JPWO2014115749A1 - Organic semiconductor material for solution process and organic semiconductor device - Google Patents

Organic semiconductor material for solution process and organic semiconductor device Download PDF

Info

Publication number
JPWO2014115749A1
JPWO2014115749A1 JP2014558587A JP2014558587A JPWO2014115749A1 JP WO2014115749 A1 JPWO2014115749 A1 JP WO2014115749A1 JP 2014558587 A JP2014558587 A JP 2014558587A JP 2014558587 A JP2014558587 A JP 2014558587A JP WO2014115749 A1 JPWO2014115749 A1 JP WO2014115749A1
Authority
JP
Japan
Prior art keywords
dntt
organic semiconductor
compound
semiconductor material
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014558587A
Other languages
Japanese (ja)
Other versions
JP6080870B2 (en
Inventor
和男 瀧宮
和男 瀧宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2014115749A1 publication Critical patent/JPWO2014115749A1/en
Application granted granted Critical
Publication of JP6080870B2 publication Critical patent/JP6080870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

溶液プロセス用有機半導体材料は、式1で表される。式1中、Y1及びY2はそれぞれ独立してカルコゲン原子であり、R1及びR2は一方は、分岐鎖アルキル基であり、他方は水素である。The organic semiconductor material for solution process is represented by Formula 1. In Formula 1, Y1 and Y2 are each independently a chalcogen atom, one of R1 and R2 is a branched alkyl group, and the other is hydrogen.

Description

本発明は、溶液プロセス用有機半導体材料及び有機半導体デバイスに関する。   The present invention relates to an organic semiconductor material for solution processing and an organic semiconductor device.

近年、有機FETデバイス、有機ELデバイスなどの有機半導体を用いた薄膜デバイスが注目され、実用化されている。有機半導体材料として、種々の化合物が研究、開発されており、例えば、ジナフトチエノチオフェン(以下、DNTT)は優れた電荷移動度を呈し、有機半導体材料特性を示す材料として注目されている(特許文献1、2)。   In recent years, thin film devices using organic semiconductors such as organic FET devices and organic EL devices have attracted attention and have been put into practical use. Various compounds have been researched and developed as organic semiconductor materials. For example, dinaphthothienothiophene (hereinafter referred to as DNTT) has attracted attention as a material that exhibits excellent charge mobility and exhibits organic semiconductor material properties (patents). References 1, 2).

国際公開第2008/050726号International Publication No. 2008/050726 国際公開第2010/098372号International Publication No. 2010/098372

特許文献1及び2に開示されているDNTT誘導体は、有機溶媒への溶解性が乏しい。このため、塗布法等の溶液プロセスによる有機半導体層の製造ができないという課題があった。   The DNTT derivatives disclosed in Patent Documents 1 and 2 have poor solubility in organic solvents. For this reason, the subject that the organic-semiconductor layer cannot be manufactured by solution processes, such as the apply | coating method, occurred.

本発明は上記事項に鑑みてなされたものであり、有機溶媒への可溶性に優れ、塗布法等の溶液プロセスによる有機半導体層の製造に利用可能な溶液プロセス用有機半導体材料及び有機半導体デバイスを提供することを目的とする。   The present invention has been made in view of the above matters, and provides an organic semiconductor material and an organic semiconductor device for solution process that are excellent in solubility in an organic solvent and can be used for manufacturing an organic semiconductor layer by a solution process such as a coating method. The purpose is to do.

本発明の第一の観点に係る溶液プロセス用有機半導体材料は、
式1で表される化合物を含む、
(式1中、Y及びYはそれぞれ独立してカルコゲン原子であり、R及びRは一方が分岐鎖アルキル基であり、他方は水素である。)
ことを特徴とする。
The organic semiconductor material for solution process according to the first aspect of the present invention,
Including a compound represented by Formula 1,
(In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom, one of R 1 and R 2 is a branched alkyl group, and the other is hydrogen.)
It is characterized by that.

また、前記分岐鎖アルキル基の主鎖がC3以上であることが好ましい。   The main chain of the branched alkyl group is preferably C3 or more.

また、前記分岐鎖アルキル基の主鎖がC6以上であることが好ましい。   The main chain of the branched alkyl group is preferably C6 or more.

また、前記分岐鎖アルキル基の側鎖がC2以上であることが好ましい。   The side chain of the branched alkyl group is preferably C2 or more.

また、前記分岐鎖アルキル基の側鎖が主鎖の2位以上の炭素に結合していることが好ましい。   Moreover, it is preferable that the side chain of the branched chain alkyl group is bonded to carbon at the 2-position or more of the main chain.

また、前記分岐鎖アルキル基の側鎖が主鎖の3位以上の炭素に結合していることが好ましい。   Moreover, it is preferable that the side chain of the branched chain alkyl group is bonded to carbon at the 3-position or more of the main chain.

また、前記Y及びYが硫黄原子又はセレン原子であることが好ましい。Further, it is preferable that the Y 1 and Y 2 is a sulfur atom or a selenium atom.

本発明の第二の観点に係る有機半導体デバイスは、
本発明の第一の観点に係る溶液プロセス用有機半導体材料を含む、
ことを特徴とする。
The organic semiconductor device according to the second aspect of the present invention is
Including an organic semiconductor material for solution processing according to the first aspect of the present invention,
It is characterized by that.

本発明に係る溶液プロセス用有機半導体材料は、有機溶媒への可溶性に優れる。このため、塗布法等の溶液プロセスによる有機半導体層の製造が可能である。   The organic semiconductor material for solution process according to the present invention is excellent in solubility in an organic solvent. For this reason, it is possible to produce an organic semiconductor layer by a solution process such as a coating method.

2,9−EH−DNTT薄膜の吸収スペクトル(図1(A))、光電子スペクトル(図1(B))、面外XRD(図1(C))を示すグラフである。It is a graph which shows the absorption spectrum (FIG. 1 (A)), photoelectron spectrum (FIG. 1 (B)), and out-of-plane XRD (FIG. 1 (C)) of a 2,9-EH-DNTT thin film. 2−2−EH−DNTT薄膜の吸収スペクトル(図2(A))、光電子スペクトル(図2(B))、面外XRD(図2(C))を示すグラフである。It is a graph which shows the absorption spectrum (FIG. 2 (A)), photoelectron spectrum (FIG. 2 (B)), and out-of-plane XRD (FIG. 2 (C)) of a 2-2EH-DNTT thin film. 2−2−EH−DNTTトランジスタ素子の伝達特性(図3(A))、出力特性(図3(B))を示すグラフである。6 is a graph showing transfer characteristics (FIG. 3A) and output characteristics (FIG. 3B) of a 2-2EH-DNTT transistor element. ODTS処理素子の伝達特性(図4(A))、出力特性(図4(B))を示すグラフである。It is a graph which shows the transfer characteristic (FIG. 4 (A)) and output characteristic (FIG. 4 (B)) of an ODTS processing element.

(溶液プロセス用有機半導体材料)
本実施の形態に係る溶液プロセス用有機半導体材料は、式1で表される化合物を含む。
(Organic semiconductor materials for solution process)
The organic semiconductor material for solution process according to the present embodiment includes a compound represented by Formula 1.

式1中、Y及びYはそれぞれ独立してカルコゲン原子(酸素、硫黄、セレン、テルル)である。Y及びYは、硫黄原子、セレン原子であることが好ましい。また、Y及びYは同一であることが好ましい。In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom (oxygen, sulfur, selenium, tellurium). Y 1 and Y 2 are preferably a sulfur atom or a selenium atom. Y 1 and Y 2 are preferably the same.

また、式1中、R及びRのいずれか一方は、分岐鎖アルキル基であり、他方が水素である。分岐鎖アルキル基の主鎖はC3以上であることが好ましく、C6以上であることがより好ましい。また、分岐鎖アルキル基の側鎖はC1以上であり、C2以上であることがより好ましい。また、側鎖は主鎖の2位以上の炭素に結合していることが好ましく、主鎖の3位以上の炭素に結合していることがより好ましい。側鎖が縮合環から離れることで、分子間相互作用が高まり、キャリヤ移動度が向上する。また、分岐鎖アルキル基は飽和分岐鎖アルキル基であることが好ましい。In Formula 1, any one of R 1 and R 2 is a branched alkyl group, and the other is hydrogen. The main chain of the branched alkyl group is preferably C3 or more, and more preferably C6 or more. The side chain of the branched alkyl group is C1 or more, and more preferably C2 or more. Further, the side chain is preferably bonded to the carbon at the 2-position or more of the main chain, and more preferably bonded to the carbon at the 3-position or more of the main chain. By separating the side chain from the condensed ring, the intermolecular interaction is increased and the carrier mobility is improved. The branched alkyl group is preferably a saturated branched alkyl group.

分岐鎖アルキル基は炭素数が多いほど有機溶媒への溶解性が高まると考えられるが、後述の実施例では、主鎖の炭素数がC6で十分良好な溶解性を示していること、また、分岐鎖アルキル基が長いと有機半導体層を製造する際のパッキングが悪化し、半導体特性が低下するおそれがあることから、主鎖の炭素数はC10以下でよいと考えられる。   Although it is considered that the branched chain alkyl group has higher solubility in organic solvents as the number of carbon atoms increases, in the examples described later, the main chain carbon number is C6, indicating sufficiently good solubility, If the branched alkyl group is long, the packing at the time of producing the organic semiconductor layer is deteriorated and the semiconductor characteristics may be deteriorated. Therefore, the carbon number of the main chain may be C10 or less.

なお、式1中、R及びRのいずれか一方が直鎖アルキル基であり、他方が水素である化合物の場合、この化合物は有機溶媒への溶解性に乏しい。このため、塗布法等の溶液プロセスを利用した有機半導体層の製造には適さない。In the formula 1, in the case where one of R 1 and R 2 is a linear alkyl group and the other is hydrogen, this compound has poor solubility in an organic solvent. For this reason, it is not suitable for manufacturing an organic semiconductor layer using a solution process such as a coating method.

