JP5438363B2 - Organic semiconductor material characterized by wide band gap - Google Patents

Organic semiconductor material characterized by wide band gap Download PDF

Info

Publication number
JP5438363B2
JP5438363B2 JP2009106387A JP2009106387A JP5438363B2 JP 5438363 B2 JP5438363 B2 JP 5438363B2 JP 2009106387 A JP2009106387 A JP 2009106387A JP 2009106387 A JP2009106387 A JP 2009106387A JP 5438363 B2 JP5438363 B2 JP 5438363B2
Authority
JP
Japan
Prior art keywords
group
chemical formula
organic semiconductor
semiconductor material
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009106387A
Other languages
Japanese (ja)
Other versions
JP2010258214A (en
Inventor
一男 岡本
秀敏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Chemix Corp
Original Assignee
Ushio Chemix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Chemix Corp filed Critical Ushio Chemix Corp
Priority to JP2009106387A priority Critical patent/JP5438363B2/en
Publication of JP2010258214A publication Critical patent/JP2010258214A/en
Application granted granted Critical
Publication of JP5438363B2 publication Critical patent/JP5438363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、有機半導体材料に関する。 The present invention relates to an organic semiconductor material.

有機半導体は、ウェットプロセスである塗布や印刷によってデバイスが作製できる可能性があることから、従来のシリコンを使った半導体のデバイスよりも単位面積あたりのコストが大幅に低減できることが期待されている。応用用途としては、有機ELや電子ペーパーに代表されるフレキシブルディスプレーや、有機薄膜太陽電池に代表される次世代エネルギーデバイスへの応用が期待されている。中でも、有機薄膜太陽電池に関しては、これまでのシリコン系太陽電池とは異なり、架台のようなものを必要としないほど軽く薄くカラフルなため、屋根、壁、窓などに貼り付ける太陽電池が実現できる可能性があり、産業上も大いに期待されている。 Organic semiconductors are likely to be able to be fabricated by wet processes such as coating and printing, and therefore it is expected that the cost per unit area can be greatly reduced as compared with conventional semiconductor devices using silicon. Applications are expected to be applied to flexible displays typified by organic EL and electronic paper, and next-generation energy devices typified by organic thin-film solar cells. In particular, organic thin-film solar cells, unlike conventional silicon-based solar cells, are light, thin and colorful so that they do not require a frame, so solar cells that can be attached to roofs, walls, windows, etc. can be realized. There is a possibility, and it is highly expected from the industry.

そのような有機薄膜太陽電池に使用される、有機半導体は、大きく分けてp型有機半導体とn型有機半導体があるが、p型有機半導体材料については、開放光電圧(VOC)が大きくでき、光電変換効率の向上が期待できるようなバンドギャップの広い有機半導体材料が求められている。 Organic semiconductors used in such organic thin-film solar cells can be broadly divided into p-type organic semiconductors and n-type organic semiconductors. For p-type organic semiconductor materials, the open-circuit photovoltage (V oc ) can be increased. Therefore, an organic semiconductor material having a wide band gap that can be expected to improve photoelectric conversion efficiency is demanded.

バンドギャップと開放光電圧との関係は、例えば、當麻らによって報告されており、n型有機半導体をフラーレンに固定し、p型有機半導体として代表的なペンタセン(バンドギャップ:約1.9eV)を用いた太陽電池の開放光電圧)(VOC)は、約0.4Vであるのに対し、p型有機半導体としてルブレン(バンドギャップ:約2.2eV)を使用した有機太陽電池からは、約0.9Vという飛躍的に大きなVOCが報告されている。(非特許文献1) The relationship between the band gap and the open photovoltage has been reported, for example, by Sasa et al., Fixing an n-type organic semiconductor to fullerene, and using a typical pentacene (band gap: about 1.9 eV) as a p-type organic semiconductor. open light voltage of the solar cell using) (V OC), compared to about 0.4V, rubrene as a p-type organic semiconductor (band gap: from organic solar cell using about 2.2 eV), about A vastly large V OC of 0.9 V has been reported. (Non-Patent Document 1)

また、有機トランジスタ特性に優れる有機半導体として、瀧宮らによって報告されたジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チエノチオフェン(以下,本非特許文献2の提案者は、この有機半導体をDNTTと称しているが、本発明と区別するため、ここでは2,3−DNTTとする。)は、キャリア移動度が2.0cm/Vsと良好な電気特性を示すことが報告されている。2,3−DNTTのバンドギャップは、非特許文献2の中で3.38eVと見積もられていた。 In addition, as an organic semiconductor excellent in organic transistor characteristics, dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thienothiophene reported by Kamiya et al. The proponent of Document 2 refers to this organic semiconductor as DNTT. In order to distinguish it from the present invention, it is assumed here that 2,3-DNTT is used, and the carrier mobility is as good as 2.0 cm 2 / Vs. Have been reported to exhibit excellent electrical properties. The band gap of 2,3-DNTT was estimated to be 3.38 eV in Non-Patent Document 2.

當摩哲也ほか「有機太陽電池の高効率化と耐久性向上」p.125−133 [ISBN:978−4−903413−56−3]Tetsuya Satsuma et al. “High efficiency and durability improvement of organic solar cells” p. 125-133 [ISBN: 978-4-903413-56-3] T.Yamamoto,K.Takimiya 「Journalof American Chemical Society」 2007年,第129巻, 2224−2225T.A. Yamamoto, K .; Takimiya “Journalof American Chemical Society” 2007, 129, 2224-2225 Y.Y.Lin,D.J.Gundlach,S.F.Nelson,T.N.Jackson,「IEEE Electron Device Letters」1997年,第18巻,606Y. Y. Lin, D.D. J. et al. Gundlach, S.M. F. Nelson, T .; N. Jackson, “IEEE Electron Device Letters” 1997, 18, 606 H.Okamoto,N.Kawasaki,Y.Kaji,Y.Kubozono,A.Fujiwara,M.Yamaji 「Journal ofAmerican Chemical Society」 2008年,第130巻,10470−10471H. Okamoto, N .; Kawasaki, Y. et al. Kaji, Y. et al. Kubozono, A.M. Fujiwara, M .; Yamaji "Journal of American Chemical Society" 2008, 130, 10470-10471

