JPWO2014104280A1 - Secondary battery control method and control device - Google Patents

Secondary battery control method and control device Download PDF

Info

Publication number
JPWO2014104280A1
JPWO2014104280A1 JP2014554585A JP2014554585A JPWO2014104280A1 JP WO2014104280 A1 JPWO2014104280 A1 JP WO2014104280A1 JP 2014554585 A JP2014554585 A JP 2014554585A JP 2014554585 A JP2014554585 A JP 2014554585A JP WO2014104280 A1 JPWO2014104280 A1 JP WO2014104280A1
Authority
JP
Japan
Prior art keywords
secondary battery
temperature
charging rate
rate
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014554585A
Other languages
Japanese (ja)
Inventor
三好 学
学 三好
合田 信弘
信弘 合田
友哉 佐藤
友哉 佐藤
浩平 間瀬
浩平 間瀬
友邦 阿部
友邦 阿部
晃子 島
晃子 島
希世奈 吉田
希世奈 吉田
昭裕 佐伯
昭裕 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of JPWO2014104280A1 publication Critical patent/JPWO2014104280A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力する二次電池の使用時における負極の劣化を抑制する。二次電池の制御装置は、二次電池の温度を検出する電池温度検出部と、二次電池の充電率を検出する充電率検出部と、電池温度検出部及び充電率検出部の検出結果に基づいて二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって二次電池の充放電を制御し、二次電池の温度が常温範囲にある場合、充電率の最小値を10%に変更し、二次電池の温度が高温の場合、充電率の最大値を90%に変更する制御部とを備えている。Deterioration of the negative electrode during use of a secondary battery that includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode and outputs a voltage of 4.5 V in a state where the charging rate is maximum is suppressed. The control device for the secondary battery includes a battery temperature detection unit that detects the temperature of the secondary battery, a charge rate detection unit that detects the charge rate of the secondary battery, and detection results of the battery temperature detection unit and the charge rate detection unit. The charging rate of the secondary battery is controlled by changing the maximum value and the minimum value of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery, A controller that changes the minimum value of the charging rate to 10% when the temperature of the secondary battery is in the normal temperature range, and changes the maximum value of the charging rate to 90% when the temperature of the secondary battery is high; ing.

Description

本発明は、二次電池の制御方法及び制御装置に係り、詳しくは合金化反応を行う負極を備える二次電池の制御方法及び制御装置に関する。   The present invention relates to a control method and a control device for a secondary battery, and more particularly to a control method and a control device for a secondary battery including a negative electrode that performs an alloying reaction.

二次電池は再充電が可能であり、繰り返し使用されることができるので、電源として広く利用されている。リチウムイオン二次電池の放電電圧は、ニッケル−水素二次電池やニッケル−カドミウム二次電池のそれに比べて高い。しかし、ハイブリッド自動車や電気自動車が本格的に普及するのに伴い、リチウムイオン二次電池の高容量化が望まれている。現在主流のリチウムイオン二次電池では、正極にLiCoO、LiMn、LiNiO等のリチウムイオン酸化物が用いられ、負極にグラファイト等の炭素材料が用いられる。しかし、高容量化のため合金化反応を行う負極の使用が検討されている。炭素材料からなる負極では、リチウムイオンがインターカレーションにより負極内部に侵入することによって、放電が行われる。これに対し、合金化反応を行う負極では、リチウムイオンは負極と合金を形成する。以下、合金化反応を行う負極を合金系負極と称する場合もある。Secondary batteries are widely used as a power source because they can be recharged and used repeatedly. The discharge voltage of a lithium ion secondary battery is higher than that of a nickel-hydrogen secondary battery or a nickel-cadmium secondary battery. However, with the widespread use of hybrid vehicles and electric vehicles, it is desired to increase the capacity of lithium ion secondary batteries. In the current mainstream lithium ion secondary battery, a lithium ion oxide such as LiCoO 2 , LiMn 2 O 4 , or LiNiO 2 is used for the positive electrode, and a carbon material such as graphite is used for the negative electrode. However, the use of a negative electrode that undergoes an alloying reaction has been studied for higher capacity. In a negative electrode made of a carbon material, discharge is performed when lithium ions enter the negative electrode by intercalation. In contrast, in a negative electrode that performs an alloying reaction, lithium ions form an alloy with the negative electrode. Hereinafter, the negative electrode that performs the alloying reaction may be referred to as an alloy-based negative electrode.

高容量の合金系負極としてSi系の負極が検討されている。SiO負極はSi系の負極であり、Si負極のそれに比べて、良好なサイクル特性を有する。なお、SiO負極を形成するSiOは、SiOが不均化することによって形成されたSiとSiOとの混合物であり、正確には、SiO(一酸化ケイ素)単独ではなく、SiO(0<x<2)である。Si-based negative electrodes have been studied as high-capacity alloy-based negative electrodes. The SiO negative electrode is a Si-based negative electrode and has better cycle characteristics than that of the Si negative electrode. Note that SiO forming the SiO negative electrode is a mixture of Si and SiO 2 formed by disproportionation of SiO. To be precise, not SiO (silicon monoxide) alone, but SiO x (0 < x <2).

しかし、放電末期には、SiO負極はLi基準で高電位状態にあるので、SEIが酸化分解する。一方、SiO負極を有するリチウムイオン二次電池を4.5Vの高電圧かつ高温(例えば60℃)で使用しようとすると、正極遷移金属の溶出による負極のSEI崩壊が促進され、サイクル劣化が激しくなる。即ち、低温(例えば25℃)での使用では放電時の影響による劣化が大きく、高温(例えば、60℃)では充電時の高電圧の影響による劣化が大きい。そのため、使用温度を考慮せずに充放電を行うと、サイクル特性が悪くなる。   However, at the end of discharge, since the SiO negative electrode is in a high potential state with respect to Li, SEI undergoes oxidative decomposition. On the other hand, when trying to use a lithium ion secondary battery having a SiO negative electrode at a high voltage of 4.5 V and a high temperature (for example, 60 ° C.), the SEI decay of the negative electrode due to the elution of the positive electrode transition metal is promoted and the cycle deterioration becomes severe. . That is, when used at a low temperature (for example, 25 ° C.), the deterioration due to the influence at the time of discharging is large, and at a high temperature (for example, 60 ° C.), the deterioration due to the high voltage at the time of charging is large. Therefore, if charging / discharging is performed without considering the operating temperature, the cycle characteristics deteriorate.

従来では、二次電池の寿命を犠牲にすることなく、平均充電率を高めて高出力特性を得ることができる電気自動車用の電池管理装置が提案されている(特許文献1参照)。特許文献1の電池管理装置は、電気自動車の駆動源となる二次電池と、該二次電池によって駆動されるモータとを備える。この電池管理装置は、二次電池の充放電を繰り返しながら、二次電池の充電率が所定の目標充電率になるように二次電池を制御する。この電池管理装置は、二次電池の温度(電池温度)を検出する電池温度検出手段を備え、その電池温度が高いときほど前記目標充電率を低下させる。また、この電池管理装置は、充電率が所定の上限及び下限の範囲内になるように二次電池を制御している場合には、電池温度が高いときほど前記上限充電率を低下させる。   Conventionally, there has been proposed a battery management device for an electric vehicle that can increase the average charging rate and obtain high output characteristics without sacrificing the life of the secondary battery (see Patent Document 1). The battery management device of Patent Document 1 includes a secondary battery that is a drive source of an electric vehicle, and a motor that is driven by the secondary battery. This battery management device controls the secondary battery so that the charging rate of the secondary battery becomes a predetermined target charging rate while repeating charging and discharging of the secondary battery. The battery management device includes battery temperature detection means for detecting the temperature of the secondary battery (battery temperature), and decreases the target charging rate as the battery temperature increases. In addition, when the secondary battery is controlled so that the charging rate is within the predetermined upper and lower limits, the battery management device decreases the upper limit charging rate as the battery temperature increases.

特開2001−292533号公報JP 2001-292533 A

特許文献1では、二次電池の温度が高くなることを電池温度検出手段が検出すると、電池管理装置は二次電池の目標充電率あるいは上限充電率を低下させる。従って、二次電池は放電傾向となって、平均充電率は低下するから、二次電池の寿命特性は改善される。一方、平均充電率は低下するものの、電池温度が高いから、出力密度は大きく、必要な高出力を確保することができる。   In Patent Document 1, when the battery temperature detecting means detects that the temperature of the secondary battery is increased, the battery management device decreases the target charging rate or the upper limit charging rate of the secondary battery. Therefore, the secondary battery tends to discharge, and the average charging rate decreases, so the life characteristics of the secondary battery are improved. On the other hand, although the average charging rate is lowered, the battery temperature is high, so that the output density is large and the necessary high output can be ensured.

ところが、特許文献1においては、充電率が目標充電率の範囲内になるように二次電池の充放電を制御する場合、放電はモータを駆動することによって行われることが前提となっている。そのため、二次電池の充電後、電気自動車の停止中に環境温度の影響により二次電池の温度が上昇することによって充電率が目標充電率を超える場合、あるいは二次電池の温度の上昇あるいは低下によって充電率が所定の上限及び下限の範囲を逸脱する場合には、前記モータの駆動の開始からしばらくの期間では、不適切な条件で二次電池が放電される。その結果、二次電池の劣化が促進される。   However, in patent document 1, when charging / discharging of a secondary battery is controlled so that a charging rate may be in the range of a target charging rate, it is a premise that discharging is performed by driving a motor. Therefore, after charging the secondary battery, if the charging rate exceeds the target charging rate due to the temperature of the secondary battery rising due to the influence of the environmental temperature while the electric vehicle is stopped, or the temperature of the secondary battery increases or decreases When the charging rate deviates from the predetermined upper and lower limits, the secondary battery is discharged under an inappropriate condition for a while from the start of the motor driving. As a result, the deterioration of the secondary battery is promoted.