また、式1中、R及びRの双方が分岐鎖アルキル基である化合物の場合、有機溶媒への溶解性は良好である一方、この化合物を用いて塗布法等で製造される有機半導体層はトランジスタ特性を示さず、溶液プロセス用の有機半導体材料として利用できない。In addition, in the case where a compound in which R 1 and R 2 are both branched alkyl groups in Formula 1, the solubility in an organic solvent is good, while an organic semiconductor produced by a coating method or the like using this compound The layer does not exhibit transistor properties and cannot be used as an organic semiconductor material for solution processing.

上記の式1で表される化合物は、特許文献1、特許文献2に開示された公知の方法などを参照して合成することができる。例えば、以下のようにして合成することができるが、これに限定されるものではない。   The compound represented by the above formula 1 can be synthesized with reference to known methods disclosed in Patent Document 1 and Patent Document 2. For example, although it can synthesize | combine as follows, it is not limited to this.

下記スキーム1に表されるように、まず、6−ハロゲノ−2−メトキシナフタレン或いは7−ハロゲノ−2−メトキシナフタレン(化合物(A))から、6−アルキル−2−メトキシナフタレン或いは7−アルキル−2−メトキシナフタレン(化合物(B))を合成する。化合物(A)と分岐鎖アルキル基を有するアルキルマグネシウムブロマイド等のグリニャール試薬とを反応させることで合成し得る。
続いて、化合物(C)を合成する。化合物(C)の合成は、化合物(B)とジメチルスルフィド等とを反応させることで合成し得る。
続いて、化合物(D)を合成する。化合物(C)とトリブロモボラン等とを反応させることで合成し得る。
続いて、化合物(E)を合成する。化合物(D)とトリフルオロメタンスルホン酸とを反応させることで合成し得る。
なお、化合物(A)中、X及びXは一方がハロゲン原子であり、他方が水素である。また、化合物(B)〜(E)中、R及びRは一方が分岐鎖アルキル基であり、他方が水素である。
As shown in the following Scheme 1, first, from 6-halogeno-2-methoxynaphthalene or 7-halogeno-2-methoxynaphthalene (compound (A)), 6-alkyl-2-methoxynaphthalene or 7-alkyl- 2-methoxynaphthalene (compound (B)) is synthesized. It can be synthesized by reacting compound (A) with a Grignard reagent such as an alkylmagnesium bromide having a branched alkyl group.
Subsequently, the compound (C) is synthesized. The compound (C) can be synthesized by reacting the compound (B) with dimethyl sulfide or the like.
Subsequently, the compound (D) is synthesized. It can be synthesized by reacting compound (C) with tribromoborane or the like.
Subsequently, the compound (E) is synthesized. It can be synthesized by reacting compound (D) with trifluoromethanesulfonic acid.
In the compound (A), one of X 1 and X 2 is a halogen atom, and the other is hydrogen. In the compounds (B) to (E), one of R 1 and R 2 is a branched alkyl group, and the other is hydrogen.

また、下記スキーム2に表されるように、2−メトキシナフタレン(化合物(F))から、化合物(G)、化合物(H)を経て、化合物(I)を合成する。化合物(G)、化合物(H)及び化合物(I)の合成は、それぞれ上述の化合物(C)、化合物(D)、化合物(E)の合成と同様にして合成し得る。
Moreover, as represented in the following scheme 2, compound (I) is synthesized from 2-methoxynaphthalene (compound (F)) via compound (G) and compound (H). The compounds (G), (H) and (I) can be synthesized in the same manner as the compounds (C), (D) and (E), respectively.

続いて、下記スキーム3に表されるように、上記の2つの化合物(化合物(E)、(I))を縮合することで、化合物(J)を合成する。更に、化合物(J)を閉環することで、目的化合物である化合物(K)を合成する。クロロホルム中、ヨウ素を用いて閉環反応を行うことで合成し得る。なお、化合物(E)、(J)、(K)中、R及びRは一方が分岐鎖アルキル基であり、他方が水素である。
Subsequently, as shown in Scheme 3 below, the compound (J) is synthesized by condensing the above two compounds (compounds (E) and (I)). Furthermore, compound (K) which is a target compound is synthesize | combined by ring-closing compound (J). It can be synthesized by carrying out a ring-closing reaction using iodine in chloroform. In the compounds (E), (J), and (K), one of R 1 and R 2 is a branched alkyl group, and the other is hydrogen.

上記の合成方法では、一例として、式1中、Y及びYが硫黄原子である化合物の合成例を説明したが、上記のジメチルスルフィドに代えて、ジメチルセレニド、ジメチルエーテルを用いることで、式1中、Y及びYがセレン原子、酸素原子である化合物を合成することができる。In the above synthesis method, as an example, a synthesis example of a compound in which Y 1 and Y 2 in formula 1 are sulfur atoms has been described, but by using dimethyl selenide or dimethyl ether instead of the above dimethyl sulfide, In Formula 1, a compound in which Y 1 and Y 2 are a selenium atom and an oxygen atom can be synthesized.

溶液プロセス用有機半導体材料は、式1で表される化合物を含んでおり、式1で表される化合物は、有機溶媒への溶解性が高い。したがって、式1で表される化合物を含む溶液プロセス用有機半導体材料を用い、スピンコート法等の塗布法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの溶液プロセスを利用して有機半導体層を製造することができる。溶液プロセスでは、蒸着法のように真空や高温状態にする必要が無く、大面積の有機半導体層を低コストで実現できる。   The organic semiconductor material for solution process contains the compound represented by Formula 1, and the compound represented by Formula 1 has high solubility in an organic solvent. Therefore, an organic semiconductor material for solution process containing the compound represented by Formula 1 is used and a solution process such as a coating method such as a spin coating method, an ink jet method, a screen printing method, an offset printing method, or a micro contact printing method is used. Thus, an organic semiconductor layer can be manufactured. In the solution process, it is not necessary to use a vacuum or a high temperature state unlike the vapor deposition method, and a large-area organic semiconductor layer can be realized at low cost.

溶液プロセス用有機半導体材料が可溶な有機溶媒として、例えば、クロロホルム、塩化メチレン、ジクロロエタン等のハロゲノ炭化水素系溶媒、メタノール、エタノール、プロピルアルコール、ブタノール等のアルコール系溶媒、オクタフルオロペンタノール、ペンタフルオロプロパノール等のフッ化アルコール系溶媒、酢酸エチル、酢酸ブチル、安息香酸エチル、炭酸ジエチル等のエステル系溶媒、トルエン、ヘキシルベンゼン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、メトキシベンゼン、クロロナフタレン、メチルナフタレン、テトラヒドロナフタレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒、テトラヒドロフラン、ジイソブチルエーテル、ジフェニルエーテル等のエーテル系溶媒、オクタン、デカン、シクロヘキサン等の炭化水素系溶媒などが挙げられる。   Examples of organic solvents in which organic semiconductor materials for solution process are soluble include halogeno hydrocarbon solvents such as chloroform, methylene chloride, and dichloroethane, alcohol solvents such as methanol, ethanol, propyl alcohol, and butanol, octafluoropentanol, and pentane. Fluorinated alcohol solvents such as fluoropropanol, ester solvents such as ethyl acetate, butyl acetate, ethyl benzoate, diethyl carbonate, toluene, hexylbenzene, xylene, mesitylene, chlorobenzene, dichlorobenzene, methoxybenzene, chloronaphthalene, methylnaphthalene , Aromatic hydrocarbon solvents such as tetrahydronaphthalene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexane, dimethylforma De, dimethyl acetamide, amide solvents such as N- methyl pyrrolidone, tetrahydrofuran, diisobutyl ether, ether solvents diphenyl ether, octane, decane, etc. hydrocarbon solvents cyclohexane.

また、溶液プロセス用有機半導体材料は、式1で表される化合物のほか、有機半導体層の製膜性の向上、ドーピング等のために添加剤や他の半導体材料が混合されてもよい。   In addition to the compound represented by Formula 1, the organic semiconductor material for solution process may be mixed with additives and other semiconductor materials for improving the film forming property of the organic semiconductor layer, doping, and the like.

(有機半導体デバイス)
本実施の形態に係る有機半導体デバイスは、上述した溶液プロセス用有機半導体材料が用いられたデバイスである。この有機半導体デバイスとして、例えば、有機半導体層を有する電界効果トランジスタや、有機キャリヤ輸送層及び/又は発光層を有する発光デバイスなどが挙げられる。有機半導体デバイスは、従来公知の種々の製造方法を用いて製造することができ、特に限定されるものではない。
(Organic semiconductor device)
The organic semiconductor device according to the present embodiment is a device using the above-described organic semiconductor material for solution process. Examples of the organic semiconductor device include a field effect transistor having an organic semiconductor layer and a light emitting device having an organic carrier transport layer and / or a light emitting layer. The organic semiconductor device can be manufactured using various conventionally known manufacturing methods, and is not particularly limited.

以下に記すように、段階的に2−(2−エチルヘキシル)ジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、2−2−EH−DNTT)を合成した。   As described below, stepwise 2- (2-ethylhexyl) dinaphtho [2,3-b: 2 ′, 3′-f] thieno [2,3-b] thiophene (hereinafter referred to as 2-2-2EH−) DNTT) was synthesized.

