JPWO2014132335A1 - Friction stir welding apparatus and joining method - Google Patents

Friction stir welding apparatus and joining method Download PDF

Info

Publication number
JPWO2014132335A1
JPWO2014132335A1 JP2015502603A JP2015502603A JPWO2014132335A1 JP WO2014132335 A1 JPWO2014132335 A1 JP WO2014132335A1 JP 2015502603 A JP2015502603 A JP 2015502603A JP 2015502603 A JP2015502603 A JP 2015502603A JP WO2014132335 A1 JPWO2014132335 A1 JP WO2014132335A1
Authority
JP
Japan
Prior art keywords
friction stir
stir welding
heat input
rotor
input means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502603A
Other languages
Japanese (ja)
Other versions
JP5942034B2 (en
Inventor
嗣彬 西川
嗣彬 西川
平野 聡
平野  聡
信義 柳田
信義 柳田
昇 齋藤
昇 齋藤
一等 杉本
一等 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5942034B2 publication Critical patent/JP5942034B2/en
Publication of JPWO2014132335A1 publication Critical patent/JPWO2014132335A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining

Abstract

摩擦撹拌接合において、被接合部への入熱量を増加させることで、接合直後の急冷による引張残留応力の低減効果を大きくすることができる摩擦撹拌接合装置を提供する。回転子(1)の進行方向に対して反対側に、冷却装置(3)を備えており、冷却材(4)により回転子(1)が通過した直後の被接合部表面(5)を冷却している。さらに、ドーナツ状の入熱手段(6)を回転子(1)の外側に備えている。入熱手段(6)は、被接合部に機械加工を施す加工面(6a)で被接合部表面(5)に接しており、押付け機構(6b)の反力により押し付けられている。また、押付け機構(6b)は押さえ板(6c)により固定されている。さらに、入熱手段(6)は保持具(6d)により回転子(1)に固定されているため、回転子(1)の回転に伴って回転している。In friction stir welding, a friction stir welding apparatus is provided that can increase the effect of reducing tensile residual stress due to rapid cooling immediately after joining by increasing the amount of heat input to the welded portion. The cooling device (3) is provided on the opposite side to the traveling direction of the rotor (1), and the surface (5) to be joined immediately after the rotor (1) passes by the coolant (4) is cooled. is doing. Furthermore, a donut-shaped heat input means (6) is provided outside the rotor (1). The heat input means (6) is in contact with the surface of the bonded portion (5) at the processed surface (6a) for machining the bonded portion, and is pressed by the reaction force of the pressing mechanism (6b). The pressing mechanism (6b) is fixed by a pressing plate (6c). Furthermore, since the heat input means (6) is fixed to the rotor (1) by the holder (6d), it rotates with the rotation of the rotor (1).

Description

本発明は、摩擦撹拌接合装置およびこれを用いた接合方法に関する。   The present invention relates to a friction stir welding apparatus and a joining method using the same.

摩擦撹拌接合(Friction Stir Welding: FSW)とは、円筒状のツールを回転させながら強い力で被接合部に押し付けることで、被接合部周辺を塑性流動により撹拌して、部材を接合する接合方法である。FSWは、被接合部材を溶融させないため、入熱が小さく、他の溶接法に比べて熱変形が小さいことが特徴の接合方法である。従来、FSWは鉄道車両構体のような、アルミニウムなどの軟質材料で薄板部材の接合に利用されてきた。   Friction Stir Welding (FSW) is a joining method that joins members by agitating the periphery of the welded part by plastic flow by pressing the cylindrical tool against the welded part with a strong force while rotating it. It is. FSW is a joining method characterized by low heat input and low thermal deformation compared to other welding methods because it does not melt the members to be joined. Conventionally, FSW has been used for joining thin plate members with a soft material such as aluminum, such as a railway vehicle structure.

近年、ツールの材料開発が進んだことで、FSWによる鉄鋼材料の接合や、厚板部材の接合が可能となってきた。したがって、今後は、FSWがステンレス鋼など腐食環境化で使用される材料の接合にも広く適用されることが期待される。   In recent years, with the development of tool materials, it has become possible to join steel materials and thick plate members using FSW. Therefore, in the future, FSW is expected to be widely applied to the joining of materials used in corrosive environments such as stainless steel.

一方、鉄鋼材料のFSW接合では、アルミニウム等の軟質材料に比べて入熱が大きくなるために、FSWであっても、接合による引張残留応力の発生が懸念される。引張残留応力は、腐食環境化では、いわゆる応力腐食割れ(Stress Corrosion Cracking: SCC)を引起すことが知られているため、十分に考慮しておく必要がある。   On the other hand, in FSW bonding of steel materials, heat input is larger than that of soft materials such as aluminum. Therefore, even with FSW, there is concern about the generation of tensile residual stress due to bonding. The tensile residual stress is known to cause so-called stress corrosion cracking (SCC) in a corrosive environment, and therefore needs to be sufficiently considered.

従来技術として、特許文献1には、アーク溶接などの一般的な溶接において、溶接直後に接合部を急冷することによる引張残留応力の低減方法が記載されている。また、特許文献2には、FSWにおいて接合部を冷却することによる残留応力の低減について記載されている。   As a conventional technique, Patent Document 1 describes a method for reducing tensile residual stress by quenching a joint immediately after welding in general welding such as arc welding. Patent Document 2 describes the reduction of residual stress by cooling the joint in FSW.

特開2004−167575JP 2004-167575 A 特開2004−148350JP 2004-148350 A

溶接直後の急冷による残留応力の低減方法では、FSWの場合、必ずしも十分な残留応力の低減効果が得られない場合がある。ここで、溶接直後の急冷による残留応力の低減は、被接合部表面と内部の温度差と、この温度差による熱膨張の違いにより起こる。上記の溶接直後の急冷による残留応力の低減方法では、円筒状のツールでの摩擦熱のみにより温度差を発生させているため、十分な残留応力の低減効果を得られない問題がある。そのため、適切に接合部への入熱量を増加させて、冷却時の表面と内部の温度差を大きくする必要がある。   In the case of FSW, the method for reducing residual stress by rapid cooling immediately after welding may not always provide a sufficient residual stress reduction effect. Here, the reduction of the residual stress due to rapid cooling immediately after welding occurs due to the difference in temperature between the surface of the bonded portion and the inside and the difference in thermal expansion due to this temperature difference. In the method for reducing residual stress by rapid cooling immediately after welding, a temperature difference is generated only by frictional heat with a cylindrical tool, so that there is a problem that a sufficient residual stress reduction effect cannot be obtained. Therefore, it is necessary to appropriately increase the amount of heat input to the joint and increase the temperature difference between the surface and the inside during cooling.

そこで、本発明の目的は、FSWにおいて、適切に被接合部への入熱量を増加させて、接合直後の急冷による引張残留応力の低減効果を大きくすることである。   In view of this, an object of the present invention is to increase the amount of heat input to the welded portion appropriately in FSW and increase the effect of reducing the tensile residual stress due to rapid cooling immediately after joining.

本発明の摩擦撹拌接合装置は、回転子を用いた摩擦攪拌接合において、前記回転子が通過した前記接合部を冷却する冷却装置を有するとともに、前記回転子の外周において接合部と対向する位置に回転子と共に回転する入熱手段を有することを特徴とする。   The friction stir welding apparatus according to the present invention includes a cooling device that cools the joint through which the rotor has passed in friction stir welding using a rotor, and at a position facing the joint on the outer periphery of the rotor. It has the heat input means rotated with a rotor, It is characterized by the above-mentioned.

本発明の摩擦撹拌接合装置によれば、冷却時の表面と内部の温度差が大きくなり、施工後の引張残留応力の低減効果を大きくすることができる。   According to the friction stir welding apparatus of the present invention, the temperature difference between the surface and the inside during cooling becomes large, and the effect of reducing the tensile residual stress after construction can be increased.

本発明の実施例1にかかる摩擦撹拌接合装置を示す模式図。The schematic diagram which shows the friction stir welding apparatus concerning Example 1 of this invention. 本発明の原理を説明する被接合部の板厚方向の温度分布を示す模式図。The schematic diagram which shows the temperature distribution of the thickness direction of the to-be-joined part explaining the principle of this invention. 図1における斜視図。The perspective view in FIG. 本発明の実施例2にかかる摩擦撹拌接合装置を示す模式図。The schematic diagram which shows the friction stir welding apparatus concerning Example 2 of this invention. 本発明の実施例3にかかる摩擦撹拌接合装置を示す模式図。The schematic diagram which shows the friction stir welding apparatus concerning Example 3 of this invention. 本発明の実施例4にかかる摩擦撹拌接合装置を示す模式図。The schematic diagram which shows the friction stir welding apparatus concerning Example 4 of this invention.

以下に本発明を、図面を用いて説明する。   The present invention will be described below with reference to the drawings.

本発明の実施例1を以下に説明する。図1は本発明の実施例1にかかる摩擦撹拌接合装置の模式図を示す。図1に示す摩擦撹拌接合装置では、回転子1がプローブ2を備えており、プローブ2が被接合部に圧入されている。プローブ2の取り付け部には、接合部周辺を塑性流動させて練り混ぜることで複数の部材を一体化させるための、ショルダ11を有する。また、回転子1の進行方向に対して反対側に、冷却装置3を備えており、冷却材4により回転子1が通過した直後の被接合部表面5を冷却している。さらに、ドーナツ状の入熱手段6を回転子1の外側に備えている。入熱手段6は、被接合部に機械加工を施す加工面6aで被接合部表面5に接しており、押付け機構6bの反力により押し付けられている。また、押付け機構6bは押さえ板6cにより固定されている。さらに、入熱手段6は保持具6dにより回転子1に固定されているため、回転子1の回転に伴って回転している。ここで入熱手段6としては、回転による摩擦熱により加工面6aを加熱させる工具である。入熱手段6は、摩擦熱が大きい研磨が好適であるが、切削など他の加工工具を除外するものではない。   Example 1 of the present invention will be described below. FIG. 1 is a schematic diagram of a friction stir welding apparatus according to Example 1 of the present invention. In the friction stir welding apparatus shown in FIG. 1, the rotor 1 includes a probe 2, and the probe 2 is press-fitted into the joined portion. The attachment portion of the probe 2 has a shoulder 11 for integrating a plurality of members by plastic flow around the joint portion and kneading. Moreover, the cooling device 3 is provided on the opposite side to the traveling direction of the rotor 1, and the surface 5 to be joined immediately after the rotor 1 passes by the coolant 4 is cooled. Furthermore, a donut-shaped heat input means 6 is provided outside the rotor 1. The heat input means 6 is in contact with the surface 5 to be bonded at a processing surface 6a for machining the bonded portion, and is pressed by the reaction force of the pressing mechanism 6b. The pressing mechanism 6b is fixed by a pressing plate 6c. Furthermore, since the heat input means 6 is fixed to the rotor 1 by the holder 6d, it rotates with the rotation of the rotor 1. Here, the heat input means 6 is a tool that heats the processed surface 6a by frictional heat generated by rotation. The heat input means 6 is preferably polished with a large frictional heat, but does not exclude other processing tools such as cutting.

本装置によれば、回転子1の回転に伴って、被接合部表面5が、加工面6aにより機械加工され、加工の摩擦熱が発生することで、入熱手段6を持たない従来の摩擦撹拌接合装置に比べて、被接合部表面5の温度を上昇させることができる。   According to this apparatus, as the rotor 1 rotates, the surface 5 to be welded is machined by the machining surface 6a, and the frictional heat of machining is generated, so that the conventional friction without the heat input means 6 is generated. Compared with a stir welding apparatus, the temperature of the to-be-joined part surface 5 can be raised.

図2は、本発明の原理を説明する被接合部の板厚方向の温度分布を示す模式図である。本装置による急冷前の板厚方向の温度分布7aは、入熱手段を用いない従来法による急冷前の板厚方向の温度分布7bに比べて、摩擦熱により接合部表面で高温となる。この状態から、冷却材4により冷却されると、被接合部表面5の温度が低下するため、本装置による急冷直後の温度分布は、本装置による急冷直後の板厚方向の温度分布8aのように、従来法による急冷直後の温度分布は、従来法による急冷直後の板厚方向の温度分布8bのようになる。このとき、本装置では、表面と内部の温度差ΔT1が、従来法によるΔT2に比べて大きくなる。その結果、表面と内部の熱膨張の差が大きくなることで、本装置では、従来手法に比べてFSW施工後の引張残留応力を大きく低下させることができる。FIG. 2 is a schematic diagram showing the temperature distribution in the plate thickness direction of the bonded portion for explaining the principle of the present invention. The temperature distribution 7a in the plate thickness direction before quenching by the present apparatus becomes higher on the surface of the joint due to frictional heat than the temperature distribution 7b in the plate thickness direction before quenching by the conventional method using no heat input means. When cooled by the coolant 4 from this state, the temperature of the surface 5 to be joined decreases, so the temperature distribution immediately after quenching by this apparatus is like the temperature distribution 8a in the thickness direction immediately after quenching by this apparatus. In addition, the temperature distribution immediately after the rapid cooling by the conventional method is the temperature distribution 8b in the thickness direction immediately after the rapid cooling by the conventional method. At this time, in the present apparatus, the temperature difference ΔT 1 between the surface and the interior is larger than ΔT 2 by the conventional method. As a result, since the difference in thermal expansion between the surface and the interior becomes large, in this apparatus, the tensile residual stress after FSW construction can be greatly reduced as compared with the conventional method.

図3は、図1における斜視図である。本装置では、通常の接合によるビード5aだけでなく、入熱手段6による加工痕5bが現れる。すなわち、ビード5aの形状は従来法に比べて入熱手段6により平滑化される。したがって、本装置では、残留応力の改善のみならず、ビード5aが平滑化され、応力集中が小さくなることによる、疲労強度などの改善も期待できる。   FIG. 3 is a perspective view of FIG. In this apparatus, not only the bead 5a by normal joining but the processing mark 5b by the heat input means 6 appears. That is, the shape of the bead 5a is smoothed by the heat input means 6 as compared with the conventional method. Therefore, this apparatus can be expected not only to improve the residual stress but also to improve the fatigue strength and the like by smoothing the bead 5a and reducing the stress concentration.

このように、本発明によれば、FSW施工後の引張残留応力を、従来法に比べて低下させることができるとともに、ビード形状を平滑化することができる。   Thus, according to the present invention, the tensile residual stress after the FSW construction can be reduced as compared with the conventional method, and the bead shape can be smoothed.

次に、図4は実施例2にかかる摩擦撹拌接合装置の模式図を示す。以下では、実施例1と同一の記号の説明は省略する。実施例2は、回転子1が被接合部表面5に対して傾けて施工する場合の例である。回転子1を傾ける場合でも、入熱手段6の加工面6aを、予め、回転子1の傾き角に合わせた所定の角度に成形しておくことで、進行方向の後方の被接合部表面5を加工面6aによって加工することができる。   Next, FIG. 4 shows a schematic diagram of the friction stir welding apparatus according to the second embodiment. In the following, description of the same symbols as those in the first embodiment is omitted. Example 2 is an example in the case where the rotor 1 is constructed while being inclined with respect to the surface 5 to be joined. Even when the rotor 1 is tilted, the processed surface 6a of the heat input means 6 is formed in advance at a predetermined angle that matches the tilt angle of the rotor 1, so that the surface 5 to be joined at the rear in the traveling direction. Can be processed by the processing surface 6a.

したがって、接合部表面の温度が上昇することで、冷却による残留応力の改善効果を高めることができる。   Therefore, the improvement effect of the residual stress by cooling can be heightened because the temperature of the surface of a junction part rises.

図5は実施例3にかかる摩擦撹拌接合装置の模式図を示す。実施例3は、入熱手段6による入熱を制御する、入熱制御装置9を持つ。入熱制御機構9は、加力板9a、転動部9b、電動アクチュエータ9c、荷重計測装置9d、熱電対9eおよびコントローラで構成されている。入熱制御装置9は荷重計測装置9dの位置で固定されており回転せず、回転する入熱手段6とは転動部9bを介して接している。実施例3では、熱電対9eにより常に進行方向後方の温度を計測している。さらに、電動アクチュエータ9cの押し込み量を調節することで、加工面6aの接触力を制御できる。すなわち、被接合部表面5の温度が、予め求めておいた最適な急冷前の温度となるように、コントローラにより制御することができる。   FIG. 5 is a schematic diagram of the friction stir welding apparatus according to the third embodiment. The third embodiment has a heat input control device 9 that controls heat input by the heat input means 6. The heat input control mechanism 9 includes a force plate 9a, a rolling part 9b, an electric actuator 9c, a load measuring device 9d, a thermocouple 9e, and a controller. The heat input control device 9 is fixed at the position of the load measuring device 9d, does not rotate, and is in contact with the rotating heat input means 6 via the rolling portion 9b. In Example 3, the temperature behind the traveling direction is always measured by the thermocouple 9e. Furthermore, the contact force of the processing surface 6a can be controlled by adjusting the pushing amount of the electric actuator 9c. That is, it can be controlled by the controller so that the temperature of the surface 5 to be joined becomes the optimum temperature before quenching that has been obtained in advance.

このように、本発明によれば、FSW施工後の引張残留応力を、従来法に比べてより適切に低下させることができるとともに、ビード形状を平滑化することができる。   Thus, according to the present invention, the tensile residual stress after FSW construction can be reduced more appropriately than in the conventional method, and the bead shape can be smoothed.

図6は実施例4にかかる摩擦撹拌接合装置の模式図を示す。実施例4は、入熱制御装置9が、ヒータ10をもつ。ヒータ10は、箱形の加力板の内部に備えられている。実施例4では、ヒータ10により入熱手段6を加熱することで、入熱手段6から被接合部表面5への入熱を大きくすることができる。   FIG. 6 is a schematic diagram of a friction stir welding apparatus according to a fourth embodiment. In the fourth embodiment, the heat input control device 9 has a heater 10. The heater 10 is provided inside a box-shaped force plate. In Example 4, the heat input means 6 is heated by the heater 10, so that the heat input from the heat input means 6 to the surface 5 to be joined can be increased.

本発明は、腐食環境で使用され、引張残留応力によるSCCが問題となる材料である、ステンレス鋼などの接合において好適である。また、変形が拘束されて引張残留応力が発生しやすい、板厚の厚い部材の接合に好適である。   The present invention is suitable for joining stainless steel or the like, which is a material used in a corrosive environment and in which SCC due to tensile residual stress is a problem. Further, it is suitable for joining thick members that are easily deformed and easily generate tensile residual stress.

なお、本発明の入熱手段の材質は、熱容量が大きく熱が逃げにくい材料が好適であり、例えばステンレス鋼などが好適である。また、本発明の入熱手段の加工方法は、摩擦熱が大きい研磨が好適であるが、切削など他の加工方法を除外するものではない。また、上記の実施例では加工具の押付け機構にコイル式のバネを用いた例を示したが、板バネなど反力が発生する他の機構を用いてもよい。   In addition, the material of the heat input means of the present invention is preferably a material having a large heat capacity and difficult to escape heat, such as stainless steel. Further, the processing method of the heat input means of the present invention is preferably polishing with large frictional heat, but does not exclude other processing methods such as cutting. Moreover, although the example which used the coil-type spring for the pressing mechanism of the processing tool was shown in said Example, you may use the other mechanism in which reaction force generate | occur | produces, such as a leaf | plate spring.

1・・・回転子
2・・・プローブ
3・・・冷却装置
4・・・冷却材
5・・・被接合部表面
5a・・・ビード
5b・・・加工痕
6・・・入熱手段
6a・・・加工面
6b・・・押付け機構
6c・・・押さえ板
6d・・・保持具
7a・・・本装置による急冷前の板厚方向の温度分布
7b・・・従来法による急冷前の板厚方向の温度分布
8a・・・本装置による急冷直後の板厚方向の温度分布
8b・・・従来法による急冷直後の板厚方向の温度分布
9・・・入熱制御装置
9a・・・加力板
9b・・・転動部
9c・・・電動アクチュエータ
9d・・・荷重計測装置
9e・・・熱電対
10・・・ヒータ
11・・・ショルダ
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Probe 3 ... Cooling device 4 ... Coolant 5 ... Surface to be joined 5a ... Bead 5b ... Processing mark 6 ... Heat input means 6a ... Processed surface 6b ... Pressing mechanism 6c ... Presser plate 6d ... Holder 7a ... Temperature distribution in the thickness direction before quenching by this apparatus 7b ... Plate before quenching by conventional method Temperature distribution 8a in the thickness direction ... Temperature distribution 8b in the thickness direction immediately after quenching by this apparatus ... Temperature distribution 9 in the thickness direction immediately after quenching by the conventional method 9 ... Heat input controller 9a ... Force plate 9b ... rolling part 9c ... electric actuator 9d ... load measuring device 9e ... thermocouple 10 ... heater 11 ... shoulder

Claims (8)

回転子を用いた摩擦攪拌接合装置において、
前記回転子が通過した前記接合部を冷却する冷却装置を有するとともに、
前記回転子の外周において接合部と対向する位置に回転子と共に回転する入熱手段を有することを特徴とした摩擦撹拌接合装置。
In a friction stir welding apparatus using a rotor,
While having a cooling device that cools the joint through which the rotor has passed,
A friction stir welding apparatus comprising heat input means that rotates together with the rotor at a position facing the joint on the outer periphery of the rotor.
請求項1に記載された摩擦撹拌接合装置において、
前記入熱手段の前記接合部と対向する面が、前記入熱手段の外側に向かって前記入熱手段の厚みが薄くなるように成形されていることを特徴とした摩擦撹拌接合装置。
In the friction stir welding apparatus according to claim 1,
The friction stir welding apparatus according to claim 1, wherein a surface of the heat input means facing the joint is formed so that the thickness of the heat input means decreases toward the outside of the heat input means.
請求項1または2のいずれかに記載された摩擦撹拌接合装置において、
前記入熱手段を被接合部表面へ押付ける押付け機構を有することを特徴とした摩擦撹拌接合装置。
In the friction stir welding apparatus according to claim 1 or 2,
A friction stir welding apparatus having a pressing mechanism for pressing the heat input means against the surface of the bonded portion.
請求項1または3のいずれかに記載された摩擦撹拌接合装置において、
接合部表面の温度を測定する温度測定部と、
前記温度測定部の測定結果より、前記入熱手段の押し付け力を制御して前記溶接部への入熱を制御する入熱制御装置を有することを特徴とした摩擦撹拌接合装置。
In the friction stir welding apparatus according to any one of claims 1 and 3,
A temperature measurement unit for measuring the temperature of the surface of the joint,
A friction stir welding apparatus comprising a heat input control device that controls a heat input to the welded portion by controlling a pressing force of the heat input means based on a measurement result of the temperature measuring portion.
請求項1乃至4のいずれかに記載された摩擦撹拌接合装置において、
前記入熱手段を加熱するヒータを有することを特徴とした摩擦撹拌接合装置。
In the friction stir welding apparatus according to any one of claims 1 to 4,
A friction stir welding apparatus comprising a heater for heating the heat input means.
回転子を用いた摩擦攪拌接合方法において、
前記回転子が通過した前記接合部を冷却するとともに、前記回転子の外周において接合部と対向する位置に回転子を設けて入熱することを特徴とした摩擦撹拌接合方法。
In the friction stir welding method using a rotor,
A friction stir welding method, wherein the joint through which the rotor has passed is cooled, and a rotor is provided at a position facing the joint on the outer periphery of the rotor to input heat.
請求項6に記載された摩擦撹拌接合方法において、
接合部表面の温度を測定し、前記測定結果より、前記入熱手段の押し付け力を制御して前記溶接部への入熱を制御することを特徴とした摩擦撹拌接合方法。
In the friction stir welding method according to claim 6,
A friction stir welding method characterized in that the temperature of the joint surface is measured, and the heat input to the weld is controlled by controlling the pressing force of the heat input means based on the measurement result.
請求項6又は7のいずれかに記載された摩擦撹拌接合方法において、
前記入熱手段を加熱することを特徴とした摩擦撹拌接合方法。
In the friction stir welding method according to claim 6 or 7,
The friction stir welding method, wherein the heat input means is heated.
JP2015502603A 2013-02-26 2013-02-26 Friction stir welding apparatus and joining method Expired - Fee Related JP5942034B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054933 WO2014132335A1 (en) 2013-02-26 2013-02-26 Friction stir welding device and welding method

Publications (2)

Publication Number Publication Date
JP5942034B2 JP5942034B2 (en) 2016-06-29
JPWO2014132335A1 true JPWO2014132335A1 (en) 2017-02-02

Family

ID=51427640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502603A Expired - Fee Related JP5942034B2 (en) 2013-02-26 2013-02-26 Friction stir welding apparatus and joining method

Country Status (2)

Country Link
JP (1) JP5942034B2 (en)
WO (1) WO2014132335A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507770B (en) * 2022-01-14 2023-12-12 西安建筑科技大学 Twinning induced plasticity steel with stacking fault energy gradient distribution and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4286962B2 (en) * 1999-04-21 2009-07-01 昭和電工株式会社 Friction stir welding method
US6780525B2 (en) * 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
JP2004148350A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Device and method for friction stir welding
JP4326214B2 (en) * 2002-12-25 2009-09-02 三菱重工業株式会社 Friction stir welding equipment using bobbin tool and its joining method
JP2004358513A (en) * 2003-06-04 2004-12-24 Mitsubishi Heavy Ind Ltd Tool and method of stir welding
JP2005288499A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Friction stir welding method and reforming method thereby
JP4468125B2 (en) * 2004-09-27 2010-05-26 三菱重工業株式会社 Friction stir welding method and apparatus
JP4335819B2 (en) * 2005-01-12 2009-09-30 三菱重工業株式会社 Metal processing method
WO2012101786A1 (en) * 2011-01-26 2012-08-02 三菱日立製鉄機械株式会社 Rotate tool for friction stir welding, and friction stir welding method
JP5461476B2 (en) * 2011-05-27 2014-04-02 三菱重工業株式会社 Friction stir welding equipment

Also Published As

Publication number Publication date
JP5942034B2 (en) 2016-06-29
WO2014132335A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
TWI540012B (en) Friction stir welding with temperature control
Soundararajan et al. Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061
JP4468125B2 (en) Friction stir welding method and apparatus
JP5055814B2 (en) Joining method and joining apparatus
Ma et al. Analytical and experimental investigation of thermocapillary flow in pulsed laser micropolishing
CN104245218B (en) For the active force modulation of the process control of friction-stir operation
CN105579184A (en) Friction stir welding method for steel sheets and method of manufacturing joint
Li et al. Numerical analysis of joint temperature evolution during friction stir welding based on sticking contact
JP2017035702A (en) Friction stir welding apparatus and friction stir welding control method
Darvazi et al. Thermal modeling of friction stir welding of stainless steel 304L
Shi et al. Modeling the material flow and heat transfer in reverse dual-rotation friction stir welding
Krishna et al. Effect of tool tilt angle on aluminum 2014 friction stir welds
Geng et al. Measurement and simulation of thermal-induced residual stresses within friction stir lapped Al/steel plate
JP4983236B2 (en) Ultrasonic bonding inspection apparatus, ultrasonic bonding inspection method, ultrasonic bonding apparatus, and ultrasonic bonding method
JP5942034B2 (en) Friction stir welding apparatus and joining method
Grätzel et al. Scaling effects during friction stir welding of aluminum alloys with reduced tool aspect ratios
JP2007190606A (en) Method and equipment for friction stir welding with heating
Seli et al. Characterization and thermal modelling of friction welded alumina–mild steel with the use of Al 1100 interlayer
JPWO2012101786A1 (en) Friction stir welding rotary tool and friction stir welding method
JP2007175740A (en) Electric current bonding process and apparatus
Scutelnicu et al. Research on friction stir welding and tungsten inert gas assisted friction stir welding of copper
Verma et al. Study of temperature distribution during FSW of aviation grade AA6082
Deepati et al. Numerical and experimental study on influence of tool plunging force and shoulder size on thermal history of friction stir welding
WO2008090633A1 (en) Friction stir welding apparatus and method of welding
WO2015004794A1 (en) Method for friction stir welding and device for friction stir welding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5942034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees