JP6910880B2 - Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these - Google Patents

Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these Download PDF

Info

Publication number
JP6910880B2
JP6910880B2 JP2017149698A JP2017149698A JP6910880B2 JP 6910880 B2 JP6910880 B2 JP 6910880B2 JP 2017149698 A JP2017149698 A JP 2017149698A JP 2017149698 A JP2017149698 A JP 2017149698A JP 6910880 B2 JP6910880 B2 JP 6910880B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic
conversion element
group
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017149698A
Other languages
Japanese (ja)
Other versions
JP2018026559A (en
Inventor
俊文 井内
俊文 井内
秀典 薬師寺
秀典 薬師寺
祥司 品村
祥司 品村
正宏 阿部
正宏 阿部
雄一 貞光
雄一 貞光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2018026559A publication Critical patent/JP2018026559A/en
Application granted granted Critical
Publication of JP6910880B2 publication Critical patent/JP6910880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、有機光電変換素子、有機光電変換素子用材料及びこれらを用いた有機撮像素子に関する。より詳しくは、置換基を有する[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(以下「DNTT」と称す)を用いた有機光電変換素子、有機光電変換素子用材料及び有機撮像素子に関する。 The present invention relates to an organic photoelectric conversion element, a material for an organic photoelectric conversion element, and an organic imaging element using these. More specifically, an organic photoelectric conversion element using [2,3-b: 2', 3'-f] thieno [3,2-b] thiophene (hereinafter referred to as "DNT") having a substituent, organic photoelectric. The present invention relates to a material for a conversion element and an organic imaging element.

有機エレクトロニクスデバイスは、原材料に希少金属などを含まず,安定した供給が可能であるのみならず、無機材料には無い屈曲性や湿式成膜法による製造が可能な点から、近年研究開発がなされている。有機エレクトロニクスデバイスの具体例としては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子等があり、他にもデバイスとしての性能は勿論、有機化合物の特色を活かした様々な用途が検討されている。 Organic electronics devices have been researched and developed in recent years because they do not contain rare metals in their raw materials and can be stably supplied, as well as being flexible and can be manufactured by a wet film formation method, which are not found in inorganic materials. ing. Specific examples of organic electronic devices include organic EL elements, organic solar cell elements, organic photoelectric conversion elements, organic transistor elements, etc. In addition to their performance as devices, there are various applications that take advantage of the characteristics of organic compounds. It is being considered.

上記デバイスのうち、有機光電変換素子は光センサ等に利用されており、例えば撮像素子として用いることが検討されている。現在、既存の無機材料を用いた撮像素子は3板式、単板式のものが知られている。この内、3板式のものは光をプリズムにより赤、緑、青の三原色に分離し、それぞれの光を別に撮像デバイスで光電変換している。この為、感度に優れる一方、デバイスの小型化が困難である。他方、単板式は撮像デバイスにカラーフィルタを設けた構造をとり、小型化が可能であるが、解像度が劣る。以上の背景から、今日では有機化合物を用いた光電変換膜を積層した有機撮像素子の検討がなされている(特許文献1、特許文献2)。この様な有機撮像素子は、上記三原色の内、一つの光を選択的に吸収し、他の光を透過するような有機材料を積層した構造であり、赤、緑、青の波長領域を選択的に吸収する有機薄膜の積層構造から成る。即ち、薄膜とした時の有機材料の吸収帯が600nm以上700nm以下の範囲内である赤色光電変換層、500nm以上600nm以下である緑色光電変換層、そして400nm以上500nm以下である青色光電変換層の積層構造から成る。この様な有機撮像素子は小型化、高解像度化が期待できる点で魅力的であり、次代の撮像デバイスへの展開について期待されている。 Among the above devices, the organic photoelectric conversion element is used for an optical sensor or the like, and its use as an image sensor, for example, is being studied. Currently, three-plate and single-plate image sensors using existing inorganic materials are known. Of these, the three-plate type separates the light into the three primary colors of red, green, and blue by a prism, and the light is separately photoelectrically converted by an imaging device. Therefore, while the sensitivity is excellent, it is difficult to miniaturize the device. On the other hand, the single plate type has a structure in which a color filter is provided in the imaging device, and can be miniaturized, but the resolution is inferior. From the above background, an organic imaging device in which a photoelectric conversion film using an organic compound is laminated has been studied today (Patent Documents 1 and 2). Such an organic imaging element has a structure in which organic materials that selectively absorb one of the above three primary colors and transmit the other light are laminated, and select red, green, and blue wavelength regions. It consists of a laminated structure of organic thin films that absorbs light. That is, the red photoelectric conversion layer in which the absorption band of the organic material when formed into a thin film is in the range of 600 nm or more and 700 nm or less, the green photoelectric conversion layer having 500 nm or more and 600 nm or less, and the blue photoelectric conversion layer having 400 nm or more and 500 nm or less. It consists of a laminated structure. Such an organic image sensor is attractive in that it can be expected to be smaller and have higher resolution, and is expected to be applied to the next generation image sensor.

光電変換部に用いる材料の内、青色光電変換材料についてはメロシアニン色素(特許文献2)、クマリン6(非特許文献1)、ポルフィリン誘導体(非特許文献2)、アントラキノン誘導体(特許文献3)及びDNTT(特許文献4、非特許文献3)等が検討されているが、光電変換特性、プロセス温度に対する耐久性、材料自体の耐光性等に関して、何れも十分な性能を有しているとは言えない。また、有機撮像素子の高コントラスト化、省電力化を企図し、暗電流を低減させることで撮像素子の性能を向上させるという観点から、光電変換部からのリーク電流を減らす目的で、光電変換部と電極部間にキャリアブロック層として正孔ブロック層や電子ブロック層を挿入する試みがなされている。この様なキャリアブロック層の挿入は有機エレクトロニクス分野では広く知られた手法である。デバイスの構成膜中において、電極又は導電性を有する膜とそれ以外の膜との界面に配置されるキャリアブロック層は、正孔若しくは電子といったキャリアの逆移動を制御し、不要なキャリアの漏れを調整する役割を果たすが、キャリアブロック層を光電変換素子に用いる場合、デバイスの用途や作製プロセス等に応じた透過波長、耐久性、耐熱性、成膜方法等を考慮する必要がある。 Among the materials used for the photoelectric conversion unit, the blue photoelectric conversion material includes merocyanine dye (Patent Document 2), coumarin 6 (Non-Patent Document 1), porphyrin derivative (Non-Patent Document 2), anthraquinone derivative (Patent Document 3), and DNTT. (Patent Document 4, Non-Patent Document 3) and the like have been studied, but none of them can be said to have sufficient performance in terms of photoelectric conversion characteristics, durability against process temperature, light resistance of the material itself, and the like. .. In addition, the photoelectric conversion unit aims to reduce the leakage current from the photoelectric conversion unit from the viewpoint of improving the performance of the image sensor by reducing the dark current in order to increase the contrast and power saving of the organic image sensor. Attempts have been made to insert a hole block layer or an electron block layer as a carrier block layer between the electrode portion and the electrode portion. Insertion of such a carrier block layer is a widely known method in the field of organic electronics. The carrier block layer arranged at the interface between the electrode or the conductive film and the other film in the constituent film of the device controls the reverse movement of carriers such as holes or electrons to prevent unnecessary carrier leakage. Although it plays a role of adjusting, when the carrier block layer is used for a photoelectric conversion element, it is necessary to consider the transmission wavelength, durability, heat resistance, film forming method, etc. according to the application of the device, the manufacturing process, and the like.