(6−(2−エチルヘキシル)−2−メトキシナフタレン(以下、化合物1)の合成)
テトラヒドロフラン(以下、THF)(30mL)に6−ブロモ−2−メトキシナフタレン(7.14g,30mmol)及びNi(dppp)Cl(813mg,1.5mmol)を加えた溶液に、2−エチルヘキシルマグネシウムブロマイドのTHF溶液を室温で加え、24時間還流した。なお、2−エチルヘキシルマグネシウムブロマイドのTHF溶液は、1−ブロモ−2−エチルヘキサシルブロミド(9.0mL,45mmol)及びマグネシウム(1.17g,48mmol)をTHF(7.5mL)に添加して調製した。
冷却後、混合物を水(30mL)で希釈し、未反応のマグネシウム及び生成した固体を濾過して取り除いた。
濾過液をエーテル(15mL×3)で抽出した。抽出した複合物を塩水(30mL×3)で洗浄し、硫酸マグネシウムで乾燥した。これを減圧乾燥し、淡黄色の油状の化合物1(5.4g,収率50%)を得た。
(Synthesis of 6- (2-ethylhexyl) -2-methoxynaphthalene (hereinafter, compound 1))
To a solution of 6-bromo-2-methoxynaphthalene (7.14 g, 30 mmol) and Ni (dppp) Cl 2 (813 mg, 1.5 mmol) in tetrahydrofuran (hereinafter referred to as THF) (30 mL), 2-ethylhexylmagnesium bromide was added. Was added at room temperature and refluxed for 24 hours. A THF solution of 2-ethylhexyl magnesium bromide was prepared by adding 1-bromo-2-ethylhexyl bromide (9.0 mL, 45 mmol) and magnesium (1.17 g, 48 mmol) to THF (7.5 mL). did.
After cooling, the mixture was diluted with water (30 mL) and unreacted magnesium and the resulting solid was filtered off.
The filtrate was extracted with ether (15 mL × 3). The extracted composite was washed with brine (30 mL × 3) and dried over magnesium sulfate. This was dried under reduced pressure to obtain pale yellow oily compound 1 (5.4 g, yield 50%).

得られた化合物1の測定データを以下に示す。
1H NMR (500MHz, CDCl3) δ 0.87 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H) 1.22 1.37 (m, 8H), 1.67 (sept, J = 6.2 Hz, 2H), 2.68 (t, J = 6.6 Hz, 2H), 3.93 (s, 3H), 7.13 (s, 1H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H), 7.31 (dd, J = 8.6, 1.3 Hz, 1H), 7.53 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H),
13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 23.4, 23.6, 25.8, 29.2, 32.7, 40.5, 41.4, 55.6, 106.0, 118.9, 126.8, 127.5, 128.9, 129.3, 129.4, 133.2, 137.5, 157.4;
EIMS (70 eV) m/z = 270 (M+). HRMS (APCI) Calcd for C19H26O: 270.19782; Found: 270.19791.
The measurement data of the obtained compound 1 are shown below.
1 H NMR (500MHz, CDCl 3 ) δ 0.87 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H) 1.22 1.37 (m, 8H), 1.67 (sept, J = 6.2 Hz, 2H), 2.68 (t, J = 6.6 Hz, 2H), 3.93 (s, 3H), 7.13 (s, 1H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H), 7.31 (dd, J = 8.6 , 1.3 Hz, 1H), 7.53 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H),
13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 23.4, 23.6, 25.8, 29.2, 32.7, 40.5, 41.4, 55.6, 106.0, 118.9, 126.8, 127.5, 128.9, 129.3, 129.4, 133.2, 137.5 , 157.4;
EIMS (70 eV) m / z = 270 (M + ). HRMS (APCI) Calcd for C 19 H 26 O: 270.19782; Found: 270.19791.

(6−(2−エチルヘキシル)−3−メチルチオ−2−メトキシナフタレン(以下、化合物2)の合成)
THF(2.7mL)に化合物1(730mg,2.7mmol)を加えた溶液に、n−ブチルリチウム(2.0mL,3.2mmol)の1.59Mヘキサン溶液を−78℃で加えた。
この混合物を室温で1時間撹拌した後、ジメチルジスルフィド(0.36mL,4.1mmol)を−78℃で加えた。そして、生成した混合物を室温で18時間撹拌した。
混合物を飽和塩化アンモニウム水溶液(5mL)へ注ぎ、エーテル(5mL×3)で抽出した。
抽出した複合物を塩水(5mL×3)で洗浄し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、ほぼ純粋な黄色の油状の化合物2(853mg,quant.)を得た。
なお、分析用サンプルは、シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン−ヘキサン(v/v=1:1,R=0.35))で分離精製して用いた。
(Synthesis of 6- (2-ethylhexyl) -3-methylthio-2-methoxynaphthalene (hereinafter Compound 2))
To a solution of Compound 1 (730 mg, 2.7 mmol) in THF (2.7 mL), a 1.59 M hexane solution of n-butyllithium (2.0 mL, 3.2 mmol) was added at −78 ° C.
After the mixture was stirred at room temperature for 1 hour, dimethyl disulfide (0.36 mL, 4.1 mmol) was added at −78 ° C. The resulting mixture was then stirred at room temperature for 18 hours.
The mixture was poured into saturated aqueous ammonium chloride solution (5 mL) and extracted with ether (5 mL × 3).
The extracted composite was washed with brine (5 mL × 3) and dried over magnesium sulfate. This was concentrated under reduced pressure to obtain almost pure yellow oily compound 2 (853 mg, quant.).
The sample for analysis was separated and purified by silica gel column chromatography (developing solvent: dichloromethane-hexane (v / v = 1: 1, R f = 0.35)).

得られた化合物2の測定データを以下に示す。
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H) 1.25-1.36 (m, 8H), 1.64 (sept, J = 6.6 Hz, 2H), 2.55 (s, 1H), 2.66 (t, J = 6.5 Hz, 2H), 3.99 (s, 3H), 7.07 (s, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.42 (s, 1H) 7.47 (s, 1H), 7.62 (d, J = 8.3 Hz, 1H),
13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 14.9, 23.4, 25.8, 29.3, 32.8, 40.5, 41.5, 56.2, 105.0, 123.2, 126.3, 126.5, 127.9, 129.6, 129.7, 130.7, 128.0, 154.3;
EIMS (70 eV) m/z = 316(M+). HRMS (APCI) Calcd for C20H28OS: 316.18554; Found: 316.18576.
The measurement data of the obtained compound 2 are shown below.
1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H) 1.25-1.36 (m, 8H), 1.64 (sept, J = 6.6 Hz, 2H), 2.55 (s, 1H), 2.66 (t, J = 6.5 Hz, 2H), 3.99 (s, 3H), 7.07 (s, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.42 (s, 1H) 7.47 (s, 1H), 7.62 (d, J = 8.3 Hz, 1H),
13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 14.9, 23.4, 25.8, 29.3, 32.8, 40.5, 41.5, 56.2, 105.0, 123.2, 126.3, 126.5, 127.9, 129.6, 129.7, 130.7, 128.0 , 154.3;
EIMS (70 eV) m / z = 316 (M +). HRMS (APCI) Calcd for C 20 H 28 OS: 316.18554; Found: 316.18576.

(6−(2−エチルヘキシル)−3−メチルチオ−2−ヒドロキシナフタレン(以下、化合物3)の合成)
(Synthesis of 6- (2-ethylhexyl) -3-methylthio-2-hydroxynaphthalene (hereinafter, compound 3))

ジクロロメタン(5mL)に化合物2(681mg,2.2mmol)を加えた溶液に、トリブロモボランのジクロロメタン溶液(約2M,1.1mL,4.3mmol)を−78℃で滴下した。
混合物を室温で5時間撹拌した後、氷(約2g)に加えた。
精製した混合物をジクロロメタン(5mL×3)で抽出した。
有機相を塩水(5mL×3)で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
残留物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン−ヘキサン(v/v=1/1,R=0.28))で分離精製し、黄色の油状の化合物3(650mg,quant.)を得た。
To a solution obtained by adding compound 2 (681 mg, 2.2 mmol) to dichloromethane (5 mL) was added dropwise a solution of tribromoborane in dichloromethane (about 2 M, 1.1 mL, 4.3 mmol) at −78 ° C.
The mixture was stirred at room temperature for 5 hours and then added to ice (ca. 2 g).
The purified mixture was extracted with dichloromethane (5 mL × 3).
The organic phase was washed with brine (5 mL × 3), dried over magnesium sulfate and concentrated under reduced pressure.
The residue was separated and purified by silica gel column chromatography (developing solvent: dichloromethane-hexane (v / v = 1/1, R f = 0.28)) to obtain yellow oily compound 3 (650 mg, quant.). It was.

得られた化合物3の測定データを以下に示す。
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 6.9 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H) 1.25-1.36 (m, 8H), 1.66 (sept, J = 6.0 Hz, 2H), 2.43 (s, 1H), 2.65 (t, J = 6.4 Hz, 2H), 6.60 (s, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H) 7.60 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H),
13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 20.2, 23.4, 02325.8, 29.2, 32.7, 40.5, 41.3, 109.4, 124.4, 126.5, 127.0, 129.4 129.6, 133.8 (×2), 137.8, 152.4; IR (KBr) ν 3411 cm-1 (OH);
EIMS (70 eV) m/z = 302(M+). HRMS (APCI) Calcd for C19H26O: 302.16989; Found: 302. 17023.
The measurement data of the obtained compound 3 are shown below.
1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 6.9 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H) 1.25-1.36 (m, 8H), 1.66 (sept, J = 6.0 Hz, 2H), 2.43 (s, 1H), 2.65 (t, J = 6.4 Hz, 2H), 6.60 (s, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H) 7.60 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H),
13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 20.2, 23.4, 02325.8, 29.2, 32.7, 40.5, 41.3, 109.4, 124.4, 126.5, 127.0, 129.4 129.6, 133.8 (× 2), 137.8, 152.4; IR (KBr) ν 3411 cm -1 (OH);
EIMS (70 eV) m / z = 302 (M + ). HRMS (APCI) Calcd for C 19 H 26 O: 302.16989; Found: 302. 17023.

