JPWO2014141737A1 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
JPWO2014141737A1
JPWO2014141737A1 JP2014533302A JP2014533302A JPWO2014141737A1 JP WO2014141737 A1 JPWO2014141737 A1 JP WO2014141737A1 JP 2014533302 A JP2014533302 A JP 2014533302A JP 2014533302 A JP2014533302 A JP 2014533302A JP WO2014141737 A1 JPWO2014141737 A1 JP WO2014141737A1
Authority
JP
Japan
Prior art keywords
phase
oxide
powder
sputtering
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014533302A
Other languages
Japanese (ja)
Other versions
JP5801496B2 (en
Inventor
佐藤 敦
敦 佐藤
荒川 篤俊
篤俊 荒川
英生 高見
英生 高見
中村 祐一郎
祐一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014533302A priority Critical patent/JP5801496B2/en
Application granted granted Critical
Publication of JP5801496B2 publication Critical patent/JP5801496B2/en
Publication of JPWO2014141737A1 publication Critical patent/JPWO2014141737A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

金属相と酸化物相が均一分散した組織を有する焼結体スパッタリングターゲットであって、該金属相が成分としてCoとPtとMnを含有し、該酸化物相が少なくともMnを構成成分とする酸化物を含有することを特徴とするスパッタリングターゲット。スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。【選択図】図1A sintered sputtering target having a structure in which a metal phase and an oxide phase are uniformly dispersed, wherein the metal phase contains Co, Pt, and Mn as components, and the oxide phase includes at least Mn as a component A sputtering target comprising an object. The amount of particles generated during sputtering can be reduced, and the yield can be improved during film formation. [Selection] Figure 1

Description

本発明は磁気記録媒体の薄膜形成に使用されるスパッタリングターゲットに関する。特にCoを主成分とする金属相中に酸化物相が分散した組織構造を有するスパッタリングターゲットに関する。   The present invention relates to a sputtering target used for forming a thin film of a magnetic recording medium. In particular, the present invention relates to a sputtering target having a structure in which an oxide phase is dispersed in a metal phase containing Co as a main component.

ハードディスク装置に代表される磁気記録再生装置の分野では、磁化容易軸を記録面に対し垂直方向に配向させた垂直磁気記録方式が実用化されている。特に垂直磁気記録方式を採用したハードディスク媒体では、高記録密度化と低ノイズ化のために、垂直方向に配向した磁性結晶粒子を非磁性材料で取り囲み、磁性粒子間の磁気的な相互作用を低減したグラニュラー構造型の磁性薄膜が開発されている。   In the field of magnetic recording and reproducing devices represented by hard disk devices, a perpendicular magnetic recording system in which an easy axis is oriented in a direction perpendicular to a recording surface has been put into practical use. In particular, in hard disk media using the perpendicular magnetic recording method, magnetic crystal grains oriented in the vertical direction are surrounded by nonmagnetic materials to reduce the magnetic interaction between the magnetic grains in order to increase recording density and reduce noise. Granular magnetic thin films have been developed.

上記の磁性結晶粒子にはCoを主成分とする強磁性合金が、また非磁性材料には酸化物が用いられている。そしてこのようなグラニュラー構造型の磁性薄膜は、金属相中に酸化物相が分散した組織構造を有するスパッタリングターゲットを、マグネトロンスパッタ装置で基板上にスパッタして作製される。   Ferromagnetic alloys containing Co as a main component are used for the magnetic crystal particles, and oxides are used for nonmagnetic materials. Such a granular structure type magnetic thin film is produced by sputtering a sputtering target having a structure in which an oxide phase is dispersed in a metal phase onto a substrate by a magnetron sputtering apparatus.

ところがスパッタ工程において、パーティクルと呼ばれる、薄膜形成基板上への付着物が問題となっている。成膜する際に生じるパーティクルの多くは、ターゲット中の酸化物であることが知られている。スパッタ中にターゲットのスパッタ面で異常放電が生じ、酸化物がターゲットのスパッタ面から抜け落ちることが、パーティクルの発生原因として考えられている。近年、ハードディスクドライブは記録密度の向上に伴い、磁気ヘッドの浮上量が小さくなっているため、磁気記録媒体で許容されるパーティクルのサイズや個数は、ますます厳しく制限されるようになってきている。   However, deposits on the thin film forming substrate, called particles, are a problem in the sputtering process. It is known that many of the particles generated during film formation are oxides in the target. It is considered that abnormal discharge occurs on the sputtering surface of the target during sputtering, and the oxide falls off from the sputtering surface of the target as a cause of generation of particles. In recent years, as the recording density of hard disk drives has increased, the flying height of the magnetic head has become smaller, so the size and number of particles allowed in magnetic recording media have become increasingly severely limited. .

金属相中に酸化物相が分散した組織構造を有するスパッタリングターゲットと、その製造方法に関して、種々の技術が知られている(特許文献1〜8など)。例えば、特許文献1には、ボールミル等で原料粉末を混合、粉砕する際に、予め原料粉末の一部を混合、焼結、粉砕して得た一次焼結体粉末を混合することで、酸化物の凝集を抑制して、ターゲット組織を微細化すると共に、パーティクルの発生を低減する方法が開示されている。   Various techniques are known regarding a sputtering target having a structure in which an oxide phase is dispersed in a metal phase and a method for producing the sputtering target (Patent Documents 1 to 8, etc.). For example, in Patent Document 1, when mixing and pulverizing raw material powder with a ball mill or the like, a primary sintered body powder obtained by mixing, sintering, and pulverizing a part of the raw material powder in advance is mixed to oxidize. A method for reducing the generation of particles while minimizing the target structure by suppressing the aggregation of objects is disclosed.