特開2003−158254号公報Japanese Unexamined Patent Publication No. 2003-158254 特開2005−303266号公報Japanese Unexamined Patent Publication No. 2005-303266 特開2011−238781号公報Japanese Unexamined Patent Publication No. 2011-238781 特開2011−192966号公報Japanese Unexamined Patent Publication No. 2011-192966

映像情報メディア学会誌2006、60(3)、291−294Journal of the Institute of Image Information and Television Engineers 2006, 60 (3), 291-294 JPn.J.Appl.Phys.,2005,44(6A),3743−3747JPn. J. Apple. Phys. , 2005,44 (6A), 3743-3747 Org.Electron.,2015,20,63−68Org. Electron. , 2015, 20, 63-68

先に挙げた従来技術のうち、例えば非特許文献2に記載のポルフィリン誘導体は具体的な光電変換性能が示されているが、高電圧条件下でも量子効率が向上しない問題点が述べられている。
以上の状況を鑑み、光電変換部に用いた場合は極大吸収が400nm以上500nm以下の青色光を選択的に吸収することにより低電圧で効率的に機能し、光電変換部以外に用いた場合は良好なキャリアのリーク防止特性或いはキャリア輸送特性を示し、且つプロセス温度に対する耐熱性にも優れた撮像素子用の光電変換素子用材料、及び該光電変換材料を用いた有機光電変換素子が求められている。
Among the above-mentioned prior arts, for example, the porphyrin derivative described in Non-Patent Document 2 has been shown to have specific photoelectric conversion performance, but has a problem that the quantum efficiency is not improved even under high voltage conditions. ..
In view of the above situation, when used in the photoelectric conversion unit, it functions efficiently at a low voltage by selectively absorbing blue light with a maximum absorption of 400 nm or more and 500 nm or less, and when used in other than the photoelectric conversion unit. There is a demand for a photoelectric conversion element material for an imaging element, which exhibits good carrier leak prevention characteristics or carrier transport characteristics and also has excellent heat resistance to a process temperature, and an organic photoelectric conversion element using the photoelectric conversion material. There is.

斯かる問題を克服すべく鋭意検討を行った結果、本発明者らは置換基を有する一群のDNTT誘導体は青色波長領域に選択的な吸収帯を有し、該誘導体を光電変換素子の光電変換部に用いた場合は低電圧で優れた光応答電流を示し、該誘導体を光電変換部以外に用いた場合は該光電変換素子の明暗比を著しく向上させることを見出し、これらの知見に基づいて上記課題を解決する手段として本発明を完成するに至った。即ち、本発明は、 As a result of diligent studies to overcome such problems, the present inventors have found that a group of DNTT derivatives having substituents has a selective absorption band in the blue wavelength region, and the derivatives are converted into photoelectric conversion of a photoelectric conversion element. Based on these findings, it was found that when it is used in a part, it shows an excellent optical response current at a low voltage, and when the derivative is used in a part other than the photoelectric conversion part, it significantly improves the light-dark ratio of the photoelectric conversion element. The present invention has been completed as a means for solving the above problems. That is, the present invention

[1]下記式(1)で表される有機化合物を含む有機光電変換素子、

Figure 0006910880
(上記式(1)中のRとRは水素原子又は置換基を有してもよい芳香族基を表す。複数存在するR、Rはそれぞれ同一であっても異なってもよいが、RとRはいずれも水素原子を有する場合を除く。)
[2]式(1)中、Rが置換基を有してもよい芳香族基を表し、Rが水素原子である前項[1]に記載の有機光電変換素子、
[3]式(1)中、Rが水素原子を表し、Rが置換基を有してもよい芳香族基である前項[1]に記載の有機光電変換素子、
[4]薄膜又は固体状態において、光吸収帯の極大吸収が400nm以上500nm以下にある前項[1]〜[3]記載の有機光電変換素子、
[5]下記式(1)で表される有機化合物を含む有機光電変換素子用材料、
Figure 0006910880
(上記式(1)中のRとRは水素原子又は置換基を有してもよい芳香族基を表す。複数存在するR、Rはそれぞれ同一であっても異なってもよいが、RとRはいずれも水素原子を有する場合を除く。)
[6]薄膜又は固体状態において、光吸収帯の吸収極大が400nm以上500nm以下にある前項[5]に記載の有機光電変換素子用材料、
[7]前項[5]又は[6]に記載の有機光電変換素子用材料を含む有機薄膜、
[8]前項[5]又は[6]に記載の有機光電変換素子用材料、又は前項[7]に記載の有機薄膜を含む有機光電変換素子、
[9]前項[1]〜[4]並びに[8]のいずれか一項に記載の有機光電変換素子を用いた光センサ、
[10]前項[1]〜[4]並びに[8]のいずれか一項に記載の有機光電変換素子を用いた有機撮像素子、
に関する。 [1] An organic photoelectric conversion element containing an organic compound represented by the following formula (1).
Figure 0006910880
(R 1 and R 2 in the above formula (1) represent aromatic groups that may have a hydrogen atom or a substituent. A plurality of R 1 and R 2 may be the same or different from each other. However, except when both R 1 and R 2 have a hydrogen atom.)
[2] In the formula (1), the organic photoelectric conversion element according to the previous item [1], wherein R 1 represents an aromatic group which may have a substituent and R 2 is a hydrogen atom.
[3] In the formula (1), the organic photoelectric conversion element according to the previous item [1], wherein R 1 represents a hydrogen atom and R 2 is an aromatic group which may have a substituent.
[4] The organic photoelectric conversion element according to the above items [1] to [3], wherein the maximum absorption of the light absorption band is 400 nm or more and 500 nm or less in a thin film or solid state.
[5] A material for an organic photoelectric conversion element containing an organic compound represented by the following formula (1).
Figure 0006910880
(R 1 and R 2 in the above formula (1) represent aromatic groups that may have a hydrogen atom or a substituent. A plurality of R 1 and R 2 may be the same or different from each other. However, except when both R 1 and R 2 have a hydrogen atom.)
[6] The material for an organic photoelectric conversion element according to the previous item [5], wherein the absorption maximum of the light absorption band is 400 nm or more and 500 nm or less in a thin film or solid state.
[7] An organic thin film containing the material for an organic photoelectric conversion element according to the preceding item [5] or [6].
[8] The material for an organic photoelectric conversion element according to the previous item [5] or [6], or the organic photoelectric conversion element containing the organic thin film according to the previous item [7].
[9] An optical sensor using the organic photoelectric conversion element according to any one of the above items [1] to [4] and [8].
[10] An organic imaging device using the organic photoelectric conversion element according to any one of the above items [1] to [4] and [8].
Regarding.