以上のように、有機半導体材料として様々な化学構造を有する化合物の研究が行われているが、代表的な有機半導体であるペンタセンは空気中または溶液中で酸化されて劣化してしまうなどの問題があるため、耐酸化性を持つ化合物が求められている。また、有機薄膜太陽電池では、p型半導体としてフタロシアニン(バンドギャップ:1.6eV)などが利用されているが、高い開放光電圧(VOC)を得るために、より幅広い(HOMO−LUMO)バンドギャップを持つ化合物が求められている。 As described above, research has been conducted on compounds having various chemical structures as organic semiconductor materials. However, pentacene, which is a typical organic semiconductor, is oxidized and deteriorated in air or in solution. Therefore, a compound having oxidation resistance is required. Further, in the organic thin film solar cell, p-type semiconductor as phthalocyanine (band gap: 1.6 eV), but such is utilized, in order to obtain a high open photovoltage (V OC), wider (HOMO-LUMO) Band There is a need for compounds with gaps.

ここで、本発明者らは、以下に示す有機半導体で有名なペンタセン[化4]とピセン[化5]の違いに着目した。ペンタセン[化4]とピセン[化5]は、ベンゼン核が5つ組み合わさった多環芳香族であり、両化合物の有機半導体特性には大差がなく、両化合物共に良好な半導体特性が報告されている。例えば、キャリア移動度は、ペンタセンが1.5cm/Vsであり(非特許文献3)、ピセンが1.1cm/Vsである。(非特許文献4)



[化4]
[化5]
Here, the present inventors paid attention to the difference between pentacene [Chemical 4] and picene [Chemical 5], which are well-known organic semiconductors as shown below. Pentacene [Chemical Formula 4] and Picene [Chemical Formula 5] are polycyclic aromatic compounds in which five benzene nuclei are combined, and there is no significant difference in the organic semiconductor properties of both compounds. ing. For example, the carrier mobility is 1.5 cm 2 / Vs for pentacene (Non-Patent Document 3) and 1.1 cm 2 / Vs for picene. (Non-Patent Document 4)



[Chemical 4]
[Chemical 5]

しかしながら、耐酸化性とバンドギャップについては、差があることが知られている。耐酸化性については、具体的には、ペンタセンを使った有機トランジスタは、大気中では速やかに劣化してしまうが、ピセンを使った有機トランジスタは、大気中駆動が可能である。バンドギャップについては、ペンタセンのバンドギャップが約1.9eVなのに対して、ピセンのバンドギャップは約3.3eVと広い。バンドギャップの違いは、吸収スペクトルを通じて結晶の色目にも反映され、ピセンの結晶は白色であるが、ペンタセンは、黒紫色の結晶である。 However, it is known that there is a difference between oxidation resistance and band gap. Regarding oxidation resistance, specifically, an organic transistor using pentacene deteriorates quickly in the air, but an organic transistor using picene can be driven in the air. Regarding the band gap, the band gap of pentacene is about 1.9 eV, whereas the band gap of picene is as wide as about 3.3 eV. The difference in the band gap is reflected in the color of the crystal through the absorption spectrum. The picene crystal is white, but pentacene is a black-violet crystal.

このように、ベンゼン核の組み合わさり方によって、耐酸化性とバンドギャップに大きな影響が出ることがわかった。この考え方を、左右対称なDNTT3種([化6]〜[化8]に化学式とその正式名称及び略号を示す。詳細は後述する。)に適応することで本発明に到達した。

[化6] ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チエノチオフェン
[化7] ジナフト[2,1−b:2’,1’−f]チエノ[3,2−b]チエノチオフェン
[化8] ジナフト[1,2−b:1’,2’−f]チエノ[3,2−b]チエノチオフェン
Thus, it has been found that the combination of benzene nuclei has a large effect on oxidation resistance and band gap. The present invention has been achieved by applying this concept to symmetrical three types of DNTT (chemical formulas and their formal names and abbreviations are shown in [Chemical Formula 6] to [Chemical Formula 8]. Details will be described later).

[Chemical 6] Dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thienothiophene
Embedded image Dinaphtho [2,1-b: 2 ′, 1′-f] thieno [3,2-b] thienothiophene
Embedded image Dinaphtho [1,2-b: 1 ′, 2′-f] thieno [3,2-b] thienothiophene

すなわち、ベンゼン環の組み合わさり方の異なる各化合物のHOMO−LUMOバンドギャップについて分子軌道計算(基底関数:RB3LYP/6−31G)を使い推定したところ、以下の表1に示すような結果になった。
上記結果より、3種のDNTT中では、1,2−DNTTのバンドギャップが最大となることが推定できた。1,2−DNTTを実際に合成し、他の2種(2,3−DNTTは非特許文献2に記載、2,1−DNTTは、特許文献1に記載)との比較をし、推定が裏付けられたため本発明に到達した。
That is, when the HOMO-LUMO band gap of each compound having different benzene ring combinations was estimated using molecular orbital calculation (basis function: RB3LYP / 6-31G), the results shown in Table 1 below were obtained. .
From the above results, it was estimated that the band gap of 1,2-DNTT was the maximum among the three types of DNTT. 1,2-DNTT was actually synthesized and compared with the other two types (2,3-DNTT is described in Non-Patent Document 2 and 2,1-DNTT is described in Patent Document 1). The present invention was reached because it was supported.

特願2008−154756Japanese Patent Application No. 2008-154756

以下に本発明を詳細に説明する。 The present invention is described in detail below.

請求項1に記載の発明は、下記の化学式[化1]で示される、チエノチオフェン骨格を特徴とする有機半導体材料である。
[化1]
ただし、化学式[化1]中の置換基Rから 12は、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基のうち、少なくとも一つを含んでいる。
According to one aspect of the present invention, Ru is represented by the following chemical formula: [Formula 1], an organic semiconductor material characterized Ji eno thiophene skeleton.
[Chemical 1]
However, from the substituent R 1 in the chemical formula [Chemical Formula 1] R 12 represents a hydrogen atom and a halogen atom, aryl group, heterocyclic group, alkyl group, fluoroalkyl group, alkenyl group, fluoroalkenyl group, alkynyl group, fluoroalkynyl group, alkoxyl group, fluoroalkoxyl group, amino group, amide group , An imino group, a carboxyl group, a hydroxyl group, an ester group, a nitro group, a nitrile group, a sulfide group, a mercapto group, a sulfonyl group, and a silyl group.

化学式[化1]の正式名は、ジナフト[1,2−b:1’,2’−f]チエノ[3,2−b]チオフェンであり、以下、1,2−DNTTと表記する。 The formal name of the chemical formula [Chemical Formula 1] is dinaphtho [1,2-b: 1 ′, 2′-f] thieno [3,2-b] thiophene, and is hereinafter referred to as 1,2-DNTT.

化学式〔化1〕中の置換基Rから 12は、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基のうち、少なくとも一つを含んでいる。 なお、置換基Rから 12の好ましい例は、水素原子、フッ素原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、アルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基である。 From substituent R 1 in chemical formula [Chemical Formula 1] R 12 represents a hydrogen atom and a halogen atom, aryl group, heterocyclic group, alkyl group, fluoroalkyl group, alkenyl group, fluoroalkenyl group, alkynyl group, fluoroalkynyl group, alkoxyl group, fluoroalkoxyl group, amino group, amide group , An imino group, a carboxyl group, a hydroxyl group, an ester group, a nitro group, a nitrile group, a sulfide group, a mercapto group, a sulfonyl group, and a silyl group. In addition, from the substituent R 1 Preferred examples of R 12 are a hydrogen atom, a fluorine atom, an aryl group, a heterocyclic group, an alkyl group, a fluoroalkyl group, an alkenyl group, an alkynyl group, an alkoxyl group, a fluoroalkoxyl group, and an amino group.

置換基Rから 12における、ハロゲン原子はフッ素、塩素、臭素、ヨウ素であり、好ましい例はフッ素原子である。 From the substituent R 1 The halogen atom in R 12 is fluorine, chlorine, bromine or iodine, and a preferred example is a fluorine atom.

置換基Rから 12における、アリール基は特に限定されず、例えば、フェニル基、p−トリル基、p−フルオロフェニル基、ペンタフルオロフェニル基、p−(トリフルオロメチル)フェニル基、1−ナフチル基、2−ナフチル基ビフェニル基、ターフェニル基、(ジフェニルアミノ)フェニル基などが挙げられる。 From the substituent R 1 The aryl group in R 12 is not particularly limited, and examples thereof include a phenyl group, p-tolyl group, p-fluorophenyl group, pentafluorophenyl group, p- (trifluoromethyl) phenyl group, 1-naphthyl group, 2- A naphthyl group biphenyl group, a terphenyl group, a (diphenylamino) phenyl group, etc. are mentioned.

置換基Rから 12における、複素環基は特に限定されず、2−チエニル基、5−(n−1−オクチル)チエニル基、2−ベンゾチエニル基、2−フリル基、1−メチル−2−ピロリル基、2−ピリジル基、2−ビピリジル基などが挙げられる。 From the substituent R 1 The heterocyclic group in R 12 is not particularly limited, and a 2-thienyl group, a 5- (n-1-octyl) thienyl group, a 2-benzothienyl group, a 2-furyl group, a 1-methyl-2-pyrrolyl group, 2-pyridyl group, 2-bipyridyl group, etc. are mentioned.

置換基Rから 12における、アルキル基は特に限定されず、直鎖型、分岐型、環状型のアルキル基であり、例えば、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、イソプロピル基、t−ブチル基、シクロプロピル基、シクロペンチル基、アダマンチル基などが挙げられ、フルオロアルキル基は特に限定されず、トリフルオロメチル基、パーフルオロオクチル基、パーフルオロドデシル基などが挙げられる。 From the substituent R 1 The alkyl group in R 12 is not particularly limited, and is a linear, branched, or cyclic alkyl group such as an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, n -Octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, isopropyl group, t-butyl group, cyclopropyl group, cyclopentyl group, adamantyl group, etc. The fluoroalkyl group is not particularly limited, and examples thereof include a trifluoromethyl group, a perfluorooctyl group, and a perfluorododecyl group.

置換基RからR12における、アルケニル基は特に限定されず、例えば、エテニル基、メチルエテニル基、(n−オクチル)エテニル基、フェニルエテニル基、ナフチルエテニル基、ビフェニルエテニル基、ターフェニルエテニル基、パーフルオロフェニルエテニル基などが挙げられる。 The alkenyl group in the substituents R 1 to R 12 is not particularly limited, and examples thereof include an ethenyl group, a methylethenyl group, a (n-octyl) ethenyl group, a phenylethenyl group, a naphthylethenyl group, a biphenylethenyl group, and a terphenylethenyl group. Group, perfluorophenylethenyl group and the like.

置換基RからR12における、アルケニル基は特に限定されず、例えば、エチニル基、メチルエチニル基、(n−オクチル)エチニル基、フェニルエチニル基、ナフチルエチニル基、ビフェニルエチニル基、ターフェニルエチニル基、パーフルオロフェニルエチニル基などが挙げられる。 The alkenyl group in the substituents R 1 to R 12 is not particularly limited, and examples thereof include an ethynyl group, a methylethynyl group, an (n-octyl) ethynyl group, a phenylethynyl group, a naphthylethynyl group, a biphenylethynyl group, and a terphenylethynyl group. And a perfluorophenylethynyl group.

置換基Rから 12における、アルコキシル基は特に限定されず、例えば、n−ブトキシ基、n−ペンチロキシ基、n−ヘキシロキシ基、n−ヘプトキシ基、n−オクチロキシ基、n−ノニロキシ基、n−デシロキシ基、n−ウンデシキシ基、n−ドデシロキシ基、n−トリデシロキシ基、イソプロポキシ基、t−ブチロキシ基、シクロプロポキシ基、シクロペンチロキシ基などが挙げられ、フルオロアルコキシ基は特に限定されず、トリフルオロメトキシ基、パーフルオロオクチロキシ基、パーフルオロドデシロキシ基などが挙げられる。 From the substituent R 1 The alkoxyl group in R 12 is not particularly limited. For example, n-butoxy group, n-pentyloxy group, n-hexyloxy group, n-heptoxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n -Undecoxy group, n-dodecyloxy group, n-tridecyloxy group, isopropoxy group, t-butyloxy group, cyclopropoxy group, cyclopentyloxy group and the like, and fluoroalkoxy group is not particularly limited, trifluoromethoxy group, Examples include perfluorooctyloxy groups and perfluorododecyloxy groups.

置換基RからR12における、アミノ基は特に限定されず、例えば、ジフェニルアミノ基、ジ(p−トリル)アミノ基、ジナフチルアミノ基、ジチエニルアミノ基、ジピリジルアミノ基などが挙げられる。 The amino group in the substituents R 1 to R 12 is not particularly limited, and examples thereof include a diphenylamino group, a di (p-tolyl) amino group, a dinaphthylamino group, a dithienylamino group, and a dipyridylamino group.

続いて請求項2に記載の発明は、化学式〔化1〕中のR、Rn+6が水素原子以外の同一の置換基であることを特徴とする請求項1に記載の有機半導体材料である。 Subsequently, the invention according to claim 2 is the organic semiconductor material according to claim 1, wherein R n and R n + 6 in the chemical formula [Chemical Formula 1] are the same substituents other than hydrogen atoms. .

請求項2に記載の有機半導体材料は、後述する化合物のn+2、(n+2)’位に置換基を有する化合物を用いることにより、容易に合成することができるが、合成方法は特に限定されるものではない。なお、化合物Eのn+2、(n+2)’位とは、[化3]に示すような位置番号である。ここで、nは1以上6以下の整数である。 The organic semiconductor material according to claim 2 can be easily synthesized by using a compound having a substituent at the n + 2, (n + 2) ′ position of the compound E described later, but the synthesis method is particularly limited. It is not a thing. The n + 2 and (n + 2) ′ positions of Compound E are position numbers as shown in [Chemical Formula 3]. Here, n is an integer of 1-6.

[化3]
[Chemical formula 3]

置換基R、Rn+6は、ハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基であり、好ましい例は、フッ素原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、アルキニル基、アミノ基である。 Substituents R n and R n + 6 are a halogen atom, aryl group, heterocyclic group, alkyl group, fluoroalkyl group, alkenyl group, fluoroalkenyl group, alkynyl group, fluoroalkynyl group, alkoxyl group, fluoroalkoxyl group, amino group, Amide group, imino group, carboxyl group, hydroxyl group, ester group, nitro group, nitrile group, sulfide group, mercapto group, sulfonyl group, silyl group, preferred examples are fluorine atom, aryl group, heterocyclic group, alkyl Group, fluoroalkyl group, alkenyl group, alkynyl group and amino group.

続いて、請求項3の発明は、請求項1から請求項2のいずれかの有機半導体材料、あるいは、請求項1から請求項2のいずれかの有機半導体材料の複数を組み合わせてからなる有機電子デバイスである。ここでいう有機電子デバイスとは、本有機半導体材料の電気特性を利用した電子デバイスのことであり、具体的には、有機トランジスタ、有機発光ダイオード、有機ダイオード、有機レーザー、有機薄膜太陽電池、有機メモリー等が挙げられる。
Then, the invention of claim 3, any one of organic semiconductor material according to claim 2 claim 1, or a combination of a plurality of any of the organic semiconductor material according to claim 2 claim 1, consisting of an organic It is an electronic device. An organic electronic device here is an electronic device that utilizes the electrical characteristics of the organic semiconductor material . Specifically, an organic transistor, an organic light emitting diode, an organic diode, an organic laser, an organic thin film solar cell, an organic thin film Memory etc. are mentioned.

本発明の化合物をこれら有機電子デバイスに利用するに当たって、高純度化のために不純物の除去等の精製が必要になるが、本発明の化合物は、液体クロマトグラフィー法、昇華法、ゾーンメルティング法、ゲルパーミネーションクロマトグラフィー法、再結晶法などによって精製できる。 When using the compound of the present invention for these organic electronic devices, purification such as removal of impurities is necessary for high purity. The compound of the present invention is not limited to liquid chromatography, sublimation, zone melting, etc. It can be purified by gel permeation chromatography method, recrystallization method and the like.

また、本発明の化合物を有機電子デバイスに利用するに当たって、主として薄膜の形態で用いられるが、その薄膜作製法として、ウェットプロセスとドライプロセスどちらを使用してもよい。 Further, when the compound of the present invention is used for an organic electronic device, it is mainly used in the form of a thin film, and either a wet process or a dry process may be used as a method for forming the thin film.

ここで言うウェットプロセスとは、スピンコート法、ディップコート法、バーコート法、スプレーコート法、インクジェット法、スクリーン印刷法、平板印刷法、凹版印刷法、凸版印刷法などを示しており、これら公知の方法が利用できる。 The wet process here refers to a spin coating method, a dip coating method, a bar coating method, a spray coating method, an ink jet method, a screen printing method, a lithographic printing method, an intaglio printing method, a relief printing method, and the like. Can be used.

ここで言うドライプロセスとは、真空蒸着法、スパッタリング法、CVD法、レーザー蒸着法、分子線エピタキシャル成長法、気相輸送成長法などを示しており、これら公知の方法が利用できる。 The dry process mentioned here indicates a vacuum deposition method, a sputtering method, a CVD method, a laser deposition method, a molecular beam epitaxial growth method, a vapor phase transport growth method, and the like, and these known methods can be used.

請求項1の発明によれば、紫外線領域での吸収効率が高く、太陽電池としても利用することができる。 According to invention of Claim 1, the absorption efficiency in an ultraviolet region is high, and it can utilize also as a solar cell.

請求項2の発明によれば、請求項1の化合物の対称位置にあるRとRn+6を同一の置換基とすることにより、その合成過程が容易となる。 According to the invention of claim 2, the synthesis process is facilitated by making R n and R n + 6 in the symmetrical position of the compound of claim 1 the same substituent.

請求項3の発明によれば、請求項1ないし請求項2の化合物の用途を明らかにして化合物の有効利用を図ることができる。 According to the invention of claim 3, it is possible to clarify the use of the compound of claims 1 to 2 and to effectively use the compound.

1,2−DNTT、2,1−DNTT、2,3−DNTTのUV吸収端のスペクトルSpectrum of UV absorption edge of 1,2-DNTT, 2,1-DNTT, 2,3-DNTT 1,2−DNTT、2,1−DNTT、2,3−DNTTのUVスペクトルの重ね書きOverwrite of UV spectrum of 1,2-DNTT, 2,1-DNTT, 2,3-DNTT 有機半導体デバイスの使用例Examples of organic semiconductor device usage 有機薄膜太陽電池での使用例Examples of use in organic thin-film solar cells

以下に本発明の実施例を示す Examples of the present invention are shown below.

以下に請求項1に記載の有機半導体1,2−DNTTの合成過程の反応式[化2]を示す。 [化2]
The reaction formula [Chemical Formula 2] of the synthesis process of the organic semiconductor 1,2-DNTT according to claim 1 is shown below. [Chemical formula 2]

化合物の合成窒素雰囲気下、1L四つ口フラスコに1−ブロモ−2−ナフトール50.6g(22.7mmol)、トリエチルアミン63ml、塩化メチレン250mlを加え、氷水冷却下でその溶液にトリフルオロメタンスルホン酸無水物 75.9g(269mmol)の塩化メチレン(80ml)溶液を約1時間かけて滴下し、滴下後室温で4時間撹拌した。反応終了後、反応溶液を5%炭酸水素ナトリウム水溶液、10%食塩水の順で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーで精製し、化合物を得た。以下に化合物H−NMRおよび13C−NMRの測定結果を示す。H−NMR(400 MHz, CDCl): δ 7.43(d, 1H), 7.61 (ddd, 1H), 7.69 (ddd, 1H), 7.88(d, 2H), 8.32(d, 1H).13C−NMR(100 MHz,CDCl): δ 116.2, 119.9, 127.7,127.8, 128.3, 128.8, 129.0, 129.7, 132.7, 133.0, 145.1. Synthesis of Compound A Under a nitrogen atmosphere, 10.6 ml (22.7 mmol) of 1-bromo-2-naphthol, 63 ml of triethylamine and 250 ml of methylene chloride were added to a 1 L four-necked flask, and trifluoromethanesulfonic acid was added to the solution under ice water cooling. A solution of 75.9 g (269 mmol) of anhydride in methylene chloride (80 ml) was added dropwise over about 1 hour, followed by stirring at room temperature for 4 hours. After completion of the reaction, the reaction solution was washed with 5% aqueous sodium hydrogen carbonate solution and 10% brine in that order, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography to obtain Compound A. The measurement results of 1 H-NMR and 13 C-NMR of Compound A are shown below. 1 H-NMR (400 MHz, CDCl 3 ): δ H 7.43 (d, 1H), 7.61 (ddd, 1H), 7.69 (ddd, 1H), 7.88 (d, 2H), 8.32 (d, 1H). 13 C-NMR (100 MHz, CDCl 3 ): δ C 116.2, 119.9, 127.7, 127.8, 128.3, 128.8, 129.0, 129.7, 132.7, 133.0, 145.1.

化合物の合成窒素雰囲気下、200ml四つ口フラスコに化合物 20g(56.3mmol)、トリエチルアミン 200ml、テトラキストリフェニルホスフィンパラジウム1.25g(1.08mmol)、ヨウ化銅(I) 218mg(1.14mmol)を加え、トリメチルシリルアセチレン9.4ml (67.9mmol)を加え、40 ℃で48時間撹拌した。反応終了後、反応溶液にトルエンを加え、10%食塩水で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーで精製し、化合物を得た。以下に化合物H−NMRおよび13C−NMRの測定結果を示す。H−NMR(400 MHz, CDCl): δ 0.3(d, 9H), 7.49(d, 1H), 7.50(ddd, 1H), 7.58(ddd, 1H), 7.70(d, 1H), 7.77(d, 1H), 8.28(d, 1H).13C−NMR(100 MHz,CDCl): δ −0.1, 100.5, 104.3, 123.3, 126.8, 127.2, 127.3, 127.8, 127.9,128.1, 129.2, 132.2, 133.7. Synthesis of Compound B Under a nitrogen atmosphere, 20 g (56.3 mmol) of Compound A , 200 ml of triethylamine, 1.25 g (1.08 mmol) of tetrakistriphenylphosphine palladium, 218 mg of copper (I) iodide (1. 14 mmol), 9.4 ml (67.9 mmol) of trimethylsilylacetylene was added, and the mixture was stirred at 40 ° C. for 48 hours. After completion of the reaction, toluene was added to the reaction solution and washed with 10% brine, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography to obtain Compound B. The measurement results of 1 H-NMR and 13 C-NMR of Compound B are shown below. 1 H-NMR (400 MHz, CDCl 3 ): δ H 0.3 (d, 9H), 7.49 (d, 1H), 7.50 (ddd, 1H), 7.58 (ddd, 1H), 7.70 (d, 1H), 7.77 (d, 1H), 8.28 (d, 1H). 13 C-NMR (100 MHz, CDCl 3 ): δ C -0.1, 100.5, 104.3, 123.3, 126.8, 127.2, 127.3, 127.8, 127.9 , 128.1, 129.2, 132.2, 133.7.

化合物の合成窒素雰囲気下、500mlナスフラスコに化合物 30g(98.9mmol)、メタノール15
0ml、炭酸カリウム1.37g(9.91mmol)を加え、室温で2時間撹拌した。反応終了後、反応溶液にトルエンを加え、10 %食塩水で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーで精製し、化合物を得た。以下に化合物H−NMRおよび13C−NMRの測定結果を示す。H−NMR(400 MHz, CDCl): δ 3.50(s, 1H), 7.53(d, 1H),7.51−7.55(m, 1H), 7.61(ddd, 1H), 7.74(d, 1H), 7.80(d, 1H), 8.29(d, 1H).13C−NMR(100 MHz,CDCl): δ 82.5, 83.2, 122.3, 126.8, 127.4,127.5, 127.9, 128.0,128.2, 129.3, 132.1, 133.9.
Synthesis of Compound C 30 g (98.9 mmol) of Compound B , methanol 15 in a 500 ml eggplant flask under a nitrogen atmosphere
0 ml and 1.37 g (9.91 mmol) of potassium carbonate were added and stirred at room temperature for 2 hours. After completion of the reaction, toluene was added to the reaction solution and washed with 10% brine, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography to obtain Compound C. The measurement results of 1 H-NMR and 13 C-NMR of Compound C are shown below. 1 H-NMR (400 MHz, CDCl 3 ): δ H 3.50 (s, 1H), 7.53 (d, 1H), 7.51-7.55 (m, 1H), 7.61 (ddd , 1H), 7.74 (d, 1H), 7.80 (d, 1H), 8.29 (d, 1H). 13 C-NMR (100 MHz, CDCl 3): δ C 82.5, 83.2, 122.3, 126.8, 127.4,127.5, 127.9, 128.0,128.2, 129.3, 132.1, 133.9.

化合物の合成窒素雰囲気下、1L四つ口フラスコに化合物 29g(81.7mmol)、DMF180ml、トリエチルアミン70ml、テトラキストリフェニルホスフィンパラジウム 1.41g(1.22mmol)、ヨウ化銅(I)232mg(1.22mmol)を加え、50℃まで加熱し化合物17.9g(77.4mmol)のDMF180ml溶液を約4時間かけて滴下し、滴下後10時間撹拌した。反応終了後、反応溶液にトルエンを加え、10%食塩水で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーと熱洗浄で精製し、化合物を得た。以下に化合物H−NMRおよび13C−NMRの測定結果を示す。H−NMR(400 MHz, CDCl): δ 7.55(ddd, 2H), 7.62(ddd, 2H), 7.69(d, 2H), 7.80(d, 2H), 7.83(d, 2H), 8.34(d, 2H).13C−NMR(100 MHz,CDCl): δ 94.5, 123.3, 126.7, 127.4, 127.5, 127.9, 128.0,128.2, 129.2, 132.3, 133.9. Synthesis of Compound D Under a nitrogen atmosphere, 29 g (81.7 mmol) of Compound A , 180 ml of DMF, 70 ml of triethylamine, 1.41 g (1.22 mmol) of tetrakistriphenylphosphine palladium, 232 mg of copper (I) iodide (1 mg) 1.22 mmol) was added, and the mixture was heated to 50 ° C., and a solution of 17.9 g (77.4 mmol) of Compound C in 180 ml of DMF was added dropwise over about 4 hours, followed by stirring for 10 hours. After completion of the reaction, toluene was added to the reaction solution and washed with 10% brine, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography and hot washing to obtain Compound D. The measurement results of 1 H-NMR and 13 C-NMR of Compound D are shown below. 1 H-NMR (400 MHz, CDCl 3 ): δ H 7.55 (ddd, 2H), 7.62 (ddd, 2H), 7.69 (d, 2H), 7.80 (d, 2H), 7.83 (d, 2H), 8.34 (d, 2H). 13 C-NMR (100 MHz, CDCl 3 ): δ C 94.5, 123.3, 126.7, 127.4, 127.5, 127.9, 128.0, 128.2, 129.2 132.3, 133.9.

化合物の合成窒素雰囲気下、1L四つ口フラスコに化合物 7.0g(16.1mmol)、THF 500mlを加え、−70℃まで冷却後2.69Mブチルリチウムのヘキサン溶液(13.1ml)を加え、1時間撹拌した。撹拌後、硫黄粉末 1.03g(32.1mmol)を加え、徐々に−20℃まで昇温させた。−20℃でヨードメタン2.5ml(40.1mmol)を加え、室温まで昇温した。反応終了後、反応溶液に7%希塩酸(200ml)とトルエンを加え、5%炭酸水素ナトリウム水溶液、10%食塩水の順で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーと再結晶で精製し、化合物を得た。H−NMR(400 MHz, CDCl): δ 2.63(s, 6H), 7.52(ddd, 2H),7.61(ddd, 2H), 7.73(d, 2H), 7.80(d,2H), 7.83(d, 2H),8.74(d, 2H).13C−NMR(100 MHz,CDCl): δ 95.0, 126.7, 126.8,127.2, 127.3, 128.4, 128.6, 129.5, 133.5, 134.7, 137.2. Synthesis of Compound E In a nitrogen atmosphere, 7.0 g (16.1 mmol) of Compound D and 500 ml of THF were added to a 1 L four-necked flask, cooled to −70 ° C., and then a 2.69 M butyllithium hexane solution (13.1 ml). Added and stirred for 1 hour. After stirring, 1.03 g (32.1 mmol) of sulfur powder was added, and the temperature was gradually raised to -20 ° C. At −20 ° C., 2.5 ml (40.1 mmol) of iodomethane was added, and the temperature was raised to room temperature. After completion of the reaction, 7% dilute hydrochloric acid (200 ml) and toluene were added to the reaction solution, and the mixture was washed with 5% aqueous sodium hydrogen carbonate solution and 10% brine in that order. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography and recrystallization to obtain Compound E. 1 H-NMR (400 MHz, CDCl 3 ): δ H 2.63 (s, 6H), 7.52 (ddd, 2H), 7.61 (ddd, 2H), 7.73 (d, 2H), 7.80 (d, 2H), 7.83 (d, 2H), 8.74 (d, 2H). 13 C-NMR (100 MHz, CDCl 3 ): δ C 95.0, 126.7, 126.8, 127.2, 127.3, 128.4, 128.6, 129.5, 133.5, 134.7, 137.2.

化合物の合成窒素雰囲気下、30ml三つ口フラスコに化合物を200mg(0.56mmol)、クロロホルム 1.5ml、ヨウ素28.8g(11.3mmol)を加え、24時間還流させた。反応溶液を5%チオ硫酸ナトリウム水溶液、10%食塩水の順で洗浄し、その有機層を硫酸マグネシウムで乾燥し、減圧濃縮した。得られた粗体をカラムクロマトグラフィーで精製し、化合物を得た。H−NMR(400 MHz, CDClCDCl): δ 7.54(t, 2H), 7.62(t, 2H),7.86(d, 2H), 7.96(d, 2H), 7.97(d, 2H), 8.16(d, 2H).IR(KBr): 3022,1890,1612,1589,1514,1431,1379,1321,1255,1137,1056,983,806,744,665,538 cm−1.Mass (m/z,%) 340 (100)(M),170 (40). Synthesis of Compound F Under a nitrogen atmosphere, 200 mg (0.56 mmol) of Compound E , 1.5 ml of chloroform and 28.8 g (11.3 mmol) of iodine were added to a 30 ml three-necked flask and refluxed for 24 hours. The reaction solution was washed with 5% aqueous sodium thiosulfate solution and 10% brine in that order, and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The resulting crude product was purified by column chromatography to obtain Compound F. 1 H-NMR (400 MHz, CDCl 2 CDCl 2 ): δ H 7.54 (t, 2H), 7.62 (t, 2H), 7.86 (d, 2H), 7.96 (d, 2H) ), 7.97 (d, 2H), 8.16 (d, 2H). IR (KBr): 3022, 1890, 1612, 1589, 1514, 1431, 1379, 1321, 1255, 1137, 1056, 983, 806, 744, 665, 538 cm −1 . Mass (m / z,%) 340 (100) (M + ), 170 (40).

図1、図2、に1,2−DNTT、2,1−DNTT、2,3−DNTTのUV吸収端のスペクトルとその重ね書きを示す。これらの図から、本願発明の1,2−DNTTが紫外線領域での吸収が高いことがわかる。 The spectrum of the UV absorption edge of 1,2-DNTT, 2,1-DNTT, 2,3-DNTT and its overwriting are shown in FIGS. From these figures, it can be seen that 1,2-DNTT of the present invention has high absorption in the ultraviolet region.

本発明である1,2−DNTTを用いた有機半導体デバイスの使用例を、図3及び図4に示す。図3では、電界効果トランジスタ(以下FETとする。)での使用例を挙げている。FETはその特徴から、スイッチング素子や増幅素子として利用される。ゲート電流が低いことに加え、構造が平面的であるため、ウェットプロセスによる作製や集積化が容易であり大面積化を可能とする。ここでは、1,2−DNTTは、主にp型半導体として利用されているが、置換基、溶剤によってn型半導体として機能する場合もある。 また、図4では有機薄膜太陽電池での使用例を挙げている。図4に示す共蒸着層とは、p型とn型を一緒に蒸着させた層であり、この層で太陽光により正孔と電子により分離させやすくするためである。 Examples of use of organic semiconductor devices using 1,2-DNTT according to the present invention are shown in FIGS. FIG. 3 shows an example of use in a field effect transistor (hereinafter referred to as FET). FETs are used as switching elements and amplifying elements because of their characteristics. In addition to a low gate current, the structure is planar, so that fabrication and integration by a wet process are easy and a large area can be achieved. Here, 1,2-DNTT is mainly used as a p-type semiconductor, but may function as an n-type semiconductor depending on a substituent and a solvent. FIG. 4 shows an example of use in an organic thin film solar cell. The co-evaporation layer shown in FIG. 4 is a layer in which p-type and n-type are vapor-deposited together, and this layer is intended to facilitate separation by holes and electrons by sunlight.

本発明の1,2−DNTTは、紫外線領域での光吸収効率が高いことから、太陽電池として有効活用が期待される。また、1,2−DNTTに種々の置換基を導入することによってさらなる溶解性の向上や、移動度の向上が期待でき、半導体デバイス等に今後多いに利用されると思われる。 The 1,2-DNTT of the present invention is expected to be effectively used as a solar cell because of its high light absorption efficiency in the ultraviolet region. In addition, by introducing various substituents into 1,2-DNTT, further improvement in solubility and mobility can be expected, and it is expected to be widely used in semiconductor devices and the like in the future.

1 有機半導体を使用したFET 2 有機半導体 3 絶縁膜 4 ゲート 41 ゲート絶縁膜 5 ドレイン 6 ソース7 エミッター 8 コレクター 9 ベース 10 基板(プラスチック) 11 電極 12 n型半導体 13 p型半導体14 共蒸着層 15 ITO (Indium Tin Oxide) DESCRIPTION OF SYMBOLS 1 FET using organic semiconductor 2 Organic semiconductor 3 Insulating film 4 Gate 41 Gate insulating film 5 Drain 6 Source 7 Emitter 8 Collector 9 Base 10 Substrate (plastic) 11 Electrode 12 N-type semiconductor 13 P-type semiconductor 14 Co-deposition layer 15 ITO (Indium Tin Oxide)

Claims (3)

下記の化学式[化1]で示される、チエノチオフェン骨格を特徴とする有機半導体材料。
[化1]
ただし、化学式[化1]中の置換基Rから 12は、水素原子及びハロゲン原子、アリール基、複素環基、アルキル基、フルオロアルキル基、アルケニル基、フルオロアルケニル基、アルキニル基、フルオロアルキニル基、アルコキシル基、フルオロアルコキシル基、アミノ基、アミド基、イミノ基、カルボキシル基、ヒドロキシル基、エステル基、ニトロ基、ニトリル基、スルフィド基、メルカプト基、スルホニル基、シリル基のうち、少なくとも一つを含んでいる。
Following chemical formula Ru represented by [Chemical Formula 1, the organic semiconductor material characterized Ji eno thiophene skeleton.
[Chemical 1]
However, from the substituent R 1 in the chemical formula [Chemical Formula 1] R 12 represents a hydrogen atom and a halogen atom, aryl group, heterocyclic group, alkyl group, fluoroalkyl group, alkenyl group, fluoroalkenyl group, alkynyl group, fluoroalkynyl group, alkoxyl group, fluoroalkoxyl group, amino group, amide group , An imino group, a carboxyl group, a hydroxyl group, an ester group, a nitro group, a nitrile group, a sulfide group, a mercapto group, a sulfonyl group, and a silyl group.
化学式[化1]中のR、Rn+6は水素原子以外の同一の置換基であることを特徴とする請求項1に記載の有機半導体材料。 2. The organic semiconductor material according to claim 1, wherein R n and R n + 6 in the chemical formula [Chemical Formula 1] are the same substituents other than a hydrogen atom. 請求項1から請求項2のいずれかの有機半導体材料、あるいは、請求項1から請求項2のいずれかの有機半導体材料の複数を組み合わせてからなる有機電子デバイス。 Any organic semiconductor material according to claim 2 claim 1 or organic electronic device by combining a plurality of one of the organic semiconductor material according to claim 2 claim 1, consisting of,.
JP2009106387A 2009-04-24 2009-04-24 Organic semiconductor material characterized by wide band gap Active JP5438363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106387A JP5438363B2 (en) 2009-04-24 2009-04-24 Organic semiconductor material characterized by wide band gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106387A JP5438363B2 (en) 2009-04-24 2009-04-24 Organic semiconductor material characterized by wide band gap

Publications (2)

Publication Number Publication Date
JP2010258214A JP2010258214A (en) 2010-11-11
JP5438363B2 true JP5438363B2 (en) 2014-03-12

Family

ID=43318786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106387A Active JP5438363B2 (en) 2009-04-24 2009-04-24 Organic semiconductor material characterized by wide band gap

Country Status (1)

Country Link
JP (1) JP5438363B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402348B1 (en) 2009-02-27 2017-04-12 Nippon Kayaku Kabushiki Kaisha Field effect transistor
US8643001B2 (en) * 2010-12-23 2014-02-04 Samsung Electronics Co. Ltd. Semiconductor composition
EP2679592B1 (en) 2011-02-25 2018-10-03 Nippon Kayaku Kabushiki Kaisha Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
US8963131B2 (en) * 2011-06-13 2015-02-24 Samsung Electronics Co., Ltd. Electronic device
JP6048303B2 (en) * 2013-04-25 2016-12-21 株式会社デンソー Method for manufacturing organic semiconductor device
JP6247560B2 (en) * 2014-02-20 2017-12-13 富士フイルム株式会社 Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP6318452B2 (en) * 2015-01-19 2018-05-09 富士フイルム株式会社 Organic thin film transistor and manufacturing method thereof
WO2016147773A1 (en) 2015-03-13 2016-09-22 富士フイルム株式会社 Organic semiconductor film formation composition, organic thin film transistor, electronic paper, and display device
JP6910880B2 (en) * 2016-08-03 2021-07-28 日本化薬株式会社 Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
JP6474467B2 (en) * 2017-07-18 2019-02-27 富士フイルム株式会社 Composition for forming organic semiconductor film of organic transistor, method of forming pattern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103037B (en) * 2005-01-19 2010-10-13 国立大学法人广岛大学 Novel condensed polycyclic aromatic compound and use thereof
JP2008290963A (en) * 2007-05-24 2008-12-04 Nippon Kayaku Co Ltd Method for producing aromatic compound

Also Published As

Publication number Publication date
JP2010258214A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5438363B2 (en) Organic semiconductor material characterized by wide band gap
US7528176B2 (en) Carbonyl-functionalized thiophene compounds and related device structures
KR101128943B1 (en) Dioxypyrrolo-heteroaromatic compounds and organic electronic devices using the same
JP5622585B2 (en) Novel heterocyclic compounds and their use
US20150311448A1 (en) Organic semiconductor material
KR20080096733A (en) New fused ring compound and organic electronic device using the same
EP1767608A1 (en) Tris(thienylphenyl)amine derivatives as organic semiconductors
WO2014156878A1 (en) Organic thin-film transistor
Shan et al. Organic field-effect transistors based on biselenophene derivatives as active layers
WO2012115218A1 (en) Method for producing dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and use thereof
US9793490B2 (en) Organic optoelectronic material and use thereof
KR100868863B1 (en) New fused ring compound and organic electronic device using the same
WO2014119712A1 (en) Organic thin-film transistor, organic semiconductor thin film, and organic semiconductor material
JP5478189B2 (en) Organic transistor with excellent atmospheric stability
JP5335379B2 (en) Organic semiconductor material and organic electronic device using the same
Duan et al. Organic field-effect transistors based on two phenylene–thiophene oligomer derivatives with a biphenyl or fluorene core
JP5314814B2 (en) Organic semiconductor materials featuring thienothiophene skeleton
Yun et al. Side chain engineering of [1] benzothieno [3, 2-b] benzothiophene (BTBT)-based semiconductors for organic field-effect transistors
GB2542346A (en) Anthrathiophene derivatives with transverse solubilising units and their applications as organic semiconductors
JP6420143B2 (en) An organic semiconductor material characterized by a bent thienothiophene skeleton having a thiophene at the end.
Park et al. Organic semiconductor based on asymmetric naphthalene-thiophene molecule for organic thin film transistor
大塚信彦 et al. The Development of an n-Type Organic Semiconductor with Twisted π-Conjugation
GB2544096A (en) Tetracenothiophene derivatives with alkoxy-c-alkyne solubilising units and their applications as organic semiconductors
윤채영 Synthesis and Characterization of Organic Molecules for Organic Thin-Film Transistors.
RAJESHKUMARREDDY Design and Synthesis of Organic Small Molecules for Application of Organic Electronics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5438363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250