特開2011−208169号公報JP 2011-208169 A 特開2011−174174号公報JP 2011-174174 A 特開2011−175725号公報JP 2011-175725 A 特願2011−536231Japanese Patent Application No. 2011-536231 特開2012−117147号公報JP 2012-117147 A 国際公開第2012/086388号パンフレットInternational Publication No. 2012/086388 Pamphlet 特開2006−299400号公報JP 2006-299400 A 特開2006−77323号公報JP 2006-77323 A

一般に、金属相中に酸化物相が分散したスパッタリングターゲットを製造する際、酸化物が凝集することがあり、この凝集した酸化物がスパッタ時にパーティクルの原因となることがあった。上記の従来技術では、このようなパーティクル発生を抑制するために、酸化物相を金属相中に微細に分散させることが行われていた。   In general, when a sputtering target in which an oxide phase is dispersed in a metal phase is produced, the oxide may agglomerate, and this agglomerated oxide may cause particles during sputtering. In the above prior art, in order to suppress the generation of such particles, the oxide phase is finely dispersed in the metal phase.

しかし、酸化物の種類によっては微細に分散させてもパーティクル発生の原因となることがあった。本発明は上記の問題に鑑み、スパッタの際にパーティクルの発生が少ないスパッタリングターゲットを提供することを課題とする。   However, depending on the type of oxide, fine particles may cause particle generation. In view of the above problems, an object of the present invention is to provide a sputtering target that generates less particles during sputtering.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、金属相と酸化物相にそれぞれMnを添加させることにより、パーティクル発生をより効果的に低減することが可能になり、成膜時の歩留まりを向上できることを見出した。   In order to solve the above problems, the present inventors have conducted intensive research, and as a result, by adding Mn to each of the metal phase and the oxide phase, it becomes possible to reduce particle generation more effectively. The inventors have found that the yield during film formation can be improved.

このような知見に基づき、本発明は、
1)金属相と酸化物相が均一分散した組織を有する焼結体スパッタリングターゲットであって、該金属相が成分としてCoとPtとMnを含有し、該酸化物相が少なくともMnを構成成分とする酸化物を含有することを特徴とするスパッタリングターゲット、
2)前記金属相の一部がPt−Mn相であることを特徴とする上記1)に記載のスパッタリングターゲット、
3)前記酸化物相がさらにAl、B、Ba、Be、Bi、Ca、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Ga、Gd、Ge、Hf、Ho、La、Li、Lu、Mg、Mo、Nb、Nd、Ni、Pr、Sb、Sc、Si、Sm、Sn、Sr、Ta、Tb、Te、Ti、Tm、V、W、Y、Yb、Zn、Zrから選択した一種以上の元素を構成成分とする酸化物を含有することを特徴とする上記1)又は2)記載のスパッタリングターゲット、
4)前記酸化物相がMnを構成成分の一つとする複合酸化物であることを特徴とする上記1)〜3)のいずれか一に記載のスパッタリングターゲット、
5)前記金属相がさらに添加成分として、Ag、Au、B、Cr、Cu、Fe、Ga、Ge、Mo、Nb、Ni、Pd、Re、Rh、Ru、Sn、Ta、W、V、Znから選択した1種以上の元素を含有することを特徴とする上記1)〜4)のいずれか一に記載のスパッタリングターゲット、
6)前記酸化物相がスパッタリングターゲット中における体積比率で10%以上55%未満であることを特徴とする上記1)〜5)のいずれか一に記載のスパッタリングターゲット、を提供する。
Based on such knowledge, the present invention
1) A sintered sputtering target having a structure in which a metal phase and an oxide phase are uniformly dispersed, wherein the metal phase contains Co, Pt, and Mn as components, and the oxide phase contains at least Mn as a component. A sputtering target comprising an oxide
2) The sputtering target according to 1) above, wherein a part of the metal phase is a Pt—Mn phase,
3) The oxide phase further includes Al, B, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, La, From Li, Lu, Mg, Mo, Nb, Nd, Ni, Pr, Sb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tm, V, W, Y, Yb, Zn, Zr The sputtering target according to 1) or 2) above, which contains an oxide containing one or more selected elements as constituent components,
4) The sputtering target according to any one of 1) to 3) above, wherein the oxide phase is a composite oxide containing Mn as one of the constituent components.
5) Ag, Au, B, Cr, Cu, Fe, Ga, Ge, Mo, Nb, Ni, Pd, Re, Rh, Ru, Sn, Ta, W, V, Zn The sputtering target according to any one of 1) to 4) above, which comprises one or more elements selected from
6) The sputtering target according to any one of 1) to 5) above, wherein the oxide phase is 10% or more and less than 55% by volume ratio in the sputtering target.

本発明のスパッタリングターゲットは、スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。   The sputtering target of the present invention has an excellent effect that the amount of particles generated at the time of sputtering can be reduced and the yield at the time of film formation can be improved.

実施例3の焼結体の研磨面において、電子線プローブマイクロアナライザー(EPMA)で、元素分布を測定したときの画像である。It is an image when element distribution is measured with the electron beam probe microanalyzer (EPMA) in the grinding | polishing surface of the sintered compact of Example 3. FIG.

本発明のスパッタリングターゲットは、金属相と酸化物相が均一分散した組織を有する焼結体スパッタリングターゲットであって、該金属相が成分としてCoとPtとMnを含有し、該酸化物相が少なくともMnを構成成分とする酸化物を含有することを特徴とする。
Co−Pt系合金は磁性結晶粒子として以前から知られている材料であるが、金属相の構成成分としてCoとPtに加えてMnを含有していること、そしてまた、酸化物相が少なくともMnを構成成分とする酸化物を含有していることが、本発明において重要である。
The sputtering target of the present invention is a sintered sputtering target having a structure in which a metal phase and an oxide phase are uniformly dispersed, wherein the metal phase contains Co, Pt, and Mn as components, and the oxide phase is at least It contains an oxide containing Mn as a constituent component.
A Co—Pt alloy is a material that has been known as a magnetic crystal particle, but it contains Mn in addition to Co and Pt as a component of the metal phase, and the oxide phase is at least Mn. It is important in the present invention to contain an oxide containing as a constituent component.

Mnは熱力学的に安定な酸化物として存在すると同時に、金属相の成分であるPtへ固溶しやすい性質を有するため、金属相と酸化物相の両者に存在するMnは、金属相と酸化物相の密着性を高める役割を持ち、スパッタ時に酸化物がターゲットから脱落するのを防止できるという極めて優れた効果を有する。
なお、特許文献5〜6には、強磁性合金と非金属無機材料からなる焼結体スパッタリングターゲットにおいて、無機材料としてMnの酸化物を含むことが開示されているが、これらの技術は、金属相と酸化物相の両者にMnを含有させることによって、密着性を高めるという技術を教示するものではない。
Mn exists as a thermodynamically stable oxide and at the same time has a property of being easily dissolved in Pt, which is a component of the metal phase. Therefore, Mn present in both the metal phase and the oxide phase is oxidized with the metal phase. It has the role of enhancing the adhesion of the physical phase and has an extremely excellent effect of preventing the oxide from falling off the target during sputtering.
Patent Documents 5 to 6 disclose that a sintered sputtering target made of a ferromagnetic alloy and a non-metallic inorganic material contains an oxide of Mn as an inorganic material. It does not teach a technique for improving adhesion by containing Mn in both the phase and the oxide phase.

また、本発明のスパッタリングターゲットは、金属相の一部がPt−Mn相の場合も包含する。Pt−Mn相は、酸化物相との密着性を高めることができ、また、このPt−Mn相は安定な形態であることから、Pt−Mn相そのものがパーティクルの原因となることもないので、パーティクルの発生を抑制するのに有効である。   Moreover, the sputtering target of this invention also includes the case where a part of metal phase is a Pt-Mn phase. The Pt—Mn phase can improve the adhesion with the oxide phase, and since the Pt—Mn phase is a stable form, the Pt—Mn phase itself does not cause particles. It is effective in suppressing the generation of particles.

また、本発明のスパッタリングターゲットは、金属相中のMnの含有比率を、金属相中の原子数比率において0.5%以上20%以下に調整することが望ましい。金属相中のMnの含有比率が0.5%未満の場合、酸化物相との密着性を高める効果が少なくなるので、パーティクルの発生を十分に抑制できないことがある。一方、20%より大きい場合、スパッタリングターゲットの靭性が低下し、スパッタ中にターゲットが割れるといった問題が生じることがある。   Moreover, as for the sputtering target of this invention, it is desirable to adjust the content rate of Mn in a metal phase to 0.5% or more and 20% or less in the atomic ratio in a metal phase. When the content ratio of Mn in the metal phase is less than 0.5%, the effect of increasing the adhesion with the oxide phase is reduced, and thus the generation of particles may not be sufficiently suppressed. On the other hand, when it is larger than 20%, the toughness of the sputtering target is lowered, and there may be a problem that the target breaks during sputtering.

また、本発明のスパッタリングターゲットを、ハードディスク媒体の記録層の成膜に使用する場合、金属相の組成として以下の組成式を満たすように調整すると、記録層として、さらに好適な磁気特性を得ることができる。
組成:(100−α−β−γ)Co−αPt−βMn−γM(但し、前記組成式中、αは5≦α≦30、βは0.5≦β≦20、γは0.5≦γ≦20の条件を満たす。
また、前記Mは、後述の添加金属元素を意味する。)
なお、上記組成の範囲はハードディスク媒体の記録層としての磁気特性を向上させる範囲であって、この範囲外であって記録層としての特性を有し、スパッタリングの際のパーティクル発生量を低減できるという優れた効果を損なうものではない。
In addition, when the sputtering target of the present invention is used for forming a recording layer of a hard disk medium, if the metal phase composition is adjusted so as to satisfy the following composition formula, more suitable magnetic properties can be obtained as the recording layer. Can do.
Composition: (100-α-β-γ) Co-αPt-βMn-γM (wherein α is 5 ≦ α ≦ 30, β is 0.5 ≦ β ≦ 20, and γ is 0.5 ≦ The condition of γ ≦ 20 is satisfied.
The M means an additive metal element described later. )
The range of the above composition is a range for improving the magnetic characteristics as the recording layer of the hard disk medium, and is outside this range and has the characteristics as the recording layer, so that the amount of particles generated during sputtering can be reduced. It does not impair the excellent effect.

また、本発明のスパッタリングターゲットは、酸化物相がさらにAl、B、Ba、Be、Bi、Ca、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Ga、Gd、Ge、Hf、Ho、La、Li、Lu、Mg、Mo、Nb、Nd、Ni、Pr、Sb、Sc、Si、Sm、Sn、Sr、Ta、Tb、Te、Ti、Tm、V、W、Y、Yb、Zn、Zrから選択した一種以上の元素を構成成分とする酸化物を含有する場合も包含する。これらは所望する磁気特性に合わせて、Mnと組み合わせて適宜添加することで、Mn酸化物のみの場合に比べて、磁気特性を向上させることができる。   In the sputtering target of the present invention, the oxide phase further includes Al, B, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, La, Li, Lu, Mg, Mo, Nb, Nd, Ni, Pr, Sb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tm, V, W, Y, The case where an oxide containing one or more elements selected from Yb, Zn, and Zr as a constituent component is also included. By appropriately adding these in combination with Mn according to the desired magnetic properties, the magnetic properties can be improved as compared with the case of using only Mn oxide.

また、本発明のスパッタリングターゲットは、酸化物相がMnを構成成分の一つとする複合酸化物である場合も包含する。Mn酸化物は他の酸化物との複合酸化物を容易に形成するが、この場合は、さらに金属相と酸化物相の密着性を高めることになるので、より効果的にパーティクルの発生を抑制することができる。   The sputtering target of the present invention also includes a case where the oxide phase is a complex oxide having Mn as one of the constituent components. Mn oxides easily form complex oxides with other oxides. In this case, however, the adhesion between the metal phase and the oxide phase will be further improved, so the generation of particles will be more effectively suppressed. can do.

また、本発明のスパッタリングターゲットは、前記金属相がさらに添加成分として、Ag、Au、B、Cr、Cu、Fe、Ga、Ge、Mo、Nb、Ni、Pd、Re、Rh、Ru、Sn、Ta、W、V、Znから選択した1種以上の元素を含有する場合も包含する。これらの金属成分は、所望する磁気特性に合わせて、適宜添加することができる。   Further, in the sputtering target of the present invention, the metal phase further contains Ag, Au, B, Cr, Cu, Fe, Ga, Ge, Mo, Nb, Ni, Pd, Re, Rh, Ru, Sn, The case where one or more elements selected from Ta, W, V, and Zn are contained is also included. These metal components can be appropriately added according to the desired magnetic properties.

また、本発明のスパッタリングターゲットは、酸化物相がスパッタリングターゲット中、体積比率で10%以上55%未満である場合も包含する。酸化物相の体積比率を、10%以上55%未満とすることで、成膜された磁性薄膜において、磁気特性をさらに良好なものとすることができる。酸化物相の体積比率が10%未満である場合は、酸化物が磁性粒子同士の磁気的な相互作用を遮断する効果が薄れ、また、酸化物相の体積比率が55%以上の場合は、酸化物相の分散性が悪くなるため、パーティクル量が多くなるという問題が生じることがある。   Further, the sputtering target of the present invention includes a case where the oxide phase is 10% or more and less than 55% by volume in the sputtering target. By setting the volume ratio of the oxide phase to 10% or more and less than 55%, the magnetic properties can be further improved in the formed magnetic thin film. When the volume ratio of the oxide phase is less than 10%, the effect of the oxide blocking the magnetic interaction between the magnetic particles is reduced, and when the volume ratio of the oxide phase is 55% or more, Since the dispersibility of the oxide phase is deteriorated, a problem that the amount of particles increases may occur.

なお、酸化物相の体積比率は、スパッタリングターゲットの任意の切断面における、酸化物相の面積比率から求めることができる。この場合、スパッタリングターゲット中の酸化物相の体積比率は、切断面での面積比率とすることができる。面積比率は観察場所によるバラつきを少なくするため、概ね1mm以上の領域を観察して、その平均として求めることができる。Note that the volume ratio of the oxide phase can be obtained from the area ratio of the oxide phase at an arbitrary cut surface of the sputtering target. In this case, the volume ratio of the oxide phase in the sputtering target can be the area ratio at the cut surface. The area ratio can be obtained as an average by observing a region of approximately 1 mm 2 or more in order to reduce variation due to the observation place.

本発明のスパッタリングターゲットは、例えば、以下の方法によって作製することができる。まず、金属粉としてCo粉、Pt粉、Mn粉を用意する。このとき、単元素の金属粉だけでなく、合金粉を用いることもできる。これらの金属粉は粒径が1〜10μmの範囲のものを用いることが望ましい。粒径が1〜10μmであるとより均一な混合が可能であり、焼結ターゲットの偏析と粗大結晶化を防止できる。金属粉末の10μmより大きい場合には、酸化物相が微細に分散しないことがあり、また、1μmより小さい場合には、金属粉の酸化の影響が問題になることがある。しかし、この粒径範囲はあくまで好ましい範囲であり、これを逸脱することが本願発明を否定する条件でないことは当然理解されるべきである。   The sputtering target of the present invention can be produced, for example, by the following method. First, Co powder, Pt powder, and Mn powder are prepared as metal powder. At this time, not only a single element metal powder but also an alloy powder can be used. These metal powders desirably have a particle size in the range of 1 to 10 μm. When the particle size is 1 to 10 μm, more uniform mixing is possible, and segregation and coarse crystallization of the sintered target can be prevented. When the metal powder is larger than 10 μm, the oxide phase may not be finely dispersed. When the metal powder is smaller than 1 μm, the influence of the oxidation of the metal powder may be a problem. However, it should be understood that this particle size range is a preferable range, and that deviating from this range is not a condition for denying the present invention.

酸化物粉としては、Mn酸化物粉と必要に応じてその他の元素からなる酸化物粉末を用意する。Mn酸化物粉にはMnO粉のほか、Mn粉やMn粉を用いることができる。酸化物粉の粒径は0.2〜5μmの範囲のものを用いることが望ましい。粒径が0.2〜5μmであると金属粉との均一な混合が容易になるという利点がある。一方、酸化物粉末の平均粒径が5μmより大きい場合には、焼結後に粗大な酸化物相が生じることがあり、0.2μmより小さい場合には、酸化物粉同士の凝集が生じることがある。しかし、この範囲は、あくまで好ましい範囲であり、この範囲を逸脱することが、本願発明を否定する条件でないことは当然理解されるべきである。As the oxide powder, Mn oxide powder and oxide powder composed of other elements as required are prepared. In addition to MnO powder, Mn 3 O 4 powder or Mn 2 O 3 powder can be used as the Mn oxide powder. The oxide powder preferably has a particle size in the range of 0.2 to 5 μm. There exists an advantage that uniform mixing with a metal powder becomes easy as a particle size is 0.2-5 micrometers. On the other hand, when the average particle size of the oxide powder is larger than 5 μm, a coarse oxide phase may be formed after sintering. When the average particle size is smaller than 0.2 μm, aggregation of the oxide powder may occur. is there. However, this range is merely a preferable range, and it should be understood that deviating from this range is not a condition for denying the present invention.

そして、上記の原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。このとき、粉砕容器内に不活性ガスを封入して原料粉の酸化を抑制することが望ましい。
次に、このようにして得られた混合粉末をホットプレス法で真空雰囲気、あるいは、不活性ガス雰囲気において成型・焼結させる。また、前記ホットプレス以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に熱間静水圧焼結法は焼結体の密度向上に有効である。焼結の保持温度は組成によるが多くの場合700℃〜1100°Cの範囲にある。
このようにして得られた焼結体を旋盤で所望の形状に加工することにより、本発明のスパッタリングターゲットを作製することができる。
And said raw material powder is measured so that it may become a desired composition, and it mixes also using a well-known method, such as a ball mill, also as a grinding | pulverization. At this time, it is desirable to contain an inert gas in the pulverization vessel to suppress oxidation of the raw material powder.
Next, the mixed powder thus obtained is molded and sintered by a hot press method in a vacuum atmosphere or an inert gas atmosphere. In addition to the hot press, various pressure sintering methods such as a plasma discharge sintering method can be used. In particular, the hot isostatic pressing is effective for improving the density of the sintered body. The holding temperature for sintering depends on the composition, but is often in the range of 700 ° C. to 1100 ° C.
By processing the sintered body thus obtained into a desired shape with a lathe, the sputtering target of the present invention can be produced.

以上により本発明のスパッタリングターゲットを製造することができる。このようにして製造したスパッタリングターゲットは、スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。   As described above, the sputtering target of the present invention can be manufactured. The sputtering target manufactured in this way has an excellent effect that the amount of particles generated during sputtering can be reduced and the yield during film formation can be improved.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
金属粉としてガスアトマイズ法によって作製された平均粒径10μmのCo−Cr−Pt−Mn粉末を、酸化物粉として平均粒径3μmのMnO粉末、平均粒径3μmのY粉末を用意した。そして以下の組成比で合計の重量が2000gとなるように秤量した。
秤量組成(分子数比率):65Co−5Cr−15Pt−5Mn−5MnO−5Y
Example 1
A Co—Cr—Pt—Mn powder having an average particle size of 10 μm prepared by a gas atomization method as a metal powder, and an MnO powder having an average particle size of 3 μm and a Y 2 O 3 powder having an average particle size of 3 μm were prepared as oxide powders. And it weighed so that the total weight might be 2000g with the following composition ratios.
Weighing composition (number of molecules Ratio): 65Co-5Cr-15Pt- 5Mn-5MnO-5Y 2 O 3

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度100
0℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The conditions for hot pressing are a vacuum atmosphere, a heating rate of 300 ° C / hour, and a holding temperature of 100.
The temperature was 0 ° C. and the holding time was 2 hours, and the pressure was increased from 30 MPa until the end of the heating. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mnを成分とする合金相であることを確認した。また、酸化物相はMn酸化物とY酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, and Mn as components. Moreover, it confirmed that an oxide phase was a Mn oxide and a Y oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は13個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 13.

(実施例2)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径10μmのPt−Mn粉末(原子数比Pt:Mn=60:40)を、酸化物粉として平均粒径3μmのMnO粉末、平均粒径3μmのY粉末を用意した。そして以下の組成比で合計の重量が2000gとなるように秤量した。
秤量組成(分子数比率):65Co−5Cr−15Pt−5Mn−5MnO−5Y
(Example 2)
Co powder having an average particle diameter of 3 μm, Cr powder having an average particle diameter of 5 μm, Pt powder having an average particle diameter of 3 μm, and Pt—Mn powder having an average particle diameter of 10 μm (atomic ratio Pt: Mn = 60: 40) as metal powders MnO powder having an average particle diameter of 3 μm and Y 2 O 3 powder having an average particle diameter of 3 μm were prepared as oxide powders. And it weighed so that the total weight might be 2000g with the following composition ratios.
Weighing composition (number of molecules Ratio): 65Co-5Cr-15Pt- 5Mn-5MnO-5Y 2 O 3

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度100
0℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The conditions for hot pressing are a vacuum atmosphere, a heating rate of 300 ° C / hour, and a holding temperature of 100.
The temperature was 0 ° C. and the holding time was 2 hours, and the pressure was increased from 30 MPa until the end of the heating. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mnを成分とする合金相であることを確認した。さらに金属相の一部がPt−Mn相になっていることも確認した。また酸化物相はMn酸化物とY酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, and Mn as components. Furthermore, it was also confirmed that a part of the metal phase was a Pt—Mn phase. The oxide phase was confirmed to be Mn oxide and Y oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は8個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was eight.

(比較例1)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末を、酸化物粉として平均粒径3μmのY粉末を用意した。そして以下の組成比で合計の重量が1850gとなるように秤量した。
秤量組成(分子数比率):70Co−5Cr−15Pt−10Y
(Comparative Example 1)
Co powder having an average particle diameter of 3 μm, Cr powder having an average particle diameter of 5 μm, and Pt powder having an average particle diameter of 3 μm were prepared as metal powder, and Y 2 O 3 powder having an average particle diameter of 3 μm was prepared as oxide powder. And it weighed so that the total weight might be 1850g with the following composition ratios.
Weighing composition (number of molecules Ratio): 70Co-5Cr-15Pt- 10Y 2 O 3

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Ptを成分とする合金相であることを確認した。この金属相はCo−Cr−Ptの均一な合金相であった。また酸化物相はY酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, and Pt as components. This metal phase was a uniform alloy phase of Co—Cr—Pt. Moreover, it confirmed that an oxide phase was Y oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は52個で、実施例1、2より多くなった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 52, which was larger than those in Examples 1 and 2.

