiber 710 is a double-clad optical fiber, for example, a laser beam (that is, excitation light) is guided to the inside of the housing 731 by the core, and fluorescence that is return light from the living tissue 500 is transmitted by the inner cladding. Since the light can be guided to the outside of the housing 731, the light collection efficiency of the fluorescence to the optical fiber 710 can be improved.

また、筐体731はy軸方向における所定の長さの領域にのみウインドウ部732が形成されていてもよいし、筐体731の全体がウインドウ部732と同様の材質によって形成されていてもよい。例えば、筐体731は、少なくともレーザ光及び蛍光に対応する波長帯域の光に対して透明な材質によって形成されるガラスチューブであってもよい。   The housing 731 may be formed with the window portion 732 only in a region having a predetermined length in the y-axis direction, or the entire housing 731 may be formed of the same material as the window portion 732. . For example, the housing 731 may be a glass tube formed of a material transparent to at least a wavelength band corresponding to laser light and fluorescence.

ここで、図19−図21を参照して、レーザ走査型プローブ4における光学部材の配置について説明する。図19は、図18に示す筐体631の内部の構成部材をz軸の正方向(上方)から観察した様子を示している。図20は、図18に示す筐体631の内部の構成部材をx軸方向(側方)から観察した様子を示している。図21は、図18に示す構成のうち、対物レンズ735の光軸を含むx−z平面での断面図を示している。なお、図19−図21では、各光学部材の配置について示すために、筐体731や走査部733のハウジング739等は、その一部を透過して図示している。また、図19−図21では、各光学部材を通過する光の経路の一例を示すために、光を表す直線を併せて図示している。   Here, the arrangement of the optical members in the laser scanning probe 4 will be described with reference to FIGS. FIG. 19 shows a state in which the constituent members inside the housing 631 shown in FIG. 18 are observed from the positive direction (upward) of the z-axis. FIG. 20 shows a state in which the constituent members inside the casing 631 shown in FIG. 18 are observed from the x-axis direction (side). FIG. 21 is a cross-sectional view on the xz plane including the optical axis of the objective lens 735 in the configuration shown in FIG. In FIGS. 19 to 21, the housing 731, the housing 739 of the scanning unit 733, and the like are partially illustrated so as to show the arrangement of each optical member. Moreover, in FIGS. 19-21, in order to show an example of the path | route of the light which passes each optical member, the straight line showing light is also shown in figure.

図19−図21を参照すると、光ファイバ710から射出された光が、コリメータレンズ720、色収差補正素子740及び非点収差補正素子736を通過し、光路変更素子734によってその進行方向が変更され、対物レンズ735及びウインドウ部732を通過して外部に照射される様子が図示されている。非点収差補正素子736、光路変更素子734及び対物レンズ735はハウジング739内に格納されており、回転機構737によってy軸方向を回転軸方向として一体的に回転する。   Referring to FIG. 19 to FIG. 21, the light emitted from the optical fiber 710 passes through the collimator lens 720, the chromatic aberration correction element 740, and the astigmatism correction element 736, and its traveling direction is changed by the optical path changing element 734. A state in which the light passes through the objective lens 735 and the window portion 732 and is irradiated to the outside is illustrated. The astigmatism correction element 736, the optical path changing element 734, and the objective lens 735 are housed in the housing 739, and are rotated integrally by the rotation mechanism 737 with the y-axis direction as the rotation axis direction.

非点収差補正素子736としては、例えば、一面に凸レンズが形成され、他面に凹レンズが形成された、シリンドリカルメニスカスレンズ(例えば上述した図14に示すシリンドリカルメニスカスレンズ630に対応)が用いられる。また、非点収差補正素子736としては、例えば上述した図13A及び図13Bに示すシリンドリカル凹凸レンズペア620のような、2つのシリンドリカルレンズが組み合わされた構成が用いられてもよい。一方、色収差補正素子740としては、例えば、2つの凹レンズがレンズ面を向い合せた状態で接合された接合レンズが用いられる。なお、図19−図21では、色収差補正素子740及び非点収差補正素子736について、簡単のためその詳細な形状の図示は省略し、模式的に図示している。ここで、本実施形態では、他の光学部材(例えば、コリメータレンズ720、光路変更素子734、対物レンズ735、球面収差補正素子745及び/又はウインドウ部732)の光学特性に応じて、非点収差補正素子736及び色収差補正素子740が所定の光学特性を有するように、光学系の光学設計が行われることにより、高品質な観察画像を得ることができる。下記(6−2−2.非点収差補正素子)及び下記(6−2−3.色収差補正素子)において、非点収差補正素子736及び色収差補正素子740について詳細に説明する。   As the astigmatism correction element 736, for example, a cylindrical meniscus lens (for example, corresponding to the cylindrical meniscus lens 630 shown in FIG. 14 described above) in which a convex lens is formed on one surface and a concave lens is formed on the other surface is used. Further, as the astigmatism correction element 736, for example, a configuration in which two cylindrical lenses are combined, such as the cylindrical concave / convex lens pair 620 shown in FIGS. 13A and 13B described above, may be used. On the other hand, as the chromatic aberration correcting element 740, for example, a cemented lens in which two concave lenses are cemented with the lens surfaces facing each other is used. In FIG. 19 to FIG. 21, the chromatic aberration correction element 740 and the astigmatism correction element 736 are schematically shown by omitting their detailed shapes for simplicity. Here, in this embodiment, astigmatism is produced according to the optical characteristics of other optical members (for example, a collimator lens 720, an optical path changing element 734, an objective lens 735, a spherical aberration correction element 745, and / or a window portion 732). High-quality observation images can be obtained by optical design of the optical system so that the correction element 736 and the chromatic aberration correction element 740 have predetermined optical characteristics. In the following (6-2-2. Astigmatism correction element) and in the following (6-2-3. Chromatic aberration correction element), the astigmatism correction element 736 and the chromatic aberration correction element 740 will be described in detail.

(6−2−2.非点収差補正素子)
まず、図22を参照して、レーザ走査型プローブ4の光学系において非点収差に影響を及ぼすパラメータについて説明する。図22は、レーザ走査型プローブ4の光学系において非点収差に影響を及ぼすパラメータについて説明するための説明図である。図22では、説明のため、図18−図21に示すレーザ走査型プローブ4の構成のうち、光ファイバ710、コリメータレンズ720、非点収差補正素子736、対物レンズ735及びウインドウ部732のみを図示している。また、実際には、図18−図21に示すように、光路変更素子734によって進行方向が変更された光が対物レンズ735に入射するが、図22では、光路変更素子734の図示を省略し、レーザ光の進行方向の変更を破線で表している。
(6-2-2. Astigmatism correction element)
First, with reference to FIG. 22, parameters affecting astigmatism in the optical system of the laser scanning probe 4 will be described. FIG. 22 is an explanatory diagram for explaining parameters affecting astigmatism in the optical system of the laser scanning probe 4. In FIG. 22, only the optical fiber 710, the collimator lens 720, the astigmatism correction element 736, the objective lens 735, and the window portion 732 are illustrated in the configuration of the laser scanning probe 4 illustrated in FIGS. Show. In actuality, as shown in FIGS. 18 to 21, the light whose traveling direction is changed by the optical path changing element 734 enters the objective lens 735, but the optical path changing element 734 is not shown in FIG. 22. The change of the traveling direction of the laser beam is represented by a broken line.

上記(5−1.非点収差の補正について)で説明したように、本発明者らによる検討の結果、非点収差の度合いは、観察深さ方向の光学距離(媒体の屈折率と観察深さ方向の距離との積)に応じて変化するとの知見が得られた。つまり、対物レンズ735による収束光がウインドウ部732を通過することによって生じる非点収差は、ウインドウ部732の厚さ、対物レンズ735とウインドウ部732との距離及び観察深さに依存していると言える。ここで、図22に示すように、本実施形態に係るレーザ走査型プローブ4では、コリメータレンズ720の光軸方向の位置を変化させることにより、観察深さを変更することが可能である。従って、非点収差補正素子736には、観察深さの変更に伴う非点収差の度合いの変化に対応した補正量を実現するような光学特性が求められる。   As described above (5-1. Correction of Astigmatism), as a result of the study by the present inventors, the degree of astigmatism is determined by the optical distance in the observation depth direction (the refractive index of the medium and the observation depth). The knowledge that it changes according to the product of the distance in the vertical direction) was obtained. That is, the astigmatism generated when the convergent light from the objective lens 735 passes through the window portion 732 depends on the thickness of the window portion 732, the distance between the objective lens 735 and the window portion 732, and the observation depth. I can say that. Here, as shown in FIG. 22, in the laser scanning probe 4 according to the present embodiment, the observation depth can be changed by changing the position of the collimator lens 720 in the optical axis direction. Accordingly, the astigmatism correction element 736 is required to have an optical characteristic that realizes a correction amount corresponding to a change in the degree of astigmatism accompanying a change in observation depth.

非点収差補正素子736においてこのような光学特性を実現するためには、ウインドウ部732における非点収差の観察深さ依存性を取得し、各観察深さに対してウインドウ部732における非点収差をちょうど相殺するような逆向きの非点収差特性を有するように、非点収差補正素子736の形状や材質を設計すればよい。このような、観察深さが変化したとしてもウインドウ部732における非点収差を打ち消すことが可能な非点収差補正素子736は、例えば、少なくとも2面のシリンドリカル面又はトロイダル面をレーザ光が通過するように構成されたレンズによって実現され得る。例えば、非点収差補正素子736としては、図22に示すような、光ファイバ710から入射する光に対して両面が凹面である(すなわち、曲面の曲率の向きが両面で同じ)シリンドリカルメニスカスレンズが好適に適用され得る。   In order to realize such optical characteristics in the astigmatism correction element 736, the astigmatism dependency in the window portion 732 is obtained for each observation depth by obtaining the astigmatism dependency of the astigmatism in the window portion 732. The shape and material of the astigmatism correction element 736 may be designed so as to have a reverse astigmatism characteristic that just cancels out. In such an astigmatism correction element 736 capable of canceling astigmatism in the window portion 732 even if the observation depth changes, for example, the laser light passes through at least two cylindrical surfaces or toroidal surfaces. It can be realized by a lens configured as described above. For example, as the astigmatism correction element 736, a cylindrical meniscus lens having both surfaces concave with respect to the light incident from the optical fiber 710 (that is, the curved surface has the same direction of curvature) as shown in FIG. It can be suitably applied.

図23に、本実施形態において非点収差補正素子736として用いられるシリンドリカルメニスカスレンズの光学特性の一例を示す。図23は、本実施形態において非点収差補正素子736として用いられるシリンドリカルメニスカスレンズの光学特性の一例を示すグラフ図である。図23では、横軸に観察深さを取り、縦軸に非点収差の度合いを示す指標であるフリンジゼルニケ多項式(Fringe Zernike polynomial)の係数を取り、両者の関係性をプロットしている。   FIG. 23 shows an example of optical characteristics of a cylindrical meniscus lens used as the astigmatism correction element 736 in this embodiment. FIG. 23 is a graph showing an example of the optical characteristics of a cylindrical meniscus lens used as the astigmatism correction element 736 in the present embodiment. In FIG. 23, the horizontal axis represents the observation depth, and the vertical axis represents the fringe Zernike polynomial coefficient that is an index indicating the degree of astigmatism, and the relationship between the two is plotted.

図23に示す曲線Gは、ウインドウ部732における非点収差の観察深さ依存性を示している。また、曲線Hは、非点収差補正素子736として用いられるシリンドリカルメニスカスレンズにおける非点収差の観察深さ依存性を示している。また、曲線Iは、ウインドウ部732の非点収差とシリンドリカルメニスカスレンズの非点収差とが足し合わされた、本実施形態において実現され得る非点収差特性を示している。曲線Gと曲線Hとを比較すると、シリンドリカルメニスカスレンズの非点収差特性は、ウインドウ部732における非点収差の観察深さ依存性に対してほぼ逆の特性を有しており、曲線Iに示すように、両者が足し合わされることにより、非点収差がほぼ相殺されていることが分かる。   A curve G shown in FIG. 23 shows the observation depth dependency of astigmatism in the window portion 732. A curve H indicates the observation depth dependency of astigmatism in a cylindrical meniscus lens used as the astigmatism correction element 736. A curve I represents astigmatism characteristics that can be realized in the present embodiment, in which the astigmatism of the window portion 732 and the astigmatism of the cylindrical meniscus lens are added. Comparing the curve G and the curve H, the astigmatism characteristic of the cylindrical meniscus lens has almost the opposite characteristic to the observation depth dependency of the astigmatism in the window portion 732, and is shown by the curve I. Thus, it can be seen that the astigmatism is almost canceled by adding the two together.

ここで、図24を参照して、2面の曲面(シリンドリカル面又はトロイダル面)を有する光学部材によって非点収差を補正する場合と、1面の曲面を有する光学部材によって非点収差を補正する場合と、の比較を行う。2面の曲面を有する光学部材は、例えば、上述したシリンドリカルメニスカスレンズに対応している。また、1面の曲面を有する光学部材は、例えば、平凸シリンドリカルレンズや、表面に凹状のシリンドリカル曲面が形成された光路変更素子として用いられるミラー等、非点収差を補正するために一般的に用いられている光学部材に対応している。   Here, referring to FIG. 24, when astigmatism is corrected by an optical member having two curved surfaces (cylindrical surface or toroidal surface), and astigmatism is corrected by an optical member having one curved surface. Compare with the case. The optical member having two curved surfaces corresponds to, for example, the above-described cylindrical meniscus lens. An optical member having one curved surface is generally used to correct astigmatism, such as a plano-convex cylindrical lens or a mirror used as an optical path changing element having a concave cylindrical curved surface formed on the surface. It corresponds to the optical member used.

図24は、2面の曲面を有する光学部材及び1面の曲面を有する光学部材の非点収差の観察深さ依存性を示すグラフ図である。図24では、横軸に観察深さを取り、縦軸に波面収差の度合いを示す指標であるRMS波面収差の値を取り、両者の関係性をプロットしている。   FIG. 24 is a graph showing the dependence of astigmatism on the observation depth of an optical member having two curved surfaces and an optical member having one curved surface. In FIG. 24, the horizontal axis represents the observation depth, the vertical axis represents the RMS wavefront aberration, which is an index indicating the degree of wavefront aberration, and the relationship between the two is plotted.

図24に示す曲線Jは、1面の曲面を有する光学部材の波面収差の観察深さ依存性を示している。図24に示す曲線Kは、2面の曲面を有する光学部材の波面収差の観察深さ依存性を示している。図24に示すように、1面しか曲面を持たない光学部材では、観察深さに対する収差の度合いの変動が大きい。従って、非点収差補正素子736として1面しか曲面を持たない光学部材を用いた場合には、特定の観察深さにおける非点収差を補正するように光学設計を行うことは可能であるが、観察深さが変化した場合にまで対応することは難しい。一方、2面に曲面を有する光学部材では、観察深さに対する収差の度合いの変動が比較的小さい。従って、収差補正素子として2面に曲面を有する光学部材を用いることにより、観察深さが変化した場合であっても、略一定の割合で収差を補正することが可能となる。このように、例えば上述したシリンドリカルメニスカスレンズのような、2面に曲面を有するレンズを非点収差補正素子736として用いることにより、観察深さの変化に対応した非点収差の補正が可能となる。   A curve J shown in FIG. 24 shows the observation depth dependence of the wavefront aberration of an optical member having one curved surface. A curve K shown in FIG. 24 shows the observation depth dependency of the wavefront aberration of an optical member having two curved surfaces. As shown in FIG. 24, the optical member having only one surface has a large variation in the degree of aberration with respect to the observation depth. Therefore, when an optical member having only one surface is used as the astigmatism correction element 736, it is possible to perform optical design so as to correct astigmatism at a specific observation depth. It is difficult to handle even when the observation depth changes. On the other hand, in the optical member having two curved surfaces, the variation in the degree of aberration with respect to the observation depth is relatively small. Therefore, by using an optical member having curved surfaces on two surfaces as the aberration correction element, it is possible to correct aberrations at a substantially constant rate even when the observation depth changes. Thus, for example, by using a lens having two curved surfaces as the astigmatism correction element 736 such as the above-described cylindrical meniscus lens, astigmatism correction corresponding to a change in observation depth can be performed. .

なお、非点収差補正素子736として用いられるシリンドルメニスカスレンズの具体的な形状(例えば両曲面の曲率等)は、上述したようなレーザ光が観察対象に集光される際に生じる非点収差に影響を及ぼす各種のパラメータ(例えば、ウインドウ部732の厚さ、対物レンズ735とウインドウ部732との距離、対物レンズ735及びウインドウ部732の材質、並びに、対物レンズ735及びウインドウ部732の形状(曲率等))に応じて、例えば光学シミュレータ等を用いて適宜設計されてよい。   Note that the specific shape (for example, the curvatures of both curved surfaces) of the cylindrical meniscus lens used as the astigmatism correction element 736 is astigmatism generated when the laser light as described above is condensed on the observation target. (For example, the thickness of the window portion 732, the distance between the objective lens 735 and the window portion 732, the material of the objective lens 735 and the window portion 732, and the shape of the objective lens 735 and the window portion 732 ( Depending on the curvature, etc.)), it may be designed as appropriate using, for example, an optical simulator.

以上、本実施形態に係る非点収差補正素子736の構成について詳細に説明した。以上説明したように、本実施形態では、非点収差補正素子736として、観察深さの変更に伴う非点収差の変化に対応した補正量を実現するような光学特性を有する光学部材が用いられる。このような光学特性は、少なくとも2面のシリンドリカル面又はトロイダル面をレーザ光が通過するように構成されたレンズ系によって実現され得る。従って、非点収差補正素子736は、上述したシリンドリカルメニスカスレンズのような単一のレンズによって実現されてもよいし、例えば上記図13A及び図13Bに示すシリンドリカル凹凸レンズペア620のような、少なくとも2面のシリンドリカル面又はトロイダル面を有するレンズ系によって実現されてもよい。このような非点収差補正素子736を用いることにより、観察深さを変更しながら観察を行う場合、すなわち、深さ方向にレーザ走査を行う場合において、非点収差の影響がより少ないより高精度な観察を行うことが可能となる。   The configuration of the astigmatism correction element 736 according to this embodiment has been described above in detail. As described above, in the present embodiment, as the astigmatism correction element 736, an optical member having an optical characteristic that realizes a correction amount corresponding to a change in astigmatism accompanying a change in observation depth is used. . Such optical characteristics can be realized by a lens system configured to allow laser light to pass through at least two cylindrical surfaces or toroidal surfaces. Accordingly, the astigmatism correction element 736 may be realized by a single lens such as the above-described cylindrical meniscus lens, or at least 2 such as the cylindrical concave / convex lens pair 620 shown in FIGS. 13A and 13B. It may be realized by a lens system having a cylindrical surface or a toroidal surface. By using such an astigmatism correction element 736, when performing observation while changing the observation depth, that is, when performing laser scanning in the depth direction, the influence of astigmatism is less and more accurate. Observation can be performed.