本発明の一般式(1)で表される有機化合物を用いた有機光電変換素子は、光吸収帯の極大吸収が400nm以上500nm以下の青色光を選択的に吸収することができ、且つ低電圧で優れた光応答電流を示すことから、青色光用の有機光電変換素子並びに有機撮像素子、その材料などへの利用することができる。 The organic photoelectric conversion element using the organic compound represented by the general formula (1) of the present invention can selectively absorb blue light having a maximum absorption of 400 nm or more and 500 nm or less in the light absorption band, and has a low voltage. Since it exhibits an excellent optical response current, it can be used for an organic photoelectric conversion element for blue light, an organic imaging element, a material thereof, and the like.

本発明の有機光電変換素子の実施態様を例示した断面図を示す。A cross-sectional view illustrating an embodiment of the organic photoelectric conversion element of the present invention is shown.

以下、本発明の内容について詳細に説明する。ここに記載する構成要件の説明については、本発明の代表的な実施態様や具体例に基づくものである一方、本発明はそのような実施態様や具体例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described here is based on the typical embodiments and specific examples of the present invention, while the present invention is not limited to such embodiments and specific examples.

本発明の有機光電変換素子は、下記式(1)で表される有機化合物を含むことを特徴とする。

Figure 0006910880
(上記式(1)中のRとRは水素原子又は置換基を有してもよい芳香族基を表す。複数存在するR、Rはそれぞれ同一であっても異なってもよいが、RとRはいずれも水素原子を有する場合を除く。) The organic photoelectric conversion element of the present invention is characterized by containing an organic compound represented by the following formula (1).
Figure 0006910880
(R 1 and R 2 in the above formula (1) represent aromatic groups that may have a hydrogen atom or a substituent. A plurality of R 1 and R 2 may be the same or different from each other. However, except when both R 1 and R 2 have a hydrogen atom.)

一般式(1)中、R及びRが表す芳香族基は、置換基を有する芳香族基及び無置換の芳香族基の何れとしても制限されず、また、置換基を有する場合の置換位置と置換基数も特に制限されない。
尚、本発明において置換基を有する芳香族基とは、芳香族基が有する水素原子の一つ若しくは複数が置換基で置換された芳香族基を、無置換の芳香族基とは、芳香族基が有する水素原子が置換基で置換されていない芳香族基をそれぞれ意味する。
式(1)のR及びRが表す芳香族基の具体例としては、フェニル基、ビフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基及びピレニル基等の芳香族炭化水素基や、フラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基及びカルバゾリル基等の縮合系複素環基等が挙げられ、芳香族炭化水素基であることが好ましい。また、RとR異なることが好ましく、更にはRが芳香族基であり、且つRが水素原子であるか若しくはRとは異なる芳香族基であることが好ましい。
尚、式(1)は共鳴構造の一つを示したものに過ぎず、図示した共鳴構造に限定されるものではない。
In the general formula (1), the aromatic group represented by R 1 and R 2 is not limited to either an aromatic group having a substituent or an unsubstituted aromatic group, and is substituted when it has a substituent. The position and the number of substituents are not particularly limited.
In the present invention, the aromatic group having a substituent is an aromatic group in which one or more of the hydrogen atoms of the aromatic group are substituted with a substituent, and the unsubstituted aromatic group is an aromatic group. It means an aromatic group in which the hydrogen atom of the group is not substituted with a substituent.
Specific examples of the aromatic group represented by R 1 and R 2 of the formula (1) include an aromatic hydrocarbon group such as a phenyl group, a biphenyl group, an indenyl group, a naphthyl group, an anthryl group, a fluorenyl group and a pyrenyl group. Examples thereof include a fused heterocyclic group such as a furanyl group, a thienyl group, a thienotienyl group, a pyrrolyl group, an imidazolyl group, a pyridyl group, a pyrazil group, a pyrimidyl group, a quinolyl group, an indolyl group and a carbazolyl group, and are aromatic hydrocarbon groups. It is preferable to have. Further, it is preferable that R 1 and R 2 are different, and further, it is preferable that R 1 is an aromatic group and R 2 is a hydrogen atom or an aromatic group different from R 1.
The equation (1) shows only one of the resonance structures, and is not limited to the illustrated resonance structure.

芳香族基が有することができる置換基について特に制限はないが、例えばアルキル基、アルコキシ基、アルキルチオ基、芳香族基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、アシル基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基等が挙げられる。 The substituent that the aromatic group can have is not particularly limited, but for example, an alkyl group, an alkoxy group, an alkylthio group, an aromatic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, a substituted amino group, or an unsubstituted amino group. , Cyano group, sulfo group, acyl group, sulfamoyl group, alkylsulfamoyl group, carbamoyl group, alkylcarbamoyl group and the like.

上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の直鎖又は分岐鎖アルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基が挙げられる。この内、炭素数1乃至6のアルキル基であることが好ましく、炭素数1乃至3のアルキル基であることがより好ましい。上記アルコキシ基としては、酸素原子にアルキル基が結合したものが挙げられるが、酸素原子の数、位置、分岐数は問わない。上記アルキルチオ基としては、硫黄原子にアルキル基が結合したものが挙げられるが、硫黄原子の数、位置、分岐数は問わない。上記芳香族基の具体例は、前記式(1)中のR及びRが表す芳香族基と同様のものが挙げられ、その中でもフェニル基、ビフェニル基が好ましい。上記ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、その中でもフッ素原子、塩素原子が好ましい。上記置換アミノ基は、アミノ基の水素原子が上記の置換基で置換されたものが挙げられる。上記アシル基は、カルボニル基に上記芳香族基又はアルキル基が結合したものが挙げられる。上記アルキルスルファモイル基は、スルファモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。上記アルキルカルバモイル基は、カルバモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。 Specific examples of the above alkyl group include a linear or branched group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group. Examples thereof include a cyclic alkyl group such as a chain alkyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group. Of these, an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable. Examples of the alkoxy group include those in which an alkyl group is bonded to an oxygen atom, but the number, position, and number of branches of the oxygen atom do not matter. Examples of the alkylthio group include those in which an alkyl group is bonded to a sulfur atom, but the number, position, and number of branches of the sulfur atom do not matter. Specific examples of the aromatic group include the same aromatic groups represented by R 1 and R 2 in the formula (1), and among them, a phenyl group and a biphenyl group are preferable. Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a fluorine atom and a chlorine atom are preferable. Examples of the substituted amino group include those in which the hydrogen atom of the amino group is substituted with the above substituent. Examples of the acyl group include those in which the aromatic group or the alkyl group is bonded to the carbonyl group. Examples of the alkyl sulfamoyl group include those in which the hydrogen atom of the sulfamoyl group is replaced with the alkyl group. Examples of the alkylcarbamoyl group include those in which the hydrogen atom of the carbamoyl group is replaced with the alkyl group.