(6−(2−エチルヘキシル)−3−メチルチオ−2−(トリフルオロメタンスルフォニルオキシ)ナフタレン(以下、化合物4)の合成)
ジクロロメタン(7mL)に化合物3(640mg,2.1mmol)及びピリジン(0.89mL,6.4mmol)を加えて脱気した溶液に、無水トリフルオロメタンスルホン酸(0.7mL,4.2mmol)を0℃で加えた。
室温で25分間撹拌した後に、混合物を水(5mL)と塩酸(4M,2mL)で希釈した後、ジクロロメタン(5mL×3)で抽出した。
有機相を塩水(5mL×3)で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮して黄色の油状のほぼ純粋な化合物4(800mg,87%)を得た。
(Synthesis of 6- (2-ethylhexyl) -3-methylthio-2- (trifluoromethanesulfonyloxy) naphthalene (hereinafter, compound 4))
To a solution degassed by adding compound 3 (640 mg, 2.1 mmol) and pyridine (0.89 mL, 6.4 mmol) to dichloromethane (7 mL) was added trifluoromethanesulfonic anhydride (0.7 mL, 4.2 mmol) to 0. Added at ° C.
After stirring at room temperature for 25 minutes, the mixture was diluted with water (5 mL) and hydrochloric acid (4M, 2 mL), and extracted with dichloromethane (5 mL × 3).
The organic phase was washed with brine (5 mL × 3), dried over magnesium sulfate, and concentrated under reduced pressure to give a yellow oil, almost pure compound 4 (800 mg, 87%).

得られた化合物4の測定データを以下に示す。
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H) 1.24-1.36 (m, 8H), 1.67 (sept, J = 6.4 Hz, 2H), 2.59 (s, 3H), 2.67 (d, J = 7.0 Hz, 1H), 2.69 (d, d, J = 7.2 Hz, 1H), 7.32 (dd, J =1.5, 8.4 Hz, 1H), 7.54 (s, 1H), , 7.63 (s, 1H) 7.68 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H),
13C NMR (126 MHz, CDCl3); δ11.1, 14.5, 16.2, 23.4, 25.8, 29.2, 32.7, 40.7, 41.4, 120.0, 120.3 (q, J = 315 Hz) 126.5, 126.7, 127.8, 129.2, 129.8, 130.0, 131.0, 133.2, 142.1, 145.2;
IR (KBr) ν1425, 1210 cm-1 (-O-SO2-);
EIMS (70 eV), HRMS (APCI) Calcd for C20H25F3O3S2: 434.11917; Found: 434.11905.
The measurement data of the obtained compound 4 are shown below.
1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H) 1.24-1.36 (m, 8H), 1.67 (sept, J = 6.4 Hz, 2H), 2.59 (s, 3H), 2.67 (d, J = 7.0 Hz, 1H), 2.69 (d, d, J = 7.2 Hz, 1H), 7.32 (dd, J = 1.5, 8.4 Hz, 1H ), 7.54 (s, 1H),, 7.63 (s, 1H) 7.68 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H),
13 C NMR (126 MHz, CDCl 3 ); δ 11.1, 14.5, 16.2, 23.4, 25.8, 29.2, 32.7, 40.7, 41.4, 120.0, 120.3 (q, J = 315 Hz) 126.5, 126.7, 127.8, 129.2, 129.8, 130.0, 131.0, 133.2, 142.1, 145.2;
IR (KBr) ν1425, 1210 cm -1 (-O-SO 2- );
EIMS (70 eV), HRMS (APCI) Calcd for C 20 H 25 F 3 O 3 S 2 : 434.11917; Found: 434.11905.

(トランス−1−(3−メチルチオナフタレン−2−イル)−2−(6−(2−エチルヘキシル)−3−メチルチオナフタレン−2−イル)エテン(以下、化合物5)の合成)
DMF(N,N−ジメチルホルムアミド)(48mL)に化合物4(2.58g,5.94mmol)、3−メチルチオ−2−(トリフルオロメタンスルフォニルオキシ)ナフタレン(1.91g,5.94mmol)及びトランス−1,2−ビス(トリブチルスタニル)エチレン(3.6g,5.94mmol)を加えて脱気した溶液に、Pd(PPh(343mg,0.3mmol,5mol%)を加えた。
この混合物を暗室にて24時間90℃で加熱した。その後、水で希釈し、クロロホルムで抽出した。
抽出物を塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
残留物をシリカゲルパッドに通し(展開溶媒:ジクロロメタン)、黄色の固体の化合物5(910mg,32%)を得た。
(Synthesis of trans-1- (3-methylthionaphthalen-2-yl) -2- (6- (2-ethylhexyl) -3-methylthionaphthalen-2-yl) ethene (hereinafter, compound 5))
Compound 4 (2.58 g, 5.94 mmol), 3-methylthio-2- (trifluoromethanesulfonyloxy) naphthalene (1.91 g, 5.94 mmol) and trans- were added to DMF (N, N-dimethylformamide) (48 mL). Pd (PPh 3 ) 4 (343 mg, 0.3 mmol, 5 mol%) was added to a solution degassed by adding 1,2-bis (tributylstannyl) ethylene (3.6 g, 5.94 mmol).
The mixture was heated at 90 ° C. in the dark for 24 hours. Then, it diluted with water and extracted with chloroform.
The extract was washed with brine, dried over magnesium sulfate and concentrated under reduced pressure.
The residue was passed through a silica gel pad (developing solvent: dichloromethane) to obtain a yellow solid compound 5 (910 mg, 32%).

得られた化合物5の測定データを以下に示す。
Mp 78-79℃;
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 8.6 Hz, 3H), 1.24-1.38 (m, 8H), 1.67 (sept, J = 7.4 Hz, 1H), 2.60 (s, 1H), 2.69 (d, d, J = 6.7, 6.8 Hz, 2H), 7.27 (s, 1H), 7.44 (tt, J = 1.1, 7.5 Hz, 2H), 7.50 (s, 1H), 7.60 (s, 1H), 7.64 (s, 1H), 7.65 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 8.06 (s, 1H), 8.09 (s, 1H);
13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 16.7, 16.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 124.5, 125.3, 125.4, 126.0, 126.4, 126.8, 126.9,128.0, 128.2, 128.3, 128.4, 129.1, 130.3, 131.9, 133.7, 133.8, 134.5, 135.4, 136.0,136.2, 140.7;
EIMS (70 eV) m/z = 484(M+). HRMS (APCI) Calcd for C32H36S2: 484.22529; Found: 484.22568.
The measurement data of the obtained compound 5 are shown below.
Mp 78-79 ° C;
1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 8.6 Hz, 3H), 1.24-1.38 (m, 8H), 1.67 (sept, J = 7.4 Hz, 1H), 2.60 (s, 1H), 2.69 (d, d, J = 6.7, 6.8 Hz, 2H), 7.27 (s, 1H), 7.44 (tt, J = 1.1, 7.5 Hz, 2H), 7.50 (s, 1H), 7.60 (s, 1H), 7.64 (s, 1H), 7.65 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H ), 7.77 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 8.06 (s, 1H), 8.09 (s, 1H);
13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 16.7, 16.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 124.5, 125.3, 125.4, 126.0, 126.4, 126.8, 126.9, 128.0, 128.2, 128.3, 128.4, 129.1, 130.3, 131.9, 133.7, 133.8, 134.5, 135.4, 136.0, 136.2, 140.7;
EIMS (70 eV) m / z = 484 (M + ). HRMS (APCI) Calcd for C 32 H 36 S 2 : 484.22529; Found: 484.22568.

(2−2−EH−DNTTの合成)
クロロホルム(15mL)に化合物5(720mg,1.5mmol)及びヨウ素(11g,45mmol)を加え、80℃で20時間撹拌した。
この混合物を亜硫酸水素ナトリウム水溶液(20mL)に加えた。
その後、クロロホルムで抽出し、抽出物を塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
残留物をヘキサンで洗浄し、淡黄色の固体の2−2−EH−DNTT(186mg,28%)を得た。
(Synthesis of 2-2EH-DNTT)
Compound 5 (720 mg, 1.5 mmol) and iodine (11 g, 45 mmol) were added to chloroform (15 mL), and the mixture was stirred at 80 ° C. for 20 hours.
This mixture was added to aqueous sodium bisulfite (20 mL).
Thereafter, the mixture was extracted with chloroform, and the extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.
The residue was washed with hexane to obtain 2-2EH-DNTT (186 mg, 28%) as a pale yellow solid.

得られた2−2−EH−DNTTの測定データを以下に示す。
Mp >300℃;
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H), 1.26-1.38 (m, 8H), 1.72 (sept, J = 6.4 Hz, 1H), 2.74 (d, d, J = 7.2, 7.1 Hz, 2H), 7.36 (d, J = 8.4 Hz, 1H) 7.52-7.54 (m, 2H), 7.67 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.94-7.96 (m, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.34 (s, 1H), 8.36 (s, 1H), 8.42 (s, 1H);
13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 23.3, 25.9, 29.2, 32.8, 40.8, 41.2, 120.2, 120.3, 122.1, 122.7, 126.0, 126.2, 126.8, 127.7, 128.3, 128.4, 128.6, 130.2, 130.7, 131.6, 131.7, 132.0 (×2), 132.8, 133.6, 134.2, 140.1, 141.1;
EIMS (70 eV) m/z = 452(M+). HRMS (APCI) Calcd for C30H28S2: 452.16269; Found: 452.16248.
The measurement data of the obtained 2-2EH-DNTT are shown below.
Mp> 300 ° C;
1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H), 1.26-1.38 (m, 8H), 1.72 (sept, J = 6.4 Hz, 1H), 2.74 (d, d, J = 7.2, 7.1 Hz, 2H), 7.36 (d, J = 8.4 Hz, 1H) 7.52-7.54 (m, 2H), 7.67 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.94-7.96 (m, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.34 (s, 1H), 8.36 (s, 1H), 8.42 (s, 1H);
13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 23.3, 25.9, 29.2, 32.8, 40.8, 41.2, 120.2, 120.3, 122.1, 122.7, 126.0, 126.2, 126.8, 127.7, 128.3, 128.4, 128.6, 130.2, 130.7, 131.6, 131.7, 132.0 (× 2), 132.8, 133.6, 134.2, 140.1, 141.1;
EIMS (70 eV) m / z = 452 (M + ). HRMS (APCI) Calcd for C 30 H 28 S 2 : 452.16269; Found: 452.16248.