ここで、上記では、非点収差補正素子736が少なくとも2面のシリンドリカル面又はトロイダル面をレーザ光が通過するように構成されたレンズを含む場合について説明したが、本実施形態はかかる例に限定されない。例えば、1面に曲面を有する光学部材であっても、観察深さの変化に応じて当該曲面の形状を変化させるような駆動機構を設けることにより、観察深さの変化に応じて非点収差の補正量を調整することが可能となるため、上述したシリンドリカルメニスカスレンズと同様の非点収差の補正特性を実現することが可能となる。このように、非点収差補正素子736は、観察深さの変化に応じて非点収差の補正量を動的に変更させる駆動素子を含む光学部材(以下、能動非点収差補正素子とも呼称する。)であってよい。能動非点収差補正素子としては、例えば、液晶素子や液体レンズ、デフォーマブルミラー等を用いることができる。   Here, the case where the astigmatism correction element 736 includes a lens configured to allow laser light to pass through at least two cylindrical surfaces or toroidal surfaces has been described above. However, the present embodiment is limited to this example. Not. For example, even an optical member having a curved surface on one surface is provided with a drive mechanism that changes the shape of the curved surface in accordance with the change in observation depth, thereby astigmatism in accordance with the change in observation depth. As a result, the astigmatism correction characteristic similar to that of the cylindrical meniscus lens described above can be realized. As described above, the astigmatism correction element 736 includes an optical member (hereinafter also referred to as an active astigmatism correction element) including a drive element that dynamically changes the correction amount of astigmatism according to a change in observation depth. .) As the active astigmatism correction element, for example, a liquid crystal element, a liquid lens, a deformable mirror, or the like can be used.

ここで、非点収差補正素子736として、上述したシリンドリカルメニスカスレンズのような、光学特性が動的に変化しない光学部材を用いた場合には、レーザ走査を行う際に、非点収差補正素子736と光路変更素子734とをともに回転させる必要がある。非点収差補正素子736と光路変更素子734との相対的な位置関係が変化すると、所望の非点収差の補正特性が実現されない可能性があるからである。一方、非点収差補正素子736として能動非点収差補正素子を用いる場合には、非点収差補正素子736は、光路変更素子734とともに回転しなくてもよい。非点収差補正素子736は、その非点収差の補正量を動的に変化させることが可能であるため、観察深さの変化及び光路変更素子734の回転の双方に応じて非点収差の補正量を変更させることができるからである。このように、非点収差補正素子736として能動非点収差補正素子を用いることにより、走査部733として回転させる構成部材を削減することができるため、回転機構737に必要とされる出力や剛性を低減することができ、回転機構737の設計がより容易になる。   Here, when an optical member whose optical characteristics do not change dynamically, such as the above-described cylindrical meniscus lens, is used as the astigmatism correction element 736, the astigmatism correction element 736 is used when performing laser scanning. And the optical path changing element 734 must be rotated together. This is because if the relative positional relationship between the astigmatism correction element 736 and the optical path changing element 734 changes, a desired astigmatism correction characteristic may not be realized. On the other hand, when an active astigmatism correction element is used as the astigmatism correction element 736, the astigmatism correction element 736 does not have to rotate with the optical path changing element 734. Since the astigmatism correction element 736 can dynamically change the correction amount of the astigmatism, the correction of astigmatism is performed according to both the change in observation depth and the rotation of the optical path changing element 734. This is because the amount can be changed. As described above, by using the active astigmatism correction element as the astigmatism correction element 736, it is possible to reduce the number of structural members that are rotated as the scanning unit 733, and thus the output and rigidity required for the rotation mechanism 737 can be reduced. The rotation mechanism 737 can be designed more easily.

(6−2−3.色収差補正素子)
図25を参照して、レーザ走査型プローブ4に適用される色収差補正素子740について説明する。図25は、レーザ走査型プローブ4に適用される色収差補正素子740について説明するための説明図である。図25では、説明のため、図18−図21に示すレーザ走査型プローブ4の構成のうち、光ファイバ710、コリメータレンズ720、色収差補正素子740及び対物レンズ735のみを簡略化して図示している。
(6-2-3. Chromatic aberration correction element)
With reference to FIG. 25, the chromatic aberration correction element 740 applied to the laser scanning probe 4 will be described. FIG. 25 is an explanatory diagram for explaining a chromatic aberration correction element 740 applied to the laser scanning probe 4. In FIG. 25, only the optical fiber 710, the collimator lens 720, the chromatic aberration correction element 740, and the objective lens 735 are simplified in the configuration of the laser scanning probe 4 shown in FIGS. .

上述したように、本実施形態に係るレーザ走査型プローブ4では、2光子励起を利用した観察が好適に行われる。2光子励起を用いた観察では、励起光であるレーザ光が光ファイバ710から射出され、コリメータレンズ720、色収差補正素子740及び対物レンズ735を順に通過して生体組織500に照射される(図中(a))。また、レーザ光の照射によって生体組織500から発せられる蛍光は、レーザ光とは逆の経路を辿り、対物レンズ735、色収差補正素子740及びコリメータレンズ720を順に通過して光ファイバ710に導光され、例えば外部に設けられる光検出器(図示せず。)によって検出される(図中(b))。従って、より効率的に観察を行うためには、蛍光の光ファイバ710への集光効率を向上させる必要がある。   As described above, in the laser scanning probe 4 according to this embodiment, observation using two-photon excitation is preferably performed. In observation using two-photon excitation, laser light, which is excitation light, is emitted from the optical fiber 710, and sequentially passes through the collimator lens 720, the chromatic aberration correction element 740, and the objective lens 735, and is irradiated to the living tissue 500 (in the drawing). (A)). Further, the fluorescence emitted from the living tissue 500 by the irradiation of the laser light follows a path opposite to that of the laser light, and sequentially passes through the objective lens 735, the chromatic aberration correction element 740, and the collimator lens 720, and is guided to the optical fiber 710. For example, it is detected by a photodetector (not shown) provided outside ((b) in the figure). Therefore, in order to perform observation more efficiently, it is necessary to improve the light collection efficiency of the fluorescence to the optical fiber 710.

ここで、生体組織500に照射されるレーザ光の波長と、戻り光として生体組織500から戻ってくる蛍光とは、異なる波長を有することが多い。例えば、例えば近赤外光に対応する波長(785(nm))を有するレーザ光を用いた場合には、その戻り光である蛍光は可視光帯域の光であり得る。従って、生体組織500から戻ってきた蛍光が対物レンズ735を通過する際に色収差が生じてしまい、蛍光の光ファイバ710のコアへの集光効率が低くなってしまう可能性がある。そこで、本実施形態では、図25に示すように、光ファイバ710としてダブルクラッド光ファイバを用い、レーザ光を光ファイバ710のコアでシングルモード伝搬する一方、蛍光を内部クラッドで伝搬して光検出器まで導光する。このような構成を取ることにより、光ファイバ710の端部での面積がより大きい内部クラッドの部分に蛍光を集光すればよいため、集光効率を向上させることができる。   Here, the wavelength of the laser light applied to the living tissue 500 and the fluorescence returning from the living tissue 500 as return light often have different wavelengths. For example, when laser light having a wavelength (785 (nm)) corresponding to near-infrared light is used, fluorescence that is the return light may be light in the visible light band. Therefore, when the fluorescence returned from the living tissue 500 passes through the objective lens 735, chromatic aberration is generated, and the light collection efficiency of the fluorescence onto the core of the optical fiber 710 may be lowered. Therefore, in this embodiment, as shown in FIG. 25, a double clad optical fiber is used as the optical fiber 710, and laser light propagates in the single mode through the core of the optical fiber 710, while fluorescence propagates through the inner clad to detect light. Guide light to the vessel. By adopting such a configuration, it is only necessary to condense the fluorescence onto the portion of the inner clad having a larger area at the end of the optical fiber 710, so that the light collection efficiency can be improved.

しかしながら、色収差の度合いが大きい場合には、ダブルクラッド光ファイバを用いても、蛍光の集光効率を十分に得ることができない可能性がある。そこで、本実施形態では、図25に示すように、コリメータレンズ720と対物レンズ735との間に色収差補正素子740が設けられる。色収差補正素子740が設けられることにより、蛍光が対物レンズ735を通過することによって生じる色収差が補正され、蛍光の光ファイバ710への集光効率をより向上させることができる。色収差補正素子740としては、例えば近赤外光に対応する波長(785(nm))を有するレーザ光にとっては実質的に平行平板として機能するが、蛍光に対応する波長帯域(例えば可視光帯域)の光に対しては凹レンズとして機能するような光学特性を有する接合レンズが好適に用いられる。   However, when the degree of chromatic aberration is large, there is a possibility that sufficient fluorescence condensing efficiency cannot be obtained even if a double clad optical fiber is used. Therefore, in the present embodiment, as shown in FIG. 25, a chromatic aberration correction element 740 is provided between the collimator lens 720 and the objective lens 735. By providing the chromatic aberration correction element 740, chromatic aberration caused by the fluorescence passing through the objective lens 735 is corrected, and the light collection efficiency of the fluorescence onto the optical fiber 710 can be further improved. The chromatic aberration correcting element 740 functions as a substantially parallel plate for laser light having a wavelength (785 (nm)) corresponding to near-infrared light, for example, but has a wavelength band (for example, visible light band) corresponding to fluorescence. For this light, a cemented lens having an optical characteristic that functions as a concave lens is preferably used.

図26に、色収差補正素子740を適用した場合と適用しなかった場合における、蛍光の光ファイバ710への集光効率を示す。図26は、色収差補正素子740を適用した場合と適用しなかった場合における、蛍光の光ファイバ710への集光効率を示すグラフ図である。図26では、横軸に蛍光の波長を取り、縦軸に蛍光の光ファイバ710への集光効率を取り、両者の関係性をプロットしている。   FIG. 26 shows the condensing efficiency of fluorescence onto the optical fiber 710 when the chromatic aberration correction element 740 is applied and when it is not applied. FIG. 26 is a graph showing the light collection efficiency of the fluorescence onto the optical fiber 710 when the chromatic aberration correction element 740 is applied and when it is not applied. In FIG. 26, the horizontal axis represents the fluorescence wavelength, the vertical axis represents the light collection efficiency of the fluorescence onto the optical fiber 710, and the relationship between the two is plotted.

図26に示す曲線Lは、色収差補正素子740が適用されなかった場合における蛍光の集光効率を示している。また、曲線Mは、色収差補正素子740が適用された場合における蛍光の集光効率を示している。図26を参照すると、曲線Lに示されるように、色収差補正素子740が適用されない場合には、波長が短い蛍光に対する集光効率が大幅に低下していることが分かる。これは、蛍光の波長が短くなるほど、レーザ光との波長の差が大きくなり、色収差の度合いが大きくなるため、光ファイバ710の端部に蛍光が集光され難くなるからであると考えられる。一方、曲線Mに示されるように、色収差補正素子740が適用された場合には、蛍光の波長にかかわらず高い集光効率が確保される。このように、本実施形態では、色収差補正素子740を配置することにより、蛍光の光ファイバ710への集光効率を向上させることができ、より効率的に観察を行うことが可能となる。   A curve L shown in FIG. 26 indicates the fluorescence condensing efficiency when the chromatic aberration correction element 740 is not applied. A curve M indicates the fluorescence condensing efficiency when the chromatic aberration correcting element 740 is applied. Referring to FIG. 26, as indicated by the curve L, it can be seen that when the chromatic aberration correction element 740 is not applied, the light collection efficiency for fluorescence having a short wavelength is significantly reduced. This is presumably because the shorter the fluorescence wavelength, the greater the difference in wavelength with the laser light and the greater the degree of chromatic aberration, making it difficult for the fluorescence to be collected at the end of the optical fiber 710. On the other hand, as indicated by the curve M, when the chromatic aberration correction element 740 is applied, high light collection efficiency is ensured regardless of the wavelength of fluorescence. As described above, in the present embodiment, by arranging the chromatic aberration correction element 740, it is possible to improve the light collection efficiency of the fluorescence onto the optical fiber 710, and it is possible to perform observation more efficiently.

以上、本実施形態に係る色収差補正素子740について説明した。なお、色収差補正素子740の形状や材質等、具体的な構成は、対物レンズ735の光学特性や、観察に用いるレーザ光の波長、検出対象である蛍光の波長等を考慮して、適切な蛍光の光ファイバ710への集光効率が得られるように適宜設計され得る。   The chromatic aberration correction element 740 according to this embodiment has been described above. Note that the specific configuration such as the shape and material of the chromatic aberration correction element 740 is determined by considering the optical characteristics of the objective lens 735, the wavelength of the laser beam used for observation, the wavelength of the fluorescence to be detected, and the like. It is possible to design appropriately so that the light collection efficiency to the optical fiber 710 can be obtained.

(6−2−4.レーザ走査型プローブの他の構成例)
次に、本実施形態に係るレーザ走査型プローブの他の構成例について説明する。上述したように、本実施形態では、レーザ走査型プローブをより大型に構成し、例えばユーザが手で把持しながら、観察対象であるヒトや動物の体表面にウインドウ部を接触させて、当該体表面から所定の深さにおける生体組織に対してレーザ走査を行ってもよい。
(6-2-4. Other Configuration Examples of Laser Scanning Probe)
Next, another configuration example of the laser scanning probe according to this embodiment will be described. As described above, in the present embodiment, the laser scanning probe is configured to be larger, for example, while the user grips the probe with a hand, the window portion is brought into contact with the body surface of a human or animal to be observed, and the body Laser scanning may be performed on a living tissue at a predetermined depth from the surface.

図27を参照して、本実施形態に係るレーザ走査型プローブの他の構成例として、このような手持ち型のレーザ走査型プローブの構成について説明する。図27は、本実施形態に係るレーザ走査型プローブの他の構成例である、手持ち型のレーザ走査型プローブの構成を示す斜視図である。なお、図27では、筐体の内部に配置される構成部材を示すために、筐体を透過して図示している。   With reference to FIG. 27, the configuration of such a hand-held laser scanning probe will be described as another configuration example of the laser scanning probe according to the present embodiment. FIG. 27 is a perspective view showing a configuration of a hand-held laser scanning probe as another configuration example of the laser scanning probe according to the present embodiment. In FIG. 27, in order to show the components arranged inside the housing, the housing is shown in a transparent manner.

図27を参照すると、本実施形態に係るレーザ走査型プローブ5は、略直方体の筐体781内に、コリメータレンズ770、色収差補正素子790及び走査部783が配置されて構成される。このように、本実施形態では、レーザ走査型プローブ5の筐体781の形状は円筒形でなくてもよい。筐体781の形状は、例えばユーザによる操作性を考慮して、ユーザにとってより把持しやすい形状が選択され得る。なお、図27に示すレーザ走査型プローブ5は、筐体781の形状が異なる点以外は、特にその光学的な構成は、図18に示すレーザ走査型プローブ4と略同様であってよい。従って、以下の図27を参照した説明では、上述したレーザ走査型プローブ4と重複する構成については詳細な説明を省略する。   Referring to FIG. 27, the laser scanning probe 5 according to the present embodiment is configured by arranging a collimator lens 770, a chromatic aberration correction element 790, and a scanning unit 783 in a substantially rectangular parallelepiped casing 781. Thus, in this embodiment, the shape of the housing 781 of the laser scanning probe 5 may not be cylindrical. As the shape of the housing 781, for example, in consideration of operability by the user, a shape that is easier for the user to hold can be selected. The laser scanning probe 5 shown in FIG. 27 may have substantially the same optical configuration as that of the laser scanning probe 4 shown in FIG. 18 except that the shape of the housing 781 is different. Therefore, in the description with reference to FIG. 27 below, detailed description of the configuration overlapping with the laser scanning probe 4 described above is omitted.

筐体781の一端にはファイバコネクタ765を介して光ファイバ760が接続される。レーザ光源(図示せず。)から射出されたレーザ光が、光ファイバ760によって筐体781の内部に導光され、コリメータレンズ770及び色収差補正素子790を通過して、走査部783に入射する。   An optical fiber 760 is connected to one end of the housing 781 via a fiber connector 765. Laser light emitted from a laser light source (not shown) is guided into the housing 781 by the optical fiber 760, passes through the collimator lens 770 and the chromatic aberration correction element 790, and enters the scanning unit 783.

走査部783は、ハウジング789内に非点収差補正素子786、光路変更素子784及び対物レンズ785が格納されて構成され、筐体781の他端に設けられる回転機構787によって、y軸方向を回転軸方向として一体的に回転可能に構成される。走査部733に入射した光は、非点収差補正素子786を通過し、光路変更素子784によってその進行方向を略垂直方向(例えば筐体731の曲率を有する面方向(図中のz軸方向))に変更され、対物レンズ785を通過してハウジング789の外部に導光される。   The scanning unit 783 includes an astigmatism correction element 786, an optical path changing element 784, and an objective lens 785 housed in a housing 789, and is rotated in the y-axis direction by a rotation mechanism 787 provided at the other end of the housing 781. It is configured to be integrally rotatable as an axial direction. The light incident on the scanning unit 733 passes through the astigmatism correction element 786, and the traveling direction of the light is changed by the optical path changing element 784 in a substantially vertical direction (for example, a surface direction having a curvature of the housing 731 (z-axis direction in the drawing) ) And is guided to the outside of the housing 789 through the objective lens 785.

筐体781の内部には、円筒形のガラスチューブ782が走査部783を取り囲むように配置される。また、筐体781の少なくとも一面はガラスチューブ782に対応する曲率を有するように形成されている。筐体781の当該曲率を有する面の一部領域には開口部が設けられており、当該開口部においてガラスチューブ782の一部が露出するように(すなわち、ガラスチューブ782の一部が筐体781の曲率を有する面の一部を構成するように)、筐体781及びガラスチューブ782が構成されている。対物レンズ785によって集光され、走査部783から射出されたレーザ光は、ガラスチューブ782の露出部(以下、ウインドウ部782とも呼称する。)を通過して、筐体781の外部に照射される。ガラスチューブ782の露出部を観察対象に接触させることにより、レーザ光が観察対象に照射されることとなる。このように、ガラスチューブ782の露出部は、図18に示すレーザ走査型プローブ4のウインドウ部732に対応している。   A cylindrical glass tube 782 is disposed inside the housing 781 so as to surround the scanning unit 783. Further, at least one surface of the housing 781 is formed to have a curvature corresponding to the glass tube 782. An opening is provided in a partial region of the curved surface of the housing 781 so that a part of the glass tube 782 is exposed in the opening (that is, a part of the glass tube 782 is the housing). The casing 781 and the glass tube 782 are configured so as to constitute part of a surface having a curvature of 781). The laser light condensed by the objective lens 785 and emitted from the scanning unit 783 passes through an exposed portion of the glass tube 782 (hereinafter also referred to as a window portion 782) and is irradiated to the outside of the housing 781. . By bringing the exposed portion of the glass tube 782 into contact with the observation target, the laser light is irradiated onto the observation target. Thus, the exposed portion of the glass tube 782 corresponds to the window portion 732 of the laser scanning probe 4 shown in FIG.

回転機構787によって走査部783がy軸方向を回転軸として回転することにより、レーザ光が観察対象に対してx軸方向に走査される。また、平行移動機構788によって走査部783がy軸方向に平行移動することにより、レーザ光が観察対象に対してy軸方向に走査される。図27では図示を省略しているが、レーザ走査型プローブ5には、図2に示すレーザ光源110、ビームスプリッタ120、光ファイバ用導光レンズ130、光検出器170、制御部180、出力部190及び入力部195に対応する構成が備えられており、レーザ走査による戻り光に基づいて観察対象の画像を取得することができる。なお、図27に示す例では、回転機構787及び平行移動機構788を一体的な部材として図示しているが、これらは別々の部材として筐体781内に配置されてもよい。また、図27に示すコリメータレンズ770、光路変更素子784、対物レンズ785、非点収差補正素子786及び色収差補正素子790等の光学素子の光学特性や、回転機構787及び平行移動機構788の駆動機構の詳細な構成は、図18に示すこれらの構成部材と同様の機能を有するものであってよいため、詳細な説明は省略する。   The scanning unit 783 is rotated about the y-axis direction as a rotation axis by the rotation mechanism 787, whereby the laser light is scanned in the x-axis direction with respect to the observation target. Further, the translation unit 788 causes the scanning unit 783 to translate in the y-axis direction, whereby the laser light is scanned in the y-axis direction with respect to the observation target. Although not shown in FIG. 27, the laser scanning probe 5 includes the laser light source 110, the beam splitter 120, the optical fiber light guide lens 130, the photodetector 170, the control unit 180, and the output unit shown in FIG. A configuration corresponding to 190 and the input unit 195 is provided, and an image to be observed can be acquired based on return light by laser scanning. In the example shown in FIG. 27, the rotation mechanism 787 and the parallel movement mechanism 788 are illustrated as integral members, but they may be disposed in the housing 781 as separate members. In addition, the optical characteristics of optical elements such as the collimator lens 770, the optical path changing element 784, the objective lens 785, the astigmatism correction element 786 and the chromatic aberration correction element 790 shown in FIG. 27, and the driving mechanism of the rotation mechanism 787 and the parallel movement mechanism 788 are shown. Since the detailed configuration may have the same functions as those of these components shown in FIG. 18, detailed description thereof will be omitted.

また、レーザ走査型プローブ5においても、図18に示すレーザ走査型プローブ4と同様に、コリメータレンズ770をy軸方向に移動させる移動機構(図示せず。)が更に設けられてよく、当該移動機構によってコリメータレンズ770をy軸方向に移動させることにより、観察深さが変更されてよい。これにより、z軸方向におけるレーザ走査を行うことが可能となり、上述したx軸及びy軸方向へのレーザ走査と合わせて、3次元の画像データを取得することができる。   Similarly to the laser scanning probe 4 shown in FIG. 18, the laser scanning probe 5 may be further provided with a moving mechanism (not shown) for moving the collimator lens 770 in the y-axis direction. The observation depth may be changed by moving the collimator lens 770 in the y-axis direction by a mechanism. As a result, laser scanning in the z-axis direction can be performed, and three-dimensional image data can be acquired together with the laser scanning in the x-axis and y-axis directions described above.

図27に示すレーザ走査型プローブ5は、例えばヒトの皮膚や口腔等、外部から接触可能な箇所の観察に好適に用いられる。例えば、レーザ走査型プローブ5には、レーザ走査が行われるウインドウ部782から外部を撮影するカメラ装置(図示せず。)が搭載されている。ユーザは、レーザ走査型プローブ5のウインドウ部782を観察対象に接触させた状態で、当該カメラ装置によって撮影された画像を参照しながらレーザ走査型プローブ5を移動させ、詳細に観察したい部位を探索することができる。所望の観察部位を発見したら、当該部位に対するレーザ走査が開始される。このように、レーザ走査型プローブ5は、ユーザが手に持って比較的自由に移動させることができるため、より操作性の高い観察を行うことが可能となる。   The laser scanning probe 5 shown in FIG. 27 is suitably used for observing a place that can be contacted from the outside, such as human skin or oral cavity. For example, the laser scanning probe 5 is equipped with a camera device (not shown) that images the outside from a window portion 782 where laser scanning is performed. While the window portion 782 of the laser scanning probe 5 is in contact with the observation target, the user moves the laser scanning probe 5 while referring to an image photographed by the camera device, and searches for a part to be observed in detail. can do. When a desired observation site is found, laser scanning for the site is started. In this way, the laser scanning probe 5 can be moved relatively freely by the user's hand, so that observation with higher operability can be performed.

また、レーザ走査型プローブ5の他の使用方法として、レーザ走査型プローブ5を試験用の動物の身体の一部位(例えば頭部や胴体等)に取り付け、脳や臓器の様子を経時的に観察する使用方法も考えられる。このような使用方法の場合には、動物に対して過度の負担を与えないように、レーザ走査型プローブ5は比較的小型、軽量に構成されることが好ましい。   As another method of using the laser scanning probe 5, the laser scanning probe 5 is attached to one part of the body of a test animal (for example, the head or torso) and the state of the brain or organ is observed over time. It is also possible to use it. In the case of such a usage method, the laser scanning probe 5 is preferably configured to be relatively small and light so as not to give an excessive burden to the animal.

以上、本実施形態に係るレーザ走査型プローブの他の構成例について説明した。以上説明したように、本実施形態に係るレーザ走査型観察装置は、ユーザが手に持って使用することを想定した手持ち型のレーザ走査型プローブ5であってよい。このように、本実施形態では、レーザ走査型観察装置は、内視鏡のように体腔内において生体組織を観察する場合だけでなく、体表面から所定の深さに位置する生体組織を観察する用途にも用いることが可能である。   The other configuration examples of the laser scanning probe according to the present embodiment have been described above. As described above, the laser scanning observation apparatus according to the present embodiment may be the hand-held laser scanning probe 5 that is assumed to be used by the user. As described above, in this embodiment, the laser scanning observation apparatus observes not only a living tissue in a body cavity like an endoscope but also a living tissue located at a predetermined depth from the body surface. It can also be used for applications.

(6−3.レーザ走査型顕微鏡)
次に、図28を参照して、本実施形態に係るレーザ走査型顕微鏡装置の一構成例について説明する。図28は、本実施形態に係るレーザ走査型顕微鏡装置の一構成例を示す概略図である。なお、図28では、筐体の内部に配置される構成部材を示すために、筐体の図示を省略している。
(6-3. Laser scanning microscope)
Next, a configuration example of the laser scanning microscope apparatus according to the present embodiment will be described with reference to FIG. FIG. 28 is a schematic diagram illustrating a configuration example of the laser scanning microscope apparatus according to the present embodiment. In FIG. 28, the casing is not shown in order to show the components disposed inside the casing.

図28を参照すると、本実施形態に係るレーザ走査型顕微鏡装置6は、レーザ光源810、ビームスプリッタ820、光検出器870、コリメータレンズ850、色収差補正素子840、走査部863、回転機構867及び平行移動機構868が、筐体(図示せず。)内に配置されて構成される。このように、レーザ光源から走査部に至るまでの光学系が1つの筐体内に設けられ得るため、レーザ走査型顕微鏡装置6では、光ファイバ等の導光部材が用いられなくてよい。なお、図28に示すレーザ走査型顕微鏡装置6は、筐体内にレーザ光源810、ビームスプリッタ820及び光検出器870が設けられ、光ファイバが用いられないこと以外の構成、特にその光学的な構成は、図18に示すレーザ走査型プローブ4と略同様であってよい。従って、以下の図28を参照した説明では、上述したレーザ走査型プローブ4と重複する構成については詳細な説明を省略する。   Referring to FIG. 28, the laser scanning microscope apparatus 6 according to the present embodiment includes a laser light source 810, a beam splitter 820, a photodetector 870, a collimator lens 850, a chromatic aberration correction element 840, a scanning unit 863, a rotation mechanism 867, and a parallel. A moving mechanism 868 is arranged in a housing (not shown). As described above, since the optical system from the laser light source to the scanning unit can be provided in one casing, the laser scanning microscope apparatus 6 does not need to use a light guide member such as an optical fiber. The laser scanning microscope apparatus 6 shown in FIG. 28 is provided with a laser light source 810, a beam splitter 820, and a photodetector 870 in a casing, and has a configuration other than that an optical fiber is not used, particularly its optical configuration. May be substantially the same as the laser scanning probe 4 shown in FIG. Therefore, in the following description with reference to FIG. 28, the detailed description of the same configuration as the laser scanning probe 4 described above is omitted.

レーザ光源810から射出されたレーザ光は、コリメータレンズ850及び色収差補正素子840を通過して、走査部863に入射する。走査部863は、ハウジング869内に非点収差補正素子866、光路変更素子864及び対物レンズ865が格納されて構成される。走査部863には、例えばモータやリニアアクチュエータによって構成される回転機構867及び平行移動機構868が接続されており、走査部863は、y軸方向を回転軸方向として一体的に回転可能であるとともに、y軸方向に一体的に平行移動可能に構成される。走査部863に入射した光は、非点収差補正素子866を通過し、光路変更素子864によってその進行方向を略垂直方向(図中のz軸方向)に変更され、対物レンズ865を通過してハウジング869の外部に導光される。   Laser light emitted from the laser light source 810 passes through the collimator lens 850 and the chromatic aberration correction element 840 and enters the scanning unit 863. The scanning unit 863 is configured by housing an astigmatism correction element 866, an optical path changing element 864, and an objective lens 865 in a housing 869. For example, a rotation mechanism 867 and a parallel movement mechanism 868 configured by a motor or a linear actuator are connected to the scanning unit 863, and the scanning unit 863 can rotate integrally with the y-axis direction as the rotation axis direction. , And can be moved in parallel in the y-axis direction. The light incident on the scanning unit 863 passes through the astigmatism correction element 866, the traveling direction thereof is changed to a substantially vertical direction (z-axis direction in the drawing) by the optical path changing element 864, and the light passes through the objective lens 865. The light is guided outside the housing 869.

ここで、レーザ走査型顕微鏡装置6には、観察対象500が載置されるステージ880が設けられており、走査部863は、対物レンズ865が当該ステージ880の観察対象500の載置面の裏面に対向する位置に配置されている。ステージ880の、少なくとも走査部863と対向する領域には、少なくともレーザ光に対応する波長帯域の光を透過する材質によってウインドウ部862が形成されており、対物レンズ865によって集光され、走査部863から射出されたレーザ光は、当該ウインドウ部862を介してステージ880上に載置された観察対象500に照射されることとなる。なお、図28に示すように、観察対象500がスライドガラス510等の試料載置用の部材の上に置かれたプレパラートが事前に作製され、当該プレパラートがステージ880上に載置されてもよい。この場合、レーザ光はスライドガラス510を通過して観察対象500に照射されることとなるため、スライドガラス510としてはレーザ走査を妨げないような光学特性を有する材質によって形成されたものが好適に用いられ得る。   Here, the laser scanning microscope apparatus 6 is provided with a stage 880 on which the observation target 500 is placed, and the scanning unit 863 has a back surface of the placement surface of the observation target 500 of the stage 880. It is arrange | positioned in the position facing. A window portion 862 is formed of a material that transmits light in a wavelength band corresponding to at least a laser beam at least in a region facing the scanning portion 863 of the stage 880, and is condensed by the objective lens 865, and is scanned. The laser light emitted from the laser beam irradiates the observation object 500 placed on the stage 880 through the window portion 862. As shown in FIG. 28, a preparation in which the observation object 500 is placed on a sample placement member such as the slide glass 510 may be prepared in advance, and the preparation may be placed on the stage 880. . In this case, since the laser light passes through the slide glass 510 and is irradiated onto the observation object 500, the slide glass 510 is preferably formed of a material having optical characteristics that do not hinder laser scanning. Can be used.

走査部863が回転機構867によってy軸方向を回転軸方向として回転されることにより、レーザ光が観察対象500に対してx軸方向に走査される。また、走査部863が平行移動機構868によってy軸方向に平行移動されることによりレーザ光が観察対象500に対してy軸方向に走査される。観察対象500からの戻り光が、レーザ光が通過した経路を逆に辿って、すなわち、対物レンズ865、光路変更素子864、非点収差補正素子866、色収差補正素子840及びコリメータレンズ850を通過して、ビームスプリッタ820によって光検出器870に向かって導光される。光検出器870によって検出された戻り光に応じて、観察対象500についての情報が例えば画像データとして取得される。   The scanning unit 863 is rotated by the rotation mechanism 867 with the y-axis direction as the rotation axis direction, whereby the laser light is scanned in the x-axis direction with respect to the observation target 500. Further, the scanning unit 863 is translated in the y-axis direction by the translation mechanism 868, so that the laser light is scanned in the y-axis direction with respect to the observation object 500. The return light from the observation object 500 traces the path through which the laser light has passed, that is, passes through the objective lens 865, the optical path changing element 864, the astigmatism correction element 866, the chromatic aberration correction element 840, and the collimator lens 850. Then, the light is guided toward the photodetector 870 by the beam splitter 820. In accordance with the return light detected by the photodetector 870, information about the observation target 500 is acquired as image data, for example.

また、レーザ走査型顕微鏡装置6においても、図18に示すレーザ走査型プローブ4と同様に、コリメータレンズ850をy軸方向に移動させる移動機構(図示せず。)が更に設けられてよく、当該移動機構によってコリメータレンズ850をy軸方向に移動させることにより、観察深さが変更されてよい。これにより、観察対象500に対する深さ方向(z軸方向)へのレーザ走査を行うことが可能となり、上述したx軸及びy軸方向へのレーザ走査と合わせて、3次元の画像データを取得することができる。   Further, the laser scanning microscope apparatus 6 may be further provided with a moving mechanism (not shown) for moving the collimator lens 850 in the y-axis direction, similarly to the laser scanning probe 4 shown in FIG. The observation depth may be changed by moving the collimator lens 850 in the y-axis direction by the moving mechanism. This makes it possible to perform laser scanning in the depth direction (z-axis direction) with respect to the observation target 500, and acquire three-dimensional image data in combination with the above-described laser scanning in the x-axis and y-axis directions. be able to.

なお、図28に示すレーザ光源810、ビームスプリッタ820、光検出器870、コリメータレンズ850、光路変更素子864、対物レンズ865、非点収差補正素子866、色収差補正素子840、回転機構867及び平行移動機構868等の構成は、図2及び図18に示すこれらの構成部材と同様の機能を有するものであってよいため、詳細な説明は省略する。また、図28では図示を省略しているが、レーザ走査型顕微鏡装置6には、図2に示す制御部180、出力部190及び入力部195に対応する構成が更に備えられていてよく、これらの構成によって、レーザ走査による戻り光に基づいて観察対象500の画像が取得され得る。   28, the laser light source 810, the beam splitter 820, the photodetector 870, the collimator lens 850, the optical path changing element 864, the objective lens 865, the astigmatism correction element 866, the chromatic aberration correction element 840, the rotation mechanism 867, and the parallel movement. Since the configuration of the mechanism 868 and the like may have the same function as those of the components shown in FIGS. 2 and 18, detailed description thereof will be omitted. Although not shown in FIG. 28, the laser scanning microscope apparatus 6 may further include a configuration corresponding to the control unit 180, the output unit 190, and the input unit 195 shown in FIG. With this configuration, an image of the observation object 500 can be acquired based on the return light from the laser scanning.

以上、本実施形態に係るレーザ走査型顕微鏡装置の一構成例について説明した。以上説明したように、本実施形態に係るレーザ走査型観察装置は、レーザ走査型顕微鏡装置6であってよい。ここで、上述した図16に示すレーザ走査型内視鏡装置3や、図27に示すレーザ走査型プローブ5では、被測定者の体腔内の生体組織を観察したり、ユーザがレーザ走査型プローブ5を手で把持して用いることを想定しているため、走査部等の光学系や、回転機構及び平行移動機構等の駆動系を比較的小型に構成する必要がある。一方、レーザ走査型顕微鏡装置6では、観察対象が装置に設けられるステージに載置され、ステージ上の観察対象に対してレーザ走査が行われるため、走査部、回転機構及び平行移動等の構成に対する小型化の要請が比較的緩和される。従って、光学系や駆動系を、より高い自由度で設計することができる。   The configuration example of the laser scanning microscope apparatus according to this embodiment has been described above. As described above, the laser scanning observation apparatus according to the present embodiment may be the laser scanning microscope apparatus 6. Here, in the laser scanning endoscope apparatus 3 shown in FIG. 16 and the laser scanning probe 5 shown in FIG. 27, the living tissue in the body cavity of the measurement subject is observed, or the user scans the laser scanning probe. 5 is assumed to be held and used by hand, the optical system such as the scanning unit and the drive system such as the rotation mechanism and the parallel movement mechanism need to be relatively small. On the other hand, in the laser scanning microscope apparatus 6, the observation target is placed on a stage provided in the apparatus, and laser scanning is performed on the observation target on the stage. The demand for downsizing is relatively relaxed. Therefore, the optical system and the drive system can be designed with a higher degree of freedom.

ここで、駆動系の一例として、上述した回転機構867について検討する。上記(2.第1の実施形態)で説明したように、例えば、1フレームの画像データが(x×y)=(500(pixel)×500(pixel))であるとすると、スキャンスピード1fpsを実現するためには、1秒間に500ライン、レーザ光を走査する必要がある。従って、スキャンスピード1fpsを実現するために走査部863に求められる回転速度は、500×60×1=30000(rpm)である。用途によってはより低速でも適用可能であるが、それでも、回転機構867に設けられるモータには、例えば5000(rpm)−30000(rpm)程度の回転速度が要求される。   Here, the above-described rotation mechanism 867 will be examined as an example of the drive system. As described in the above (2. First Embodiment), for example, if the image data of one frame is (x × y) = (500 (pixel) × 500 (pixel)), the scan speed is 1 fps. In order to realize this, it is necessary to scan the laser beam at 500 lines per second. Accordingly, the rotation speed required for the scanning unit 863 to realize the scan speed of 1 fps is 500 × 60 × 1 = 30000 (rpm). Although it can be applied at a lower speed depending on the application, the motor provided in the rotation mechanism 867 still requires a rotation speed of, for example, about 5000 (rpm) to 30000 (rpm).

また、回転機構867のモータには、回転中における回転軸の軸振れや軸の傾き(軸倒れ)を、より小さい範囲に抑えることが要求される。回転中にモータの回転軸の位置が変動してしまうと、レーザ光のz軸方向の走査位置の精度(すなわち、観察深さの精度)が低下してしまう可能性があるからである。   In addition, the motor of the rotation mechanism 867 is required to suppress the shaft runout and shaft tilt (shaft collapse) of the rotating shaft during rotation to a smaller range. This is because if the position of the rotation axis of the motor fluctuates during rotation, the accuracy of the scanning position of the laser beam in the z-axis direction (that is, the accuracy of observation depth) may be reduced.

また、上記のような回転速度、回転軸の位置精度を満たすためには、回転機構867には所定の剛性が求められる。具体的には、回転機構867のモータの回転軸が、回転中に走査部863に作用する遠心力(mrw)に耐え得るように設計されなければいけない(mは走査部863の質量、rは回転軸から回転体である走査部863の重心までの距離、wは回転角速度)。また、回転軸の位置精度を保つためには、モータ内に設けられるベアリングが高い剛性を有することが必要となる。例えば、回転体である走査部863の大きさが、回転機構867のモータの性能に比して大きすぎる場合には、モータの回転軸に対して過度な遠心力が作用することとなり、モータの剛性に対する要求が厳しくなる。従って、モータと回転体である走査部863との力学的なバランスを考慮した設計や、走査部863をより小型に、より軽量に構成することも求められる。Further, in order to satisfy the rotational speed and the positional accuracy of the rotating shaft as described above, the rotating mechanism 867 is required to have a predetermined rigidity. Specifically, the rotating shaft of the motor of the rotation mechanism 867 must be designed to withstand centrifugal force (mrw 2 ) acting on the scanning unit 863 during rotation (m is the mass of the scanning unit 863, r Is the distance from the rotation axis to the center of gravity of the scanning unit 863 as a rotating body, and w is the rotation angular velocity). Further, in order to maintain the positional accuracy of the rotating shaft, it is necessary that the bearing provided in the motor has high rigidity. For example, when the size of the scanning unit 863 that is a rotating body is too large compared to the performance of the motor of the rotating mechanism 867, an excessive centrifugal force acts on the rotating shaft of the motor. The demand for rigidity becomes severe. Therefore, it is also required to design in consideration of the dynamic balance between the motor and the scanning unit 863 that is a rotating body, and to configure the scanning unit 863 to be smaller and lighter.

更に、本実施形態では、走査部863の回転によるx軸方向へのレーザ走査と同期して、y軸方向及び/又はz軸方向へのレーザ走査が行われ得る。従って、レーザ走査の精度を向上させるためには、回転機構867のモータの回転角度を高精度に検出するための高分解能の角度センサ(例えばロータリエンコーダ)が、モータとともに搭載されることが望ましい。   Further, in this embodiment, laser scanning in the y-axis direction and / or z-axis direction can be performed in synchronization with laser scanning in the x-axis direction due to rotation of the scanning unit 863. Therefore, in order to improve the accuracy of laser scanning, it is desirable that a high-resolution angle sensor (for example, a rotary encoder) for detecting the rotation angle of the motor of the rotation mechanism 867 with high accuracy is mounted together with the motor.

ここで、例えば図16に示すようなレーザ走査型内視鏡装置3において、これらの性能を満たすことを考える。レーザ走査型内視鏡装置3では、例えば直径10(mm)程度の鏡筒661内に、走査部663及び回転機構667が搭載される必要がある。従って、他の構成も鏡筒661内に設けられることを考慮すれば、回転機構667のモータとしては、例えば径方向の大きさが鏡筒661の径の60%以下(上記の例では6(mm)以下)、鏡筒661に沿った長さが20(mm)以下であることが望ましい。また、例えば対物レンズ665のNAが0.45であるとすると、モータの回転軸の位置精度としては、軸振れ量が0.01(mm)以下、軸倒れ量が0.1(deg)以下であることが望ましい。   Here, it is considered that, for example, the laser scanning endoscope apparatus 3 as shown in FIG. 16 satisfies these performances. In the laser scanning endoscope apparatus 3, for example, a scanning unit 663 and a rotation mechanism 667 need to be mounted in a lens barrel 661 having a diameter of about 10 (mm). Therefore, considering that other configurations are also provided in the lens barrel 661, the motor of the rotating mechanism 667 is, for example, 60% or less of the diameter of the lens barrel 661 (in the above example, 6 ( mm) or less), and the length along the lens barrel 661 is preferably 20 (mm) or less. For example, assuming that the NA of the objective lens 665 is 0.45, the positional accuracy of the rotating shaft of the motor is 0.01 (mm) or less for shaft deflection and 0.1 (deg) or less for shaft tilt. It is desirable that

このように、レーザ走査型内視鏡装置3では、比較的小型のモータにおいて、回転軸の位置を高精度に保ちつつ、剛性を確保する必要がある。また、角度センサにも、高分解能であるとともに小型であることが求められる。従って、レーザ走査型内視鏡装置3のような比較的小型の筐体内に各構成部材を搭載しなければいけない場合には、回転機構667及び走査部663等の構成部材を設計する際の条件が比較的厳しいものとなる可能性がある。一方、上述したように、レーザ走査型顕微鏡装置6では、レーザ走査型内視鏡装置3ほどの小型化が求められない。従って、回転機構867のモータとしてもより大型なものを用いることができるため、回転機構867及び走査部863等の構成部材の設計がより容易になる。   Thus, in the laser scanning endoscope apparatus 3, it is necessary to ensure rigidity while maintaining the position of the rotating shaft with high accuracy in a relatively small motor. The angle sensor is also required to have a high resolution and a small size. Therefore, when each component must be mounted in a relatively small housing such as the laser scanning endoscope apparatus 3, the conditions for designing the components such as the rotation mechanism 667 and the scanning unit 663 are as follows. May be relatively severe. On the other hand, as described above, the laser scanning microscope apparatus 6 is not required to be as small as the laser scanning endoscope apparatus 3. Therefore, since a larger motor can be used as the motor of the rotation mechanism 867, it is easier to design components such as the rotation mechanism 867 and the scanning unit 863.

ここで、上記(1.他の構成によるレーザ走査型内視鏡装置についての検討)で説明したように、一般的な既存の技術として、レーザ走査型顕微鏡装置では、構成を比較的大型化することができ、光学系の設計自由度が高いため、光学系を適宜設計することにより、「3.高いNA」及び「4.広視野」を同時に実現する構成が存在し得る。ただし、既存の技術では、光学系の構成が複雑なものとなり、装置の小型化、低コスト化を図ることが難しくなる。一方、本実施形態では、走査部863を回転させてレーザ光を走査することにより、より簡易な構成によって、比較的高いNAを有する対物レンズ865を用いた場合であっても広い視野が実現される。また、非点収差補正素子866が設けられることにより、観察深さが変更された場合であっても、非点収差の影響の少ないより高精度な観察を行うことが可能となる。   Here, as described in the above (1. Examination of laser scanning endoscope apparatus having other configurations), as a general existing technique, the laser scanning microscope apparatus has a relatively large configuration. Since the degree of freedom of design of the optical system is high, there can exist a configuration that simultaneously realizes “3. high NA” and “4. wide field of view” by appropriately designing the optical system. However, in the existing technology, the configuration of the optical system becomes complicated, and it is difficult to reduce the size and cost of the apparatus. On the other hand, in this embodiment, by scanning the laser beam by rotating the scanning unit 863, a wide field of view is realized with a simpler configuration even when the objective lens 865 having a relatively high NA is used. The In addition, by providing the astigmatism correction element 866, even when the observation depth is changed, it is possible to perform more accurate observation with less influence of astigmatism.

(7.ハードウェア構成)
次に、図29を参照しながら、本実施形態に係るレーザ走査型観察装置のハードウェア構成について詳細に説明する。図29は、本実施形態に係るレーザ走査型観察装置のハードウェア構成を説明するためのブロック図である。なお、図29に示すレーザ走査型観察装置は、上述したレーザ走査型内視鏡装置1、2、3、レーザ走査型プローブ4、5及びレーザ走査型顕微鏡装置6を構成し得る。
(7. Hardware configuration)
Next, the hardware configuration of the laser scanning observation apparatus according to the present embodiment will be described in detail with reference to FIG. FIG. 29 is a block diagram for explaining a hardware configuration of the laser scanning observation apparatus according to the present embodiment. The laser scanning observation apparatus shown in FIG. 29 can constitute the laser scanning endoscope apparatuses 1, 2, 3, the laser scanning probes 4, 5 and the laser scanning microscope apparatus 6 described above.

図29を参照すると、レーザ走査型観察装置900は、主に、CPU901と、ROM903と、RAM905と、を備える。また、レーザ走査型観察装置900は、更に、ホストバス907、ブリッジ909、外部バス911、インターフェース913、センサ914、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923及び通信装置925を備える。   Referring to FIG. 29, the laser scanning observation apparatus 900 mainly includes a CPU 901, a ROM 903, and a RAM 905. The laser scanning observation apparatus 900 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, a sensor 914, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device. 925.

CPU901は、演算処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置919又はリムーバブル記録媒体927に記録された各種プログラムに従って、レーザ走査型観察装置900内の動作全般又はその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。CPU901、ROM903及びRAM905は、本実施形態においては、例えば、図2及び図4Aに示す制御部180、280に対応している。   The CPU 901 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the laser scanning observation apparatus 900 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927. . The ROM 903 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus. In the present embodiment, the CPU 901, the ROM 903, and the RAM 905 correspond to, for example, the control units 180 and 280 illustrated in FIGS. 2 and 4A.

ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。   The host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.

センサ914は、例えば、ユーザに固有の生体情報、または、かかる生体情報を取得するために用いられる各種情報を検出する検出手段である。センサ914は、本実施形態においては、例えば、図2及び図4Aに示す光検出器170に対応している。また、センサ914は、例えば、図2及び図4Aに示す内視鏡160及び光検出器170を含む、生体組織500にレーザ光を走査してその戻り光を検出する一連のシステムに関連する各構成部材に対応している。センサ914は、例えば、フォトダイオード、PMTなどの光検出器やCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の各種の撮像素子を有していてもよい。また、センサ914は、生体部位を撮像するために用いられるレンズ等の光学系や光源等を更に有していてもよい。また、センサ914は、音声等を取得するためのマイクロフォン等であってもよい。なお、センサ914は、上述のもの以外にも、温度計、照度計、湿度計、速度計、加速度計などの様々な測定機器を備えていてもよい。   The sensor 914 is, for example, a detection unit that detects biological information unique to the user or various types of information used to acquire the biological information. In the present embodiment, the sensor 914 corresponds to, for example, the photodetector 170 illustrated in FIGS. 2 and 4A. In addition, the sensor 914 includes, for example, each of a series of systems that scan the living tissue 500 with laser light and detect the return light including the endoscope 160 and the photodetector 170 illustrated in FIGS. 2 and 4A. Corresponds to the component. The sensor 914 may include, for example, a photodetector such as a photodiode or a PMT, and various imaging elements such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The sensor 914 may further include an optical system such as a lens and a light source used for imaging a living body part. The sensor 914 may be a microphone or the like for acquiring sound or the like. The sensor 914 may include various measuring devices such as a thermometer, an illuminometer, a hygrometer, a speedometer, and an accelerometer in addition to the above-described ones.

入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ及びレバー等、ユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、レーザ走査型観察装置900の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。更に、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。入力装置915は、本実施形態においては、例えば、図2及び図4Aに示す入力部195に対応している。レーザ走査型観察装置900のユーザは、この入力装置915を操作することにより、レーザ走査型観察装置900に対して、例えば回転機構、平行移動機構及び/又は観察深さ調整機構等の駆動に関する各種のデータを入力したり処理動作を指示したりすることができる。   The input device 915 is an operation unit operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever. The input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or may be an external device such as a mobile phone or a PDA corresponding to the operation of the laser scanning observation device 900. The connection device 929 may be used. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by the user using the above-described operation means and outputs the input signal to the CPU 901, for example. In the present embodiment, the input device 915 corresponds to, for example, the input unit 195 illustrated in FIGS. 2 and 4A. The user of the laser scanning observation apparatus 900 operates the input device 915 to perform various operations related to driving of the laser scanning observation apparatus 900 such as a rotation mechanism, a parallel movement mechanism, and / or an observation depth adjustment mechanism. Data can be input and a processing operation can be instructed.

出力装置917は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置917は、例えば、レーザ走査型観察装置900が行った各種処理により得られた結果を出力する。具体的には、表示装置は、レーザ走査型観察装置900が行った各種処理により得られた結果を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。出力装置917は、本実施形態においては、例えば、図2及び図4Aに示す出力部190に対応している。例えば、出力装置917の表示画面には、レーザ走査の結果取得された生体組織に関する画像データが表示される。   The output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as lamps, audio output devices such as speakers and headphones, printer devices, and the like. The output device 917 outputs, for example, results obtained by various processes performed by the laser scanning observation device 900. Specifically, the display device visually displays the results obtained by various processes performed by the laser scanning observation device 900 in various formats such as text, images, tables, and graphs. On the other hand, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs it. In the present embodiment, the output device 917 corresponds to, for example, the output unit 190 illustrated in FIGS. 2 and 4A. For example, on the display screen of the output device 917, image data relating to a living tissue acquired as a result of laser scanning is displayed.

また、図2及び図4Aには明示しなかったが、レーザ走査型観察装置900は、以下の構成部材を更に備えてもよい。   Although not clearly shown in FIGS. 2 and 4A, the laser scanning observation apparatus 900 may further include the following constituent members.

ストレージ装置919は、レーザ走査型観察装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイス等により構成される。このストレージ装置919は、レーザ走査型観察装置900において処理される各種のデータ、例えば、CPU901が実行するプログラムや各種データ、外部から取得した各種データ、及び、レーザ走査型観察装置900におけるレーザ走査の結果取得される各種のデータ等を格納する。本実施形態においては、例えば、ストレージ装置919は、レーザ走査型観察装置900におけるレーザ走査を制御するためのプログラムや各種の条件等を格納する。例えば、ストレージ装置919は、レーザ走査の結果取得された生体組織に関する画像データを格納する。   The storage device 919 is a data storage device configured as an example of a storage unit of the laser scanning observation device 900. The storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. The storage device 919 includes various data processed by the laser scanning observation apparatus 900, such as programs and various data executed by the CPU 901, various data acquired from the outside, and laser scanning in the laser scanning observation apparatus 900. Stores various data obtained as a result. In the present embodiment, for example, the storage device 919 stores a program for controlling laser scanning in the laser scanning observation apparatus 900, various conditions, and the like. For example, the storage device 919 stores image data related to living tissue acquired as a result of laser scanning.

ドライブ921は、記録媒体用リーダライタであり、レーザ走査型観察装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD−DVDメディア、Blu−ray(登録商標)メディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ又はSDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。ドライブ921は、レーザ走査型観察装置900において処理される各種のデータの、各種のリムーバブル記録媒体927への書き込み及び読み出しを行う。   The drive 921 is a recording medium reader / writer, and is built in or externally attached to the laser scanning observation apparatus 900. The drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905. The drive 921 can also write a record to a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory that is mounted. The removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like. Further, the removable recording medium 927 may be a Compact Flash (registered trademark) (Compact Flash: CF), a flash memory, an SD memory card (Secure Digital memory card), or the like. Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like. The drive 921 writes and reads various data processed by the laser scanning observation apparatus 900 to and from various removable recording media 927.

接続ポート923は、各種の外部機器をレーザ走査型観察装置900に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート及びSCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS−232Cポート、光オーディオ端子及びHDMI(登録商標)(High−Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、レーザ走査型観察装置900は、外部接続機器929から直接各種データを取得したり、外部接続機器929に各種データを提供したりする。このように、接続ポート923により、レーザ走査型観察装置900と各種の外部機器とが、各種のデータを通信可能に接続される。レーザ走査型観察装置900は、接続ポート923を介して、レーザ走査型観察装置900において処理される各種のデータ、例えばレーザ走査の結果取得された生体組織に関する画像データを、各種の外部機器へ送信することができる。   The connection port 923 is a port for directly connecting various external devices to the laser scanning observation apparatus 900. Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like. As another example of the connection port 923, there are an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, and the like. By connecting the external connection device 929 to this connection port 923, the laser scanning observation apparatus 900 acquires various data directly from the external connection device 929 or provides various data to the external connection device 929. In this manner, the connection port 923 connects the laser scanning observation apparatus 900 and various external devices so that various data can be communicated. The laser scanning observation apparatus 900 transmits various data processed in the laser scanning observation apparatus 900, for example, image data relating to a living tissue acquired as a result of laser scanning, to various external devices via the connection port 923. can do.

通信装置925は、例えば、通信網(ネットワーク)931に接続するための通信デバイス等で構成された通信インターフェースである。通信装置925は、例えば、有線若しくは無線LAN(Local Area Network)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。通信装置925により、レーザ走査型観察装置900と各種の外部機器との間で、レーザ走査型観察装置900において処理される各種のデータを相互に送受信することができる。例えば、通信装置925は、レーザ走査型観察装置900において処理される各種のデータを、通信網931を介して各種の外部機器に送信することができる。例えば、レーザ走査の結果取得された生体組織に関する画像データが、通信装置925によってデータベースサーバ等の各種の外部機器へ送信されてもよい。   The communication device 925 is a communication interface configured with, for example, a communication device for connecting to a communication network (network) 931. The communication device 925 is, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB). Further, the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like. The communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices. Further, the communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. . With the communication device 925, various data processed in the laser scanning observation device 900 can be transmitted and received between the laser scanning observation device 900 and various external devices. For example, the communication device 925 can transmit various data processed by the laser scanning observation device 900 to various external devices via the communication network 931. For example, image data relating to a living tissue acquired as a result of laser scanning may be transmitted by the communication device 925 to various external devices such as a database server.

以上、本実施形態に係るレーザ走査型観察装置900の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。   Heretofore, an example of the hardware configuration capable of realizing the function of the laser scanning observation apparatus 900 according to the present embodiment has been shown. Each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.

なお、上述のようなレーザ走査型観察装置900におけるレーザ走査及び画像データ取得に関する各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。   Note that a computer program for realizing each function related to laser scanning and image data acquisition in the laser scanning observation apparatus 900 as described above can be produced and mounted on a personal computer or the like. In addition, a computer-readable recording medium storing such a computer program can be provided. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.

(8.まとめ)
以上説明したように、本開示の好適な実施形態によれば、以下の効果を得られる。
(8. Summary)
As described above, according to a preferred embodiment of the present disclosure, the following effects can be obtained.

第1の実施形態に係るレーザ走査型内視鏡装置1によれば、鏡筒161内において対物レンズ165がy軸を回転軸として回転することによって、ウインドウ部162を介して生体組織500に対してx軸方向にレーザ光が走査される。このように、対物レンズ165が回転することでレーザ光が走査されることにより、レーザ走査型内視鏡装置1における視野(FOV)は、対物レンズ165の軸外特性によって制限されない。従って、レーザ走査型内視鏡装置1では、対物レンズ165が回転中にウインドウ部162と対向する範囲(すなわち、x軸方向にレーザ光が走査される範囲)がFOVとして確保されるため、対物レンズ165のNAが比較的高い場合であっても広視野が実現される。また、第1の実施形態に係るレーザ走査型内視鏡装置1の内視鏡160に設けられるウインドウ部162は、所定の厚さを有して形成されるため、ウインドウ部162が生体組織に接触する際の安全性が確保される。更に、第1の実施形態に係るレーザ走査型内視鏡装置1によれば、ウインドウ部162よりも前段に、レーザ光が生体組織に集光される際に生じる収差を補正する収差補正素子166が設けられる。ここで、収差補正素子166の収差補正性能は、対物レンズ165及び/又はウインドウ部162に起因して生じる収差を補正するように、対物レンズ165及びウインドウ部162の特性や形状に応じて適宜設定されてよい。従って、レーザ走査型内視鏡装置1では、NAが比較的高い対物レンズを用いながら、ウインドウ部に所定の厚さを設けることにより安全性を確保することと、収差の影響を抑制することにより高品質な画像を取得することを両立させることが可能となる。   According to the laser scanning endoscope apparatus 1 according to the first embodiment, the objective lens 165 rotates about the y axis in the lens barrel 161 as a rotation axis. Then, the laser beam is scanned in the x-axis direction. Thus, the field of view (FOV) in the laser scanning endoscope apparatus 1 is not limited by the off-axis characteristics of the objective lens 165 by scanning the laser beam by the rotation of the objective lens 165. Accordingly, in the laser scanning endoscope apparatus 1, the range facing the window portion 162 while the objective lens 165 is rotating (that is, the range in which the laser beam is scanned in the x-axis direction) is secured as the FOV. A wide field of view is realized even when the NA of the lens 165 is relatively high. Moreover, since the window part 162 provided in the endoscope 160 of the laser scanning endoscope apparatus 1 according to the first embodiment is formed with a predetermined thickness, the window part 162 is formed on a living tissue. Safety when contacting is ensured. Furthermore, according to the laser scanning endoscope apparatus 1 according to the first embodiment, the aberration correction element 166 that corrects the aberration generated when the laser light is focused on the living tissue before the window unit 162. Is provided. Here, the aberration correction performance of the aberration correction element 166 is appropriately set according to the characteristics and shape of the objective lens 165 and the window portion 162 so as to correct aberrations caused by the objective lens 165 and / or the window portion 162. May be. Therefore, in the laser scanning endoscope apparatus 1, while using an objective lens having a relatively high NA, safety is ensured by providing a predetermined thickness in the window portion, and the influence of aberration is suppressed. It becomes possible to simultaneously obtain a high-quality image.

また、レーザ走査型内視鏡装置1においては、対物レンズ165を回転させることにより、高い解像度と広い視野とを確保することができる。従って、レーザ走査のサンプリングレートを制御することにより、生体組織を広範囲に見渡したり、必要に応じて所望の部位を拡大してより高い解像度で観察したりすることができ、効率的な生体組織の観察が実現される。   In the laser scanning endoscope apparatus 1, high resolution and a wide field of view can be ensured by rotating the objective lens 165. Therefore, by controlling the sampling rate of the laser scanning, it is possible to look over the living tissue over a wide range, or to enlarge the desired part as needed and observe it at a higher resolution. Observation is realized.

また、第2の実施形態に係るレーザ走査型内視鏡装置2によれば、上述した第1の実施形態に係るレーザ走査型内視鏡装置によって得られる効果に加えて、以下の効果を得られる。すなわち、レーザ走査型内視鏡装置2においては、光路変更素子164にレーザ光の光束が入射され、対物レンズ165は、生体組織500の互いに異なる複数のスポットに、当該レーザ光の光束を集光する。ここで、当該光束を構成するレーザ光は、互いに異なる変調を施したレーザ光であってよく、レーザ走査型内視鏡装置2は、これらのレーザ光に対する復調機能を有することにより、各スポットからの戻り光に対応する画像信号を選択的に分離して取得することができる。従って、レーザ走査型内視鏡装置2では、走査部163が1回転する間に、複数のスポットに照射されるレーザ光による複数のラインを走査することが可能となる。よって、走査部163の回転数が比較的小さくても、高いスキャンスピードを得ることができる。   Further, according to the laser scanning endoscope apparatus 2 according to the second embodiment, in addition to the effects obtained by the laser scanning endoscope apparatus according to the first embodiment described above, the following effects are obtained. It is done. That is, in the laser scanning endoscope apparatus 2, a laser beam is incident on the optical path changing element 164, and the objective lens 165 focuses the laser beam on a plurality of different spots of the living tissue 500. To do. Here, the laser light that constitutes the light beam may be laser light that has been modulated differently, and the laser scanning endoscope apparatus 2 has a demodulation function for these laser light, so The image signal corresponding to the return light can be selectively separated and acquired. Therefore, in the laser scanning endoscope apparatus 2, it is possible to scan a plurality of lines by the laser light irradiated to a plurality of spots while the scanning unit 163 rotates once. Therefore, a high scanning speed can be obtained even if the rotational speed of the scanning unit 163 is relatively small.

また、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2においては、走査部が複数の対物レンズを有する構成であってもよい。走査部が複数の対物レンズを有することにより、走査部が1回転する間に、複数の対物レンズによる複数のラインのレーザ走査を行うことが可能となる。従って、走査部の1度の回転によって走査可能なライン数を増加させることができるため、より効率的なレーザ走査が可能となる。   In the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments, the scanning unit may have a plurality of objective lenses. Since the scanning unit includes a plurality of objective lenses, it is possible to perform laser scanning of a plurality of lines using the plurality of objective lenses while the scanning unit rotates once. Therefore, since the number of lines that can be scanned can be increased by one rotation of the scanning unit, more efficient laser scanning is possible.

また、第1及び第2の実施形態に係るレーザ走査型内視鏡装置1、2においては、走査部が異なる回転軸方向を有する構成であってもよい。例えば、ウインドウ部162が、鏡筒161の長手方向の先端部に、鏡筒161の長手方向と略垂直な面を有して設けられ、鏡筒161の先端部を接触させた部位に対してレーザ走査が行われる。従って、例えば、観察対象部位が、鏡筒161の外側壁を接触させることが困難であるような体腔内の奥まった凹部に存在する場合であっても、レーザ走査による観察を行うことが可能となる。   In the laser scanning endoscope apparatuses 1 and 2 according to the first and second embodiments, the scanning unit may have a different rotation axis direction. For example, the window 162 is provided at the distal end in the longitudinal direction of the lens barrel 161 so as to have a surface substantially perpendicular to the longitudinal direction of the lens barrel 161, and the portion where the distal end of the lens barrel 161 is in contact with the window 161. Laser scanning is performed. Therefore, for example, even when the observation target site is present in a recessed portion in the body cavity where it is difficult to contact the outer wall of the lens barrel 161, it is possible to perform observation by laser scanning. Become.

更に、上記(6.観察深さ調整機構を備える構成)では、本実施形態に係るレーザ走査型観察装置が観察深さ調整機構を備える場合について説明した。また、本実施形態に係るレーザ走査型観察装置の内視鏡装置以外の構成例として、レーザ走査型プローブ及びレーザ走査型顕微鏡装置の構成について説明した。これらの構成によれば、上述した第1の実施形態及び/又は第2の実施形態で得られる効果に加えて、以下の効果を得ることができる。   Furthermore, in the above (6. Configuration including observation depth adjustment mechanism), the case where the laser scanning observation apparatus according to the present embodiment includes the observation depth adjustment mechanism has been described. Further, the configuration of the laser scanning probe and the laser scanning microscope apparatus has been described as a configuration example of the laser scanning observation apparatus according to the present embodiment other than the endoscope apparatus. According to these configurations, in addition to the effects obtained in the first embodiment and / or the second embodiment described above, the following effects can be obtained.

上記(6.観察深さ調整機構を備える構成)で説明したレーザ走査型観察装置では、観察深さ調整機構が設けられることにより、観察対象に対する深さ方向へのレーザ走査が可能となる。従って、観察対象を3次元的に観察することが可能となり、観察対象についてより多くの情報を取得することが可能となる。また、当該レーザ走査型観察装置には、観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正するような、非点収差補正素子が設けられてよい。このような特性を有する非点収差補正素子が設けられることにより、観察深さが変化した場合であっても、非点収差の影響の少ないより高精度な観察を行うことが可能となる。   In the laser scanning observation apparatus described above (6. Configuration including observation depth adjustment mechanism), the observation depth adjustment mechanism is provided, so that laser scanning can be performed in the depth direction with respect to the observation target. Therefore, it becomes possible to observe the observation target three-dimensionally, and it is possible to acquire more information about the observation target. In addition, the laser scanning observation apparatus may be provided with an astigmatism correction element that corrects the astigmatism with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth. By providing an astigmatism correction element having such characteristics, even when the observation depth is changed, it is possible to perform more accurate observation with less influence of astigmatism.

また、例えば2光子励起を利用した観察のように、戻り光として蛍光を検出する場合には、光ファイバとしてダブルクラッド光ファイバが用いられるとともに、色収差補正素子が設けられてよい。ダブルクラッド光ファイバを用いることにより、内部クラッドで蛍光を導光することができるため、より広い面積で蛍光を集光することができるため、集光効率を向上させることができる。また、色収差補正素子は、レーザ光と蛍光との波長の違いによって生じる色収差を補正するように設計される。従って、このような特性を有する非点収差補正素子が設けられることにより、蛍光の光ファイバへの集光効率を更に向上させることが可能となる。   For example, when detecting fluorescence as return light as in observation using two-photon excitation, a double-clad optical fiber may be used as an optical fiber, and a chromatic aberration correction element may be provided. By using the double clad optical fiber, the fluorescence can be guided by the inner clad, so that the fluorescence can be collected in a wider area, so that the light collection efficiency can be improved. The chromatic aberration correcting element is designed to correct chromatic aberration caused by the difference in wavelength between laser light and fluorescence. Therefore, by providing an astigmatism correction element having such characteristics, it is possible to further improve the efficiency of condensing fluorescence onto the optical fiber.

以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。   The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.

例えば、上述した各実施形態に係る技術の用途は、顕微鏡観察に限定されず、他の用途に用いられてもよい。例えば、光励起によって活性及び不活性を制御することができる神経細胞のイオンチャンネルの制御をはじめとした、各種の光遺伝学的なマニピュレーションにも適用可能である。   For example, the application of the technology according to each of the above-described embodiments is not limited to microscopic observation, and may be used for other applications. For example, the present invention can be applied to various optogenetic manipulations including control of ion channels of nerve cells that can control activity and inactivity by photoexcitation.

また、例えば、以上説明した各構成に対して、以下に示す構成が更に設けられてもよい。   In addition, for example, the following configuration may be further provided for each configuration described above.

例えば、レーザ光源110は、レーザ光を射出するタイミングを動的に制御する構成を更に有してもよい。そして、レーザ光源110は、回転機構167による走査部の回転に同期して、レーザ光が生体組織500に照射されるタイミングでのみレーザ光を射出してもよい。レーザ光源110が必要なときにのみレーザ光を射出する構成とすることより、消費電力を低減することができる。   For example, the laser light source 110 may further include a configuration that dynamically controls the timing of emitting the laser light. Then, the laser light source 110 may emit the laser light only at the timing when the living tissue 500 is irradiated with the laser light in synchronization with the rotation of the scanning unit by the rotation mechanism 167. Power consumption can be reduced by adopting a configuration in which laser light is emitted only when the laser light source 110 is necessary.

また、例えば、レーザ光源110は、射出するレーザ光の強度(パワー)を動的に制御する構成を更に有してもよい。一般的に、拡大された画像データを取得する場合には、拡大(ズーム)するほど、1画素(pixel)当たりの受光積算時間は短くなり、取得される画像データの明度が落ちる。従って、レーザ光源110は、取得する画像データのサイズに応じて、射出するレーザ光の強度を制御してもよい。例えば、レーザ光源110は、拡大された画像データを取得する場合には、射出するレーザ光の強度を上げてもよい。また、これらのレーザ光源110のレーザ光射出タイミング及び強度の制御は、例えば制御部180によって制御されてよい。   For example, the laser light source 110 may further include a configuration that dynamically controls the intensity (power) of the emitted laser light. Generally, when acquiring enlarged image data, as the image data is enlarged (zoomed), the light reception integration time per pixel is shortened, and the brightness of the acquired image data decreases. Therefore, the laser light source 110 may control the intensity of the emitted laser light according to the size of the image data to be acquired. For example, when acquiring enlarged image data, the laser light source 110 may increase the intensity of the emitted laser light. Further, the laser light emission timing and intensity control of these laser light sources 110 may be controlled by the control unit 180, for example.

また、回転機構167は、走査部の回転駆動の安定化制御のために、回転系サーボ機構を更に有してもよい。当該回転系サーボ機構は、例えば、走査部の回転中における離心量等を検出し、回転速度等を制御することにより、走査部の回転を安定化させることができる。なお、走査部の離心量に応じて、非点収差等の収差は変動し得る。従って、走査部の離心量についての情報を収差補正素子にフィードバックし、当該離心量から計算される非点収差等の収差の変動に応じて、収差補正素子による補正量を動的に制御してもよい。   The rotation mechanism 167 may further include a rotation system servo mechanism for stabilizing control of rotation driving of the scanning unit. The rotation system servo mechanism can stabilize the rotation of the scanning unit by, for example, detecting the amount of eccentricity while the scanning unit is rotating and controlling the rotation speed and the like. Note that aberrations such as astigmatism may vary depending on the amount of eccentricity of the scanning unit. Therefore, information on the amount of eccentricity of the scanning unit is fed back to the aberration correction element, and the correction amount by the aberration correction element is dynamically controlled according to the fluctuation of aberration such as astigmatism calculated from the amount of eccentricity. Also good.

また、上記(2.第1の実施形態)で説明したように、内視鏡160は、患者の体腔内を撮影する撮像部を有してもよい。例えば、当該撮像部は、広角の明視野撮影用のカメラを有していてもよい。当該撮像部が広角の明視野撮影用のカメラを有する場合、撮像部によって撮影された広角の映像を参照しながら、詳細に観察したい観察対象部位を探索し、発見した観察対象部位にウインドウ部162を接触させることによりレーザ走査を行ってもよい。   Further, as described above (2. First Embodiment), the endoscope 160 may include an imaging unit that captures an image of the inside of the body cavity of the patient. For example, the imaging unit may include a wide-angle bright-field shooting camera. When the imaging unit has a wide-angle bright-field imaging camera, the observation target site to be observed in detail is searched for while referring to the wide-angle video captured by the imaging unit, and the window unit 162 is located at the found observation target site. Laser scanning may be carried out by bringing them into contact with each other.

なお、以下のような構成も本開示の技術的範囲に属する。
(1)管状の筐体の一部領域に設けられ、観察対象である被測定者の体腔内の生体組織に接触又は近接するウインドウ部と、前記筐体の内部に設けられ、前記ウインドウ部を通して前記生体組織にレーザ光を集光する対物レンズと、前記筐体内を前記筐体の長軸方向に沿って導光されてきた前記レーザ光を、前記対物レンズのレンズ面に導光する光路変更素子と、前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記生体組織に集光される際に生じる収差を補正する収差補正素子と、前記レーザ光が前記生体組織を走査するように、前記対物レンズの光軸と直交し前記対物レンズを通らない回転軸で、少なくとも前記対物レンズを前記筐体内で回転させる回転機構と、を備える、内視鏡。
(2)前記収差補正素子は、前記ウインドウ部に起因して生じる非点収差を少なくとも補正する、前記(1)に記載の内視鏡。
(3)前記収差補正素子は、少なくとも1つのシリンドリカルレンズを含む、前記(2)に記載の内視鏡。
(4)前記回転機構は、前記光路変更素子、前記収差補正素子及び前記対物レンズを一体的に回転させる、前記(1)〜(3)のいずれか1項に記載の内視鏡。
(5)少なくとも前記対物レンズを、前記筐体内で、前記回転軸方向に平行移動させる平行移動機構、を更に備える、前記(1)〜(4)のいずれか1項に記載の内視鏡。
(6)前記光路変更素子には、前記レーザ光の光束が入射され、前記対物レンズは、前記生体組織の互いに異なる複数のスポットに、前記レーザ光の光束を集光する、前記(1)〜(5)のいずれか1項に記載の内視鏡。
(7)前記レーザ光の光束は、互いに異なる複数の状態に変調された前記レーザ光によって構成される、前記(6)に記載の内視鏡。
(8)前記ウインドウ部は、前記筐体の長軸方向と略平行な側壁の一部領域に設けられる、前記(1)〜(7)のいずれか1項に記載の内視鏡。
(9)前記対物レンズは複数設けられ、複数の前記対物レンズは、前記筐体の長軸方向の略同一な位置において、前記筐体の内壁と対向し、前記筐体の外周方向に沿って所定の間隔で配設される、前記(8)に記載の内視鏡。
(10)前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光の偏光方向を変更する偏光変調素子、を更に備え、前記光路変更素子は所定の偏光方向を有する前記レーザ光の光路を変更する偏光ビームスプリッタであり、前記偏光ビームスプリッタは、前記偏光変調素子によって偏光方向が変更された前記レーザ光を、当該レーザ光の偏光方向に応じて、複数の前記対物レンズのうち前記ウインドウ部と対向している前記対物レンズに導光する、前記(9)に記載の内視鏡。
(11)前記光路変更素子は、入射した前記レーザ光の反射方向を動的に制御可能なMEMSミラーであり、前記MEMSミラーは、入射した前記レーザ光を、複数の前記対物レンズのうち前記ウインドウ部と対向している前記対物レンズに導光する、前記(9)に記載の内視鏡。
(12)前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光を複数の光路に分岐させる光路分岐素子、を更に備え、複数の前記対物レンズの前段には、前記収差補正素子及び前記光路変更素子が、それぞれ設けられ、前記光路分岐素子によって分岐された前記レーザ光のそれぞれが、前記光路変更素子及び前記収差補正素子を順に通過して、複数の前記対物レンズのそれぞれに導光される、前記(9)に記載の内視鏡。
(13)複数の前記対物レンズの前段には、前記収差補正素子及び前記光路変更素子が、それぞれ設けられ、複数の前記光路変更素子の前段にそれぞれ設けられ、対応する前記光路変更素子にのみ前記レーザ光を入射させる入射ウインドウ部、を更に備え、前記レーザ光は、前記レーザ光の光軸が前記筐体に対して所定の位置に保たれた状態で前記筐体内を導光され、前記レーザ光の照射位置に対応する前記入射ウインドウ部から入射したレーザ光が、当該入射ウインドウ部に対応する前記収差補正素子、前記光路変更素子及び前記対物レンズに順に導光される、前記(9)に記載の内視鏡。
(14)前記ウインドウ部は、前記筐体の長軸方向の先端部に、前記筐体の長軸方向と略垂直な面を有して設けられる、前記(1)〜(7)のいずれか1項に記載の内視鏡。
(15)前記対物レンズと前記ウインドウ部との間の空間は、前記対物レンズの屈折率及び前記ウインドウ部の屈折率と略同一の屈折率を有する液体によって液浸される、前記(1)〜(14)のいずれか1項に記載の内視鏡。
(16)少なくとも前記対物レンズを、前記対物レンズの光軸方向に平行移動させる光軸方向移動機構、を更に備える、前記(1)〜(15)のいずれか1項に記載の内視鏡。
(17)管状の筐体の一部領域に設けられ、観察対象である被測定者の体腔内の生体組織に接触又は近接するウインドウ部と、前記筐体の内部に設けられ、前記ウインドウ部を通して前記生体組織にレーザ光を集光する対物レンズと、前記筐体内を前記筐体の長軸方向に沿って導光されてきた前記レーザ光を、前記対物レンズのレンズ面に導光する光路変更素子と、前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記生体組織に集光される際に生じる収差を補正する収差補正素子と、前記レーザ光が前記生体組織を走査するように、前記対物レンズの光軸と直交し前記対物レンズを通らない回転軸で、少なくとも前記対物レンズを前記筐体内で回転させる回転機構と、を有する内視鏡と、前記レーザ光が前記生体組織に集光されて生じる戻り光を検出する光検出器と、検出された前記戻り光に基づいて、前記生体組織に関する画像データを生成する制御部と、を備える、レーザ走査型内視鏡装置。
(18)内視鏡における管状の筐体の内部にレーザ光を導光し、前記筐体の内部に設けられる光路変更素子に前記レーザ光を入射することと、前記光路変更素子によって、前記筐体の長軸方向に沿って導光されてきた前記レーザ光の光路を変更し、前記筐体の内部に設けられる対物レンズのレンズ面に前記レーザ光を導光することと、前記筐体の一部領域に設けられ観察対象である被測定者の体腔内の生体組織に接触又は近接するウインドウ部を介して、前記対物レンズによって前記生体組織に前記レーザ光を集光することと、前記レーザ光が前記生体組織を走査するように、前記対物レンズの光軸と直交し前記対物レンズを通らない回転軸で、少なくとも前記対物レンズを前記筐体内で回転させることと、を含み、前記ウインドウ部よりも前段には、前記レーザ光が前記生体組織に集光される際に生じる収差を補正する収差補正素子が設けられる、レーザ走査方法。
The following configurations also belong to the technical scope of the present disclosure.
(1) A window part provided in a partial region of a tubular casing and in contact with or in close proximity to a living tissue in a body cavity of a measurement subject to be observed; provided inside the casing; and through the window part An objective lens for condensing laser light on the living tissue, and an optical path change for guiding the laser light guided in the casing along the long axis direction of the casing to the lens surface of the objective lens An element, an aberration correction element that is provided upstream of the window portion and corrects an aberration that occurs when the laser light is condensed on the living tissue, and the laser light scans the living tissue. An endoscope comprising: a rotation mechanism that rotates at least the objective lens within the housing with a rotation axis that is orthogonal to the optical axis of the objective lens and does not pass through the objective lens.
(2) The endoscope according to (1), wherein the aberration correction element corrects at least astigmatism caused by the window portion.
(3) The endoscope according to (2), wherein the aberration correction element includes at least one cylindrical lens.
(4) The endoscope according to any one of (1) to (3), wherein the rotation mechanism integrally rotates the optical path changing element, the aberration correction element, and the objective lens.
(5) The endoscope according to any one of (1) to (4), further including a translation mechanism that translates at least the objective lens in the casing in the rotation axis direction.
(6) The light beam of the laser light is incident on the optical path changing element, and the objective lens focuses the light beam of the laser light on a plurality of different spots of the living tissue. The endoscope according to any one of (5).
(7) The endoscope according to (6), wherein the light beam of the laser light is configured by the laser light modulated into a plurality of different states.
(8) The endoscope according to any one of (1) to (7), wherein the window portion is provided in a partial region of a side wall substantially parallel to a long axis direction of the casing.
(9) A plurality of the objective lenses are provided, and the plurality of objective lenses are opposed to the inner wall of the casing at substantially the same position in the major axis direction of the casing, and along the outer peripheral direction of the casing. The endoscope according to (8), which is disposed at a predetermined interval.
(10) The apparatus further includes a polarization modulation element that is provided before the optical path changing element and changes a polarization direction of the laser light incident on the optical path changing element, and the optical path changing element has a predetermined polarization direction. A polarization beam splitter that changes an optical path of light, wherein the polarization beam splitter converts the laser light whose polarization direction has been changed by the polarization modulation element to a plurality of objective lenses according to the polarization direction of the laser light. The endoscope according to (9), wherein light is guided to the objective lens facing the window portion.
(11) The optical path changing element is a MEMS mirror that can dynamically control a reflection direction of the incident laser light, and the MEMS mirror transmits the incident laser light to the window of the plurality of objective lenses. The endoscope according to (9), wherein light is guided to the objective lens facing the part.
(12) An optical path branching element that is provided in a preceding stage of the optical path changing element and branches the laser light incident on the optical path changing element into a plurality of optical paths, wherein the aberration is provided in a stage preceding the plurality of objective lenses. A correction element and an optical path changing element are provided, and each of the laser beams branched by the optical path branching element sequentially passes through the optical path changing element and the aberration correction element, and each of the plurality of objective lenses The endoscope according to (9), which is guided to the center.
(13) The aberration correction element and the optical path changing element are provided in the front stage of the plurality of objective lenses, respectively, and are provided in the front stage of the plurality of optical path changing elements, respectively, and only in the corresponding optical path changing element. An incident window portion for allowing laser light to enter, wherein the laser light is guided in the housing in a state where an optical axis of the laser light is maintained at a predetermined position with respect to the housing; In (9), the laser beam incident from the incident window portion corresponding to the light irradiation position is sequentially guided to the aberration correction element, the optical path changing element, and the objective lens corresponding to the incident window portion. The endoscope described.
(14) Any one of (1) to (7), wherein the window portion is provided at a distal end portion in a major axis direction of the casing with a surface substantially perpendicular to the major axis direction of the casing. The endoscope according to item 1.
(15) The space between the objective lens and the window portion is immersed in a liquid having substantially the same refractive index as the refractive index of the objective lens and the refractive index of the window portion. The endoscope according to any one of (14).
(16) The endoscope according to any one of (1) to (15), further including an optical axis direction moving mechanism that translates at least the objective lens in the optical axis direction of the objective lens.
(17) A window portion provided in a partial region of the tubular casing and in contact with or close to a living tissue in a body cavity of a measurement subject to be observed; and provided inside the casing and passing through the window portion An objective lens for condensing laser light on the living tissue, and an optical path change for guiding the laser light guided in the casing along the long axis direction of the casing to the lens surface of the objective lens An element, an aberration correction element that is provided upstream of the window portion and corrects an aberration that occurs when the laser light is condensed on the living tissue, and the laser light scans the living tissue. An endoscope having a rotation mechanism that rotates at least the objective lens within the housing with a rotation axis that is orthogonal to the optical axis of the objective lens and does not pass through the objective lens, and the laser light is collected in the living tissue. Lighted A photodetector for detecting Jill return light, based on the detected the return light, and a control unit for generating image data for the body tissue, the laser scanning endoscope apparatus.
(18) A laser beam is guided into a tubular casing in the endoscope, and the laser beam is incident on an optical path changing element provided in the casing. Changing the optical path of the laser light guided along the long axis direction of the body, guiding the laser light to the lens surface of the objective lens provided inside the housing, and Condensing the laser light on the biological tissue by the objective lens through a window portion that is provided in a partial area and contacts or approaches the biological tissue in the body cavity of the measurement subject to be observed; Rotating at least the objective lens within the housing with a rotation axis that is orthogonal to the optical axis of the objective lens and does not pass through the objective lens so that light scans the biological tissue, and the window portion than The stage, the aberration correcting element is provided which corrects an aberration generated when the laser beam is focused on the biological tissue, the laser scanning method.

また、以下のような構成も本開示の技術的範囲に属する。
(1)筐体の一部領域に設けられ、観察対象に接触又は近接するウインドウ部と、前記ウインドウ部を通して前記観察対象にレーザ光を集光する対物レンズと、前記筐体内を導光されてきた前記レーザ光の進行方向を前記ウインドウ部に向けて変更する光路変更素子と、前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記観察対象に集光される際に生じる非点収差を補正する非点収差補正素子と、前記レーザ光が前記観察対象を走査するように、前記レーザ光の前記ウインドウ部への入射方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させる回転機構と、を備え、前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査型観察装置。
(2)前記非点収差補正素子は、前記レーザ光が少なくとも2面のシリンドリカル面又はトロイダル面を通過するように構成されたレンズを含み、前記回転機構によって前記光路変更素子とともに回転される、前記(1)に記載のレーザ走査型観察装置。
(3)前記非点収差補正素子は、両面にシリンドリカル面が形成されたメニスカスレンズである、前記(2)に記載のレーザ走査型観察装置。
(4)前記非点収差補正素子は、前記観察深さの変化に応じて非点収差の補正量を動的に変更させる駆動素子を含む光学部材である、前記(1)に記載のレーザ走査型観察装置。
(5)少なくとも前記光路変更素子を、前記回転軸方向に平行移動させることにより、前記観察対象に対して前記回転軸方向に前記レーザ光を走査する平行移動機構、を更に備える、前記(1)〜(4)のいずれか1項に記載のレーザ走査型観察装置。
(6)前記観察深さを変更することにより、前記観察対象に対して深さ方向に前記レーザ光を走査する観察深さ調整機構、を更に備える、前記(1)〜(5)のいずれか1項に記載のレーザ走査型観察装置。
(7)前記観察深さ調整機構は、前記レーザ光を略平行光にして前記光路変更素子及び前記非点収差補正素子に導光するコリメータレンズと、当該コリメータレンズを光軸方向に移動させる移動機構と、を含む、前記(6)に記載のレーザ走査型観察装置。
(8)前記レーザ走査型観察装置は、前記レーザ光が前記観察対象に照射されることによって生じる蛍光を戻り光として検出することにより、前記観察対象についての情報を取得し、前記レーザ光と前記蛍光との波長の違いによって生じる色収差を補正する色収差補正素子、を更に備える、前記(1)〜(7)のいずれか1項に記載のレーザ走査型観察装置。
(9)前記色収差補正素子は、前記レーザ光に対応する波長帯域の光に対しては平行平板として機能するとともに、前記蛍光に対応する波長帯域の光に対しては凹レンズとして機能する接合レンズである、前記(8)に記載のレーザ走査型観察装置。
(10)前記光路変更素子には、前記レーザ光の光束が入射され、前記対物レンズは、前記観察対象の互いに異なる複数のスポットに、前記レーザ光の光束を集光する、前記(1)〜(9)のいずれか1項に記載のレーザ走査型観察装置。
(11)前記レーザ光の光束は、互いに異なる複数の状態に変調された前記レーザ光によって構成される、前記(10)に記載のレーザ走査型観察装置。
(12)前記レーザ光の光束は、複数の光ファイバによって前記筐体内に導光される、前記(10)又は(11)に記載のレーザ走査型観察装置。
(13)前記レーザ光の光束は、複数のコアを有するマルチコア光ファイバによって前記筐体内に導光される、前記(10)又は(11)に記載のレーザ走査型観察装置。
(14)前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光の偏光方向を変更する偏光変調素子、を更に備え、前記光路変更素子は所定の偏光方向を有する前記レーザ光の光路を変更する偏光ビームスプリッタであり、前記偏光ビームスプリッタは、前記偏光変調素子によって偏光方向が変更された前記レーザ光の進行方向を、当該レーザ光の偏光方向に応じて、前記ウインドウ部に向けて変更する、前記(1)〜(13)のいずれか1項に記載のレーザ走査型観察装置。
(15)前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光を複数の光路に分岐させる光路分岐素子、を更に備え、前記複数の光路の各々に対して、前記非点収差補正素子、前記光路変更素子及び前記対物レンズがそれぞれ設けられ、前記光路分岐素子によって分岐された前記レーザ光のそれぞれの進行方向が、前記光路変更素子によって、前記回転軸方向と垂直な複数の方向に変更される、前記(1)〜(13)のいずれか1項に記載のレーザ走査型観察装置。
(16)少なくとも複数の前記光路変更素子を格納し、複数の前記光路変更素子とともに回転するハウジングが設けられ、当該ハウジングの前記レーザ光が入射する壁面には、前記レーザ光を複数の前記光路変更素子の各々に入射させる入射ウインドウ部が形成され、複数の前記入射ウインドウ部のそれぞれに対して前記非点収差補正素子及び前記対物レンズが設けられ、前記レーザ光は、前記レーザ光の光軸が前記筐体に対して所定の位置に保たれた状態で前記筐体内を導光され、前記ハウジングの回転に伴って複数の前記入射ウインドウ部に順に照射され、前記レーザ光の照射位置に対応する前記入射ウインドウ部から入射したレーザ光が、前記光路変更素子によって前記ウインドウ部に向かって導光される、前記(1)〜(13)のいずれか1項に記載のレーザ走査型観察装置。
(17)前記筐体は円筒形状を有し、前記ウインドウ部は、前記筐体の長軸方向と略平行な側壁に設けられ、当該筐体の側壁の形状に則した円筒形の曲面を有する、前記(1)〜(16)のいずれか1項に記載のレーザ走査型観察装置。
(18)前記筐体は円筒形状を有し、前記ウインドウ部は、前記筐体の長軸方向の先端部に、前記筐体の長軸方向と略垂直な面を有して設けられる、前記(1)〜(16)のいずれか1項に記載のレーザ走査型観察装置。
(19)前記対物レンズは、前記光路変更素子と前記ウインドウ部との間に設けられ、
前記対物レンズと前記ウインドウ部との間の空間は、前記ウインドウ部の屈折率と略同一の屈折率を有する液体によって液浸される、前記(1)〜(18)のいずれか1項に記載のレーザ走査型観察装置。
(20)前記筐体は内視鏡の鏡筒であり、前記鏡筒の一部領域に設けられる前記ウインドウ部が観察対象であるヒト又は動物の体腔内の生体組織に接触又は近接し、前記生体組織に対して前記レーザ光が走査される、前記(1)〜(19)のいずれか1項に記載のレーザ走査型観察装置。
(21)前記ウインドウ部が観察対象であるヒト又は動物の体表面に接触又は近接し、前記体表面から所定の深さにおける生体組織に対して前記レーザ光が走査される、前記(1)〜(19)のいずれか1項に記載のレーザ走査型観察装置。
(22)前記レーザ走査型観察装置は、前記観察対象が載置されるステージ、を更に備え、前記ステージの少なくとも一部領域に設けられる前記ウインドウ部を通して前記観察対象に対して前記レーザ光が走査される、前記(1)〜(19)のいずれか1項に記載のレーザ走査型観察装置。
(23)筐体の内部に設けられる光路変更素子にレーザ光を入射することと、前記光路変更素子によって前記筐体内を導光されてきた前記レーザ光の進行方向を変更し、前記筐体の一部領域に設けられ観察対象に接触又は近接するウインドウ部を介して、対物レンズによって集光され、非点収差補正素子によって非点収差が補正された前記レーザ光を前記観察対象に照射することと、前記レーザ光が前記生体組織を走査するように、前記レーザ光の前記観察対象への入射方向である観察方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させることと、を含み、前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査方法。
The following configurations also belong to the technical scope of the present disclosure.
(1) A window portion that is provided in a partial region of the housing and is in contact with or close to the observation target; an objective lens that focuses the laser light on the observation target through the window portion; An optical path changing element that changes the traveling direction of the laser light toward the window portion, and an astigmatism that is provided before the window portion and is generated when the laser light is condensed on the observation target. Astigmatism correction elements to be corrected, and at least the optical path changing element is rotated about a rotation axis perpendicular to the incident direction of the laser light to the window portion so that the laser light scans the observation target. A rotation mechanism, and the astigmatism correction element is applied with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of the condensing position of the laser beam in the observation target. Correcting astigmatism, the laser-scanning examination apparatus.
(2) The astigmatism correction element includes a lens configured to allow the laser light to pass through at least two cylindrical surfaces or toroidal surfaces, and is rotated together with the optical path changing element by the rotation mechanism. The laser scanning observation apparatus according to (1).
(3) The laser scanning observation apparatus according to (2), wherein the astigmatism correction element is a meniscus lens having cylindrical surfaces formed on both sides.
(4) The laser scanning according to (1), wherein the astigmatism correction element is an optical member including a drive element that dynamically changes an astigmatism correction amount in accordance with a change in the observation depth. Mold observation device.
(5) The apparatus further comprises a translation mechanism that scans the laser light in the direction of the rotation axis with respect to the observation target by translating at least the optical path changing element in the direction of the rotation axis. The laser scanning observation apparatus according to any one of to (4).
(6) Any one of (1) to (5), further including an observation depth adjustment mechanism that scans the laser light in the depth direction with respect to the observation target by changing the observation depth. 2. A laser scanning observation apparatus according to item 1.
(7) The observation depth adjustment mechanism includes a collimator lens that converts the laser light into substantially parallel light and guides the laser light to the optical path changing element and the astigmatism correction element, and a movement that moves the collimator lens in the optical axis direction. The laser scanning observation apparatus according to (6), including a mechanism.
(8) The laser scanning observation apparatus acquires information about the observation target by detecting fluorescence generated by irradiating the observation target with the laser light as return light, and the laser beam and the laser The laser scanning observation apparatus according to any one of (1) to (7), further including a chromatic aberration correction element that corrects chromatic aberration caused by a difference in wavelength from fluorescence.
(9) The chromatic aberration correcting element is a cemented lens that functions as a parallel plate for light in the wavelength band corresponding to the laser light and functions as a concave lens for light in the wavelength band corresponding to the fluorescence. The laser scanning observation apparatus according to (8), wherein:
(10) The laser beam is incident on the optical path changing element, and the objective lens focuses the laser beam on a plurality of different spots of the observation target. The laser scanning observation apparatus according to any one of (9).
(11) The laser scanning observation apparatus according to (10), wherein the light beam of the laser light is configured by the laser light modulated into a plurality of different states.
(12) The laser scanning observation apparatus according to (10) or (11), wherein the light beam of the laser light is guided into the housing by a plurality of optical fibers.
(13) The laser scanning observation apparatus according to (10) or (11), wherein the laser light beam is guided into the housing by a multi-core optical fiber having a plurality of cores.
(14) A polarization modulation element that is provided in a preceding stage of the optical path changing element and changes a polarization direction of the laser light incident on the optical path changing element, wherein the optical path changing element has a predetermined polarization direction. A polarization beam splitter that changes an optical path of the light, wherein the polarization beam splitter changes the traveling direction of the laser light whose polarization direction has been changed by the polarization modulator according to the polarization direction of the laser light. The laser scanning observation apparatus according to any one of (1) to (13), which is changed toward
(15) An optical path branching element that is provided in a preceding stage of the optical path changing element and splits the laser light incident on the optical path changing element into a plurality of optical paths, and for each of the plurality of optical paths, A point aberration correcting element, the optical path changing element, and the objective lens are provided, respectively, and a plurality of traveling directions of the laser light branched by the optical path branching element are perpendicular to the rotation axis direction by the optical path changing element. The laser scanning observation apparatus according to any one of (1) to (13), wherein the laser scanning observation apparatus is changed to the direction of (1).
(16) A housing for storing at least a plurality of the optical path changing elements and rotating together with the plurality of the optical path changing elements is provided, and the laser beam is incident on a wall surface on which the laser light is incident. An incident window portion that is incident on each of the elements is formed, and the astigmatism correction element and the objective lens are provided for each of the plurality of incident window portions, and the laser beam has an optical axis of the laser beam. The light is guided through the housing while being held at a predetermined position with respect to the housing, and sequentially irradiated to the plurality of incident window portions as the housing rotates, corresponding to the irradiation position of the laser light. The laser light incident from the incident window portion is guided toward the window portion by the optical path changing element (1) to (13). Re or laser-scanning examination apparatus according to (1).
(17) The casing has a cylindrical shape, and the window portion is provided on a side wall substantially parallel to the long axis direction of the casing, and has a cylindrical curved surface conforming to the shape of the side wall of the casing. The laser scanning observation apparatus according to any one of (1) to (16).
(18) The casing has a cylindrical shape, and the window portion is provided at a distal end portion in a major axis direction of the casing with a surface substantially perpendicular to the major axis direction of the casing. The laser scanning observation apparatus according to any one of (1) to (16).
(19) The objective lens is provided between the optical path changing element and the window portion,
The space between the objective lens and the window portion is any one of (1) to (18), wherein the space is immersed in a liquid having a refractive index substantially the same as the refractive index of the window portion. Laser scanning observation device.
(20) The casing is a lens barrel of an endoscope, and the window portion provided in a partial region of the lens barrel is in contact with or close to a living tissue in a body cavity of a human or animal to be observed, The laser scanning observation apparatus according to any one of (1) to (19), wherein the laser beam is scanned with respect to a living tissue.
(21) The window portion is in contact with or close to the surface of a human or animal body to be observed, and the laser light is scanned from the body surface to a living tissue at a predetermined depth. (19) The laser scanning observation apparatus according to any one of (19).
(22) The laser scanning observation apparatus further includes a stage on which the observation target is placed, and the laser light scans the observation target through the window provided in at least a partial region of the stage. The laser scanning observation apparatus according to any one of (1) to (19).
(23) Incident laser light into an optical path changing element provided inside the casing; and changing a traveling direction of the laser light guided through the casing by the optical path changing element; Irradiating the observation target with the laser light that is collected by the objective lens and corrected for astigmatism by the astigmatism correction element through a window portion that is provided in a partial region and that is in contact with or close to the observation target. And rotating at least the optical path changing element with a rotation axis perpendicular to an observation direction which is an incident direction of the laser light to the observation target, so that the laser light scans the living tissue, The astigmatism correction element includes the astigmatism with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of the condensing position of the laser beam in the observation target. correction That, laser scanning method.

1、2、3 レーザ走査型内視鏡装置
4、5 レーザ走査型プローブ
6 レーザ走査型顕微鏡装置
110、810 レーザ光源110
120、820 ビームスプリッタ
130、150 光ファイバ用導光レンズ
140、241、242、243、340、641、710、740、760 光ファイバ
160、360、400、450、470 内視鏡
161 鏡筒
162、662、732、782、862 ウインドウ部
163、363、370、380、390、420、460、480、663、733、783、863 走査部
164、364、421、422、664、734、784、864 光路変更素子
165、365、366、422、665、735、785、865 対物レンズ
166、367、368、423、461 収差補正素子
167、667、737、787、867 回転機構
168、668、738、788、868 平行移動機構
169、369、424、469、669、739、789、869 ハウジング
170、870 光検出器
180、280 制御部
181 画像信号取得部
182 画像信号処理部
183 駆動制御部
184 表示制御部
190 出力部
195 入力部
240 光ファイババンドル
281 画像信号取得部(光復調部)
372 偏光ビームスプリッタ
381 MEMSミラー
391 光路分岐素子
463 第1の光路変更素子
464 第2の光路変更素子
465 第1の対物レンズ
466 第2の対物レンズ
620 シリンドリカル凹凸レンズペア
621 凹シリンドリカルレンズ
622 凸シリンドリカルレンズ
630 シリンドリカルメニスカスレンズ
640 シリンドリカル平凸レンズ
650、720、770、850 コリメータレンズ
661、731、781 筐体
666、736、786、866 非点収差補正素子
670、740、790、840 色収差補正素子
1, 2, 3 Laser scanning endoscope apparatus 4, 5 Laser scanning probe 6 Laser scanning microscope apparatus 110, 810 Laser light source 110
120, 820 Beam splitter 130, 150 Light guide lens for optical fiber 140, 241, 242, 243, 340, 641, 710, 740, 760 Optical fiber 160, 360, 400, 450, 470 Endoscope 161 Lens barrel 162, 662, 732, 782, 862 Window part 163, 363, 370, 380, 390, 420, 460, 480, 663, 733, 783, 863 Scan part 164, 364, 421, 422, 664, 734, 784, 864 Optical path Change element 165, 365, 366, 422, 665, 735, 785, 865 Objective lens 166, 367, 368, 423, 461 Aberration correction element 167, 667, 737, 787, 867 Rotation mechanism 168, 668, 738, 788, 868 translation mechanism 169, 69, 424, 469, 669, 739, 789, 869 Housing 170, 870 Photodetector 180, 280 Control unit 181 Image signal acquisition unit 182 Image signal processing unit 183 Drive control unit 184 Display control unit 190 Output unit 195 Input unit 240 Optical fiber bundle 281 Image signal acquisition unit (optical demodulation unit)
372 Polarizing beam splitter 381 MEMS mirror 391 Optical path branching element 463 First optical path changing element 464 Second optical path changing element 465 First objective lens 466 Second objective lens 620 Cylindrical concave / convex lens pair 621 Concave cylindrical lens 622 Convex cylindrical lens 630 Cylindrical meniscus lens 640 Cylindrical plano-convex lens 650, 720, 770, 850 Collimator lens 661, 731, 781 Case 666, 736, 786, 866 Astigmatism correction element 670, 740, 790, 840 Chromatic aberration correction element

Claims (23)

筐体の一部領域に設けられ、観察対象に接触又は近接するウインドウ部と、
前記ウインドウ部を通して前記観察対象にレーザ光を集光する対物レンズと、
前記筐体内を導光されてきた前記レーザ光の進行方向を前記ウインドウ部に向けて変更する光路変更素子と、
前記ウインドウ部よりも前段に設けられ、前記レーザ光が前記観察対象に集光される際に生じる非点収差を補正する非点収差補正素子と、
前記レーザ光が前記観察対象を走査するように、前記レーザ光の前記ウインドウ部への入射方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させる回転機構と、
を備え、
前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査型観察装置。
A window portion provided in a partial region of the housing and in contact with or close to the observation target;
An objective lens that focuses laser light on the observation object through the window portion;
An optical path changing element that changes the traveling direction of the laser light guided in the housing toward the window portion;
An astigmatism correction element that is provided before the window portion and corrects astigmatism generated when the laser beam is focused on the observation target;
A rotation mechanism that rotates at least the optical path changing element at a rotation axis perpendicular to the direction of incidence of the laser light on the window portion so that the laser light scans the observation target;
With
The astigmatism correction element corrects the astigmatism with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of a condensing position of the laser light in the observation target; Laser scanning observation device.
前記非点収差補正素子は、前記レーザ光が少なくとも2面のシリンドリカル面又はトロイダル面を通過するように構成されたレンズを含み、前記回転機構によって前記光路変更素子とともに回転される、
請求項1に記載のレーザ走査型観察装置。
The astigmatism correction element includes a lens configured to allow the laser light to pass through at least two cylindrical surfaces or toroidal surfaces, and is rotated together with the optical path changing element by the rotation mechanism.
The laser scanning observation apparatus according to claim 1.
前記非点収差補正素子は、両面にシリンドリカル面が形成されたメニスカスレンズである、
請求項2に記載のレーザ走査型観察装置。
The astigmatism correction element is a meniscus lens having cylindrical surfaces formed on both sides.
The laser scanning observation apparatus according to claim 2.
前記非点収差補正素子は、前記観察深さの変化に応じて非点収差の補正量を動的に変更させる駆動素子を含む光学部材である、
請求項1に記載のレーザ走査型観察装置。
The astigmatism correction element is an optical member including a drive element that dynamically changes the correction amount of astigmatism according to the change in the observation depth.
The laser scanning observation apparatus according to claim 1.
少なくとも前記光路変更素子を、前記回転軸方向に平行移動させることにより、前記観察対象に対して前記回転軸方向に前記レーザ光を走査する平行移動機構、を更に備える、
請求項1に記載のレーザ走査型観察装置。
A translation mechanism that scans the laser light in the direction of the rotation axis with respect to the observation target by translating at least the optical path changing element in the direction of the rotation axis;
The laser scanning observation apparatus according to claim 1.
前記観察深さを変更することにより、前記観察対象に対して深さ方向に前記レーザ光を走査する観察深さ調整機構、を更に備える、
請求項1に記載のレーザ走査型観察装置。
An observation depth adjustment mechanism that scans the laser beam in the depth direction with respect to the observation object by changing the observation depth;
The laser scanning observation apparatus according to claim 1.
前記観察深さ調整機構は、前記レーザ光を略平行光にして前記光路変更素子及び前記非点収差補正素子に導光するコリメータレンズと、当該コリメータレンズを光軸方向に移動させる移動機構と、を含む、
請求項6に記載のレーザ走査型観察装置。
The observation depth adjustment mechanism includes a collimator lens that makes the laser light substantially parallel light and guides the laser light to the optical path changing element and the astigmatism correction element, a moving mechanism that moves the collimator lens in the optical axis direction, including,
The laser scanning observation apparatus according to claim 6.
前記レーザ走査型観察装置は、前記レーザ光が前記観察対象に照射されることによって生じる蛍光を戻り光として検出することにより、前記観察対象についての情報を取得し、
前記レーザ光と前記蛍光との波長の違いによって生じる色収差を補正する色収差補正素子、を更に備える、
請求項1に記載のレーザ走査型観察装置。
The laser scanning observation apparatus obtains information about the observation object by detecting fluorescence generated by the laser light being applied to the observation object as return light,
A chromatic aberration correction element that corrects chromatic aberration caused by a difference in wavelength between the laser beam and the fluorescence;
The laser scanning observation apparatus according to claim 1.
前記色収差補正素子は、前記レーザ光に対応する波長帯域の光に対しては平行平板として機能するとともに、前記蛍光に対応する波長帯域の光に対しては凹レンズとして機能する接合レンズである、
請求項8に記載のレーザ走査型観察装置。
The chromatic aberration correcting element is a cemented lens that functions as a parallel plate for light in the wavelength band corresponding to the laser light and functions as a concave lens for light in the wavelength band corresponding to the fluorescence.
The laser scanning observation apparatus according to claim 8.
前記光路変更素子には、前記レーザ光の光束が入射され、
前記対物レンズは、前記観察対象の互いに異なる複数のスポットに、前記レーザ光の光束を集光する、
請求項1に記載のレーザ走査型観察装置。
The light beam of the laser beam is incident on the optical path changing element,
The objective lens focuses the light flux of the laser light on a plurality of different spots of the observation target.
The laser scanning observation apparatus according to claim 1.
前記レーザ光の光束は、互いに異なる複数の状態に変調された前記レーザ光によって構成される、
請求項10に記載のレーザ走査型観察装置。
The light beam of the laser beam is constituted by the laser beam modulated into a plurality of different states.
The laser scanning observation apparatus according to claim 10.
前記レーザ光の光束は、複数の光ファイバによって前記筐体内に導光される、
請求項10に記載のレーザ走査型観察装置。
The laser beam is guided into the housing by a plurality of optical fibers.
The laser scanning observation apparatus according to claim 10.
前記レーザ光の光束は、複数のコアを有するマルチコア光ファイバによって前記筐体内に導光される、
請求項10に記載のレーザ走査型観察装置。
The laser beam is guided into the housing by a multi-core optical fiber having a plurality of cores.
The laser scanning observation apparatus according to claim 10.
前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光の偏光方向を変更する偏光変調素子、
を更に備え、
前記光路変更素子は所定の偏光方向を有する前記レーザ光の光路を変更する偏光ビームスプリッタであり、
前記偏光ビームスプリッタは、前記偏光変調素子によって偏光方向が変更された前記レーザ光の進行方向を、当該レーザ光の偏光方向に応じて、前記ウインドウ部に向けて変更する、
請求項1に記載のレーザ走査型観察装置。
A polarization modulation element that is provided in a preceding stage of the optical path changing element and changes a polarization direction of the laser light incident on the optical path changing element;
Further comprising
The optical path changing element is a polarization beam splitter that changes an optical path of the laser light having a predetermined polarization direction,
The polarization beam splitter changes the traveling direction of the laser light whose polarization direction has been changed by the polarization modulation element, toward the window portion according to the polarization direction of the laser light.
The laser scanning observation apparatus according to claim 1.
前記光路変更素子の前段に設けられ、前記光路変更素子に入射する前記レーザ光を複数の光路に分岐させる光路分岐素子、
を更に備え、
前記複数の光路の各々に対して、前記非点収差補正素子、前記光路変更素子及び前記対物レンズがそれぞれ設けられ、
前記光路分岐素子によって分岐された前記レーザ光のそれぞれの進行方向が、前記光路変更素子によって、前記回転軸方向と垂直な複数の方向に変更される、
請求項1に記載のレーザ走査型観察装置。
An optical path branching element that is provided in a preceding stage of the optical path changing element and branches the laser light incident on the optical path changing element into a plurality of optical paths;
Further comprising
For each of the plurality of optical paths, the astigmatism correction element, the optical path changing element, and the objective lens are provided, respectively.
Respective traveling directions of the laser light branched by the optical path branching element are changed by the optical path changing element into a plurality of directions perpendicular to the rotation axis direction.
The laser scanning observation apparatus according to claim 1.
少なくとも複数の前記光路変更素子を格納し、複数の前記光路変更素子とともに回転するハウジングが設けられ、
当該ハウジングの前記レーザ光が入射する壁面には、前記レーザ光を複数の前記光路変更素子の各々に入射させる入射ウインドウ部が形成され、
複数の前記入射ウインドウ部のそれぞれに対して前記非点収差補正素子及び前記対物レンズが設けられ、
前記レーザ光は、前記レーザ光の光軸が前記筐体に対して所定の位置に保たれた状態で前記筐体内を導光され、前記ハウジングの回転に伴って複数の前記入射ウインドウ部に順に照射され、
前記レーザ光の照射位置に対応する前記入射ウインドウ部から入射したレーザ光が、前記光路変更素子によって前記ウインドウ部に向かって導光される、
請求項1に記載のレーザ走査型観察装置。
A housing for storing at least a plurality of the optical path changing elements and rotating together with the optical path changing elements;
An incident window portion for allowing the laser light to enter each of the plurality of optical path changing elements is formed on the wall surface of the housing on which the laser light is incident.
The astigmatism correction element and the objective lens are provided for each of the plurality of incident window portions,
The laser light is guided through the housing in a state where the optical axis of the laser light is maintained at a predetermined position with respect to the housing, and sequentially enters the plurality of incident window portions as the housing rotates. Irradiated,
Laser light incident from the incident window portion corresponding to the irradiation position of the laser light is guided toward the window portion by the optical path changing element.
The laser scanning observation apparatus according to claim 1.
前記筐体は円筒形状を有し、
前記ウインドウ部は、前記筐体の長軸方向と略平行な側壁に設けられ、当該筐体の側壁の形状に則した円筒形の曲面を有する、
請求項1に記載のレーザ走査型観察装置。
The housing has a cylindrical shape;
The window portion is provided on a side wall substantially parallel to the long axis direction of the casing, and has a cylindrical curved surface conforming to the shape of the side wall of the casing.
The laser scanning observation apparatus according to claim 1.
前記筐体は円筒形状を有し、
前記ウインドウ部は、前記筐体の長軸方向の先端部に、前記筐体の長軸方向と略垂直な面を有して設けられる、
請求項1に記載のレーザ走査型観察装置。
The housing has a cylindrical shape;
The window portion is provided at a distal end portion in the major axis direction of the casing with a surface substantially perpendicular to the major axis direction of the casing.
The laser scanning observation apparatus according to claim 1.
前記対物レンズは、前記光路変更素子と前記ウインドウ部との間に設けられ、
前記対物レンズと前記ウインドウ部との間の空間は、前記ウインドウ部の屈折率と略同一の屈折率を有する液体によって液浸される、
請求項1に記載のレーザ走査型観察装置。
The objective lens is provided between the optical path changing element and the window portion,
The space between the objective lens and the window part is immersed in a liquid having a refractive index substantially the same as the refractive index of the window part.
The laser scanning observation apparatus according to claim 1.
前記筐体は内視鏡の鏡筒であり、
前記鏡筒の一部領域に設けられる前記ウインドウ部が観察対象であるヒト又は動物の体腔内の生体組織に接触又は近接し、前記生体組織に対して前記レーザ光が走査される、
請求項1に記載のレーザ走査型観察装置。
The housing is an endoscope barrel;
The window portion provided in a partial region of the lens barrel is in contact with or close to a living tissue in a body cavity of a human or animal to be observed, and the laser light is scanned with respect to the living tissue;
The laser scanning observation apparatus according to claim 1.
前記ウインドウ部が観察対象であるヒト又は動物の体表面に接触又は近接し、前記体表面から所定の深さにおける生体組織に対して前記レーザ光が走査される、
請求項1に記載のレーザ走査型観察装置。
The window portion is in contact with or close to the surface of a human or animal body to be observed, and the laser light is scanned with respect to a living tissue at a predetermined depth from the body surface.
The laser scanning observation apparatus according to claim 1.
前記レーザ走査型観察装置は、前記観察対象が載置されるステージ、を更に備え、
前記ステージの少なくとも一部領域に設けられる前記ウインドウ部を通して前記観察対象に対して前記レーザ光が走査される、
請求項1に記載のレーザ走査型観察装置。
The laser scanning observation apparatus further includes a stage on which the observation target is placed,
The laser beam is scanned with respect to the observation object through the window provided in at least a partial region of the stage.
The laser scanning observation apparatus according to claim 1.
筐体の内部に設けられる光路変更素子にレーザ光を入射することと、
前記光路変更素子によって前記筐体内を導光されてきた前記レーザ光の進行方向を変更し、前記筐体の一部領域に設けられ観察対象に接触又は近接するウインドウ部を介して、対物レンズによって集光され、非点収差補正素子によって非点収差が補正された前記レーザ光を前記観察対象に照射することと、
前記レーザ光が前記観察対象を走査するように、前記レーザ光の前記観察対象への入射方向である観察方向に対して垂直な回転軸で、少なくとも前記光路変更素子を回転させることと、
を含み、
前記非点収差補正素子は、前記観察対象における前記レーザ光の集光位置の深さである観察深さの変化に伴う非点収差の変動に対応した補正量で当該非点収差を補正する、レーザ走査方法。
Making laser light incident on an optical path changing element provided inside the housing;
By changing the traveling direction of the laser light guided in the housing by the optical path changing element, and by an objective lens through a window portion provided in a partial area of the housing and in contact with or close to an observation target Irradiating the observation target with the laser light that has been condensed and the astigmatism corrected by the astigmatism correction element;
Rotating at least the optical path changing element with a rotation axis perpendicular to an observation direction which is an incident direction of the laser light to the observation target so that the laser light scans the observation target;
Including
The astigmatism correction element corrects the astigmatism with a correction amount corresponding to a change in astigmatism accompanying a change in observation depth, which is a depth of a condensing position of the laser light in the observation target; Laser scanning method.
JP2015508775A 2013-03-29 2014-03-28 Laser scanning endoscope apparatus Active JP6500774B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013072688 2013-03-29
JP2013072688 2013-03-29
PCT/JP2014/059220 WO2014157645A1 (en) 2013-03-29 2014-03-28 Laser scanning observation device and laser scanning method

Publications (2)

Publication Number Publication Date
JPWO2014157645A1 true JPWO2014157645A1 (en) 2017-02-16
JP6500774B2 JP6500774B2 (en) 2019-04-17

Family

ID=51624601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508775A Active JP6500774B2 (en) 2013-03-29 2014-03-28 Laser scanning endoscope apparatus

Country Status (4)

Country Link
US (1) US20160299170A1 (en)
JP (1) JP6500774B2 (en)
CN (1) CN105050475B (en)
WO (1) WO2014157645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612306B2 (en) * 2017-11-01 2023-03-28 Sony Corporation Surgical arm system and surgical arm control system

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110423A1 (en) * 2013-09-20 2015-04-09 Karl Storz Gmbh & Co. Kg endoscope
KR101524723B1 (en) * 2013-10-31 2015-06-02 주식회사 옵티메드 Inspection system capable of laser treatment
JP2015125177A (en) 2013-12-25 2015-07-06 ソニー株式会社 Microscope system, and image data transfer method
JP6171970B2 (en) 2014-02-10 2017-08-02 ソニー株式会社 Laser scanning microscope apparatus and control method
WO2016079851A1 (en) * 2014-11-20 2016-05-26 オリンパス株式会社 Endoscope system and endoscope
KR102389883B1 (en) * 2015-09-04 2022-05-09 엘지이노텍 주식회사 Light emitting apparatus
US10055959B1 (en) * 2015-10-06 2018-08-21 National Technology & Engineering Solutions Of Sandia, Llc Systems and methods for intrusion detection using GHz beams
JP6634263B2 (en) * 2015-10-16 2020-01-22 オリンパス株式会社 microscope
CN105476592B (en) * 2016-01-14 2017-03-01 上海交通大学 A kind of separating endoscope
EP3420885B1 (en) 2016-02-23 2022-12-21 Mie University Laser endoscope device
US11555819B2 (en) 2016-05-18 2023-01-17 Mie University Cancer test device, cancer test method, and staining agent for use in cancer test
JP6857979B2 (en) * 2016-07-27 2021-04-14 株式会社トプコン Laser scanner optics and surveying equipment
WO2018023010A1 (en) * 2016-07-29 2018-02-01 University Of Florida Research Foundation, Incorporated Endoscopic oct probes with immersed mems mirrors
EP3520672A4 (en) * 2016-09-27 2020-06-10 Terumo Kabushiki Kaisha Image diagnostic device, control method for image diagnostic device, computer program, and computer-readable storage medium
CA3039666C (en) 2016-10-28 2022-08-23 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
US10852519B2 (en) * 2016-11-30 2020-12-01 Asm Technology Singapore Pte Ltd Confocal imaging of an object utilising a pinhole array
CN108209860A (en) * 2016-12-12 2018-06-29 中国科学院苏州生物医学工程技术研究所 A kind of reflective confocal microscopic image system
JP6863787B2 (en) * 2017-03-17 2021-04-21 ソニー・オリンパスメディカルソリューションズ株式会社 Endoscope system
WO2018180950A1 (en) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 Light source device and light projection device
JP2018169546A (en) * 2017-03-30 2018-11-01 日本電産株式会社 Housing, housing unit, and casing unit
DE102017213070A1 (en) 2017-07-28 2019-01-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method of fabricating a MEMS mirror assembly and MEMS mirror assembly
CN107468335A (en) * 2017-08-08 2017-12-15 米雪 A kind of Neurology doctor alleviates device with nerve dredging
CN107374707A (en) * 2017-08-23 2017-11-24 李旭 A kind of Cardiological clinical function mating type therapeutic system
US20190094527A1 (en) * 2017-09-28 2019-03-28 Nidec Corporation Rotary drive apparatus
JP7094683B2 (en) 2017-10-06 2022-07-04 住友電気工業株式会社 Optical receiver module
US10983000B2 (en) * 2017-10-06 2021-04-20 Heraeus Noblelight America Llc Light measuring probes, light measuring systems, and related methods
WO2019075424A1 (en) * 2017-10-12 2019-04-18 Howard Hughes Medical Institute High-resolution, real-time imaging with adaptive optics and lattice light sheets
CN107966424B (en) * 2017-11-02 2020-06-30 浙江大学 Side imaging method and device based on anti-telescope system and free-form surface reflection
WO2019090392A1 (en) * 2017-11-10 2019-05-16 Macquarie University Device, method and system for optical imaging
US11540719B2 (en) * 2017-11-28 2023-01-03 Dotter Inc. Optical coherence tomography system
EP3706684B1 (en) * 2017-12-12 2023-08-30 Alcon Inc. Thermally robust laser probe assembly
US20210068665A1 (en) * 2017-12-13 2021-03-11 President And Fellows Of Harvard College Endoscopic imaging using nanoscale metasurfaces
US10816789B2 (en) 2018-01-24 2020-10-27 Canon U.S.A., Inc. Optical probes that include optical-correction components for astigmatism correction
US10806329B2 (en) 2018-01-24 2020-10-20 Canon U.S.A., Inc. Optical probes with optical-correction components
US10606064B2 (en) 2018-01-24 2020-03-31 Canon U.S.A., Inc. Optical probes with astigmatism correction
US10561303B2 (en) 2018-01-24 2020-02-18 Canon U.S.A., Inc. Optical probes with correction components for astigmatism correction
US10234676B1 (en) 2018-01-24 2019-03-19 Canon U.S.A., Inc. Optical probes with reflecting components for astigmatism correction
CN108451640A (en) * 2018-03-28 2018-08-28 中国科学院自动化研究所 Magnetic anchoring type operation guiding system and application method based on coherent fiber bundle principle
DE102018204858B4 (en) * 2018-03-29 2023-12-07 Robert Bosch Gmbh LiDAR system
CN108527392B (en) * 2018-05-03 2020-04-07 温州职业技术学院 Adaptive special-shaped pipeline photoelectric measurement and processing integrated robot
CN110687676B (en) * 2018-07-06 2021-10-08 成都理想境界科技有限公司 Optical fiber scanning driver, optical fiber scanning module and projection equipment
CN108918504A (en) * 2018-09-12 2018-11-30 广州医科大学 The system and method for Gemstone Identification is realized based on Raman spectrum and OCT
CN109115747B (en) * 2018-09-12 2021-07-13 广州医科大学 System and method for measuring glass material properties based on Raman spectrum and OCT
US10791923B2 (en) 2018-09-24 2020-10-06 Canon U.S.A., Inc. Ball lens for optical probe and methods therefor
JP6908015B2 (en) * 2018-10-25 2021-07-21 株式会社デンソー Optical ranging device and optical ranging method
CN109497964B (en) * 2018-10-29 2021-04-09 中国科学院上海技术物理研究所 Human blood vessel detection system based on laser photoacoustic spectroscopy
WO2020102181A1 (en) 2018-11-13 2020-05-22 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US11561329B2 (en) 2019-01-07 2023-01-24 Ppg Industries Ohio, Inc. Near infrared control coating, articles formed therefrom, and methods of making the same
CN109646039B (en) * 2019-01-11 2022-12-30 明峰医疗系统股份有限公司 Handheld wireless patient positioning device of CT (computed tomography) machine
US12032181B2 (en) 2019-08-27 2024-07-09 The General Hospital Corporation System and method for high-resolution, high-speed capsule endomicroscopy
KR102578128B1 (en) * 2019-09-04 2023-09-14 문명일 Method and apparatus for diagnosing skins
CN111053533A (en) * 2019-12-11 2020-04-24 中国科学院苏州生物医学工程技术研究所 Endoscopic probe and imaging system suitable for two-photon fluorescence imaging
US11681093B2 (en) * 2020-05-04 2023-06-20 Eric Swanson Multicore fiber with distal motor
CN111650745B (en) * 2020-07-24 2022-07-19 中国科学院光电技术研究所 Scanning system based on micro-lens array group and self-adaptive optical fiber collimator
CN112057041B (en) * 2020-08-07 2021-12-28 中国科学院深圳先进技术研究院 Polarized photoacoustic imaging probe and photoacoustic imaging device
JP7037855B2 (en) * 2020-09-15 2022-03-17 株式会社トプコン Laser scanner optical system and surveying equipment
CN112815866A (en) * 2020-12-30 2021-05-18 沈阳理工大学 Internal thread detector based on laser profile scanning and detection method thereof
EP4337081A1 (en) * 2021-05-14 2024-03-20 Leadoptik Inc. Methods and apparatus for reconfigurable optical endoscopic catheter
CN113796832A (en) * 2021-09-07 2021-12-17 中国科学院苏州生物医学工程技术研究所 Panoramic rotary endoscopic two-photon microscopic imaging system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484833B2 (en) * 1995-07-21 2004-01-06 株式会社ニコン Microscope objective lens
JP3947275B2 (en) * 1997-08-28 2007-07-18 オリンパス株式会社 Endoscope
EP1579249B1 (en) * 2002-12-03 2009-07-01 Koninklijke Philips Electronics N.V. Apparatus for forming variable fluid meniscus configurations
US7260251B2 (en) * 2003-03-31 2007-08-21 Cdm Optics, Inc. Systems and methods for minimizing aberrating effects in imaging systems
KR101257100B1 (en) * 2004-09-29 2013-04-22 더 제너럴 하스피탈 코포레이션 System and Method for Optical Coherence Imaging
US20070121196A1 (en) * 2005-09-29 2007-05-31 The General Hospital Corporation Method and apparatus for method for viewing and analyzing of one or more biological samples with progressively increasing resolutions
CN104257348A (en) * 2006-01-19 2015-01-07 通用医疗公司 Methods And Systems For Optical Imaging Of Epithelial Luminal Organs By Beam Scanning Thereof
JP5524487B2 (en) * 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション A method and system for emitting electromagnetic radiation to at least a portion of a sample using a conformal laser treatment procedure.
JP5118867B2 (en) * 2007-03-16 2013-01-16 オリンパス株式会社 Endoscope observation apparatus and operation method of endoscope
US7835074B2 (en) * 2007-06-05 2010-11-16 Sterling Lc Mini-scope for multi-directional imaging
US20090147373A1 (en) * 2007-10-19 2009-06-11 University Of Central Florida Research Foundation, Inc. Dynamic Focus Optical Probes
JP2009186596A (en) * 2008-02-04 2009-08-20 Sony Corp Imaging lens system and imaging apparatus using the same
EP2278915A4 (en) * 2008-05-07 2012-11-14 Volcano Corp Optical imaging catheter for aberration balancing
US9351705B2 (en) * 2009-01-09 2016-05-31 Washington University Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP5856061B2 (en) * 2009-10-06 2016-02-09 ザ ジェネラル ホスピタル コーポレイション Apparatus and method for imaging specific cells using spectrally encoded confocal microscopy
WO2011105962A1 (en) * 2010-02-26 2011-09-01 Agency For Science, Technology And Research Optical coherence imaging device, and method for forming an optical coherence imaging device
EP2443992A2 (en) * 2010-10-25 2012-04-25 Fujifilm Corporation Diagnosis support apparatus, diagnosis support method, lesioned part detection apparatus, and lesioned part detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612306B2 (en) * 2017-11-01 2023-03-28 Sony Corporation Surgical arm system and surgical arm control system

Similar Documents

Publication Publication Date Title
JP6500774B2 (en) Laser scanning endoscope apparatus
JPWO2014157645A1 (en) Laser scanning observation apparatus and laser scanning method
JP6670943B2 (en) Simple monolithic optics for spectrally coded endoscopy of forward view
JP5371433B2 (en) Optical imaging method and apparatus by spectral coding
Lee et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide‐field, full‐color imaging
JP5305035B2 (en) High spatial resolution and high sensitivity compact optical head for fiber confocal fluorescence imaging
JP2008504557A (en) Multi-mode optical imaging method and optical fiber scanner thereof
Qiu et al. New endoscopic imaging technology based on MEMS sensors and actuators
US20120194661A1 (en) Endscopic spectral domain optical coherence tomography system based on optical coherent fiber bundle
Liu et al. MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope
WO2017049085A1 (en) Apparatus and methods for mirror tunnel imaging device and for providing pseudo-bessel beams in a miniaturized optical system for imaging
Liang et al. Throughput-speed product augmentation for scanning fiber-optic two-photon endomicroscopy
WO2012078843A2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
Zhao et al. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy
Kim et al. Objective-lens-free confocal endomicroscope using Lissajous scanning lensed-fiber
US11051698B2 (en) Optical microscopy probe for scanning microscopy of an associated object
Camli et al. 2p autofluorescence imaging endoscope for clinical observation of metabolic changes in cervical tissue
US20150085293A1 (en) Portable system for simultaneously operating optical far field imaging, tomography and spectroscopy
Tkaczyk Endomicroscopy
Slipchenko et al. Coherent Raman Microscopy
Piyawattanametha Dual Axes Confocal Microendoscope