WO2018002981A1 - Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger - Google Patents

Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger Download PDF

Info

Publication number
WO2018002981A1
WO2018002981A1 PCT/JP2016/068952 JP2016068952W WO2018002981A1 WO 2018002981 A1 WO2018002981 A1 WO 2018002981A1 JP 2016068952 W JP2016068952 W JP 2016068952W WO 2018002981 A1 WO2018002981 A1 WO 2018002981A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
transfer tube
tube
heat
Prior art date
Application number
PCT/JP2016/068952
Other languages
French (fr)
Japanese (ja)
Inventor
孔明 仲島
雄亮 田代
関根 加津典
貴紀 谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018524593A priority Critical patent/JP6644143B2/en
Priority to PCT/JP2016/068952 priority patent/WO2018002981A1/en
Priority to CN201680086680.0A priority patent/CN109416228A/en
Publication of WO2018002981A1 publication Critical patent/WO2018002981A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the present invention relates to a heat exchanger provided with a heat transfer tube as a component, a refrigerator using the heat exchanger as a cooler, and a method for manufacturing the heat exchanger.
  • a heat transfer tube used as a component of a conventional heat exchanger for example, in order to improve the heat transfer coefficient of fluid flowing in the tube as described in Patent Document 1, a plurality of ribs are connected inside the heat transfer tube, In addition, there was a heat transfer tube spirally wound in the axial direction.
  • This conventional heat transfer tube has a mechanism in which when the refrigerant flows through the tube in a gas-liquid two-phase state, the liquid part moves to the center through the gap between the ribs.
  • the conventional heat transfer tube as described in Patent Document 1 can efficiently exchange heat when the refrigerant flowing in the tube is condensed from gas to liquid by the above mechanism and the air outside the tube is heated. .
  • the conventional heat transfer tube as described in Patent Document 1 is used in a cooler that evaporates the refrigerant in the tube and cools the air outside the tube, it is more efficient that the liquid refrigerant is outside the tube. Since it can be heated, there is a problem in that the mechanism cannot cool the air efficiently.
  • the present invention has been made in order to solve the above-described problems, and includes a heat exchanger including a heat transfer tube that can equally divide a liquid part of a gas-liquid two-phase refrigerant as a component, and this heat. It aims at providing the manufacturing method of the refrigerator which used the exchanger as a cooler, and a heat exchanger.
  • a heat exchanger according to the present invention is a heat exchanger provided with a heat transfer tube, and the heat transfer tube has a partition wall inside the tube, and the partition wall has a twisted shape and the tube interior in the longitudinal direction.
  • the tube interior is divided into two.
  • the refrigerator according to the present invention includes a compressor, a radiator, a decompressor, the above heat exchanger, and a blower, and the compressor, the radiator, the decompressor, and the heat exchanger are connected to each other. Provided with a refrigerating cycle.
  • a method of manufacturing a heat exchanger according to the present invention is a method of manufacturing a heat exchanger provided with a heat transfer tube, and the heat transfer tube has a twisted partition wall inside the tube that divides the inside of the tube into two.
  • the first heat transfer tube and a second heat transfer tube that does not have the partition inside the tube, and after passing the first heat transfer tube through the opening of the fin, the fluid is supplied to the first heat transfer tube.
  • the heat transfer tube is sealed and compressed, and the first heat transfer tube is expanded.
  • the heat transfer tube having a twisted partition wall that divides the inside of the tube into two in the axial direction since the heat transfer tube having a twisted partition wall that divides the inside of the tube into two in the axial direction is configured, the gas-liquid two-phase refrigerant is divided equally. However, the liquid part of the gas-liquid two-phase refrigerant can be agitated, and the heat transfer rate is improved.
  • the heat transfer coefficient in the cooler is improved.
  • the degree of adhesion between the first heat transfer tube and the fin is improved in the same manner as in a normal heat exchanger. .
  • FIG. 1 is a refrigerant circuit configuration diagram schematically showing a refrigerant circuit configuration of a refrigerator 100 according to an embodiment of the present invention.
  • the refrigerator 100 will be described with reference to FIG.
  • This refrigerator 100 can cool the inside of the refrigerator 100 to a target temperature using a refrigeration cycle.
  • the refrigerator 100 is provided with 4 A of heat exchangers which concern on embodiment of this invention as the cooler 4.
  • FIG. The heat exchanger 4A will be described in detail with reference to FIG.
  • the refrigerator 100 includes a compressor 1, a radiator 2, a decompressor 3, a cooler 4, and a blower 5. And the compressor 1, the heat radiator 2, the decompressor 3, and the cooler 4 are connected, and a refrigerating cycle is comprised.
  • the radiator 2 includes an air heat exchanger 2a and a heat radiating pipe 2b.
  • the blower 5 includes a blower 5 a that supplies air to the radiator 2 and a blower 5 b that supplies air to the cooler 4.
  • the compressor 1 is not particularly limited as long as the compressor 1 sucks the refrigerant and compresses the refrigerant to be in a high temperature and high pressure state.
  • the compressor 1 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the compressor 1 may be configured of a type that can be variably controlled by an inverter.
  • the compressor 1 is installed in a machine room 7 formed at the bottom of the refrigerator 100.
  • the radiator 2 radiates the heat of the refrigerant discharged from the compressor 1 to the air.
  • the air heat exchanger 2a is provided on the upstream side of the refrigerant flow with respect to the heat radiating pipe 2b.
  • the air heat exchanger 2a exchanges heat between the refrigerant discharged from the compressor 1 and the air supplied from the blower 5a.
  • the air heat exchanger 2 a is installed in the machine room 7.
  • the heat radiating pipe 2 b is made of, for example, a copper pipe and is provided along the wall surface of the refrigerator 100.
  • the blower 5a is provided at a position where air can be supplied to the air heat exchanger 2a of the machine room 7, and supplies air to the air heat exchanger 2a.
  • the decompressor 3 is provided between the heat radiating pipe 2b and the cooler 4, and decompresses the refrigerant to expand it.
  • the decompressor 3 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the cooler 4 is installed in the cooling chamber 8 of the refrigerator 100, absorbs the heat of the air from the refrigerant flowing out of the decompressor 3, and generates cool air to be supplied to the storage chamber 6 of the refrigerator 100.
  • the configuration of the cooler 4 will be described in detail later.
  • the blower 5 b is provided at a position where air can be supplied to the cooler 4 in the cooling chamber 8, and supplies air to the cooler 4 by circulating the air in the storage chamber 6.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the air heat exchanger 2a and the heat radiating pipe 2b.
  • the high-temperature and high-pressure gas refrigerant exchanges heat with the outside air around the refrigerator 100 in the air heat exchanger 2a and the heat radiating pipe 2b, and condenses by heat radiation.
  • the condensed high-pressure liquid refrigerant is decompressed and decompressed by the decompressor 3, and becomes a gas-liquid two-phase refrigerant. Thereafter, the gas-liquid two-phase refrigerant flows into the cooler 4 installed in the cooling chamber 8 formed inside the refrigerator 100.
  • the air in the storage chamber 6 of the refrigerator 100 and the gas-liquid two-phase refrigerant exchange heat.
  • the air in the storage chamber 6 of the refrigerator 100 is circulated in the cabinet by the blower 5b.
  • the air is cooled by the gas-liquid two-phase refrigerant and sent to the storage chamber 6, and the refrigerant becomes a low-pressure gas refrigerant and flows out of the cooler 4. Thereafter, the refrigerant that has become low-pressure gas flows into the compressor 1, is pressurized again and discharged, and circulates in the refrigeration cycle.
  • the air cooled by the cooler 4 in the cooling chamber 8 is conveyed by the blower 5b, flows into each storage chamber 6, and cools each storage chamber 6.
  • the cooling air that has cooled each storage chamber 6 is conveyed by the blower 5 b, passes through a return air passage formed inside the refrigerator 100, flows into the cooling chamber 8 again, and is cooled again by the cooler 4. .
  • heat exchanger 20 When the heat exchanger 20 is provided and the refrigerant is decompressed by the decompressor 3, heat exchange with the outlet pipe of the cooler 4 may be performed.
  • the heat exchange unit 20 for example, a shell and tube heat exchanger, a double tube heat exchanger, a plate heat exchanger, or the like can be used. Since the refrigerant temperature at the inlet of the decompressor 3 is larger than the inlet temperature of the suction pipe of the compressor 1, when the heat exchange unit 20 is provided, the refrigerant in the decompressor 3 is cooled by the refrigerant flowing through the suction pipe. . For this reason, since the inlet dryness of the refrigerant on the inlet side of the cooler 4 takes a value close to 0, the liquid phase part increases and the cooler 4 can be used effectively.
  • the heat exchange part 20 is not an essential structure.
  • FIG. 2 is a schematic diagram schematically showing an example of the configuration of the heat exchanger 4A according to the embodiment of the present invention.
  • FIG. 3 is a schematic view schematically showing an example of the internal structure of the heat transfer tube 61 constituting a part of the heat exchanger 4A.
  • FIG. 4 is an explanatory diagram for explaining the effect exerted by the heat transfer tube 61 constituting a part of the heat exchanger 4A.
  • FIGS. 2 to 4 the configuration of the heat exchanger 4A, in particular, the heat transfer tube 61 constituting a part of the heat exchanger 4A will be described.
  • FIG. 2 the configuration of the heat exchanger 4A, in particular, the heat transfer tube 61 constituting a part of the heat exchanger 4A will be described.
  • the air flow is indicated by an arrow A
  • the direction of gravity is indicated by an arrow B
  • the refrigerant flow is indicated by an arrow C.
  • the air flow is represented by arrow A
  • the swirl flow generation state is represented by arrow E
  • the refrigerant flow in the pipe is represented by arrow F.
  • the heat exchanger 4 ⁇ / b> A includes a plurality of plate-like fins 15 and heat transfer tubes 60.
  • the heat transfer tube 60 is configured to be bent a plurality of times from the refrigerant inlet portion 60A to the refrigerant outlet portion 60B. That is, the heat transfer tube 60 includes a straight portion 51 that is inserted into the plurality of fins 15 and through which the refrigerant flows linearly, and a bent portion 52 that connects the ends of the straight portions 51 and bends the flow of the refrigerant. Has been.
  • the refrigerant flowing through the heat exchanger 4A flows in from the refrigerant inlet portion 60A, flows out of the refrigerant outlet portion 60B after passing through the straight portion 51 and the bending portion 52.
  • the heat transfer tube 60 has four straight portions 51 and four bent portions 52.
  • the heat transfer tube 60 is inserted into the opening 15 ⁇ / b> A formed in the fin 15.
  • the heat transfer tube 60 includes a heat transfer tube 61 having a partition wall 65 inside the tube and a heat transfer tube 62 having no partition wall 65 inside the tube.
  • the refrigerant inlet portion 60A of the heat transfer tube 60 is provided on the lower side in the gravity direction
  • the refrigerant outlet portion 60B of the heat transfer tube 60 is provided on the upper side in the gravity direction. Therefore, the refrigerant flows from the lower side in the gravitational direction toward the upper side in the gravitational direction.
  • the heat transfer tube 61 has a partition wall 65 that divides the inside of the tube into two equal parts.
  • the partition wall 65 has a structure twisted toward the fluid flow direction (longitudinal direction of the heat transfer tube 61).
  • the partition wall 65 has a shape that is twisted at least once by the end of the straight portion 51.
  • the partition 65 can be formed into a twisted shape by making the partition 65 spiral.
  • This heat transfer tube 61 corresponds to the “first heat transfer tube” of the present invention.
  • the heat transfer tube 62 does not have the partition wall 65, and is configured by, for example, a U-shaped heat transfer tube, and the end of the heat transfer tube 61 may be connected.
  • the heat transfer tube 62 corresponds to the “second heat transfer tube” of the present invention.
  • the straight portion 51 is configured by a heat transfer tube 61
  • the bent portion 52 is configured by a heat transfer tube 62. That is, the heat exchanger 4 ⁇ / b> A has a structure in which at least a part of the straight portion 51 is configured by the heat transfer tube 61 and the heat transfer tube 60 in which the bending portion 52 is configured by the heat transfer tube 62 is inserted into the plurality of fins 15. ing.
  • the flow rate of the refrigerant is small, and the Reynolds number of the refrigerant near the cooler is as small as 100 to 3000.
  • the gas-liquid two-phase refrigerant inside the cooler is a laminar flow in which the liquid refrigerant accumulates in the direction of gravity.
  • the liquid refrigerant evaporates to cool the air around the heat transfer tube. Therefore, in a state where the liquid refrigerant is accumulated in the lower part of the cooler, only the liquid refrigerant in contact with the lower part of the heat transfer tube exchanges heat with the air, resulting in a poor heat exchange performance.
  • the heat transfer tube 61 provided with the partition wall 65 twisted inside the tube is used, so that the heat exchanger 4A is accumulated in the lower portion of the heat transfer tube 61.
  • the liquid refrigerant is agitated.
  • the entire liquid refrigerant can be evaporated evenly. Therefore, the entire heat transfer tube 61 can be effectively contributed to heat exchange, and the heat exchange performance of the heat transfer tube 60 is improved.
  • FIG. 5 is a schematic diagram schematically showing an internal state of the heat transfer tube 61 constituting a part of the heat exchanger 4A.
  • FIG. 6 is an explanatory diagram for explaining the rotational position of the partition wall 65 of the heat transfer tube 61 constituting a part of the heat exchanger 4A.
  • FIG. 7 is an explanatory diagram for explaining the state of the refrigerant flowing through the heat transfer tubes 61 constituting a part of the heat exchanger 4A.
  • FIG. 8 is an explanatory diagram for explaining the state of the refrigerant flowing through the heat transfer tubes 61 constituting a part of the heat exchanger 4A.
  • the heat transfer tubes 61 constituting the heat exchanger 4A will be described in more detail based on FIGS.
  • FIG. 5 illustrates four states depending on the rotation position of the partition wall 65 with the partition wall 65 in a vertical state being set to 0 ° as a reference. That is, in FIG. 5, (a) shows a state when the partition wall 65 is 0 °, (b) shows a state when the partition wall 65 rotates 45 °, and (c) shows a state when the partition wall 65 rotates 90 °. The state (d) shows the state when the partition wall 65 is rotated by 135 °. Further, in FIGS. 6 to 8, in addition to the configuration of FIG.
  • the partition wall 65 has a twisted shape, the heat transfer tube 61 is viewed in the cross section of the flow path (the cross section in the direction perpendicular to the fluid flow).
  • the inclination angle is different between two points in the longitudinal direction.
  • the inclination angle of the partition wall 65 shown in FIG. 5A with respect to the vertical direction is 0 °, and the inclination angle of the partition wall 65 shown in FIG.
  • the inclination angle of the partition wall 65 shown in FIG. 5C with respect to the vertical direction is 90 °, and the inclination angle of the partition wall 65 shown in FIG. 5A is 135 ° with respect to the vertical direction.
  • the reference direction may be not only the vertical direction but also the horizontal direction, for example.
  • the inside of the heat transfer tube 61 is in a gas-liquid two-phase state of the gas part and the liquid part, and the ratio occupied by the liquid part is larger.
  • the gas-liquid two-phase refrigerant is equally divided by the partition wall 65 provided inside the heat transfer tube 61.
  • the gas-liquid two-phase refrigerant moves upward and downward while generating a swirling flow by the torsion of the partition wall 65.
  • the state of the refrigerant at this time is as schematically shown in FIG. Since the refrigerant is laminar as described above, the liquid refrigerant accumulates in the direction of gravity.
  • the liquid refrigerant accumulated in the lower portion of the heat transfer tube 61 can be agitated by the action of the partition wall 65, and the entire liquid refrigerant can be evaporated.
  • the partition wall 65 has been described as having a shape that is twisted at least once by the end of the straight portion 51. However, the partition wall 65 does not have to be twisted by exactly one turn, as shown in FIG. If the shape is twisted by 3/4 of a turn until the end of the straight part 51, the effect is exhibited.
  • the heat exchanger 4A includes a heat transfer tube 61 having a partition wall 65 that is twisted.
  • the heat transfer tube 61 is provided in the straight portion 51 of the heat exchanger 4A, and a bent portion 52 that joins the heat transfer tubes 60 is provided with a heat transfer tube 62 that does not have a twisted partition wall 65.
  • the partition wall 65 of the refrigerant inlet 60A is vertical. For this reason, the refrigerant that has flowed into the heat exchanger 4A is uniformly divided within the heat transfer tube 61 by the partition wall 65 that is vertical at the refrigerant inlet portion 60A.
  • the bent portion 52 is provided. Then, since there is no partition wall 65, the liquid refrigerant merges at the bent portion 52, and when entering the next heat transfer tube 61, the liquid refrigerant can be uniformly divided again by the action of the partition wall 65.
  • the partition wall 65 is vertical. That is, as shown in FIG. 6, the partition wall 65 of the heat transfer tube 61 connected to the connection portion located on the downstream side in the refrigerant flow direction in each of the connection portions of the heat transfer tube 61 and the heat transfer tube 62 is made vertical. .
  • the partition wall 65 positioned at a portion into which the refrigerant flowing without being divided flows is made vertical (arrow D).
  • the rotation position of the partition wall 65 located at the portion into which the refrigerant flowing without being divided flows is +45. It was found that when the angle was in the range of -45 °, the performance was sufficiently exhibited, but the highest performance was obtained when the partition wall 65 was 0 °, that is, vertical.
  • the heat transfer tube 61 may be arranged immediately after the bent portion 52, or after the smooth tube 63 is provided immediately after the bent portion 52 and the smooth tube 63 is interposed.
  • the smooth tube 63 may be installed at least on the downstream side of the refrigerant flow of the heat transfer tube 62 as shown in FIG.
  • the smooth tube 63 By installing the smooth tube 63, the flow disturbed by the bending portion 52 is adjusted by the smooth tube 63, and the liquid portion as shown in FIG. 4 becomes a flow accumulated in the lower part of the heat transfer tube 60.
  • the refrigerant can be divided into two by the partition wall 65, and the liquid refrigerant can be stably divided.
  • the inside of the partition wall 65 and the heat transfer tube 60 may be grooved.
  • the liquid refrigerant rises along the groove due to the viscosity of the liquid refrigerant accumulated in the lower part of the heat transfer tube 60.
  • tube which heat-exchanges with the air which passes the outer periphery of the heat exchanger tube 60 will increase, and the performance of a heat exchanger can be improved.
  • the heat transfer tube 61 is formed by extruding and rotating a metal material by extrusion molding.
  • a normal heat transfer tube uses copper or the like having a high thermal conductivity.
  • the metal material constituting the heat transfer tube 61 is precision using aluminum. Can be molded well. For this reason, it is good to make the heat exchanger tube 60 of this heat exchanger 4A with aluminum.
  • any metal material can be used as long as the heat transfer tube 61 can be formed by extrusion molding, and the material is not limited to aluminum.
  • fins are provided in addition to the heat transfer tubes.
  • the original performance of the heat exchanger can be raised. Therefore, in general, in order to increase the adhesion between the fin and the heat transfer tube, after passing the heat transfer tube through the hole (opening) of the fin, a rod (tube expansion machine) slightly larger than the inner diameter of the heat transfer tube is used. The system is inserted into the tube and expanded. Since a partition wall 65 as in the heat transfer tube 61 is not formed in a general heat transfer tube, there is no problem with the tube expansion method using such a tube expander.
  • the heat transfer tube 61 has the partition wall 65 in the tube, a tube expansion method using such a tube expander cannot be employed. For this reason, when manufacturing the heat exchanger 4A, after passing the heat transfer tube 61 through the openings 15A of the fins 15, the fluid (for example, liquid or gas) is enclosed in the heat transfer tube 61 and compressed to heat the heat transfer tube 60. The method of expanding the pipe is adopted. Therefore, also in the heat exchanger 4A, it is possible to increase the degree of adhesion between the heat transfer tubes 61 and the fins 15 as in the case of a normal heat exchanger.
  • the fluid for example, liquid or gas
  • the refrigerator 100 uses a heat exchanger 4 ⁇ / b> A including a heat transfer tube 60 as a component as the cooler 4.
  • a refrigerator is designed to have a small air path in order to provide a space for placing food and stored items as much as possible. Therefore, in the refrigerator 100, as shown in FIG. 2, the air to be cooled flows in the same direction as the direction of gravity (arrow B) (from bottom to top in FIG. 2 (arrow A)). In the case of such a wind flow, heat exchange can be performed when the refrigerant and the air accumulated in the lower part of the heat transfer tube 60 come into contact with each other. Therefore, it is sufficient to provide the refrigerator 100 with the heat transfer tube 61 having a mechanism for stirring the refrigerant. The performance of the cooler 4 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger is provided with a heat transfer tube, the heat transfer tube has a partition wall inside the tube, and the partition wall extends, in a twisted shape, in the longitudinal direction inside the tube, and divides the inside of the tube into two sections.

Description

熱交換器、この熱交換器を冷却器として用いた冷蔵庫、及び、熱交換器の製造方法Heat exchanger, refrigerator using this heat exchanger as a cooler, and manufacturing method of heat exchanger
 本発明は、伝熱管を構成要素として備えている熱交換器、この熱交換器を冷却器として用いた冷蔵庫、及び、熱交換器の製造方法に関するものである。 The present invention relates to a heat exchanger provided with a heat transfer tube as a component, a refrigerator using the heat exchanger as a cooler, and a method for manufacturing the heat exchanger.
 従来の熱交換器の構成要素として使われる伝熱管として、例えば特許文献1に記載されているような管内に流れる流体の熱伝達率を向上させるため、伝熱管内部に複数のリブを連結し、かつ、伝熱管を軸方向にらせん状にねじったものがあった。
 この従来の伝熱管は、管内を冷媒が気液二相状態で流れる際、液部がリブの隙間を通って中心へと移動する機構となっている。
As a heat transfer tube used as a component of a conventional heat exchanger, for example, in order to improve the heat transfer coefficient of fluid flowing in the tube as described in Patent Document 1, a plurality of ribs are connected inside the heat transfer tube, In addition, there was a heat transfer tube spirally wound in the axial direction.
This conventional heat transfer tube has a mechanism in which when the refrigerant flows through the tube in a gas-liquid two-phase state, the liquid part moves to the center through the gap between the ribs.
特開2006-242529号公報JP 2006-242529 A
 特許文献1に記載されているような従来の伝熱管は、上記機構によって、管内に流れる冷媒を気体から液体に凝縮させ、管外の空気を加熱する際には効率よく熱交換することができる。
 しかしながら、特許文献1に記載されているような従来の伝熱管は、冷媒を管内で蒸発させて管外の空気を冷やす冷却器に用いる場合、管内の外側に液冷媒がある方が効率よく伝熱することができるため、上記機構では効率よく空気を冷却することができないといった問題点があった。
The conventional heat transfer tube as described in Patent Document 1 can efficiently exchange heat when the refrigerant flowing in the tube is condensed from gas to liquid by the above mechanism and the air outside the tube is heated. .
However, when the conventional heat transfer tube as described in Patent Document 1 is used in a cooler that evaporates the refrigerant in the tube and cools the air outside the tube, it is more efficient that the liquid refrigerant is outside the tube. Since it can be heated, there is a problem in that the mechanism cannot cool the air efficiently.
 また、貯蔵室と、圧縮機、放熱器、減圧器、冷却器を順次接続して構成される冷凍サイクルと、を備えた冷蔵庫では、冷媒の循環流量が少なく、レイノルズ数が100~3000程度であり、層流となっている。このため、特許文献1に記載されているような従来の伝熱管では、気液二相冷媒の液部が伝熱管下部に溜まるため、複数のリブで伝熱管内を分割すると、均等に液冷媒が分割されないことになり、伝熱管全体を均等に冷却することができないといった問題点があった。 Further, in a refrigerator equipped with a storage room and a refrigeration cycle configured by sequentially connecting a compressor, a radiator, a decompressor, and a cooler, the circulation flow rate of the refrigerant is small and the Reynolds number is about 100 to 3000. There is a laminar flow. For this reason, in the conventional heat transfer tube as described in Patent Document 1, since the liquid part of the gas-liquid two-phase refrigerant accumulates in the lower part of the heat transfer tube, when the inside of the heat transfer tube is divided by a plurality of ribs, the liquid refrigerant is evenly distributed. Is not divided, and the entire heat transfer tube cannot be uniformly cooled.
 本発明は、上記のような問題点を解決するためになされたもので、気液二相冷媒の液部を均等に分けられるようした伝熱管を構成要素として備えている熱交換器、この熱交換器を冷却器として用いた冷蔵庫、及び、熱交換器の製造方法を提供することを目的とするものである。 The present invention has been made in order to solve the above-described problems, and includes a heat exchanger including a heat transfer tube that can equally divide a liquid part of a gas-liquid two-phase refrigerant as a component, and this heat. It aims at providing the manufacturing method of the refrigerator which used the exchanger as a cooler, and a heat exchanger.
 本発明に係る熱交換器は、伝熱管を備えた熱交換器であって、前記伝熱管は、管内部に隔壁を有しており、前記隔壁は、ねじられた形状で管内部を長手方向に延在し、管内部を二つに分割するものである。 A heat exchanger according to the present invention is a heat exchanger provided with a heat transfer tube, and the heat transfer tube has a partition wall inside the tube, and the partition wall has a twisted shape and the tube interior in the longitudinal direction. The tube interior is divided into two.
 本発明に係る冷蔵庫は、圧縮機、放熱器、減圧器、上記の熱交換器、及び、送風機を有し、前記圧縮機、前記放熱器、前記減圧器、前記熱交換器が連通されて構成された冷凍サイクルを備えたものである。 The refrigerator according to the present invention includes a compressor, a radiator, a decompressor, the above heat exchanger, and a blower, and the compressor, the radiator, the decompressor, and the heat exchanger are connected to each other. Provided with a refrigerating cycle.
 本発明に係る熱交換器の製造方法は、伝熱管を備えた熱交換器の製造方法であって、前記伝熱管は、管内部を二つに分けるねじられた形状の隔壁を管内部に有した第1伝熱管と、管内部に前記隔壁を有さない第2伝熱管と、で少なくとも構成されており、前記フィンの開口部に前記第1伝熱管を通した後、流体を前記第1伝熱管に封入して圧縮し、前記第1伝熱管を拡管するものである。 A method of manufacturing a heat exchanger according to the present invention is a method of manufacturing a heat exchanger provided with a heat transfer tube, and the heat transfer tube has a twisted partition wall inside the tube that divides the inside of the tube into two. The first heat transfer tube and a second heat transfer tube that does not have the partition inside the tube, and after passing the first heat transfer tube through the opening of the fin, the fluid is supplied to the first heat transfer tube. The heat transfer tube is sealed and compressed, and the first heat transfer tube is expanded.
 本発明に係る熱交換器によれば、管内部を軸方向に二つに分けるねじられた形状の隔壁を管内部に有した伝熱管を構成としているので、気液二相冷媒を均等に分割するができるとともに気液二相冷媒の液部を撹拌することができ、熱伝達率が向上する。 According to the heat exchanger of the present invention, since the heat transfer tube having a twisted partition wall that divides the inside of the tube into two in the axial direction is configured, the gas-liquid two-phase refrigerant is divided equally. However, the liquid part of the gas-liquid two-phase refrigerant can be agitated, and the heat transfer rate is improved.
 本発明に係る冷蔵庫によれば、上記の熱交換器を冷凍サイクルの一構成である冷却器として用いているので、冷却器における熱伝達率が向上する。 According to the refrigerator according to the present invention, since the above heat exchanger is used as a cooler which is one component of the refrigeration cycle, the heat transfer coefficient in the cooler is improved.
 本発明に係る熱交換器の製造方法によれば、流体により第1伝熱管を拡管するので、通常の熱交換器と同様に、第1伝熱管とフィンとの密着度が向上したものになる。 According to the method for manufacturing a heat exchanger according to the present invention, since the first heat transfer tube is expanded by the fluid, the degree of adhesion between the first heat transfer tube and the fin is improved in the same manner as in a normal heat exchanger. .
本発明の実施の形態に係る冷蔵庫の冷媒回路構成を概略的に示す冷媒回路構成図である。It is a refrigerant circuit block diagram which shows roughly the refrigerant circuit structure of the refrigerator which concerns on embodiment of this invention. 本発明の実施の形態に係る熱交換器の構成の一例を模式的に示した模式図である。It is the schematic diagram which showed typically an example of the structure of the heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管の内部構造の一例を模式的に示した模式図である。It is the schematic diagram which showed typically an example of the internal structure of the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管の奏する効果を説明するための説明図である。It is explanatory drawing for demonstrating the effect which the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention has. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管の内部の状態を模式的に示した模式図である。It is the schematic diagram which showed typically the state inside the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管の隔壁の回転位置を説明するための説明図である。It is explanatory drawing for demonstrating the rotation position of the partition of the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管を流れる冷媒の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the refrigerant | coolant which flows through the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention. 本発明の実施の形態に係る熱交換器の一部を構成する伝熱管を流れる冷媒の状態を説明するための説明図である。It is explanatory drawing for demonstrating the state of the refrigerant | coolant which flows through the heat exchanger tube which comprises some heat exchangers concerning embodiment of this invention.
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 図1は、本発明の実施の形態に係る冷蔵庫100の冷媒回路構成を概略的に示す冷媒回路構成図である。以下、図1に基づいて、冷蔵庫100について説明する。この冷蔵庫100は、冷凍サイクルを利用して冷蔵庫100の庫内を目標温度まで冷却することができるものである。また、冷蔵庫100は、本発明の実施の形態に係る熱交換器4Aを冷却器4として備えている。熱交換器4Aについては、図2以降で詳細に説明するものとする。 FIG. 1 is a refrigerant circuit configuration diagram schematically showing a refrigerant circuit configuration of a refrigerator 100 according to an embodiment of the present invention. Hereinafter, the refrigerator 100 will be described with reference to FIG. This refrigerator 100 can cool the inside of the refrigerator 100 to a target temperature using a refrigeration cycle. Moreover, the refrigerator 100 is provided with 4 A of heat exchangers which concern on embodiment of this invention as the cooler 4. FIG. The heat exchanger 4A will be described in detail with reference to FIG.
 図1に示すように、冷蔵庫100は、圧縮機1、放熱器2、減圧器3、冷却器4、送風機5を、備えている。そして、圧縮機1、放熱器2、減圧器3、冷却器4が連通され、冷凍サイクルが構成される。
 なお、放熱器2は、空気熱交換器2aと、放熱パイプ2bと、で構成されている。また、送風機5は、放熱器2に空気を供給する送風機5aと、冷却器4に空気を供給する送風機5bと、で構成されている。
As shown in FIG. 1, the refrigerator 100 includes a compressor 1, a radiator 2, a decompressor 3, a cooler 4, and a blower 5. And the compressor 1, the heat radiator 2, the decompressor 3, and the cooler 4 are connected, and a refrigerating cycle is comprised.
The radiator 2 includes an air heat exchanger 2a and a heat radiating pipe 2b. The blower 5 includes a blower 5 a that supplies air to the radiator 2 and a blower 5 b that supplies air to the cooler 4.
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであればよく、特にタイプを限定するものではない。例えば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機1を構成することができる。この圧縮機1は、インバータにより回転数が可変に制御可能なタイプのもので構成するとよい。圧縮機1は、冷蔵庫100の底部に形成されている機械室7に設置されている。 The compressor 1 is not particularly limited as long as the compressor 1 sucks the refrigerant and compresses the refrigerant to be in a high temperature and high pressure state. For example, the compressor 1 can be configured using various types such as reciprocating, rotary, scroll, or screw. The compressor 1 may be configured of a type that can be variably controlled by an inverter. The compressor 1 is installed in a machine room 7 formed at the bottom of the refrigerator 100.
 放熱器2は、圧縮機1から吐出された冷媒の熱を空気に放熱するものである。図1に示すように、空気熱交換器2aの方が、放熱パイプ2bよりも冷媒の流れ上流側に設けられている。
 空気熱交換器2aは、圧縮機1からの吐出冷媒と、送風機5aから供給される空気と、で熱交換するものである。空気熱交換器2aは、機械室7に設置されている。
 放熱パイプ2bは、例えば銅管などで構成され、冷蔵庫100の壁面に沿って設けられる。
 送風機5aは、機械室7の空気熱交換器2aに空気を供給できる位置に設けられ、空気熱交換器2aに空気を供給するものである。
The radiator 2 radiates the heat of the refrigerant discharged from the compressor 1 to the air. As shown in FIG. 1, the air heat exchanger 2a is provided on the upstream side of the refrigerant flow with respect to the heat radiating pipe 2b.
The air heat exchanger 2a exchanges heat between the refrigerant discharged from the compressor 1 and the air supplied from the blower 5a. The air heat exchanger 2 a is installed in the machine room 7.
The heat radiating pipe 2 b is made of, for example, a copper pipe and is provided along the wall surface of the refrigerator 100.
The blower 5a is provided at a position where air can be supplied to the air heat exchanger 2a of the machine room 7, and supplies air to the air heat exchanger 2a.
 減圧器3は、放熱パイプ2bと冷却器4との間に設けられ、冷媒を減圧して膨張させるものである。減圧器3は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The decompressor 3 is provided between the heat radiating pipe 2b and the cooler 4, and decompresses the refrigerant to expand it. The decompressor 3 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
 冷却器4は、冷蔵庫100の冷却室8に設置され、減圧器3から流出された冷媒に空気の熱を吸熱し、冷蔵庫100の貯蔵室6に供給する冷気を生成するものである。冷却器4の構成については、後段で詳細に説明するものとする。
 送風機5bは、冷却室8の冷却器4に空気を供給できる位置に設けられ、貯蔵室6の空気を循環させて冷却器4に空気を供給するものである。
The cooler 4 is installed in the cooling chamber 8 of the refrigerator 100, absorbs the heat of the air from the refrigerant flowing out of the decompressor 3, and generates cool air to be supplied to the storage chamber 6 of the refrigerator 100. The configuration of the cooler 4 will be described in detail later.
The blower 5 b is provided at a position where air can be supplied to the cooler 4 in the cooling chamber 8, and supplies air to the cooler 4 by circulating the air in the storage chamber 6.
 次に、冷蔵庫100の動作について説明する。
 圧縮機1から吐出された高温高圧のガス冷媒は、空気熱交換器2a及び放熱パイプ2bを通る。高温高圧のガス冷媒は、空気熱交換器2a及び放熱パイプ2bにおいて冷蔵庫100の周囲の外気と熱交換し、放熱によって凝縮する。凝縮した高圧液冷媒は、減圧器3で減圧され低圧され、気液二相冷媒となる。その後、気液二相冷媒は冷蔵庫100の内部に形成されている冷却室8に設置された冷却器4へ流入する。
Next, the operation of the refrigerator 100 will be described.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the air heat exchanger 2a and the heat radiating pipe 2b. The high-temperature and high-pressure gas refrigerant exchanges heat with the outside air around the refrigerator 100 in the air heat exchanger 2a and the heat radiating pipe 2b, and condenses by heat radiation. The condensed high-pressure liquid refrigerant is decompressed and decompressed by the decompressor 3, and becomes a gas-liquid two-phase refrigerant. Thereafter, the gas-liquid two-phase refrigerant flows into the cooler 4 installed in the cooling chamber 8 formed inside the refrigerator 100.
 冷却器4では、冷蔵庫100の貯蔵室6の空気と気液二相冷媒とが熱交換する。冷蔵庫100の貯蔵室6の空気は、送風機5bによって庫内を循環している。そして、空気は気液二相冷媒によって冷却され貯蔵室6に送られ、冷媒は低圧ガス冷媒となって冷却器4から流出する。その後、低圧ガスとなった冷媒は、圧縮機1に流入し、再度加圧されて吐出され、冷凍サイクルを循環する。 In the cooler 4, the air in the storage chamber 6 of the refrigerator 100 and the gas-liquid two-phase refrigerant exchange heat. The air in the storage chamber 6 of the refrigerator 100 is circulated in the cabinet by the blower 5b. The air is cooled by the gas-liquid two-phase refrigerant and sent to the storage chamber 6, and the refrigerant becomes a low-pressure gas refrigerant and flows out of the cooler 4. Thereafter, the refrigerant that has become low-pressure gas flows into the compressor 1, is pressurized again and discharged, and circulates in the refrigeration cycle.
 次に、冷蔵庫100での冷却空気の流れを説明する。
 冷却室8の冷却器4で冷却された空気は、送風機5bによって搬送され、各貯蔵室6へ流入し、各貯蔵室6を冷却する。各貯蔵室6を冷却した冷却空気は、送風機5bによって搬送され、冷蔵庫100の内部に形成されている戻り風路を通過し、再度、冷却室8へ流入し、再び冷却器4で冷却される。
Next, the flow of cooling air in the refrigerator 100 will be described.
The air cooled by the cooler 4 in the cooling chamber 8 is conveyed by the blower 5b, flows into each storage chamber 6, and cools each storage chamber 6. The cooling air that has cooled each storage chamber 6 is conveyed by the blower 5 b, passes through a return air passage formed inside the refrigerator 100, flows into the cooling chamber 8 again, and is cooled again by the cooler 4. .
 また、図1の一点鎖線で囲んだ部分を熱交換部20として説明する。熱交換部20を設けて、減圧器3で冷媒を減圧させる際、冷却器4の出口配管と熱交換させてもよい。熱交換部20としては、例えば、シェルアンドチューブ式熱交換器、二重管式熱交換器、プレート熱交換器等を用いることができる。減圧器3の入口における冷媒温度は、圧縮機1の吸入配管の入口温度に比べて大きいので、熱交換部20を設けた場合、減圧器3での冷媒は吸入配管を流れる冷媒によって冷却される。このため、冷却器4の入口側の冷媒の入口乾き度は0に近い値を取るため、液相部が多くなり冷却器4を有効に使うことができるようになる。なお、熱交換部20は必須の構成ではない。 Further, a portion surrounded by a one-dot chain line in FIG. When the heat exchanger 20 is provided and the refrigerant is decompressed by the decompressor 3, heat exchange with the outlet pipe of the cooler 4 may be performed. As the heat exchange unit 20, for example, a shell and tube heat exchanger, a double tube heat exchanger, a plate heat exchanger, or the like can be used. Since the refrigerant temperature at the inlet of the decompressor 3 is larger than the inlet temperature of the suction pipe of the compressor 1, when the heat exchange unit 20 is provided, the refrigerant in the decompressor 3 is cooled by the refrigerant flowing through the suction pipe. . For this reason, since the inlet dryness of the refrigerant on the inlet side of the cooler 4 takes a value close to 0, the liquid phase part increases and the cooler 4 can be used effectively. In addition, the heat exchange part 20 is not an essential structure.
 図2は、本発明の実施の形態に係る熱交換器4Aの構成の一例を模式的に示した模式図である。図3は、熱交換器4Aの一部を構成する伝熱管61の内部構造の一例を模式的に示した模式図である。図4は、熱交換器4Aの一部を構成する伝熱管61の奏する効果を説明するための説明図である。以下、図2~図4に基づいて、熱交換器4Aの構成、特に熱交換器4Aの一部を構成する伝熱管61について説明する。なお、図2では、空気の流れを矢印Aで、重力方向を矢印Bで、冷媒の流れを矢印Cで、それぞれ表している。また、図4では、空気の流れを矢印Aで、旋回流の発生状態を矢印Eで、管内の冷媒の流れを矢印Fで、それぞれ表している。 FIG. 2 is a schematic diagram schematically showing an example of the configuration of the heat exchanger 4A according to the embodiment of the present invention. FIG. 3 is a schematic view schematically showing an example of the internal structure of the heat transfer tube 61 constituting a part of the heat exchanger 4A. FIG. 4 is an explanatory diagram for explaining the effect exerted by the heat transfer tube 61 constituting a part of the heat exchanger 4A. Hereinafter, based on FIGS. 2 to 4, the configuration of the heat exchanger 4A, in particular, the heat transfer tube 61 constituting a part of the heat exchanger 4A will be described. In FIG. 2, the air flow is indicated by an arrow A, the direction of gravity is indicated by an arrow B, and the refrigerant flow is indicated by an arrow C. In FIG. 4, the air flow is represented by arrow A, the swirl flow generation state is represented by arrow E, and the refrigerant flow in the pipe is represented by arrow F.
 熱交換器4Aは、図2に示すように、複数の板状のフィン15と、伝熱管60と、を備えている。伝熱管60は、冷媒入口部60Aから冷媒出口部60Bにかけて複数回曲げられて構成されている。つまり、伝熱管60は、複数のフィン15に挿入され直線的に冷媒が流れる直線部51と、直線部51の端部同士を連結し冷媒の流れを曲げる曲げ部52と、を有して構成されている。熱交換器4Aを流れる冷媒は、冷媒入口部60Aから流入し、直線部51及び曲げ部52を経由した後に冷媒出口部60Bから流出する。なお、図2では、伝熱管60は、4つの直線部51と、4つの曲げ部52と、を有している。 As shown in FIG. 2, the heat exchanger 4 </ b> A includes a plurality of plate-like fins 15 and heat transfer tubes 60. The heat transfer tube 60 is configured to be bent a plurality of times from the refrigerant inlet portion 60A to the refrigerant outlet portion 60B. That is, the heat transfer tube 60 includes a straight portion 51 that is inserted into the plurality of fins 15 and through which the refrigerant flows linearly, and a bent portion 52 that connects the ends of the straight portions 51 and bends the flow of the refrigerant. Has been. The refrigerant flowing through the heat exchanger 4A flows in from the refrigerant inlet portion 60A, flows out of the refrigerant outlet portion 60B after passing through the straight portion 51 and the bending portion 52. In FIG. 2, the heat transfer tube 60 has four straight portions 51 and four bent portions 52.
 伝熱管60は、フィン15に形成されている開口部15Aに挿入される。また、伝熱管60は、管内部に隔壁65を備えた伝熱管61と、管内部に隔壁65を持たない伝熱管62と、で構成されている。なお、熱交換器4Aの使用状態において、伝熱管60の冷媒入口部60Aは重力方向下側に設けられ、伝熱管60の冷媒出口部60Bは重力方向上側に設けられている。したがって、冷媒は、重力方向下側から重力方向上側に向かって流れることになる。 The heat transfer tube 60 is inserted into the opening 15 </ b> A formed in the fin 15. The heat transfer tube 60 includes a heat transfer tube 61 having a partition wall 65 inside the tube and a heat transfer tube 62 having no partition wall 65 inside the tube. In the use state of the heat exchanger 4A, the refrigerant inlet portion 60A of the heat transfer tube 60 is provided on the lower side in the gravity direction, and the refrigerant outlet portion 60B of the heat transfer tube 60 is provided on the upper side in the gravity direction. Therefore, the refrigerant flows from the lower side in the gravitational direction toward the upper side in the gravitational direction.
 伝熱管61は、図3に示すように、管内部を2等分する隔壁65を有している。隔壁65は、流体の流通方向(伝熱管61の長手方向)に向かってねじった構造になっている。隔壁65は、直線部51の終端までに少なくとも1回転ねじられた形状となっている。たとえば、隔壁65をらせん状にすることで、隔壁65をねじった形状とすることができる。この伝熱管61が、本発明の「第1伝熱管」に相当する。
 伝熱管62は、隔壁65を有しておらず、例えばU字形状の伝熱管で構成し、伝熱管61の端部を連結するとよい。この伝熱管62が、本発明の「第2伝熱管」に相当する。
As shown in FIG. 3, the heat transfer tube 61 has a partition wall 65 that divides the inside of the tube into two equal parts. The partition wall 65 has a structure twisted toward the fluid flow direction (longitudinal direction of the heat transfer tube 61). The partition wall 65 has a shape that is twisted at least once by the end of the straight portion 51. For example, the partition 65 can be formed into a twisted shape by making the partition 65 spiral. This heat transfer tube 61 corresponds to the “first heat transfer tube” of the present invention.
The heat transfer tube 62 does not have the partition wall 65, and is configured by, for example, a U-shaped heat transfer tube, and the end of the heat transfer tube 61 may be connected. The heat transfer tube 62 corresponds to the “second heat transfer tube” of the present invention.
 伝熱管60は、直線部51が伝熱管61で構成され、曲げ部52が伝熱管62で構成されている。すなわち、熱交換器4Aは、直線部51の少なくとも一部が伝熱管61で構成され、曲げ部52が伝熱管62で構成されている伝熱管60が複数のフィン15に挿入された構造となっている。 In the heat transfer tube 60, the straight portion 51 is configured by a heat transfer tube 61, and the bent portion 52 is configured by a heat transfer tube 62. That is, the heat exchanger 4 </ b> A has a structure in which at least a part of the straight portion 51 is configured by the heat transfer tube 61 and the heat transfer tube 60 in which the bending portion 52 is configured by the heat transfer tube 62 is inserted into the plurality of fins 15. ing.
 一般的に、冷蔵庫では冷媒の流量が少なく、冷却器の付近の冷媒のレイノルズ数が100~3000と小さい。このため、冷却器の内部の気液二相冷媒は重力方向に液冷媒が溜まる層流となっている。冷却器では液冷媒が蒸発することで伝熱管周囲の空気を冷却するようになっている。そのため、冷却器の下部に液冷媒が溜まっている状態では、伝熱管の下部と接している液冷媒だけが空気と熱交換することになるため、熱交換性能の悪い状態となる。 Generally, in a refrigerator, the flow rate of the refrigerant is small, and the Reynolds number of the refrigerant near the cooler is as small as 100 to 3000. For this reason, the gas-liquid two-phase refrigerant inside the cooler is a laminar flow in which the liquid refrigerant accumulates in the direction of gravity. In the cooler, the liquid refrigerant evaporates to cool the air around the heat transfer tube. Therefore, in a state where the liquid refrigerant is accumulated in the lower part of the cooler, only the liquid refrigerant in contact with the lower part of the heat transfer tube exchanges heat with the air, resulting in a poor heat exchange performance.
 そのため、熱交換器4Aを冷却器4として用いることを前提して、熱交換器4Aでは、管内部にねじった隔壁65を設けた伝熱管61を用いることで、伝熱管61の下部に溜まった液冷媒を撹拌させるようになっている。その結果、図4に示すように、液冷媒全体が均等に蒸発することが可能になる。このため、伝熱管61の全体を有効に熱交換に寄与させることができるようになり、伝熱管60の熱交換性能が向上する。 Therefore, assuming that the heat exchanger 4A is used as the cooler 4, in the heat exchanger 4A, the heat transfer tube 61 provided with the partition wall 65 twisted inside the tube is used, so that the heat exchanger 4A is accumulated in the lower portion of the heat transfer tube 61. The liquid refrigerant is agitated. As a result, as shown in FIG. 4, the entire liquid refrigerant can be evaporated evenly. Therefore, the entire heat transfer tube 61 can be effectively contributed to heat exchange, and the heat exchange performance of the heat transfer tube 60 is improved.
 図5は、熱交換器4Aの一部を構成する伝熱管61の内部の状態を模式的に示した模式図である。図6は、熱交換器4Aの一部を構成する伝熱管61の隔壁65の回転位置を説明するための説明図である。図7は、熱交換器4Aの一部を構成する伝熱管61を流れる冷媒の状態を説明するための説明図である。図8は、熱交換器4Aの一部を構成する伝熱管61を流れる冷媒の状態を説明するための説明図である。図5~図8に基づいて、熱交換器4Aを構成している伝熱管61について更に詳細に説明する。 FIG. 5 is a schematic diagram schematically showing an internal state of the heat transfer tube 61 constituting a part of the heat exchanger 4A. FIG. 6 is an explanatory diagram for explaining the rotational position of the partition wall 65 of the heat transfer tube 61 constituting a part of the heat exchanger 4A. FIG. 7 is an explanatory diagram for explaining the state of the refrigerant flowing through the heat transfer tubes 61 constituting a part of the heat exchanger 4A. FIG. 8 is an explanatory diagram for explaining the state of the refrigerant flowing through the heat transfer tubes 61 constituting a part of the heat exchanger 4A. The heat transfer tubes 61 constituting the heat exchanger 4A will be described in more detail based on FIGS.
 図5では、垂直状態になっている隔壁65を基準の0°として、隔壁65の回転位置による4つの状態を図示している。すなわち、図5では、(a)が隔壁65が0°のときの状態を、(b)が隔壁65が45°回転したときの状態を、(c)が隔壁65が90°回転したときの状態を、(d)が隔壁65が135°回転したときの状態を、それぞれ示している。また、図6~図8では、図2の構成に加え、隔壁65が垂直になっている個所を矢印Dで図示している。 FIG. 5 illustrates four states depending on the rotation position of the partition wall 65 with the partition wall 65 in a vertical state being set to 0 ° as a reference. That is, in FIG. 5, (a) shows a state when the partition wall 65 is 0 °, (b) shows a state when the partition wall 65 rotates 45 °, and (c) shows a state when the partition wall 65 rotates 90 °. The state (d) shows the state when the partition wall 65 is rotated by 135 °. Further, in FIGS. 6 to 8, in addition to the configuration of FIG.
 図5(a)~(d)に示すように、隔壁65は、ねじられた形状となっているので、伝熱管61を流路断面(流体の流れと直交する方向の断面)で見た場合、長手方向の2点間で傾き角が異なっている。たとえば、鉛直方向を基準となる方向とした場合、図5(a)に示す隔壁65の鉛直方向に対する傾き角は0°となり、図5(b)に示す隔壁65の鉛直方向に対する傾き角は45°となり、図5(c)に示す隔壁65の鉛直方向に対する傾き角は90°となり、図5(a)に示す隔壁65の鉛直方向に対する傾き角は135°となる。なお、基準となる方向は、鉛直方向だけでなく、たとえば水平方向等でもよい。 As shown in FIGS. 5A to 5D, since the partition wall 65 has a twisted shape, the heat transfer tube 61 is viewed in the cross section of the flow path (the cross section in the direction perpendicular to the fluid flow). The inclination angle is different between two points in the longitudinal direction. For example, when the vertical direction is a reference direction, the inclination angle of the partition wall 65 shown in FIG. 5A with respect to the vertical direction is 0 °, and the inclination angle of the partition wall 65 shown in FIG. The inclination angle of the partition wall 65 shown in FIG. 5C with respect to the vertical direction is 90 °, and the inclination angle of the partition wall 65 shown in FIG. 5A is 135 ° with respect to the vertical direction. The reference direction may be not only the vertical direction but also the horizontal direction, for example.
 図5(a)~(d)に示すように、伝熱管61の内部はガス部と液部の気液二相状態になっており、液部の占める割合の方が大きくなっている。
 図5(a)に示すように、伝熱管61の内部に設けられた隔壁65によって気液二相冷媒が均等に分けられる。
 図5(b)~(d)に示すように、気液二相冷媒は、隔壁65のねじりによって旋回流を生みながら上部、下部に移動する。このときの冷媒の状態は、図4に模式的に図示した通りである。
 なお、先に説明したように冷媒は層流となっているため、重力方向に合わせて液冷媒が溜まる構造となる。
As shown in FIGS. 5A to 5D, the inside of the heat transfer tube 61 is in a gas-liquid two-phase state of the gas part and the liquid part, and the ratio occupied by the liquid part is larger.
As shown in FIG. 5A, the gas-liquid two-phase refrigerant is equally divided by the partition wall 65 provided inside the heat transfer tube 61.
As shown in FIGS. 5B to 5D, the gas-liquid two-phase refrigerant moves upward and downward while generating a swirling flow by the torsion of the partition wall 65. The state of the refrigerant at this time is as schematically shown in FIG.
Since the refrigerant is laminar as described above, the liquid refrigerant accumulates in the direction of gravity.
 そのため、上述したように、隔壁65の作用によって、伝熱管61の下部に溜まった液冷媒を撹拌させることができ、液冷媒全体を蒸発させることが可能になる。
 なお、上記において、隔壁65は、直線部51の終端までに少なくとも1回転ねじられた形状となっていると説明したが、厳密に1回転ねじられている必要はなく、図5に示すように直線部51の終端までに3/4回転ねじられた形状であれば効果を発揮する。
Therefore, as described above, the liquid refrigerant accumulated in the lower portion of the heat transfer tube 61 can be agitated by the action of the partition wall 65, and the entire liquid refrigerant can be evaporated.
In the above description, the partition wall 65 has been described as having a shape that is twisted at least once by the end of the straight portion 51. However, the partition wall 65 does not have to be twisted by exactly one turn, as shown in FIG. If the shape is twisted by 3/4 of a turn until the end of the straight part 51, the effect is exhibited.
 熱交換器4Aは、ねじられている隔壁65を持つ伝熱管61を備えている。伝熱管61は、熱交換器4Aの直線部51に設けてあり、各伝熱管60を接合する曲げ部52にはねじられている隔壁65を持たない伝熱管62が設けられている。そして、図6に示すように、冷媒入口部60Aの隔壁65を垂直としている。このため、熱交換器4Aに流入した冷媒は、冷媒入口部60Aで垂直となっている隔壁65により伝熱管61の管内で均一に分割される。 The heat exchanger 4A includes a heat transfer tube 61 having a partition wall 65 that is twisted. The heat transfer tube 61 is provided in the straight portion 51 of the heat exchanger 4A, and a bent portion 52 that joins the heat transfer tubes 60 is provided with a heat transfer tube 62 that does not have a twisted partition wall 65. As shown in FIG. 6, the partition wall 65 of the refrigerant inlet 60A is vertical. For this reason, the refrigerant that has flowed into the heat exchanger 4A is uniformly divided within the heat transfer tube 61 by the partition wall 65 that is vertical at the refrigerant inlet portion 60A.
 また、伝熱管60をこのような構造とすることによって、仮に熱交換器4Aの内部のある個所で図7に示すように液冷媒の分布が不均一になってしまった場合でも、曲げ部52では隔壁65がないため曲げ部52で液冷媒が合流し、次の伝熱管61に入る際には隔壁65の作用により再度均一に液冷媒を分割することができる。 Further, by adopting such a structure for the heat transfer tube 60, even if the distribution of the liquid refrigerant becomes non-uniform as shown in FIG. 7 at a certain position inside the heat exchanger 4A, the bent portion 52 is provided. Then, since there is no partition wall 65, the liquid refrigerant merges at the bent portion 52, and when entering the next heat transfer tube 61, the liquid refrigerant can be uniformly divided again by the action of the partition wall 65.
 また、熱交換器4Aは、液冷媒が曲げ部52を通過後、直線部51の伝熱管61に流入する際、隔壁65を垂直としている。つまり、図6に示すように、伝熱管61と伝熱管62との連結部のそれぞれにおいて冷媒の流れ方向下流側に位置する連結部に接続している伝熱管61の隔壁65を垂直にしている。このようにすることで、下部に溜まった液冷媒を2分割にすることができ、隔壁65によって2つに分割された流路に均等に液冷媒を流すことができる。つまり、図6に示すように、分割されずに流れている冷媒が流入してくる部分に位置する隔壁65を垂直にしている(矢印D)。 In the heat exchanger 4A, when the liquid refrigerant flows through the bent portion 52 and then flows into the heat transfer tube 61 of the straight portion 51, the partition wall 65 is vertical. That is, as shown in FIG. 6, the partition wall 65 of the heat transfer tube 61 connected to the connection portion located on the downstream side in the refrigerant flow direction in each of the connection portions of the heat transfer tube 61 and the heat transfer tube 62 is made vertical. . By doing in this way, the liquid refrigerant accumulated in the lower part can be divided into two, and the liquid refrigerant can be made to flow evenly through the flow path divided into two by the partition wall 65. That is, as shown in FIG. 6, the partition wall 65 positioned at a portion into which the refrigerant flowing without being divided flows is made vertical (arrow D).
 なお、熱交換器4Aの実際の製造の場合、隔壁65を図5(a)に示すように、分割されずに流れている冷媒が流入してくる部分に位置する隔壁65の回転位置を+45°~-45°の範囲とすれば性能を十分に発揮するが、隔壁65を0°、つまり垂直とすることで最も高い性能を示すことがわかった。 In the actual manufacture of the heat exchanger 4A, as shown in FIG. 5 (a), the rotation position of the partition wall 65 located at the portion into which the refrigerant flowing without being divided flows is +45. It was found that when the angle was in the range of -45 °, the performance was sufficiently exhibited, but the highest performance was obtained when the partition wall 65 was 0 °, that is, vertical.
 また、伝熱管61の配置は、曲げ部52の直後からとしてもよいし、曲げ部52の直後に平滑管63を設け、平滑管63を介した後からとしてもよい。平滑管63を設置する場合、図8に示すように、平滑管63を伝熱管62の冷媒流れ下流側に少なくとも設置するとよい。平滑管63を設置することにより、曲げ部52で乱れた流れが平滑管63によって整い、図4に示すような液部が伝熱管60の下部に溜まった流れとなる。この流れとなった後に伝熱管61を接続することで、隔壁65で冷媒を2分割することができ、安定して液冷媒を分割することができる。 Further, the heat transfer tube 61 may be arranged immediately after the bent portion 52, or after the smooth tube 63 is provided immediately after the bent portion 52 and the smooth tube 63 is interposed. When the smooth tube 63 is installed, the smooth tube 63 may be installed at least on the downstream side of the refrigerant flow of the heat transfer tube 62 as shown in FIG. By installing the smooth tube 63, the flow disturbed by the bending portion 52 is adjusted by the smooth tube 63, and the liquid portion as shown in FIG. 4 becomes a flow accumulated in the lower part of the heat transfer tube 60. By connecting the heat transfer tube 61 after this flow, the refrigerant can be divided into two by the partition wall 65, and the liquid refrigerant can be stably divided.
 また、隔壁65及び伝熱管60の内部には、溝加工を施してもよい。溝加工を施すことで、伝熱管60の下部に溜まっている液冷媒の粘性によって液冷媒が溝に沿って上昇することになる。このため、伝熱管60の外周を通過する空気と熱交換する管内面積が増えることになり、熱交換器の性能を上げることができる。 In addition, the inside of the partition wall 65 and the heat transfer tube 60 may be grooved. By performing the groove processing, the liquid refrigerant rises along the groove due to the viscosity of the liquid refrigerant accumulated in the lower part of the heat transfer tube 60. For this reason, the area in a pipe | tube which heat-exchanges with the air which passes the outer periphery of the heat exchanger tube 60 will increase, and the performance of a heat exchanger can be improved.
 なお、伝熱管61は押出成型によって金属材料を押し出しかつ回転させながら作成される。通常の伝熱管は熱伝導率の高い銅などを用いているが、伝熱管61のような複雑な形状の押出成型の場合、伝熱管61を構成する金属材料としてはアルミニウムを用いたものが精度よく成型できる。このため、この熱交換器4Aの伝熱管60をアルミニウムで作成するとよい。ただし、押出成型によって伝熱管61を作成することができる金属材料であればよく、アルミニウムに限定するものではない。 Note that the heat transfer tube 61 is formed by extruding and rotating a metal material by extrusion molding. A normal heat transfer tube uses copper or the like having a high thermal conductivity. However, in the case of extrusion molding with a complicated shape such as the heat transfer tube 61, the metal material constituting the heat transfer tube 61 is precision using aluminum. Can be molded well. For this reason, it is good to make the heat exchanger tube 60 of this heat exchanger 4A with aluminum. However, any metal material can be used as long as the heat transfer tube 61 can be formed by extrusion molding, and the material is not limited to aluminum.
 また、熱交換器4Aも含め通常の熱交換器の場合、伝熱管の他にフィンを設けてある。このフィンと伝熱管の密着度を上げることで、熱交換器本来の性能を引き上げることができる。そこで、一般的には、フィンと伝熱管との密着度を上げるため、フィンの穴部(開口部)に伝熱管を通した後、伝熱管の内径より少し大きい棒(拡管機)を伝熱管に挿入し拡管させる方式が取られる。一般的な伝熱管には伝熱管61が有しているような隔壁65が形成されていないため、このような拡管機を用いた拡管方法で問題はない。 In addition, in the case of a normal heat exchanger including the heat exchanger 4A, fins are provided in addition to the heat transfer tubes. By increasing the adhesion between the fins and the heat transfer tubes, the original performance of the heat exchanger can be raised. Therefore, in general, in order to increase the adhesion between the fin and the heat transfer tube, after passing the heat transfer tube through the hole (opening) of the fin, a rod (tube expansion machine) slightly larger than the inner diameter of the heat transfer tube is used. The system is inserted into the tube and expanded. Since a partition wall 65 as in the heat transfer tube 61 is not formed in a general heat transfer tube, there is no problem with the tube expansion method using such a tube expander.
 しかしながら、伝熱管61は管内に隔壁65を有しているので、このような拡管機を用いた拡管方法を採用することができない。このため、熱交換器4Aを製造する場合、フィン15の開口部15Aに伝熱管61を通した後、流体(例えば、液体又は気体)を伝熱管61に封入して圧縮することで伝熱管60を拡管する方法を採用する。したがって、熱交換器4Aにおいても、通常の熱交換器と同様に、伝熱管61とフィン15との密着度を上げることが可能になる。 However, since the heat transfer tube 61 has the partition wall 65 in the tube, a tube expansion method using such a tube expander cannot be employed. For this reason, when manufacturing the heat exchanger 4A, after passing the heat transfer tube 61 through the openings 15A of the fins 15, the fluid (for example, liquid or gas) is enclosed in the heat transfer tube 61 and compressed to heat the heat transfer tube 60. The method of expanding the pipe is adopted. Therefore, also in the heat exchanger 4A, it is possible to increase the degree of adhesion between the heat transfer tubes 61 and the fins 15 as in the case of a normal heat exchanger.
 さらに、図1に示したように、冷蔵庫100は、伝熱管60を構成要素として備えている熱交換器4Aを冷却器4として用いている。一般的に、冷蔵庫は、できる限り食品及び保存物を置くスペースを設けるため、風路が小さく設計されている。このため、冷蔵庫100では、図2に示すように重力方向(矢印B)と同方向に(図2では下から上に向かって(矢印A))冷却したい空気を流すようにしている。このような風の流れの場合は、伝熱管60の下部に溜まった冷媒と空気が触れることで熱交換できるため、冷蔵庫100には冷媒を撹拌させる機構を持つ伝熱管61を設けることで十分に冷却器4の性能を上げることができる。 Furthermore, as shown in FIG. 1, the refrigerator 100 uses a heat exchanger 4 </ b> A including a heat transfer tube 60 as a component as the cooler 4. In general, a refrigerator is designed to have a small air path in order to provide a space for placing food and stored items as much as possible. Therefore, in the refrigerator 100, as shown in FIG. 2, the air to be cooled flows in the same direction as the direction of gravity (arrow B) (from bottom to top in FIG. 2 (arrow A)). In the case of such a wind flow, heat exchange can be performed when the refrigerant and the air accumulated in the lower part of the heat transfer tube 60 come into contact with each other. Therefore, it is sufficient to provide the refrigerator 100 with the heat transfer tube 61 having a mechanism for stirring the refrigerant. The performance of the cooler 4 can be improved.
 1 圧縮機、2 放熱器、2a 空気熱交換器、2b 放熱パイプ、3 減圧器、4 冷却器、4A 熱交換器、5 送風機、5a 送風機、5b 送風機、6 貯蔵室、7 機械室、8 冷却室、15 フィン、15A 開口部、20 熱交換部、51 直線部、52 曲げ部、60 伝熱管、60A 冷媒入口部、60B 冷媒出口部、61 伝熱管、62 伝熱管、63 平滑管、65 隔壁、100 冷蔵庫。 1 compressor, 2 radiator, 2a air heat exchanger, 2b heat radiation pipe, 3 decompressor, 4 cooler, 4A heat exchanger, 5 blower, 5a blower, 5b blower, 6 storage room, 7 machine room, 8 cooling Chamber, 15 fin, 15A opening, 20 heat exchanging part, 51 straight part, 52 bending part, 60 heat transfer pipe, 60A refrigerant inlet part, 60B refrigerant outlet part, 61 heat transfer pipe, 62 heat transfer pipe, 63 smooth pipe, 65 partition , 100 refrigerator.

Claims (13)

  1.  伝熱管を備えた熱交換器であって、
     前記伝熱管は、
     管内部に隔壁を有しており、
     前記隔壁は、
     ねじられた形状で管内部を長手方向に延在し、管内部を二つに分割する
     熱交換器。
    A heat exchanger with a heat transfer tube,
    The heat transfer tube is
    Has a partition inside the tube,
    The partition is
    A heat exchanger with a twisted shape that extends in the longitudinal direction inside the tube and divides the inside of the tube into two parts.
  2.  前記隔壁は、
     流路断面で見た場合、長手方向の2点間で基準となる方向に対する傾き角が異なっている
     請求項1に記載の熱交換器。
    The partition is
    The heat exchanger according to claim 1, wherein when viewed in the cross section of the flow path, the inclination angle with respect to a reference direction is different between two points in the longitudinal direction.
  3.  前記伝熱管は、
     直線部と曲げ部を有しており、
     前記直線部の少なくとも一部に前記隔壁を有している
     請求項1又は2に記載の熱交換器。
    The heat transfer tube is
    It has a straight part and a bent part,
    The heat exchanger according to claim 1 or 2, wherein the partition is provided in at least a part of the linear portion.
  4.  前記隔壁は、
     前記直線部の終端までに少なくとも1回転ねじられた形状である
     請求項3に記載の熱交換器。
    The partition is
    The heat exchanger according to claim 3, wherein the heat exchanger has a shape twisted at least once by the end of the straight portion.
  5.  前記隔壁は、
     冷媒入口部において垂直となっている
     請求項1~4のいずれか一項に記載の熱交換器。
    The partition is
    The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is vertical at a refrigerant inlet.
  6.  前記直線部と前記曲げ部との連結部であって冷媒流れ方向下流側に位置する連結部の下流側の前記隔壁を垂直としている
     請求項1~5のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 5, wherein the partition wall, which is a connecting portion between the straight portion and the bent portion and is downstream of the connecting portion located downstream in the refrigerant flow direction, is vertical. .
  7.  前記伝熱管は、
     前記直線部と前記曲げ部とを接続する平滑管を備えている
     請求項1~6のいずれか一項に記載の熱交換器。
    The heat transfer tube is
    The heat exchanger according to any one of claims 1 to 6, further comprising a smooth tube connecting the straight portion and the bent portion.
  8.  前記隔壁及び前記直線部の内部に溝加工を設けた
     請求項3、請求項3に従属する請求項4~7のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 3 to 7, wherein a groove is provided in the partition wall and the linear portion.
  9.  圧縮機、放熱器、減圧器、請求項1~8に記載の熱交換器、及び、送風機を有し、
     前記圧縮機、前記放熱器、前記減圧器、前記熱交換器が連通されて構成された冷凍サイクルを備えた
     冷蔵庫。
    A compressor, a radiator, a decompressor, a heat exchanger according to claims 1 to 8, and a blower;
    The refrigerator provided with the refrigerating cycle comprised by the said compressor, the said heat radiator, the said pressure reduction device, and the said heat exchanger communicating.
  10.  前記熱交換器には重力方向と同方向に空気を流し、
     前記熱交換器は、
     前記直線部が空気の流れ方向と垂直となるように配置されている
     請求項9に記載の冷蔵庫。
    Air flows in the same direction as the direction of gravity through the heat exchanger,
    The heat exchanger is
    The refrigerator according to claim 9, wherein the linear portion is arranged to be perpendicular to the air flow direction.
  11.  伝熱管を備えた熱交換器の製造方法であって、
     前記伝熱管は、
     管内部を二つに分けるねじられた形状の隔壁を管内部に有した第1伝熱管と、
     管内部に前記隔壁を有さない第2伝熱管と、で少なくとも構成されており、
     前記フィンの開口部に前記第1伝熱管を通した後、流体を前記第1伝熱管に封入して圧縮し、前記第1伝熱管を拡管する
     熱交換器の製造方法。
    A method of manufacturing a heat exchanger having a heat transfer tube,
    The heat transfer tube is
    A first heat transfer tube having a twisted partition wall dividing the inside of the tube in two;
    A second heat transfer tube that does not have the partition wall inside the tube, and
    A method of manufacturing a heat exchanger, wherein after passing the first heat transfer tube through the opening of the fin, a fluid is sealed in the first heat transfer tube and compressed, and the first heat transfer tube is expanded.
  12.  前記第1伝熱管は、
     金属材料を押出成型することで作成される
     請求項11に記載の熱交換器の製造方法。
    The first heat transfer tube is
    The method for manufacturing a heat exchanger according to claim 11, wherein the heat exchanger is produced by extruding a metal material.
  13.  前記金属材料がアルミニウムである
     請求項12に記載の熱交換器の製造方法。
    The method for manufacturing a heat exchanger according to claim 12, wherein the metal material is aluminum.
PCT/JP2016/068952 2016-06-27 2016-06-27 Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger WO2018002981A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018524593A JP6644143B2 (en) 2016-06-27 2016-06-27 refrigerator
PCT/JP2016/068952 WO2018002981A1 (en) 2016-06-27 2016-06-27 Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger
CN201680086680.0A CN109416228A (en) 2016-06-27 2016-06-27 Heat exchanger uses the heat exchanger as the manufacturing method of the refrigerator of cooler and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068952 WO2018002981A1 (en) 2016-06-27 2016-06-27 Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger

Publications (1)

Publication Number Publication Date
WO2018002981A1 true WO2018002981A1 (en) 2018-01-04

Family

ID=60786142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068952 WO2018002981A1 (en) 2016-06-27 2016-06-27 Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger

Country Status (3)

Country Link
JP (1) JP6644143B2 (en)
CN (1) CN109416228A (en)
WO (1) WO2018002981A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079651A (en) * 2018-11-12 2020-05-28 パナソニックIpマネジメント株式会社 Air conditioner
KR20200076048A (en) * 2018-12-19 2020-06-29 주식회사 포스코 Apparatus for recovering heat from furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648072U (en) * 1987-06-26 1989-01-17
JPH01101092U (en) * 1987-12-25 1989-07-06
CN1971197A (en) * 2005-11-23 2007-05-30 三星电子株式会社 Piping for heat exchanger and refrigerating system using same
JP2008202823A (en) * 2007-02-19 2008-09-04 Hitachi Appliances Inc Refrigerator
JP2009293849A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger
WO2013172181A1 (en) * 2012-05-17 2013-11-21 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314947A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Heat exchanger unit and refrigerator
JP5741657B2 (en) * 2013-09-11 2015-07-01 ダイキン工業株式会社 Heat exchanger and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648072U (en) * 1987-06-26 1989-01-17
JPH01101092U (en) * 1987-12-25 1989-07-06
CN1971197A (en) * 2005-11-23 2007-05-30 三星电子株式会社 Piping for heat exchanger and refrigerating system using same
JP2008202823A (en) * 2007-02-19 2008-09-04 Hitachi Appliances Inc Refrigerator
JP2009293849A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger
WO2013172181A1 (en) * 2012-05-17 2013-11-21 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079651A (en) * 2018-11-12 2020-05-28 パナソニックIpマネジメント株式会社 Air conditioner
KR20200076048A (en) * 2018-12-19 2020-06-29 주식회사 포스코 Apparatus for recovering heat from furnace
KR102130998B1 (en) * 2018-12-19 2020-07-07 주식회사 포스코 Apparatus for recovering heat from furnace

Also Published As

Publication number Publication date
JPWO2018002981A1 (en) 2019-01-31
CN109416228A (en) 2019-03-01
JP6644143B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2014115240A1 (en) Refrigerant distributor and heat pump device using refrigerant distributor
WO2006053310A2 (en) Parallel flow evaporator with non-uniform characteristics
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
CN106164607B (en) Refrigeration system with phase change material heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
US9644900B2 (en) Evaporation heat transfer tube
JP2015017738A (en) Heat exchanger
WO2018002981A1 (en) Heat exchanger, refrigerator using heat exchanger as cooler, and method for manufacturing heat exchanger
JPH10205919A (en) Condenser of air-cooling apparatus
EP3191784B1 (en) Turbulators in enhanced tubes
JP2007309533A (en) Fin tube heat exchanger
JP2012026615A (en) Outdoor unit, and refrigeration cycle apparatus with the same
WO2017208558A1 (en) Heat exchanger
EP2796822A1 (en) Air conditioner
KR100502303B1 (en) A Spiral Type Heat Exchanger Device
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP2002235993A (en) Spiral fin tube and refrigeration air conditioning device
JP2004077021A (en) Gas cooler
US10480872B2 (en) Turbulators in enhanced tubes
JP6904487B2 (en) Heat exchanger
JP7061251B2 (en) Heat exchanger and heat pump equipment
JP4948136B2 (en) Heat transfer tube and radiator
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP6026871B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524593

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907214

Country of ref document: EP

Kind code of ref document: A1