また、比較例として、以下に記すように段階的に2,9−ジ(2−エチルヘキシル)ジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、2,9−EH−DNTT)を合成した。   As a comparative example, 2,9-di (2-ethylhexyl) dinaphtho [2,3-b: 2 ′, 3′-f] thieno [2,3-b] thiophene (stepwise as described below) Hereinafter, 2,9-EH-DNTT) was synthesized.

(トランス−1,2−ビス(6−(2−エチルヘキシル)−3−メチルチオナフタレン−2−イル)エテン(以下、化合物6)の合成)
DMF(27mL)に化合物4(1.48g,3.4mmol)及びトランス−1,2−ビス(トリブチルスタニル)エチレンを加えて脱気した溶液に、Pd(PPh(158mg,0.13mmol、4mol%)を加えた。
この混合物を暗室にて24時間90℃で加熱した。その後、水で希釈し、クロロホルムで抽出した。
抽出物を塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
残留物をシリカゲルパッドに通し(展開溶媒:ジクロロメタン)、黄色の固体の化合物11(880mg,87%)を得た。
(Synthesis of trans-1,2-bis (6- (2-ethylhexyl) -3-methylthionaphthalen-2-yl) ethene (hereinafter, compound 6))
To a solution degassed by adding Compound 4 (1.48 g, 3.4 mmol) and trans-1,2-bis (tributylstannyl) ethylene to DMF (27 mL), Pd (PPh 3 ) 4 (158 mg, 0. 13 mmol, 4 mol%) was added.
The mixture was heated at 90 ° C. in the dark for 24 hours. Then, it diluted with water and extracted with chloroform.
The extract was washed with brine, dried over magnesium sulfate and concentrated under reduced pressure.
The residue was passed through a silica gel pad (developing solvent: dichloromethane) to obtain a yellow solid compound 11 (880 mg, 87%).

得られた化合物6の測定データを以下に示す。
Mp 64-65℃;
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 7.2 Hz, 6H), 0.90 (t, J = 7.4 Hz, 6H) 1.25-1.37 (m, 16H), 1.69 (sept, J = 6.1 Hz, 4H), 2.59 (s, 2H), 2.67 (d, J = 6.9 Hz, 4H), 2.69 (d, J = 7.1 Hz, 2H),7.25 (d, J = 8.4 Hz, 2H),7.49 (s, 2H), 7.59 (s, 2H), 7.64 (s, 2H) 7.75 (d, J = 8.4 Hz, 2H),8.01 (s, 2H),
13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 17.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 125.2, 126.4, 127.9, 128.2, 128.6, 130.4, 133.8, 134.6, 136.0, 140.6;
EIMS (70 eV) m/z = 596 (M+). HRMS (APCI) Calcd for C40H52S2: 596.35049; Found: 596.35077.
The measurement data of the obtained compound 6 are shown below.
Mp 64-65 ° C;
1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.2 Hz, 6H), 0.90 (t, J = 7.4 Hz, 6H) 1.25-1.37 (m, 16H), 1.69 (sept, J = 6.1 Hz, 4H), 2.59 (s, 2H), 2.67 (d, J = 6.9 Hz, 4H), 2.69 (d, J = 7.1 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.49 ( s, 2H), 7.59 (s, 2H), 7.64 (s, 2H) 7.75 (d, J = 8.4 Hz, 2H), 8.01 (s, 2H),
13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 17.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 125.2, 126.4, 127.9, 128.2, 128.6, 130.4, 133.8, 134.6, 136.0 , 140.6;
EIMS (70 eV) m / z = 596 (M + ). HRMS (APCI) Calcd for C 40 H 52 S 2 : 596.35049; Found: 596.35077.

(2,9−EH−DNTTの合成)
クロロホルム(37mL)に化合物6(2.2g,3.7mmol)及びヨウ素(28g,111mmol)加え、80℃で20時間撹拌した。
この混合物を亜硫酸水素ナトリウム水溶液(20mL)に加えた。
その後、クロロホルムで抽出し、抽出物を塩水で洗浄し、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
残留物をヘキサンで洗浄し、淡黄色の固体の2,9−EH−DNTT(966mg,46%)を得た。
(Synthesis of 2,9-EH-DNTT)
Compound 6 (2.2 g, 3.7 mmol) and iodine (28 g, 111 mmol) were added to chloroform (37 mL), and the mixture was stirred at 80 ° C. for 20 hours.
This mixture was added to aqueous sodium bisulfite (20 mL).
Thereafter, the mixture was extracted with chloroform, and the extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.
The residue was washed with hexane to obtain 2,9-EH-DNTT (966 mg, 46%) as a pale yellow solid.

得られた2,9−EH−DNTTの測定データを以下に示す。
Mp 218-219 ℃;
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 7.1 Hz, 6H), 0.92 (t, J = 7.5 Hz, 6H) 1.25-1.37 (m, 16H), 1.72 (sept, J = 6.0 Hz, 4H), 2.73 (d, J = 6.7 Hz, 2H), 2.74 (d, J = 7.1 Hz, 2H)7.34 (d, J = 8.5 Hz, 2H), 7.65 (s, 2H), 7.92 (d, J = 8.5 Hz, 2H), 8.29 (s, 2H), 8.32 (s, 2H);
13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 23.4, 25.9, 29.2, 32.8, 40.8, 41.3, 120.1, 122.1, 126.8, 128.3 (×2), 130.2, 132.1, 133.7, 140.0, 141.1;
EIMS (70 eV) m/z = 564(M+). HRMS (APCI) Calcd for C38H44S2: 594.28789; Found: 594.28815.
The measurement data of the obtained 2,9-EH-DNTT are shown below.
Mp 218-219 ° C;
1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.1 Hz, 6H), 0.92 (t, J = 7.5 Hz, 6H) 1.25-1.37 (m, 16H), 1.72 (sept, J = 6.0 Hz, 4H), 2.73 (d, J = 6.7 Hz, 2H), 2.74 (d, J = 7.1 Hz, 2H) 7.34 (d, J = 8.5 Hz, 2H), 7.65 (s, 2H), 7.92 (d , J = 8.5 Hz, 2H), 8.29 (s, 2H), 8.32 (s, 2H);
13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 23.4, 25.9, 29.2, 32.8, 40.8, 41.3, 120.1, 122.1, 126.8, 128.3 (× 2), 130.2, 132.1, 133.7, 140.0, 141.1;
EIMS (70 eV) m / z = 564 (M + ). HRMS (APCI) Calcd for C 38 H 44 S 2 : 594.28789; Found: 594.28815.

また、比較例として、2−エチルヘキシルマグネシウムブロマイドをデシルマグネシウムブロマイドに代える以外、上記の2−2−EH−DNTTの合成と同様にし、2−デシル−ジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、2−D−DNTT)を合成した。
As a comparative example, 2-decyl-dinaphtho [2,3-b: 2 ′, 3] was prepared in the same manner as the synthesis of 2-2EH-DNTT, except that 2-ethylhexylmagnesium bromide was replaced with decylmagnesium bromide. '-F] thieno [2,3-b] thiophene (hereinafter, 2-D-DNTT) was synthesized.

(2,9−D−DNTTの合成)
また、比較例として、2−エチルヘキシルマグネシウムブロマイドをデシルマグネシウムブロマイドに代える以外、上記の2,9−EH−DNTTの合成と同様にし、2,9−ジデシルジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、2,9−D−DNTT)を合成した。
(Synthesis of 2,9-D-DNTT)
As a comparative example, 2,9-didecyldinaphtho [2,3-b: 2 ′, 3] was prepared in the same manner as the synthesis of 2,9-EH-DNTT except that 2-ethylhexylmagnesium bromide was replaced with decylmagnesium bromide. '-F] thieno [2,3-b] thiophene (hereinafter, 2,9-D-DNTT) was synthesized.

(溶解度の評価)
2−2−EH−DNTT、2,9−EH−DNTT、2−D−DNTT、2,9−D−DNTTをそれぞれ室温のクロロホルムに溶解させ、溶解度を測定した。その結果を表1に示す。
(Evaluation of solubility)
2-2EH-DNTT, 2,9-EH-DNTT, 2-D-DNTT, and 2,9-D-DNTT were each dissolved in chloroform at room temperature, and the solubility was measured. The results are shown in Table 1.

分岐鎖アルキル基を有する化合物(2−2−EH−DNTT、2,9−EH−DNTT)は良好な溶解性を示した。一方、直鎖アルキル基を有する化合物(2−D−DNTT、2,9−D−DNTT)は溶媒に溶解せず、塗布用有機半導体材料として利用できないことが明らかである。   Compounds having a branched alkyl group (2-2EH-DNTT, 2,9-EH-DNTT) showed good solubility. On the other hand, it is clear that compounds having a linear alkyl group (2-D-DNTT, 2,9-D-DNTT) do not dissolve in a solvent and cannot be used as an organic semiconductor material for coating.

(薄膜物性の評価)
溶媒への溶解性が良好であった2−2−EH−DNTT及び2,9−EH−DNTTを用いて薄膜を作製し、その物性を評価した。
(Evaluation of thin film properties)
Thin films were prepared using 2-2EH-DNTT and 2,9-EH-DNTT, which had good solubility in solvents, and their physical properties were evaluated.