本発明の目的は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力する二次電池の使用時における負極の劣化を抑制することができる二次電池の制御方法及び制御装置を提供することにある。   An object of the present invention is to provide a negative electrode for performing an alloying reaction and a lithium transition metal oxide positive electrode, and the deterioration of the negative electrode during use of a secondary battery that outputs a voltage of 4.5 V when the charging rate is maximum. The present invention provides a control method and a control device for a secondary battery that can suppress the battery.

上記課題を解決する二次電池の制御方法は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力する二次電池の制御方法であって、前記二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御し、前記二次電池の温度が高温の場合、前記充電率の最大値を90%に変更する。ここで、「合金化反応を行う負極」とは、炭素材料からなる負極のようにリチウムイオンがインターカレーションにより負極内部に侵入することによって放電を行うのではなく、リチウムイオンと合金を形成する負極を意味する。   A secondary battery control method that solves the above problem includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V in a state where the charging rate is maximum. The secondary battery is controlled by changing the maximum value and the minimum value of the charge rate so that the charge rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. When the temperature of the secondary battery is high, the maximum value of the charging rate is changed to 90%. Here, the “negative electrode that performs an alloying reaction” means that lithium ions do not discharge when lithium ions enter into the negative electrode by intercalation like a negative electrode made of a carbon material, but forms an alloy with lithium ions. Means negative electrode.

この構成によれば、二次電池の充電率が予め二次電池の温度に応じて設定された範囲を逸脱しないように充電率(SOC)の最大値及び最小値を変更して充放電を制御し、かつ二次電池の温度が高温の場合は充電率が90%を超えないように充放電を制御する。二次電池の充電率が90%を超えないように制御を行う方法には、例えば、二次電池の温度調整を行う方法や、二次電池の温度調整を行わずに放電用の負荷を設けておき、負荷によって電池の電力を使用する方法や、温度調整及び負荷による電力の使用を併用する方法がある。二次電池の温度が高温の場合は、二次電池の充電率(SOC)が90%を超えないように制御を行うため、二次電池の使用温度が高温(例えば、60℃)において、二次電池の使用時における負極の劣化を抑制することができる。したがって、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、最大の充電率において4.5Vの電圧を出力する二次電池の使用時における負極の劣化を抑制することができる。   According to this configuration, charging and discharging are controlled by changing the maximum value and the minimum value of the charging rate (SOC) so that the charging rate of the secondary battery does not deviate from the range set in advance according to the temperature of the secondary battery. However, when the temperature of the secondary battery is high, charging / discharging is controlled so that the charging rate does not exceed 90%. Examples of the method for performing control so that the charging rate of the secondary battery does not exceed 90% include, for example, a method for adjusting the temperature of the secondary battery and a load for discharging without adjusting the temperature of the secondary battery. There are a method of using the power of the battery depending on the load, and a method of using the temperature control and the power usage of the load in combination. When the temperature of the secondary battery is high, control is performed so that the charging rate (SOC) of the secondary battery does not exceed 90%. Therefore, when the operating temperature of the secondary battery is high (for example, 60 ° C.) Deterioration of the negative electrode during use of the secondary battery can be suppressed. Therefore, it is possible to suppress deterioration of the negative electrode during use of a secondary battery that includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode and outputs a voltage of 4.5 V at the maximum charging rate.

前記二次電池の温度が常温(25℃±5℃、すなわち、20℃以上30℃以下の範囲)の場合、充電率の最小値を10%に変更し、前記常温時の前記充電率の最大値は100%であることが好ましい。この構成によれば、二次電池の温度が常温、高温に拘わらず充電率(SOC)が90%を超えないように制御を行う場合に比べて、二次電池の充放電量が大きくなり、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。   When the temperature of the secondary battery is normal temperature (25 ° C. ± 5 ° C., that is, a range of 20 ° C. or higher and 30 ° C. or lower), the minimum charging rate is changed to 10%, and the maximum charging rate at the normal temperature is changed. The value is preferably 100%. According to this configuration, the charge / discharge amount of the secondary battery is larger than the case where control is performed so that the charging rate (SOC) does not exceed 90% regardless of whether the temperature of the secondary battery is normal temperature or high temperature. When a secondary battery is used as a power source for a vehicle, the travel distance of the vehicle can be increased.

前記高温とは55℃以上であり、前記高温時の前記充電率の最小値は0%であることが好ましい。この構成によれば、高温時にも常温時と同様に充電率が10%以上で使用される場合に比べて、二次電池の充放電量が大きくなり、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。   The high temperature is 55 ° C. or higher, and the minimum value of the charging rate at the high temperature is preferably 0%. According to this configuration, the charge / discharge amount of the secondary battery becomes larger at high temperatures than when used at a charging rate of 10% or more as in the normal temperature, and the secondary battery is used as a power source for the vehicle. In this case, the travel distance of the vehicle can be increased.

前記リチウム遷移金属酸化物正極は、ニッケル酸リチウム、コバルト酸リチウム及びマンガン酸リチウムの混合物を主成分とするのが好ましい。この構成によれば、リチウムイオン二次電池の正極を構成する遷移金属酸化物として実績のあるリチウム遷移金属酸化物の混合割合を調整することで適切なリチウム遷移金属酸化物正極を得ることができる。   The lithium transition metal oxide positive electrode is preferably composed mainly of a mixture of lithium nickelate, lithium cobaltate and lithium manganate. According to this configuration, an appropriate lithium transition metal oxide positive electrode can be obtained by adjusting the mixing ratio of a lithium transition metal oxide that has a proven track record as a transition metal oxide constituting the positive electrode of a lithium ion secondary battery. .

上記課題を解決する二次電池の制御装置は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備える二次電池の制御装置である。前記制御装置は、前記二次電池の温度を検出する電池温度検出部と、前記二次電池の充電率を検出する充電率検出部と、前記電池温度検出部及び前記充電率検出部の検出結果に基づいて前記二次電池の充電率が予め温度に応じて設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御する制御部とを備える。前記制御部は、前記制御部は、前記二次電池の温度が常温範囲である第1の温度範囲にある場合、前記充電率の最小値を10%に変更し、前記二次電池の温度が第1の温度範囲よりも高い第2の温度範囲にある場合、前記充電率の最大値を90%に変更する。   A control device for a secondary battery that solves the above problem is a control device for a secondary battery that includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode. The control device includes a battery temperature detection unit that detects a temperature of the secondary battery, a charge rate detection unit that detects a charge rate of the secondary battery, and detection results of the battery temperature detection unit and the charge rate detection unit. A control unit that controls charging / discharging of the secondary battery by changing a maximum value and a minimum value of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to temperature based on With. When the temperature of the secondary battery is in a first temperature range that is a normal temperature range, the control unit changes the minimum value of the charging rate to 10%, and the temperature of the secondary battery is When it is in the second temperature range higher than the first temperature range, the maximum value of the charging rate is changed to 90%.

この構成によれば、電池温度検出部により二次電池の温度を検出し、充電率検出部により二次電池の充電率を検出する。制御部は、電池温度検出部及び充電率検出部の検出結果に基づいて二次電池の充電率が予め温度に応じて設定された範囲を逸脱しないように充電率の最大値及び最小値を変更して充放電を制御し、かつ前記二次電池の温度が常温の場合、充電率が10%以上となるように充放電を制御し、前記二次電池の温度が高温の場合、充電率が90%を超えないように充放電を制御する。充電率が90%を超えないように制御を行う方法には、例えば、二次電池の温度調整を行う温度調整部を制御する方法や、放電用の負荷に電力を供給する放電回路で放電を行う方法や、両者を併用する方法がある。したがって、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備える二次電池の使用時における負極の劣化を抑制することができる。   According to this configuration, the battery temperature detector detects the temperature of the secondary battery, and the charge rate detector detects the charge rate of the secondary battery. The control unit changes the maximum value and the minimum value of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature based on the detection results of the battery temperature detecting unit and the charging rate detecting unit. Charge / discharge is controlled, and when the temperature of the secondary battery is normal temperature, the charge / discharge is controlled so that the charge rate is 10% or more. When the temperature of the secondary battery is high, the charge rate is Charge / discharge is controlled so as not to exceed 90%. Examples of the method of controlling the charging rate so as not to exceed 90% include the method of controlling the temperature adjusting unit that adjusts the temperature of the secondary battery and the discharging circuit that supplies power to the discharging load. There are a method of performing and a method of using both together. Therefore, it is possible to suppress the deterioration of the negative electrode during use of the secondary battery including the negative electrode that performs the alloying reaction and the lithium transition metal oxide positive electrode.

一実施形態を示すブロック図。The block diagram which shows one Embodiment. 二次電池の使用電圧範囲とSOCの範囲との関係を示す図。The figure which shows the relationship between the working voltage range of a secondary battery, and the range of SOC. 25℃における二次電池の使用条件毎の放電容量維持率とサイクル回数との関係を示す図。The figure which shows the relationship between the discharge capacity maintenance factor for every use condition of a secondary battery in 25 degreeC, and the number of cycles. 60℃における二次電池の使用条件毎の放電容量維持率とサイクル回数との関係を示す図。The figure which shows the relationship between the discharge capacity maintenance factor for every use condition of a secondary battery in 60 degreeC, and the frequency | count of a cycle. 二次電池の使用温度とSOCの範囲との関係を示す図。The figure which shows the relationship between the operating temperature of a secondary battery, and the range of SOC.