即ち、一般式(1)におけるR及びRとしては、それぞれ独立にアルキル基、芳香族炭化水素基及びハロゲン原子から成る群より選択される一種若しくは複数種の置換基を有する芳香族基、又は無置換の芳香族基が好ましく、それぞれ独立にアルキル基及び芳香族炭化水素基から成る群より選択される一種若しくは複数種の置換基を有する芳香族炭化水素基がより好ましい。より具体的には、上記の好ましい態様に於いて、RとRの一方が上記の置換基を有する若しくは無置換の芳香族基であり他方が水素原子であることが好ましく、Rが置換基を有する若しくは無置換の芳香族基でありRが水素原子であることがより好ましい。 That is, as R 1 and R 2 in the general formula (1), an aromatic group having one or more substituents independently selected from the group consisting of an alkyl group, an aromatic hydrocarbon group and a halogen atom, respectively. Alternatively, an unsubstituted aromatic group is preferable, and an aromatic hydrocarbon group having one or more substituents independently selected from the group consisting of an alkyl group and an aromatic hydrocarbon group is more preferable. More specifically, in the above preferred embodiment, it is preferable that one of R 1 and R 2 is an aromatic group having or not substituted as described above and the other is a hydrogen atom, and R 1 is It is more preferable that the aromatic group has a substituent or is unsubstituted and R 2 is a hydrogen atom.

前記式(1)で示される有機化合物の具体例として化合物(1)から化合物(36)を以下に示すが、本発明はこれに限定されるものではない。尚、具体例として示した構造式は共鳴構造の一つを表したものに過ぎず、図示した共鳴構造に限定されない。 Specific examples of the organic compound represented by the formula (1) are shown below, but the present invention is not limited thereto. The structural formula shown as a specific example merely represents one of the resonance structures, and is not limited to the illustrated resonance structure.

Figure 0006910880
Figure 0006910880

Figure 0006910880
Figure 0006910880

Figure 0006910880
Figure 0006910880

前記式(1)で示される有機化合物の合成方法は公知の方法(例えば、特許第5901732号及び特許第5674916号)と同様の反応工程で合成可能である。これらの化合物の精製方法は特に限定されず、例えば洗浄、再結晶、カラムクロマトグラフィー、真空昇華等が採用でき、必要に応じてこれらの方法を組み合わせることができる。 The method for synthesizing the organic compound represented by the formula (1) can be synthesized by the same reaction step as known methods (for example, Japanese Patent No. 59017732 and Japanese Patent No. 5674916). The purification method of these compounds is not particularly limited, and for example, washing, recrystallization, column chromatography, vacuum sublimation and the like can be adopted, and these methods can be combined as necessary.

本発明の有機薄膜は、一般式(1)で表される有機化合物を含む有機光電変換素子用材料を用いることができる。本発明の有機薄膜は該有機光電変換素子用材料のみで構成されていてもよいが、別途公知の有機半導体材料を添加してもよい。また、如何なる構成であろうとも、一般式(1)で示された有機化合物を含む有機光電変換素子用材料を含み、該有機薄膜が分光光度計による波長−吸光度の測定を行ったとき、400nm以上500nm以下の青色光を吸収すれば、青色光を吸収する有機薄膜であり、光電変換層としては利用可能である。 As the organic thin film of the present invention, a material for an organic photoelectric conversion element containing an organic compound represented by the general formula (1) can be used. The organic thin film of the present invention may be composed only of the material for the organic photoelectric conversion element, but a separately known organic semiconductor material may be added. Further, regardless of the configuration, when the material for an organic photoelectric conversion element containing the organic compound represented by the general formula (1) is contained and the organic thin film is measured for wavelength-absorbance by a spectrophotometer, it is 400 nm. If it absorbs blue light of 500 nm or more, it is an organic thin film that absorbs blue light and can be used as a photoelectric conversion layer.

本発明における有機薄膜の形成方法には、一般的な乾式成膜法や湿式成膜法が挙げられる。具体的には真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等が挙げられ、各層の成膜にはこれらの手法を複数組み合わせた方法を採用してもよい。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。 Examples of the method for forming an organic thin film in the present invention include a general dry film forming method and a wet film forming method. Specifically, it is a vacuum process such as resistance heating vapor deposition, electron beam deposition, sputtering, molecular lamination method, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating and other coating methods, and inkjet printing. , Screen printing, offset printing, printing methods such as letterpress printing, soft lithography methods such as microcontact printing, and the like, and a method in which a plurality of these methods are combined may be adopted for film formation of each layer. The thickness of each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but is usually in the range of 0.5 to 5000 nm, preferably in the range of 1 to 1000 nm, and more preferably 5. It is in the range of to 500 nm.

一般式(1)で表される有機化合物、又は該有機光電変換素子用材料又は薄膜を用いて有機エレクトロニクスデバイスを作製することができる。有機エレクトロニクスデバイスとしては、例えば、薄膜トランジスタ、有機光電変換素子、有機太陽電池素子、有機EL素子、有機発光トランジスタ素子、有機半導体レーザー素子などが挙げられるが、本発明では特に有機光電変換素子に着目した。ここでは有機光電変換素子(光センサ、有機撮像素子を含む)について説明する。 An organic electronic device can be manufactured by using the organic compound represented by the general formula (1), or the material or thin film for the organic photoelectric conversion element. Examples of the organic electronics device include a thin film, an organic photoelectric conversion element, an organic solar cell element, an organic EL element, an organic light emitting transistor element, an organic semiconductor laser element, and the like. In the present invention, particular attention is paid to the organic photoelectric conversion element. .. Here, an organic photoelectric conversion element (including an optical sensor and an organic image sensor) will be described.

本発明の有機光電変換素子は、前記式(1)で表される有機化合物、これを含む有機光電変換素子用材料、又は該材料を含有する有機薄膜を用いることができる。特に有機光電変換素子に於ける光電変換層に用いることができる。青色光用の光電変換素子としては、先に述べた有機薄膜の形成方法である一般的な乾式成膜法や湿式成膜法により成膜した有機薄膜において、分光光度計による波長−吸光度の測定を行ったとき観測される可視光領域(380nm乃至780nm)の光を吸収する帯、即ち光吸収帯のうち、一般的にλmaxと称され、主たる光吸収帯の最も吸光度の高い波長位置を意味する極大吸収が400nm以上500nm以下であり、好ましくは420nm以上480nm以下であり、更に好ましくは430nm以上470nm以下である。 As the organic photoelectric conversion element of the present invention, an organic compound represented by the formula (1), a material for an organic photoelectric conversion element containing the organic compound, or an organic thin film containing the material can be used. In particular, it can be used as a photoelectric conversion layer in an organic photoelectric conversion element. As a photoelectric conversion element for blue light, the wavelength-absorbance is measured by a spectrophotometer in an organic thin film formed by a general dry film forming method or a wet film forming method, which is the method for forming an organic thin film described above. Of the band that absorbs light in the visible light region (380 nm to 780 nm) observed when The maximum absorption is 400 nm or more and 500 nm or less, preferably 420 nm or more and 480 nm or less, and more preferably 430 nm or more and 470 nm or less.

有機光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合、入射光量に加え入射位置情報をも示すため、撮像素子となる。又、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。 An organic photoelectric conversion element is an element in which a photoelectric conversion unit (film) is arranged between a pair of electrode films facing each other, and light is incident on the photoelectric conversion unit from above the electrode films. The photoelectric conversion unit generates electrons and holes in response to the incident light, and a semiconductor reads out a signal corresponding to the electric charge to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit. Is. A transistor for reading may be connected to the electrode film on the side where light is not incident. When a large number of photoelectric conversion elements are arranged in an array, they are image pickup elements because they also show incident position information in addition to the amount of incident light. Further, when the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the photoelectric conversion element when viewed from the light source side, a plurality of photoelectric conversion elements are laminated. You may use it.

本発明においては、一般式(1)で表される有機化合物、有機光電変換素子用材料は光電変換部の構成材料として用いることができる。光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。前記式(1)で表される有機化合物、有機光電変換素子用材料は光電変換層の有機薄膜層として用いることが好ましいが、他にも上記の有機薄膜層(特に、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層)としても利用することも可能である。又、光電変換層に用いる場合は前記式(1)で表される有機化合物、有機光電変換素子用材料のみで構成されていてもよいが、一般式(1)で表される有機化合物、有機光電変換素子用材料以外に有機半導体材料を含んでいてもよい。これらの有機薄膜層は積層構造でもよいが、材料を共蒸着して成る有機薄膜を含んでいてもよく、併せて、共蒸着膜や単膜或いは別の共蒸着膜が複数層形成されて成り、機能する様な有機薄膜であってもよい。 In the present invention, the organic compound represented by the general formula (1) and the material for the organic photoelectric conversion element can be used as the constituent material of the photoelectric conversion unit. The photoelectric conversion unit is one or a plurality of types selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. It often consists of an organic thin film layer other than the photoelectric conversion layer. The organic compound represented by the formula (1) and the material for the organic photoelectric conversion element are preferably used as the organic thin film layer of the photoelectric conversion layer, but in addition to the above organic thin film layer (particularly, the electron transport layer and holes). It can also be used as a transport layer, an electron block layer, a hole block layer). When used in the photoelectric conversion layer, it may be composed only of the organic compound represented by the above formula (1) and the material for the organic photoelectric conversion element, but the organic compound represented by the general formula (1) and organic. An organic semiconductor material may be contained in addition to the material for the photoelectric conversion element. These organic thin film layers may have a laminated structure, but may include an organic thin film formed by co-depositing a material, and at the same time, a co-deposited film, a single film, or another co-deposited film is formed in a plurality of layers. , It may be an organic thin film that functions.

本発明の有機光電変換素子で用いられる電極膜は、後述する光電変換部に含まれる光電変換層が、正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合は、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、有機薄膜層が電子輸送性を有する電子輸送層である場合は、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。依って、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属:ヨウ化銅及び硫化銅等の無機導電性物質:ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー:炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。電極膜に用いる材料の導電性も、光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。 In the electrode film used in the organic photoelectric conversion element of the present invention, the photoelectric conversion layer included in the photoelectric conversion unit described later has hole transportability, or the organic thin film layer other than the photoelectric conversion layer has hole transport property. In the case of a hole transport layer, it plays a role of extracting holes from the photoelectric conversion layer and other organic thin film layers and collecting them, and the photoelectric conversion layer included in the photoelectric conversion unit has electron transportability. In some cases, or when the organic thin film layer is an electron transporting layer having electron transporting properties, it plays a role of extracting electrons from the photoelectric conversion layer and other organic thin film layers and discharging them. Therefore, the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adhesion, electron affinity, ionization potential, and stability with the adjacent photoelectric conversion layer and other organic thin film layers are not particularly limited. It is preferable to select it in consideration of the above. Materials that can be used as the electrode film include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); gold, silver, platinum, chromium and aluminum. , Metals such as iron, cobalt, nickel and tungsten: Inorganic conductive substances such as copper iodide and copper sulfide: Conductive polymers such as polythiophene, polypyrrole and polyaniline: Carbon and the like. If necessary, a plurality of these materials may be mixed and used, or a plurality of these materials may be laminated in two or more layers. The conductivity of the material used for the electrode film is not particularly limited as long as it does not interfere with the light reception of the photoelectric conversion element more than necessary, but it is preferably as high as possible from the viewpoint of the signal strength of the photoelectric conversion element and the power consumption. For example, an ITO film having a conductivity of 300 Ω / □ or less functions sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of several Ω / □ is also available. Therefore, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, electron beam method, sputtering method, chemical reaction method, coating method and the like. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like, if necessary.

電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 As the material of the transparent electrode film used for at least one of the electrode films on the side where light is incident, ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide) , GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorinated tin oxide) and the like. The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more. ..

また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記記載の一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 Further, when a plurality of photoelectric conversion layers having different wavelengths to be detected are laminated, the electrode film used between the photoelectric conversion layers (this is an electrode film other than the pair of electrode films described above) is each photoelectric. It is necessary to transmit light having a wavelength other than the light detected by the conversion layer, and it is preferable to use a material that transmits 90% or more of the incident light, and a material that transmits 95% or more of the light is used for the electrode film. Is more preferable.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。 The electrode film is preferably plasma-free. By producing these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode film is provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that plasma is not generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state in which the plasma is reduced.

電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。 Examples of the device that does not generate plasma when the electrode film is formed include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. The method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and the method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.

成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film forming apparatus), for example, an opposed target sputtering apparatus, an arc plasma vapor deposition apparatus, or the like can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transient Conductive Oxide), and the conduction between the film and the electrode film on the opposite side of the transparent conductive film is increased. it is conceivable that. Therefore, when a material having a film quality inferior to that of Al, such as Al, is used for the electrode, the leakage current is unlikely to increase. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.

通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の光センサ用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Usually, when the conductive film is made thinner than a predetermined value, a rapid increase in resistance value occurs. The sheet resistance of the conductive film in the photoelectric conversion element for an optical sensor of the present embodiment is usually 100 to 10000 Ω / □, and the degree of freedom in film thickness is large. Further, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.

本発明の有機光電変換素子が有する光電変換部は、光電変換層及び光電変換層以外の有機薄膜層を含む場合もある。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層若しくは複数の層であってもよく、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2〜10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)の何れかを積層した構造であり、層間にバッファ層が挿入されていてもよい。 The photoelectric conversion unit included in the organic photoelectric conversion element of the present invention may include an organic thin film layer other than the photoelectric conversion layer and the photoelectric conversion layer. An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion unit, but the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a P-type organic semiconductor film, N. A type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, there are about 2 to 10 layers, which is a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) thereof is laminated, and the layers are layers. A buffer layer may be inserted in.

本発明の有機光電変換素子において、光電変換部を構成する光電変換層以外の有機薄膜層は、光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層から成る群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the organic photoelectric conversion element of the present invention, the organic thin film layer other than the photoelectric conversion layer constituting the photoelectric conversion unit is a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, an electron block layer, and a hole block. It is also used as a layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. In particular, by using it as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer, an element that efficiently converts even weak light energy into an electric signal can be obtained. Therefore, it is preferable.