(2−2−EH−DNTT薄膜、2,9−EH−DNTT薄膜の作製、評価)
2−2−EH−DNTTをクロロホルムに溶解して0.3g/Lの溶液を調製し、メンブランフィルターでろ過した後、上記表面処理したn−型シリコン基板上にスピンコート法で約100nm厚の2−2−EH−DNTT薄膜を作製した。また、2,9−EH−DNTTを用いて、上記同様に2,9−EH−DNTT薄膜を作製した。
(Production and evaluation of 2-2EH-DNTT thin film and 2,9-EH-DNTT thin film)
2-2EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered through a membrane filter, and then spin-coated on the surface-treated n-type silicon substrate to a thickness of about 100 nm. A 2-2EH-DNTT thin film was prepared. In addition, a 2,9-EH-DNTT thin film was prepared in the same manner as described above using 2,9-EH-DNTT.

2,9−EH−DNTT薄膜の吸収スペクトルを図1(A)に示す。2,9−EH−DNTTの薄膜の吸収スペクトルでは、置換基を有さないジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、DNTT)の蒸着膜に比べて、顕著な短波長シフトが見られる。このことから、薄膜状態で分子間相互作用が弱いことが分かる。   The absorption spectrum of the 2,9-EH-DNTT thin film is shown in FIG. In the absorption spectrum of a thin film of 2,9-EH-DNTT, dinaphtho [2,3-b: 2 ′, 3′-f] thieno [2,3-b] thiophene (hereinafter, DNTT) having no substituent As compared with the deposited film, a remarkable short wavelength shift is observed. This shows that the intermolecular interaction is weak in the thin film state.

また、2,9−EH−DNTT薄膜の光電子スペクトルを図1(B)に示す。光電子スペクトルにより見積もった2,9−EH−DNTT薄膜でのイオン化電位は5.7eVと無置換DNTTの5.4eVと比べて大きくなっている。このことは、分子間相互作用が弱くなっていることで説明できる。   A photoelectron spectrum of the 2,9-EH-DNTT thin film is shown in FIG. The ionization potential of the 2,9-EH-DNTT thin film estimated from the photoelectron spectrum is 5.7 eV, which is larger than 5.4 eV of unsubstituted DNTT. This can be explained by the weak intermolecular interaction.

また、2,9−EH−DNTT薄膜の面外のX線回折結果を図1(C)に示す。図1(C)では結晶ピークは見えるものの、見積もられた層間距離は16オングストロームと短く、分子配向も望ましい形とは言えない。   Further, the out-of-plane X-ray diffraction result of the 2,9-EH-DNTT thin film is shown in FIG. Although a crystal peak can be seen in FIG. 1C, the estimated interlayer distance is as short as 16 angstroms, and the molecular orientation is not desirable.

続いて、2−2−EH−DNTT薄膜の吸収スペクトルを図2(A)に示す。2−2−EH−DNTT薄膜の吸収スペクトルはDNTTと同様の吸収ピークを示しており、2,9−EH−DNTT薄膜と比較して明確な長波長シフトが見られた。これは、薄膜状態での分子間相互作用が2,9−EH−DNTT薄膜に比べて回復していることを示している。   Subsequently, an absorption spectrum of the 2-2EH-DNTT thin film is shown in FIG. The absorption spectrum of the 2-2EH-DNTT thin film showed an absorption peak similar to that of DNTT, and a clear long wavelength shift was observed as compared with the 2,9-EH-DNTT thin film. This indicates that the intermolecular interaction in the thin film state is recovered as compared with the 2,9-EH-DNTT thin film.

また、2−2−EH−DNTT薄膜の光電子スペクトルを図2(B)に示す。光電子スペクトルにより見積もった薄膜でのイオン化電位は5.0eVと無置換DNTTの5.4eVよりも低下しており、また、非対称直鎖アルキル体と同様であることから、ここからも分子間相互作用が存在することが示唆される。
また、2−2−EH−DNTT薄膜の面外のX線回折結果を図2(C)に示す。面外のX線回折で観測されるピークは、基板面に分子長軸を立てて配向した結晶構造であることを示唆しており、見積もられた層間距離も26オングストロームと、アルキル基も含めた分子長軸の長さに対応している。
A photoelectron spectrum of the 2-2EH-DNTT thin film is shown in FIG. The ionization potential in the thin film estimated from the photoelectron spectrum is 5.0 eV, which is lower than 5.4 eV of unsubstituted DNTT, and is similar to that of an asymmetric linear alkyl compound. Is suggested to exist.
Further, the out-of-plane X-ray diffraction result of the 2-2EH-DNTT thin film is shown in FIG. The peak observed by out-of-plane X-ray diffraction suggests that the crystal structure is oriented with the molecular long axis on the substrate surface, and the estimated interlayer distance is 26 Å, including alkyl groups. Corresponds to the length of the molecular long axis.

(トランジスタ素子の作製、評価)
上記で溶解性が良好であった2−2−EH−DNTT及び2,9−EH−DNTTを用い、ボトムゲート型トランジスタ素子を作製し、特性を評価した。
(Production and evaluation of transistor elements)
Using 2-2EH-DNTT and 2,9-EH-DNTT, which had good solubility as described above, bottom-gate transistor elements were fabricated and their characteristics were evaluated.

ゲート電極となる200nm厚のシリコン酸化膜を有する高濃度にドーピングされたn−型シリコン基板を十分洗浄した後、n−型シリコン基板のシリコン酸化膜表面をパーフルオロデシルトリエトキシシラン(FDTS)でシラン処理した。
2−2−EH−DNTTをクロロホルムに溶解して0.3g/Lの溶液を調製し、メンブランフィルターでろ過した後、上記表面処理したn−型シリコン基板上にスピンコート法で約100nm厚の2−2−EH−DNTT薄膜を作製した。
この薄膜を窒素雰囲気下にて、200℃で30分加熱した。
2−2−EH−DNTT薄膜上に金を真空蒸着し、ソース電極及びドレイン電極を形成した。このようにして、チャネル長50μm、チャネル幅1.5mmのボトムゲート・トップコンタクト型トランジスタ素子を作製した。以下、このトランジスタ素子をトランジスタ素子2−2−EH−DNTTと記す。
After thoroughly cleaning a highly doped n-type silicon substrate having a 200 nm thick silicon oxide film to be a gate electrode, the silicon oxide film surface of the n-type silicon substrate is perfluorodecyltriethoxysilane (FDTS). Silane-treated.
2-2EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered through a membrane filter, and then spin-coated on the surface-treated n-type silicon substrate to a thickness of about 100 nm. A 2-2EH-DNTT thin film was prepared.
This thin film was heated at 200 ° C. for 30 minutes in a nitrogen atmosphere.
Gold was vacuum-deposited on the 2-2EH-DNTT thin film to form a source electrode and a drain electrode. In this manner, a bottom gate / top contact transistor element having a channel length of 50 μm and a channel width of 1.5 mm was produced. Hereinafter, this transistor element is referred to as a transistor element 2-2EH-DNTT.

また、2,9−EH−DNTTを用い、上記と同様にして、ボトムゲート・トップコンタクト型トランジスタ素子を作製した。以下、このトランジスタ素子をトランジスタ素子2,9−EH−DNTTと記す。   Further, using 2,9-EH-DNTT, a bottom gate / top contact transistor element was fabricated in the same manner as described above. Hereinafter, this transistor element is referred to as transistor element 2, 9-EH-DNTT.

2−2−EH−DNTTを用い、作製したトランジスタ素子2−2−EH−DNTTに、ゲート電圧Vgを20〜−60V、ソース・ドレイン間電圧Vdを0〜−60Vに変化させてトランジスタ特性を測定した。図3(A)に伝達特性、図3(B)に出力特性を示す。これらの特性から、移動度は0.3cm/Vsと算出された。Using 2-2EH-DNTT, changing the gate voltage Vg to 20 to -60 V and the source-drain voltage Vd to 0 to -60 V on the fabricated transistor element 2-2EH-DNTT It was measured. FIG. 3A shows transfer characteristics, and FIG. 3B shows output characteristics. From these characteristics, the mobility was calculated to be 0.3 cm 2 / Vs.

一方、トランジスタ素子2,9−EH−DNTTについても上記と同様にトランジスタ特性の測定を試みたが、トランジスタ素子2,9−EH−DNTTでは、全く応答せず、トランジスタとして挙動しないことが明かとなった。上述した2,9−EH−DNTT薄膜の物性解析から、2つのエチルヘキシル基が立体的に嵩高いため、密な分子の充填を妨げ、分子間相互作用を著しく減じていることが強く示唆されている。このことからも、トランジスタ素子2,9−EH−DNTTでは応答がない、即ち、薄膜内に注入されたキャリヤが移動できないことを裏付けている。   On the other hand, for the transistor element 2, 9-EH-DNTT, an attempt was made to measure the transistor characteristics in the same manner as described above, but it is clear that the transistor element 2, 9-EH-DNTT does not respond at all and does not behave as a transistor. became. The above-described physical property analysis of the 2,9-EH-DNTT thin film strongly suggests that the two ethylhexyl groups are sterically bulky, thus preventing dense molecular packing and significantly reducing intermolecular interactions. Yes. This also confirms that the transistor element 2, 9-EH-DNTT has no response, that is, the carriers injected into the thin film cannot move.

(2−(3−エチルヘプチル)ジナフト[2,3−b:2’,3’−f]チエノ[2,3−b]チオフェン(以下、2−3−EH−DNTT)の合成)
2−エチルヘキシルマグネシウムブロマイドに代えて、3−エチルヘプチルマグネシウムブロマイドを用いる以外、順次、上記の化合物1の合成、化合物2の合成、化合物3の合成、化合物4の合成、化合物5の合成、2−2−EH−DNTTの合成と同様にして、2−3−EH−DNTTを合成した。
(Synthesis of 2- (3-ethylheptyl) dinaphtho [2,3-b: 2 ′, 3′-f] thieno [2,3-b] thiophene (hereinafter referred to as 2-3-3-EH-DNTT)
Except for using 3-ethylheptylmagnesium bromide instead of 2-ethylhexylmagnesium bromide, the synthesis of compound 1, synthesis of compound 2, synthesis of compound 3, synthesis of compound 4, synthesis of compound 5, In the same manner as the synthesis of 2-EH-DNTT, 2-3-3-EH-DNTT was synthesized.

得られた2−3−EH−DNTTの測定データを以下に示す。
mp >300℃;
1H-NMR (500 MHz, CDCl3) δ 0.90 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.6 Hz, 3H), 1.25-1.43 (m, 9H), 1.67-1.73 (m, 2H), 2.80 (t, J = 8.4 Hz, 2H), 7.40 (dd, J = 8.8 and 1.5 Hz, 1H), 7.52 (d, J = 6.7 Hz, 1H), 7.53 (d, J = 6.4 Hz, 1H), 7.71 (s, 1H), 7.94-7.97 (m, 1H), 7.96 (d, J = 8.8 Hz, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.35 (s, 1H), 8.36 (s, 1H), 8.43 (s, 1H);
13C-NMR (126 MHz, CDCl3) 11.0, 14.2, 23.3, 26.2, 29.2, 33.1, 33.8, 35.2, 39.0, 120.1 (x3), 120.2, 121.9, 122.0, 122.5, 122.6, 125.5, 125.6, 125.8 (x2), 126.0 (x2), 127.5, 127.7, 127.8, 128.4, 128.5, 130.2, 131.6, 131.7, 132.0, 132.1, 132.7, 133.5, 134.2, 141.0, 141.1, 141.4 (x2);
EI-MS (70 eV) m/z 466 (M+); HR-MS (APCI) m/z calcd for C31H31S2 [M+H]+ 467.18617, found 467.18637; Anal. Calcd for C31H30S2 C; 79.78, H; 6.48%. Found. C; 79.97, H; 6.46%.
The measurement data of the obtained 2-3-3-EH-DNTT are shown below.
mp> 300 ° C;
1 H-NMR (500 MHz, CDCl 3 ) δ 0.90 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.6 Hz, 3H), 1.25-1.43 (m, 9H), 1.67-1.73 (m , 2H), 2.80 (t, J = 8.4 Hz, 2H), 7.40 (dd, J = 8.8 and 1.5 Hz, 1H), 7.52 (d, J = 6.7 Hz, 1H), 7.53 (d, J = 6.4 Hz , 1H), 7.71 (s, 1H), 7.94-7.97 (m, 1H), 7.96 (d, J = 8.8 Hz, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.35 ( s, 1H), 8.36 (s, 1H), 8.43 (s, 1H);
13 C-NMR (126 MHz, CDCl 3 ) 11.0, 14.2, 23.3, 26.2, 29.2, 33.1, 33.8, 35.2, 39.0, 120.1 (x3), 120.2, 121.9, 122.0, 122.5, 122.6, 125.5, 125.6, 125.8 ( x2), 126.0 (x2), 127.5, 127.7, 127.8, 128.4, 128.5, 130.2, 131.6, 131.7, 132.0, 132.1, 132.7, 133.5, 134.2, 141.0, 141.1, 141.4 (x2);
EI-MS (70 eV) m / z 466 (M + ); HR-MS (APCI) m / z calcd for C 31 H 31 S 2 [M + H] + 467.18617, found 467.18637; Anal. Calcd for C 31 H 30 S 2 C; 79.78, H; 6.48%. Found. C; 79.97, H; 6.46%.

(溶解度の評価)
2−3−EH−DNTTを室温のクロロホルムに溶解させ、溶解度を測定した。2−3−EH−DNTTの溶解度は、0.67g/Lであり、2−2−EH−DNTT(0.43g/L)よりも良好であった。
(Evaluation of solubility)
2-3-3-EH-DNTT was dissolved in chloroform at room temperature, and the solubility was measured. The solubility of 2-3-3-EH-DNTT was 0.67 g / L, which was better than 2-2EH-DNTT (0.43 g / L).

(トランジスタ素子の作製、評価)
2−3−EH−DNTTを用い、ボトムゲート・トップコンタクト型トランジスタ素子を作製し、特性を評価した。
ゲート電極となる200nm厚のシリコン酸化膜を有する高濃度にドーピングされたn−型シリコン基板を十分洗浄した。
2−3−EH−DNTTをクロロホルムに溶解して0.3g/Lの溶液を調製し、メンブランフィルターでろ過した後、上記表面処理したn−型シリコン基板上にスピンコート法で約100nm厚の2−3−EH−DNTT薄膜を作製した。
この薄膜を窒素雰囲気下にて、100℃で30分加熱した。
2−3−EH−DNTT薄膜上に金を真空蒸着し、ソース電極及びドレイン電極を形成した。このようにして、チャネル長40μm、チャネル幅3mmのボトムゲート・トップコンタクト型トランジスタ素子(Untreated素子)を作製した。
(Production and evaluation of transistor elements)
Using 2-3-3-EH-DNTT, a bottom-gate / top-contact transistor element was fabricated and the characteristics were evaluated.
A highly doped n-type silicon substrate having a 200 nm thick silicon oxide film to be a gate electrode was sufficiently cleaned.
2-3EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered through a membrane filter, and then spin-coated onto the surface-treated n-type silicon substrate. 2-3-3-EH-DNTT thin films were prepared.
This thin film was heated at 100 ° C. for 30 minutes in a nitrogen atmosphere.
Gold was vacuum-deposited on the 2-3-3-EH-DNTT thin film to form a source electrode and a drain electrode. In this way, a bottom-gate / top-contact transistor element (an integrated element) having a channel length of 40 μm and a channel width of 3 mm was produced.

また、n−型シリコン基板の洗浄後、シリコン酸化膜表面を1,1,1,3,3,3−ヘキサメチルジシラザン(HMDS)でシラン処理し、上記同様にボトムゲート・トップコンタクト型トランジスタ素子(HMDS処理素子)を作製した。
また、n−型シリコン基板の洗浄後、シリコン酸化膜表面をオクタデシルトリクロロシラン(ODTS)でシラン処理し、上記同様にボトムゲート・トップコンタクト型トランジスタ素子(ODTS処理素子)を作製した。
また、n−型シリコン基板の洗浄後、シリコン酸化膜表面をオクチルトリクロロシラン(OTS)でシラン処理し、上記同様にボトムゲート・トップコンタクト型トランジスタ素子(OTS処理素子)を作製した。
After cleaning the n-type silicon substrate, the surface of the silicon oxide film is treated with silane with 1,1,1,3,3,3-hexamethyldisilazane (HMDS), and a bottom gate / top contact type transistor is formed as described above. An element (HMDS processing element) was produced.
After cleaning the n-type silicon substrate, the surface of the silicon oxide film was subjected to silane treatment with octadecyltrichlorosilane (ODTS) to produce a bottom gate / top contact transistor element (ODTS treatment element) in the same manner as described above.
Further, after cleaning the n-type silicon substrate, the silicon oxide film surface was treated with octyltrichlorosilane (OTS) to produce a bottom-gate / top-contact transistor element (OTS-treated element) in the same manner as described above.

作製したそれぞれのトランジスタ素子について、ゲート電圧Vgを20〜−60V、ソース・ドレイン間電圧Vdを0〜−60Vに変化させてトランジスタ特性を測定した。それぞれのトランジスタ素子のキャリヤ移動度(μ[cm−1−1])、スレッショールド電圧(Vth[V])、オンオフ比(Ion/off)を表2に示す。また、基板をODTSでシラン処理して作製したトランジスタ素子の伝達特性を図4(A)に、出力特性を図4(B)に示す。なお、トランジスタ素子はそれぞれ15以上作製し、表2中のキャリヤ移動度は、その平均値及び最高値(括弧内)を示している。For each of the fabricated transistor elements, the transistor characteristics were measured by changing the gate voltage Vg to 20 to −60 V and the source-drain voltage Vd to 0 to −60 V. Table 2 shows carrier mobility (μ [cm 2 V −1 s −1 ]), threshold voltage (V th [V]), and on / off ratio (I on / off ) of each transistor element. Further, FIG. 4A shows the transfer characteristics and FIG. 4B shows the output characteristics of a transistor element manufactured by silane treatment of the substrate with ODTS. In addition, 15 or more transistor elements are respectively produced, and the carrier mobility in Table 2 shows the average value and the maximum value (in parentheses).

2−3−EH−DNTTで作製したトランジスタ素子では、トランジスタ素子2−2−EH−DNTTに比べて、キャリヤ移動度が向上している。特に、基板をODTS処理して作製したODTS素子では、キャリヤ移動度が最高で1.6cm/Vs(平均:1.02cm/Vs)であり、良好なトランジスタ特性を示した。エチルヘプチル基の側鎖のエチル基がDNTT骨格から離れ、分子間相互作用が高まったためと考えられる。In the transistor element manufactured by 2-3-3-EH-DNTT, the carrier mobility is improved as compared with the transistor element 2-2EH-DNTT. In particular, an ODTS element manufactured by subjecting a substrate to ODTS treatment had a maximum carrier mobility of 1.6 cm 2 / Vs (average: 1.02 cm 2 / Vs), and showed good transistor characteristics. This is probably because the ethyl group in the side chain of the ethyl heptyl group is separated from the DNTT skeleton, and the intermolecular interaction is increased.

以上の結果から、式1で表される化合物のように、一方のナフタレンのみに分岐鎖アルキル基を導入する分子設計は、有機溶媒への溶解性及びトランジスタ特性の双方を満たすために必要不可欠であると考えられる。   From the above results, the molecular design in which a branched alkyl group is introduced only into one naphthalene as in the compound represented by Formula 1 is indispensable to satisfy both the solubility in organic solvents and the transistor characteristics. It is believed that there is.

なお、本発明は、本発明の範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。   It should be noted that the present invention can be variously modified and modified without departing from the scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention.

本出願は、2013年1月22日に出願された日本国特許出願2013−9153号、2013年8月27日に出願された日本国特許出願2013−175678号に基づく。本明細書中に、日本国特許出願2013−9153号、日本国特許出願2013−175678号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。   This application is based on Japanese Patent Application No. 2013-9153 filed on January 22, 2013 and Japanese Patent Application No. 2013-175678 filed on August 27, 2013. In the present specification, the specifications, claims and entire drawings of Japanese Patent Application No. 2013-9153 and Japanese Patent Application No. 2013-175678 are incorporated by reference.

上述したように、本発明に係る溶液プロセス用有機半導体材料は、溶媒への溶解性に優れるので、塗布法等の溶液プロセスを利用して有機半導体層を形成できるので、電界効果トランジスタ等の半導体装置の製造に利用可能である。   As described above, since the organic semiconductor material for solution process according to the present invention is excellent in solubility in a solvent, an organic semiconductor layer can be formed using a solution process such as a coating method, so that a semiconductor such as a field effect transistor can be formed. It can be used to manufacture the device.

Claims (8)

式1で表される化合物を含む、
(式1中、Y及びYはそれぞれ独立してカルコゲン原子であり、R及びRは一方が分岐鎖アルキル基であり、他方は水素である。)
ことを特徴とする溶液プロセス用有機半導体材料。
Including a compound represented by Formula 1,
(In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom, one of R 1 and R 2 is a branched alkyl group, and the other is hydrogen.)
An organic semiconductor material for solution process.
前記分岐鎖アルキル基の主鎖がC3以上である、
ことを特徴とする請求項1に記載の溶液プロセス用有機半導体材料。
The main chain of the branched alkyl group is C3 or more,
The organic semiconductor material for solution processing according to claim 1.
前記分岐鎖アルキル基の主鎖がC6以上である、
ことを特徴とする請求項2に記載の溶液プロセス用有機半導体材料。
The main chain of the branched alkyl group is C6 or more,
The organic semiconductor material for solution processing according to claim 2.
前記分岐鎖アルキル基の側鎖がC2以上である、
ことを特徴とする請求項1乃至3のいずれか一項に記載の溶液プロセス用有機半導体材料。
The side chain of the branched alkyl group is C2 or more,
The organic semiconductor material for solution process according to any one of claims 1 to 3.
前記分岐鎖アルキル基の側鎖が主鎖の2位以上の炭素に結合している、
ことを特徴とする請求項1乃至4のいずれか一項に記載の溶液プロセス用有機半導体材料。
The side chain of the branched alkyl group is bonded to the carbon at the 2-position or more of the main chain,
The organic semiconductor material for solution processing according to any one of claims 1 to 4, wherein the organic semiconductor material is used for solution processing.
前記分岐鎖アルキル基の側鎖が主鎖の3位以上の炭素に結合している、
ことを特徴とする請求項5に記載の溶液プロセス用有機半導体材料。
The side chain of the branched alkyl group is bonded to the carbon at the 3-position or more of the main chain,
The organic semiconductor material for solution process according to claim 5.
前記Y及びYが硫黄原子又はセレン原子である、
ことを特徴とする請求項1乃至6のいずれか一項に記載の溶液プロセス用有機半導体材料。
Y 1 and Y 2 are a sulfur atom or a selenium atom,
The organic semiconductor material for solution processing according to any one of claims 1 to 6, wherein the organic semiconductor material is used for solution processing.
請求項1乃至7のいずれか一項に記載の溶液プロセス用有機半導体材料を含む、
ことを特徴とする有機半導体デバイス。
The organic semiconductor material for solution processing according to any one of claims 1 to 7,
An organic semiconductor device characterized by that.
JP2014558587A 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device Active JP6080870B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013009153 2013-01-22
JP2013009153 2013-01-22
JP2013175678 2013-08-27
JP2013175678 2013-08-27
PCT/JP2014/051213 WO2014115749A1 (en) 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2014115749A1 true JPWO2014115749A1 (en) 2017-01-26
JP6080870B2 JP6080870B2 (en) 2017-02-15

Family

ID=51227540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558587A Active JP6080870B2 (en) 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device

Country Status (5)

Country Link
JP (1) JP6080870B2 (en)
KR (1) KR102101242B1 (en)
CN (1) CN104956508B (en)
TW (1) TW201444852A (en)
WO (1) WO2014115749A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703599B1 (en) 2015-07-31 2017-02-07 현대자동차 주식회사 Roof laser brazing system
JP6654517B2 (en) * 2016-06-21 2020-02-26 山本化成株式会社 Organic transistor
JP6910880B2 (en) * 2016-08-03 2021-07-28 日本化薬株式会社 Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
JP6906357B2 (en) * 2017-04-28 2021-07-21 日本化薬株式会社 Photoelectric conversion element for image sensor
JP2018190755A (en) * 2017-04-28 2018-11-29 日本化薬株式会社 Photoelectric conversion element for imaging device
WO2019076709A1 (en) 2017-10-19 2019-04-25 Basf Se New substituted benzonaphthathiophene compounds for organic electronics
KR102330923B1 (en) * 2017-11-21 2021-12-01 주식회사 클랩 Sulfonium salts of DNTT and related compounds as soluble photocleavage precursors for organic semiconductors used in organic field-effect transistors
WO2019170481A1 (en) 2018-03-07 2019-09-12 Basf Se Patterning method for preparing top-gate, bottom-contact organic field effect transistors
JP7241346B2 (en) * 2019-05-21 2023-03-17 国立大学法人東北大学 Method for producing aromatic compound
TWI844726B (en) * 2019-09-17 2024-06-11 日商日本化藥股份有限公司 Condensed polycyclic aromatic compound
JP7317301B2 (en) * 2019-11-13 2023-07-31 日本化薬株式会社 Organic semiconductor compound and its use
CN110849252B (en) * 2019-11-14 2021-06-18 东北师范大学 Method for preparing large-area conformable semiconductor type proximity sensor
TW202136272A (en) 2019-12-10 2021-10-01 日商日本化藥股份有限公司 Condensed polycyclic aromatic compound
WO2023189381A1 (en) * 2022-03-30 2023-10-05 ソニーグループ株式会社 Light-emitting element and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050726A1 (en) * 2006-10-25 2008-05-02 Hiroshima University Novel fused-ring aromatic compound, process for producing the same, and use thereof
JP2009283786A (en) * 2008-05-23 2009-12-03 Hiroshima Univ Organic semiconductor composition
WO2010098372A1 (en) * 2009-02-27 2010-09-02 国立大学法人広島大学 Field effect transistor
WO2012115236A1 (en) * 2011-02-25 2012-08-30 国立大学法人広島大学 Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
WO2013039842A1 (en) * 2011-09-12 2013-03-21 Polyera Corporation Compounds having semiconducting properties and related compositions and devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581062B2 (en) * 2006-10-20 2010-11-17 日本化薬株式会社 Field effect transistor, ink for manufacturing semiconductor device, method for producing field effect transistor, and organic heterocyclic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050726A1 (en) * 2006-10-25 2008-05-02 Hiroshima University Novel fused-ring aromatic compound, process for producing the same, and use thereof
JP2009283786A (en) * 2008-05-23 2009-12-03 Hiroshima Univ Organic semiconductor composition
WO2010098372A1 (en) * 2009-02-27 2010-09-02 国立大学法人広島大学 Field effect transistor
WO2012115236A1 (en) * 2011-02-25 2012-08-30 国立大学法人広島大学 Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
WO2013039842A1 (en) * 2011-09-12 2013-03-21 Polyera Corporation Compounds having semiconducting properties and related compositions and devices

Also Published As

Publication number Publication date
KR20150108918A (en) 2015-09-30
TW201444852A (en) 2014-12-01
JP6080870B2 (en) 2017-02-15
WO2014115749A1 (en) 2014-07-31
KR102101242B1 (en) 2020-04-17
CN104956508A (en) 2015-09-30
CN104956508B (en) 2017-07-21

Similar Documents

Publication Publication Date Title
JP6080870B2 (en) Organic semiconductor material for solution process and organic semiconductor device
CN105102462B (en) Organic compound containing oxygen group elements, its manufacture method and purposes
EP2755978A1 (en) Compounds having semiconducting properties and related compositions and devices
WO2011004869A1 (en) Substituted benzochalcogenoacene compound, thin film comprising the compound, and organic semiconductor device including the thin film
JP6332644B2 (en) Compound, polymer compound, organic semiconductor material, organic semiconductor device, compound synthesis method, polymer compound synthesis method
TWI523857B (en) Synthesis of Polycyclic Aromatic Compounds, Aromatic Polymers, and Aromatic Compounds
JP6061886B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
KR102001455B1 (en) Semiconductor composition
WO2018181462A1 (en) Aromatic compound, organic semiconductor layer, and organic thin film transistor
EP3434679B1 (en) Organic compound, organic thin film, and electronic device
JP5650107B2 (en) Thienopyrazine compound and field effect transistor containing the same
JP2006248982A (en) Heteroacene compound and method for producing the same
KR102564943B1 (en) Organic compound and organic thin film and electronic device
JP5670216B2 (en) Novel bibenzo [b] furan compound, organic semiconductor material and organic semiconductor element containing the compound
JP2010083785A (en) Compound having molecular structure high in planarity and organic transistor using the same
JP5637985B2 (en) Diazaborol compound and field effect transistor containing the same
JP6069971B2 (en) Manufacturing method of organic film
CN109912630B (en) Selenophen derivative, preparation method thereof and application of selenophen derivative as organic semiconductor material
JP7521742B2 (en) Organic transistor material and organic transistor
JP5617296B2 (en) Bi (anthrachalcogenophenyl) derivatives, precursor compounds thereof, and production methods thereof
EP3318559B1 (en) Synthetic method of fused heteroaromatic compound
KR20080088698A (en) Organic semiconductor containing arylacetylene group, and organic thin film transistor
KR102392669B1 (en) Organic compound and organic thin film and electronic device
JP6047969B2 (en) Dithienobenzodithiophene derivative solution and organic semiconductor layer using the same
TW202138375A (en) New compound and use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250