以下、ハイブリッドタイプの車両にバッテリとして搭載されたリチウムイオン二次電池の制御方法及び制御装置の一実施形態を図1〜図5にしたがって説明する。
ハイブリッドタイプの車両は、図1に示すように、内燃機関(以下、エンジン)11、発電機12、バッテリとしての二次電池モジュール13及び走行モータ14を備えている。二次電池モジュール13は、互いに接続された複数のリチウムイオン二次電池から構成される。各リチウムイオン二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力する。ここで、「合金化反応を行う負極」とは、リチウムイオンと合金を形成する負極を意味する。発電機12及び走行モータ14はパワーコントロールユニット(PCU)15を介して二次電池モジュール13に接続されている。PCU15は、インバータ、昇圧コンバータ及び制御装置を備える。PCU15は、車両全体を制御するECU16からの指令に基づいて、発電機12において発電された電力を二次電池モジュール13に充電したり、走行モータ14に供給したりする。
Hereinafter, an embodiment of a control method and a control device for a lithium ion secondary battery mounted as a battery in a hybrid vehicle will be described with reference to FIGS.
As shown in FIG. 1, the hybrid type vehicle includes an internal combustion engine (hereinafter referred to as an engine) 11, a generator 12, a secondary battery module 13 as a battery, and a travel motor 14. The secondary battery module 13 is composed of a plurality of lithium ion secondary batteries connected to each other. Each lithium ion secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V in a state where the charging rate is maximum. Here, the “negative electrode that performs an alloying reaction” means a negative electrode that forms an alloy with lithium ions. The generator 12 and the traveling motor 14 are connected to the secondary battery module 13 via a power control unit (PCU) 15. The PCU 15 includes an inverter, a boost converter, and a control device. The PCU 15 charges the secondary battery module 13 with the electric power generated by the generator 12 or supplies it to the traveling motor 14 based on a command from the ECU 16 that controls the entire vehicle.

ECU16は、エンジン11、PCU15及び二次電池制御装置17と電気的に接続されている。ECU16は、エンジン11の出力をできるだけ一定とするようにエンジン11のスロットルを制御すると共に、PCU15を介して走行モータ14への電力供給及び二次電池モジュール13の充放電を制御する。ECU16は、走行モータ14が必要とする電力を供給するようにPCU15に指令信号を送る。発電機12によって発電された電力が優先的に供給され、足りない分の電力は二次電池モジュール13から供給される。その結果、発電機12の発電電力が走行モータ14の要求電力を上回る場合、ECU16はPCU15に充電信号を送って二次電池モジュール13に電力を送り込ませる。逆に、発電電力が走行モータ14の要求電力を下回る場合、ECU16はPCU15に放電信号を送って二次電池モジュール13から電力を取り出す。   The ECU 16 is electrically connected to the engine 11, the PCU 15, and the secondary battery control device 17. The ECU 16 controls the throttle of the engine 11 so as to make the output of the engine 11 as constant as possible, and also controls power supply to the travel motor 14 and charge / discharge of the secondary battery module 13 via the PCU 15. The ECU 16 sends a command signal to the PCU 15 so as to supply electric power required by the traveling motor 14. The electric power generated by the generator 12 is preferentially supplied, and the insufficient electric power is supplied from the secondary battery module 13. As a result, when the generated power of the generator 12 exceeds the required power of the traveling motor 14, the ECU 16 sends a charge signal to the PCU 15 to send power to the secondary battery module 13. On the contrary, when the generated power is lower than the required power of the traveling motor 14, the ECU 16 sends a discharge signal to the PCU 15 to take out the power from the secondary battery module 13.

二次電池制御装置17は、二次電池モジュール13の温度、即ち二次電池の温度を検出する電池温度検出手段(電池温度検出部)18と、二次電池モジュール13の充電率(SOC)、即ち二次電池の充電率を検出する充電率検出手段(充電率検出部)19との検出結果に基づいて、二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって二次電池の充放電を制御する制御手段(制御部)を構成する。二次電池制御装置17は、二次電池の温度が高温の場合、充電率が90%を超えないように、すなわち、充電率の最大値が90%であるように、二次電池の充放電を制御する。二次電池の充電率が90%を超えないように二次電池の充放電を制御するには、例えば、二次電池の温度を調整する手法が用いられる。これに代えて、二次電池に放電用の負荷及び該負荷に電力を供給する放電回路が設けられ、該負荷によって電池の電力が使用されてもよい。さらにまた、二次電池の温度を調整する手法と負荷による電力の使用とが併用されてもよい。二次電池の温度が高温(例えば、60℃)の場合、二次電池の充電率(SOC)が90%を超えないように二次電池の充放電を制御するので、二次電池の使用温度が高温である場合であっても、二次電池の使用時における負極の劣化を抑制することができる。高温とは、例えば、55℃以上を意味する。詳述すると、二次電池モジュール13は、電池温度検出手段18と、二次電池モジュール13の電圧を検出する電圧検出手段(電圧検出部)19aと、二次電池モジュール13への電流の流出入を検出する電流検出手段(電流検出部)19bとを備える。   The secondary battery control device 17 includes a temperature of the secondary battery module 13, that is, a battery temperature detection means (battery temperature detection unit) 18 for detecting the temperature of the secondary battery, a charging rate (SOC) of the secondary battery module 13, That is, a range in which the charging rate of the secondary battery is set in advance according to the temperature of the secondary battery based on the detection result with the charging rate detecting means (charging rate detecting unit) 19 for detecting the charging rate of the secondary battery. Control means (control unit) for controlling charging / discharging of the secondary battery by changing the maximum value and the minimum value of the charging rate so as not to deviate. When the temperature of the secondary battery is high, the secondary battery control device 17 charges and discharges the secondary battery so that the charging rate does not exceed 90%, that is, the maximum value of the charging rate is 90%. To control. In order to control charging / discharging of the secondary battery so that the charging rate of the secondary battery does not exceed 90%, for example, a method of adjusting the temperature of the secondary battery is used. Instead, the secondary battery may be provided with a discharge load and a discharge circuit for supplying power to the load, and the power of the battery may be used by the load. Furthermore, the method of adjusting the temperature of the secondary battery and the use of power by the load may be used in combination. When the temperature of the secondary battery is high (for example, 60 ° C.), the charge / discharge of the secondary battery is controlled so that the charging rate (SOC) of the secondary battery does not exceed 90%. Even when the temperature is high, deterioration of the negative electrode during use of the secondary battery can be suppressed. High temperature means 55 degreeC or more, for example. More specifically, the secondary battery module 13 includes a battery temperature detection unit 18, a voltage detection unit (voltage detection unit) 19 a that detects the voltage of the secondary battery module 13, and a current flow into and out of the secondary battery module 13. Current detection means (current detection unit) 19b.

二次電池制御装置17は、電圧−充電率の対照テーブルをメモリに記憶している。二次電池制御装置17は、電圧検出手段19aによって検出された二次電池モジュール13の開放電圧Voに対応する充電率を電圧−充電率対照テーブルから読みとることによって、充電率の初期値を決定する。なお、このとき二次電池モジュール13の温度による誤差を生じさせないように、二次電池モジュール13の温度に応じた複数種の電圧−充電率対照テーブルが用意されている。二次電池制御装置17は、電池温度検出手段18によって検出される二次電池モジュール13の温度に応じたテーブルを利用する。電圧検出手段19aは、二次電池モジュール13の電圧を検出し、電流検出手段19bは二次電池モジュール13への電流の流出入を検出する。車両の走行に伴い変化する二次電池モジュール13の充電率、即ち二次電池の充電率は、二次電池モジュール13の電圧と、二次電池モジュール13への電力の流出入とに基づき、充電率の初期値から算出される二次電池の容量を加減することによって求められる。この実施形態では、電圧検出手段19a及び電流検出手段19bが充電率検出手段19を構成する。   The secondary battery control device 17 stores a voltage-charge rate comparison table in a memory. The secondary battery control device 17 determines the initial value of the charging rate by reading the charging rate corresponding to the open voltage Vo of the secondary battery module 13 detected by the voltage detecting means 19a from the voltage-charging rate comparison table. . At this time, a plurality of types of voltage-charge rate comparison tables corresponding to the temperature of the secondary battery module 13 are prepared so as not to cause an error due to the temperature of the secondary battery module 13. The secondary battery control device 17 uses a table corresponding to the temperature of the secondary battery module 13 detected by the battery temperature detection means 18. The voltage detection means 19a detects the voltage of the secondary battery module 13, and the current detection means 19b detects the flow of current into and out of the secondary battery module 13. The charging rate of the secondary battery module 13 that changes as the vehicle travels, that is, the charging rate of the secondary battery, is based on the voltage of the secondary battery module 13 and the flow of power to and from the secondary battery module 13. It is obtained by adjusting the capacity of the secondary battery calculated from the initial value of the rate. In this embodiment, the voltage detection means 19 a and the current detection means 19 b constitute the charging rate detection means 19.

二次電池モジュール13は、温度調整手段(温度調整部)20として熱電変換素子を備える。該熱電変換素子は、通電の極性に応じて相反する作用、すなわち、放熱作用と吸熱作用とのいずれかを示す面を有する、熱電変換素子を備える。温度調整手段20にはPCU15を介して二次電池モジュール13の電力が供給される。温度調整手段20は、通電方向を変更することによって、二次電池モジュール13を冷却するためにも加熱するためにも使用可能である。   The secondary battery module 13 includes a thermoelectric conversion element as the temperature adjusting means (temperature adjusting unit) 20. The thermoelectric conversion element includes a thermoelectric conversion element having a surface that exhibits an action that is in conflict with the polarity of energization, that is, a heat dissipation action or an endothermic action. The power of the secondary battery module 13 is supplied to the temperature adjusting means 20 via the PCU 15. The temperature adjusting means 20 can be used for cooling and heating the secondary battery module 13 by changing the energization direction.

ECU16は、二次電池モジュール13の温度及び充電率の情報を二次電池制御装置17から入手し、二次電池モジュール13(二次電池)の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって二次電池の充放電を制御する制御手段を構成する。ECU16は、二次電池の温度が高温の場合、充電率が90%を超えないように、すなわち、充電率の最大値が90%であるように、PCU15を介して二次電池モジュール13の充放電と、走行モータ14及び温度調整手段20への電力供給とを制御する。PCU15、ECU16及び二次電池制御装置17は、電池温度検出手段18及び充電率検出手段19の検出結果に基づいて、二次電池モジュール13(二次電池)の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって二次電池の充放電を制御する制御手段を構成する。二次電池制御装置17は、二次電池の温度が高温の場合、充電率が90%を超えないように、すなわち、充電率の最大値が90%であるように、二次電池の充放電を制御する。   The ECU 16 obtains information on the temperature and charging rate of the secondary battery module 13 from the secondary battery control device 17, and the charging rate of the secondary battery module 13 (secondary battery) is preset according to the temperature of the secondary battery. Control means for controlling charging / discharging of the secondary battery is configured by changing the maximum value and the minimum value of the charging rate so as not to deviate from the specified range. The ECU 16 charges the secondary battery module 13 via the PCU 15 so that the charging rate does not exceed 90% when the temperature of the secondary battery is high, that is, the maximum value of the charging rate is 90%. It controls the discharge and the power supply to the traveling motor 14 and the temperature adjusting means 20. The PCU 15, the ECU 16 and the secondary battery control device 17, based on the detection results of the battery temperature detection means 18 and the charge rate detection means 19, change the charging rate of the secondary battery module 13 (secondary battery) to the temperature of the secondary battery. Accordingly, a control unit is configured to control charging / discharging of the secondary battery by changing the maximum value and the minimum value of the charging rate so as not to deviate from the preset range. When the temperature of the secondary battery is high, the secondary battery control device 17 charges and discharges the secondary battery so that the charging rate does not exceed 90%, that is, the maximum value of the charging rate is 90%. To control.

二次電池モジュール13を構成するリチウムイオン二次電池の正極、負極及び電解液の構成は次の通りである。
正極:LiNi0.5Co0.2Mn0.3/AB/PVdF(94/3/3)
負極:SiO/黒鉛/AB/バインダ(32/50/8/10)
電解液:1M LiPF FEC/EC/EMC/DMC(4/26/30/40)
正極:12mg/cm、負極:3.3mg/cm
ここで、ABはアセチレンブラック、PVdFはポリフッ化ビニリデンである。
The structure of the positive electrode of the lithium ion secondary battery which comprises the secondary battery module 13, a negative electrode, and electrolyte solution is as follows.
Positive electrode: LiNi 0.5 Co 0.2 Mn 0.3 O 2 / AB / PVdF (94/3/3)
Negative electrode: SiO / graphite / AB / binder (32/50/8/10)
Electrolyte: 1M LiPF 6 FEC / EC / EMC / DMC (4/26/30/40)
Positive electrode: 12 mg / cm 2 , Negative electrode: 3.3 mg / cm 2
Here, AB is acetylene black and PVdF is polyvinylidene fluoride.

次に二次電池モジュール13(二次電池)の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更して充放電を制御し、かつ二次電池の温度が高温の場合には充電率が90%を超えないように二次電池の充放電を制御する根拠を説明する。   Next, charging and discharging are controlled by changing the maximum and minimum values of the charging rate so that the charging rate of the secondary battery module 13 (secondary battery) does not deviate from a preset range according to the temperature of the secondary battery. In addition, the basis for controlling charging / discharging of the secondary battery so that the charging rate does not exceed 90% when the temperature of the secondary battery is high will be described.

二次電池の温度が25℃及び60℃であるときにおいて、1C定電流充電、定電流放電で二次電池の充放電を行った。図2に示す4通りの条件A〜Dで充放電を繰り返し、各サイクルの放電後の容量維持率を求めた。二次電池の温度が25℃及び60℃であるときの放電容量維持率とサイクル数との関係を図3及び図4にそれぞれ示す。   When the temperature of the secondary battery was 25 ° C. and 60 ° C., the secondary battery was charged and discharged by 1C constant current charging and constant current discharging. Charging / discharging was repeated under the four conditions A to D shown in FIG. 2, and the capacity retention rate after discharge in each cycle was determined. The relationship between the discharge capacity retention rate and the number of cycles when the temperature of the secondary battery is 25 ° C. and 60 ° C. is shown in FIGS. 3 and 4, respectively.

図2において、条件Aは、二次電池の充放電が、0〜100%の範囲の充電率(SOC)、2.50〜4.50Vの範囲の電圧で行われたことを示す。同様に、条件Bは、10〜90%の範囲の充電率、3.26〜4.32Vの範囲の電圧に相当する。条件Cは、10〜100%の範囲の充電率、3.26〜4.50Vの範囲の電圧に相当する。条件Dは、0〜90%の範囲の充電率、2.50〜4.32Vの範囲の電圧に相当する。図3及び図4においては、放電容量維持率とサイクル数との関係を図2の条件A,B,C,Dに対応した線種により示している。なお、図3及び図4では、放電容量維持率(縦軸)をサイクル数の平方根(横軸)に対して示している。これは、放電容量維持率とサイクル数の平方根との関係がほぼ直線的であるという経験則に基づいている。   In FIG. 2, Condition A indicates that the secondary battery was charged and discharged at a charge rate (SOC) in the range of 0 to 100% and a voltage in the range of 2.50 to 4.50 V. Similarly, the condition B corresponds to a charging rate in the range of 10 to 90% and a voltage in the range of 3.26 to 4.32V. Condition C corresponds to a charging rate in the range of 10 to 100% and a voltage in the range of 3.26 to 4.50V. Condition D corresponds to a charging rate in the range of 0 to 90% and a voltage in the range of 2.50 to 4.32V. 3 and 4, the relationship between the discharge capacity maintenance rate and the number of cycles is indicated by line types corresponding to the conditions A, B, C, and D in FIG. 3 and 4, the discharge capacity retention rate (vertical axis) is shown with respect to the square root (horizontal axis) of the cycle number. This is based on an empirical rule that the relationship between the discharge capacity retention rate and the square root of the number of cycles is almost linear.

図2〜図4から、使用SOC範囲が同じ条件では、25℃における放電容量維持率(図3)は60℃における放電容量維持率(図4)と比べて良いことが分かる。また、SiO負極を用いて4.5Vまで使用した場合、25℃では、条件Cのサイクル特性が条件Dのそれよりも良く、60℃では、条件Dのサイクル特性が条件Cのそれよりも良い。このことから、25℃ではSOC=0〜10%の領域を使うと劣化が加速するが、60℃ではSOC=90〜100%の領域を使うと劣化が加速することが分かる。そのため、最大充電率と最小充電率との差が90%である場合、25℃ではSOC=10〜100%、60℃ではSOC=0〜90%のSOC範囲を使用するように制御することによって、劣化が効果的に抑制される。なお、図4では、60℃において条件Cの放電容量維持率が条件Dのそれより若干高くなっている部分もある。しかしながら、高温(55℃以上)では、正極から溶出した遷移金属が負極のSEIを攻撃することにより負極が劣化することが分かっている。したがって、サイクル数が図4に示したサイクル数の上限より増加する場合、条件Dの放電容量維持率が条件Cのそれより高くなり、両条件の間の差が顕著になると考えられる。   2 to 4, it can be seen that the discharge capacity retention rate at 25 ° C. (FIG. 3) is better than the discharge capacity retention rate at 60 ° C. (FIG. 4) under the same SOC range. In addition, when the SiO negative electrode is used up to 4.5 V, the cycle characteristic of condition C is better than that of condition D at 25 ° C., and the cycle characteristic of condition D is better than that of condition C at 60 ° C. . From this, it can be seen that degradation is accelerated when the SOC = 0 to 10% region is used at 25 ° C., but degradation is accelerated at 60 ° C. when the SOC = 90 to 100% region is used. Therefore, when the difference between the maximum charging rate and the minimum charging rate is 90%, by controlling to use the SOC range of SOC = 10 to 100% at 25 ° C. and SOC = 0 to 90% at 60 ° C. Degradation is effectively suppressed. In FIG. 4, there is a portion where the discharge capacity retention rate under condition C is slightly higher than that under condition D at 60 ° C. However, it has been found that at a high temperature (55 ° C. or higher), the transition metal eluted from the positive electrode attacks the SEI of the negative electrode, causing the negative electrode to deteriorate. Therefore, when the number of cycles increases from the upper limit of the number of cycles shown in FIG. 4, the discharge capacity maintenance rate of condition D is higher than that of condition C, and the difference between the two conditions is considered to be significant.

また、二次電池を使用しない場合にも環境温度により二次電池の温度が上昇することがある。仮に二次電池を25℃でSOC=100%まで充電した後、そのまま二次電池を使用せずに環境温度により二次電池の温度が上昇する場合、温度の上昇とともにSOC=90%まで放電させるよう二次電池を制御するか、SOC=100%まで達した場合、温度調整手段20により二次電池の温度が25℃以上に上がらないように二次電池を制御することによって、劣化を効果的に抑制できる。   Even when the secondary battery is not used, the temperature of the secondary battery may increase due to the environmental temperature. If the secondary battery is charged to SOC = 100% at 25 ° C. and then the secondary battery temperature rises due to the environmental temperature without using the secondary battery, the battery is discharged to SOC = 90% as the temperature rises. If the secondary battery is controlled or the SOC reaches 100%, the temperature adjustment means 20 controls the secondary battery so that the temperature of the secondary battery does not rise to 25 ° C. or more. Can be suppressed.

さらに、仮に二次電池を60℃でSOCが10%未満になるまで放電し、そのまま二次電池の使用を停止した場合、二次電池の温度が低下すると劣化が加速する。SOCが10%未満になった場合、二次電池の充電が必要であることを表示してもよい。   Furthermore, if the secondary battery is discharged at 60 ° C. until the SOC becomes less than 10% and the use of the secondary battery is stopped as it is, the deterioration is accelerated when the temperature of the secondary battery is lowered. When the SOC becomes less than 10%, it may be displayed that the secondary battery needs to be charged.

次に前記の二次電池の制御装置の作用、即ち該制御装置による二次電池の制御方法について説明する。
ECU16は、二次電池制御装置17から二次電池モジュール13の温度及び充電率の情報を入手し、二次電池モジュール13の二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更して充放電を制御する。ECU16は、二次電池の温度が高温である場合、充電率が90%を超えないように、PCU15を介して二次電池モジュール13の充放電、走行モータ14及び温度調整手段20への電力供給を制御する。
Next, the operation of the secondary battery control device, that is, the control method of the secondary battery by the control device will be described.
The ECU 16 obtains information on the temperature and charging rate of the secondary battery module 13 from the secondary battery control device 17, and the charging rate of the secondary battery of the secondary battery module 13 is preset according to the temperature of the secondary battery. The charging and discharging are controlled by changing the maximum value and the minimum value of the charging rate so as not to deviate from the specified range. When the temperature of the secondary battery is high, the ECU 16 charges and discharges the secondary battery module 13 and supplies power to the traveling motor 14 and the temperature adjusting means 20 via the PCU 15 so that the charging rate does not exceed 90%. To control.

ECU16は、図5に示すように、二次電池モジュール13の温度に応じて充電率の上限、下限またはその両方を変更する。車両の場合、ΔSOC(充放電量)がその車両の走行距離に影響するため、SOCの範囲は広い方が良い。図2〜図4の結果から、この実施形態では、ECU16は二次電池の温度に応じて、SOC領域を常温ではSOC=10〜100%の範囲とし、高温ではSOC=0〜90%の範囲とするように制御する。ここで、常温とは、20℃以上30℃以下(すなわち、25℃±5℃)を意味する。高温とは、例えば、60℃である。   As shown in FIG. 5, the ECU 16 changes the upper limit, the lower limit, or both of the charging rate according to the temperature of the secondary battery module 13. In the case of a vehicle, ΔSOC (charge / discharge amount) affects the travel distance of the vehicle, so a wider SOC range is better. From the results of FIGS. 2 to 4, in this embodiment, according to the temperature of the secondary battery, the ECU 16 sets the SOC region in the range of SOC = 10 to 100% at normal temperature and the range of SOC = 0 to 90% at high temperature. Control to Here, normal temperature means 20 ° C. or higher and 30 ° C. or lower (that is, 25 ° C. ± 5 ° C.). The high temperature is, for example, 60 ° C.

ECU16は、二次電池モジュール13がその温度における最大充電率まで充電された状態で、車両の停止中に環境温度により二次電池モジュール13の温度が上昇する場合、二次電池モジュール13の電力を温度調整手段20に使用させるようにPCU15に制御指令を送る。その結果、二次電池モジュール13の温度が上昇しても、二次電池モジュール13のSOCが、当該温度におけるSOCの上限値を超えることを防止できる。   When the temperature of the secondary battery module 13 rises due to the environmental temperature while the vehicle is stopped while the secondary battery module 13 is charged to the maximum charging rate at that temperature, the ECU 16 uses the power of the secondary battery module 13. A control command is sent to the PCU 15 to be used by the temperature adjusting means 20. As a result, even if the temperature of the secondary battery module 13 rises, the SOC of the secondary battery module 13 can be prevented from exceeding the upper limit value of the SOC at the temperature.

この実施形態によれば、以下に示す効果を得ることができる。
(1)二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、最大の充電率(SOC)において4.5Vの電圧を出力する。二次電池の制御方法では、二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって、二次電池の充放電を制御する。二次電池の温度が高温の場合、充電率の最大値を90%とするように充放電を制御する。したがって、前記二次電池の使用時における負極の劣化を抑制することができる。
According to this embodiment, the following effects can be obtained.
(1) The secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V at a maximum charging rate (SOC). In the secondary battery control method, the secondary battery is changed by changing the maximum and minimum values of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. Controls charging and discharging of When the temperature of the secondary battery is high, charging / discharging is controlled so that the maximum value of the charging rate is 90%. Therefore, deterioration of the negative electrode during use of the secondary battery can be suppressed.

(2)二次電池の温度が常温(25℃±5℃)である場合、充電率の最小値を10%とし、充電率の最大値を100%とするように充放電を制御する。したがって、二次電池の温度が常温であるときも高温であるときも充電率(SOC)が90%を超えないように充電率を制御する場合に比べて、二次電池の充放電量を大きくすることができる。そのため、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。   (2) When the temperature of the secondary battery is normal temperature (25 ° C. ± 5 ° C.), charge / discharge is controlled so that the minimum value of the charging rate is 10% and the maximum value of the charging rate is 100%. Therefore, the charging / discharging amount of the secondary battery is larger than when the charging rate is controlled so that the charging rate (SOC) does not exceed 90% when the temperature of the secondary battery is normal or high. can do. Therefore, when the secondary battery is used as a power source for the vehicle, the travel distance of the vehicle can be increased.

(3)高温とは55℃以上であり、高温時の充電率の最小値は0%である。したがって、高温時にも常温時と同様に10%以上の充電率で二次電池が使用される場合に比べて、二次電池の充放電量を大きくすることができる。そのため、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。   (3) High temperature is 55 ° C. or higher, and the minimum charging rate at high temperature is 0%. Therefore, the amount of charge / discharge of the secondary battery can be increased even at a high temperature as compared with the case where the secondary battery is used at a charging rate of 10% or more as at the normal temperature. Therefore, when the secondary battery is used as a power source for the vehicle, the travel distance of the vehicle can be increased.

(4)二次電池のリチウム遷移金属酸化物正極は、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムの混合物を主成分とする。換言すると、二次電池のリチウム遷移金属酸化物正極は、主としてニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムの混合物を含む。該混合物中において、リチウムイオン二次電池の正極を構成する遷移金属酸化物として実績のあるリチウム遷移金属酸化物の割合を調整することによって、適切なリチウム遷移金属酸化物正極を得ることができる。   (4) The lithium transition metal oxide positive electrode of the secondary battery contains a mixture of lithium nickelate, lithium cobaltate, and lithium manganate as a main component. In other words, the lithium transition metal oxide positive electrode of the secondary battery mainly includes a mixture of lithium nickelate, lithium cobaltate, and lithium manganate. In the mixture, an appropriate lithium transition metal oxide positive electrode can be obtained by adjusting the ratio of a lithium transition metal oxide that has a proven record as a transition metal oxide constituting the positive electrode of a lithium ion secondary battery.

(5)二次電池の制御装置は、二次電池(二次電池モジュール13)の温度を検出する電池温度検出手段18と、二次電池の充電率を検出する充電率検出手段19と、電池温度検出手段18及び充電率検出手段19の検出結果に基づいて、二次電池の充電率が該二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御する制御手段(PCU15、ECU16、二次電池制御装置17)と、を備える。前記二次電池の温度が第1の温度範囲(例えば、常温範囲)にある場合、充電率の最小値を10%以上とし、前記二次電池の温度が第1の温度範囲よりも高い第2の温度範囲(例えば、高温)である場合、充電率の最大値を90%とするように充放電を制御する。したがって、上記の効果(1)に示した二次電池の制御方法を行うことにより、前記二次電池の使用時における負極の劣化を抑制することができる。   (5) The control device for the secondary battery includes a battery temperature detecting means 18 for detecting the temperature of the secondary battery (secondary battery module 13), a charging rate detecting means 19 for detecting the charging rate of the secondary battery, and a battery. Based on the detection results of the temperature detecting means 18 and the charging rate detecting means 19, the maximum and minimum charging rates are set so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. Control means (PCU15, ECU16, secondary battery control device 17) for controlling charging / discharging of the secondary battery by changing the value. When the temperature of the secondary battery is in a first temperature range (for example, a normal temperature range), the minimum value of the charging rate is 10% or more, and the temperature of the secondary battery is higher than the first temperature range. In the case of the temperature range (for example, high temperature), charging / discharging is controlled so that the maximum value of the charging rate is 90%. Therefore, by performing the secondary battery control method shown in the above effect (1), it is possible to suppress deterioration of the negative electrode during use of the secondary battery.

(6)二次電池モジュール13は、温度調整手段20としての熱電変換素子を備える。温度調整手段20には、PCU15を介して二次電池モジュール13の電力が供給される。したがって、二次電池モジュール13が目標充電率まで充電された状態において、環境温度の上昇等により二次電池モジュール13の温度が上昇しようとする場合、例えば、二次電池の温度が高温になる場合、二次電池モジュール13の電力を温度調整手段20の駆動によって消費する。これによって、二次電池モジュール13の充電率を低下させることができるので、二次電池モジュール13の充電率が当該温度における充電率の上限を超えることを効率良く防止できる。またこれによって、二次電池モジュール13の温度を低下させることができる。そのため、充電率を適正充電率まで低下させるのに必要な時間が、温度調整(温度低下)及び二次電池の電力の使用のいずれか一方のみを行う場合のそれに比べて短くなる。   (6) The secondary battery module 13 includes a thermoelectric conversion element as the temperature adjusting means 20. The temperature adjusting means 20 is supplied with power from the secondary battery module 13 via the PCU 15. Therefore, in the state where the secondary battery module 13 is charged to the target charging rate, when the temperature of the secondary battery module 13 is going to rise due to an increase in the environmental temperature or the like, for example, when the temperature of the secondary battery becomes high The power of the secondary battery module 13 is consumed by driving the temperature adjusting means 20. Thereby, since the charging rate of the secondary battery module 13 can be reduced, it is possible to efficiently prevent the charging rate of the secondary battery module 13 from exceeding the upper limit of the charging rate at the temperature. Moreover, this can reduce the temperature of the secondary battery module 13. Therefore, the time required for reducing the charging rate to the appropriate charging rate is shorter than that in the case where only one of temperature adjustment (temperature reduction) and use of the power of the secondary battery is performed.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって充放電を制御し、かつ二次電池の温度が高温の場合に充電率が90%を超えないように充放電を制御すればよく、ΔSOC(充放電量)が一定である必要はない。また、そのSOCの範囲が温度に応じて変更されてもよい。例えば、二次電池の温度が、SOC=0〜10%の領域において劣化が加速する25℃±5℃の温度範囲にある場合には、SOCを15〜100%の範囲とし、SOC=90〜100%の領域において劣化が加速する55℃以上の温度の場合には、SOCを0〜85%の範囲としてもよい。この場合、二次電池モジュール13の充電率が設定範囲の上限あるいは下限にある状態において温度が変化した際に、温度調整手段20による温度制御が該変化から多少遅れても支障がない。
The embodiment is not limited to the above, and may be embodied as follows, for example.
○ Charge / discharge is controlled by changing the maximum and minimum values of the charging rate so as not to deviate from the preset range according to the temperature of the secondary battery, and charging is performed when the temperature of the secondary battery is high. Charge / discharge may be controlled so that the rate does not exceed 90%, and ΔSOC (charge / discharge amount) does not need to be constant. Further, the SOC range may be changed according to the temperature. For example, when the temperature of the secondary battery is in the temperature range of 25 ° C. ± 5 ° C. where the deterioration accelerates in the SOC = 0 to 10% region, the SOC is set in the range of 15 to 100%, and the SOC = 90 to In the case of a temperature of 55 ° C. or higher at which deterioration accelerates in the 100% region, the SOC may be in the range of 0 to 85%. In this case, when the temperature changes in a state where the charging rate of the secondary battery module 13 is at the upper limit or the lower limit of the setting range, there is no problem even if the temperature control by the temperature adjusting means 20 is somewhat delayed from the change.

○ 二次電池モジュール13のΔSOCを90%で一定として使用し、二次電池の温度が、SOC=0〜10%の領域において劣化が加速する25℃±5℃の温度範囲にある場合には、SOCを10〜100%の範囲とし、SOC=90〜100%の領域において劣化が加速する55℃以上の温度の場合には、SOCを0〜90%の範囲として二次電池を使用してもよい。   ○ When the ΔSOC of the secondary battery module 13 is constant at 90% and the temperature of the secondary battery is in a temperature range of 25 ° C. ± 5 ° C. where the deterioration accelerates in the SOC = 0 to 10% region. When the SOC is in the range of 10 to 100% and the temperature is 55 ° C. or higher at which the deterioration accelerates in the SOC = 90 to 100% region, use the secondary battery with the SOC in the range of 0 to 90%. Also good.

○ 高温時の充電率の最小値を常温時のそれと同様に10%としてもよい。この場合、二次電池が高温時の充電率の最小値に近い状態まで放電された状態で、使用環境の温度が常温以下になったときであっても、二次電池を劣化し易い環境で駆動することを回避できる。   ○ The minimum value of the charging rate at high temperature may be 10%, similar to that at normal temperature. In this case, in a state where the secondary battery is discharged to a state close to the minimum value of the charging rate at a high temperature, and even when the temperature of the usage environment is below room temperature, the secondary battery is likely to deteriorate. Driving can be avoided.

○ 二次電池モジュール13によって駆動される走行モータ14の停止中に二次電池モジュール13の充電率が二次電池モジュール13の温度に応じた上限を超えるおそれがある場合、二次電池モジュール13の電力を負荷により消費することによって充電率を下げてもよい。   If the charging rate of the secondary battery module 13 may exceed the upper limit according to the temperature of the secondary battery module 13 while the travel motor 14 driven by the secondary battery module 13 is stopped, the secondary battery module 13 The charging rate may be lowered by consuming electric power by a load.

○ 二次電池モジュール13によって駆動される走行モータ14の停止中に二次電池モジュール13の充電率が二次電池モジュール13の温度に応じた上限を超えるおそれがある場合、二次電池モジュール13からキャパシタに電力を供給してキャパシタに蓄電してもよい。二次電池モジュール13の充電率が低下した際に、適宜キャパシタのエネルギーを二次電池モジュール13に戻してもよい。   If the charging rate of the secondary battery module 13 may exceed the upper limit according to the temperature of the secondary battery module 13 while the travel motor 14 driven by the secondary battery module 13 is stopped, the secondary battery module 13 Electric power may be supplied to the capacitor and stored in the capacitor. When the charging rate of the secondary battery module 13 decreases, the energy of the capacitor may be returned to the secondary battery module 13 as appropriate.

○ 二次電池モジュール13を構成する二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、最大の充電率において4.5Vの電圧を出力すればよい。二次電池の正極、負極及び電解液の構成は、前記実施形態で説明した通りである必要はない。例えば、正極活物質の混合割合を多少変更したり、負極のSiOと黒鉛との割合を多少変更したり、電解液の組成割合を多少変更したりしてもよい。   The secondary battery constituting the secondary battery module 13 includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V at the maximum charging rate. The configurations of the positive electrode, the negative electrode, and the electrolytic solution of the secondary battery need not be as described in the above embodiment. For example, the mixing ratio of the positive electrode active material may be slightly changed, the ratio of SiO and graphite of the negative electrode may be slightly changed, or the composition ratio of the electrolytic solution may be slightly changed.

○ 負極の材質はSiOに限らず、他の合金系負極用の材質、例えば、スズ(Sn)を使用してもよい。
○ 二次電池モジュール13が搭載される車両は、走行モータ14を備えた一般の車両に限らず、例えば、フォークリフトやショベルローダー等の産業車両であってもよい。また、運転者を必要とする車両に限らず無人搬送車であってもよい。
The material for the negative electrode is not limited to SiO, and other alloy-based negative electrode materials such as tin (Sn) may be used.
The vehicle on which the secondary battery module 13 is mounted is not limited to a general vehicle provided with the travel motor 14, but may be an industrial vehicle such as a forklift or an excavator loader. Further, the vehicle is not limited to a vehicle that requires a driver, and may be an automatic guided vehicle.

○ 二次電池モジュール13が搭載される車両は、走行モータ14を備えたハイブリッドタイプの車両に限らず、電気自動車であってもよい。
○ 二次電池の制御方法は、車両に搭載された二次電池(二次電池モジュール13)を制御する方法に限らない。例えば、工場や家庭で使用される電源としての二次電池(二次電池モジュール13)の制御に適用されてもよい。
The vehicle on which the secondary battery module 13 is mounted is not limited to a hybrid type vehicle provided with the traveling motor 14 but may be an electric vehicle.
The control method of the secondary battery is not limited to the method of controlling the secondary battery (secondary battery module 13) mounted on the vehicle. For example, the present invention may be applied to control of a secondary battery (secondary battery module 13) as a power source used in a factory or home.

○ 前記二次電池の制御方法は、充電した二次電池を保管している場合に適用されてもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
The control method for the secondary battery may be applied when a charged secondary battery is stored.
The following technical idea (invention) can be understood from the embodiment.

(1)二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、前記制御装置は、前記二次電池の充電率が100%である状態において前記二次電池の温度が上昇する場合、前記二次電池の充電率が90%になるまで前記二次電池を放電させる。   (1) A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and the control device has a charge rate of the secondary battery. When the temperature of the secondary battery rises in the state of 100%, the secondary battery is discharged until the charging rate of the secondary battery reaches 90%.

(2)請求項5又は前記技術的思想(1)に記載の発明において、前記二次電池は、前記二次電池の電力を使用するための負荷をさらに備え、前記制御装置は、前記二次電池の充電率が前記二次電池の温度に対して適正である充電率より高い場合、前記二次電池の電力を前記負荷において使用させることによって、前記二次電池の充電率を前記適正充電率まで低下させる。   (2) In the invention described in claim 5 or the technical idea (1), the secondary battery further includes a load for using the power of the secondary battery, and the control device includes the secondary battery. When the charging rate of the battery is higher than the charging rate that is appropriate for the temperature of the secondary battery, the charging rate of the secondary battery is set to the appropriate charging rate by causing the power of the secondary battery to be used in the load. To lower.

(3)前記技術的思想(2)に記載された発明において、前記負荷は熱電変換素子である。この構成では、環境温度により二次電池が高温になった場合、熱電変換素子で二次電池の電力を使用することにより二次電池の充電率を低下させ、かつ二次電池の温度を低下させることができるので、二次電池の充電率を適正充電率まで下げるのに必要な時間が、二次電池の温度低下と二次電池の電力の使用とのいずれか一方のみを行う場合に比べて短くなる。   (3) In the invention described in the technical idea (2), the load is a thermoelectric conversion element. In this configuration, when the secondary battery becomes hot due to the environmental temperature, the secondary battery power is reduced by using the power of the secondary battery in the thermoelectric conversion element, and the temperature of the secondary battery is lowered. As a result, the time required to reduce the charging rate of the secondary battery to the appropriate charging rate is lower than when either the temperature of the secondary battery is lowered or the power of the secondary battery is used. Shorter.

上記課題を解決する二次電池の制御方法は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力する二次電池の制御方法であって、前記二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御し、前記二次電池の温度が55℃以上60℃以下の高温の場合、前記充電率の最大値を100%から90%に変更する。ここで、「合金化反応を行う負極」とは、炭素材料からなる負極のようにリチウムイオンがインターカレーションにより負極内部に侵入することによって放電を行うのではなく、リチウムイオンと合金を形成する負極を意味する。 A secondary battery control method that solves the above problem includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V in a state where the charging rate is maximum. The secondary battery is controlled by changing the maximum value and the minimum value of the charge rate so that the charge rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. When the temperature of the secondary battery is a high temperature of 55 ° C. or higher and 60 ° C. or lower, the maximum value of the charging rate is changed from 100% to 90%. Here, the “negative electrode that performs an alloying reaction” means that lithium ions do not discharge when lithium ions enter into the negative electrode by intercalation like a negative electrode made of a carbon material, but forms an alloy with lithium ions. Means negative electrode.

前記二次電池の温度が常温(25℃±5℃、すなわち、20℃以上30℃以下の範囲)の場合、充電率の最小値を0%から10%に変更し、前記常温時の前記充電率の最大値は100%であることが好ましい。この構成によれば、二次電池の温度が常温、高温に拘わらず充電率(SOC)が90%を超えないように制御を行う場合に比べて、二次電池の充放電量が大きくなり、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。 When the temperature of the secondary battery is a normal temperature (25 ° C. ± 5 ° C., that is, a range of 20 ° C. or higher and 30 ° C. or lower), the minimum charging rate is changed from 0% to 10%, and the charging at the normal temperature is performed. The maximum value of the rate is preferably 100%. According to this configuration, the charge / discharge amount of the secondary battery is larger than the case where control is performed so that the charging rate (SOC) does not exceed 90% regardless of whether the temperature of the secondary battery is normal temperature or high temperature. When a secondary battery is used as a power source for a vehicle, the travel distance of the vehicle can be increased.

前記高温時の前記充電率の最小値は0%であることが好ましい。この構成によれば、高温時にも常温時と同様に充電率が10%以上で使用される場合に比べて、二次電池の充放電量が大きくなり、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。 Minimum value of the charging rate at the high temperature is preferably 0%. According to this configuration, the charge / discharge amount of the secondary battery becomes larger at high temperatures than when used at a charging rate of 10% or more as in the normal temperature, and the secondary battery is used as a power source for the vehicle. In this case, the travel distance of the vehicle can be increased.

上記課題を解決する二次電池の制御装置は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備える二次電池の制御装置である。前記制御装置は、前記二次電池の温度を検出する電池温度検出部と、前記二次電池の充電率を検出する充電率検出部と、前記電池温度検出部及び前記充電率検出部の検出結果に基づいて前記二次電池の充電率が予め温度に応じて設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御する制御部とを備える。前記制御部は、前記二次電池の温度が常温範囲である20℃以上30℃以下にある場合、前記充電率の最小値を0%から10%に変更し、前記二次電池の温度が20℃以上30℃以下よりも高い55℃以上60℃以下にある場合、前記充電率の最大値を100%から90%に変更する。 A control device for a secondary battery that solves the above problem is a control device for a secondary battery that includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode. The control device includes a battery temperature detection unit that detects a temperature of the secondary battery, a charge rate detection unit that detects a charge rate of the secondary battery, and detection results of the battery temperature detection unit and the charge rate detection unit. A control unit that controls charging / discharging of the secondary battery by changing a maximum value and a minimum value of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to temperature based on With. Wherein, when the temperature of the previous SL secondary battery is below a 30 ° C. 20 ° C. or more is normal temperature range, to change the minimum value of the charging rate 10% 0%, temperature of the secondary battery When the temperature is 55 ° C. or higher and 60 ° C. or lower higher than 20 ° C. or higher and 30 ° C. or lower , the maximum value of the charging rate is changed from 100% to 90%.

この実施形態によれば、以下に示す効果を得ることができる。
(1)二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、最大の充電率(SOC)において4.5Vの電圧を出力する。二次電池の制御方法では、二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって、二次電池の充放電を制御する。二次電池の温度が55℃以上60℃以下の高温の場合、充電率の最大値を100%から90%とするように充放電を制御する。したがって、前記二次電池の使用時における負極の劣化を抑制することができる。
According to this embodiment, the following effects can be obtained.
(1) The secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V at a maximum charging rate (SOC). In the secondary battery control method, the secondary battery is changed by changing the maximum and minimum values of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. Controls charging and discharging of When the temperature of the secondary battery is a high temperature of 55 ° C. or higher and 60 ° C. or lower , charging / discharging is controlled so that the maximum value of the charging rate is 100% to 90%. Therefore, deterioration of the negative electrode during use of the secondary battery can be suppressed.

(2)二次電池の温度が常温(25℃±5℃)である場合、充電率の最小値を0%から10%とし、充電率の最大値を100%とするように充放電を制御する。したがって、二次電池の温度が常温であるときも高温であるときも充電率(SOC)が90%を超えないように充電率を制御する場合に比べて、二次電池の充放電量を大きくすることができる。そのため、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。 (2) When the temperature of the secondary battery is normal temperature (25 ° C ± 5 ° C), charge / discharge is controlled so that the minimum value of the charging rate is 0% to 10% and the maximum value of the charging rate is 100%. To do. Therefore, the charging / discharging amount of the secondary battery is larger than when the charging rate is controlled so that the charging rate (SOC) does not exceed 90% when the temperature of the secondary battery is normal or high. can do. Therefore, when the secondary battery is used as a power source for the vehicle, the travel distance of the vehicle can be increased.

(3)高温時の充電率の最小値は0%である。したがって、高温時にも常温時と同様に10%以上の充電率で二次電池が使用される場合に比べて、二次電池の充放電量を大きくすることができる。そのため、二次電池を車両の電源として使用する場合、その車両の走行距離を長くすることができる。 (3) The minimum value of the charging rate at Atsushi Ko is 0%. Therefore, the amount of charge / discharge of the secondary battery can be increased even at a high temperature as compared with the case where the secondary battery is used at a charging rate of 10% or more as at the normal temperature. Therefore, when the secondary battery is used as a power source for the vehicle, the travel distance of the vehicle can be increased.

(5)二次電池の制御装置は、二次電池(二次電池モジュール13)の温度を検出する電池温度検出手段18と、二次電池の充電率を検出する充電率検出手段19と、電池温度検出手段18及び充電率検出手段19の検出結果に基づいて、二次電池の充電率が該二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御する制御手段(PCU15、ECU16、二次電池制御装置17)と、を備える。前記二次電池の温度が20℃以上30℃以下(常温範囲)にある場合、充電率の最小値を10%以上とし、前記二次電池の温度が第1の温度範囲よりも55℃以上60℃以下(高温)である場合、充電率の最大値を100%から90%とするように充放電を制御する。したがって、上記の効果(1)に示した二次電池の制御方法を行うことにより、前記二次電池の使用時における負極の劣化を抑制することができる。 (5) The control device for the secondary battery includes a battery temperature detecting means 18 for detecting the temperature of the secondary battery (secondary battery module 13), a charging rate detecting means 19 for detecting the charging rate of the secondary battery, and a battery. Based on the detection results of the temperature detecting means 18 and the charging rate detecting means 19, the maximum and minimum charging rates are set so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. Control means (PCU15, ECU16, secondary battery control device 17) for controlling charging / discharging of the secondary battery by changing the value. If the temperature of the secondary battery is in a 20 ° C. or higher 30 ° C. or less (normal temperature range), the minimum value of the charging rate is 10% or more, the temperature of the secondary battery temperatures above 55 ℃ than the first temperature range If it is 60 ° C. or less (Atsushi Ko), to control the charging and discharging to 90% the maximum value of the charging rate of 100%. Therefore, by performing the secondary battery control method shown in the above effect (1), it is possible to suppress deterioration of the negative electrode during use of the secondary battery.

(1)二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、前記制御装置は、前記二次電池の充電率が100%である状態において前記二次電池の温度が55℃以上60℃以下に上昇する場合、前記二次電池の充電率が90%になるまで前記二次電池を放電させる。 (1) A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and the control device has a charge rate of the secondary battery. When the temperature of the secondary battery rises to 55 ° C. or higher and 60 ° C. or lower in the state of 100%, the secondary battery is discharged until the charging rate of the secondary battery reaches 90%.

Claims (10)

二次電池を制御する方法であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、充電率が最大である状態において4.5Vの電圧を出力し、前記方法は、
前記二次電池の充電率が二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御し、
前記二次電池の温度が高温の場合、前記充電率の最大値を90%に変更する、方法。
A method for controlling a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and outputs a voltage of 4.5 V in a state where the charging rate is maximum. And the method
Controlling the charging and discharging of the secondary battery by changing the maximum value and the minimum value of the charging rate so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery;
The method of changing the maximum value of the charging rate to 90% when the temperature of the secondary battery is high.
前記二次電池の温度が20℃以上30℃以下の常温範囲にある場合、前記充電率の最小値を10%に変更し、前記常温時の充電率の最大値は100%である、請求項1に記載の方法。   When the temperature of the secondary battery is in a normal temperature range of 20 ° C or higher and 30 ° C or lower, the minimum value of the charging rate is changed to 10%, and the maximum charging rate at the normal temperature is 100%. The method according to 1. 前記高温とは55℃以上であり、前記高温時の前記充電率の最小値は0%である、請求項1又は請求項2に記載の方法。   The method according to claim 1, wherein the high temperature is 55 ° C. or more, and a minimum value of the charging rate at the high temperature is 0%. 前記リチウム遷移金属酸化物正極は、主としてニッケル酸リチウム、コバルト酸リチウム及びマンガン酸リチウムの混合物を含む、請求項1に記載の方法。   The method of claim 1, wherein the lithium transition metal oxide cathode comprises primarily a mixture of lithium nickelate, lithium cobaltate and lithium manganate. 二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、前記制御装置は、
前記二次電池の温度を検出する電池温度検出部と、
前記二次電池の充電率を検出する充電率検出部と、
前記電池温度検出部及び前記充電率検出部の検出結果に基づいて、前記二次電池の充電率が前記二次電池の温度に応じて予め設定された範囲を逸脱しないように充電率の最大値及び最小値を変更することによって前記二次電池の充放電を制御する制御部と、を備え、
前記制御部は、前記二次電池の温度が常温範囲である第1の温度範囲にある場合、前記充電率の最小値を10%に変更し、前記二次電池の温度が第1の温度範囲よりも高い第2の温度範囲にある場合、前記充電率の最大値を90%に変更する、制御装置。
A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and the control device includes:
A battery temperature detector for detecting the temperature of the secondary battery;
A charge rate detector for detecting a charge rate of the secondary battery;
Based on the detection results of the battery temperature detection unit and the charging rate detection unit, the charging rate maximum value so that the charging rate of the secondary battery does not deviate from a preset range according to the temperature of the secondary battery. And a controller that controls charging and discharging of the secondary battery by changing the minimum value,
When the temperature of the secondary battery is in a first temperature range that is a normal temperature range, the control unit changes the minimum value of the charging rate to 10%, and the temperature of the secondary battery is in the first temperature range. The control device changes the maximum value of the charging rate to 90% when the temperature is in the second temperature range higher than the second temperature range.
二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、
前記二次電池の充電率が100%である状態において前記二次電池の温度が上昇する場合、前記二次電池の充電率が90%になるまで前記二次電池を放電させる、制御装置。
A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction, and a lithium transition metal oxide positive electrode.
When the temperature of the secondary battery rises in a state where the charging rate of the secondary battery is 100%, the control device discharges the secondary battery until the charging rate of the secondary battery reaches 90%.
前記二次電池は、前記二次電池の電力を使用するための負荷をさらに備え、前記制御装置は、前記二次電池の充電率が前記二次電池の温度に対して適正である適正充電率より高い場合、前記二次電池の電力を前記負荷において使用させることによって、前記二次電池の充電率を前記適正充電率まで低下させる、請求項5又は6に記載の制御装置。   The secondary battery further includes a load for using the power of the secondary battery, and the control device has an appropriate charging rate at which the charging rate of the secondary battery is appropriate with respect to the temperature of the secondary battery. 7. The control device according to claim 5, wherein when it is higher, the charging rate of the secondary battery is reduced to the appropriate charging rate by causing the power of the secondary battery to be used in the load. 前記負荷は熱電変換素子である、請求項7に記載の制御装置。   The control device according to claim 7, wherein the load is a thermoelectric conversion element. 二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、前記制御装置は、
前記二次電池の温度を検出する電池温度検出部と、
前記二次電池の充電率を検出する充電率検出部と、
前記二次電池の温度を調整する温度調整部と、
前記電池温度検出部及び前記充電率検出部の検出結果に基づいて、前記二次電池の充電率が100%である場合、前記二次電池の温度が高温とならないように前記温度調整部を制御する制御部と、を備える制御装置。
A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and the control device includes:
A battery temperature detector for detecting the temperature of the secondary battery;
A charge rate detector for detecting a charge rate of the secondary battery;
A temperature adjusting unit for adjusting the temperature of the secondary battery;
Based on the detection results of the battery temperature detection unit and the charge rate detection unit, when the charge rate of the secondary battery is 100%, the temperature adjustment unit is controlled so that the temperature of the secondary battery does not become high. A control unit.
二次電池の制御装置であって、前記二次電池は、合金化反応を行う負極と、リチウム遷移金属酸化物正極とを備え、前記制御装置は、
前記二次電池の温度を検出する電池温度検出部と、
前記二次電池の充電率を検出する充電率検出部と、
前記二次電池の温度を調整する温度調整部と、
前記電池温度検出部及び前記充電率検出部の検出結果に基づいて、前記二次電池の充電率が10%以下である場合、前記二次電池の温度が25℃より高くなるように前記温度調整部を制御する制御部と、を備える制御装置。
A control device for a secondary battery, wherein the secondary battery includes a negative electrode that performs an alloying reaction and a lithium transition metal oxide positive electrode, and the control device includes:
A battery temperature detector for detecting the temperature of the secondary battery;
A charge rate detector for detecting a charge rate of the secondary battery;
A temperature adjusting unit for adjusting the temperature of the secondary battery;
Based on the detection results of the battery temperature detection unit and the charge rate detection unit, when the charge rate of the secondary battery is 10% or less, the temperature adjustment is performed so that the temperature of the secondary battery is higher than 25 ° C. A control unit for controlling the unit.
JP2014554585A 2012-12-27 2013-12-27 Secondary battery control method and control device Pending JPWO2014104280A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012284417 2012-12-27
JP2012284417 2012-12-27
PCT/JP2013/085062 WO2014104280A1 (en) 2012-12-27 2013-12-27 Control method and control device for secondary battery

Publications (1)

Publication Number Publication Date
JPWO2014104280A1 true JPWO2014104280A1 (en) 2017-01-19

Family

ID=51021351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554585A Pending JPWO2014104280A1 (en) 2012-12-27 2013-12-27 Secondary battery control method and control device

Country Status (2)

Country Link
JP (1) JPWO2014104280A1 (en)
WO (1) WO2014104280A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113773A (en) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 Photovoltaic power generation system
CN109546248B (en) * 2018-11-30 2021-07-30 合肥国轩高科动力能源有限公司 Method for optimizing charging strategy of lithium ion battery
WO2021079922A1 (en) * 2019-10-25 2021-04-29 株式会社村田製作所 Electricity storage device and method for controlling charge and discharge

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329516A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Temperature raising device for battery
JP2001190001A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Battery controller for electric car
JP2007026982A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Solid state battery and battery-mounted integrated circuit device
JP2008010295A (en) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The Method of keeping warmth, and device for keeping warmth of secondary battery
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
JP2011109824A (en) * 2009-11-18 2011-06-02 Sharp Corp Method for controlling charge, charge control computer program, device for controlling charge, secondary battery system, secondary battery power supply, and battery application device
WO2011145250A1 (en) * 2010-05-17 2011-11-24 パナソニック株式会社 Lithium-ion secondary battery system and battery pack
JP2012243672A (en) * 2011-05-23 2012-12-10 Nec Corp Lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329516A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Temperature raising device for battery
JP2001190001A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Battery controller for electric car
JP2007026982A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Solid state battery and battery-mounted integrated circuit device
JP2008010295A (en) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The Method of keeping warmth, and device for keeping warmth of secondary battery
JP2010028963A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electric vehicle system
JP2011109824A (en) * 2009-11-18 2011-06-02 Sharp Corp Method for controlling charge, charge control computer program, device for controlling charge, secondary battery system, secondary battery power supply, and battery application device
WO2011145250A1 (en) * 2010-05-17 2011-11-24 パナソニック株式会社 Lithium-ion secondary battery system and battery pack
JP2012243672A (en) * 2011-05-23 2012-12-10 Nec Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
WO2014104280A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5010051B2 (en) Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle
JP5810320B2 (en) Lithium-ion battery charging method and battery-equipped device
US9246344B2 (en) Charging method for non-aqueous electrolyte secondary battery, and battery pack
US8884461B2 (en) Battery system for vehicle and control method thereof
US9966638B2 (en) Manufacturing method for non-aqueous secondary battery
JP5742990B2 (en) Charging method
US8912762B2 (en) Charging method for non-aqueous electrolyte secondary battery by repeating a set of constant current charge and constant voltage charge and battery pack implementing the charging method
JP6375549B2 (en) Power supply system
KR102103897B1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
KR102244955B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP5326679B2 (en) Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
US20070111044A1 (en) Hybrid cell and method of driving the same
KR20190012840A (en) Positive electorde for secondary battery and lithium secondary battery including the same
KR102441469B1 (en) Battery charging method and battery charging apparatus
WO2014104280A1 (en) Control method and control device for secondary battery
JP2002280076A (en) Lithium secondary battery, module using lithium secondary battery and device using these
JP2018006289A (en) Nonaqueous electrolyte secondary battery
JP2011238568A (en) Lithium ion secondary battery and secondary battery system
WO2022065088A1 (en) Secondary battery charging method and charging system
EP3633784A1 (en) Electricity storage unit and electricity storage system
US20170250451A1 (en) On-vehicle battery and on-vehicle power supply device
JPWO2018135668A1 (en) Lithium-ion battery pack
KR20200095884A (en) Positive electrode active material for secondary battery, and lithium secondary battery comprising the same
CN115039257B (en) Method for manufacturing secondary battery
KR20230117994A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510