(比較例2)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末を、酸化物粉として平均粒径3μmのMnO粉末、平均粒径3μmのY粉末を用意した。そして以下の組成比で合計の重量が2000gとなるように秤量した。
秤量組成(分子数比率):70Co−5Cr−15Pt−5MnO−5Y
(Comparative Example 2)
Co powder with an average particle size of 3 μm, Cr powder with an average particle size of 5 μm, Pt powder with an average particle size of 3 μm as metal powder, MnO powder with an average particle size of 3 μm, Y 2 O 3 powder with an average particle size of 3 μm Prepared. And it weighed so that the total weight might be 2000g with the following composition ratios.
Weighing composition (number of molecules Ratio): 70Co-5Cr-15Pt- 5MnO-5Y 2 O 3

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Ptを成分とする合金相であることを確認した。また酸化物相はMn酸化物とY酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, and Pt as components. The oxide phase was confirmed to be Mn oxide and Y oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は27個で、実施例1、2より多くなった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 27, which was larger than those in Examples 1 and 2.

(比較例3)
金属粉としてガスアトマイズ法によって作製された平均粒径10μmのCo−Cr−Pt−Mn粉末を、酸化物粉として平均粒径3μmのY粉末を用意した。そして以下の組成比で合計の重量が1850gとなるように秤量した。
秤量組成(分子数比率):65Co−5Cr−15Pt−5Mn−10Y
(Comparative Example 3)
A Co—Cr—Pt—Mn powder having an average particle diameter of 10 μm prepared by a gas atomization method was prepared as a metal powder, and a Y 2 O 3 powder having an average particle diameter of 3 μm was prepared as an oxide powder. And it weighed so that the total weight might be 1850g with the following composition ratios.
Weighing composition (number of molecules Ratio): 65Co-5Cr-15Pt- 5Mn-10Y 2 O 3

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mnを成分とする合金相であることを確認した。また酸化物相はY酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, and Mn as components. Moreover, it confirmed that an oxide phase was Y oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は82個で、実施例1、2より多くなった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 82, which was larger than those in Examples 1 and 2.

(実施例3)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径10μmのPt−Mn粉末(原子数比Pt:Mn=60:40)を、酸化物粉として平均粒径3μmのMnO粉末、平均粒径1μmのSiO粉末を用意した。そして以下の組成比で合計の重量が2000gとなるように秤量した。
秤量組成(分子数比率):65Co−5Cr−15Pt−5Mn−5MnO−5SiO
(Example 3)
Co powder having an average particle diameter of 3 μm, Cr powder having an average particle diameter of 5 μm, Pt powder having an average particle diameter of 3 μm, and Pt—Mn powder having an average particle diameter of 10 μm (atomic ratio Pt: Mn = 60: 40) as metal powders MnO powder having an average particle diameter of 3 μm and SiO 2 powder having an average particle diameter of 1 μm were prepared as oxide powders. And it weighed so that the total weight might be 2000g with the following composition ratios.
Weighed composition (number ratio of molecules): 65Co-5Cr-15Pt-5Mn-5MnO-5SiO 2

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mnを成分とする合金相であることを確認した。さらに金属相の一部がPt−Mn相になっていることも確認した。また酸化物相はMnとSiを成分とする複合酸化物とSi酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, and Mn as components. Furthermore, it was also confirmed that a part of the metal phase was a Pt—Mn phase. Further, it was confirmed that the oxide phase was a complex oxide containing Si and Mn and Si oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は12個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 12.

(実施例4)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径20μmのMn粉末、平均粒径10μmのRu粉末を、酸化物粉として平均粒径3μmのMn粉末、平均粒径1μmのTiO粉末を用意した。そして以下の組成比で合計の重量が2100gとなるように秤量した。
秤量組成(分子数比率):62.5Co−5Cr−15Pt−5Mn−5Ru−2.5Mn−5TiO
Example 4
Co powder having an average particle size of 3 μm, Cr powder having an average particle size of 5 μm, Pt powder having an average particle size of 3 μm, Mn powder having an average particle size of 20 μm, and Ru powder having an average particle size of 10 μm are used as the oxide powder. Mn 2 O 3 powder having a diameter of 3 μm and TiO 2 powder having an average particle diameter of 1 μm were prepared. And it weighed so that the total weight might become 2100g with the following composition ratios.
Weighing composition (number of molecules Ratio): 62.5Co-5Cr-15Pt- 5Mn-5Ru-2.5Mn 2 O 3 -5TiO 2

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mn、Ruを成分とする合金相であることを確認した。さらに金属相の一部がPt−Mn相になっていることも確認した。また酸化物相はMnとTiを成分とする複合酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, Mn, and Ru as components. Furthermore, it was also confirmed that a part of the metal phase was a Pt—Mn phase. It was also confirmed that the oxide phase was a complex oxide containing Mn and Ti as components.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は7個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was seven.

また焼結体の切断面を研磨し、その研磨面において、1mmの範囲の研磨面で観察したときの酸化物相の面積比率は21%であった。すなわち、ターゲット中の酸化物相の体積比率は21%であった。Further, the cut surface of the sintered body was polished, and the area ratio of the oxide phase when observed on the polished surface in the range of 1 mm 2 was 21%. That is, the volume ratio of the oxide phase in the target was 21%.

(比較例4)
金属粉として平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径20μmのMn粉末、平均粒径10μmのRu粉末を、酸化物粉として平均粒径3μmのMn粉末、平均粒径1μmのTiO粉末を用意した。そして以下の組成比で合計の重量が1650gとなるように秤量した。
秤量組成(分子数比率):37.5Co−5Cr−15Pt−5Mn−5Ru−2.5Mn−30TiO
(Comparative Example 4)
Co powder having an average particle size of 3 μm, Cr powder having an average particle size of 5 μm, Pt powder having an average particle size of 3 μm, Mn powder having an average particle size of 20 μm, and Ru powder having an average particle size of 10 μm are used as the oxide powder. Mn 2 O 3 powder having a diameter of 3 μm and TiO 2 powder having an average particle diameter of 1 μm were prepared. And it weighed so that the total weight might be 1650g with the following composition ratios.
Weighing composition (number of molecules Ratio): 37.5Co-5Cr-15Pt- 5Mn-5Ru-2.5Mn 2 O 3 -30TiO 2

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1000°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。   Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1000 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Cr、Pt、Mn、Ruを成分とする合金相であることを確認した。さらに金属相の一部がPt−Mn相になっていることも確認した。また酸化物相はMnとTiを成分とする複合酸化物とTi酸化物であることを確認した。   When the cross section of the sintered body thus prepared was polished and its structure was observed, a structure in which the metal phase and the oxide phase were dispersed with each other was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Cr, Pt, Mn, and Ru as components. Furthermore, it was also confirmed that a part of the metal phase was a Pt—Mn phase. It was also confirmed that the oxide phase was a complex oxide and Ti oxide containing Mn and Ti as components.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は82個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 82.

また焼結体の切断面を研磨し、その研磨面において、1mmの範囲の研磨面で観察したときの酸化物相の面積比率は57%であった。すなわちターゲット中の酸化物相の体積比率は57%であった。酸化物相の体積比率が21%の実施例4と比較し、大幅にパーティクルが増加していることが確認された。Further, the cut surface of the sintered body was polished, and the area ratio of the oxide phase when observed on the polished surface in the range of 1 mm 2 was 57%. That is, the volume ratio of the oxide phase in the target was 57%. Compared with Example 4 in which the volume ratio of the oxide phase was 21%, it was confirmed that the particles increased significantly.

(実施例5)
金属粉としてガスアトマイズ法によって作製された平均粒径10μmのCo−Pt−Mn粉末を、酸化物粉として平均粒径3μmのMnO粉末、平均粒径3μmのTa粉末を用意した。そして以下の組成比で合計の重量が2300gとなるように秤量した。
秤量組成(分子数比率):65Co−20Pt−5Mn−5MnO−5Ta
(Example 5)
A Co—Pt—Mn powder having an average particle diameter of 10 μm prepared by a gas atomization method as a metal powder, and a MnO powder having an average particle diameter of 3 μm and a Ta 2 O 5 powder having an average particle diameter of 3 μm were prepared as oxide powders. And it weighed so that the total weight might be 2300g with the following composition ratios.
Weighing composition (number of molecules Ratio): 65Co-20Pt-5Mn- 5MnO-5Ta 2 O 5

そして秤量した粉末をそれぞれ粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、8時間回転させて混合した。そしてボールミルから取り出した混合粉を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度110
0℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
Each of the weighed powders was enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and mixed by rotating for 8 hours. The mixed powder taken out from the ball mill was filled in a carbon mold having a diameter of 190 mm and sintered by hot pressing. The conditions for hot pressing are a vacuum atmosphere, a heating rate of 300 ° C./hour, and a holding temperature of 110.
The temperature was 0 ° C. and the holding time was 2 hours, and the pressure was increased from 30 MPa until the end of the heating. After completion of the holding, it was naturally cooled in the chamber.

このようにして作製した焼結体の断面を研磨してその組織を観察したところ、金属相と酸化物相が互いに均一分散した組織構造が確認された。さらに電子線プローブマイクロアナライザーで、研磨面の元素分布測定を実施した。その結果、金属相はCo、Pt、Mnを成分とする合金相であることを確認した。また、酸化物相はMn酸化物とTa酸化物であることを確認した。   When the cross section of the sintered body thus produced was polished and its structure was observed, a structure in which the metal phase and the oxide phase were uniformly dispersed was confirmed. Furthermore, element distribution measurement of the polished surface was performed with an electron beam probe microanalyzer. As a result, it was confirmed that the metal phase was an alloy phase containing Co, Pt and Mn as components. The oxide phase was confirmed to be Mn oxide and Ta oxide.

次に焼結体を直径180.0mm、厚さ5.0mmの形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。
スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は16個であった。
Next, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm with a lathe to produce a disk-shaped target. This was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva) and sputtering was performed.
The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 16.

以上の通り、いずれの実施例においても、スパッタリング時に発生するパーティクル量を低減することができ、金属相と酸化相に存在するMnが、成膜時の歩留まりを向上するために非常に重要な役割を有することが分かった。   As described above, in any of the embodiments, the amount of particles generated during sputtering can be reduced, and Mn present in the metal phase and the oxidation phase plays a very important role in improving the yield during film formation. It was found to have

本発明のスパッタリングターゲットは、スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。したがって、グラニュラー構造型の磁性薄膜を形成するためのスパッタリングターゲットとして有用である。
The sputtering target of the present invention has an excellent effect that the amount of particles generated at the time of sputtering can be reduced and the yield at the time of film formation can be improved. Therefore, it is useful as a sputtering target for forming a granular structure type magnetic thin film.

Claims (6)

金属相と酸化物相が均一分散した組織を有する焼結体スパッタリングターゲットであって、該金属相が成分としてCoとPtとMnを含有し、該酸化物相が少なくともMnを構成成分とする酸化物を含有することを特徴とするスパッタリングターゲット。   A sintered sputtering target having a structure in which a metal phase and an oxide phase are uniformly dispersed, wherein the metal phase contains Co, Pt, and Mn as components, and the oxide phase includes at least Mn as a component A sputtering target comprising an object. 前記金属相の一部がPt−Mn相であることを特徴とする請求項1に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein a part of the metal phase is a Pt—Mn phase. 前記酸化物相がさらにAl、B、Ba、Be、Bi、Ca、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Ga、Gd、Ge、Hf、Ho、La、Li、Lu、Mg、Mo、Nb、Nd、Ni、Pr、Sb、Sc、Si、Sm、Sn、Sr、Ta、Tb、Te、Ti、Tm、V、W、Y、Yb、Zn、Zrから選択した一種以上の元素を構成成分とする酸化物を含有することを特徴とする請求項1又は2に記載のスパッタリングターゲット。   The oxide phase further includes Al, B, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, La, Li, Selected from Lu, Mg, Mo, Nb, Nd, Ni, Pr, Sb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tm, V, W, Y, Yb, Zn, Zr The sputtering target according to claim 1, comprising an oxide containing one or more elements as a constituent component. 前記酸化物相がMnを構成成分の一つとする複合酸化物であることを特徴とする請求項1〜3のいずれか一項に記載のスパッタリングターゲット。   The sputtering target according to any one of claims 1 to 3, wherein the oxide phase is a composite oxide containing Mn as one of constituent components. 前記金属相がさらに添加成分として、Ag、Au、B、Cr、Cu、Fe、Ga、Ge、Mo、Nb、Ni、Pd、Re、Rh、Ru、Sn、Ta、W、V、Znから選択した1種以上の元素を含有することを特徴とする請求項1〜4のいずれか一項に記載のスパッタリングターゲット。   The metal phase is further selected from Ag, Au, B, Cr, Cu, Fe, Ga, Ge, Mo, Nb, Ni, Pd, Re, Rh, Ru, Sn, Ta, W, V, and Zn as additional components. The sputtering target according to claim 1, wherein the sputtering target contains one or more elements. 前記酸化物相が、スパッタリングターゲット中における体積比率で10%以上55%未満であることを特徴とする請求項1〜5のいずれか一項に記載のスパッタリングターゲット。
The said oxide phase is 10% or more and less than 55% by the volume ratio in a sputtering target, The sputtering target as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2014533302A 2013-03-12 2014-01-20 Sputtering target Active JP5801496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533302A JP5801496B2 (en) 2013-03-12 2014-01-20 Sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013049130 2013-03-12
JP2013049130 2013-03-12
PCT/JP2014/050980 WO2014141737A1 (en) 2013-03-12 2014-01-20 Sputtering target
JP2014533302A JP5801496B2 (en) 2013-03-12 2014-01-20 Sputtering target

Publications (2)

Publication Number Publication Date
JP5801496B2 JP5801496B2 (en) 2015-10-28
JPWO2014141737A1 true JPWO2014141737A1 (en) 2017-02-16

Family

ID=51536414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533302A Active JP5801496B2 (en) 2013-03-12 2014-01-20 Sputtering target

Country Status (5)

Country Link
JP (1) JP5801496B2 (en)
MY (1) MY170314A (en)
SG (1) SG11201501365WA (en)
TW (1) TWI608113B (en)
WO (1) WO2014141737A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027699B1 (en) * 2016-02-19 2016-11-16 デクセリアルズ株式会社 Mn—Zn—W—O-based sputtering target and method for producing the same
CN108699677B (en) 2016-02-19 2020-12-04 捷客斯金属株式会社 Sputtering target for magnetic recording medium and magnetic thin film
WO2020031460A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target, magnetic film, and perpendicular magnetic recording medium
WO2020031459A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target, granular film, and perpendicular magnetic recording medium
TWI727322B (en) * 2018-08-09 2021-05-11 日商Jx金屬股份有限公司 Sputtering target and magnetic film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131735A1 (en) * 2006-12-05 2008-06-05 Heraeus Incorporated Ni-X, Ni-Y, and Ni-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
WO2009032984A1 (en) * 2007-09-07 2009-03-12 E. I. Du Pont De Nemours And Company Multi-element alloy powder containing silver and at least two non-silver containing elements
WO2012011294A1 (en) * 2010-07-20 2012-01-26 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target with little particle generation
JP2012117147A (en) * 2010-11-12 2012-06-21 Jx Nippon Mining & Metals Corp Sputtering target with remained cobalt oxide
SG189256A1 (en) * 2010-12-22 2013-05-31 Jx Nippon Mining & Metals Corp Sintered compact sputtering target

Also Published As

Publication number Publication date
TWI608113B (en) 2017-12-11
JP5801496B2 (en) 2015-10-28
TW201443261A (en) 2014-11-16
WO2014141737A1 (en) 2014-09-18
SG11201501365WA (en) 2015-05-28
MY170314A (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP5801496B2 (en) Sputtering target
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
JP5960287B2 (en) Sintered sputtering target
WO2014178310A1 (en) Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
JP6437427B2 (en) Sputtering target for magnetic recording media
JP6305881B2 (en) Sputtering target for magnetic recording media
JP6713489B2 (en) Sputtering target and magnetic thin film for magnetic recording medium
US9773653B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP5944580B2 (en) Sputtering target
WO2018123500A1 (en) Magnetic material sputtering target and method for manufacturing same
JP5946922B2 (en) Sputtering target for magnetic recording media
JP7153729B2 (en) Sputtering target and magnetic film
CN111183244B (en) Ferromagnetic material sputtering target
JP6728094B2 (en) Ferromagnetic material sputtering target
JP6553755B2 (en) Sputtering target for magnetic recording media and magnetic thin film
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
CN111183243B (en) Sputtering target, magnetic film, and method for producing magnetic film
JP2018172762A (en) Sputtering target, magnetic film, and production method of magnetic film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250