JP2690234B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2690234B2
JP2690234B2 JP4026379A JP2637992A JP2690234B2 JP 2690234 B2 JP2690234 B2 JP 2690234B2 JP 4026379 A JP4026379 A JP 4026379A JP 2637992 A JP2637992 A JP 2637992A JP 2690234 B2 JP2690234 B2 JP 2690234B2
Authority
JP
Japan
Prior art keywords
header
heat transfer
transfer tube
refrigerant
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4026379A
Other languages
Japanese (ja)
Other versions
JPH05223490A (en
Inventor
智朗 安藤
仁 茂木
浩一 中山
輝彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4026379A priority Critical patent/JP2690234B2/en
Publication of JPH05223490A publication Critical patent/JPH05223490A/en
Application granted granted Critical
Publication of JP2690234B2 publication Critical patent/JP2690234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクルを構成す
る空調器等において、蒸発器としての機能を果たす熱交
換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger that functions as an evaporator in an air conditioner that constitutes a refrigeration cycle.

【0002】[0002]

【従来の技術】従来より、空調機の蒸発器の冷媒流路が
複数となる場合に冷媒の分流の均一性が重要視されてい
る。その冷媒分流方式の一つとして、ヘッダー方式があ
る。以下、図面を参照しながら従来の熱交換器の一例に
ついて説明する。図は従来の熱交換器の概略図であ
る。熱交換器は伝熱管群1、伝熱管群1に挿入されたフ
ィン群2および伝熱管群1の両端が挿入され冷媒流路を
形成する複数のヘッダー3より構成される。複数のヘッ
ダー3は、冷媒流動方向に対して上流側から3a、3
b、3c、3dおよび3eである。また、ヘッダー3a
から流入した冷媒は矢印4のように流動しヘッダー3e
から流出する。その際、フィン群2間を流動する空気と
熱交換して蒸発する。
2. Description of the Related Art Conventionally, it has been emphasized that the uniformity of the split flow of the refrigerant is important when the refrigerant flow paths of the evaporator of the air conditioner are plural. As one of the refrigerant distribution systems, there is a header system. An example of a conventional heat exchanger will be described below with reference to the drawings. FIG. 4 is a schematic view of a conventional heat exchanger. The heat exchanger is composed of a heat transfer tube group 1, a fin group 2 inserted into the heat transfer tube group 1, and a plurality of headers 3 into which both ends of the heat transfer tube group 1 are inserted to form a refrigerant flow path. The plurality of headers 3 are 3a, 3 from the upstream side in the refrigerant flow direction.
b, 3c, 3d and 3e. Also, the header 3a
The refrigerant flowing in from flows through the header 3e as shown by the arrow 4.
Spill out of. At that time, heat is exchanged with the air flowing between the fin groups 2 to evaporate.

【0003】[0003]

【発明が解決しようとする課題】しかしながらヘッダー
方式による分流を行なう場合、次のような課題が生じて
いた。
However, in the case of header division, the following problems occur.

【0004】図はヘッダー内の冷媒の流動状態を示す
説明図である。流入伝熱管群1Aからヘッダー3に流入
した冷媒5はヘッダー3内を上昇し、流出伝熱管群1B
から流出する。その際、液相割合が大きく乾き度が小さ
い気液二相流の場合は、連続する液相中に不連続な気相
が存在するいわゆるフロス流を形成し撹拌されながら流
動するので、比較的気・液相割合が均一な状態で流出伝
熱管群1Bに分流される。しかしながら、蒸発し続ける
冷媒は、徐々に液相割合が小さく乾き度が大きい気液二
相流となり気相速度が増加する。このような冷媒がヘッ
ダー内に流入した場合、液相がヘッダー壁面を、気相が
中心部を流動するいわゆる環状流を形成しヘッダー上面
部31に衝突し、撹拌して流出伝熱管群1Bより流出す
る。従ってヘッダー上面部31近傍の流出伝熱管ほど循
環量が多く、ヘッダー上面部31からはなれた流出伝熱
管ほど循環量が少ない。
FIG. 5 is an explanatory view showing the flow state of the refrigerant in the header. The refrigerant 5 flowing into the header 3 from the inflow heat transfer tube group 1A rises in the header 3 and flows out of the outflow heat transfer tube group 1B.
Spill out of. At that time, in the case of a gas-liquid two-phase flow having a large liquid phase ratio and a low degree of dryness, a so-called floss flow in which a discontinuous gas phase exists in a continuous liquid phase is formed and flows while being stirred, The gas / liquid phase ratio is evenly distributed to the outflow heat transfer tube group 1B. However, the refrigerant that continues to evaporate gradually becomes a gas-liquid two-phase flow in which the liquid phase ratio is small and the dryness is large, and the gas phase velocity increases. When such a refrigerant flows into the header, the liquid phase forms a so-called annular flow in which the gas phase flows in the header wall surface and the gas phase flows in the central portion, collides with the header upper surface portion 31, is stirred, and flows out from the heat transfer tube group 1B. leak. Therefore, the outflow heat transfer tube near the header upper surface portion 31 has a larger circulation amount, and the outflow heat transfer tube separated from the header upper surface portion 31 has a smaller circulation amount.

【0005】循環量が少ない伝熱管の冷媒は、途中で蒸
発しきってしまい、その後は気相が顕熱交換をするだけ
である。程度の差はあっても、このような現象は熱交換
器の出口近傍のヘッダーのみならず、中間部のヘッダー
でも生じる。そして伝熱管内温度は上昇し次第に流入空
気の露点温度以上になりフィン表面に結露が生じにくく
なる。そのため流入空気は、結露が生じ通風抵抗が大き
いフィン間よりも、結露が生じていないフィン間を流れ
ようとして風速分布が生じる。その結果、循環量が少な
い伝熱管ほどさかんに熱交換を行ない、はげしく蒸発す
る。
The refrigerant in the heat transfer tube, which has a small circulation amount, evaporates completely on the way, and thereafter, the gas phase only exchanges sensible heat. To some extent, such a phenomenon occurs not only in the header near the outlet of the heat exchanger but also in the header in the middle. Then, the temperature inside the heat transfer tube gradually rises above the dew point temperature of the inflowing air, and it becomes difficult for dew condensation to occur on the fin surface. Therefore, the inflow air tends to flow between the fins in which dew condensation does not occur, rather than between the fins in which dew condensation occurs and the ventilation resistance is large, and a wind velocity distribution is generated. As a result, a heat transfer tube with a smaller circulation amount exchanges heat more vigorously and evaporates violently.

【0006】このようにしていったん分流の不均一が生
じると、不均一の程度はますます増加する傾向となり、
この結果、冷媒が実際に蒸発を行なう有効伝熱面積が減
少するという課題が生じていた。
[0006] Once the divergence becomes uneven in this way, the degree of unevenness tends to increase,
As a result, there is a problem that the effective heat transfer area where the refrigerant actually evaporates is reduced.

【0007】本発明は、上記従来の課題に鑑み、冷媒を
均一に分流し、冷媒が実際に蒸発する有効伝熱面積を増
加させ、性能の向上を目的とするものである。
In view of the above-mentioned conventional problems, the present invention aims to improve the performance by dividing the refrigerant evenly and increasing the effective heat transfer area where the refrigerant actually evaporates.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は空気が流動するフィン群と、フィン群に挿
入され内部を冷媒が流動する伝熱管群と、伝熱管群の両
端を挿入し、流路を形成する複数のヘッダーから構成さ
れ、冷媒の流れ方向に対して垂直方向の前記ヘッダーの
断面積を上流側のヘッダーから下流側のヘッダーへ順次
大きくしたものである。
In order to solve the above-mentioned problems, the present invention provides a fin group through which air flows, a heat transfer tube group through which a refrigerant flows inside the fin group, and both ends of the heat transfer tube group are inserted. And is composed of a plurality of headers forming a flow path, of the header in the direction perpendicular to the flow direction of the refrigerant .
Cross-sectional area sequentially from the upstream header to the downstream header
Those were the size comb.

【0009】また本発明は、ヘッダーに挿入された流入
伝熱管と流出伝熱管との間に設けた絞りの開口面積を、
上流側のヘッダーから下流側のヘッダーへ順次大きくし
たものである。
[0009] The present invention, the opening area of the aperture provided between the inlet heat transfer tubes that are inserted into the header and outlet heat transfer tubes,
The size is increased from the upstream header to the downstream header.

【0010】さらに本発明は、ヘッダーから流出する側
の伝熱管群の端部開口面をヘッダー軸に対して傾斜さ
せ、ヘッダー軸に対する傾斜角度を最下部の伝熱管から
最上部の伝熱管へ順次小さくしたものである。
Further, according to the present invention, the end opening surface of the heat transfer tube group on the side flowing out of the header is inclined with respect to the header axis, and the inclination angle with respect to the header axis is sequentially changed from the lowermost heat transfer tube to the uppermost heat transfer tube. It is a small one.

【0011】[0011]

【作用】上記手段による作用は、以下のとおりである。The operation of the above means is as follows.

【0012】冷媒の流れ方向に対して垂直方向の前記ヘ
ッダーの断面積を上流側のヘッダーから下流側のヘッダ
ーへ順次大きくすることにより、冷媒がヘッダー内を流
動する際、冷媒のヘッダー内速度が、上流側のヘッダー
から下流側のヘッダーへ順次遅くなるので、各ヘッダー
において冷媒が各伝熱管に均一に分流し、実際に蒸発す
る有効伝熱面積が増加し、蒸発器としての能力を最大限
に発揮することができる。
[0012] In the vertical direction to the flow direction of the refrigerant,
The cross-section area of the header is from the upstream header to the downstream header
By sequentially increased to over, when the refrigerant flows in the header, header rate of the refrigerant, since successively slower from the upstream side of the header to the downstream side of the header, uniformly to the heat transfer tubes refrigerant in each header The effective heat transfer area that splits and actually evaporates increases, and the capacity as an evaporator can be maximized.

【0013】また本発明は、ヘッダーに挿入された流入
伝熱管と流出伝熱管の間に設けた絞りの開口面積を、上
流側のヘッダーから下流側のヘッダーへ順次大きくする
ことにより、各ヘッダーにおいて冷媒が各伝熱管に均一
に分流し、実際に蒸発する有効伝熱面積を増加させるこ
とができる。
[0013] The present invention, the opening area of the aperture provided between the inlet heat transfer tubes that are inserted into the header outlet heat transfer tubes, by sequentially increased toward the downstream side of the header from the upstream side of the header, each header It is possible to uniformly divide the refrigerant into the heat transfer tubes and increase the effective heat transfer area where the refrigerant actually evaporates.

【0014】さらに本発明は、ヘッダーから流出する側
の伝熱管群の端部開口面をヘッダー軸に対して傾斜さ
せ、ヘッダー軸に対する傾斜角度を最下部の伝熱管から
最上部の伝熱管へ順次小さくすることにより、冷媒が各
伝熱管に均一に分流し、実際に蒸発する有効伝熱面積を
増加させることができる。
Further, according to the present invention, the end opening surface of the heat transfer tube group on the side flowing out of the header is inclined with respect to the header axis, and the inclination angle with respect to the header axis is sequentially changed from the lowermost heat transfer tube to the uppermost heat transfer tube. By making it small, the refrigerant can be uniformly divided into the heat transfer tubes, and the effective heat transfer area where the refrigerant actually evaporates can be increased.

【0015】[0015]

【実施例】以下、本発明の一実施例について図面を参考
にして説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0016】まず、図1により、本発明の第1の実施例
について説明する。なお、従来例と同一部品について
は、同一番号を用いる。
First, a first embodiment of the present invention will be described with reference to FIG. The same parts as those in the conventional example are designated by the same reference numerals.

【0017】図において、熱交換器は伝熱管群1そして
伝熱管群1に挿入されたフィン群2およびヘッダー群3
より構成され、ヘッダー群3は、冷媒流動方向に対して
上流側より3a、3b、3c、3dおよび3eである。
そして各ヘッダーには流入伝熱管群1Aおよび流出伝熱
管群1Bが挿入されており流路を形成している。ヘッダ
ー群3a〜3eのヘッダー径Da、Db、Dc、Ddお
よびDeは、Da<Db<Dc<Dd<Deなる関係を
有している。冷媒はヘッダー3aから流入し、伝熱管群
およびヘッダー群内を流動しヘッダー3eから流出す
る。
In the figure, the heat exchanger comprises a heat transfer tube group 1, a fin group 2 and a header group 3 inserted in the heat transfer tube group 1.
The header group 3 is 3a, 3b, 3c, 3d and 3e from the upstream side in the refrigerant flow direction.
An inflow heat transfer tube group 1A and an outflow heat transfer tube group 1B are inserted in each header to form a flow path. The header diameters Da, Db, Dc, Dd and De of the header groups 3a to 3e have a relationship of Da <Db <Dc <Dd <De. The refrigerant flows in from the header 3a, flows in the heat transfer tube group and the header group, and flows out from the header 3e.

【0018】一般に、空調機において冷媒は乾き度0.
2程度の液相割合の大きい状態で、蒸発器に流入する。
従って、ヘッダー3b内においては、連続する液相中に
不連続な気相が存在するフロス流を形成し撹拌されなが
ら流動するので、比較的気・液相割合が均一な状態で流
出伝熱管群2Bに分流される。そして、空気と熱交換し
蒸発し続ける冷媒は、徐々に乾き度が大きくなる。従っ
て、気相速度が大きくなりヘッダー内で環状流を形成し
やすくなる。一般に、非加熱垂直管における気液二相流
の流動状態は、 フルード数 Fr=(Vl2+Vg2)/D/g Vl:液相速度、Vg:気相速度 D :管径、 g:重力加速度 に関係し、フルード数が大きいほど環状流に遷移しやす
い。しかしながら、ヘッダー径は上流側から順次大きく
なっているので、液相速度は低下し気相速度の増加はお
さえられる。従って、各ヘッダーにおけるフルード数の
増加をおさえることができ、環状流に遷移しにくくな
る。そのため、冷媒は各ヘッダー上面部に衝突し、上面
部近傍の流出伝熱管に偏流することなく均一に分流す
る。従って、部分的に伝熱管の途中で蒸発しきることは
なく、すべての伝熱管において同程度の蒸発を行なうこ
とが可能となり、冷媒が実際に蒸発する有効伝熱面積が
増加し、性能の向上が可能となる。
Generally, in an air conditioner, the refrigerant has a dryness of 0.
It flows into the evaporator in a state where the ratio of the liquid phase is about 2 is large.
Therefore, in the header 3b, a froth flow in which a discontinuous gas phase is present in the continuous liquid phase is formed and flows while being stirred, so that the outflow heat transfer tube group has a relatively uniform gas / liquid phase ratio. Divided into 2B. The dryness of the refrigerant that exchanges heat with air and continues to evaporate gradually increases. Therefore, the gas phase velocity is increased and an annular flow is easily formed in the header. Generally, the flow state of a gas-liquid two-phase flow in an unheated vertical tube is related to the Froude number Fr = (Vl2 + Vg2) / D / g Vl: liquid phase velocity, Vg: gas phase velocity D: pipe diameter, g: gravity acceleration However, the larger the Froude number, the easier the transition to the annular flow. However, since the header diameter gradually increases from the upstream side, the liquid-phase velocity decreases and the vapor-phase velocity increases. Therefore, the increase in the Froude number in each header can be suppressed, and the transition to the annular flow becomes difficult. Therefore, the refrigerant collides with the upper surface of each header, and is uniformly split into the outflow heat transfer tubes near the upper surface without being biased. Therefore, it is possible to partially evaporate in the middle of the heat transfer tubes and to perform the same degree of evaporation in all the heat transfer tubes, increasing the effective heat transfer area where the refrigerant actually evaporates and improving the performance. It will be possible.

【0019】次に、図2により、本発明の第2の実施例
について説明する。ここで、第1の実施例と同一のもの
については、同一の番号を用いて説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0020】図において、各ヘッダー3b、3c、3d
の内部には流入伝熱管群1Aと流出伝熱管群1Bの間に
絞り7b、7cおよび7dが設けてあり、その絞り径d
b、dcおよびddは、db<dc<ddなる関係を有
している。
In the figure, each header 3b, 3c, 3d
In the inside, there are throttles 7b, 7c and 7d provided between the inflow heat transfer tube group 1A and the outflow heat transfer tube group 1B.
b, dc, and dd have a relationship of db <dc <dd.

【0021】ヘッダー3a内に流入した冷媒は、空気と
熱交換して流入伝熱管1Aを経てヘッダー3bに流入
し、絞り7bを通過して流出伝熱管1Bに分流される。
この際、乾き度が小さく液相割合の大きい冷媒は、速度
が低いが絞り7bである程度加速されるので、冷媒は上
部の流出伝熱管1Bまで十分に到達し、均一に分流され
る。そして、空気と熱交換し蒸発し続ける冷媒は、徐々
に乾き度が大きくなる。気相割合が大きくなり気相速度
が大きい状態でヘッダー3c、3dに流入した冷媒は、
絞り7c、7dを通過して流出伝熱管1Bに分流され
る。しかしながら、絞り径dc、ddはdbより大きい
ので、絞り通過による速度の加速は順次おさえられる。
従って、環状流に遷移しにくくなる。そのため、各ヘッ
ダー上面部に衝突し、上面部近傍の流出伝熱管に偏流す
ることなく冷媒は均一に分流する。次に、図3により、
本発明の第3の実施例について説明する。
The refrigerant flowing into the header 3a exchanges heat with air, flows into the header 3b via the inflow heat transfer tube 1A, passes through the restrictor 7b, and is split into the outflow heat transfer tube 1B.
At this time, the refrigerant having a low degree of dryness and a large liquid phase ratio has a low speed but is accelerated to some extent by the throttle 7b, so that the refrigerant sufficiently reaches the upper heat transfer tube 1B and is evenly divided. The dryness of the refrigerant that exchanges heat with air and continues to evaporate gradually increases. The refrigerant flowing into the headers 3c and 3d in the state where the gas phase ratio is high and the gas phase velocity is high,
After passing through the throttles 7c and 7d, the heat is split into the outflow heat transfer tube 1B. However, since the aperture diameters dc and dd are larger than db, the acceleration of the velocity due to passage through the aperture is sequentially suppressed.
Therefore, the transition to the annular flow becomes difficult. Therefore, the refrigerant uniformly splits without colliding with the upper surface portion of each header and non-uniformly flowing to the outflow heat transfer tubes near the upper surface portion. Next, according to FIG.
A third embodiment of the present invention will be described.

【0022】図において、ヘッダー3から流出する伝熱
管群1Bの端部開口面をヘッダー軸方向に対して傾斜さ
せており、その傾斜角度θa、θb、θcおよびθdは
θa>θb>θc>θdなる関係を有している。流入伝
熱管1Aより流入した冷媒は流出伝熱管1Bより流出す
る。その際、冷媒はヘッダー上面部に衝突し撹拌するの
で、ヘッダー上面部31近傍の流出伝熱管に偏流する。
しかしながら、流出伝熱管群1B端部開口面はヘッダー
軸方向に対して傾斜させており、最下部の伝熱管が最も
傾斜角度が大きくすなわち冷媒流動方向に大きく開口し
ている。従って、ヘッダー上面部より離れた流出伝熱管
にも良好に分流し全体として均一に分流できる。
In the figure, the end opening surface of the heat transfer tube group 1B flowing out of the header 3 is inclined with respect to the axial direction of the header, and the inclination angles θa, θb, θc and θd are θa>θb>θc> θd. Have a relationship. The refrigerant flowing in from the inflow heat transfer tube 1A flows out from the outflow heat transfer tube 1B. At this time, the refrigerant collides with the upper surface of the header and is agitated, so that the refrigerant is lopsided in the outflow heat transfer tube near the upper surface 31 of the header.
However, the end opening surface of the outflow heat transfer tube group 1B is inclined with respect to the header axial direction, and the lowermost heat transfer tube has the largest inclination angle, that is, the opening is large in the refrigerant flow direction. Therefore, it is possible to satisfactorily divert the heat to the outflowing heat transfer tube distant from the upper surface of the header and to divert it uniformly.

【0023】なお、本実施例では、それぞれ独立した複
数のヘッダーを用いて説明したが、一体で仕切り壁によ
って分離されたヘッダーにおいても同様の効果があるこ
とはいうまでもない。
Although the present embodiment has been described by using a plurality of independent headers, it goes without saying that the same effect can be obtained with a header which is integrally separated by a partition wall.

【0024】[0024]

【発明の効果】上記実施例より明らかなように、本発明
は、流れ方向に対して垂直方向の前記ヘッダーの断面積
を上流側のヘッダーから下流側のヘッダーへ順次大きく
することにより、冷媒がヘッダー内を流動する際、冷媒
のヘッダー内速度を、上流側のヘッダーから下流側のヘ
ッダーへ順次遅くできるので、各ヘッダーにおいて冷媒
が各伝熱管に均一に分流し実際に蒸発する有効伝熱面積
が増加し、蒸発器としての能力を最大限に発揮すること
ができる。
As is apparent from the above embodiment, the present invention is based on the sectional area of the header in the direction perpendicular to the flow direction.
From the upstream header to the downstream header
By doing so, when the refrigerant flows in the header, the speed in the header of the refrigerant can be gradually decreased from the header on the upstream side to the header on the downstream side, so that in each header, the refrigerant is actually evenly divided into each heat transfer tube. The effective heat transfer area for evaporation is increased, and the capacity of the evaporator can be maximized.

【0025】また、ヘッダーに挿入された流入伝熱管と
流出伝熱管との間に設けた絞りの開口面積を、上流側の
ヘッダーから下流側のヘッダーへ順次大きくすることに
より、冷媒が各ヘッダー上面部近傍の流出伝熱管に偏流
することなく各伝熱管に均一に分流し、実際に蒸発する
有効伝熱面積を増加させることができる。
Moreover, by the opening area of the aperture provided between the inlet heat transfer tubes that are inserted into the header and outlet heat transfer tubes, is sequentially increased from an upstream side of the header to the downstream side of the header, the refrigerant is each header top Uneven flow in the heat transfer tube
It is possible to uniformly divide the heat transfer tubes into each heat transfer tube and increase the effective heat transfer area that actually evaporates.

【0026】さらに、ヘッダーから流出する側の伝熱管
群の端部開口面をヘッダー軸に対して傾斜させ、ヘッダ
ー軸に対する傾斜角度を最下部の伝熱管から最上部の伝
熱管へ順次小さくすることにより、冷媒がヘッダー上面
部より離れた流出伝熱管にも良好に分流し、実際に蒸発
する有効伝熱面積を増加させることができる。
Further, the end opening surface of the heat transfer tube group on the side flowing out of the header is inclined with respect to the header axis, and the inclination angle with respect to the header axis is gradually reduced from the lowermost heat transfer tube to the uppermost heat transfer tube. Accordingly, the refrigerant header top
It is possible to satisfactorily divide the flow into the outflow heat transfer tube distant from the portion, and increase the effective heat transfer area that actually evaporates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of a heat exchanger of the present invention.

【図2】本発明の熱交換器の第2の実施例を示す要部断
面図
FIG. 2 is a sectional view of an essential part showing a second embodiment of the heat exchanger of the present invention.

【図3】本発明の熱交換器の第の実施例を示す要部断
面図
FIG. 3 is a cross-sectional view of essential parts showing a third embodiment of the heat exchanger of the present invention.

【図4】従来例を示す構成図FIG. 4 is a configuration diagram showing a conventional example.

【図5】同要部断面図FIG. 5 is a sectional view of the main part of the same.

【符号の説明】 1 伝熱管群 1A 流入伝熱管群 2B 流出伝熱管群 2 フィン群 3、3a、3b、3c、3d、3e ヘッダー群 Da、Db、Dc、Dd、De ヘッダー径 7a、7b、7c、7d、7e 絞り da、db、dc、dd、de 絞り径 θa、θb 、θc、θd 傾斜角度[Explanation of Codes] 1 heat transfer tube group 1A inflow heat transfer tube group 2B outflow heat transfer tube group 2 fin groups 3, 3a, 3b, 3c, 3d, 3e header group Da, Db, Dc, Dd, De header diameters 7a, 7b, 7c, 7d, 7e Aperture da, db, dc, dd, de Aperture diameter θa, θb , θc, θd Inclination angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 浩一 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 平 輝彦 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (56)参考文献 特開 平3−177761(JP,A) 実開 昭53−133260(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Nakayama 3-22 Takada Hondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigeration Co., Ltd. (72) Teruhiko Hira 3-22 Takaida Hondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (56) Reference JP-A-3-177761 (JP, A) Actual development Sho 53-133260 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気が流動するフィン群と、前記フィン群
に挿入され、内部を冷媒が流動する伝熱管群と、前記伝
熱管群の両端を挿入し、流路を形成する複数のヘッダー
から構成され、冷媒の流れ方向に対して垂直方向の前記
ヘッダーの断面積を上流側のヘッダーから下流側のヘッ
ダーへ順次大きくした熱交換器。
1. A fin group in which air flows, a heat transfer tube group inserted in the fin group and in which a refrigerant flows, and both ends of the heat transfer tube group are inserted to form a flow path from a plurality of headers. The vertical direction to the flow direction of the refrigerant.
Change the header cross section from the upstream header to the downstream head.
Sequentially magnitude Kushida heat exchanger Zehnder.
【請求項2】空気が流動するフィン群と、前記フィン群
に挿入され、内部を冷媒が流動する伝熱管群と、前記伝
熱管群の両端を挿入し、流路を形成する複数のヘッダー
から構成され、ヘッダーに挿入された流入伝熱管と流出
伝熱管の間に設けた絞りの開口面積を、上流側のヘッダ
ーから下流側のヘッダーへ順次大きくした熱交換器。
2. A fin group in which air flows, and the fin group
And a heat transfer tube group in which the refrigerant flows,
Multiple headers that insert both ends of the heat tube group and form flow paths
And a heat exchanger in which the opening area of the throttle provided between the inflow heat transfer tube and the outflow heat transfer tube inserted in the header is sequentially increased from the upstream header to the downstream header.
【請求項3】空気が流動するフィン群と、前記フィン群
に挿入され、内部を冷媒が流動する伝熱管群と、前記伝
熱管群の両端を挿入し、流路を形成する複数のヘッダー
から構成され、ヘッダーから流出する側の伝熱管群の端
部開口面をヘッダー軸に対して傾斜させ、ヘッダー軸に
対する傾斜角度を最下部の伝熱管から最上部の伝熱管へ
順次小さくした熱交換器。
3. A fin group in which air flows and the fin group
And a heat transfer tube group in which the refrigerant flows,
Multiple headers that insert both ends of the heat tube group and form flow paths
It consists, tilting the end opening of the tube bank of the side that flows out of the header relative to the header axis and the inclination angle with respect to the header axis from bottom of the heat transfer tubes gradually decrease to the top of the heat transfer tube heat Exchanger.
JP4026379A 1992-02-13 1992-02-13 Heat exchanger Expired - Fee Related JP2690234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4026379A JP2690234B2 (en) 1992-02-13 1992-02-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4026379A JP2690234B2 (en) 1992-02-13 1992-02-13 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH05223490A JPH05223490A (en) 1993-08-31
JP2690234B2 true JP2690234B2 (en) 1997-12-10

Family

ID=12191891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4026379A Expired - Fee Related JP2690234B2 (en) 1992-02-13 1992-02-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2690234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156412B2 (en) * 2016-09-12 2021-10-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604140B2 (en) * 2010-03-05 2014-10-08 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP5957535B2 (en) * 2012-10-31 2016-07-27 株式会社日立製作所 Parallel flow heat exchanger and air conditioner using the same
CN109690224B (en) * 2016-09-12 2020-06-23 三菱电机株式会社 Header, heat exchanger, and air conditioner
WO2018047330A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioner
US11543185B2 (en) * 2017-03-24 2023-01-03 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6373456B2 (en) * 2017-06-05 2018-08-15 三菱電機株式会社 Header and air conditioner
JP7372777B2 (en) * 2019-08-08 2023-11-01 株式会社Uacj Heat exchangers and air conditioners

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238289A (en) * 1975-09-22 1977-03-24 Hitachi Ltd Sample transfer device
JPH03177761A (en) * 1989-12-06 1991-08-01 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156412B2 (en) * 2016-09-12 2021-10-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Also Published As

Publication number Publication date
JPH05223490A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP2690234B2 (en) Heat exchanger
JP3007839B2 (en) Shunt
JP3761833B2 (en) Heat exchanger
JP2018194251A (en) Heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JPH04295599A (en) Heat exchanger
JP6644194B1 (en) Outdoor units and air conditioners
JP3284904B2 (en) Heat exchanger
JPH1019416A (en) Heat exchanger
JP2001501721A (en) Series heat exchanger and cascade circuit
JPS6214751B2 (en)
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JPH10103886A (en) Heat exchanger and refrigerating/air-conditioning device for non-azeotropic mixture refrigerant
JPH04268128A (en) Heat exchanger
JP3083385B2 (en) Heat exchanger
JPH0642885Y2 (en) Refrigerator Evaporator
JP2574488B2 (en) Heat exchanger
JPH09280670A (en) Heat exchanger
JPH06307788A (en) Heat transfer wall, heat transfer tube, heat exchanger, and absorption/cooler/heater
JP7214042B1 (en) heat exchangers and air conditioners
JPWO2021074950A1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2002013840A (en) Parallel flow type heat exchanger for air-conditioning
JPH10196984A (en) Air conditioner
JPH04309792A (en) Heat exchanger
JP3133897B2 (en) Heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees