JPWO2014068687A1 - Parallel flow heat exchanger and air conditioner using the same - Google Patents

Parallel flow heat exchanger and air conditioner using the same Download PDF

Info

Publication number
JPWO2014068687A1
JPWO2014068687A1 JP2014544107A JP2014544107A JPWO2014068687A1 JP WO2014068687 A1 JPWO2014068687 A1 JP WO2014068687A1 JP 2014544107 A JP2014544107 A JP 2014544107A JP 2014544107 A JP2014544107 A JP 2014544107A JP WO2014068687 A1 JPWO2014068687 A1 JP WO2014068687A1
Authority
JP
Japan
Prior art keywords
pipe
header
heat exchanger
header pipe
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014544107A
Other languages
Japanese (ja)
Other versions
JP5957535B2 (en
Inventor
一樹 吉村
一樹 吉村
久保田 淳
淳 久保田
石井 英二
英二 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5957535B2 publication Critical patent/JP5957535B2/en
Publication of JPWO2014068687A1 publication Critical patent/JPWO2014068687A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Abstract

本発明は、簡易な構造で、ヘッダ管内で旋回流を誘起させて、冷媒を各扁平管に均等に分配するパラレルフロー型熱交換器を提供することを課題とする。本発明のパラレルフロー型熱交換器は、第1ヘッダ管及び第2ヘッダ管と、第1ヘッダ管及び第2ヘッダ管を接続する複数の扁平管と、第1ヘッダ管に接続され冷媒が流入する流入管と、第2ヘッダ管に接続され冷媒が流出する流出管と、を備え、流入管の中心軸が第1ヘッダ管の中心軸に対してオフセットするように流入管が配置される。It is an object of the present invention to provide a parallel flow type heat exchanger that has a simple structure and induces a swirling flow in a header pipe to evenly distribute the refrigerant to each flat pipe. The parallel flow heat exchanger according to the present invention includes a first header pipe and a second header pipe, a plurality of flat tubes connecting the first header pipe and the second header pipe, and a refrigerant flowing into the first header pipe. An inflow pipe connected to the second header pipe and an outflow pipe through which the refrigerant flows out, and the inflow pipe is disposed so that the central axis of the inflow pipe is offset from the central axis of the first header pipe.

Description

本発明は、パラレルフロー型熱交換器及びこれを用いた空気調和気に関する。   The present invention relates to a parallel flow heat exchanger and air-conditioning air using the same.

二本のヘッダ管の間に複数の扁平管を備え、ヘッダ管と扁平管内の冷媒流動により熱交換を行うパラレルフロー型の熱交換器が、自動車のラジエータや冷房専用エアコン等に広く利用されている。   Parallel flow type heat exchangers that have a plurality of flat tubes between two header tubes and exchange heat with the refrigerant flow in the flat tubes are widely used in automotive radiators and air conditioners for cooling. Yes.

パラレルフロー型熱交換器で効率よく熱交換を行うためには、ヘッダ管内で各扁平管に冷媒を均等に分配する必要がある。しかしながら、特に冷媒が気液二相流の場合にはヘッダ管内部は複雑な流れ場となり、均等分配が難しい。例えば、ヘッダ管内に突き出した扁平管に流れが衝突することで圧力分布がばらつく。また、ヘッダ管内の流動形態が層状流の場合には冷媒気液界面の高さに変動が生じる。これらの現象によって、各扁平管への冷媒分配量が偏ってしまう。その結果、熱交換器の性能が低下する。   In order to efficiently perform heat exchange with the parallel flow heat exchanger, it is necessary to evenly distribute the refrigerant to the flat tubes in the header tube. However, particularly when the refrigerant is a gas-liquid two-phase flow, the header pipe has a complicated flow field and is difficult to distribute evenly. For example, the pressure distribution varies as the flow collides with a flat tube protruding into the header tube. In addition, when the flow form in the header pipe is a laminar flow, the height of the refrigerant gas-liquid interface varies. Due to these phenomena, the refrigerant distribution amount to each flat tube is biased. As a result, the performance of the heat exchanger decreases.

これに対して特許文献1では、「各伝熱管に均一に分流させ、冷媒が実際に蒸発する有効伝熱面積を増加させ、性能を向上させる」ために、「冷媒のヘッダー内速度を、上流側のヘッダーから下流側のヘッダーへ順次遅くし」、「ヘッダー内部に設けた螺旋溝の螺旋角度を上流側のヘッダーから下流側のヘッダーへ順次大きく」し、「ヘッダー内部に設けた螺旋溝の溝深さを上流側のヘッダーから下流側のヘッダーへ順次低くした」熱交換器を開示する。   On the other hand, in Patent Document 1, in order to “split the heat transfer tubes uniformly, increase the effective heat transfer area where the refrigerant actually evaporates, and improve performance” "Sequentially slow down from the header on the side to the header on the downstream side," "Sequentially increase the spiral angle of the spiral groove provided in the header from the header on the upstream side to the header on the downstream side," Disclosed is a heat exchanger in which the groove depth is sequentially reduced from the upstream header to the downstream header.

しかしながら特許文献1に開示の熱交換器のヘッダ内部に設けられた螺旋溝では、冷媒が各伝熱管に均一に分流させるための旋回流が不十分な可能性がある。   However, in the spiral groove provided in the header of the heat exchanger disclosed in Patent Document 1, there is a possibility that the swirl flow for allowing the refrigerant to be evenly divided into the heat transfer tubes is insufficient.

特開平5−223490号公報JP-A-5-223490

本発明においては、簡易な構造で、ヘッダ管内で旋回流を誘起させて、各扁平管に均等に冷媒を分配するパラレルフロー型熱交換器を提供することを課題とする。   An object of the present invention is to provide a parallel flow heat exchanger that has a simple structure, induces a swirling flow in a header pipe, and evenly distributes the refrigerant to each flat pipe.

本発明のパラレルフロー型熱交換器は、第1ヘッダ管及び第2ヘッダ管と、第1ヘッダ管及び第2ヘッダ管を接続する複数の扁平管と、第1ヘッダ管に接続され冷媒が流入する流入管と、第2ヘッダ管に接続され冷媒が流出する流出管と、を備え、流入管の中心軸が第1ヘッダ管の中心軸に対してオフセットするように流入管が配置される。   The parallel flow heat exchanger according to the present invention includes a first header pipe and a second header pipe, a plurality of flat tubes connecting the first header pipe and the second header pipe, and a refrigerant flowing into the first header pipe. An inflow pipe connected to the second header pipe and an outflow pipe through which the refrigerant flows out, and the inflow pipe is disposed so that the central axis of the inflow pipe is offset from the central axis of the first header pipe.

本発明によれば、簡易な構造で、ヘッダ管内で旋回流を誘起させて、各扁平管に均等に冷媒を分配するパラレルフロー型熱交換器を提供することができる。   According to the present invention, it is possible to provide a parallel flow type heat exchanger that induces a swirling flow in a header pipe with a simple structure and distributes the refrigerant evenly to each flat pipe.