また、有機撮像素子は一般的には高コントラスト化や省電力化を目的として、暗電流の低減により性能向上を目指すと考えられる。この為、層構造内にキャリアブロック層を挿入する手法が用いられており、素子としては多層構造となる。この為、光電変換色素子用材料としては、例えば抵抗加熱蒸着の様な手法による薄膜作成が可能であることが望ましい。尚、上記のキャリアブロック層は、有機エレクトロニクスデバイス分野では一般に用いられており、それぞれデバイスの構成膜中において正孔若しくは電子の逆移動を制御する機能を有する。 Further, it is generally considered that the organic image sensor aims to improve the performance by reducing the dark current for the purpose of high contrast and power saving. Therefore, a method of inserting a carrier block layer into the layer structure is used, and the element has a multi-layer structure. Therefore, as a material for a photoelectric conversion color element, it is desirable that a thin film can be formed by a method such as resistance heating vapor deposition. The carrier block layer is generally used in the field of organic electronic devices, and each has a function of controlling reverse movement of holes or electrons in the constituent film of the device.

電子輸送層は、光電変換層で発生した電子を電極膜へ輸送する役割と、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割とを果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送する役割と、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割とを果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。 The electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking holes from moving from the electrode film of the electron transport destination to the photoelectric conversion layer. The hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking the movement of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer. The electron block layer plays a role of hindering the movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current. The hole block layer has a function of hindering the movement of holes from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.

図1に本発明の有機光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜、7が絶縁基材又は他の有機光電変換素子をそれぞれ表す。図中には読み出し用のトランジスタを記載していないが、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。有機光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。 FIG. 1 shows a typical element structure of the organic photoelectric conversion element of the present invention, but the present invention is not limited to this structure. In the example of the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film, 3 is an electron block layer, 4 is a photoelectric conversion layer, 5 is a hole block layer, 6 is the other electrode film, and 7 is an insulating group. Represents a material or other organic photoelectric conversion element, respectively. Although the transistor for reading is not shown in the figure, it suffices if it is connected to the electrode film of 2 or 6, and if the photoelectric conversion layer 4 is transparent, the side opposite to the side on which the light is incident is opposite. It may be formed on the outside of the electrode film of. The incident of light on the organic photoelectric conversion element can be performed from either the upper part or the lower part unless the components other than the photoelectric conversion layer 4 extremely prevent the light of the main absorption wavelength of the photoelectric conversion layer from being incident. It may be from.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。実施例中の有機光電変換素子の電流電圧の印加測定は、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社製)を用いて行った。入射光の照射はPVL−3300(朝日分光社製)により、照射光半値幅20nmにて行った。実施例中の明暗比は、光照射を行った場合の電流値を同電圧印加時に於ける暗所での電流値で割ったものを意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The current and voltage application measurement of the organic photoelectric conversion element in the examples was performed using a semiconductor parameter analyzer 4200-SCS (manufactured by Keithley Instruments). The incident light was irradiated by PVL-3300 (manufactured by Asahi Spectroscopy Co., Ltd.) with a half-value width of 20 nm. The light-dark ratio in the examples means a value obtained by dividing the current value when light irradiation is performed by the current value in a dark place when the same voltage is applied.

[実施例1]化合物(1)を用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、具体例に示した化合物(1)を抵抗加熱真空蒸着により200nmの膜厚に成膜した。次に、電極としてアルミニウムを100nm真空成膜し、本発明の有機光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加した際の、暗所での電流は3.88×10−11A/cmであった。また、5Vの電圧を印加し、照射光波長が430nmの光照射を行った場合の電流は1.29×10−5A/cmであった。5V電圧印加したときの明暗比は330000であった。
[Example 1] Fabrication and evaluation of an organic photoelectric conversion element using compound (1) Resistant heating of compound (1) shown in a specific example on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). A film was formed to a film thickness of 200 nm by vacuum deposition. Next, aluminum was vacuum-deposited at 100 nm as an electrode to produce the organic photoelectric conversion element of the present invention. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in a dark place was 3.88 × 10-11 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation having an irradiation light wavelength of 430 nm was performed, the current was 1.29 × 10 -5 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 330000.

[実施例2]化合物(4)を用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、具体例に示した化合物(4)を抵抗加熱真空蒸着により200nmの膜厚に成膜した。次に、電極としてアルミニウムを100nm真空成膜し、本発明の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.93×10−10A/cmであった。また、5Vの電圧を印加し、照射光波長が430nmの光照射を行った場合の電流は1.96×10−6A/cmであった。5V電圧印加したときの明暗比は10000であった。
[Example 2] Fabrication and evaluation of organic photoelectric conversion element using compound (4) Compound (4) shown in a specific example is heat-resisted on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). A film was formed to a film thickness of 200 nm by vacuum deposition. Next, aluminum was vacuum-deposited at 100 nm as an electrode to produce the organic photoelectric conversion element of the present invention. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in a dark place was 1.93 × 10 -10 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation having an irradiation light wavelength of 430 nm was performed, the current was 1.96 × 10 -6 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 10000.

[実施例3]化合物(8)を用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、具体例に示した化合物(8)を抵抗加熱真空蒸着により200nmの膜厚に成膜した。次に、電極としてアルミニウムを100nmの膜厚に成膜し、本発明の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.16×10−11A/cmであった。また、5Vの電圧を印加し、照射光波長が430nmの光照射を行った場合の電流は3.69×10−6A/cmであった。5V電圧印加したときの明暗比は310000であった。
[Example 3] Fabrication and evaluation of organic photoelectric conversion element using compound (8) Compound (8) shown in a specific example is heat-resisted on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm). A film was formed to a film thickness of 200 nm by vacuum deposition. Next, aluminum was formed as an electrode to a film thickness of 100 nm to produce the organic photoelectric conversion element of the present invention. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in the dark was 1.16 × 10-11 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation having an irradiation light wavelength of 430 nm was performed, the current was 3.69 × 10-6 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 310,000.

[比較例1]DNTTを用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、DNTTを抵抗加熱真空蒸着により200nmの膜厚に成膜した。次に、電極としてアルミニウムを100nmの膜厚に成膜し、比較用の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は6.02×10−7A/cmであった。また、5Vの電圧を印加し、照射光波長430nmの光照射を行った場合の電流は2.74×10−6A/cmであった。5V電圧印加したときの明暗比は4.5であった。
[Comparative Example 1] Fabrication and Evaluation of Organic Photoelectric Conversion Element Using DNTT DNT was formed on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm) to a film thickness of 200 nm by resistance heating vacuum deposition. .. Next, aluminum was formed as an electrode to a film thickness of 100 nm to prepare an organic photoelectric conversion element for comparison. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in a dark place was 6.02 × 10 -7 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation with an irradiation light wavelength of 430 nm was performed, the current was 2.74 × 10 -6 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 4.5.

[比較例2]クマリン30を用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、クマリン30を抵抗加熱真空蒸着により200nmに成膜した。次に、電極としてアルミニウムを100nmの膜厚に成膜し、比較用の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は5.19×10−6A/cmであった。また、5Vの電圧を印加し、照射光波長430nmの光照射を行った場合の電流は1.60×10−5A/cmであった。5V電圧印加したときの明暗比は3.0であった。
[Comparative Example 2] Fabrication and Evaluation of Organic Photoelectric Conversion Element Using Coumarin 30 Coumarin 30 was deposited on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm) to 200 nm by resistance heating vacuum deposition. Next, aluminum was formed as an electrode to a film thickness of 100 nm to prepare an organic photoelectric conversion element for comparison. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in a dark place was 5.19 × 10-6 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation with an irradiation light wavelength of 430 nm was performed, the current was 1.60 × 10-5 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 3.0.

以上の結果より、式(1)で表される有機化合物(DNTT誘導体)を光電変換部として用いた実施例1乃至3の本発明の有機光電変換素子は、無置換のDNTTを光電変換部として用いた比較例1の有機光電変換素子や、青色光用材料としての用途が検討されている(例えばNHK技研R&D/No.132/2012.3)クマリン30を光電変換部として用いた比較例2の有機光電変換素子よりも暗電流の値が小さく、桁違いに高い明暗比を示していることは明らかである。即ち、無置換のDNTTやクマリン30を光電変換部として用いる場合には各種ブロック層等を併用しなければ実用的な有機光電変換素子を得ることが出来ないのに対して、式(1)で表される有機化合物(DNTT誘導体)を光電変換部として用いた本発明の有機光電変換素子は、各種ブロック層等を併用すること無しに高い明暗比を発現するものである。
しかも本発明の有機光電変換素子は低い印加電圧(5V)でも十分に駆動していることから、本発明の有機光電変換素子用材料が既存の青色用有機光電変換素子用材料よりも有機エレクトロニクスデバイス材料として有用であることは明白である。
From the above results, the organic photoelectric conversion element of the present invention of Examples 1 to 3 using the organic compound (DNTT derivative) represented by the formula (1) as the photoelectric conversion unit uses the unsubstituted DNTT as the photoelectric conversion unit. The organic photoelectric conversion element of Comparative Example 1 used and its use as a material for blue light are being studied (for example, NHK Giken R & D / No. 132 / 2012.3.) Comparative Example 2 using coumarin 30 as a photoelectric conversion unit. It is clear that the dark current value is smaller than that of the organic photoelectric conversion element of the above, and the brightness ratio is orders of magnitude higher. That is, when the unsubstituted DNTT or coumarin 30 is used as the photoelectric conversion unit, a practical organic photoelectric conversion element cannot be obtained unless various block layers and the like are used in combination, whereas the equation (1) is used. The organic photoelectric conversion element of the present invention using the represented organic compound (DNTT derivative) as a photoelectric conversion unit exhibits a high light-dark ratio without using various block layers or the like in combination.
Moreover, since the organic photoelectric conversion element of the present invention is sufficiently driven even at a low applied voltage (5V), the material for the organic photoelectric conversion element of the present invention is an organic electronics device more than the existing material for the organic photoelectric conversion element for blue. It is clear that it is useful as a material.

[実施例4]化合物(1)を有機薄膜層として用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、具体例に示した化合物(1)を抵抗加熱真空蒸着により50nmに成膜した。次に、前記有機薄膜層上に、光電変換層としてキナクリドンを抵抗加熱真空蒸着により100nmの膜厚に成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを抵抗加熱真空蒸着により100nmの膜厚に成膜し、本発明の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.57×10−10A/cmであった。5Vの電圧を印加し、キナクリドンの光電変換波長である波長550nmの光照射を行った場合の電流は1.23×10−5A/cmであった。5V電圧印加したときの明暗比は78000であった。
[Example 4] Fabrication and evaluation of an organic photoelectric conversion element using the compound (1) as an organic thin film layer An ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm) is coated with the compound (1) shown in a specific example. ) Was formed to 50 nm by resistance heating vacuum deposition. Next, quinacridone as a photoelectric conversion layer was formed on the organic thin film layer to a film thickness of 100 nm by resistance heating vacuum deposition. Finally, aluminum as an electrode was formed on the photoelectric conversion layer to a film thickness of 100 nm by resistance heating vacuum deposition to produce the organic photoelectric conversion element of the present invention. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in a dark place was 1.57 × 10 -10 A / cm 2 . When a voltage of 5 V was applied and light irradiation was performed at a wavelength of 550 nm, which is the photoelectric conversion wavelength of quinacridone, the current was 1.23 × 10-5 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 78,000.

[比較例3]キナクリドンを用いた有機光電変換素子の作製と評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、キナクリドンを抵抗加熱真空蒸着により200nmに成膜した。次に、電極としてアルミニウムを100nmの膜厚に成膜し、比較用の有機光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は5.05×10−9A/cmであった。また、5Vの電圧を印加し、照射光波長550nmの光照射を行った場合の電流は9.22×−6A/cmであった。5V電圧印加したときの明暗比は1800であった。
[Comparative Example 3] Fabrication and Evaluation of Organic Photoelectric Conversion Element Using Quinacridone Quinacridone was deposited on ITO transparent conductive glass (manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm) to 200 nm by resistance heating vacuum deposition. Next, aluminum was formed as an electrode to a film thickness of 100 nm to prepare an organic photoelectric conversion element for comparison. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in the dark was 5.05 × 10 -9 A / cm 2 . Further, when a voltage of 5 V was applied and light irradiation with an irradiation light wavelength of 550 nm was performed, the current was 9.22 × -6 A / cm 2 . The light-dark ratio when a 5 V voltage was applied was 1800.

実施例4及び比較例3は光電変換部として用いたキナクリドンの光電変換波長である550nmの光を照射した場合の光電変換特性の評価結果であるが、実施例3で用いた化合物(1)は507nmに吸収端を有する400〜500nmの青色波長領域を選択的に吸収する有機化合物であり、550nmの照射光には応答しないものである。即ち、実施例3は化合物(1)を光電変換部以外の有機薄膜層(各種ブロック層等)として用いた態様であるが、キナクリドンのみを光電変換部として用いた比較例3と比べて、キナクリドンを光電変換部として用い、且つ化合物(1)を各光電変換部以外の有機薄膜層として用いた実施例4は高い明暗比を示している。即ち、本発明の有機光電変換素子用材料は、光電変換層以外の有機薄膜層として用いた場合でも光電変換素子の性能向上に寄与することが確認できる。
これらの結果から、本発明の有機光電変換素子用材料は、有機光電変換素子の光電変換部(光電変換層)としてのみならず、各種ブロック層等の光電変換部以外の有機薄膜層としても有用であることは明らかである。
Examples 4 and 3 are the evaluation results of the photoelectric conversion characteristics when the light of 550 nm, which is the photoelectric conversion wavelength of quinacridone used as the photoelectric conversion unit, is irradiated. However, the compound (1) used in Example 3 is It is an organic compound that selectively absorbs the blue wavelength region of 400 to 500 nm having an absorption edge at 507 nm, and does not respond to irradiation light of 550 nm. That is, Example 3 is an embodiment in which compound (1) is used as an organic thin film layer (various block layers, etc.) other than the photoelectric conversion unit, but quinacridone is compared with Comparative Example 3 in which only quinacridone is used as the photoelectric conversion unit. In Example 4 in which the compound (1) was used as the photoelectric conversion unit and the compound (1) was used as the organic thin film layer other than each photoelectric conversion unit, the light-dark ratio was high. That is, it can be confirmed that the material for an organic photoelectric conversion element of the present invention contributes to the performance improvement of the photoelectric conversion element even when it is used as an organic thin film layer other than the photoelectric conversion layer.
From these results, the material for an organic photoelectric conversion element of the present invention is useful not only as a photoelectric conversion part (photoelectric conversion layer) of an organic photoelectric conversion element but also as an organic thin film layer other than the photoelectric conversion part such as various block layers. It is clear that.

(図1)
1 絶縁部
2 上部電極
3 電子ブロック層
4 光電変換層
5 正孔ブロック層
6 下部電極
7 絶縁基材若しくは他光電変換素子
(Fig. 1)
1 Insulation part 2 Upper electrode 3 Electronic block layer 4 Photoelectric conversion layer 5 Hole block layer 6 Lower electrode 7 Insulated base material or other photoelectric conversion element

Claims (10)

下記式(1)で表される有機化合物を用いた有機光電変換素子。
Figure 0006910880
(上記式(1)中のRとR一方が芳香族基を有する芳香族基であり他方は水素原子である。)
An organic photoelectric conversion element using an organic compound represented by the following formula (1).
Figure 0006910880
(One of R 1 and R 2 in the above formula (1) is an aromatic group having an aromatic group, and the other is a hydrogen atom .)
式(1)中、R芳香族基を有する芳香族基であり、Rが水素原子である請求項1に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 1, wherein in the formula (1), R 1 is an aromatic group having an aromatic group and R 2 is a hydrogen atom. 式(1)中、Rが水素原子であり、R芳香族基を有する芳香族基である請求項1に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 1, wherein in the formula (1), R 1 is a hydrogen atom and R 2 is an aromatic group having an aromatic group. 薄膜又は固体状態において、光吸収帯の極大吸収が400nm以上500nm以下にある請求項1〜3のいずれか一項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 3, wherein the maximum absorption of the light absorption band is 400 nm or more and 500 nm or less in a thin film or solid state. 下記式(1)で表される化合物を含む有機光電変換素子用材料。
Figure 0006910880
(上記式(1)中のRとR一方が芳香族基を有する芳香族基であり他方は水素原子である。)
A material for an organic photoelectric conversion element containing a compound represented by the following formula (1).
Figure 0006910880
(One of R 1 and R 2 in the above formula (1) is an aromatic group having an aromatic group, and the other is a hydrogen atom .)
薄膜又は固体状態において、光吸収帯の極大吸収が400nm以上500nm以下にある請求項5に記載の有機光電変換素子用材料。 The material for an organic photoelectric conversion element according to claim 5, wherein the maximum absorption of the light absorption band is 400 nm or more and 500 nm or less in a thin film or solid state. 請求項5又は請求項6に記載の有機光電変換素子用材料を含む有機薄膜。 An organic thin film containing the material for an organic photoelectric conversion element according to claim 5 or 6. 請求項5又は請求項6に記載の有機光電変換素子用材料、又は請求項7に記載の有機薄膜を含む有機光電変換素子。 The organic photoelectric conversion element according to claim 5 or 6, or the organic photoelectric conversion element containing the organic thin film according to claim 7. 請求項1〜請求項4並びに請求項8のいずれか一項に記載の光電変換素子を用いた光センサ。 An optical sensor using the photoelectric conversion element according to any one of claims 1 to 4 and 8. 請求項1〜請求項4並びに請求項8のいずれか一項に記載の光電変換素子を用いた有機撮像素子。
An organic imaging device using the photoelectric conversion element according to any one of claims 1 to 4, and 8.
JP2017149698A 2016-08-03 2017-08-02 Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these Active JP6910880B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152613 2016-08-03
JP2016152613 2016-08-03

Publications (2)

Publication Number Publication Date
JP2018026559A JP2018026559A (en) 2018-02-15
JP6910880B2 true JP6910880B2 (en) 2021-07-28

Family

ID=61194149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149698A Active JP6910880B2 (en) 2016-08-03 2017-08-02 Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these

Country Status (1)

Country Link
JP (1) JP6910880B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181568A1 (en) 2019-03-28 2022-06-09 Sony Group Corporation Solid-state imaging element, method for manufacturing solid-state imaging element, photoelectric conversion element, imaging device, and electronic apparatus
TW202120513A (en) * 2019-09-17 2021-06-01 日商日本化藥股份有限公司 Condensed polycyclic aromatic compound
CN114402451A (en) * 2019-11-01 2022-04-26 索尼集团公司 Photoelectric conversion element and imaging element
TW202136272A (en) 2019-12-10 2021-10-01 日商日本化藥股份有限公司 Condensed polycyclic aromatic compound
JPWO2022168856A1 (en) 2021-02-05 2022-08-11

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050726A1 (en) * 2006-10-25 2008-05-02 Hiroshima University Novel fused-ring aromatic compound, process for producing the same, and use thereof
JP5480510B2 (en) * 2008-03-31 2014-04-23 住友化学株式会社 Organic semiconductor composition, organic thin film, and organic thin film element comprising the same
JP2011192966A (en) * 2010-02-17 2011-09-29 Sony Corp Photoelectric conversion element, photoelectric conversion apparatus and solid-state imaging apparatus
JP5438363B2 (en) * 2009-04-24 2014-03-12 ウシオケミックス株式会社 Organic semiconductor material characterized by wide band gap
EP2679592B1 (en) * 2011-02-25 2018-10-03 Nippon Kayaku Kabushiki Kaisha Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
CN104956508B (en) * 2013-01-22 2017-07-21 日本化药株式会社 Solution process organic semiconducting materials and organic semiconductor equipment
WO2014136953A1 (en) * 2013-03-08 2014-09-12 国立大学法人神戸大学 Organic semiconductor thin film production method
US20150123105A1 (en) * 2013-11-01 2015-05-07 The Board Of Trustees Of The Leland Stanford Junior University Off-center spin-coating and spin-coated apparatuses

Also Published As

Publication number Publication date
JP2018026559A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6910880B2 (en) Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
JP6739290B2 (en) Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same
KR102570684B1 (en) Imaging element, multilayer imaging element and imaging device
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP7128584B2 (en) Materials for photoelectric conversion devices and photoelectric conversion devices
KR102325175B1 (en) Organic compounds, near-infrared absorbing dyes, photoelectric conversion elements and their optical sensors, and imaging elements
JP2018190755A (en) Photoelectric conversion element for imaging device
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6906357B2 (en) Photoelectric conversion element for image sensor
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP2018078270A (en) Photoelectric conversion element material for imaging device and photoelectric conversion element containing the same
JP6784639B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2017041559A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JP2017137264A (en) Organic compound, infrared light absorbing material and use thereof
JP2021100042A (en) Material for organic photoelectric conversion element, organic photoelectric conversion element, and organic imaging devices using the same
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same
JP2017034112A (en) Near-infrared photoelectric conversion element, optical sensor, and material for near-infrared photoelectric conversion element
JP2018046267A (en) Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same
JP2018010905A (en) Organic semiconductor material, organic electronics device using the same, organic photoelectronic converter
JP2023114007A (en) Organic compound, thin film, organic photoelectric conversion element material, organic photoelectric conversion device, and organic imaging element using them
JP2023179859A (en) Fused polycyclic aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6910880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150