JPWO2014003061A1 - Ferrite sintered body, ferrite core and coil component - Google Patents

Ferrite sintered body, ferrite core and coil component Download PDF

Info

Publication number
JPWO2014003061A1
JPWO2014003061A1 JP2014522660A JP2014522660A JPWO2014003061A1 JP WO2014003061 A1 JPWO2014003061 A1 JP WO2014003061A1 JP 2014522660 A JP2014522660 A JP 2014522660A JP 2014522660 A JP2014522660 A JP 2014522660A JP WO2014003061 A1 JPWO2014003061 A1 JP WO2014003061A1
Authority
JP
Japan
Prior art keywords
less
mol
oxide
mass
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014522660A
Other languages
Japanese (ja)
Other versions
JP5898313B2 (en
Inventor
憲一 古舘
憲一 古舘
ひとみ 落合
ひとみ 落合
竹之下 英博
英博 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014522660A priority Critical patent/JP5898313B2/en
Application granted granted Critical
Publication of JP5898313B2 publication Critical patent/JP5898313B2/en
Publication of JPWO2014003061A1 publication Critical patent/JPWO2014003061A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】 比抵抗、透磁率およびキュリー温度の高いフェライト焼結体およびフェライトコアならびこのフェライトコアに金属線を巻き付けてなるコイル部品を提供する。【解決手段】 Fe、Zn、NiおよびCuからなる酸化物を主成分とし、主成分の組成100モル%のうち、FeをFe2O3換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下含有し、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下であるフェライト焼結体。【選択図】 図1PROBLEM TO BE SOLVED: To provide a ferrite sintered body having a high specific resistance, magnetic permeability and Curie temperature, a ferrite core and a coil component formed by winding a metal wire around the ferrite core. The main component is an oxide composed of Fe, Zn, Ni, and Cu. Of 100 mol% of the main component, Fe is 49 mol% or more and 50 mol% or less in terms of Fe2O3, and Zn is 32 in terms of ZnO. 2% obtained by X-ray diffraction is 35 ° or more, containing from mol% to 34 mol%, Ni containing from 10 mol% to 12.5 mol% in terms of NiO, and Cu from 4 mol% to 8 mol% in terms of CuO. A ferrite sintered body having an I 2 / I 1 of 0.350 or more and 0.380 or less, when the X-ray diffraction peak intensity at 36 ° or less is I1, and 2θ is 29.5 ° or more and 30.5 ° or less is I2. [Selection] Figure 1

Description

本発明は、フェライト焼結体およびこのフェライト焼結体からなるフェライトコアならびにこのフェライトコアに金属線を巻きつけてなるコイル部品に関する。   The present invention relates to a ferrite sintered body, a ferrite core made of the ferrite sintered body, and a coil component formed by winding a metal wire around the ferrite core.

インダクタ、変圧器、安定器、電磁石、ノイズフィルタ等のコアや、各種IT関連機器のLANインターフェース部に用いられるパルストランス用のコアには、従来からフェライト焼結体が用いられている。そして、このコアに用いられるフェライト焼結体としては、透磁率の高いMn−Zn系のフェライト焼結体が一般に広く用いられていた。   Conventionally, ferrite sintered bodies have been used for cores for inductors, transformers, ballasts, electromagnets, noise filters, etc., and cores for pulse transformers used in LAN interface parts of various IT-related devices. And as a ferrite sintered compact used for this core, the Mn-Zn type ferrite sintered compact with high magnetic permeability was generally used widely.

しかしながら、Mn−Zn系のフェライト焼結体は、比抵抗(電気抵抗)が低くコアとなるフェライト焼結体に金属線を直巻きすることができず、間に絶縁物を介在させる必要があるため、金属線巻の作業性が悪かった。また、間に絶縁物を介在させなければならないことから、近年要求が高まる小型化・薄型化への対応が困難であった。   However, the Mn-Zn ferrite sintered body has a low specific resistance (electrical resistance) and cannot be wound directly on the ferrite sintered body serving as a core, and an insulator must be interposed therebetween. Therefore, workability of the metal wire winding was bad. In addition, since an insulator has to be interposed between them, it has been difficult to cope with downsizing and thinning that have been increasingly demanded in recent years.

これに対し、Mn−Zn系のフェライト焼結体よりも比抵抗が2オーダー程度高いものとして、Ni−Zn系のフェライト焼結体が知られており、例えば、特許文献1には、酸化鉄、酸化亜鉛、酸化ニッケル及び酸化銅で構成した主成分を含み、該主成分100モル%中の各酸化物の含有量が、酸化鉄:Fe23に換算して49.15〜49.65モル%、酸化亜鉛:ZnOに換算して32.35〜32.85モル%、酸化ニッケル:NiOに換算して11.90〜12.30モル%、酸化銅:CuOに換算して5.25〜6.55モル%であるフェライトが提案されている。On the other hand, a Ni-Zn ferrite sintered body is known as having a specific resistance approximately two orders of magnitude higher than that of a Mn-Zn ferrite sintered body. , zinc oxide, comprises a main component constituted by nickel oxide and copper oxide, the content of the oxides of the main component 100 mol%, iron oxide: in terms of Fe 2 O 3 49.15 to 49.65 mol%, There has been proposed a ferrite having zinc oxide: ZnO: 32.35 to 32.85 mol%, nickel oxide: NiO: 11.90-12.30 mol%, copper oxide: CuO, 5.25-6.55 mol%.

特開2006−206415号公報JP 2006-206415 A

特許文献1に記載のフェライトは、実施例の記載によれば、キュリー温度は100℃以上であり、透磁率は最も高いもので2650であったが、今般においては、更に高い透磁率を有するフェライト焼結体が求められている。しかし、透磁率を高めようとすれば、キュリー温度は低くなる傾向があり、キュリー温度が低くなるということは、高温環境における磁性体特性が著しく低下してしまうということであることから、比抵抗、透磁率およびキュリー温度の高いフェライト焼結体が求められている。   According to the description of Examples, the ferrite described in Patent Document 1 has a Curie temperature of 100 ° C. or higher and the highest magnetic permeability of 2650, but nowadays, a ferrite having a higher magnetic permeability. There is a need for a sintered body. However, if the magnetic permeability is increased, the Curie temperature tends to be lowered, and the lower Curie temperature means that the magnetic properties in a high temperature environment are remarkably lowered. There is a need for a ferrite sintered body having a high magnetic permeability and a Curie temperature.

本発明は、比抵抗、透磁率およびキュリー温度の高いフェライト焼結体およびこのフェライト焼結体からなるフェライトコアならびにこのフェライトコアに金属線を巻き付けてなるコイル部品を提供することを目的とするものである。   An object of the present invention is to provide a ferrite sintered body having a high specific resistance, magnetic permeability and Curie temperature, a ferrite core made of the ferrite sintered body, and a coil component formed by winding a metal wire around the ferrite core. It is.

Fe、Zn、NiおよびCuの酸化物からなるフェライトを主成分とし、該主成分の組成100モル%のうち、FeをFe23換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下含有するフェライト焼結体であって、X線回折法によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下であることを特徴とするものである。Fe, Zn, as main components ferrite comprising an oxide of Ni and Cu, among the composition 100 mol% of the main component, Fe and Fe 2 O 3 50 mol% 49 mol% or more in terms of less, ZnO converted Zn A ferrite sintered body containing 32 mol% or more and 34 mol% or less in terms of Ni, 10 mol% or more and 12.5 mol% or less in terms of NiO, and Cu in an amount of 4 mol% or more and 8 mol% or less in terms of CuO. When the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less obtained by the method is I 1 , and the X-ray diffraction peak intensity when 2θ is 29.5 ° or more and 30.5 ° or less is I 2 , I 2 / I 1 is It is 0.350 or more and 0.380 or less.

また、本発明のフェライトコアは、上記構成のフェライト焼結体からなることを特徴とするものである。   The ferrite core of the present invention is characterized by comprising a ferrite sintered body having the above-described configuration.

さらに、本発明のコイル部品は、上記構成のフェライトコアに金属線を巻き付けてなることを特徴とするものである。   Furthermore, the coil component of the present invention is characterized in that a metal wire is wound around the ferrite core having the above-described configuration.

本発明のフェライト焼結体によれば、比抵抗、透磁率およびキュリー温度の高いフェライト焼結体とすることができる。   According to the ferrite sintered body of the present invention, a ferrite sintered body having high specific resistance, magnetic permeability, and Curie temperature can be obtained.

本発明のフェライトコアによれば、比抵抗、透磁率およびキュリー温度の高い上記構成のフェライト焼結体からなることにより、特性に優れたフェライトコアとすることができる。   According to the ferrite core of the present invention, a ferrite core having excellent characteristics can be obtained by comprising the ferrite sintered body having the above-described configuration having a high specific resistance, magnetic permeability, and Curie temperature.

本発明のコイル部品によれば、比抵抗、透磁率およびキュリー温度の高い上記構成のフェライトコアに金属線を巻き付けてなることにより、小型化・薄型化に対応できるとともに、特性に優れるとともに信頼性の高いコイル部品とすることができる。   According to the coil component of the present invention, by wrapping a metal wire around the ferrite core having the above-described configuration with high specific resistance, magnetic permeability and Curie temperature, it is possible to cope with downsizing and thinning, as well as excellent characteristics and reliability. Coil components with high height.

本実施形態のフェライト焼結体からなるフェライトコアの一例を示す、(a)はトロイダルコアの斜視図であり、(b)はボビンコアの斜視図である。An example of the ferrite core which consists of a ferrite sintered compact of this embodiment is shown, (a) is a perspective view of a toroidal core, (b) is a perspective view of a bobbin core.

以下、本発明のフェライト焼結体およびフェライトコアならびにコイル部品について説明する。本実施形態のフェライト焼結体は、このフェライト焼結体からなるフェライトコアを単独、またはフェライトコアに金属線を巻き付けたコイル部品として、例えば、絶縁や変圧を目的としたインダクタ、変圧器、安定器および電磁石、ノイズ除去などを目的としたノイズフィルタやパルストランスに使用されるものである。   The ferrite sintered body, ferrite core, and coil component of the present invention will be described below. The ferrite sintered body of this embodiment is a ferrite core made of this ferrite sintered body alone or as a coil component in which a metal wire is wound around the ferrite core, for example, an inductor, a transformer, It is used for noise filters and pulse transformers for the purpose of noise reduction and electromagnets.

ここで、フェライトコアには様々な形状のものがあり、例えば図1(a)の斜視図に示すリング状のトロイダルコア1や、図1(b)の斜視図に示すボビン状のボビンコア2などがある。   Here, there are various types of ferrite cores, for example, a ring-shaped toroidal core 1 shown in the perspective view of FIG. 1A, a bobbin-shaped bobbin core 2 shown in the perspective view of FIG. There is.

そして、このようなフェライトコアとなるフェライト焼結体には、比抵抗、透磁率およびキュリー温度が高いことが求められおり、このような要求を満たすフェライト焼結体として、本実施形態のフェライト焼結体は、Fe、Zn、NiおよびCuの酸化物からなるフェライトを主成分とし、主成分の組成100モル%のうち、FeをFe23換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下含有し、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下であることを特徴としている。具体的な数値としては、比抵抗を109Ω・m以上、透磁率を3000以上、キュリー温度を90℃以上とすることができる。The ferrite sintered body that becomes such a ferrite core is required to have a high specific resistance, magnetic permeability, and Curie temperature. As a ferrite sintered body that satisfies such requirements, the ferrite sintered body of the present embodiment can be used. body has, Fe, Zn, as main components ferrite comprising an oxide of Ni and Cu, among the composition 100 mol% of the main component, the terms of Fe 2 O 3 49 mol% Fe 50 mol% or less, Zn Containing 32 mol% or more and 34 mol% or less in terms of ZnO, Ni containing 10 mol% or more and 12.5 mol% or less in terms of NiO, Cu containing 4 mol% or more and 8 mol% or less in terms of CuO, and obtained by X-ray diffraction. 2 [Theta] is I 1 X-ray diffraction peak intensity definitive to 35 ° over 36 ° or less, 2 [Theta] is the X-ray diffraction peak intensity definitive below 30.5 ° 29.5 ° or more when the I 2, I 2 / I 1 is 0.350 or more 0.380 or less It is characterized by being . As specific values, the specific resistance can be 10 9 Ω · m or more, the magnetic permeability can be 3000 or more, and the Curie temperature can be 90 ° C. or more.

ここで、主成分を上述した組成範囲としたのは、FeがFe23換算で49モル%未満では、透磁率が低くなり、50モル%を超えると比抵抗が低くなるからである。また、ZnがZnO換算で32モル%未満では、透磁率が低くなり、34モル%を超えるとキュリー温度が低くなるからである。また、NiがNiO換算で10モル%未満では、キュリー温度が低くなり、12.5モル%以上では、透磁率が低くなるからである。Here, the reason why the main component is in the above-described composition range is that when Fe is less than 49 mol% in terms of Fe 2 O 3 , the magnetic permeability decreases, and when it exceeds 50 mol%, the specific resistance decreases. Moreover, if Zn is less than 32 mol% in terms of ZnO, the magnetic permeability is low, and if it exceeds 34 mol%, the Curie temperature is low. Further, when Ni is less than 10 mol% in terms of NiO, the Curie temperature is low, and when it is 12.5 mol% or more, the magnetic permeability is low.

また、CuがCuO換算で4モル%未満では透磁率が低くなり、8モル%を超えるとキュリー温度が低くなるからである。なお、ここでいう主成分とは、フェライト焼結体を構成する全成分のうち95質量%以上を占める成分のことを指し、99質量%以上であることが好適である。また、NiのNiO換算でのモル%の値と、ZnのZnO換算でのモル%の値との比率(ZnO換算でのモル%の値/NiO換算でのモル%の値)が、3程度(例えば、2.85〜3.15)であることが好適である。   Moreover, if Cu is less than 4 mol% in terms of CuO, the magnetic permeability is low, and if it exceeds 8 mol%, the Curie temperature is low. In addition, the main component here means the component which occupies 95 mass% or more among all the components which comprise a ferrite sintered compact, and it is suitable that it is 99 mass% or more. Moreover, the ratio of the mol% value of Ni in terms of NiO and the mol% value of Zn in terms of ZnO (mol% value in terms of ZnO / mol% value in terms of NiO) is about 3. (For example, 2.85 to 3.15) is preferable.

また、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピークとは、主成分であるFe、Zn、NiおよびCuの酸化物からなるフェライトの結晶(以下、主結晶と記載することもある。)の(220)面に帰属するものである。また、2θが29.5°以上30.5°以下におけるX線回折ピークとは、主結晶の(311)面に帰属するものである。そして、本発明者らは、主成分組成が上述した範囲を満たすとともに、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたときのI2/I1が0.350以上0.380以下であることにより、比抵抗、透磁率およびキュリー温度が高いフェライト焼結体とすることができることを見出したのである。なお、このように特性に優れたものとできる理由について明らかではないが、主結晶へのZnの固溶の度合いに起因しているのではないかと考えられる。The X-ray diffraction peak obtained by X-ray diffraction and having 2θ of 35 ° or more and 36 ° or less is a ferrite crystal (hereinafter referred to as a main crystal) composed of oxides of Fe, Zn, Ni and Cu as main components. It may belong to the (220) plane. Further, the X-ray diffraction peak at 2θ of 29.5 ° or more and 30.5 ° or less belongs to the (311) plane of the main crystal. The inventors of the present invention have found that the main component composition satisfies the above-mentioned range and the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is I 1 , and the X-ray diffraction peak when 2θ is 29.5 ° or more and 30.5 ° or less. It has been found that when I 2 / I 1 is 0.350 or more and 0.380 or less when the strength is I 2 , a ferrite sintered body having high specific resistance, magnetic permeability and Curie temperature can be obtained. In addition, although it is not clear why it is possible to achieve such excellent characteristics, it may be caused by the degree of solid solution of Zn in the main crystal.

次に、本実施形態のフェライト焼結体の主成分組成のモル%の算出方法については、ICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置を用いて、Fe、Zn、Ni、Cuの含有量を求めて、それぞれFe23、ZnO、NiO、CuOに換算し、それぞれの分子量からモル値を算出し、モル値の合計におけるそれぞれのモル値の占有率を算出することにより求めることができる。Next, about the calculation method of mol% of the main component composition of the ferrite sintered body of the present embodiment, using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer, Fe, Zn, Ni, By calculating the content of Cu, respectively converting to Fe 2 O 3 , ZnO, NiO, CuO, calculating the molar value from each molecular weight, and calculating the occupation ratio of each molar value in the total molar value Can be sought.

次に、I2/I1の算出方法について説明する。まず、フェライト焼結体を粉砕し、粉砕した粉末をX線回折装置(XRD)で分析することにより回折チャートを得る。そして、2θが35°以上36°以下におけるX線回折ピーク強度をI1、29.5°以上30.5°以下におけるX線回折ピークをI2とし、I2をI1で除すことによりI2/I1を求めることができる。Next, a method for calculating I 2 / I 1 will be described. First, the ferrite sintered body is pulverized, and the pulverized powder is analyzed with an X-ray diffractometer (XRD) to obtain a diffraction chart. Then, the intensity of the X-ray diffraction peak when 2θ is 35 ° or more and 36 ° or less is I 1 , the X-ray diffraction peak when 2θ is 39.5 ° or less is I 2, and I 2 is divided by I 1 to give I 2 / I 1 can be found.

次に、比抵抗、透磁率およびキュリー温度の測定方法について説明する。まず、透磁率については、LCRメータを用いて周波数100kHzの条件で試料を測定すればよい。試料としては、例えば、外径が13mm、内径が7mm、厚みが3mmの図1(a)に示すフェライト焼結体からなるリング状のトロイダルコア1を用いて、トロイダルコア1の巻き線部1aの全周にわたって線径が0.2mmの被膜導線を10回巻きつけたものを用いる。また、キュリー温度は、透磁率測定時と同様の試料を用いて、LCRメータを用いたブリッジ回路法により求めることができる。   Next, a method for measuring specific resistance, magnetic permeability, and Curie temperature will be described. First, with respect to the magnetic permeability, a sample may be measured under the condition of a frequency of 100 kHz using an LCR meter. As a sample, for example, a ring-shaped toroidal core 1 made of a ferrite sintered body shown in FIG. 1A having an outer diameter of 13 mm, an inner diameter of 7 mm, and a thickness of 3 mm is used. A wire with a wire diameter of 0.2 mm wound around the entire circumference is used 10 times. Further, the Curie temperature can be obtained by a bridge circuit method using an LCR meter using a sample similar to that at the time of measuring the magnetic permeability.

また、比抵抗については、例えば、φが10〜20mm、厚みが0.5〜2mmの平板形状の試料を用意し、超絶縁抵抗計(TOA製 DSM−8103)を用いて、印可電圧1000V、温度26℃、湿度36%の測定環境下で3端子法(JIS K6271;二重リング電極法)により測定することにより求めることができる。   As for the specific resistance, for example, a plate-shaped sample having a diameter of 10 to 20 mm and a thickness of 0.5 to 2 mm is prepared, and an applied voltage of 1000 V and a temperature of 26 are measured using a super insulation resistance meter (TOA DSM-8103). It can be determined by measuring by the three-terminal method (JIS K6271; double ring electrode method) in a measurement environment of ° C and humidity of 36%.

また、本実施形態のフェライト焼結体は、2θが35°以上36°以下におけるX線回折ピーク強度の半値幅が0.05〜0.35であることが好適である。2θが35°以上36°以下におけるX線回折ピーク強度の半値幅が0.05以上0.35以下であるときには、主結晶間における非晶質層が多くなり過ぎることがなく、主結晶を粒成長させることができるため、透磁率を低下させることなく、機械的特性を向上させることができる。なお、半値幅とは、得られた回折チャートにおいて、2θが35°以上36°以下におけるX線回折ピーク強度の極大値の1/2強度における回折ピーク間の幅の半分の値である。   Further, in the ferrite sintered body of the present embodiment, it is preferable that the half width of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is 0.05 to 0.35. When the full width at half maximum of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is 0.05 or more and 0.35 or less, the amorphous crystal layer between the main crystals does not increase so much that the main crystal can be grown. Therefore, the mechanical characteristics can be improved without reducing the magnetic permeability. The half-value width is a half value of the width between diffraction peaks at 1/2 intensity of the maximum value of X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less in the obtained diffraction chart.

また、本実施形態のフェライト焼結体は、2θが42°以上43°以下におけるX線回折ピーク強度をI3としたとき、I3/I1が0.140以下であることが好適である。ここで、2θが42°以上43°以下におけるX線回折ピークとは、主結晶の(400)面に帰属するものである。そして、2θが42°以上43°以下におけるX線回折ピーク強度をI3としたとき、I3/I1が0.140以下であるときには、一軸配向が少ないため、機械的特性を向上させることができる。Further, in the ferrite sintered body of the present embodiment, it is preferable that I 3 / I 1 is 0.140 or less when the X-ray diffraction peak intensity at 2θ of 42 ° or more and 43 ° or less is I 3 . Here, the X-ray diffraction peak when 2θ is 42 ° or more and 43 ° or less belongs to the (400) plane of the main crystal. When the X-ray diffraction peak intensity when 2θ is 42 ° or more and 43 ° or less is I 3 , when I 3 / I 1 is 0.140 or less, the uniaxial orientation is small, so that the mechanical characteristics can be improved. .

上述したように、2θが35°以上36°以下におけるX線回折ピーク強度の半値幅が0.05以上0.35以下であったり、I3/I1が0.140以下であったりすることによって、機械的特性が向上するため、作製過程における焼成後のバレル加工等による欠け等の不具合が生じることが少なくなり、巻き線や電極付けを行なう際の固定やハンドリング時に掛かる応力による破損が少なくなることから、歩留まりを向上させることができる。As described above, when the half width of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is 0.05 or more and 0.35 or less, or I 3 / I 1 is 0.140 or less, the mechanical characteristics are improved. In order to improve the yield, it is less likely to cause defects such as chipping due to barrel processing after firing in the manufacturing process, and damage due to stress applied during winding and electrode attachment and handling is reduced. Can be improved.

そして、本実施形態のフェライト焼結体は、Moの酸化物およびBiの酸化物の少なくともいずれかを含み、主成分100質量%に対するMoの酸化物の含有量がMoO3換算で0.01質量%以上0.2質量%以下であり、Biの酸化物の含有量がBi23換算で0.01質量%以上0.2質量%以下であることが好適である。MoおよびBiの酸化物は、主結晶の粒成長を促進させることができ、上述した範囲内の含有量とすることによって、キュリー温度をほとんど低下させることなく、透磁率を向上させることができる。特に、キュリー温度をほとんど低下させることなく、透磁率をより向上させるには、Moの酸化物の含有量は、MoO3換算で0.05質量%以上0.1質量%以下であることが好適であり、Biの酸化物の含有量は、Bi23換算で0.05質量%以上0.1質量%以下であることが好適である。The ferrite sintered body of the present embodiment includes at least one of oxide and Bi oxide of Mo, the content of oxides of Mo with respect to the main component of 100 wt% at least 0.01 wt% calculated as MoO 3 It is preferably 0.2% by mass or less, and the Bi oxide content is preferably 0.01% by mass or more and 0.2% by mass or less in terms of Bi 2 O 3 . The oxides of Mo and Bi can promote the grain growth of the main crystal. By setting the content within the above-described range, the magnetic permeability can be improved with almost no decrease in the Curie temperature. In particular, in order to further improve the magnetic permeability without substantially reducing the Curie temperature, the content of the Mo oxide is preferably 0.05% by mass or more and 0.1% by mass or less in terms of MoO 3. The content of the oxide is preferably 0.05% by mass or more and 0.1% by mass or less in terms of Bi 2 O 3 .

また、本実施形態のフェライト焼結体は、Mnの酸化物およびTiの酸化物の少なくともいずれかを含み、主成分100質量%に対するMnの酸化物の含有量がMnO2換算で0.01質量%以上0.3質量%以下であり、Tiの酸化物の含有量がTiO2換算で0.01質量%以上0.2質量%以下であることが好適である。MnおよびTiは、複数の原子価を取り得ることから、焼成時に、価数変化による余剰の酸素で主結晶の酸素欠陥が埋められるため、主結晶の酸素欠陥が少なくなり透磁率を向上させることができる。The ferrite sintered body of the present embodiment includes at least one of Mn oxide and Ti oxide, and the content of Mn oxide with respect to 100% by mass of the main component is 0.01% by mass or more in terms of MnO 2. It is preferably 0.3% by mass or less, and the content of Ti oxide is preferably 0.01% by mass or more and 0.2% by mass or less in terms of TiO 2 . Since Mn and Ti can have a plurality of valences, oxygen defects in the main crystal are filled with surplus oxygen due to valence change during firing, so that oxygen defects in the main crystal are reduced and magnetic permeability is improved. Can do.

また、本実施形態のフェライト焼結体は、Zrの酸化物を含み、主成分100質量%に対するZrの酸化物の含有量がZrO2換算で0.01質量%以上0.2質量%以下であることが好適である。これにより、透磁率をほとんど低下させることなく、比抵抗を向上させることができる。特に、透磁率をほとんど低下させることなく、比抵抗を向上させるには、Zrの酸化物の含有量がZrO2換算で0.01質量%以上0.1質量%以下であることが好適である。The ferrite sintered body of the present embodiment preferably contains a Zr oxide, and the content of the Zr oxide with respect to 100% by mass of the main component is 0.01% by mass or more and 0.2% by mass or less in terms of ZrO 2. It is. Thereby, specific resistance can be improved, without almost reducing magnetic permeability. In particular, in order to improve the specific resistance without substantially reducing the magnetic permeability, it is preferable that the content of the oxide of Zr is 0.01% by mass or more and 0.1% by mass or less in terms of ZrO 2 .

また、主成分や、Mo、Bi、Mn、TiおよびZrの酸化物以外に、Siの酸化物やCaの酸化物を含んでいてもよい。このSiの酸化物やCaの酸化物を含むことによっても比抵抗を向上させることができる。なお、Siの酸化物やCaの酸化物を含むときには、主成分100質量%に対する含有量が、Siの酸化物をSiO2換算、Caの酸化物をCaO換算した合計で0.4質量%以下であることが好適である。In addition to the main components and oxides of Mo, Bi, Mn, Ti, and Zr, Si oxides and Ca oxides may be included. The specific resistance can also be improved by including this Si oxide or Ca oxide. When the oxide of Si or the oxide of Ca is included, the content with respect to 100% by mass of the main component is 0.4% by mass or less in total of the Si oxide converted to SiO 2 and the Ca oxide converted to CaO. Is preferred.

また、Mo、Bi、Mn、TiおよびZrの酸化物の含有量については、ICP発光分光分析装置または蛍光X線分析装置を用いて、Mo、Bi、Mn、TiおよびZrの含有量を求め、それぞれMoO3、Bi23、MnO2、TiO2およびZrO2に換算し、主成分100質量%に対する値を算出すればよい。なお、Siの酸化物やCaの酸化物についても同様である。Further, for the content of oxides of Mo, Bi, Mn, Ti and Zr, the content of Mo, Bi, Mn, Ti and Zr is determined using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer, respectively in terms of MoO 3, Bi 2 O 3, MnO 2, TiO 2 and ZrO 2, it may be calculated values for the main component of 100% by mass. The same applies to Si oxide and Ca oxide.

次に、本実施形態のフェライト焼結体の製造方法の一例について以下に詳細を示す。   Next, details of an example of the method for producing a ferrite sintered body according to the present embodiment will be described below.

まず、出発原料として、Fe、Zn、NiおよびCuの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用意する。このとき平均粒径としては、例えば、Feが酸化鉄(Fe23)、Znが酸化亜鉛(ZnO)、Niが酸化ニッケル(NiO)およびCuが酸化銅(CuO)であるとき、それぞれ0.5μm以上5μm以下である。First, as starting materials, Fe, Zn, Ni and Cu oxides or metal salts such as carbonates and nitrates that produce oxides by firing are prepared. At this time, as the average particle size, for example, when Fe is iron oxide (Fe 2 O 3 ), Zn is zinc oxide (ZnO), Ni is nickel oxide (NiO), and Cu is copper oxide (CuO), 0.5 It is not less than μm and not more than 5 μm.

続いて、Fe23−ZnO−NiOから構成される仮焼粉体からなる第1の原料と、Fe23−CuOから構成される仮焼粉体からなる第2の原料とを作製にあたり、第1の原料用に、酸化鉄、酸化亜鉛および酸化ニッケルを所望の量に秤量する。また、第2の原料用に、酸化鉄および酸化銅を所望の量に秤量する。ここで、第1の原料および第2の原料の作製における酸化鉄の添加量は、第2の原料の作製における酸化鉄の添加量を、例えば、酸化銅と等モル%とし、残量を第1の原料の作製に用いる。Subsequently, a first raw material composed of a calcined powder composed of Fe 2 O 3 —ZnO—NiO and a second raw material composed of a calcined powder composed of Fe 2 O 3 —CuO were prepared. In this case, iron oxide, zinc oxide and nickel oxide are weighed to a desired amount for the first raw material. Further, for the second raw material, iron oxide and copper oxide are weighed to a desired amount. Here, the amount of iron oxide added in the production of the first material and the second material is set such that the amount of iron oxide added in the production of the second material is, for example, equimolar to copper oxide, and the remaining amount is 1 is used to produce the raw material.

そして、第1の原料および第2の原料用に秤量した粉末を、それぞれ別のボールミルや振動ミル等で粉砕混合した後、第1の原料の作製にあたっては還元雰囲気において750℃で2時間以上、第2の原料の作製にあたっては還元雰囲気において650℃で2時間以上それぞれ仮焼することにより、それぞれ仮焼体を得る。   Then, after the powders weighed for the first raw material and the second raw material are pulverized and mixed with separate ball mills, vibration mills, etc., the first raw material is produced in a reducing atmosphere at 750 ° C. for 2 hours or more. In the production of the second raw material, each calcined body is obtained by calcining at 650 ° C. for 2 hours or more in a reducing atmosphere.

次に、第1の原料および第2の原料となる仮焼体を、それぞれ別のボールミルや振動ミルなどに入れて粉砕することにより、仮焼粉体からなる第1の原料および第2の原料を得る。このとき、特に第2の原料となる仮焼体は、平均粒径D50が0.7μm以下となるように粉砕する。そして、この第1の原料および第2の原料を所望の量に秤量して混合した後、大気中において600℃以上700℃以下、昇温速度100℃/h以下の条件で再仮焼することにより、Fe、Zn、NiおよびCuの酸化物からなるフェライトに合成された仮焼体を得る。Next, the first raw material and the second raw material made of the calcined powder are pulverized by putting the calcined bodies as the first raw material and the second raw material in separate ball mills or vibration mills, respectively. Get. At this time, the calcined body as the second raw material is pulverized so that the average particle diameter D 50 is 0.7 μm or less. Then, the first raw material and the second raw material are weighed and mixed to a desired amount, and then re-calcined in the atmosphere under conditions of 600 ° C. to 700 ° C. and a temperature increase rate of 100 ° C./h. Thus, a calcined body synthesized into ferrite composed of oxides of Fe, Zn, Ni and Cu is obtained.

次に、再仮焼によって得られた仮焼体を、ボールミルや振動ミルなどに入れて粉砕し、所定量のバインダ等を加えてスラリーとし、スプレードライヤを用いてこのスラリーを噴霧して造粒することにより球状の顆粒を得る。そして、得られた球状の顆粒を用いてプレス成形して所定形状の成形体を得る。その後、成形体を脱脂炉にて400〜800℃の範囲で脱脂処理を施して脱脂体とした後、これを焼成炉にて1000〜1200℃の最高温度で2〜5時間保持して焼成することにより本実施形態のフェライト焼結体を得ることができる。   Next, the calcined body obtained by recalcination is put in a ball mill or a vibration mill and pulverized, and a predetermined amount of binder or the like is added to form a slurry, and this slurry is sprayed using a spray dryer and granulated. By doing so, spherical granules are obtained. And it press-molds using the obtained spherical granule, and obtains the molded object of a predetermined shape. Then, after performing a degreasing process in the range of 400-800 degreeC in a degreasing furnace, a molded object is made into a degreased body, Then, this is hold | maintained at the highest temperature of 1000-1200 degreeC for 2 to 5 hours, and is baked. Thus, the ferrite sintered body of the present embodiment can be obtained.

なお、上述した方法により得られたフェライト焼結体は、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下であり、比抵抗、透磁率およびキュリー温度の高いフェライト焼結体となる。The ferrite sintered body obtained by the above-described method is obtained by X-ray diffraction. The X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is I 1 and X when 2θ is 29.5 ° or more and 30.5 ° or less is X. When the line diffraction peak intensity is I 2 , I 2 / I 1 is 0.350 or more and 0.380 or less, and a ferrite sintered body having high specific resistance, magnetic permeability, and Curie temperature is obtained.

これに対し、I2/I1が0.380を超えるのは、Znの酸化物の含有量が少なすぎたり、第2の原料の平均粒径が大きすぎたり、再仮焼時の温度が低すぎたり、再仮焼時の温度が高すぎて粉砕後の粒径が大きかったり、再仮焼時の昇温速度が早すぎるときであり、I2/I1が0.350未満となるのは、Znの酸化物の含有量が多すぎるときである。これらの知見に基づき、本発明者らは、主結晶へのZnの固溶の度合いが上述した優れた特性を得られるか否かに起因していると考え、フェライトの合成にあたって、主結晶へのZnの固溶の度合いを増すべく、Fe23−ZnO−NiOから構成される仮焼粉体からなる第1の原料と、Fe23−CuOから構成される仮焼粉体からなる第2の原料とを用いてさらに仮焼するという分割仮焼を採用したのである。On the other hand, I 2 / I 1 exceeds 0.380 because the Zn oxide content is too small, the average particle size of the second raw material is too large, or the temperature during recalcination is too low. Or when the particle size after pulverization is too large, or the rate of temperature increase during recalcination is too fast, and I 2 / I 1 is less than 0.350. This is when there is too much content of oxide. Based on these findings, the present inventors believe that the degree of solid solution of Zn in the main crystal is caused by whether or not the above-described excellent characteristics can be obtained. In order to increase the degree of Zn solid solution, a first raw material composed of a calcined powder composed of Fe 2 O 3 —ZnO—NiO and a calcined powder composed of Fe 2 O 3 —CuO The divisional calcination of further calcination using the second raw material is adopted.

また、再仮焼によって得られた仮焼体の粉砕においては、平均粒径D50が0.8μm以下となるように粉砕することが好適である。これにより、I3/I1を0.140以下とすることができる。なお、平均粒径D50を小さくしようとすれば、粉砕時間を長くしなければならず、長時間の粉砕では、粉砕に用いるボールからの混入のおそれが高くなることから、平均粒径D50の下限値は0.5μm程度とすることが好適である。また、焼成における昇温速度を100℃以上300℃以下とすることが好適である。これにより、2θが35°以上36°以下におけるX線回折ピーク強度の半値幅を0.05以上0.35以下とすることができる。Moreover, in the pulverization of the calcined body obtained by recalcination, it is preferable to pulverize so that the average particle diameter D 50 is 0.8 μm or less. Thereby, I 3 / I 1 can be made 0.140 or less. In order to reduce the average particle diameter D 50 , the pulverization time must be lengthened. Since the pulverization for a long time increases the possibility of mixing from the balls used for pulverization, the average particle diameter D 50 is increased. The lower limit is preferably about 0.5 μm. In addition, it is preferable that the temperature increase rate in firing is 100 ° C. or more and 300 ° C. or less. Thereby, the half value width of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less can be set to 0.05 or more and 0.35 or less.

そして、Mo、Bi、Mn、TiおよびZrの酸化物を含有させるには、例えば、酸化モリブデン(MoO3)、酸化ビスマス(Bi23)、酸化マンガン(MnO2)、酸化チタン(TiO2)および酸化ジルコニウム(ZrO2)を用意して、再仮焼後の粉砕時に添加すればよい。なお、Caの酸化物やSiの酸化物についても、酸化カルシウム(CaO)や酸化珪素(SiO2)を用意して、再仮焼後の粉砕時に添加すればよい。In order to contain oxides of Mo, Bi, Mn, Ti and Zr, for example, molybdenum oxide (MoO 3 ), bismuth oxide (Bi 2 O 3 ), manganese oxide (MnO 2 ), titanium oxide (TiO 2 ). ) And zirconium oxide (ZrO 2 ) may be prepared and added during pulverization after recalcination. As for Ca oxide and Si oxide, calcium oxide (CaO) or silicon oxide (SiO 2 ) may be prepared and added during pulverization after recalcination.

以下、本発明の実施例を具体的に説明するが、本発明はこの実施例に限定されるものではない。以下、本発明のフェライト焼結体の実施例を示す。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Examples of the sintered ferrite body of the present invention are shown below.

主成分組成および作製条件を種々変更したフェライト焼結体を作製し、透磁率およびキュリー温度の確認を行なった。試料の作製方法を以下に示す。まず、平均粒径が1μmの酸化鉄、酸化亜鉛、酸化ニッケルおよび酸化銅の粉末を用意した。そして、酸化亜鉛、酸化ニッケルおよび酸化銅について、表1に示す組成となるように秤量した。次に、酸化鉄について、第2の原料用に酸化銅と等モル%、残部が第1の原料用となるように秤量した。   Ferrite sintered bodies with various changes in the main component composition and production conditions were produced, and the permeability and Curie temperature were confirmed. A method for manufacturing the sample is described below. First, iron oxide, zinc oxide, nickel oxide and copper oxide powders having an average particle size of 1 μm were prepared. And about zinc oxide, nickel oxide, and copper oxide, it measured so that it might become a composition shown in Table 1. Next, the iron oxide was weighed so that the second raw material was equimolar with copper oxide and the balance was for the first raw material.

そして、それぞれ秤量した、第1原料用の酸化鉄、酸化亜鉛および酸化ニッケルをボールミルで粉砕混合した後、還元雰囲気において750℃で2時間仮焼し、得られた仮焼体を粉砕することにより第1の原料を得た。また、第2の原料用の酸化鉄と酸化銅とをボールミルで粉砕混合した後、還元雰囲気において650℃で2時間仮焼し、得られた仮焼体を粉砕することにより第2の原料を得た。なお、第2の原料については、表1に示す平均粒径となるように粉砕した。   Each of the first raw material iron oxide, zinc oxide and nickel oxide weighed and pulverized and mixed with a ball mill, calcined at 750 ° C. for 2 hours in a reducing atmosphere, and the obtained calcined body was pulverized. A first raw material was obtained. Further, after iron oxide and copper oxide for the second raw material are pulverized and mixed with a ball mill, the second raw material is obtained by calcination at 650 ° C. for 2 hours in a reducing atmosphere and pulverizing the obtained calcined body. Obtained. In addition, about the 2nd raw material, it grind | pulverized so that it might become the average particle diameter shown in Table 1.

次に、第1の原料および第2の原料を混合した後、大気中において、表1に示す昇温速度および温度の条件で再仮焼し、その後ボールミルを用いて同一条件により粉砕し、所定量のバインダを加えてスラリーとし、スプレードライヤを用いてスラリーを噴霧して造粒することにより球状の顆粒を得た。次に、得られた球状の顆粒を用いてプレス成形することにより、図1に示すトロイダルコア1の形状の成形体を得た。その後、成形体を脱脂炉にて600℃の最高温度で5時間保持して脱脂処理を施して脱脂体とし、これを焼成炉にて大気雰囲気中、1100℃の最高温度で2時間保持して焼成した。次に、この焼結体に研削加工を施し、外径13mm、内径7mm、厚み3mmのトロイダル形状の試料No.2〜28のフェライト焼結体を得た。   Next, after the first raw material and the second raw material are mixed, they are re-calcined in the atmosphere at the heating rate and temperature conditions shown in Table 1, and then pulverized under the same conditions using a ball mill. A certain amount of binder was added to form a slurry, and the slurry was sprayed and granulated using a spray dryer to obtain spherical granules. Next, the molded product having the shape of the toroidal core 1 shown in FIG. 1 was obtained by press molding using the obtained spherical granules. Thereafter, the molded body is held at a maximum temperature of 600 ° C. in a degreasing furnace for 5 hours to be degreased to obtain a degreased body, and this is held in a firing furnace at a maximum temperature of 1100 ° C. for 2 hours in an air atmosphere. Baked. Next, this sintered body was ground to obtain a toroidal sample No. 1 having an outer diameter of 13 mm, an inner diameter of 7 mm, and a thickness of 3 mm. 2 to 28 ferrite sintered bodies were obtained.

また、上述したように分割して仮焼(以下、分割仮焼と記載する。)した原料を用いず、平均粒径が1μmの酸化鉄、酸化亜鉛、酸化ニッケルおよび酸化銅の粉末を用いて、表1に示す組成となるように秤量し、表1に示す昇温速度および温度の条件で仮焼したこと以外は、上述した方法と同様の作製方法により試料No.1を得た。なお、表1において、分割仮焼の有無を記載している。   Moreover, using the raw material divided | segmented and calcined as mentioned above (henceforth divided calcining), the powder of iron oxide, zinc oxide, nickel oxide, and copper oxide whose average particle diameter is 1 micrometer is used. Sample No. 1 was prepared by the same production method as described above, except that it was weighed so as to have the composition shown in Table 1 and calcined at the temperature rise rate and temperature conditions shown in Table 1. 1 was obtained. In Table 1, the presence or absence of divided calcination is described.

そして、各試料につきXRDにより得られた回折チャートからI2/I1を求めた。また、各試料の巻き線部10aの全周にわたって線径が0.2mmの被膜銅線を10回巻き付けてLCRメータを用いて周波数100kHzにおける透磁率を測定した。また、キュリー温度については、透磁率の測定時と同様の試料を用いて、LCRメータを用いたブリッジ回路法により求めた。Then, to determine the I 2 / I 1 from the diffraction chart obtained by XRD for each sample. Further, a coated copper wire having a wire diameter of 0.2 mm was wound 10 times around the entire circumference of the winding portion 10a of each sample, and the magnetic permeability at a frequency of 100 kHz was measured using an LCR meter. Further, the Curie temperature was obtained by a bridge circuit method using an LCR meter, using the same sample as that at the time of measuring the magnetic permeability.

なお、各試料について、蛍光X線分析装置を用いて、Fe、Zn、NiおよびCuの金属元素量を求めて、それぞれFe23、ZnO、NiOおよびCuOに換算し、それぞれの分子量からモル値を算出し、モル値の合計におけるそれぞれのモル値の占有率を算出して表1に示した。For each sample, the amounts of Fe, Zn, Ni and Cu metal elements were determined using a fluorescent X-ray analyzer and converted to Fe 2 O 3 , ZnO, NiO and CuO, respectively, and the molecular weight was calculated from the respective molecular weights. The values were calculated, and the occupation ratio of each molar value in the total molar value was calculated and shown in Table 1.

Figure 2014003061
Figure 2014003061

表1から、分割仮焼をしなかった試料No.1については、I2/I1の値が0.400であり、透磁率が2290と低かった。また、分割仮焼したものの、粉砕後の第2の原料の平均粒径(D50)が0.8μmである試料No.5、再仮焼時の温度が550℃である試料No.6、再仮焼時の温度が750℃である試料No.9、再仮焼時の昇温速度が120℃/hである試料No.10については、I2/I1の値が0.350〜0.380の範囲外となり、透磁率がいずれも3000未満であった。これは、第2の原料の平均粒径が大きすぎる、再仮焼時の温度が低すぎる、再仮焼時の温度が高すぎて粉砕後の粒径が大きい、再仮焼時の昇温速度が速すぎるなどの要因により、主結晶へのZnの固溶が少なかったため、透磁率が低かったものと考える。From Table 1, sample No. which was not subjected to divided calcination For No. 1 , the value of I 2 / I 1 was 0.400, and the magnetic permeability was as low as 2290. In addition, although the sample was divided and calcined, the second raw material after pulverization had an average particle diameter (D 50 ) of 0.8 μm. 5. Sample No. 5 having a re-calcination temperature of 550 ° C. 6. Sample No. having a re-calcination temperature of 750 ° C. 9, Sample No. with a heating rate of 120 ° C./h during recalcination For 10, the value of I 2 / I 1 was outside the range of 0.350 to 0.380, and the magnetic permeability was less than 3,000. This is because the average particle size of the second raw material is too large, the temperature during recalcination is too low, the temperature during recalcination is too high, and the particle size after pulverization is large, the temperature rise during recalcination It is considered that the magnetic permeability was low because there was little solid solution of Zn in the main crystal due to factors such as the speed being too fast.

また、主成分組成100モル%のうち、FeをFe23換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下の範囲のいずれかを満たさない試料No.13,16,17,22,23,25,26および28については、透磁率が3000未満またはキュリー温度が90未満の値を示した。Of the main component composition of 100 mol%, Fe is 49 mol% or more and 50 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 34 mol% or less in terms of ZnO, and Ni is 10 mol% in terms of NiO. No. 12.5 mol% or less, Cu not satisfying any of the ranges of 4 mol% or more and 8 mol% or less in terms of CuO. For 13, 16, 17, 22, 23, 25, 26 and 28, the permeability was less than 3000 or the Curie temperature was less than 90.

これに対し、主成分組成100モル%のうち、FeをFe23換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下含有し、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下である試料No.2〜4,7,8,11,12,14,15,18〜21,24および27については、透磁率が3000以上であり、キュリー温度(Tc)が90℃以上の値を示し、透磁率およびキュリー温度の高いフェライト焼結体であることがわかった。In contrast, among the main component composition 100 mol%, Fe and Fe 2 O 3 50 mol% 49 mol% or more in terms of less, or more 32 mol% calculated as ZnO Zn 34 mol% or less, the Ni in terms of NiO 10 The X-ray diffraction peak intensity at 2θ of 35 ° or more and 36 ° or less obtained by X-ray diffraction is expressed as I 1 , 2θ. sample No. There when the X-ray diffraction peak intensity definitive to 29.5 ° than 30.5 ° or less was I 2, I 2 / I 1 is 0.350 or more 0.380 or less For 2-4, 7, 8, 11, 12, 14, 15, 18-21, 24 and 27, the magnetic permeability is 3000 or higher, and the Curie temperature (Tc) is 90 ° C or higher. It was also found to be a ferrite sintered body with a high Curie temperature.

また、試料No.2〜4,7,8,11,12,14,15,18〜21,24および27について、実施例1において作製したときと同じ顆粒を用いて、φが10〜20mm、厚みが0.5〜2mmの平板形状の試料を作製し、超絶縁抵抗計(TOA製 DSM−8103)を用いて、印可電圧1000V、温度26℃、湿度36%の測定環境下で3端子法(JIS K6271;二重リング電極法)により測定したところ、すべて109Ω・m以上の値を示した。この結果、本実施形態のフェライト焼結体は、比抵抗、透磁率およびキュリー温度の高いフェライト焼結体であることがわかった。Sample No. About 2-4,7,8,11,12,14,15,18-21,24 and 27, using the same granule as produced in Example 1, φ is 10-20 mm and thickness is 0.5-2 mm A three-terminal method (JIS K6271; double ring) in a measurement environment with an applied voltage of 1000V, temperature of 26 ° C, and humidity of 36% using a super insulation resistance meter (TOA DSM-8103) When measured by the electrode method), all values were 10 9 Ω · m or more. As a result, it was found that the ferrite sintered body of this embodiment is a ferrite sintered body having a high specific resistance, magnetic permeability, and Curie temperature.

焼成時の昇温速度を種々変更したフェライト焼結体を作製し、透磁率および機械的特性の確認を行なった。なお、焼成時の昇温速度を各試料につき表2に示す温度としたこと以外の作製方法は、実施例1の試料No.11と同様とした。実施例1における焼成時の昇温速度は100℃であり、試料No.30は、試料No.11と同じである。   Ferrite sintered bodies with various changes in the heating rate during firing were prepared, and the permeability and mechanical properties were confirmed. Note that the manufacturing method other than setting the temperature rising rate during firing to the temperature shown in Table 2 for each sample was the same as that of Sample No. 1 of Example 1. Same as 11. The heating rate during firing in Example 1 was 100 ° C. 30 is Sample No. Same as 11.

また、半値幅に関しては、2θが35°以上36°以下におけるX線回折ピーク強度の極大値の1/2強度における回折ピーク間の幅の半分の値を表2に示した。また、機械的特性に関しては、JIS R1601−2008に準拠して3点曲げ強度を測定した。また、透磁率および主成分のモル%については、実施例1と同様の方法により求めた。それぞれの結果を表2に示す。   As for the half-value width, Table 2 shows half the width between diffraction peaks at 1/2 intensity of the maximum value of X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less. As for mechanical properties, the three-point bending strength was measured in accordance with JIS R1601-2008. Further, the magnetic permeability and the mol% of the main component were determined by the same method as in Example 1. The results are shown in Table 2.

Figure 2014003061
Figure 2014003061

表2から、2θが35°以上36°以下におけるX線回折ピーク強度の半値幅が0.05以上0.35以下であることにより、透磁率を低下させることなく、機械的特性の向上を図れることがわかった。   From Table 2, it was found that the mechanical characteristics can be improved without lowering the magnetic permeability when the half width of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is 0.05 or more and 0.35 or less. .

再仮焼後の粉砕における平均粒径D50を種々変更したフェライト焼結体を作製し、透磁率および機械的特性の関係の確認を行なった。なお、再仮焼後における平均粒径D50を各試料につき表3に示す大きさとしたこと以外の作製方法は、実施例1の試料No.11と同様とした。実施例1における再仮焼後における平均粒径D50は0.80μmであり、試料No.40は、試料No.11と同じである。また、試料No.42と試料No.43との違いは、焼成時の昇温速度のみである。The average particle diameter D 50 in the grinding after re-calcination to produce various modified ferrite sintered body was performed to confirm the relationship between permeability and mechanical properties. The average particle diameter manufacturing method other than the D 50 to the size shown in per Table 3 in each sample after re-calcination, the sample of Example 1 No. Same as 11. The average particle diameter D 50 after recalcination in Example 1 is 0.80 μm. 40 is sample No. Same as 11. Sample No. 42 and sample no. The only difference from 43 is the rate of temperature rise during firing.

再仮焼後の平気粒径D50については、マイクロトラック装置(日機装製 MT3300EXII)を用いたレーザー回折散乱法により測定した。また、各試料につきXRDにより得ら
れた回折チャートからI3/I1を求めた。さらに、実施例2と同様の方法により、3点曲げ強度の値を求めた。また、透磁率および主成分のモル%については、実施例1と同様の方法により求めた。結果を表3に示す。
For calm particle size D 50 after re-calcination was measured by a laser diffraction scattering method using a micro-track machine (manufactured by Nikkiso Co. MT3300EXII). Further, I 3 / I 1 was determined from the diffraction chart obtained by XRD for each sample. Furthermore, the value of 3-point bending strength was determined by the same method as in Example 2. Further, the magnetic permeability and the mol% of the main component were determined by the same method as in Example 1. The results are shown in Table 3.

Figure 2014003061
Figure 2014003061

表3から、I3/I1が0.140以下であることにより、機械的特性の向上を図れることがわかった、なお、実施例2,3において、機械的特性の評価として3点曲げ強度で行なったが、JIS1610−2003に準拠した硬度の測定によっても評価することができる。3点曲げ強度が150MPaであった試料No.40の硬度は7.5GPaであり、3点曲げ強度が170MPaであった試料No.44の硬度は8.2GPaであった。From Table 3, it was found that when I 3 / I 1 is 0.140 or less, the mechanical characteristics can be improved. In Examples 2 and 3, the mechanical characteristics were evaluated at a three-point bending strength. However, it can also be evaluated by measuring the hardness in accordance with JIS1610-2003. Sample No. 3 having a three-point bending strength of 150 MPa. Sample No. 40 had a hardness of 7.5 GPa and a three-point bending strength of 170 MPa. The hardness of 44 was 8.2 GPa.

次に、実施例1の試料No.11と同様の組成に、Moの酸化物、Biの酸化物の添加量を種々変更して含有させたフェライト焼結体を作製し、透磁率およびキュリー温度の確認を行なった。なお、再仮焼後の粉砕時に、表2に示す含有量となる酸化モリブデン、酸化ビスマスを添加したこと以外は、実施例1と同様の方法により試料を作製した。また、透磁率およびキュリー温度については、実施例1と同様の方法により測定した。   Next, sample no. A ferrite sintered body containing the same composition as in No. 11 with various addition amounts of Mo oxide and Bi oxide was prepared, and the permeability and Curie temperature were confirmed. A sample was prepared in the same manner as in Example 1 except that molybdenum oxide and bismuth oxide having the contents shown in Table 2 were added during pulverization after recalcination. Further, the magnetic permeability and the Curie temperature were measured by the same method as in Example 1.

また、実施例1と同様の方法により、主成分のモル%比率を算出した。また、MoおよびBiについて、蛍光X線分析装置を用いて金属元素量を求めてMoO3、Bi23に換算し、主成分100質量%に対する質量の算出値を表4に示した。Further, the mol% ratio of the main component was calculated by the same method as in Example 1. Further, the Mo and Bi, seeking amount of metal element in terms of MoO 3, Bi 2 O 3 using a fluorescent X-ray analyzer, the calculated value of the mass relative to the main component of 100% by mass are shown in Table 4.

Figure 2014003061
Figure 2014003061

表4から、主成分100質量%に対し、Moの酸化物の含有量がMoO3換算で0.01質量%以上0.2質量%以下またはBiの酸化物の含有量がBi23換算で0.01質量%以上0.2質量%以下であることにより、キュリー温度をほとんど低下させることなく、透磁率の向上を図れることがわかった。特に、試料No.49,50は、透磁率が高い結果が得られており、主成分100質量%に対するMoの酸化物の含有量は、MoO3換算で0.05質量%以上0.1質量%以下が好適とわかった。また、Biにつては、試料No.56,57において透磁率が高い結果が得られており、主成分100質量%に対するBiの酸化物の含有量は、Bi23換算で0.05質量%以上0.1質量%以下が好適とわかった。From Table 4, with respect to 100% by mass of the main component, the Mo oxide content is 0.01 to 0.2% by mass in terms of MoO 3 or the Bi oxide content is 0.01% by mass in terms of Bi 2 O 3. It has been found that when the content is 0.2% by mass or less, the magnetic permeability can be improved without substantially reducing the Curie temperature. In particular, sample no. Nos. 49 and 50 obtained high magnetic permeability, and it was found that the Mo oxide content with respect to 100% by mass of the main component was suitably 0.05% by mass or more and 0.1% by mass or less in terms of MoO 3 . For Bi, sample no. The results of high magnetic permeability were obtained in 56 and 57, and it was found that the Bi oxide content relative to 100% by mass of the main component was suitably 0.05% by mass or more and 0.1% by mass or less in terms of Bi 2 O 3 .

次に、実施例4の試料No.50と同様の組成に、Mnの酸化物、Tiの酸化物の添加量を種々変更して含有させたフェライト焼結体を作製し、透磁率およびキュリー温度の確認を行なった。なお、再仮焼後の粉砕時に、表3に示す含有量となる酸化マンガン、酸化チタンを添加したこと以外は、実施例2と同様の方法により試料を作製した。また、透磁率およびキュリー温度については、実施例1と同様の方法により測定した。   Next, sample no. Ferrite sintered bodies were prepared by adding various amounts of Mn oxide and Ti oxide to the same composition as 50, and the permeability and Curie temperature were confirmed. In addition, the sample was produced by the method similar to Example 2 except having added the manganese oxide and titanium oxide used as content shown in Table 3 at the time of the grinding | pulverization after recalcination. Further, the magnetic permeability and the Curie temperature were measured by the same method as in Example 1.

また、実施例1と同様の方法により、主成分のモル%比率を算出した。また、Mo、Mn、Tiについて、蛍光X線分析装置を用いて金属元素量を求めてMoO3、MnO2、TiO2に換算し、主成分100質量%に対する質量の算出値を表5に示した。なお、全試料ともに、Moの酸化物については、MoO3換算で0.1質量%であったため表5には記載していない。Further, the mol% ratio of the main component was calculated by the same method as in Example 1. Further, Mo, Mn, for Ti, seeking amount of metal element in terms of MoO 3, MnO 2, TiO 2 using a fluorescent X-ray analyzer, the calculated value of the mass relative to the main component of 100% by mass shown in Table 5 It was. In all samples, the oxide of Mo is 0.1% by mass in terms of MoO 3 , so it is not listed in Table 5.

Figure 2014003061
Figure 2014003061

表5から、主成分100質量%に対し、Mnの酸化物の含有量がMnO2換算で0.01質量%以上0.3質量%以下、Tiの酸化物の含有量がTiO2換算で0.01質量%以上0.2質量%以下であることにより、キュリー温度をほとんど低下させることなく、透磁率の向上を図れることがわかった。From Table 5, with respect to 100% by mass of the main component, the content of the Mn oxide is 0.01% by mass to 0.3% by mass in terms of MnO 2 , and the content of the Ti oxide is 0.01% by mass to 0.2% in terms of TiO 2. It was found that the magnetic permeability can be improved with almost no decrease in Curie temperature by being less than or equal to mass%.

次に、実施例5の試料No.67と同様の組成に、Zrの酸化物の添加量を種々変更して含有させたフェライト焼結体を作製し、透磁率および比抵抗の確認を行なった。なお、再仮焼後の粉砕時に、表6に示す含有量となる酸化ジルニウムを添加したこと以外は、実施例3と同様の方法により試料を作製した。また、透磁率と比抵抗については、実施例1と同様の方法により測定した。   Next, sample no. Ferrite sintered bodies containing various changes in the amount of Zr oxide added in the same composition as in 67 were prepared, and the magnetic permeability and specific resistance were confirmed. In addition, the sample was produced by the method similar to Example 3 except having added the zirconium oxide used as content shown in Table 6 at the time of the grinding | pulverization after recalcination. Further, the magnetic permeability and specific resistance were measured by the same method as in Example 1.

また、実施例1と同様の方法により、主成分のモル%比率を算出した。また、Mo、Mn、Zrについて、蛍光X線分析装置を用いて金属元素量を求めてMoO3、MnO2、ZrO2に換算し、主成分100質量%に対する質量の算出値を表6に示した。なお、全試料ともに、Moの酸化物はMoO3換算で0.1質量%であり、Mnの酸化物はMnO2換算で0.2質量%であったため表6には記載していない。Further, the mol% ratio of the main component was calculated by the same method as in Example 1. Further, Mo, Mn, for Zr, seeking amount of metal element in terms of MoO 3, MnO 2, ZrO 2 using a fluorescent X-ray analyzer, shows the calculated value of the mass relative to the main component of 100% by mass Table 6 It was. In all samples, the oxide of Mo was 0.1% by mass in terms of MoO 3 , and the oxide of Mn was 0.2% by mass in terms of MnO 2 , so that it is not shown in Table 6.

Figure 2014003061
Figure 2014003061

表6から、主成分100質量%に対し、Zrの酸化物の含有量がZrO2換算で0.01質量%以上0.2質量%以下であることにより、透磁率をほとんど低下させることなく、比抵抗の向上を図れることがわかった。From Table 6, when the content of the oxide of Zr is 0.01% by mass or more and 0.2% by mass or less in terms of ZrO 2 with respect to 100% by mass of the main component, the specific resistance can be improved without substantially reducing the magnetic permeability. I was able to plan.

そして、本実施形態のフェライト焼結体は、比抵抗、透磁率およびキュリー温度の高いものであることから、本実施形態のフェライト焼結体からなるフェライトコアを単独、またはフェライトコアに金属線を巻き付けたコイル部品として用いることが好適であることがわかった。特に、近年の各種機器は、LAN接続ができるようになってきており、このLANインターフェース部においてパルストランスに用いられるコイル部品には優れた特性が求められるが、本実施形態のコイル部品は要求特性を満たすものであることから、パルストランスに好適なコイル部品であることがわかった。   And since the ferrite sintered compact of this embodiment is a thing with high specific resistance, magnetic permeability, and Curie temperature, the ferrite core which consists of a ferrite sintered compact of this embodiment is independent, or a metal wire is used for a ferrite core. It has been found that it is suitable for use as a wound coil component. In particular, various devices in recent years have become capable of LAN connection, and coil components used for pulse transformers in this LAN interface section are required to have excellent characteristics, but the coil components of this embodiment are required characteristics. Therefore, it was found that the coil component is suitable for a pulse transformer.

1:トロイダルコア
1a:巻線部
2:ボビンコア
2a:巻線部
1: Toroidal core 1a: Winding part 2: Bobbin core 2a: Winding part

Claims (9)

Fe、Zn、NiおよびCuの酸化物からなるフェライトを主成分とし、該主成分の組成100モル%のうち、FeをFe23換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上34モル%以下、NiをNiO換算で10モル%以上12.5モル%以下、CuをCuO換算で4モル%以上8モル%以下含有するフェライト焼結体であって、X線回折によって得られる、2θが35°以上36°以下におけるX線回折ピーク強度をI1、2θが29.5°以上30.5°以下におけるX線回折ピーク強度をI2としたとき、I2/I1が0.350以上0.380以下であることを特徴とするフェライト焼結体。Fe, Zn, as main components ferrite comprising an oxide of Ni and Cu, among the composition 100 mol% of the main component, Fe and Fe 2 O 3 50 mol% 49 mol% or more in terms of less, ZnO converted Zn A ferrite sintered body containing 32 mol% or more and 34 mol% or less, Ni containing 10 mol% or more and 12.5 mol% or less in terms of NiO, and Cu containing 4 mol% or more and 8 mol% or less in terms of CuO, When the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less obtained by line diffraction is I 1 , and the X-ray diffraction peak intensity when 2θ is 29.5 ° or more and 30.5 ° or less is I 2 , 2 / I 1 is 0.350 or more and 0.380 or less, and the ferrite sintered compact characterized by the above-mentioned. 2θが35°以上36°以下におけるX線回折ピーク強度の半値幅が0.05以上0.35以下であることを特徴とする請求項1に記載のフェライト焼結体。 2. The ferrite sintered body according to claim 1, wherein the half width of the X-ray diffraction peak intensity when 2θ is 35 ° or more and 36 ° or less is 0.05 or more and 0.35 or less. 2θが42°以上43°以下におけるX線回折ピーク強度をI3としたとき、I3/I1が0.140以下であることを特徴とする請求項1または請求項2に記載のフェライト質焼結体。 3. The ferrite material according to claim 1 , wherein I 3 / I 1 is 0.140 or less, where I 3 is an X-ray diffraction peak intensity at 2θ of 42 ° or more and 43 ° or less. Sintered body. Moの酸化物およびBiの酸化物の少なくともいずれかを含み、前記主成分100質量%に対するMoの酸化物の含有量がMoO3換算で0.01質量%以上0.2質量%以下であり、Biの酸化物の含有量がBi23換算で0.01質量%以上0.2質量%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載のフェライト焼結体。Including at least one of an oxide of Mo and an oxide of Bi, the content of the oxide of Mo with respect to 100% by mass of the main component is 0.01% by mass or more and 0.2% by mass or less in terms of MoO 3 ; ferrite sintered body according to any one of claims 1 to 3 content of the oxide of Bi is equal to or less than 0.2 mass% to 0.01 mass% in terms of Bi 2 O 3 . Mnの酸化物およびTiの酸化物の少なくともいずれかを含み、前記主成分100質量%に対するMnの酸化物の含有量がMnO2換算で0.01質量%以上0.3質量%以下、Tiの酸化物の含有量がTiO2換算で0.01質量%以上0.2質量%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載のフェライト焼結体。It contains at least one of Mn oxide and Ti oxide, and the content of Mn oxide with respect to 100% by mass of the main component is 0.01% by mass to 0.3% by mass in terms of MnO 2 , The ferrite sintered body according to any one of claims 1 to 4, wherein the oxide content is 0.01% by mass or more and 0.2% by mass or less in terms of TiO 2 . Zrの酸化物を含み、前記主成分100質量%に対するZrの酸化物の含有量がZrO2換算で0.01質量%以上0.2質量%以下であることを特徴とする請求項1乃至請求項5のいずれかに記載のフェライト焼結体。The content of the Zr oxide with respect to 100% by mass of the main component is 0.01% by mass or more and 0.2% by mass or less in terms of ZrO 2 , including a Zr oxide. Item 6. The ferrite sintered body according to any one of Items 5 to 6. 請求項1乃至請求項6のいずれかに記載のフェライト焼結体からなることを特徴とするフェライトコア。 A ferrite core comprising the ferrite sintered body according to any one of claims 1 to 6. 請求項7に記載のフェライトコアに金属線を巻きつけてなることを特徴とするコイル部品。 A coil component comprising a ferrite core according to claim 7 wound around a metal wire. パルストランスに用いることを特徴とする請求項8に記載のコイル部品。 The coil component according to claim 8, wherein the coil component is used in a pulse transformer.
JP2014522660A 2012-06-26 2013-06-26 Ferrite sintered body, ferrite core and coil component Active JP5898313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522660A JP5898313B2 (en) 2012-06-26 2013-06-26 Ferrite sintered body, ferrite core and coil component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012143225 2012-06-26
JP2012143225 2012-06-26
JP2014522660A JP5898313B2 (en) 2012-06-26 2013-06-26 Ferrite sintered body, ferrite core and coil component
PCT/JP2013/067531 WO2014003061A1 (en) 2012-06-26 2013-06-26 Sintered ferrite, ferrite core, and coil component

Publications (2)

Publication Number Publication Date
JP5898313B2 JP5898313B2 (en) 2016-04-06
JPWO2014003061A1 true JPWO2014003061A1 (en) 2016-06-02

Family

ID=49783202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014522660A Active JP5898313B2 (en) 2012-06-26 2013-06-26 Ferrite sintered body, ferrite core and coil component

Country Status (3)

Country Link
JP (1) JP5898313B2 (en)
CN (1) CN104411655B (en)
WO (1) WO2014003061A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024843B1 (en) * 2015-04-02 2016-11-16 Tdk株式会社 Ferrite composition and electronic component
GB2550376B (en) 2016-05-17 2018-07-11 Thales Holdings Uk Plc Magnetic phase transition exploitation for enhancement of electromagnets
CN106278224B (en) * 2016-08-19 2018-12-21 横店集团东磁股份有限公司 A kind of low temperature co-fired soft magnetism copper zinc ferrite material and preparation method thereof
WO2018048394A1 (en) 2016-09-07 2018-03-15 South Dakota Board Of Regents Thermally stabilized redox materials and applications thereof
JP6540977B1 (en) * 2018-01-17 2019-07-10 Tdk株式会社 Ferrite sintered body and electronic component using the same
CN109336578A (en) * 2018-06-22 2019-02-15 横店集团东磁股份有限公司 A kind of NiCuZn Ferrite Material and its preparation method and application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100509A (en) * 2000-09-22 2002-04-05 Mitsubishi Materials Corp Composite type magnetic body ceramic material and its manufacturing method
JP2003272914A (en) * 2002-03-12 2003-09-26 Sumitomo Metal Ind Ltd Oxide magnetic material, manufacturing method of the same, and laminated chip inductor
JP2005064468A (en) * 2003-07-28 2005-03-10 Kyocera Corp Ferrite core for rfid, its manufacturing method, and ferrite coil using the same
JP4826093B2 (en) * 2005-01-31 2011-11-30 Tdk株式会社 Ferrite, electronic component and manufacturing method thereof
CN101236819B (en) * 2007-12-11 2010-08-11 乳源东阳光磁性材料有限公司 A nickel-copper-zinc ferrite and its making method
CN100589215C (en) * 2007-12-29 2010-02-10 电子科技大学 NiZn series ferrite material and preparing method thereof
US8889029B2 (en) * 2010-08-03 2014-11-18 Kyocera Corporation Ferrite sintered body and noise filter including the same
CN102211929A (en) * 2011-03-23 2011-10-12 泰兴市中恒建筑装饰工程有限公司 Low-temperature sintered high-permeability NiCuZn ferrite material
CN102390984B (en) * 2011-07-29 2013-06-12 电子科技大学 NiZn ferrite material with high magnetic conductivity and high Curie temperature and preparation method thereof

Also Published As

Publication number Publication date
JP5898313B2 (en) 2016-04-06
CN104411655B (en) 2016-07-06
WO2014003061A1 (en) 2014-01-03
CN104411655A (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5898313B2 (en) Ferrite sintered body, ferrite core and coil component
JP5960904B2 (en) Ferrite sintered body, ferrite core and coil component
JPWO2012018052A1 (en) Ferrite sintered body and noise filter including the same
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP4973716B2 (en) Ferrite composition for antenna element, magnetic member for antenna element, and antenna element
JP2012244064A (en) Ferrite core and electronic component
JP5693725B2 (en) Ferrite sintered body and ferrite core provided with the same
KR20160118974A (en) Ferrite composition and electronic component
JP5734078B2 (en) Ferrite sintered body and noise filter including the same
JP5836887B2 (en) Ferrite sintered body and noise filter including the same
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP5733995B2 (en) Ferrite sintered body and noise filter including the same
JP2010215453A (en) NiCuZn FERRITE
JP2016094321A (en) Ferrite sintered body and noise filter
JP5952123B2 (en) Ferrite sintered body and noise filter including the same
JP5510775B2 (en) Ferrite sintered body, coil component, and method of manufacturing ferrite sintered body
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP2005194134A (en) Ferrite core and its production method
TWI761757B (en) Manganese-cobalt-zinc-based fertilizer granulated iron and method for producing the same
TWI761760B (en) Manganese-zinc-based fertilizer granulated iron and method for producing the same
JP2001261345A (en) Mn-zn ferrite and method of producing the same
JP5541475B2 (en) Ferrite sintered body, manufacturing method thereof, and electronic component
JP5660698B2 (en) Magnetic oxide material
JP6408323B2 (en) Ferrite sintered body, ferrite core and coil component
JP6442251B2 (en) Magnetic material and magnetic porcelain composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5898313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150