従来のパラレルフロー型熱交換器を示す図。The figure which shows the conventional parallel flow type heat exchanger. 実施例1におけるパラレルフロー型熱交換器を示す図。The figure which shows the parallel flow type heat exchanger in Example 1. FIG. 実施例1における流入管による旋回誘起構造を示す図。The figure which shows the rotation induction structure by the inflow tube in Example 1. FIG. 図1におけるヘッダ管内の冷媒流れ場を示す図。The figure which shows the refrigerant | coolant flow field in the header pipe | tube in FIG. 実施例1におけるヘッダ管内の冷媒流れ場を示す図。The figure which shows the refrigerant | coolant flow field in the header pipe | tube in Example 1. FIG. 実施例2におけるパラレルフロー型熱交換器の三次元図。3 is a three-dimensional view of a parallel flow heat exchanger according to Embodiment 2. FIG. 実施例2における流入管とヘッダ管との接続関係を示す図。The figure which shows the connection relation of the inflow pipe | tube and header pipe | tube in Example 2. FIG. 実施例2における流入管とヘッダ管との接続関係を示す図。The figure which shows the connection relation of the inflow pipe | tube and header pipe | tube in Example 2. FIG. 実施例3におけるパラレルフロー型熱交換器を示す図。The figure which shows the parallel flow type heat exchanger in Example 3. FIG. 実施例3におけるパラレルフロー型熱交換器を示す図。The figure which shows the parallel flow type heat exchanger in Example 3. FIG. 実施例4におけるヘッダ管を示す図。FIG. 10 is a diagram showing a header pipe in the fourth embodiment. 実施例4における旋回流ガイド板を示す図。The figure which shows the swirling flow guide plate in Example 4. 実施例5におけるパラレルフロー型熱交換器を示す図。The figure which shows the parallel flow type heat exchanger in Example 5. FIG. 家庭用空気調和機の冷凍サイクル構成図。The refrigeration cycle block diagram of a domestic air conditioner. 再熱除湿方式を採用した場合の冷凍サイクルの構成図。The block diagram of the refrigerating cycle at the time of employ | adopting a reheat dehumidification system.

本実施例のパラレルフロー型熱交換器は、第1ヘッダ管及び第2ヘッダ管と、第1ヘッダ管及び第2ヘッダ管を接続する複数の扁平管と、第1ヘッダ管に接続され冷媒が流入する流入管と、第2ヘッダ管に接続され冷媒が流出する流出管と、を備え、流入管の中心軸が第1ヘッダ管の中心軸に対してオフセットするように流入管が配置される。本実施例によれば、簡易な構造で、ヘッダ管内でより強い旋回流を誘起させて、より均等に冷媒を各扁平管に分配するパラレルフロー型熱交換器を提供することができる。   The parallel flow type heat exchanger of the present embodiment includes a first header pipe and a second header pipe, a plurality of flat tubes connecting the first header pipe and the second header pipe, and a refrigerant connected to the first header pipe. An inflow pipe that flows in and an outflow pipe that is connected to the second header pipe and from which the refrigerant flows out, and the inflow pipe is disposed so that the central axis of the inflow pipe is offset from the central axis of the first header pipe . According to the present embodiment, it is possible to provide a parallel flow type heat exchanger that induces a stronger swirling flow in the header pipe with a simple structure and distributes the refrigerant more evenly to each flat pipe.

以下、第1の実施例のパラレルフロー型熱交換器について図面を用いて説明する。まず、本実施例のパラレルフロー型熱交換器が適用される冷凍サイクルについて説明する。図14は家庭用空気調和機の冷凍サイクルの構成を示す図である。図14において、101は圧縮機、102は四方弁、103は電動弁等の絞り装置、104は室外熱交換器、106は室内熱交換器である。   Hereinafter, the parallel flow type heat exchanger according to the first embodiment will be described with reference to the drawings. First, a refrigeration cycle to which the parallel flow heat exchanger of the present embodiment is applied will be described. FIG. 14 is a diagram illustrating a configuration of a refrigeration cycle of a home air conditioner. In FIG. 14, 101 is a compressor, 102 is a four-way valve, 103 is a throttle device such as an electric valve, 104 is an outdoor heat exchanger, and 106 is an indoor heat exchanger.

空気調和機では、四方弁102を切替えることで室外熱交換器104を蒸発器、室内熱交換器106を凝縮器として使う冷房運転(実線矢印)と、室外熱交換器104を凝縮器、室内熱交換器106を蒸発器として使う暖房運転(破線矢印)を行うことができる。例えば、冷房運転では、圧縮機101で圧縮された高温高圧の冷媒は、四方弁102を通過して室外熱交換器104に流入し、空気との熱交換により放熱し凝縮する。そして、電動弁等の絞り装置103により等エンタルピ膨張した後、低温低圧でガスと液が混在した気液二相流となり室内熱交換器106へ流入する。室内熱交換器104では、冷媒管に取り付けられたフィンと冷媒管を通して、空気からの吸熱作用により冷媒は入口から出口にかけて液冷媒がガス冷媒に気化する。そして、室内熱交換器106を出た冷媒は圧縮機101へ戻り、サイクルを構成する。一般的に室外熱交換器104及び室外熱交換器106では、効率よく熱交換を行うために、一本の冷媒管から複数の冷媒管へ分岐させる配管構造が必要となる。   In the air conditioner, by switching the four-way valve 102, cooling operation (solid arrow) using the outdoor heat exchanger 104 as an evaporator and the indoor heat exchanger 106 as a condenser, and the outdoor heat exchanger 104 as a condenser and indoor heat A heating operation (broken arrows) using the exchanger 106 as an evaporator can be performed. For example, in the cooling operation, the high-temperature and high-pressure refrigerant compressed by the compressor 101 passes through the four-way valve 102 and flows into the outdoor heat exchanger 104, and dissipates heat and condenses by heat exchange with air. Then, after performing the same enthalpy expansion by the expansion device 103 such as an electric valve, it becomes a gas-liquid two-phase flow in which gas and liquid are mixed at low temperature and low pressure and flows into the indoor heat exchanger 106. In the indoor heat exchanger 104, the refrigerant is vaporized into a gas refrigerant from the inlet to the outlet by the heat absorption action from the air through the fins attached to the refrigerant pipe and the refrigerant pipe. And the refrigerant | coolant which came out of the indoor heat exchanger 106 returns to the compressor 101, and comprises a cycle. In general, the outdoor heat exchanger 104 and the outdoor heat exchanger 106 require a piping structure that branches from one refrigerant pipe to a plurality of refrigerant pipes in order to perform heat exchange efficiently.

図15は、室内機の吹き出し温度を下げないようにした再熱除湿方式を採用した場合の冷凍サイクルの構成図を示す。絞り装置105を室内熱交換器107と108の間に設け、絞り装置105で冷媒を減圧することで、室内熱交換器108の部分を凝縮器、室内熱交換器107の部分を蒸発器として作用させて、室内熱交換器107及び室内熱交換器108の出口温度を混合する。   FIG. 15 shows a configuration diagram of a refrigeration cycle in a case where a reheat dehumidification method in which the blowout temperature of the indoor unit is not lowered is adopted. The expansion device 105 is provided between the indoor heat exchangers 107 and 108, and the refrigerant is decompressed by the expansion device 105, so that the indoor heat exchanger 108 portion functions as a condenser and the indoor heat exchanger 107 portion functions as an evaporator. The outlet temperatures of the indoor heat exchanger 107 and the indoor heat exchanger 108 are mixed.

一般的な空気調和気では、室外熱交換器104や室内熱交換器106、107、108にはクロスフィンチューブ型の熱交換器が用いられる。しかしながら、熱交換器のさらなる低コスト化を目指して、自動車のラジエータや冷房専用エアコン等で用いられるパラレルフロー型の熱交換器を、凝縮機・蒸発機として使用することが求められている。そこで、パラレルフロー型熱交換器のヘッダ管から複数の扁平管へ冷媒を偏りなく分配することが課題となる。   In general air conditioning, a cross fin tube type heat exchanger is used for the outdoor heat exchanger 104 and the indoor heat exchangers 106, 107, and 108. However, with the aim of further reducing the cost of heat exchangers, it is required to use parallel flow type heat exchangers used in automobile radiators and air conditioners for cooling as condensers and evaporators. Then, it becomes a subject to distribute a refrigerant | coolant evenly from the header pipe | tube of a parallel flow type heat exchanger to several flat tubes.

図1は従来のパラレルフロー型熱交換器の構造を示す図である。パラレルフロー型熱交換器は、等間隔で配置された扁平管11の両端に冷媒が分岐・合流するヘッダ管21、22を有し、ヘッダ管21、22は冷媒の流入及び流出管31、32を有する。また、扁平管11の内部はさらに細い流路で分割されている。扁平管11の間には熱交換の効率を良くするためのフィン4が設置されている。例えば冷媒が流入管31から流入する場合、ヘッダ管21内で各扁平管11に分配される。そしてヘッダ管22で合流した後、流出管32から流出する。流入管が32、流出管が31となる場合も同様である。   FIG. 1 is a diagram showing the structure of a conventional parallel flow heat exchanger. The parallel flow type heat exchanger has header pipes 21 and 22 where the refrigerant branches and merges at both ends of the flat tubes 11 arranged at equal intervals. The header pipes 21 and 22 are the refrigerant inflow and outflow pipes 31 and 32. Have Further, the inside of the flat tube 11 is divided by a thinner flow path. Fins 4 are installed between the flat tubes 11 to improve the efficiency of heat exchange. For example, when the refrigerant flows from the inflow pipe 31, the refrigerant is distributed to the flat tubes 11 in the header pipe 21. Then, after joining at the header pipe 22, it flows out from the outflow pipe 32. The same applies when the inflow pipe is 32 and the outflow pipe is 31.

図2は本実施例のパラレルフロー型熱交換器を示す図である。基本的な構成は図1と同様である。熱交換器は扁平管12、ヘッダ管21、22、ヘッダ管22の端面に設置された流出管32、ヘッダ管21の側面に設置された流入管33、扁平管12の間に設置されたフィン4で構成される。本実施例では、流入管33によって、ヘッダ管21内で旋回流を誘起させる構造について説明するが、ヘッダ管22でも同様の構造で旋回流を誘起することが可能である。ヘッダ管21と流入管33の位置、扁平管12の詳細については図3で説明する。   FIG. 2 is a diagram showing a parallel flow heat exchanger of the present embodiment. The basic configuration is the same as in FIG. The heat exchanger includes a flat tube 12, header tubes 21 and 22, an outflow tube 32 installed on the end surface of the header tube 22, an inflow tube 33 installed on the side surface of the header tube 21, and fins installed between the flat tubes 12. It is composed of four. In the present embodiment, a structure in which the swirling flow is induced in the header pipe 21 by the inflow pipe 33 will be described, but the swirling flow can also be induced in the header pipe 22 by the same structure. The positions of the header pipe 21 and the inflow pipe 33 and details of the flat pipe 12 will be described with reference to FIG.

図3は図2のヘッダ管21と流入管33の位置関係を説明する図である。図3に示すように、ヘッダ管21の管側面に対し、流入管33の中心軸61とヘッダ管21の長手方向中心軸62が距離εオフセットするように流入管33を設置することで、ヘッダ管21内で冷媒の旋回流を誘起させる。後述するように、ヘッダ管21内で冷媒の旋回流を誘起させことにより、ヘッダ管21内の流入管近傍やヘッダ管21下方に液冷媒が偏ることなく、ヘッダ管21内上方(流入管端部)に液冷媒を分布させることができるので、扁平管12に均等に冷媒を分配することができる。また、ヘッダ管21内上方(流入管端部)にも液冷媒が分布するので、ヘッダ管21内下方まで流入管端部をヘッダ管21内深く挿入する必要が無いため、冷媒流動の圧力損失も低減することができる。また、例えば図3に示す扁平管12のように、ヘッダ管21に対する差し込み部分の面積が小さくなるように円弧形状(凹形状)とすることで、扁平管12の差し込み部分の抵抗による旋回力の減衰を低減することができる。扁平管12を円弧形状にすることに限らず、ヘッダ管21に対する扁平管12の差し込み長さを限りなく小さくすることでも同様の効果が得られる。例えば、扁平管12の端面は平面のままヘッダ管21内への差し込み長さを、ヘッダ管21と扁平管12が接合可能な加工限界まで短くする、また、扁平管12の端面に切り欠きを入れる等が挙げられる。   FIG. 3 is a view for explaining the positional relationship between the header pipe 21 and the inflow pipe 33 in FIG. As shown in FIG. 3, the header pipe 21 is installed so that the center axis 61 of the inlet pipe 33 and the longitudinal center axis 62 of the header pipe 21 are offset by a distance ε with respect to the pipe side surface of the header pipe 21. A swirling flow of the refrigerant is induced in the pipe 21. As will be described later, by inducing a swirling flow of the refrigerant in the header pipe 21, the liquid refrigerant is not biased in the vicinity of the inflow pipe in the header pipe 21 or below the header pipe 21. Liquid refrigerant can be distributed to the flat tube 12, so that the refrigerant can be evenly distributed to the flat tubes 12. Further, since the liquid refrigerant is distributed also in the header pipe 21 at the upper part (inflow pipe end part), it is not necessary to insert the inflow pipe end part deeply in the header pipe 21 to the lower part in the header pipe 21, so that the pressure loss of refrigerant flow Can also be reduced. Further, for example, as in the flat tube 12 shown in FIG. 3, an arc shape (concave shape) is formed so that the area of the insertion portion with respect to the header tube 21 is reduced, so that the turning force due to the resistance of the insertion portion of the flat tube 12 is reduced. Attenuation can be reduced. The flat tube 12 is not limited to the arc shape, and the same effect can be obtained by reducing the insertion length of the flat tube 12 into the header tube 21 as much as possible. For example, the insertion length into the header tube 21 is shortened to the processing limit at which the header tube 21 and the flat tube 12 can be joined while the end surface of the flat tube 12 is flat, and the end surface of the flat tube 12 is notched. Such as putting in.

次に本実施例において、冷媒が気液二相流の場合の、図1の従来構造と図2の本実施例構造の気液冷媒流れ場についてそれぞれ説明する。図4は従来構造である図1のヘッダ管21内の流れ場を示す図である。図4において、熱交換器は扁平管11、ヘッダ管21、流入管31、気液冷媒5から構成され、フィンの図示は省略する。従来構造では、流入管から流入した冷媒が上部は気冷媒、下部は液冷媒となる層状流を形成し、ヘッダ管21内を流れる。流入管入口近傍では冷媒の流速が大きく、ヘッダ管21内に突き出された扁平管11に流れが衝突することで冷媒が撹拌される。よって流入管31近傍の扁平管11に冷媒が流入しやすく、分配量は多くなる。一方でヘッダ管21下流の壁端面では層状流として流れてきた液冷媒が壁端面によって跳ね返されるため流れがよどみ、液冷媒の界面が高くなる。このために壁端面付近の扁平管11にも冷媒は流入しやすい。またヘッダ管21の中央部に位置する扁平管11には、ヘッダ管21の両端と比較して界面が低いことから、扁平管11の端面(流入口)が液冷媒と接しにくいため、冷媒の流入量が相対的に少なくなる。以上のように、従来構造では扁平管11間で分配量のばらつきが生じてしまう。   Next, in this embodiment, the gas-liquid refrigerant flow field of the conventional structure of FIG. 1 and the structure of this embodiment of FIG. 2 when the refrigerant is a gas-liquid two-phase flow will be described. FIG. 4 is a view showing a flow field in the header pipe 21 of FIG. 1 having a conventional structure. In FIG. 4, the heat exchanger includes a flat tube 11, a header tube 21, an inflow tube 31, and a gas-liquid refrigerant 5, and illustration of fins is omitted. In the conventional structure, the refrigerant flowing from the inflow pipe forms a laminar flow in which the upper part is a gas refrigerant and the lower part is a liquid refrigerant, and flows in the header pipe 21. In the vicinity of the inlet of the inflow pipe, the flow rate of the refrigerant is large, and the refrigerant is stirred by the collision of the flow with the flat tube 11 protruding into the header pipe 21. Therefore, the refrigerant easily flows into the flat tube 11 in the vicinity of the inflow tube 31, and the distribution amount increases. On the other hand, since the liquid refrigerant that has flowed as a laminar flow is bounced back by the wall end surface on the wall end surface downstream of the header pipe 21, the flow stagnates and the interface of the liquid refrigerant increases. For this reason, the refrigerant easily flows into the flat tube 11 near the wall end surface. Further, since the flat tube 11 located at the center of the header tube 21 has a lower interface than both ends of the header tube 21, the end surface (inlet) of the flat tube 11 is difficult to contact the liquid refrigerant. The inflow is relatively small. As described above, in the conventional structure, the distribution amount varies between the flat tubes 11.

図5は本実施例の構造であるである図2のヘッダ管21内流れ場を示す図である。図5において、熱交換器は扁平管12、ヘッダ管21、流入管33、気液冷媒5から構成され、フィンの図示は省略する。本実施例の構造では、ヘッダ管21内部で旋回流が誘起されるように流入管33を設置するため、液冷媒が気冷媒の旋回流に引っ張られ、ヘッダ管21の壁面全体を覆うように液冷媒が流れる。扁平管12はヘッダ管21内部への差し込み長さを短くするだけでなく、ヘッダ管21の円弧形状に沿うように端面形状とする。これにより扁平管は旋回流を妨げることがなく、ヘッダ管21内で均等な圧力分布となる。さらにヘッダ管21壁面に液膜を形成している液冷媒が扁平管12に流れ込みやすくなる。ただし、冷媒はヘッダ管21下流へ流れるに従い、旋回速度が減衰する。従って、ヘッダ管21全体で旋回流を維持できるように、ヘッダ管21の長さに応じて流入管33の管径を縮小して旋回力を調整することもできる。例えば、流入管33に管径が小さいパイプを用いる、管出口にテーパやオリフィスを設けて流出部に絞りをつける、等が挙げられる。   FIG. 5 is a diagram showing the flow field in the header pipe 21 of FIG. 2 which is the structure of this embodiment. In FIG. 5, the heat exchanger is composed of a flat tube 12, a header tube 21, an inflow tube 33, and a gas-liquid refrigerant 5, and illustration of fins is omitted. In the structure of the present embodiment, since the inflow pipe 33 is installed so that the swirling flow is induced inside the header pipe 21, the liquid refrigerant is pulled by the swirling flow of the gas refrigerant so as to cover the entire wall surface of the header pipe 21. Liquid refrigerant flows. The flat tube 12 not only shortens the insertion length into the header tube 21 but also has an end surface shape that follows the arc shape of the header tube 21. As a result, the flat tube has a uniform pressure distribution in the header tube 21 without disturbing the swirling flow. Further, the liquid refrigerant forming a liquid film on the wall surface of the header pipe 21 is likely to flow into the flat pipe 12. However, as the refrigerant flows downstream of the header pipe 21, the turning speed is attenuated. Accordingly, the swirl force can be adjusted by reducing the diameter of the inflow pipe 33 in accordance with the length of the header pipe 21 so that the swirl flow can be maintained in the entire header pipe 21. For example, a pipe having a small diameter is used for the inflow pipe 33, a taper or an orifice is provided at the pipe outlet, and the outflow portion is throttled.

なお、本実施例では熱交換器の下側に設置されたヘッダ管に設けた流入管から流入し、熱交換器の上側に設置されたヘッダ管で合流後、流出管から流れ出る場合について説明したが、重力方向は限定されず、ヘッダ管の構造が上下逆の場合や、ヘッダ管の長手方向が重力方向となる場合も、冷媒の旋回によって分配のばらつき低減効果を得ることができる。   In addition, in the present embodiment, the case where it flows in from the inflow pipe provided in the header pipe installed on the lower side of the heat exchanger, flows out of the outflow pipe after joining in the header pipe installed on the upper side of the heat exchanger, has been described. However, the gravitational direction is not limited, and even when the header tube structure is upside down, or when the longitudinal direction of the header tube is the gravitational direction, the effect of reducing distribution variation can be obtained by turning the refrigerant.

次に、第2の実施例について図面を用いて説明する。熱交換器の構成と旋回誘起構造については実施例1と同様であるため説明を省略する。本実施例においては、流入管の中心軸をヘッダ管の長手方向に傾斜させる。具体的には、ヘッダ管21への流入管挿入角度を、ヘッダ管21の下流側に向けてθ1傾ける。Next, a second embodiment will be described with reference to the drawings. Since the configuration of the heat exchanger and the swivel induction structure are the same as those in the first embodiment, the description thereof is omitted. In this embodiment, the central axis of the inflow pipe is inclined in the longitudinal direction of the header pipe. Specifically, the inflow pipe insertion angle into the header pipe 21 is inclined by θ 1 toward the downstream side of the header pipe 21.

図6は実施例2におけるパラレルフロー型熱交換器の三次元図である。図6において、熱交換器は扁平管12、ヘッダ管21、流入管34から構成され、フィンの図示は省略する。流入管34をヘッダ管21に設置する際に、流入管34をヘッダ管21に対して流入管34側にθ1傾けることで、流入管34の出口がヘッダ管21の下流側へ向くように構成する。このような構成により、ヘッダ管21内での冷媒流の長手方向速度がヘッダ管21の下流に向かって大きくなるので、相対的に旋回流の持続距離も大きくなり、特にヘッダ管21下流で冷媒の各扁平管12への分配ばらつきが改善される。FIG. 6 is a three-dimensional view of a parallel flow heat exchanger according to the second embodiment. In FIG. 6, the heat exchanger includes a flat tube 12, a header tube 21, and an inflow tube 34, and illustration of fins is omitted. When the inflow pipe 34 is installed in the header pipe 21, the inflow pipe 34 is inclined by θ 1 toward the inflow pipe 34 with respect to the header pipe 21 so that the outlet of the inflow pipe 34 faces the downstream side of the header pipe 21. Configure. With this configuration, the longitudinal speed of the refrigerant flow in the header pipe 21 increases toward the downstream side of the header pipe 21, so that the swirl flow has a relatively long sustaining distance. The distribution variation to each flat tube 12 is improved.

本構造の詳細を図7に示す。図7の熱交換器は、扁平管12、ヘッダ管21、流入管34、冷媒5、流入管34の中心軸61、ヘッダ管21の長手方向中心軸62から構成され、フィンの図示は省略する。図7に示すように、ヘッダ管21の側面垂直方向に対してθ1傾ける。Details of this structure are shown in FIG. The heat exchanger shown in FIG. 7 includes a flat tube 12, a header tube 21, an inflow tube 34, a refrigerant 5, a central axis 61 of the inflow tube 34, and a longitudinal central axis 62 of the header tube 21, and illustration of fins is omitted. . As shown in FIG. 7, the header pipe 21 is inclined by θ 1 with respect to the direction perpendicular to the side surface.

また、流入管の中心軸が扁平管の長手方向に傾斜するように構成することもできる。図8はヘッダ管21への流入管挿入角度を扁平管の流れ方向にθ2傾けた熱交換器の例である。図8の熱交換器は、扁平管12、ヘッダ管21、流入管34、冷媒5から構成され、これにより、気液冷媒がよりヘッダ管21の側壁面に沿った流れとなり、効率よく旋回流を誘起することができる。Moreover, it can also comprise so that the center axis | shaft of an inflow tube may incline in the longitudinal direction of a flat tube. FIG. 8 shows an example of a heat exchanger in which the inlet pipe insertion angle into the header pipe 21 is inclined by θ 2 in the flow direction of the flat pipe. The heat exchanger shown in FIG. 8 is composed of a flat tube 12, a header tube 21, an inflow tube 34, and a refrigerant 5. Thereby, the gas-liquid refrigerant flows more along the side wall surface of the header tube 21 and efficiently swirls. Can be induced.

以上にように、流入管34の設置角度θ1、θ2の調整によって旋回流をより効率的に作用させ、冷媒分配のばらつきを低減することができる。As described above, by adjusting the installation angles θ 1 and θ 2 of the inflow pipe 34, the swirl flow can be more efficiently applied, and variations in refrigerant distribution can be reduced.

次に、第3の実施例について図面を用いて説明する。熱交換器の構成と旋回誘起構造については実施例1と同様であるため説明を省略する。   Next, a third embodiment will be described with reference to the drawings. Since the configuration of the heat exchanger and the swivel induction structure are the same as those in the first embodiment, the description thereof is omitted.

図9はヘッダ管21への流入管34の挿入本数を複数にした場合の熱交換器の例である。図9の熱交換器は、扁平管12、ヘッダ管21、22、4本の流入管34、流出管32、フィン4から構成される。流入管34は上記各実施例で説明したように、ヘッダ管21内で旋回流を誘起する構造とする。本実施例では、ヘッダ管21に対して4本の流入管34が設置される。これにより、1か所の流入管からヘッダ管21へ冷媒が流入する場合と比べて、旋回の減衰による冷媒分配のばらつきを4か所に分散することができる。結果として各扁平管の冷媒分配のばらつきをさらに低減することができる。また、ヘッダ管21への流入箇所を複数とすることで、流入管1本当たりの冷媒流量低下に伴い旋回力が低下するが、これは流入管34の出口管径を小さくすることによって対応可能である。例えば、流入管34に管径が小さいパイプを用いる、管出口にテーパやオリフィスを設ける、等が挙げられる。図9では4か所に流入管34を設置するが、より多くの流入管34を用いることで、さらに冷媒分配のばらつきを低減することができる。また、流入管34の設置位置はヘッダ管21に対して等間隔とは限らず不等間隔に設置して各扁平管12への流入流量を調整することもできる。   FIG. 9 shows an example of a heat exchanger when a plurality of inflow pipes 34 are inserted into the header pipe 21. The heat exchanger of FIG. 9 includes a flat tube 12, header tubes 21 and 22, four inflow tubes 34, an outflow tube 32, and fins 4. The inflow pipe 34 has a structure for inducing a swirling flow in the header pipe 21 as described in the above embodiments. In this embodiment, four inflow pipes 34 are installed for the header pipe 21. Thereby, compared with the case where a refrigerant | coolant flows into the header pipe | tube 21 from one inflow pipe, the dispersion | variation in the refrigerant | coolant distribution by attenuation | damping of rotation can be disperse | distributed to four places. As a result, it is possible to further reduce variation in refrigerant distribution among the flat tubes. In addition, by using a plurality of inflow locations to the header pipe 21, the turning force decreases as the refrigerant flow rate per inflow pipe decreases, but this can be dealt with by reducing the outlet pipe diameter of the inflow pipe 34. It is. For example, a pipe having a small diameter is used as the inflow pipe 34, or a taper or an orifice is provided at the pipe outlet. In FIG. 9, the inflow pipes 34 are installed at four places, but by using a larger number of inflow pipes 34, variation in refrigerant distribution can be further reduced. Further, the installation positions of the inflow pipes 34 are not limited to regular intervals with respect to the header pipe 21 and can be installed at unequal intervals to adjust the inflow flow rate to each flat pipe 12.

ここで、 ヘッダ管21を複数の区画に分割し、これら複数の区画それぞれに、本実施例の流入管21を接続してもよい。図10は図9の熱交換器に対して、ヘッダ管21内部に隔壁7を設けた熱交換器の例である。流入管34の本数に応じてヘッダ管を隔壁7で区切ることで、ヘッダ管21内部で小部屋を形成し、各小部屋内で各扁平管12へ分配される冷媒量を各流入管34からの冷媒流入量に限定する。これにより、図9の構造よりもさらに各扁平管12への冷媒分配のばらつきを低減することが可能である。図10では4本の流入管34に対し、ヘッダ管21内に等間隔で隔壁7を設けることで、ヘッダ管21をさらに4つの小部屋に分割する。これにより各流入管34から流入した冷媒は各小部屋内ですべて分配されるため、扁平管12間に部屋をまたいで大きな分配のばらつきが生じることがない。また、隔壁7の設置位置はヘッダ管21に対して等間隔とは限らず不等間隔に設置して各扁平管12への流入流量を調整することもできる。   Here, the header pipe 21 may be divided into a plurality of sections, and the inflow pipe 21 of the present embodiment may be connected to each of the plurality of sections. FIG. 10 shows an example of a heat exchanger in which the partition wall 7 is provided inside the header pipe 21 with respect to the heat exchanger of FIG. By dividing the header pipe by the partition wall 7 according to the number of the inflow pipes 34, small chambers are formed inside the header pipe 21, and the amount of refrigerant distributed to each flat pipe 12 in each small room is reduced from each inflow pipe 34. The amount of refrigerant flowing in is limited. Thereby, it is possible to reduce the variation in refrigerant distribution to each flat tube 12 more than the structure of FIG. In FIG. 10, the header pipe 21 is further divided into four small chambers by providing the partition walls 7 at equal intervals in the header pipe 21 for the four inflow pipes 34. As a result, all of the refrigerant flowing in from the inflow pipes 34 is distributed in each small room, so that a large distribution variation does not occur between the flat pipes 12 across the rooms. Further, the installation positions of the partition walls 7 are not limited to the header pipes 21 and may be installed at unequal intervals to adjust the flow rate of flow into each flat tube 12.

次に、第4の実施例について図面を用いて説明する。熱交換器の構成と旋回誘起構造については実施例1、2と同様であるため説明を省略する。本実施例においては、ヘッダ管21の内部に螺旋形状の旋回流ガイド板8を配置する。   Next, a fourth embodiment will be described with reference to the drawings. Since the configuration of the heat exchanger and the swivel induction structure are the same as those in the first and second embodiments, the description thereof is omitted. In this embodiment, a spiral swirl flow guide plate 8 is arranged inside the header pipe 21.

図11は旋回流を維持するために旋回流ガイド板8を設けたヘッダ管を示す図である。上記各実施例において、さらに、ヘッダ管21内の側壁面に沿うように旋回流のガイドとなる旋回流ガイド板8を挿入する。図11の熱交換器は、扁平管12、ヘッダ管21、流入管34、旋回流ガイド板8から構成され、フィンの図示は省略する。図12は図11の旋回流ガイド板8の詳細構造図である。   FIG. 11 is a view showing a header pipe provided with a swirl flow guide plate 8 for maintaining swirl flow. In each of the above embodiments, the swirl flow guide plate 8 serving as a swirl flow guide is further inserted along the side wall surface in the header pipe 21. The heat exchanger of FIG. 11 includes a flat tube 12, a header tube 21, an inflow tube 34, and a swirl flow guide plate 8, and illustration of fins is omitted. FIG. 12 is a detailed structural view of the swirl flow guide plate 8 of FIG.

本発明では上記各実施例と同様の構成とすることで、ヘッダ管21内部で旋回流を誘起する。しかしながら、ヘッダ管21の長手方向長さが長いほど、ヘッダ管21内を冷媒が下流へ流れるにつれて、ヘッダ管壁面と冷媒、又は、気冷媒と液冷媒の間で生じるせん断力によって旋回力が減衰し、冷媒分配のばらつき低減効果が低下する。そこで、本実施例においては、ヘッダ管21の内部に螺旋形状の旋回流ガイド板8を配置することにより、冷媒がヘッダ管21内壁を旋回するように誘導するため、旋回力の減少を抑制することができる。また、ヘッダ管21上流で旋回流ガイド板によって速度ベクトルの方向を矯正することにより、冷媒流入直後に強い旋回流によって冷媒が扁平管12へ直接流れ込む現象を抑制することができる。   In the present invention, a swirling flow is induced inside the header pipe 21 by adopting the same configuration as that of each of the above embodiments. However, as the longitudinal length of the header pipe 21 increases, the turning force is attenuated by the shearing force generated between the header pipe wall surface and the refrigerant or between the gas refrigerant and the liquid refrigerant as the refrigerant flows downstream in the header pipe 21. In addition, the effect of reducing variation in refrigerant distribution is reduced. Therefore, in the present embodiment, by disposing the spiral swirl flow guide plate 8 inside the header pipe 21, the refrigerant is guided to swivel on the inner wall of the header pipe 21. be able to. Further, by correcting the direction of the velocity vector with the swirling flow guide plate upstream of the header pipe 21, it is possible to suppress a phenomenon in which the refrigerant directly flows into the flat tube 12 by a strong swirling flow immediately after the refrigerant flows.

図12は旋回流ガイド板の詳細構造である。本実施例おいては、図12に示すように、さらに、ヘッダ管21の上流側から下流側に向かって、旋回流ガイド板8の半径方向の板厚が増大するように構成する。つまり、螺旋形状の旋回流ガイド板8を、ヘッダ管上流から下流にかけての板の幅がt1<t2<t3と徐々に厚くなるように構成する。これにより、旋回力が減衰したヘッダ管21下流でもより強制的に冷媒流れの速度ベクトルの方向を旋回方向に矯正し、旋回流の効果をより長く持続させることができる。また、旋回流ガイド板8の厚さを均等に厚くして流れに強制力を与える場合に比べて、流れに応じて板の厚さを変更しているため、圧力損失も最適化することができる。これによって冷媒分配のばらつきをより抑えることが可能である。さらに実施例3で示した複数の流入管34設置や隔壁7設置との組み合わせも冷媒分配のばらつき低減に有効である。FIG. 12 shows the detailed structure of the swirl flow guide plate. In this embodiment, as shown in FIG. 12, the radial thickness of the swirl flow guide plate 8 is further increased from the upstream side to the downstream side of the header pipe 21. That is, the spiral-shaped swirl flow guide plate 8 is configured such that the width of the plate from the upstream side to the downstream side of the header pipe gradually increases as t 1 <t 2 <t 3 . Thereby, the direction of the velocity vector of the refrigerant flow can be more forcibly corrected to the swirl direction even downstream of the header pipe 21 where the swirl force is attenuated, and the effect of the swirl flow can be maintained for a longer time. In addition, since the thickness of the swirling flow guide plate 8 is uniformly increased to apply a forcing force to the flow, the thickness of the plate is changed according to the flow, so that the pressure loss can be optimized. it can. As a result, variations in refrigerant distribution can be further suppressed. Furthermore, the combination with the installation of the plurality of inflow pipes 34 and the partition wall 7 shown in the third embodiment is also effective in reducing variations in refrigerant distribution.

次に、第5の実施例について図面を用いて説明する。熱交換器の構成と旋回誘起構造については実施例1と同様であるため説明を省略する。図13は、熱交換器を前後二列に並べた場合のヘッダ管間に設置した流入管35による旋回誘起構造を示す図である。   Next, a fifth embodiment will be described with reference to the drawings. Since the configuration of the heat exchanger and the swivel induction structure are the same as those in the first embodiment, the description thereof is omitted. FIG. 13 is a view showing a swirling induction structure by the inflow pipe 35 installed between the header pipes when the heat exchangers are arranged in two rows in the front and rear.

本実施例の熱交換器では、ヘッダ管と扁平管、フィンからなる熱交換器を前後二列に繋げて配置しており、前列のヘッダ管から後列のヘッダ管へ冷媒が流入する際に、上記各実施例で示した旋回誘起構造を設ける(つまり、冷媒流れ下流側の熱交換器を上記各実施例のパラレルフロー型熱交換器で構成する。)。図13の熱交換器は、扁平管12、13、前列のヘッダ管22、後列のヘッダ管23、流入管(流出管)35、流入管35の中心軸61、ヘッダ管23の長手方向中心軸62から構成される。   In the heat exchanger of the present embodiment, the heat exchanger composed of the header tube, the flat tube, and the fins is arranged in two front and rear rows, and when the refrigerant flows from the front row header tube to the rear row header tube, The turning induction structure shown in each of the above embodiments is provided (that is, the heat exchanger on the downstream side of the refrigerant flow is configured by the parallel flow type heat exchanger of each of the above embodiments). The heat exchanger of FIG. 13 includes flat tubes 12 and 13, a front row header tube 22, a rear row header tube 23, an inflow tube (outflow tube) 35, a central axis 61 of the inflow tube 35, and a longitudinal central axis of the header tube 23. 62.

本実施例においては、上記各実施例のパラレルフロー型熱交換器と、他のパラレルフロー型熱交換器(複数のヘッダ管22及びヘッダ管(図示せず)と、ヘッダ管22及びヘッダ管(図示せず)を接続する複数の扁平管12と、ヘッダ管(図示せず)に接続され冷媒が流入する流入管(図示せず)と、ヘッダ管22に接続され冷媒が流出する流出管35と、を有するパラレルフロー型熱交換器)と、が接続される。具体的には、他のパラレルフロー型熱交換器の流出管35が、上記各実施例のパラレルフロー型熱交換器の流入管35に接続され、他のパラレルフロー型熱交換器の流出管35から流出した冷媒が、上記各実施例のパラレルフロー型熱交換器の流入管35を介してヘッダ管23に流入する。   In this embodiment, the parallel flow heat exchanger of each of the above embodiments, another parallel flow heat exchanger (a plurality of header tubes 22 and header tubes (not shown), header tubes 22 and header tubes ( A plurality of flat tubes 12 that connect to each other (not shown), an inflow tube (not shown) that is connected to a header tube (not shown) and into which refrigerant flows, and an outflow tube 35 that is connected to the header pipe 22 and through which refrigerant flows out. And a parallel flow type heat exchanger). Specifically, the outflow pipe 35 of another parallel flow type heat exchanger is connected to the inflow pipe 35 of the parallel flow type heat exchanger of each of the above embodiments, and the outflow pipe 35 of another parallel flow type heat exchanger. The refrigerant flowing out from the refrigerant flows into the header pipe 23 via the inflow pipe 35 of the parallel flow heat exchanger of each of the above embodiments.

本実施例では熱交換器を二列に並べているため、例えば重力方向に対してヘッダ管を上下に分けて設置した場合、前列上部のヘッダ管から後列上部のヘッダ管へ冷媒が流れる際には、後列のヘッダ管内に液冷媒が滞留してしまい、各扁平管へ液冷媒が分配されにくくなる。そこで本発明では、図13に示すように、上記各実施例に記載の熱交換器を適用して、後列上部のヘッダ管23内で旋回流を誘起させることにより、各扁平管13に冷媒を均一に分配する。本実施例の冷媒流れ場とその効果について説明する。まず、前列に流入した冷媒5は各扁平管12に分配された後、扁平管12を流れ、ヘッダ管22で合流する。次に、冷媒5はヘッダ管22から流入管(流出管)35を介して後列の熱交換器に設置されたヘッダ管23へ流れる。その際、ヘッダ管23内での冷媒の層状流による圧力損失を低減するために、上記各実施例と同様に旋回流を誘起させる。気液冷媒が旋回流となっていることから、ヘッダ管23内では液冷媒が滞留しない。このため、ヘッダ管23内の圧力分布がより均一になり、扁平管13への冷媒分配ばらつきが改善される。扁平管13の端面形状がヘッダ管に沿っていること(扁平管13の端面形状が凹形状であること)から、冷媒の滞留をさらに抑制することができる。   In this embodiment, since the heat exchangers are arranged in two rows, for example, when the header pipes are installed in the vertical direction with respect to the direction of gravity, when the refrigerant flows from the header pipe in the upper front row to the header pipe in the upper rear row, The liquid refrigerant stays in the header tube in the rear row, and the liquid refrigerant is difficult to be distributed to each flat tube. Therefore, in the present invention, as shown in FIG. 13, by applying the heat exchanger described in each of the above embodiments and inducing a swirling flow in the header tube 23 in the upper part of the rear row, the refrigerant is supplied to each flat tube 13. Distribute evenly. The refrigerant flow field and its effect of the present embodiment will be described. First, the refrigerant 5 flowing into the front row is distributed to each flat tube 12, then flows through the flat tube 12, and joins at the header tube 22. Next, the refrigerant 5 flows from the header pipe 22 through the inflow pipe (outflow pipe) 35 to the header pipe 23 installed in the rear-stage heat exchanger. At that time, in order to reduce the pressure loss due to the laminar flow of the refrigerant in the header pipe 23, a swirl flow is induced in the same manner as in the above embodiments. Since the gas-liquid refrigerant is swirling, the liquid refrigerant does not stay in the header pipe 23. For this reason, the pressure distribution in the header pipe 23 becomes more uniform, and the refrigerant distribution variation to the flat pipe 13 is improved. Since the end surface shape of the flat tube 13 is along the header tube (the end surface shape of the flat tube 13 is a concave shape), the retention of the refrigerant can be further suppressed.

11:従来の扁平管
12、13:端面形状を変更した扁平管
21、22、23:ヘッダ管
31、32:流入及び流出管
33、34、35:旋回誘起構造となる流入管及び流出管
4:フィン
5:気液冷媒
61:流入管の中心軸
62:ヘッダ管の長手方向の中心軸
7:ヘッダ管内部に設けた隔壁
8:螺旋形状をした旋回流ガイド板
101:圧縮機
102:四方弁
103、105:電動弁等の絞り装置
104:室外熱交換器
106、107、108:室内熱交換器
11: Conventional flat tubes 12, 13: Flat tubes 21, 22, and 23 having changed end face shapes: Header tubes 31, 32: Inflow and outflow tubes 33, 34, and 35: Inflow and outflow tubes 4 having a swivel induction structure : Fin 5: Gas-liquid refrigerant 61: Center axis 62 of the inflow pipe: Center axis in the longitudinal direction of the header pipe 7: Partition wall provided in the header pipe 8: Spiral flow guide plate 101: Compressor 102: Four sides Valves 103 and 105: Throttling devices such as electric valves 104: Outdoor heat exchangers 106, 107 and 108: Indoor heat exchangers

Claims (9)

第1ヘッダ管及び第2ヘッダ管と、
前記第1ヘッダ管及び前記第2ヘッダ管を接続する複数の扁平管と、
前記第1ヘッダ管に接続され、冷媒が流入する流入管と、
前記第2ヘッダ管に接続され、冷媒が流出する流出管と、を備え、
前記流入管の中心軸が前記第1ヘッダ管の中心軸に対してオフセットするように前記流入管が配置されたパラレルフロー型熱交換器。
A first header pipe and a second header pipe;
A plurality of flat tubes connecting the first header tube and the second header tube;
An inflow pipe connected to the first header pipe and into which refrigerant flows;
An outflow pipe connected to the second header pipe and from which refrigerant flows out,
A parallel flow heat exchanger in which the inflow pipe is arranged so that a central axis of the inflow pipe is offset with respect to a central axis of the first header pipe.
請求項1において、前記流入管の中心軸が前記ヘッダ管の長手方向に傾斜するパラレルフロー型熱交換器。   The parallel flow heat exchanger according to claim 1, wherein a central axis of the inflow pipe is inclined in a longitudinal direction of the header pipe. 請求項2において、前記流入管の中心軸が前記扁平管の長手方向に傾斜するパラレルフロー型熱交換器。   The parallel flow heat exchanger according to claim 2, wherein a central axis of the inflow pipe is inclined in a longitudinal direction of the flat pipe. 請求項1乃至3の何れかにおいて、
前記流入管は複数の流入管で構成され、
前記ヘッダ管は複数の区画に分割され、
複数の前記区画それぞれに前記流入管を接続するパラレルフロー型熱交換器。
In any one of Claims 1 thru | or 3,
The inflow pipe is composed of a plurality of inflow pipes,
The header tube is divided into a plurality of sections;
A parallel flow heat exchanger for connecting the inflow pipe to each of the plurality of compartments.
請求項1乃至4の何れかにおいて、前記第1ヘッダ管の内部に螺旋形状の旋回流ガイド板が配置されたパラレルフロー型熱交換器。   5. The parallel flow heat exchanger according to claim 1, wherein a spiral swirl flow guide plate is disposed inside the first header pipe. 請求項5において、前記第1ヘッダ管の上流側から下流側に向かって、前記旋回流ガイド板の半径方向の板厚が増大するパラレルフロー型熱交換器。   6. The parallel flow heat exchanger according to claim 5, wherein the radial thickness of the swirl flow guide plate increases from the upstream side to the downstream side of the first header pipe. 請求項1乃至6の何れかにおいて、前記第1ヘッダ管に接続された前記扁平管の前記第1ヘッダ管の端面が凹形状に形成されたパラレルフロー型熱交換器。   7. The parallel flow heat exchanger according to claim 1, wherein an end surface of the first header pipe of the flat pipe connected to the first header pipe is formed in a concave shape. 請求項1乃至7の何れかに記載のパラレルフロー型熱交換器と、
第3ヘッダ管及び第4ヘッダ管と、前記第3ヘッダ管及び前記第4ヘッダ管を接続する複数の第2扁平管と、前記第3ヘッダ管に接続され冷媒が流入する第2流入管と、前記第4ヘッダ管に接続され冷媒が流出する第2流出管と、を有する第2パラレルフロー型熱交換器と、を備え、
前記第2流出管が前記流入管に接続され、
前記第2流出管から流出した冷媒が、前記流入管を介して前記第1ヘッダ管に流入するパラレルフロー型熱交換器。
A parallel flow heat exchanger according to any one of claims 1 to 7,
A third header pipe and a fourth header pipe, a plurality of second flat pipes connecting the third header pipe and the fourth header pipe, and a second inflow pipe connected to the third header pipe and into which a refrigerant flows. A second parallel flow type heat exchanger having a second outflow pipe connected to the fourth header pipe and from which the refrigerant flows out,
The second outlet pipe is connected to the inlet pipe;
A parallel flow heat exchanger in which the refrigerant flowing out of the second outflow pipe flows into the first header pipe through the inflow pipe.
圧縮機、四方弁、室内熱交換器、膨張弁、及び、室内熱交換器を接続して構成するとともに、少なくとも前記室内熱交換器又は前記室外熱交換器の何れかを請求項1乃至8の何れかのパラレルフロー型熱交換器とした冷凍サイクル装置。   A compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected to each other, and at least one of the indoor heat exchanger or the outdoor heat exchanger is defined in claim 1. A refrigeration cycle apparatus as any parallel flow type heat exchanger.
JP2014544107A 2012-10-31 2012-10-31 Parallel flow heat exchanger and air conditioner using the same Expired - Fee Related JP5957535B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078090 WO2014068687A1 (en) 2012-10-31 2012-10-31 Parallel flow heat exchanger and air conditioner using same

Publications (2)

Publication Number Publication Date
JP5957535B2 JP5957535B2 (en) 2016-07-27
JPWO2014068687A1 true JPWO2014068687A1 (en) 2016-09-08

Family

ID=50626657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544107A Expired - Fee Related JP5957535B2 (en) 2012-10-31 2012-10-31 Parallel flow heat exchanger and air conditioner using the same

Country Status (2)

Country Link
JP (1) JP5957535B2 (en)
WO (1) WO2014068687A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095073A (en) * 2016-03-10 2019-06-20 株式会社日立製作所 Heat exchanger and heat pump device using the same
US11555660B2 (en) * 2017-08-03 2023-01-17 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
JP6922645B2 (en) * 2017-10-20 2021-08-18 株式会社デンソー Heat exchanger
JP7108177B2 (en) * 2018-03-30 2022-07-28 ダイキン工業株式会社 heat exchangers and air conditioners
WO2021025151A1 (en) * 2019-08-08 2021-02-11 株式会社デンソー Heat exchanger
US20220090864A1 (en) * 2019-09-11 2022-03-24 Carrier Corporation Heat exchanger assembly
WO2021149222A1 (en) * 2020-01-23 2021-07-29 三菱電機株式会社 Outdoor unit for refrigeration cycle device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246557A (en) * 1975-10-11 1977-04-13 Hitachi Ltd Hat exchanger
JPH0228986U (en) * 1988-08-12 1990-02-23
JPH04295599A (en) * 1991-03-25 1992-10-20 Matsushita Refrig Co Ltd Heat exchanger
JP2002062062A (en) * 2000-08-22 2002-02-28 Zexel Valeo Climate Control Corp Heat exchanger
JP2002139292A (en) * 2000-11-02 2002-05-17 Mitsubishi Electric Corp Plate heat exchanger and refrigerating cycle system equipped with the same
US20060102331A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2008025897A (en) * 2006-07-20 2008-02-07 Nikkei Nekko Kk Outdoor unit heat exchanger for heating, ventilating, air conditioning system
JP2010107102A (en) * 2008-10-30 2010-05-13 Sharp Corp Outdoor unit for air conditioner
JP2011185549A (en) * 2010-03-09 2011-09-22 Fuji Electric Co Ltd Heat exchanger
JP2012163313A (en) * 2011-01-21 2012-08-30 Daikin Industries Ltd Heat exchanger, and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1138781B (en) * 1981-05-22 1986-09-17 Pirelli TERMINAL FOR SOLAR PANELS AND ITS CONSTRUCTION PROCESS
JP2690234B2 (en) * 1992-02-13 1997-12-10 松下電器産業株式会社 Heat exchanger
JP4296117B2 (en) * 2004-03-31 2009-07-15 岩井機械工業株式会社 Multi-tube heat exchanger
JP2006162339A (en) * 2004-12-03 2006-06-22 Mitsubishi Heavy Ind Ltd Heat exchanger and nuclear reactor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246557A (en) * 1975-10-11 1977-04-13 Hitachi Ltd Hat exchanger
JPH0228986U (en) * 1988-08-12 1990-02-23
JPH04295599A (en) * 1991-03-25 1992-10-20 Matsushita Refrig Co Ltd Heat exchanger
JP2002062062A (en) * 2000-08-22 2002-02-28 Zexel Valeo Climate Control Corp Heat exchanger
JP2002139292A (en) * 2000-11-02 2002-05-17 Mitsubishi Electric Corp Plate heat exchanger and refrigerating cycle system equipped with the same
US20060102331A1 (en) * 2004-11-12 2006-05-18 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2008025897A (en) * 2006-07-20 2008-02-07 Nikkei Nekko Kk Outdoor unit heat exchanger for heating, ventilating, air conditioning system
JP2010107102A (en) * 2008-10-30 2010-05-13 Sharp Corp Outdoor unit for air conditioner
JP2011185549A (en) * 2010-03-09 2011-09-22 Fuji Electric Co Ltd Heat exchanger
JP2012163313A (en) * 2011-01-21 2012-08-30 Daikin Industries Ltd Heat exchanger, and air conditioner

Also Published As

Publication number Publication date
JP5957535B2 (en) 2016-07-27
WO2014068687A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5957535B2 (en) Parallel flow heat exchanger and air conditioner using the same
EP3217135B1 (en) Layered header, heat exchanger, and air-conditioning device
US10168083B2 (en) Refrigeration system and heat exchanger thereof
EP3051245B1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
WO2014199501A1 (en) Air-conditioning device
US10041710B2 (en) Heat exchanger and air conditioner
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP2015017738A (en) Heat exchanger
JP2018194251A (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
JP2012026615A (en) Outdoor unit, and refrigeration cycle apparatus with the same
JP5627635B2 (en) Air conditioner
WO2016121119A1 (en) Heat exchanger and refrigeration cycle device
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
KR102169284B1 (en) Heat exchanger and air conditional having the same
KR102076679B1 (en) A heat exchanger and a natural coolant circulation air conditioner
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2010281562A (en) Heat exchange device
JP6230852B2 (en) Air conditioner and heat exchanger for air conditioner
WO2018098991A1 (en) Evaporator pipeline, evaporator, and air conditioner
JP2010281557A (en) Distributor and air conditioning device including the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5957535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees