JPWO2013172181A1 - Heat exchanger and refrigeration cycle apparatus - Google Patents

Heat exchanger and refrigeration cycle apparatus Download PDF

Info

Publication number
JPWO2013172181A1
JPWO2013172181A1 JP2014515560A JP2014515560A JPWO2013172181A1 JP WO2013172181 A1 JPWO2013172181 A1 JP WO2013172181A1 JP 2014515560 A JP2014515560 A JP 2014515560A JP 2014515560 A JP2014515560 A JP 2014515560A JP WO2013172181 A1 JPWO2013172181 A1 JP WO2013172181A1
Authority
JP
Japan
Prior art keywords
fluid
distribution mechanism
heat exchanger
flow path
communication hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515560A
Other languages
Japanese (ja)
Other versions
JP5759068B2 (en
Inventor
宗史 池田
宗史 池田
寿守務 吉村
寿守務 吉村
裕之 森本
裕之 森本
傑 鳩村
傑 鳩村
進一 内野
進一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014515560A priority Critical patent/JP5759068B2/en
Application granted granted Critical
Publication of JP5759068B2 publication Critical patent/JP5759068B2/en
Publication of JPWO2013172181A1 publication Critical patent/JPWO2013172181A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

同一平面上に互いに平行に並ぶように配列された第1流体流路3と、第1流体流路3が配列される平面と平行な平面上に配列された第2流体流路4とを一組とする層が伝熱ブロック2内に形成された構成を有し、第2流体流路4の両端部には、第2流体流路4の方向と直交する方向に延びる一対の連通穴5が形成されて第2流体流路4が全て連通するように構成され、伝熱ブロック2の側面で一方の連通穴5に同軸上に接続された入口導管6aと、を備え、一方の連通穴5の内部を螺旋状に仕切る第2流体分配機構712と、入口導管6aの内部を螺旋状に仕切り、入口導管6aの一方の連通穴5側の端で第2流体分配機構712と連なる第1流体分配機構711と、を有し、一方の連通穴5と反対側の第1流体分配機構711の端が入口導管6aを重力方向と並行に分割しているものである。The first fluid flow paths 3 arranged to be parallel to each other on the same plane and the second fluid flow paths 4 arranged on a plane parallel to the plane on which the first fluid flow paths 3 are arranged are combined. A pair of communication holes 5 extending in the direction perpendicular to the direction of the second fluid flow path 4 are formed at both ends of the second fluid flow path 4. And the second fluid flow path 4 is configured to communicate with each other, and is provided with an inlet conduit 6a coaxially connected to one communication hole 5 on the side surface of the heat transfer block 2, and includes one communication hole. The first fluid distribution mechanism 712 that partitions the inside of the spiral 5 and the first fluid distribution mechanism 712 at the end on the one communication hole 5 side of the inlet conduit 6a. A fluid distribution mechanism 711, and the end of the first fluid distribution mechanism 711 opposite to the one communication hole 5 is an inlet guide. 6a and in which it is divided parallel to the direction of gravity.

Description

本発明は、高温流体である第1流体と低温流体である第2流体との熱交換を行う熱交換器及び冷凍サイクル装置に関する。   The present invention relates to a heat exchanger and a refrigeration cycle apparatus that perform heat exchange between a first fluid that is a high-temperature fluid and a second fluid that is a low-temperature fluid.

従来、ヒートポンプ式冷凍・空調システムとして、蒸気圧縮式冷凍回路で構成されるものが利用されている。冷凍回路内には、第1流体と第2流体との間で熱交換を行う熱交換器が備えられており、第1流体が第2流体により加熱され、冷却された第2流体が凝縮を行う凝縮器、また、第1流体が第2流体により冷却され、加熱された第2流体が蒸発を行う蒸発器を有する。この熱交換器として、第1流体を通す流路と第1流体と熱交換を行う第2流体の流路とをプレートの積層により交互に形成した積層プレート熱交換器などがある。   Conventionally, a heat pump refrigeration / air-conditioning system including a vapor compression refrigeration circuit has been used. The refrigeration circuit includes a heat exchanger that exchanges heat between the first fluid and the second fluid. The first fluid is heated by the second fluid, and the cooled second fluid condenses. And a condenser for performing the evaporation, and the first fluid is cooled by the second fluid and the heated second fluid is evaporated. As this heat exchanger, there is a laminated plate heat exchanger in which a flow path for passing a first fluid and a flow path for a second fluid that exchanges heat with the first fluid are alternately formed by stacking plates.

しかしながら、積層プレート熱交換器は、複数の並列した流路を有しており、熱交換器に二相状態の冷媒が流入する場合(例えば、蒸発器で使用する場合)、熱交換器流入部において、各流路へ気体と液体の比率が片寄って流入する、冷媒の分配の偏りが生じる。このように、冷媒の分配の偏りが生じると、熱交換器の伝熱性能が悪化するため、分配の偏りを改善する対策が必要となる。   However, the laminated plate heat exchanger has a plurality of parallel flow paths, and when a two-phase refrigerant flows into the heat exchanger (for example, when used in an evaporator), the heat exchanger inflow portion In this case, the distribution of the refrigerant is biased such that the ratio of the gas and the liquid is shifted to each flow path. As described above, when the distribution of the refrigerant is biased, the heat transfer performance of the heat exchanger is deteriorated, so that a countermeasure for improving the bias of the distribution is required.

不均等分配を改善するために、熱交換器の冷媒取入口に冷媒分配手段として分配管を設け、各流路へ気体と液体とを均等に分配し、熱交換器の伝熱性能を向上させる熱交換器がある(例えば、特許文献1参照)。   In order to improve non-uniform distribution, a distribution pipe is provided as a refrigerant distribution means at the refrigerant inlet of the heat exchanger, and gas and liquid are evenly distributed to each flow path to improve the heat transfer performance of the heat exchanger. There exists a heat exchanger (for example, refer patent document 1).

特開平10−267586号公報(要約)JP-A-10-267586 (summary)

特許文献1の熱交換器では、冷媒分配手段に分配管を用いて各流路に冷媒を均等に分配することで、熱交換性能の向上を図っている。しかし、特許文献1の構造において分配管を用いた場合においても、冷媒の流動状態によっては、不均等分配を改善することができず、不均等分配が生じる場合がある。この場合、熱交換性能の向上に繋がらない可能性があるという問題があった。   In the heat exchanger of Patent Document 1, the heat exchange performance is improved by distributing the refrigerant equally to each flow path using a distribution pipe in the refrigerant distribution means. However, even when a distribution pipe is used in the structure of Patent Document 1, uneven distribution cannot be improved depending on the flow state of the refrigerant, and uneven distribution may occur. In this case, there has been a problem that the heat exchange performance may not be improved.

本発明はこのような点に鑑みなされたもので、熱交換器に流入する冷媒の流動状態によらず、冷媒の分配の偏りを抑制できて伝熱性能の向上を図ることが可能な熱交換器及び冷凍サイクル装置を提供することを目的とする。   The present invention has been made in view of such points, and heat exchange capable of suppressing the uneven distribution of the refrigerant and improving the heat transfer performance regardless of the flow state of the refrigerant flowing into the heat exchanger. An object is to provide a container and a refrigeration cycle apparatus.

本発明に係る熱交換器は、同一平面上に互いに平行に並ぶように配列された第1流体流路と、第1流体流路が配列される平面と平行な平面上に配列された第2流体流路とを一組とする層が伝熱ブロック内に形成された構成を有し、第2流体流路の両端部には、第2流体流路の方向と直交する方向に延びる一対の連通穴が形成されて第2流体流路が全て連通するように構成され、伝熱ブロックの側面で一対の連通穴のうちの一方の連通穴に同軸上に接続された入口導管と、を備え、一方の連通穴の内部を螺旋状に仕切る第2流体分配機構と、入口導管の内部を螺旋状に仕切り、入口導管の一方の連通穴側の端で第2流体分配機構と連なる第1流体分配機構と、を有し、一方の連通穴と反対側の第1流体分配機構の端が、入口導管を重力方向と並行に分割しているものである。   The heat exchanger according to the present invention includes a first fluid channel arranged to be parallel to each other on the same plane, and a second column arranged on a plane parallel to the plane on which the first fluid channel is arranged. A pair of layers with the fluid flow path is formed in the heat transfer block, and a pair of ends extending in a direction perpendicular to the direction of the second fluid flow path are provided at both ends of the second fluid flow path. An inlet conduit having a communication hole formed so that the second fluid flow path is in communication with each other and coaxially connected to one of the pair of communication holes on the side surface of the heat transfer block. , A second fluid distribution mechanism that spirally partitions the inside of one communication hole, and a first fluid that spirally partitions the interior of the inlet conduit and communicates with the second fluid distribution mechanism at one end of the inlet conduit on the side of the one communication hole And an end of the first fluid distribution mechanism opposite to the one communication hole is arranged so that the inlet conduit is aligned with the direction of gravity. It is one that is divided into.

本発明に係る熱交換器は、熱交換器の入口流路に流体分配機構を設けることにより、冷媒の分配の偏りを抑制して、熱交換性能の向上を図ることが可能な熱交換器を得ることができる。   The heat exchanger according to the present invention is a heat exchanger capable of suppressing the uneven distribution of the refrigerant and improving the heat exchange performance by providing a fluid distribution mechanism in the inlet channel of the heat exchanger. Can be obtained.

本発明の実施の形態1に係る熱交換器を模式的に示す斜視図である。It is a perspective view which shows typically the heat exchanger which concerns on Embodiment 1 of this invention. 図2(a)は、図1の長手方向に垂直な断面図で、連通穴部分で切断した縦断面図、図2(b)は、図1の長手方向に平行な縦断面図である。2A is a cross-sectional view perpendicular to the longitudinal direction of FIG. 1 and is a longitudinal cross-sectional view cut at the communicating hole portion, and FIG. 2B is a vertical cross-sectional view parallel to the longitudinal direction of FIG. 本発明の実施の形態1に係る熱交換器の第2流体流路部分で切断した要部横断面図である。It is a principal part cross-sectional view cut | disconnected in the 2nd fluid flow-path part of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る複数層で構成した熱交換器を模式的に示す斜視図である。It is a perspective view which shows typically the heat exchanger comprised by the multiple layer which concerns on Embodiment 1 of this invention. 図1の流体分配機構を示す図である。It is a figure which shows the fluid distribution mechanism of FIG. 図5の流体分配機構の変形例1を示す図である。It is a figure which shows the modification 1 of the fluid distribution mechanism of FIG. 図5の流体分配機構の変形例2を示す図である。It is a figure which shows the modification 2 of the fluid distribution mechanism of FIG. 図5の流体分配機構の変形例3を示す図である。It is a figure which shows the modification 3 of the fluid distribution mechanism of FIG. 本発明の実施の形態1に係る熱交換器の入口導管部分の出入口の要部横断面図である。It is a principal part cross-sectional view of the entrance / exit of the inlet conduit part of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の入口導管部分の出入口及び入口連通穴の入口における流体の流動状態を示す要部横断面図である。It is a principal part cross-sectional view which shows the flow state of the fluid in the inlet / outlet of the inlet conduit part of the heat exchanger which concerns on Embodiment 1 of this invention, and the inlet of an inlet communicating hole. 図1の入口ノズルに流入する流体の流動状態を示す図である。It is a figure which shows the flow state of the fluid which flows in into the inlet nozzle of FIG. 本発明の実施の形態2に係る冷凍サイクル装置を説明するヒートポンプ式暖房システムを示す機器の構成図である。It is a block diagram of the apparatus which shows the heat pump type heating system explaining the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置を説明するヒートポンプ式給湯システムを示す機器の構成図である。It is a block diagram of the apparatus which shows the heat pump type hot-water supply system explaining the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器を模式的に示す斜視図である。図2(a)は、図1の長手方向に垂直な断面図で、入口連通穴及び入口ノズル部分で切断した縦断面図、図2(b)は、図1の長手方向に平行な縦断面図である。図3は、図1の第2流体流路部分で切断した要部横断面図である。なお、図1は、熱交換器の構成をわかりやすく図示する関係上、第2流体流路の列数が図2及び図3に記載のものよりも少なくなっている。なお、図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a perspective view schematically showing a heat exchanger according to Embodiment 1 of the present invention. 2A is a cross-sectional view perpendicular to the longitudinal direction of FIG. 1, and is a vertical cross-sectional view cut along the inlet communication hole and the inlet nozzle portion. FIG. 2B is a vertical cross-section parallel to the longitudinal direction of FIG. FIG. FIG. 3 is a cross-sectional view of the main part taken along the second fluid flow path part of FIG. In FIG. 1, the number of rows of the second fluid flow paths is smaller than that shown in FIGS. 2 and 3 because the configuration of the heat exchanger is illustrated in an easily understandable manner. In FIG. 1 and the drawings to be described later, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

この熱交換器1は、伝熱ブロック2に、第1流体流路3(図1の例では5列)と、第1流体流路3と流れる方向が並行で、第2流体流路4(図1の例では13列2行)とを1組とする層(図1の例では1層)が形成された構成を有している。この構成は、例えばアルミなどの金属材料による一体押出成形によって形成されている。   The heat exchanger 1 includes a heat transfer block 2, a first fluid flow path 3 (five rows in the example of FIG. 1), and a flow direction parallel to the first fluid flow path 3, and a second fluid flow path 4 ( In the example of FIG. 1, there is a configuration in which a layer (one layer in the example of FIG. 1) that forms a set of 13 columns and 2 rows) is formed. This configuration is formed by integral extrusion using a metal material such as aluminum.

各層それぞれの第2流体流路4の両端部には、第2流体流路4の流路方向と直交する方向に延びて、その層の複数列の第2流体流路4の全てを連通するように形成された一対の連通穴5が設けられている。また、連通穴5と同軸上に導管6が伝熱ブロック2の側面に開口して設けられている。また、第2流体流路4は、その流路方向に伝熱ブロック2を貫通しており、開放端部分は蓋(図示せず)によって封止されている。   The both ends of the second fluid channel 4 of each layer extend in a direction orthogonal to the channel direction of the second fluid channel 4, and communicate with all of the plurality of rows of the second fluid channels 4 in the layer. A pair of communication holes 5 formed as described above are provided. Further, a conduit 6 is provided on the side of the heat transfer block 2 so as to be coaxial with the communication hole 5. Moreover, the 2nd fluid flow path 4 has penetrated the heat-transfer block 2 in the flow path direction, and the open end part is sealed with the lid | cover (not shown).

2つの導管6a、6bは、伝熱ブロック2の側面2aに開口しており、外部の流体回路と接続され、流体回路からの流体が流入する入口又は流出する出口となっている。ここでは、手前側の端部の導管6aを入口導管6a、奥側の端部の導管6bを出口導管6bとする。入口導管6a及び出口導管6bは、外部の流体回路の配管に接続することで本熱交換器1を用いることが可能となっている。   The two conduits 6a and 6b are opened on the side surface 2a of the heat transfer block 2, and are connected to an external fluid circuit, and serve as an inlet for the fluid from the fluid circuit or an outlet for the fluid to flow out. Here, the conduit 6a at the end on the near side is referred to as an inlet conduit 6a, and the conduit 6b at the end on the far side is referred to as an outlet conduit 6b. The present heat exchanger 1 can be used by connecting the inlet conduit 6a and the outlet conduit 6b to piping of an external fluid circuit.

このように構成された熱交換器1では、外部の流体回路から流体が入口導管6aに矢印方向に流入し、第2流体流路4を連通穴(入口連通穴)5a側から連通穴(出口連通穴)5b側に向けて流れた後、出口導管6bから外部の流体回路に向けて流出する流れとなる。   In the heat exchanger 1 configured as described above, fluid flows from the external fluid circuit into the inlet conduit 6a in the direction of the arrow, and the second fluid channel 4 is connected to the communication hole (exit port) from the communication hole (inlet communication hole) 5a side. After flowing toward the communication hole 5b, the flow flows out from the outlet conduit 6b toward the external fluid circuit.

また、第2流体流路4の流体入口側に位置する入口導管6a及び連通穴5aには、二相状態で流入した流体を第2流体流路4に流入させる流体分配機構7がはめ込みもしくはろう付けにより設けられている。   In addition, the fluid distribution mechanism 7 that allows the fluid that has flowed in the two-phase state to flow into the second fluid flow path 4 is fitted or brazed into the inlet conduit 6a and the communication hole 5a that are located on the fluid inlet side of the second fluid flow path 4. It is provided by attaching.

第2流体流路4の流体入口側に位置する入口導管6aは、二相状態で流入した流体を連通穴5aに流入させる第1流体分配機構711が設けられ、更に、第2流体流路4の流体入口側に位置する連通穴5aには、二相状態で流入した流体を第2流体流路4に流入させる第2流体分配機構712が設けられている。 The inlet conduit 6a located on the fluid inlet side of the second fluid channel 4 is provided with a first fluid distribution mechanism 711 that allows the fluid that has flowed in a two-phase state to flow into the communication hole 5a, and further, the second fluid channel 4 The second fluid distribution mechanism 712 that allows the fluid that has flowed in the two-phase state to flow into the second fluid flow path 4 is provided in the communication hole 5a that is located on the fluid inlet side.

第2流体分配機構712は、連通穴5aの内部を螺旋状に仕切る構造を有する。また、前記入口導管6aの前記一方の連通穴5側の端で前記第2流体分配機構712と連なる第1流体分配機構711は、連通穴5と反対側の第1流体分配機構711の端が重力方向と並行に分割する構造を有する。 The second fluid distribution mechanism 712 has a structure that partitions the inside of the communication hole 5a in a spiral shape. The first fluid distribution mechanism 711 connected to the second fluid distribution mechanism 712 at the end of the inlet conduit 6a on the side of the one communication hole 5 has an end of the first fluid distribution mechanism 711 on the opposite side to the communication hole 5. It has a structure that divides parallel to the direction of gravity.

(第1流体流路、第2流体流路)
第1流体流路3は、同一平面上に互いに平行に並ぶように配置され、その流路方向に伝熱ブロック2を貫通しており、断面円形を呈している。
また、第2流体流路4は、第1流体流路3が配列される平面と平行な平面上に前記第1流体流路3の方向と流れる方向が平行になるように配列され、矩形断面を呈している。
(First fluid channel, second fluid channel)
The first fluid flow paths 3 are arranged in parallel to each other on the same plane, penetrate the heat transfer block 2 in the flow path direction, and have a circular cross section.
The second fluid channel 4 is arranged on a plane parallel to the plane on which the first fluid channel 3 is arranged so that the direction of the first fluid channel 3 and the flowing direction are parallel to each other. Presents.

また、ここでは、第1流体流路3は第2流体流路4よりも大きい断面積の流路で構成されているが、本発明はこれに限定するものではなく、それぞれの断面積は任意に設定することができる。   Here, the first fluid channel 3 is configured by a channel having a larger cross-sectional area than the second fluid channel 4, but the present invention is not limited to this, and each cross-sectional area is arbitrary. Can be set to

また、ここでは、第1流体流路3の断面積が円形、第2流体流路4の断面積が矩形のものを示しているが、本発明はこれに限定するものではなく、それぞれの断面形状は任意に設定することができる。   Here, the first fluid channel 3 has a circular cross-sectional area and the second fluid channel 4 has a rectangular cross-sectional area. However, the present invention is not limited to this, and the respective cross-sections are not limited thereto. The shape can be set arbitrarily.

また、ここでは、第1流体流路3の流路方向と第2流体流路の流路方向を同一方向としたが必ずしも同一方向でなくてもよい。   In addition, here, the flow direction of the first fluid flow path 3 and the flow direction of the second fluid flow path are the same direction, but they are not necessarily the same direction.

また、ここでは、第1流体流路3を5列、第2流体流路4を13列としたが、1列でもよいし更に複数列でもよい。 In addition, here, the first fluid flow path 3 has five rows and the second fluid flow path 4 has 13 rows, but may be one row or a plurality of rows.

また、ここでは、第2流体流路4を2行としたが、1行でもよいし更に複数行でもよい。また、第1流体流路3及び第2流体流路4の積層数をここでは1層としたが、2層以上としてもよい。   In addition, here, the second fluid flow paths 4 are two rows, but may be one row or a plurality of rows. In addition, the number of layers of the first fluid channel 3 and the second fluid channel 4 is one layer here, but may be two or more layers.

図4は、本発明の実施の形態1に係る複数層で構成した熱交換器を模式的に示す斜視図である。
図4に示す熱交換器1では、連通穴5から積層方向(図4の上下方向)に延び、層の異なる連通穴5同士を連通する層間連通穴51が一箇所に形成され、すべての第2流体流路4が連通する。この連通した流路は、伝熱ブロック2内を折り返して流れる流路で複数層において隣接する層の一対の連通穴5を、積層方向において一対の連通穴5の一方又は他方に交互に位置するように配置した層間連通穴51によって連通させる。積層方向と直交する平面方向の層間連通穴51の位置については、連通穴5の両端のうちの一方又は他方に交互とする。なお、この説明において「交互」とした部分は、2層の場合は実質交互とならないが、考え方の主旨は同じである。そして、全ての連通穴5のうち、層間連通穴51に直接連通していない2つの連通穴を、伝熱ブロック2の側面2aに開口して外部から流体が流入する入口又は流出する出口とすればよい。この構成においても同様に、各層の一対の連通穴5のうち、入口側となる連通穴(入口連通穴)5a、5cに流体分配機構7(712)が配置される。
FIG. 4 is a perspective view schematically showing a heat exchanger composed of a plurality of layers according to Embodiment 1 of the present invention.
In the heat exchanger 1 shown in FIG. 4, interlayer communication holes 51 that extend from the communication holes 5 in the stacking direction (vertical direction in FIG. 4) and communicate with the communication holes 5 having different layers are formed in one place. The two fluid channel 4 communicates. The connected flow path is a flow path that folds back in the heat transfer block 2, and a pair of communication holes 5 of adjacent layers in a plurality of layers are alternately positioned in one or the other of the pair of communication holes 5 in the stacking direction. The interlayer communication holes 51 are arranged to communicate with each other. The positions of the interlayer communication holes 51 in the plane direction orthogonal to the stacking direction are alternately set to one or the other of the both ends of the communication holes 5. In this description, the “alternate” portions are not substantially alternate in the case of two layers, but the gist of the idea is the same. Of all the communication holes 5, two communication holes that are not in direct communication with the interlayer communication hole 51 are opened to the side surface 2 a of the heat transfer block 2, and are used as inlets or outlets through which fluid flows in from the outside. That's fine. Similarly, in this configuration, the fluid distribution mechanism 7 (712) is disposed in the communication holes (inlet communication holes) 5a and 5c on the inlet side among the pair of communication holes 5 of each layer.

(連通穴)
連通穴5は、第2流体流路4を互いに連通するものであるため、第2流体流路4を跨ぐことができる直径を有している。
なお、連通穴5は、伝熱ブロック2の一方の側面2aから、機械加工(ドリル)あるいは塑性加工(ポンチ)等によって穿孔されたものであるが、本発明はその形成方法を限定するものではない。
また、ここでは連通穴5を円形で構成しているが、本発明はこれに限定するものではない。
(Communication hole)
Since the communication hole 5 communicates the second fluid flow path 4 with each other, the communication hole 5 has a diameter capable of straddling the second fluid flow path 4.
The communication hole 5 is a hole drilled from one side surface 2a of the heat transfer block 2 by machining (drilling) or plastic working (punching). However, the present invention does not limit the formation method. Absent.
Although the communication hole 5 is circular here, the present invention is not limited to this.

(流体分配機構)
図5は、図1の流体分配機構を示す図である。図6は、本発明の実施の形態1に係る熱交換器の入口導管部分の出入口の要部横断面図である。図7は、本発明の実施の形態1に係る熱交換器の入口導管部分の出入口及び入口連通穴の入口における流体の流動状態を示す要部横断面図である。
第1流体分配機構711は、螺旋状に捻った平板を有している。この第1流体分配機構711が入口導管6aに挿入されることによって、図6(a)に示すように入口導管6aの入口側に、2つの分割流路8e、8fが形成される。同様に図6(b)に示すように入口導管6aの出口側に、2つの分割流路8e、8fが形成される。
(Fluid distribution mechanism)
FIG. 5 is a view showing the fluid distribution mechanism of FIG. FIG. 6 is a cross-sectional view of the main part of the entrance / exit of the entrance conduit portion of the heat exchanger according to Embodiment 1 of the present invention. FIG. 7 is a cross-sectional view of the main part showing the fluid flow state at the inlet / outlet of the inlet conduit portion and the inlet of the inlet communication hole of the heat exchanger according to Embodiment 1 of the present invention.
The first fluid distribution mechanism 711 has a flat plate twisted in a spiral. By inserting the first fluid distribution mechanism 711 into the inlet conduit 6a, two divided flow paths 8e and 8f are formed on the inlet side of the inlet conduit 6a as shown in FIG. 6A. Similarly, as shown in FIG. 6B, two divided flow paths 8e and 8f are formed on the outlet side of the inlet conduit 6a.

入口導管6aに流入した二相状態(例えば、波状流)の流体は、入口導管6a流入時に図7(a)に示すように2つの分割流路8e、8fに分配される。そして、2つの分割流路8e、8fに分配された流体は、入口導管6a内を各分割流路に沿って螺旋状に流れ、入口導管6a出口流路で図7(b)に示す分配となって連通穴5aへと流入する。   As shown in FIG. 7A, the fluid in a two-phase state (for example, a wavy flow) flowing into the inlet conduit 6a is distributed to the two divided flow paths 8e and 8f when the inlet conduit 6a flows. Then, the fluid distributed to the two divided flow paths 8e and 8f flows spirally along the divided flow paths in the inlet conduit 6a, and the distribution shown in FIG. And flows into the communication hole 5a.

第2流体分配機構712は、螺旋状に捻った断面十字状の棒部材を有している。この第2流体分配機構712が連通穴5aに挿入されることによって、図2及び図3に示すように連通穴5a内に、螺旋状の4つの分割流路8a、8b、8c、8dが形成される。   The second fluid distribution mechanism 712 has a cross-shaped bar member twisted in a spiral shape. By inserting the second fluid distribution mechanism 712 into the communication hole 5a, four spiral divided flow paths 8a, 8b, 8c and 8d are formed in the communication hole 5a as shown in FIGS. Is done.

入口導管6aより連通穴5aに流入した二相状態の流体は、連通穴5a流入時に図7(c)に示すように十字で仕切られた4つの分割流路8a、8b、8c、8dに分配される。そして、入口連通穴5a内を各分割流路に沿って螺旋状に流れ、第2流体流路4に面した領域で図3の矢印に示すように第2流体流路4へと流入する。   The two-phase fluid that flows into the communication hole 5a from the inlet conduit 6a is distributed to the four divided flow paths 8a, 8b, 8c, and 8d that are partitioned by a cross as shown in FIG. 7C when the communication hole 5a flows. Is done. Then, it flows spirally along each divided flow path in the inlet communication hole 5a, and flows into the second fluid flow path 4 as shown by the arrow in FIG. 3 in the region facing the second fluid flow path 4.

このように入口導管6a、連通穴5aにそれぞれ第1流体分配機構711、第2流体分配機構712を挿入することにより、第2流体流路4への流路分割による分配が可能となる。   As described above, by inserting the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 into the inlet conduit 6a and the communication hole 5a, respectively, distribution by dividing the flow path into the second fluid flow path 4 becomes possible.

第1流体分配機構711は、入口導管6aの入口部の流路を重力方向と並行に分割し、入口導管6aの一方の連通穴5側の端で第2流体分配機構712と連なる構造を有する。このため、第1流体分配機構711の捻りの角度は、第2流体分配機構712の挿入方向により決定される。
第2流体分配機構712の捻りの角度は、形成されたすべての分割流路が第2流体流路4に面するように決定される。
The first fluid distribution mechanism 711 has a structure in which the flow path at the inlet portion of the inlet conduit 6a is divided in parallel with the direction of gravity, and is connected to the second fluid distribution mechanism 712 at one end of the inlet conduit 6a on the one communication hole 5 side. . For this reason, the twist angle of the first fluid distribution mechanism 711 is determined by the insertion direction of the second fluid distribution mechanism 712.
The twist angle of the second fluid distribution mechanism 712 is determined so that all formed divided flow channels face the second fluid flow channel 4.

第1流体分配機構711及び第2流体分配機構712の構造は、図5に示した構造に限られず、以下の図5A、図5B、図5Cのように構成してもよい。 The structure of the 1st fluid distribution mechanism 711 and the 2nd fluid distribution mechanism 712 is not restricted to the structure shown in FIG. 5, You may comprise like FIG. 5A, FIG. 5B, and FIG. 5C below.

図5Aは、図5の流体分配機構の変形例1を示す図である。
図5では、第1流体分配機構711を平板とし、平板の捻り角度を90度としたが、平板の捻り角度はこれに限られず、図5Aに示すように、例えば90度以上としてもよい。
い。
FIG. 5A is a diagram illustrating a first modification of the fluid distribution mechanism in FIG. 5.
In FIG. 5, the first fluid distribution mechanism 711 is a flat plate and the twist angle of the flat plate is 90 degrees. However, the twist angle of the flat plate is not limited to this, and may be 90 degrees or more, for example, as shown in FIG. 5A.
Yes.

図5Bは、図5の流体分配機構の変形例2を示す図である。
図5では、第2流体分配機構712の断面形状を断面十字状とし、螺旋の捻り角度を360度としたが、断面形状及び螺旋の捻り角度はこれに限らない。
FIG. 5B is a diagram illustrating a second modification of the fluid distribution mechanism in FIG. 5.
In FIG. 5, the cross-sectional shape of the second fluid distribution mechanism 712 is a cross-shaped cross-section and the spiral twist angle is 360 degrees, but the cross-sectional shape and the spiral twist angle are not limited thereto.

図5Bは、図5の流体分配機構の変形例3を示す図である。
図5では、第1流体分配機構711及び第2流体分配機構712を別体で構成していたが、図5Bに示すように一体で構成してもよい。このように第1流体分配機構711及び第2流体分配機構712が一体で構成される場合、部品点数を削減し、製造を簡素化することができる。
FIG. 5B is a diagram illustrating a third modification of the fluid distribution mechanism in FIG. 5.
In FIG. 5, the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 are configured separately, but may be configured integrally as shown in FIG. 5B. Thus, when the 1st fluid distribution mechanism 711 and the 2nd fluid distribution mechanism 712 are comprised integrally, a number of parts can be reduced and manufacture can be simplified.

なお、図2等においては、流体分配機構7が連通穴5aの終端部分に達する構成を示しているが、必ずしもこの構成に限定されず、達さずに少し隙間があってもよい。但し、以下の理由から隙間はないほうがより効果が高くなるため、隙間が無い方が好ましい。すなわち、密度の大きい液冷媒は慣性により連通穴奥へと向かう。流体分配機構7が連通穴5aの終端部分に達し、連通穴5の終端部が閉塞している場合は、液冷媒の行き場がないため、液冷媒が、所定の分割流路から第2流体流路4へ流入しやすくなる。しかし、終端部が閉塞していない場合は、液冷媒が他の分割流路へバイパスし、終端部付近の第2流体流路4へ流入しやすくなり、流体分割が良好に行われなくなる。   2 and the like show a configuration in which the fluid distribution mechanism 7 reaches the end portion of the communication hole 5a. However, the configuration is not necessarily limited to this configuration, and there may be a small gap without reaching. However, for the following reason, it is more preferable that there is no gap because the effect is higher when there is no gap. That is, the liquid refrigerant having a high density goes to the depth of the communication hole due to inertia. When the fluid distribution mechanism 7 reaches the end portion of the communication hole 5a and the end portion of the communication hole 5 is closed, there is no place for the liquid refrigerant, so that the liquid refrigerant flows from the predetermined divided flow path to the second fluid flow. It becomes easy to flow into the road 4. However, when the end portion is not closed, the liquid refrigerant is bypassed to the other divided flow path and easily flows into the second fluid flow path 4 in the vicinity of the end portion, and fluid division is not performed well.

(二相冷媒の流動状態)
図8は、図1の入口導管に流入する冷媒の流動状態を示す流路断面図である。図8(a)は環状流の断面図、図8(b)は波状流の断面図である。二相冷媒の流動状態を大きく分けると、流路断面の中心部に気体、管壁面近傍を液体が流れる環状流と、流路断面の管上部に気体、管下部に液体が流れる波状流とに分けられる。これらの流れの大きな特徴としては、前者は重力の影響を受けていない流れ、後者は重力の影響を受けた流れである。
(Flow state of two-phase refrigerant)
FIG. 8 is a cross-sectional view of the flow path showing the flow state of the refrigerant flowing into the inlet conduit of FIG. FIG. 8A is a cross-sectional view of an annular flow, and FIG. 8B is a cross-sectional view of a wavy flow. The flow state of the two-phase refrigerant can be broadly divided into an annular flow in which gas flows in the center of the flow path cross section and liquid flows in the vicinity of the pipe wall surface, and a wave flow in which gas flows in the upper section of the flow path and liquid flows in the lower section of the pipe Divided. The major features of these flows are that the former is unaffected by gravity and the latter is gravity-affected.

(作用効果)
上記のように構成された熱交換器1においては、次のような作用効果が得られる。
第2流体流路4の流入側に、第1流体分配機構711及び第2流体分配機構712が設けられているため、第2流体流路4において、二相状態で流入した流体が流路分割されて流入する。よって、第2流体流路4における、流体の偏流を抑制することができる。したがって、第2流体流路4を流れる第2流体と、第1流体流路3を流れる第1流体との熱交換性能を向上することができる。
(Function and effect)
In the heat exchanger 1 configured as described above, the following effects can be obtained.
Since the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 are provided on the inflow side of the second fluid channel 4, the fluid that flows in the two-phase state in the second fluid channel 4 is divided into channels. Inflow. Thus, fluid drift in the second fluid flow path 4 can be suppressed. Therefore, the heat exchange performance between the second fluid flowing through the second fluid channel 4 and the first fluid flowing through the first fluid channel 3 can be improved.

また、流入側の端が入口導管6aを重力方向と並行に分割するように構成された第1流体分配機構711が第2流体流路4の流入側に設けられているため、二相状態で流入する流体のいずれの流動状態においても均等に分配して流入する。よって、第2流体流路4における、流体の偏流を抑制することができる。したがって、第2流体流路4を流れる第2流体と、第1流体流路3を流れる第1流体との熱交換性能を向上することができ、かつ波状流で流入する条件においても熱交換器1の性能面での信頼性を確保することができる。 In addition, since the first fluid distribution mechanism 711 whose end on the inflow side is configured to divide the inlet conduit 6a in parallel with the direction of gravity is provided on the inflow side of the second fluid flow path 4, it is in a two-phase state. In any flow state of the fluid that flows in, the fluid flows evenly. Thus, fluid drift in the second fluid flow path 4 can be suppressed. Therefore, heat exchange performance between the second fluid flowing through the second fluid flow path 4 and the first fluid flowing through the first fluid flow path 3 can be improved, and the heat exchanger can be used even under conditions of flowing in a wavy flow. Reliability in terms of performance can be ensured.

また、本発明は第1流体分配機構711及び第2流体分配機構712が別体で構成される場合、第1流体分配機構711及び第2流体分配機構712の捻りの角度を独立に決定することが容易なので、第2流体分配機構712による第2流体流路4への流路を均等に分割することができる。したがって、一体で構成されるものより熱交換性能を向上することができる。 In the present invention, when the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 are configured separately, the twist angles of the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 are independently determined. Therefore, the flow path to the second fluid flow path 4 by the second fluid distribution mechanism 712 can be divided equally. Therefore, the heat exchange performance can be improved as compared with the one integrally formed.

更に、従来の特許文献1の熱交換器においては、各流路に冷媒を均等に分配する手段を有しているものの、熱交換器の配置方法を縦置き(伝熱プレートを鉛直に設置)に限定する必要があった。つまり、特許文献1の熱交換器を例えば横置き(伝熱プレートを水平に設置))とした場合、流路内にて重力方向を基準に下部に液体、上部に気体が流れるといった流路内編流を引き起こす可能性があり、不均等分配が生じる場合がある。一方、本発明は第2流体流路4の流入側に第1流体分配機構711及び第2流体分配機構712を設けているため、流路内偏流を引き起こさない。したがって、本発明の熱交換器1は、配置方法を限定することなく使用することができる。 Furthermore, although the conventional heat exchanger of Patent Document 1 has means for evenly distributing the refrigerant to each flow path, the heat exchanger is placed vertically (the heat transfer plate is installed vertically). It was necessary to limit to. That is, when the heat exchanger of Patent Document 1 is set horizontally, for example (with the heat transfer plate installed horizontally), in the flow path, the liquid flows in the lower part and the gas flows in the upper part based on the direction of gravity. This can cause knitting and can result in uneven distribution. On the other hand, in the present invention, since the first fluid distribution mechanism 711 and the second fluid distribution mechanism 712 are provided on the inflow side of the second fluid flow path 4, no drift in the flow path is caused. Therefore, the heat exchanger 1 of the present invention can be used without limiting the arrangement method.

実施の形態2.
実施の形態2は、上記実施の形態1の熱交換器1を適用した冷凍サイクル装置に関するものである。
図9は、本発明の実施の形態2に係る冷凍サイクル装置を説明するものであって、温熱を利用するヒートポンプ式暖房システムを示す機器の構成図である。
図9において、ヒートポンプ式暖房システム20は、第1流体が流れる利用側流体配管21と、第2流体が流れる熱源側流体配管22と、第1流体と第2流体との熱交換を行う熱交換器1とを有する。すなわち、熱交換器1の第1流体流路3は利用側流体配管21の一部を形成し、熱交換器1の第2流体流路4は熱源側流体配管22の一部を形成している。
Embodiment 2. FIG.
The second embodiment relates to a refrigeration cycle apparatus to which the heat exchanger 1 of the first embodiment is applied.
FIG. 9 illustrates a refrigeration cycle apparatus according to Embodiment 2 of the present invention, and is a configuration diagram of an apparatus showing a heat pump heating system that uses warm heat.
In FIG. 9, the heat pump heating system 20 is a heat exchange that performs heat exchange between the use-side fluid piping 21 through which the first fluid flows, the heat-source-side fluid piping 22 through which the second fluid flows, and the first fluid and the second fluid. And a container 1. That is, the first fluid flow path 3 of the heat exchanger 1 forms a part of the use side fluid pipe 21, and the second fluid flow path 4 of the heat exchanger 1 forms a part of the heat source side fluid pipe 22. Yes.

ヒートポンプ式暖房システム20では、第1流体として「水」、第2流体として「R410A」を用いている。
利用側流体配管21は、熱交換器1(第1流体流路3)、ポンプ9及び利用側熱交換器10を順次連結し、第1流体の循環を可能にしている。
熱源側流体配管22は、圧縮機11、熱交換器1(第2流体折り返し流路40)、膨張弁12、熱源側熱交換器13及びファン14を順次連結し、第2流体の循環を可能にしている。
In the heat pump heating system 20, “water” is used as the first fluid and “R410A” is used as the second fluid.
The use side fluid pipe 21 sequentially connects the heat exchanger 1 (first fluid flow path 3), the pump 9, and the use side heat exchanger 10 to enable circulation of the first fluid.
The heat source side fluid piping 22 connects the compressor 11, the heat exchanger 1 (second fluid return channel 40), the expansion valve 12, the heat source side heat exchanger 13, and the fan 14 in order to circulate the second fluid. I have to.

利用側流体配管21における第1流体は、熱交換器1において加熱され(第2流体から温熱を受け取り)、ポンプ9よって送出され、利用側熱交換器10において放熱する(利用側の流体等に温熱を受け渡す)。利用側熱交換器10として、例えばラジエターや床暖房ヒーターなどを適用して暖房システムとして使用する。   The first fluid in the usage-side fluid pipe 21 is heated in the heat exchanger 1 (receives heat from the second fluid), is sent out by the pump 9, and radiates heat in the usage-side heat exchanger 10 (to the usage-side fluid or the like). Hand over the heat). As the use-side heat exchanger 10, for example, a radiator or a floor heating heater is applied and used as a heating system.

熱源側流体配管22においては、圧縮機11で高温高圧となった第2流体は、熱交換器1において第1流体と熱交換を行う(温熱を受け渡す)。その後、膨張弁12において減圧され、低温低圧となった第2流体は、熱源側熱交換器13においてファン14によって送風された空気と熱交換(冷熱の放出)を行い、蒸発した後、圧縮機11へと戻る。   In the heat source side fluid piping 22, the second fluid that has become high temperature and high pressure in the compressor 11 exchanges heat with the first fluid in the heat exchanger 1 (delivering the heat). After that, the second fluid that has been decompressed by the expansion valve 12 and has become low temperature and pressure undergoes heat exchange (cold heat release) with the air blown by the fan 14 in the heat source side heat exchanger 13, and after evaporating, the compressor Return to 11.

図9に示すように、本発明の熱交換器1を用いたヒートポンプ給湯・暖房システム20を熱源として利用側熱交換器10で暖房又は給湯することにより、従来のボイラを熱源とした暖房システムに比べて省エネ効果がある。   As shown in FIG. 9, a heating system using a conventional boiler as a heat source is obtained by heating or hot water supply using a heat pump hot water supply / heating system 20 using the heat exchanger 1 of the present invention as a heat source in the use side heat exchanger 10. Compared with energy saving effect.

なお、本実施の形態2では第1流体流路3に流れる流体として水、第2流体流路4を流れる流体としてR410Aを用いた。流体の種類はこれに限らず、第1流体として水道水、蒸留水及びブラインなどの水を用いても良い。また、第2流体は、フロン系冷媒及び炭化水素及びなどの自然冷媒及びそれらの混合物を用いても良い。   In the second embodiment, water is used as the fluid flowing through the first fluid flow path 3, and R410A is used as the fluid flowing through the second fluid flow path 4. The type of fluid is not limited to this, and water such as tap water, distilled water, and brine may be used as the first fluid. Moreover, you may use natural refrigerant | coolants, such as a CFC-type refrigerant | coolant, hydrocarbon, and mixtures thereof, as a 2nd fluid.

実施の形態3.
実施の形態3は、上記実施の形態1の熱交換器1を適用した冷凍サイクル装置に関するものである。
Embodiment 3 FIG.
The third embodiment relates to a refrigeration cycle apparatus to which the heat exchanger 1 of the first embodiment is applied.

図10は、本発明の実施の形態3に係る冷凍サイクル装置を説明するものであって、温熱を利用するヒートポンプ式給湯システムを示す機器の構成図である。
図10において、ヒートポンプ式給湯システム30は、ヒートポンプ式暖房システム20における利用側熱交換器10をタンク15内に設置し、タンク15に給水される水を加熱して取水する給湯システムにしたものである。
FIG. 10 illustrates a refrigeration cycle apparatus according to Embodiment 3 of the present invention, and is a configuration diagram of an apparatus showing a heat pump hot water supply system that uses warm heat.
In FIG. 10, the heat pump hot water supply system 30 is a hot water supply system in which the use-side heat exchanger 10 in the heat pump heating system 20 is installed in the tank 15 and the water supplied to the tank 15 is heated to take water. is there.

図10に示すように、本発明の熱交換器1を用いたヒートポンプ式給湯システム30を熱源として利用側熱交換器10で暖房又は給湯することにより、従来のボイラを熱源とした給湯システムに比べて省エネ効果がある。   As shown in FIG. 10, the heat pump type hot water supply system 30 using the heat exchanger 1 of the present invention is used as a heat source for heating or hot water supply in the use side heat exchanger 10, thereby comparing with a conventional hot water supply system using a boiler as a heat source. Energy saving effect.

1 熱交換器、2 伝熱ブロック、2a 側面、3 第1流体流路、4 第2流体流路、4A 上層側第2流体流路、4B 下層側第2流体流路、5 連通穴、5a 連通穴(入口連通穴)、5b 連通穴(出口連通穴)、5c 連通穴(入口連通穴)、5d 連通穴(出口連通穴)、6 ノズル、6a 入口ノズル、6b 出口ノズル、7 流体分配機構、711 第1流体分配機構、712 第2流体分配機構、8a〜f 分割流路、9 ポンプ、10 利用側熱交換器、11 圧縮機、12 膨張弁、13 熱源側熱交換器、14 ファン、15 タンク、20 ヒートポンプ式暖房システム、21 利用側流体配管、22 熱源側流体配管、30 ヒートポンプ式給湯システム、40 第2流体折り返し流路。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Heat transfer block, 2a Side surface, 3rd fluid flow path, 4th fluid flow path, 4A Upper layer side 2nd fluid flow path, 4B Lower layer side 2nd fluid flow path, 5 Communication hole, 5a Communication hole (inlet communication hole), 5b Communication hole (outlet communication hole), 5c Communication hole (inlet communication hole), 5d Communication hole (exit communication hole), 6 nozzle, 6a Inlet nozzle, 6b Outlet nozzle, 7 Fluid distribution mechanism 711, first fluid distribution mechanism, 712 second fluid distribution mechanism, 8a to f, divided flow path, 9 pump, 10 utilization side heat exchanger, 11 compressor, 12 expansion valve, 13 heat source side heat exchanger, 14 fan, DESCRIPTION OF SYMBOLS 15 Tank, 20 Heat pump type heating system, 21 Use side fluid piping, 22 Heat source side fluid piping, 30 Heat pump type hot water supply system, 40 2nd fluid return flow path.

本発明に係る熱交換器は、同一平面上に互いに平行に並ぶように配列された第1流体流路と、第1流体流路が配列される平面と平行な平面上に配列された第2流体流路とを一組とする層が伝熱ブロック内に形成された構成を有し、第2流体流路の両端部には、第2流体流路の方向と直交する方向に延びる一対の連通穴が形成されて第2流体流路が全て連通するように構成され、伝熱ブロックの側面で一対の連通穴のうちの一方の連通穴に同軸上に接続された入口導管と、を備え、一方の連通穴の内部を螺旋状に仕切る第2流体分配機構と、入口導管の内部を螺旋状に仕切り、入口導管の一方の連通穴側の端で第2流体分配機構と連なる第1流体分配機構と、を有し、第1流体分配機構と第2流体分配機構とは別体に形成され、一方の連通穴と反対側の第1流体分配機構の端が、入口導管を重力方向と並行に分割しており、一方の連通穴側の端において第1流体分配機構と第2流体分配機構とはともに重力方向と垂直に分割する仕切りで接続されるものである。 The heat exchanger according to the present invention includes a first fluid channel arranged to be parallel to each other on the same plane, and a second column arranged on a plane parallel to the plane on which the first fluid channel is arranged. A pair of layers with the fluid flow path is formed in the heat transfer block, and a pair of ends extending in a direction perpendicular to the direction of the second fluid flow path are provided at both ends of the second fluid flow path. An inlet conduit having a communication hole formed so that the second fluid flow path is in communication with each other and coaxially connected to one of the pair of communication holes on the side surface of the heat transfer block. , A second fluid distribution mechanism that spirally partitions the inside of one communication hole, and a first fluid that spirally partitions the interior of the inlet conduit and communicates with the second fluid distribution mechanism at one end of the inlet conduit on the side of the one communication hole It has a distribution mechanism, the first fluid distribution mechanism and the second fluid distribution mechanism are formed separately, and one of the communication holes End pair of the first fluid distribution mechanism, which divides the inlet conduit in parallel with the direction of gravity, and both the direction of gravity than the first fluid distribution mechanism and the second fluid distribution mechanism at the end of one of the communication hole side They are connected by partitions that divide vertically .

Claims (8)

同一平面上に互いに平行に並ぶように配列された第1流体流路と、前記第1流体流路が配列される平面と平行な平面上に配列された第2流体流路とを一組とする層が伝熱ブロック内に形成された構成を有し、
前記第2流体流路の両端部には、前記第2流体流路の方向と直交する方向に延びる一対の連通穴が形成されて前記第2流体流路が全て連通するように構成され、前記伝熱ブロックの側面で前記一対の連通穴のうちの一方の連通穴に同軸上に接続された入口導管と、を備え、
前記一方の連通穴の内部を螺旋状に仕切る第2流体分配機構と、
前記入口導管の内部を螺旋状に仕切り、前記入口導管の前記一方の連通穴側の端で前記第2流体分配機構と連なる第1流体分配機構と、を有し、
前記一方の連通穴と反対側の前記第1流体分配機構の端が、前記入口導管を重力方向と並行に分割している熱交換器。
A set of first fluid channels arranged in parallel to each other on the same plane and second fluid channels arranged on a plane parallel to the plane on which the first fluid channels are arranged A layer to be formed in the heat transfer block,
A pair of communication holes extending in a direction orthogonal to the direction of the second fluid flow path is formed at both ends of the second fluid flow path, and the second fluid flow path is configured to communicate with each other. An inlet conduit coaxially connected to one communication hole of the pair of communication holes on a side surface of the heat transfer block;
A second fluid distribution mechanism that spirally partitions the inside of the one communication hole;
A first fluid distribution mechanism that spirally partitions the interior of the inlet conduit and communicates with the second fluid distribution mechanism at an end of the inlet conduit on the one communication hole side;
The heat exchanger in which the end of the first fluid distribution mechanism opposite to the one communication hole divides the inlet conduit in parallel with the direction of gravity.
前記第1流体分配機構は前記一方の連通穴と反対側から前記一方の連通穴側の端までに面が90度以上回転するように捩られた螺旋形状である請求項1に記載の熱交換器。   2. The heat exchange according to claim 1, wherein the first fluid distribution mechanism has a spiral shape that is twisted so that a surface rotates by 90 degrees or more from an opposite side to the one communication hole to an end on the one communication hole side. vessel. 前記第2流体分配機構は2つの螺旋状の面が垂直に交差して前記一方の連通穴内を4つの螺旋に分割する構造を含み、前記一方の連通穴側の端で前記第2流体分配機構の前記2つの螺旋状の面の一方と前記第1流体分配機構の仕切り面とが連続している請求項1又は請求項2に記載の熱交換器。 The second fluid distribution mechanism includes a structure in which two spiral surfaces intersect perpendicularly to divide the inside of the one communication hole into four spirals, and the second fluid distribution mechanism at an end on the one communication hole side The heat exchanger according to claim 1 or 2, wherein one of the two spiral surfaces of the first fluid distribution surface and the partition surface of the first fluid distribution mechanism are continuous. 前記第1流体分配機構と前記第2流体分配機構とは一体に形成されている請求項1〜請求項3の何れか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the first fluid distribution mechanism and the second fluid distribution mechanism are integrally formed. 前記第1流体分配機構と前記第2流体分配機構とは別体に形成され、前記一方の連通穴側の端において前記第1流体分配機構と前記第2流体分配機構とはともに重力方向と垂直に分割する仕切りで接続される請求項1〜請求項3の何れか一項に記載の熱交換器。   The first fluid distribution mechanism and the second fluid distribution mechanism are formed separately, and both the first fluid distribution mechanism and the second fluid distribution mechanism are perpendicular to the direction of gravity at the end on the one communication hole side. The heat exchanger as described in any one of Claims 1-3 connected by the partition divided | segmented into. 前記第1流体分配機構の螺旋の捻り角度と前記第2流体分配機構の螺旋の捻り角度とが異なっている請求項5に記載の熱交換器。 The heat exchanger according to claim 5, wherein the twist angle of the spiral of the first fluid distribution mechanism is different from the twist angle of the spiral of the second fluid distribution mechanism. 同一平面上に互いに平行に並ぶように配列された複数列の第1流体流路と、前記第1流体流路が配列される平面と平行な平面上に配列された複数列の第2流体流路とを一組とする層が伝熱ブロック内に複数層形成された構成を有し、
前記複数列の第1流体流路は、前記伝熱ブロックを貫通して形成され、
前記各層それぞれにおいて前記複数列の第2流体流路の両端部には、前記第2流体流路の方向と直交する方向に延びる一対の連通穴が形成されてその層の前記複数列の第2流体流路が全て連通するように構成され、前記複数層において隣接する層の前記一対の連通穴は、積層方向において前記一対の連通穴の一方又は他方に交互に位置するように配置された層間連通穴によって連通しており、前記積層方向と直交する平面方向の前記層間連通穴の位置は前記連通穴の両端のうちの一方又は他方に交互となっており、全ての前記連通穴のうち、前記層間連通穴に直接連通していない2つの前記連通穴は、前記伝熱ブロックの側面に開口して外部から流体が流入する入口又は流出する出口となっており、これにより入口から出口に連通する第2流体折り返し流路が形成され、
前記第2流体折り返し流路における前記各連通穴のうち、前記各層それぞれの前記第2流体流路において流体入口側に位置する連通穴である入口連通穴のそれぞれは、自己の入口連通穴の内部を螺旋状に仕切る第2流体分配機構を有することを特徴とする熱交換器。
A plurality of rows of first fluid flow paths arranged in parallel with each other on the same plane, and a plurality of rows of second fluid flows arranged on a plane parallel to the plane on which the first fluid flow paths are arranged The layer having a set of paths has a configuration in which a plurality of layers are formed in the heat transfer block,
The plurality of rows of first fluid flow paths are formed through the heat transfer block,
In each of the layers, a pair of communication holes extending in a direction orthogonal to the direction of the second fluid flow path are formed at both ends of the plurality of rows of the second fluid flow paths, and the plurality of rows of the second fluid flow paths of the layers are formed. All the fluid flow paths are configured to communicate with each other, and the pair of communication holes of adjacent layers in the plurality of layers are arranged so as to be alternately positioned in one or the other of the pair of communication holes in the stacking direction. The communication holes communicate with each other, and the positions of the interlayer communication holes in the plane direction orthogonal to the stacking direction are alternately arranged at one or the other of both ends of the communication holes, and among all the communication holes, The two communication holes that are not in direct communication with the interlayer communication holes are openings at the side surfaces of the heat transfer block and serve as inlets or outlets through which fluid flows from the outside, thereby communicating from the inlets to the outlets. Second flow Turning flow path is formed,
Of the communication holes in the second fluid return channel, each of the inlet communication holes, which are communication holes located on the fluid inlet side in the second fluid channel of each of the layers, is an inner part of its own inlet communication hole. A heat exchanger having a second fluid distribution mechanism for partitioning the chamber in a spiral shape.
第1流体が流れる利用側流体配管と、第2流体が流れる熱源側流体配管と、第1流体と第2流体との間で熱交換を行う請求項1乃至請求項7の何れか一項に記載の熱交換器とを有し、
利用側流体配管は、前記熱交換器の第1流体流路、前記第1流体を送り出すポンプ及び利用側熱交換器を順次連結して、前記第1流体の循環を可能にし、
前記熱源側流体配管は、前記熱交換器の第2流体を圧縮する圧縮機、前記第2流体流路、膨張弁及び熱源側熱交換器を順次連結して、第2流体の循環を可能にしていることを特徴とする冷凍サイクル装置。
The heat exchange is performed between the first-side fluid and the second-side fluid piping through which the first fluid flows, the heat-source-side fluid piping through which the second fluid flows, and the first fluid and the second fluid. A heat exchanger as described
The usage-side fluid piping sequentially connects the first fluid flow path of the heat exchanger, the pump that sends out the first fluid, and the usage-side heat exchanger, and enables circulation of the first fluid.
The heat source side fluid pipe sequentially connects the compressor that compresses the second fluid of the heat exchanger, the second fluid flow path, the expansion valve, and the heat source side heat exchanger to enable circulation of the second fluid. A refrigeration cycle apparatus characterized by comprising:
JP2014515560A 2012-05-17 2013-04-26 Heat exchanger and refrigeration cycle apparatus Active JP5759068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515560A JP5759068B2 (en) 2012-05-17 2013-04-26 Heat exchanger and refrigeration cycle apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012113407 2012-05-17
JP2012113407 2012-05-17
PCT/JP2013/062347 WO2013172181A1 (en) 2012-05-17 2013-04-26 Heat exchanger and refrigeration cycle device
JP2014515560A JP5759068B2 (en) 2012-05-17 2013-04-26 Heat exchanger and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP5759068B2 JP5759068B2 (en) 2015-08-05
JPWO2013172181A1 true JPWO2013172181A1 (en) 2016-01-12

Family

ID=49583590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515560A Active JP5759068B2 (en) 2012-05-17 2013-04-26 Heat exchanger and refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP5759068B2 (en)
WO (1) WO2013172181A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170198976A1 (en) * 2016-01-13 2017-07-13 Hamilton Sundstrand Corporation Heat exchangers
WO2018002981A1 (en) * 2016-06-27 2018-01-04 三菱電機株式会社 Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger
FR3059412B1 (en) * 2016-11-30 2019-05-17 Valeo Systemes Thermiques MIXING DEVICE COMPRISING A DEVICE FOR HOMOGENIZING THE DISTRIBUTION OF A REFRIGERANT FLUID WITHIN HEAT EXCHANGER TUBES
EP3548824B1 (en) * 2016-11-30 2023-03-29 Valeo Systemes Thermiques Device for homogenising the distribution of a refrigerant inside tubes of a heat exchanger constituting a refrigerant circuit
FR3059394B1 (en) * 2016-11-30 2019-06-21 Valeo Systemes Thermiques DEVICE FOR HOMOGENIZING THE DISTRIBUTION OF A REFRIGERANT FLUID WITHIN HEAT EXCHANGER TUBES CONSISTING OF A REFRIGERANT FLUID CIRCUIT
FR3066262B1 (en) * 2017-05-10 2019-11-22 Valeo Systemes Thermiques HEAT EXCHANGER COMPRISING A REFRIGERANT FLUID CIRCUIT
FR3066263A1 (en) * 2017-05-10 2018-11-16 Valeo Systemes Thermiques COLLECTOR COMPRISING A BATTERY COOLER EQUIPPED WITH A MOTOR VEHICLE
EP3764050A1 (en) * 2019-07-11 2021-01-13 Mahle International GmbH Heat exchanger, dip tube and method for producing the same
DE102020125450A1 (en) * 2020-09-29 2022-03-31 Audi Aktiengesellschaft Cooling device for a rechargeable battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636921Y1 (en) * 1969-03-14 1971-12-20
JPS5435908Y2 (en) * 1974-11-12 1979-10-30
JPS60128185U (en) * 1984-01-31 1985-08-28 三菱重工業株式会社 Heat exchanger
JPH04302964A (en) * 1991-03-29 1992-10-26 Daikin Ind Ltd Refrigerant distributor
JPH06317364A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Branching method for gas/liquid phase flow, branch tube and processing method therefor
JP3879032B2 (en) * 1997-03-27 2007-02-07 三菱電機株式会社 Cooling system
JP2000356483A (en) * 1999-06-16 2000-12-26 Nhk Spring Co Ltd Heat exchanger
JP4561305B2 (en) * 2004-10-18 2010-10-13 三菱電機株式会社 Heat exchanger
US20130126127A1 (en) * 2010-08-05 2013-05-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air-conditioning apparatus

Also Published As

Publication number Publication date
JP5759068B2 (en) 2015-08-05
WO2013172181A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5759068B2 (en) Heat exchanger and refrigeration cycle apparatus
US10393408B2 (en) Air conditioner
JP6202451B2 (en) Heat exchanger and air conditioner
US10161687B2 (en) Plate heat exchanger and heat pump outdoor unit
US9689594B2 (en) Evaporator, and method of conditioning air
US10041710B2 (en) Heat exchanger and air conditioner
US10295265B2 (en) Return waterbox for heat exchanger
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
JP5784215B2 (en) Heat exchanger and refrigeration cycle equipment
WO2015004720A1 (en) Heat exchanger, and air conditioner
WO2020100276A1 (en) Plate-type heat exchanger, heat pump device, and heat-pump-type cooling/heating hot-water supply system
JPWO2018029784A1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP2013057426A (en) Plate-type heat exchanger and freezing cycle device with the same
JP4701147B2 (en) 2-stage absorption refrigerator
WO2019188676A1 (en) Intermediate-medium vaporizer
JP6611335B2 (en) Heat exchanger and air conditioner
JP2012172918A (en) Refrigerant liquid forced circulation type refrigeration system
JP2012167861A (en) Plate type heat exchanger
JP6671380B2 (en) Heat exchanger
CN114930108A (en) Heat exchanger
KR102076679B1 (en) A heat exchanger and a natural coolant circulation air conditioner
JP6281422B2 (en) Laminate heat exchanger
JP7004867B2 (en) Heat exchanger and air conditioner
US20230175784A1 (en) Device for use in refrigeration or heat pump system, and refrigeration or heat pump system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5759068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250